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ABSTRACT
Time-based one-time password (TOTP) systems in use today re-
quire storing secrets on both the client and the server. As a result, an
attack on the server can expose all second factors for all users in the
system. We present T/Key, a time-based one-time password system
that requires no secrets on the server. Our work modernizes the
classic S/Key system and addresses the challenges in making such
a system secure and practical. At the heart of our construction is a
new lower bound analyzing the hardness of inverting hash chains
composed of independent random functions, which formalizes the
security of this widely used primitive. Additionally, we develop
a near-optimal algorithm for quickly generating the required ele-
ments in a hash chain with little memory on the client. We report on
our implementation of T/Key as an Android application. T/Key can
be used as a replacement for current TOTP systems, and it remains
secure in the event of a server-side compromise. The cost, as with
S/Key, is that one-time passwords are longer than the standard six
characters used in TOTP.

CCS CONCEPTS
• Security and privacy → Hash functions and message au-
thentication codes; Multi-factor authentication;

KEYWORDS
Two-factor authentication; Hash chains

1 INTRODUCTION
Static passwords are notorious for their security weaknesses [11,
46, 64–66], driving commercial adoption of two-factor authenti-
cation schemes, such as Duo [55], Google authenticator [24], and
many others. Several hardware tokens provide challenge-response
authentication using a protocol standardized by the FIDO industry
alliance [59].

Nevertheless, for desktop and laptop authentication, there is
a strong desire to use the phone as a second factor instead of a
dedicated hardware token [41, 55, 56, 67]. Several systems support
phone-based challenge-response authentication (e.g., [55]), but they
all provide a fall back mode to a one-time password scheme. The
∗Both authors contributed equally to the paper.
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reason is that challenge-response requires two-way communication
with the phone: uploading the challenge to the phone and sending
the response from the phone to the server. However, one cannot
rely on the user’s phone to always be connected. When the user
is traveling, she may not have connectivity under the local cell
provider, but may still wish to use her laptop to log in at a hotel
or to log in using a workstation at an Internet Cafe. In this case,
authentication systems, such as Duo, fall back to a standard timed-
based one-time password (TOTP) scheme.

Standard TOTP schemes [48] operate using a shared key k stored
on both the phone and the authentication server. The phone dis-
plays a six digit code to the user, derived from evaluatinghmac(k, t ),
where t is the current time, rounded to the current 30 second mul-
tiple. This way, the code changes every 30 seconds and can only
be used once, hence the name one-time password. The user enters
the code on her laptop, which sends it to the server, and the server
verifies the code using the same key k . The server accepts a window
of valid codes to account for clock skew.

The benefit of TOTP schemes is that they only require one-way
communication from the phone to the laptop, so they can function
even if the phone is offline (challenge-response requires two-way
communication with the phone and is mostly used when the phone
is online). However, a difficulty with current TOTP is that the server
must store the user’s secret key k in the clear. Otherwise, the server
cannot validate the 6-digit code from the user. With this design, a
break-in at the server can expose the second factor secret for all
users in the system. Awell-publicized event of this type is the attack
on RSA SecurID, which led to subsequent attacks on companies
that rely on SecurID [61].

Our work. We introduce a TOTP system called T/Key that re-
quires no secrets on the server. Our starting point is a classic one-
time password system called S/Key [27], which is not time-based
and suffers from a number of security weaknesses, discussed in
the next section. Our work modernizes S/Key, makes it time-based
(hence the name T/Key), and addresses the resulting security chal-
lenges.

In T/Key, the phone generates a hash chain seed and uses this
seed to construct a long hash chain, say of length two million, as
depicted in Figure 1. The phone encodes the tail of the chain T
in a QR code, which the user scans with her laptop and sends to
the authentication server for storage. The phone then starts at the
element immediately preceding T in the chain and walks one step
backwards along the chain once every 30 seconds. It does so until
it reaches the head of the chain, which is the seed. At every step,
the phone displays the current element in the chain, and the user
logs in by scanning the displayed code on her laptop. At the rate of
one step every 30 seconds, a single chain is good for approximately
two years, at which point the phone generates a new chain. The
details of the scheme are presented in Section 3. As in TOTP, there
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Figure 1: Sketch of T/Key

is only one-way communication from the phone to the laptop, and
the phone can be offline. Moreover, a server compromise reveals
nothing of value to the attacker.

Such a TOTP scheme presents a number of challenges. First,
security is unclear. Imagine an attacker breaks into the server and
steals the top of the chain T . The attacker knows the exact time
when the millionth inverse of T will be used as the second factor.
That time is about a year from when the break-in occurs, which
means that the attacker can take a year to compute the millionth
inverse ofT . This raises the following challenge: for a given k , how
difficult is it to compute the k-th inverse of T ?

If the same function is used throughout the entire hash chain, as
in S/Key, the scheme is vulnerable to “birthday attacks" [31] and
is easier to break than the original hash function [28]. A standard
solution is to use a different hash function at every step in the chain.
The question then is the following: if H is the composition of k
random hash functions, namely

H (x ) := hk (hk−1 (· · · (h2 (h1 (x ))) · · · )),

how difficult is it to invert H given H (x ) for a random x in the
domain? We prove a time lower bound for this problem in the
random oracle model. Additionally, given the possibility of making
time-space tradeoffs in attacks against cryptographic primitives [17,
29, 49], a natural follow up question is whether the scheme is still
secure against offline attackers. Building on the recent results of
Dodis, Guo and Katz [18], we prove a time-space lower bound for
this problem that bounds the time to invert H , given a bounded
amount of preprocessing space. As hash chains are a widely used
primitive, we believe that our lower bounds, both with and without
preprocessing, may be of independent interest.

From this security analysis, we derive concrete parameters for
T/Key. For 2128 security, every one-time password must be 130
bits. Since entering these one-time passwords manually would
be cumbersome, our phone implementation displays a QR code
containing the one-time password, which the user scans using her
laptop camera. We describe our implementation in Section 6 and
explain that T/Key can be used as a drop-in replacement for Google
Authenticator. The benefit is that T/Key remains secure in the event
of a server-side compromise.

We also note that USB-based one-time password tokens, such
as Yubikey [69], can be set up to emulate a USB keyboard. When
the user presses the device button, the token “types” the one-time
password into a browser field on the laptop. This one-way commu-
nication setup is well suited for T/Key: the token computes a T/Key
one-time password and enters it into a web page by emulating a
keyboard. Again, this TOTP system remains secure in the event of
a server-side compromise.

The second challenge we face is performance. Because the hash
chain is so long, it is unreasonable for the phone to recompute the

entire hash chain on every login attempt, since doing so would take
several seconds for every login. Several amortized algorithms have
been developed for quickly walking backwards on a hash chain,
while using little memory on the phone [13, 33]. The problem is
that these schemes are designed to walk backwards a single step
at a time. In our case, the authenticator app might not be used
for a month or, perhaps, even longer. Once the user activates the
app, the app must quickly calculate the point in the hash chain
corresponding to the current time. It would take too long to walk
backwards from the last login point, one step at a time, to reach the
required point.

Instead, we develop a new approach for pebbling a hash chain
that enables a quick calculation of the required hash chain elements.
We model the user’s login attempts as a Poisson process with pa-
rameter λ and work out a near-optimal method to quickly compute
the required points with little memory on the phone.

Other approaches. T/Key is not the only way to provide a TOTP
with no secrets on the server. An alternate approach is to use a
digital signature. The phone maintains the signing key, while the
server maintains the signature verification key. On every authenti-
cation attempt, the phone computes the signature on the current
time, rounded to a multiple of 30 seconds. This can be scanned into
the laptop and sent to the server to be verified using the verification
key.

While this signature-based scheme has similar security proper-
ties to T/Key, it has a significant limitation. Standard digital sig-
natures such as ECDSA [34] and EdDSA [5, 35] are 512 bits long
for 2128 security1. These are about four times as long as the tokens
used in T/Key. For example, when encoded as QR codes, the longer
tokens result in a denser QR code. To preserve the maximal scan-
ning distance, the denser QR code must be displayed in a larger
image [51]. (Alternatively, the signatures could be decomposed into
several QR codes of the original size, but scanning multiple images
introduces additional complexity for the user.) Short authentica-
tion tokens might also be desirable in other applications such as
Bluetooth Low Energy (which supports a 23-byte long MTU [58]).

Table 1 provides a comparison of the different TOTPmechanisms
and their properties. The last column shows the required length of
the one-time password.

Beyond authentication. Hash chains come up in a number of
other cryptographic settings, such as Winternitz one-time signa-
tures [12] and the Merkle-Damgard construction [44]. Existing
security proofs for Winternitz signatures often only take into ac-
count the attacker’s online work. Our lower bound on inverting
hash chains is well suited for these settings and can be used to de-
rive time-space tradeoff proofs of security for these constructions.
This is especially relevant as these schemes are being standard-
ized [32, 36, 43].

2 OFFLINE 2ND FACTOR AUTHENTICATION
We begin by briefly reviewing several approaches to one-time pass-
words that are most relevant to our scheme.

1BLS signatures [8] are shorter, but require a pairing operation on the server which
makes them less attractive in these settings.
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Table 1: A comparison of OTP schemes.

No server secrets Time-varying passwords Password length in bits
(at 2128 security)

S/Key ✓ ✗ N/A
TOTP (HMAC) ✗ ✓ 20
Digital Signatures (ECDSA/EdDSA) ✓ ✓ 512
T/Key ✓ ✓ 130

Note: S/Key does not support this level of security.

S/Key. The idea of a one-time password authentication scheme
was first considered by Lamport [38]. Loosely speaking, in such
a scheme, following an initial setup phase, authentication is per-
formed by the client presenting the server with a password that is
hard for an attacker to guess, even given all previous communica-
tion between the server and the client. In particular, no password
is valid for more than one authentication. In his work, Lamport
proposed a concrete instantiation of this idea using hash chains,
and this idea has been subsequently developed and implemented
under the name S/Key [27]. The setup phase of S/Key consists of the
client choosing a secret passphrase2 x and sending the computed
value y0 = h(k ) (x ) (where h is some cryptographic hash function,
k is some integer, and h(k ) denotes k successive iterations of h)
to the server, which the server then stores. Subsequently, to au-
thenticate for the ith time, the client must present the server with
yi = h(k−i ) (x ), which the server can verify by computing h(yi )
and comparing it to the stored value yi−1. If the authentication is
successful, the server updates its stored value to yi .

S/Key has a number of undesirable properties. First, one-time
passwords remain valid for an indefinite period of time unless used,
making them vulnerable to theft and abuse. This vulnerability is
magnified if the counter value for each authentication attempt is
communicated to the client by the server, as is the case in both
the original S/Key [27] and in the newer OPIE [42] (presumably to
allow for stateless clients). In this common setting, the scheme is
vulnerable to a so-called “small n" attack [45], where an attacker
impersonating the server can cause the client to reveal a future
one-time password. Second, the fact that S/Key utilizes the same
hash function at every iteration in the chain makes it easier to break
S/Key than to break a single hash function (see Theorem 4.1). This
also implies that any modification to the scheme that requires using
much longer hash chains (such as, for example, a naïve introduction
of time-based passwords) could lead to insecurity.

HOTP. In anHMAC-based one-time password scheme (HOTP) [47],
a secret and a counter, both shared between the server and the client,
are used in conjunction with a pseudorandom function (HMAC)
to generate one-time passwords. The setup phase consists of the
server and the client agreeing on a random shared secret k and
initializing a counter value c to 0. One-time passwords are then
generated as HMAC(k, c ). The counter is incremented by the client
every time a password is generated and by the server after every
successful authentication.
2Usually, the client’s secret passphrase is concatenated with a random salt to prevent
dictionary attacks and reduce the risk of reusing the same passphrase on multiple
servers.

The most significant advantage of this scheme is that the num-
ber of authentications is unbounded. Moreover, it allows using
short one-time passwords without compromising security. How-
ever, HOTP still suffers from many of the weaknesses of S/Key,
namely that unused passwords remain valid for an indefinite pe-
riod of time. A bigger concern is that the secret key k must be stored
on the server, as discussed in the previous section.

TOTP. Time-based one-time password schemes (TOTP) [48]were
introduced to limit the validity period of one-time passwords. In
TOTP, the shared counter value used by HOTP is replaced by a
timestamp-based counter. Specifically, the setup phase consists of
the server and the client agreeing on the ‘initial time’ t0 (usually
the UNIX epoch) and a time slot size I (usually 30 seconds), as well
as on a secret key k . Subsequently, the client can authenticate by
computing HMAC(k, (t − t0)/I ), where t is the time of authentication.
As with HOTP, the TOTP scheme is vulnerable to a server-side
attack.

3 OUR CONSTRUCTION
T/Key combines the ideas used in S/Key and TOTP to achieve the
best properties of both schemes: T/Key stores no secrets on the
server and ensures that passwords are only valid for a short time
interval. The scheme works as follows:

Public Parameters. The scheme’s parameters are the password
length n (in bits), a time slot size I (in seconds), representing the
amount of time each password is valid for, and the maximal sup-
ported authentication period k (measured as the number of slots of
size I ). Furthermore, our scheme uses some public cryptographic
hash function H : {0, 1}m → {0, 1}m for an arbitrarym ≥ n + s + c ,
where s is the number of bits used for the salt and c is the number
of bits needed to represent the time. Typical values are given in
Table 2.

Table 2: Scheme public parameters and their typical values.

Parameter Value Description

n 130 bits One-time password length
s 80 bits Salt length
c 32 bits Number of bits used for time
m 256 bits Hash function block size
k 2 × 106 Chain length
I 30 sec Time slot length
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Figure 2: A basic overview of T/Key. A user has submitted the password p at time tmax − 1. Since the previous login occurred
at time tprev = tinit + 2, the server has stored pprev = p2 as the previous password. To authenticate the user, the server computes
hk−2 (. . . (h2 (p)) . . .) and checks if it is equal to pprev.

Setup. The client chooses and stores a uniformly random secret
key sk ∈ {0, 1}n , as well as a random salt id ∈ {0, 1}s , and notes
the setup time tinit (measured in slots of length I ). The public hash
function H together with the initialization time tinit induce the
k independent hash functions h1, . . . ,hk : {0, 1}n → {0, 1}n as
follows: for 1 ≤ i ≤ k define

hi (x ) = H
(
⟨tinit + k − i⟩c

 id
 x

) ����n ,
where for a numerical value t , ⟨t⟩c denotes the c-bit binary repre-
sentation of t , and for strings x ,y ∈ {0, 1}∗, we write x |n and x ∥y
to denote the n-bit prefix of x and the concatenation of x and y,
respectively. This simple method of obtaining independent hash
functions from a single hash function over a larger domain is called
domain separation, and it is often attributed to Leighton and Mi-
cali [39]. Note that since all inputs to the hash function are of equal
size, this construction is not susceptible to length extension attacks,
and therefore, there is no need to use HMAC.

The client then computes

pinit = hk (hk−1 (. . . (h1 (sk)) . . .))

and sends it to the server together with id. The server stores pinit
as pprev as well as the time tinit as tprev (we discuss time synchro-
nization issues below).

Authentication. To authenticate at a later time t ∈ (tinit, tmax]
(measured in units of length I where tmax = tinit +k), the client and
server proceed as follows: the client uses sk and t to generate the
one-time password

pt = htmax−t (htmax−t−1 (. . . (h1 (sk)) . . .)).

Alternatively, when t = tmax, we use pt = sk. To check a password
p, the server uses the stored values, tprev and pprev, and the current
time-based counter value t > tprev. The server computes

p′prev = htmax−tprev (htmax−tprev−1 (. . . (htmax−t+1 (p)) . . .)).

If p′prev = pprev, then authentication is successful, and the server
updates pprev to p and tprev to t . Otherwise, the server rejects the
password.

Reinitialization. Just as in authentication, initialization requires
communication only from the client device to the server, and the
server does not need to send anything to the client. The only dif-
ference is that during initialization, the client needs to supply the
server with the salt in addition to the initial password. The finite
length of the hash chain requires periodic reinitialization, and the
length of this period trades off with the time step length I and the
time it takes to perform the initialization (which is dominated by
the full traversal of the hash chain by the client). For standard use
cases, one can set I = 30 seconds and k = 2 × 106, which results
in a hash chain valid for 2 years and takes less than 15 seconds to
initialize on a modern phone.

Since key rotation is generally recommended for security pur-
poses (NIST, for example, recommends “cryptoperiods” of 1–2 years
for private authentication keys [3]), we don’t view periodic reinitial-
ization as a major limitation of our scheme. While reinitialization
is obviously somewhat cumbersome, there are several properties of
our scheme that mitigate the inconvenience. First, the fact that our
setup is unidirectional makes it very similar to authentication from
the user’s point of view. Second, from a security standpoint, the
setup is not vulnerable to passive eavesdrop attacks, unlike TOTP
schemes that rely on shared secrets.

A scenario where the hash chain expires before the user is able
to reinitialize it with the server can be handled out-of-band in a
manner similar to password recovery or loss of the second-factor.
Alternatively, some implementations could choose to accept the
head of the chain even after its validity period, which would incur
a loss in security proportional to the time elapsed since expiration.

Clock Synchronization. As with current TOTP schemes, authen-
tication requires a synchronized clock between the server and the
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client. Time skew, or simply natural delay between the moment of
password generation and the moment of verification, might result
in authentication failure. To prevent this, the server may allow the
provided password to be validated against several previous time
steps (relative to the server’s clock), as was the case in the TOTP
scheme. When this occurs, the previous authentication timestamp
tprev stored on the server should be updated to the timestampwhich
resulted in successful verification.

Figure 2 illustrates the design of T/Key.

4 SECURITY
Although our scheme bears a resemblance to both S/Key and TOTP,
it has several essential differences that eliminate security issues
present in those schemes.

First and foremost, T/Key does not require the server to store any
secrets, which mitigates the risk of an attack that compromises the
server’s database, unlike TOTP, which requires the client’s secret
key to be stored by the server.

Second, T/Key’s passwords are time limited, unlike those in
S/Key, which makes phishing attacks more difficult because the
attacker has a limited time window in which to use the stolen pass-
word. However, the fact that T/Key’s passwords are time limited
makes it necessary for the hash chain used by T/Key to be sig-
nificantly longer than those in S/Key, since its length must now
be proportional to the total time of operation rather than to the
supported number of authentications. This modification raises the
issue of the dependence of security on the length of the hash chain.
Hu, Jakobsson and Perrig [31] discuss the susceptibility of iterat-
ing the same hash function to “birthday" attacks and Håstad and
Näslund [28] show that if the same hash function h is used in every
step of the chain, then inverting the k-th iterate is actually k times
easier than inverting a single instance of the hash function. We
reproduce their proof here for completeness and clarity.

We set N = 2n and denote by ℱN the uniform distribution over
the set of all functions from [N ] to [N ], where [N ] is the set of
integers {1, 2, . . . ,N }. For a function h : [N ]→ [N ], we let h(k )
denote h composed with itself k times. For functions h1,h2, . . . ,hk
and 1 ≤ i ≤ j ≤ k , we let h[i, j] denote the composition hj ◦ hj−1 ◦
· · · ◦hi . When writingAh , we mean that algorithmA is given oracle
access to all k functions h1, . . . ,hk .

Theorem 4.1 ([28]). For every N ∈ N, k ≤
√
N and 2k ≤ T ≤

N /k , there exists an algorithm A that makes at most T oracle queries
to a random function h : [N ]→ [N ] and

Pr
h∈ℱN
x ∈[N ]

[
h

(
Ah (h(k ) (x ))

)
= h(k ) (x )

]
= Ω

(
Tk

N

)
.

Moreover, every algorithm that makes at most T oracle queries suc-
ceeds with probability at most O (Tk/n).

Proof. We prove the first part of the theorem (the existence
of a “good” algorithm) and refer the reader to [28] for the proof
of the second part. Consider the following algorithm: On input
h(k ) (x ) = y ∈ [N ], the algorithm sets x0 = y and then computes
x j = h(x j−1) until either x j = y, in which case it outputs x j−1, or
until x j = xi for some i < j . In the latter case, it picks a new random
x j from the set of all points it hasn’t seen before and continues. If

the algorithm makes T queries to h without finding a preimage, it
aborts.

To analyze the success probability of this algorithm, consider the
first (T −k ) points {x j }T−kj=1 . If any of these points collides with any
of the values along the hash chain {h(i ) (x )}ki=1, the algorithm will
output a preimage of y after at most k additional queries. Therefore,
the probability of failure is at most the probability of not colliding
with the hash chain during the first T − k queries. But as long
as a collision does not happen, each query reply is independent
of all previous replies and of the values {h(i ) (x )}ki=1. Each query
therefore collides with the chain with probability at most k/N , and
overall, the algorithm fails with probability at most (1−k/N )T−k ≤

(1 − k/N )T /2 = 1 − Ω (Tk/N ). □

This loss of a multiplicative factor of k in security is undesirable
as it forces us to increase the security parameters for the hash
function to resist long-running adversaries. A standard solution
is to use a different hash function at every step in the chain. The
question then is the following: if H is the composition of k random
hash functions, namely

H (x ) := hk (hk−1 (· · · (h2 (h1 (x ))) · · · )) ,

how difficult is it to invert H given H (x ) for a random x in the
domain? To the best of our knowledge, this aspect of hash chain
security has not been analyzed previously.

In Section 4.1 we prove a time lower bound for inverting a hash
chain composed of independent hash functions. We show that as
opposed to the case in Theorem 4.1, where the same function is
used throughout the chain, resulting in a loss of security by a factor
ofO (k ), using independent hash function results in a loss of only a
factor of 2. Thus for most practical applications, a hash chain is as
hard to invert as a single hash function. In Section 8, we prove a
time-space lower bound for inverters that can preprocess the hash
function.

4.1 A lower bound for inverting hash chains
Theorem 4.2 (Security of hash chains against online at-

tacks). Let functions h1, . . . ,hk ∈ [N ]→ [N ] be chosen indepen-
dently and uniformly at random. Let A be an algorithm that gets
oracle access to each of the functions {hi }ki=1 and makes at most T
oracle queries overall. Then,

Pr
h1, ...,hk ∈ℱN

x0∈[N ]

[
hk

(
Ah (h[1,k] (x0))

)
= h[1,k] (x0)

]
≤

2T + 3
N
.

Proof. LetW = (w0,w1, . . . ,wk ) be the sequence of values of
the hash chain, i.e., w0 = x0 and wi = hi (wi−1) for i ∈ [1,k]. Let
A be an adversary that makes at most T oracle queries. Denote by
qj = (i j ,x j ,yj ) the j-th query made by A, where i j is the index of
the oracle queried, x j is the input queried, and yj is the oracle’s
response. We say that a query qj collides withW ifyj = wi j , namely
the reply to the query is a point on the hash chain. At the cost of
one additional query, we modify A to query hk on its output before
returning it. Thus, we can assume that if A successfully finds a
preimage, at least one of its T + 1 queries collides withW .

Let R = {(i,x ,y) : hi (x ) = y} be the set of all random oracle
queries and their answers. Using the principle of deferred decision,
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we can construct the set R incrementally as follows. Initially R = ∅;
subsequently whenever A makes an oracle query of the form (i,x ),
if x = wi−1, we respond with y = wi and add (i,wi−1,wi ) to R. Else
if (i,x ,y) ∈ R, we reply with y. Otherwise, we choose y uniformly
at random from [N ], add (i,x ,y) to R, and reply with y.

As mentioned above, to invert the hash chain, at least one query
qj ∈ R must collide withW . It follows that

Pr
H,x0

[A loses] = Pr
H,x0



T+1∧
j=1

yj , wi j



=

T+1∏
j=1

Pr
H,x0


yj , wi j

�������

j−1∧
ℓ=1

yℓ , wiℓ


.

To bound each term inside the product, we use the basic fact that

Pr(A|C ) = Pr(A|B,C ) Pr(B |C ) + Pr(A|¬B,C ) Pr(¬B |C )

≤ Pr(A|B,C ) + Pr(¬B |C )

to obtain

Pr
H,x0


yj = wi j

�������

j−1∧
ℓ=1

yℓ , wiℓ



≤ Pr
H,x0


yj = wi j

�������
x j , wi j−1 ∧

j−1∧
ℓ=1

yℓ , wiℓ



+ Pr
H,x0


x j = wi j−1

�������

j−1∧
ℓ=1

yℓ , wiℓ


.

Notice that the first of the two events in the last sum can only occur
if x j does not appear in R. Otherwise, yj , wi j due to the fact that
none of the previous queries collided withW . Therefore, the reply
yj is sampled uniformly at random, and this term is at most 1

N .
To bound the second term, note that each previous reply yℓ ,

provided that it does not collide withW , rules out at most one
possible value for wi j−1: either xℓ if iℓ = i j , or yℓ if iℓ = i j − 1.
Therefore,wi j−1 is distributed uniformly over the remaining values,
of which there are at most N − (j − 1). Specificallywi j−1 is equal to
x j , which is a function of all the previous replies y1, . . . ,yj−1, with
probability at most 1

N−j+1 .
Overall,

Pr
H,x0

[A loses] ≥
T+1∏
j=1

(
1 −

1
N
−

1
N − j + 1

)

≥

T+1∏
j=1

(
1 −

2
N − j + 1

)
.

We note that this is a telescopic product, which simplifies to

(N −T − 2) (N −T − 1)
N (N − 1)

≥
N 2 − (2T + 3)N

N 2

and therefore,

Pr
H,x0

[A wins] ≤
2T + 3
N
. □

Theorem 4.2 establishes the difficulty of finding a preimage of
the last iterate of the hash chain. For T/Key, we also need to bound
the success probability of attacks that “guess” a preimage of the
entire chain.

Corollary 4.3. Let functions h1, . . . ,hk ∈ [N ]→ [N ] be chosen
independently and uniformly at random. Let A be an algorithm that
gets oracle access to each of the functions {hi }ki=1 and makes at most
T oracle queries overall. Then,

Pr
h1, ...,hk ∈ℱN

x0∈[N ]

[
h[1,k]

(
Ah (h[1,k] (x0))

)
= h[1,k] (x0)

]
≤

2T + 2k + 1
N

.

Proof. LetA be an algorithm as in the statement of the corollary.
We use it to construct an algorithm A′ that finds a preimage of the
last iterate of the hash chain (as in the statement of Theorem 4.2).
On input y, algorithmA′ runs algorithmA to get a point z and then
computes and outputs z′ = h[1,k−1] (z). If h[1,k] (z) = h[1,k] (x ),
then hk (z

′) = h[1,k] (x ). Moreover, algorithm A′ makes at most
T ′ = T + k − 1 queries to its oracles. Therefore by Theorem 4.2, its
success probability is at most (2T ′ + 3)/N = (2T + 2k + 1)/N . □

Optimality. One might ask whether the above lower bound is
tight. Perhaps composing k independent hash functions not only
avoids some of the problems associated with using a hash chain
derived by composing the same hash function, but actually results
in a function that is k times more difficult to invert than the basic
hash function. Ideally, one might have hoped that the probability
of inverting the hash chain in T queries would be at most O

(
T
kN

)
.

However, this is not the case, because every iteration of the hash
chain introduces additional collisions and shrinks the domain of
the function at a rate of 1/k , where k = o(N ) is the length of the
chain (see Lemma A.1 for a proof sketch). An attacker can use these
collisions to her advantage. Consider an attack that evaluates the
chain on T /k random points in its domain (at a total cost of T hash
computations). Lemma A.4 shows that a point in the image of the
hash chain has k preimages in expectation. Therefore, each of the
T /k randomly chosen points collides with the input under the chain
with probability k/N , and so the overall success probability of the
attack is roughly T /N .

4.2 Security of T/Key
Our threat model assumes the adversary can repeatedly gain ac-
cess to the server and obtain all information needed to verify the
password. The adversary can also obtain multiple valid passwords
at times of his choice. Finally, we allow the adversary to choose the
time when he makes his impersonation attempt. To mitigate pre-
processing attacks, we salt all our hash functions (in Section 8, we
discuss preprocessing attacks in more detail, including the extent
to which salting helps prevent them).

Non-threats. First, we assume that there is no malware on the
phone or on the user’s laptop. Otherwise, the user’s session can
be hijacked by the malware, and strong authentication is of little
value. Second, because the channel between the laptop and the
authentication server is protected by TLS, we assume there is no
man-in-the-middle on this channel. Third, all TOTP schemes are
susceptible to an online phishing attack where the attacker fools the
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user into revealing her short-lived one-time password to a phishing
site, and the attacker then immediately authenticates as the user,
within the allowable short window. This is a consequence of the
requirement for one-way communication with the authentication
token (the phone). Note however that the limited time window
makes the exploitation of credentials time-sensitive, which makes
the attack more complicated.

We begin by presenting a formal definition of security. Our defi-
nitions are based on standard definitions of identification protocols
(see, for example, [57]).

Definition 4.4 (Time-based One-Time Password Protocol). A one-
time password protocol is a tuple ℐ = (pp, keygen, P ,V ) where

• Public parameter generator pp(1λ ,k ) → n is a polynomial
time algorithm that takes as input the security parameter
in unary along with the maximal supported authentication
period k and outputs the password length n.
• Key generator keygen(n,k ) → (sk, vst) is a probabilistic
polynomial time algorithm that takes as input the parame-
ters, n and k , and outputs the prover’s secret key sk and the
initial verifier state vst.
• Prover P (sk, t ) → p is a polynomial time algorithm, which
takes as input the prover’s secret key sk, and a time t ∈ [1,k],
and outputs a one-time password p.
• Verifier V (vst,p, t ) → (accept/reject, vst ′) is a polyno-
mial time algorithm, which takes as input the previous state
vst, a password p, and time t ∈ [1,k] and outputs whether
the password is accepted and the updated verifier state vst ′.

For correctness, we require that when executed on monotonically
increasing values of t with the state vst properly maintained as de-
scribed above, the verifier V (vst, P (sk, t ), t ) always outputs accept.

We now proceed to define the security game, where we use the
random oracle model [4].

Attack Game 4.5. Let ℐ be a time-based one-time password proto-
col, and let𝒪 be a random oracle. Given a challenger and an adversary
A, the attack game runs as follows:

• Public Parameter Generation – The challenger generates
n ← pp(1λ ,k ).
• Key Generation Phase – The challenger generates
(vk, sk) ← keygen𝒪 (n,k ), given access to the random oracle.

• Query Phase – The adversary runs the algorithm A, which
is given the verifier’s initial state vst as well as the ability to
issue the following types of queries:
– Password Queries: The adversary sends the challenger a time
value t .
The challenger generates the password p ← P𝒪 (t , sk), feeds
it to the verifier to obtain (accept, vst ′) ← V𝒪 (t , vst,p),
updates the stored verifier state to vst ′, and sends p to the
adversary.

– Random Oracle Queries: The adversary sends the challenger
a point x , and the challenger replies with 𝒪(x ).

The above queries can be adaptive, and the only restriction is
that the values of t for the password queries must be monoton-
ically increasing.

• Impersonation attempt – The adversary submits an identifica-
tion attempt (tattack,pattack), such that tattack is greater than
all previously queried password values.

We say that the adversaryAwins the game if V𝒪 (vst ,pattack, tattack)
outputs accept. We let AdvA (λ,k ) denote the probability of the ad-
versary winning the game with security parameter λ and maximal
supported authentication period k , where the probability is taken over
the random oracle as well as the randomness in the key generation
phase.

We are now ready to prove that T/Key is secure. Specifically,
given an adversary that makes at most T queries, we establish an
upper bound on the advantage the adversary can have in breaking
the scheme. We note that no such result was previously known for
the original S/Key scheme, and the key ingredient in our proof is
Theorem 4.2.

Theorem 4.6 (Security of T/Key). Consider the T/Key scheme
with password length n and maximum authentication period k . Let A
be an adversary attacking the scheme that makes at most T random
oracle queries. Then,

AdvA ≤
2T + 2k + 1

2n
.

Proof. First, recall that our scheme uses a hash function H :
{0, 1}m → {0, 1}m to get k functions h1, . . . ,hk : {0, 1}n → {0, 1}n ,
wherehi (x ) = H (⟨tinit + k − i⟩c ∥id∥x ) |n . In the randomoraclemodel,
we instantiate H using the random oracle, and the domain separa-
tion results in h1, . . . ,hk being independent random functions.

Without loss of generality, we assume that tinit = 0 and that the
latest password requested by the adversary is the top of the chain
pk (since the functions h1, . . . ,hk are independent, any random
oracle or password queries corresponding to times earlier than the
latest requested password do not help the adversary to invert the
remaining segment of the chain).

By definition, the verifier accepts (tattack,pattack) if and only
if h[k−tattack+1,k] (pattack) = h[1,k] (sk). Therefore, if the adversary
wins the game, it must hold that at least one query qj ∈ R collides
withW . The proof then follows from Corollary 4.3. □

Concrete Security. With this result at hand, we compute the pass-
word length required to make T/Key secure. For moderate values
of k (say, negligible in 2n ), to make our scheme as secure as a λ-bit
random function, it is enough to set n = λ+ 2, since then, assuming
k < T ,

AdvA ≤
2T + 2k + 1

2n
≤

4T
2λ+2

=
T

2λ
.

For standard 128-bit security, we require passwords of length 130
bits.

5 CHECKPOINTING FOR EFFICIENT HASH
CHAIN TRAVERSAL

In our scheme, the client stores the secret sk, which is used as the
head of the hash chain. In the password generation phase, as de-
scribed in Section 3, the client must compute the value of the node
corresponding to the authentication time each time it wishes to
authenticate. A naive implementation would simply traverse the
hash chain from the head of the chain all the way to the appropriate
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node. Since T/Key uses long hash chains, this approach could lead to
undesirable latency for password generation. To decrease the num-
ber of hashes necessary to generate passwords, the client can store
several values (called “pebbles" or “checkpoints”) corresponding to
various points in the chain.

There exist multiple techniques for efficient hash chain traversal
using dynamic helper pointers that achieve O (logn) computation
cost per chain link with O (logn) cells of storage [13, 33]. However,
there are two key differences between the goals of those schemes
and our requirements.

(1) These techniques all assume sequential evaluation of the
hash chain, whereas in our scheme, authentication attempts
are likely to result in an access-pattern containing arbitrary
gaps.

(2) Previous schemes aim to minimize the overall time needed
to take a single step along the hash chain, which consists
of two parts: the time needed to fetch the required value in
the hash chain, and the time needed to reposition the check-
points in preparation for fetching the future values. In our
setting, however, it makes sense to minimize only the time
needed to fetch the required hash value, potentially at the
cost of increasing the time needed to reposition the check-
points. This is reasonable since the gaps between a user’s
authentication attempts provide ample time to reposition
the checkpoints, and it is the time to generate a password
that is actually noticeable to the user.

If the user’s login behavior is completely unpredictable, we can
minimize the worst-case password generation time by placing the
checkpoints at equal distances from one another. We call this the
naïve checkpointing scheme. However, in many real-world sce-
narios, user logins follow some pattern that can be exploited to
improve upon the naïve scheme.

To model a user’s login behavior, we consider a probability dis-
tribution that represents the probability that the user will next
authenticate at time t (measured in units of time slots) given that it
last authenticated at time 0. Additionally, we let each node in the
hash chain be indexed by its distance from the tail of the chain and
let ℓ be the index of the head of the chain (i.e., ℓ is the length of the
remaining part of the hash chain). In this model, valid future login
times are the integers {1, 2, . . . , ℓ}, and each node in the hash chain
is indexed by the corresponding login time. By this, we mean that
the valid password at time t is the value at node t . This notation is
illustrated in Fig. 3.

0

Tail

1 ℓ − 1 ℓ

Head

· · ·

Time

Figure 3: The hash chain with time-labeled nodes.

The problem is then to determine where to place q checkpoints,
0 ≤ c1 ≤ c2 ≤ . . . ≤ cq < ℓ, in order to minimize the expected
computation cost of generating a password. We note that if the
client authenticates at time t and ci is the closest checkpoint to t

with ci ≥ t , then the computational cost of generating the password
is ci − t . If no such checkpoint exists, then the cost is ℓ − t . We do
not take into account the number of additional hash computations
required to reposition the checkpoints after generating a password.

In order to make the analysis simpler, we relax the model from a
discrete notion of a hash chain to a continuous one. By this, wemean
that we make the probability distribution modeling the client’s next
login time continuous and allow the checkpoints to be stored at
any real index in the continuous interval (0, ℓ]. Additionally, we
allow authentications to occur at any real time in (0, ℓ]. Formally,
let p (t ) be the probability density function (pdf) of this distribution
with support over the positive reals and let F (t ) =

∫ t
0 p (t )dt be

its cumulative distribution function (cdf). We can then express the
computational cost C in terms of the checkpoints by the formula

C =

∫ c1

0
(c1 − t )p (t )dt +

∫ c2

c1
(c2 − t )p (t )dt + . . . +

∫ ℓ

cq
(ℓ − t )p (t )dt

= c1F (c1) + c2 (F (c2) − F (c1)) + . . . + ℓ(F (ℓ) − F (cq )) −

∫ ℓ

0
tp (t )dt .

In order to determine the values of the ci ’s that minimize C , we
take the partial derivatives ∂C

∂ci
for each variable and set them equal

to 0. This gives the following system of equations:
F (c1)

p (c1)
= c2 − c1 (1)

F (c2) − F (c1)

p (c2)
= c3 − c2 (2)

... (3)
F (cq ) − F (cq−1)

p (cq )
= ℓ − cq . (4)

Solving these equations yields the values of the ci ’s that minimize
C , which we then round to the nearest integer, since checkpoints
can only be placed at integer coordinates. We refer to this as the
expectation-optimal solution.

Depending on the specific distribution, this system of equations
may or may not be numerically solvable. If necessary, one can
simplify the problem by replacing the set of dependent multivariate
equations with a set of independent univariate equations. This is
done using the following recursive approach. We first place a single
checkpoint c optimally in [0, ℓ], then place optimal checkpoints
in the subintervals [0, c] and [c, ℓ], and then place checkpoints in
the next set of subintervals, etc. The problem then reduces to the
problem of placing a single checkpoint in an interval [a,b], and the
optimal location x can be determined by solving the equation

F (x ) − F (a)

p (x )
= b − x . (5)

In practice, mobile second-factor devices are often not the best
environment for running numerical solvers. One solution would
be to precompute the expectation-optimal checkpoint positions
for some fixed length ℓ (e.g., the initial length of the chain) and
distribution F and then hardcode those values into the second-
factor application. However, as time progresses, these precomputed
positions will no longer be expectation-optimal for the the length
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of the remaining part of the hash chain. Moreover, one might want
to adaptively reposition the checkpoints based on the past average
time between logins of the user.

Repositioning the checkpoints. Each time a password is generated,
we reposition the checkpoints by computing the optimal checkpoint
positions for the length of the remaining chain. We then compute
the hash values at these positions by traversing the hash chain from
the nearest existing checkpoint. This is done in the background
after presenting the user with the generated password.

5.1 User logins as a Poisson process
One choice for modeling the distribution F (t ) between logins is the
exponential distribution

p (t ) = λe−λt F (t ) = 1 − e−λt .

The exponential distribution is a distribution of the time between
events in a Poisson process, i.e. a process in which events occur
continuously and independently at a constant average rate. Previous
works state that this is a reasonable model for web login behavior [7,
52]. In our setting, the value of the average time between logins
could vary anywhere between hours and months depending on
the specific application and whether a second factor is required on
every login, once in a period, or once per device.

For the exponential distribution, Equation 5 gives:

−e−λx + e−λa

λe−λx
= b − x .

Conveniently, this equation admits the analytic solution

x = −
W (eλ (x−a)+1)

λ
+ b + 1/λ , (6)

whereW (·) is the Lambert-W function [14]. The recursive solution
in this case can then be easily implemented on the second-factor
device.

Figure 4 compares the expected performance of the following
checkpointing procedures: naïve, expectation-optimal (obtained by
numerically solving Equations 1-4) and recursive (obtained using
Equation 6). We also compare against the pebbling scheme of Cop-
persmith and Jakobsson [13], although as we’ve noted above, their
scheme optimizes a different metric than ours, so it is no surprise
that it does not perform as well as the recursive or expectation-
optimal approaches in our setting.

Balancing worst and expected performance. One disadvantage of
both the expectation-optimal and recursive checkpoints is that they
perform poorly in the worst-case. Specifically, if a user does not
log in for a long period of time, a subsequent login might result in
an unacceptably high latency. A simple solution is to place several
additional checkpoints in order to minimize the maximal distance
between checkpoints, which bounds the worst case number of hash
computations.

Figure 5 illustrates the placement of checkpoints given by the
different checkpointing schemes discussed in this section plotted
along the probability density function of the exponential distribu-
tion.

Figure 4: Performance of checkpointing schemes. Chain
length is 1.05×106 (one yearwhenusing 30-second time slots).
Login times are assumed to be a Poisson process with mean
of 20160 (one week when using 30-second time slots).

Figure 5: Illustration of different checkpointing schemes
with logins modeled by the exponential distribution.

6 IMPLEMENTATION
We implemented our scheme by extending the Google Authentica-
tor Android App and the Google Authenticator Linux Pluggable
Authentication Module (PAM) [25].

Scheme Details and Parameters. We use passwords of length
130 to obtain the level of security discussed in Section 4. As a
concrete instantiation of a family of independent hash functions,
for 0 ≤ i < 232, we take hi : {0, 1}130 → {0, 1}130 to be defined as
hi (x ) = SHA-256(⟨i⟩32∥id∥x ) |130, where ⟨i⟩32 is the index of the
function represented as a 32-bit binary string, and id is a randomly
chosen 80-bit salt. Our time-based counter uses time slots of length
30 seconds with 0 being the UNIX epoch. The length of the hash
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chain has to be chosen to balance the resulting maximal authentica-
tion period and the setup time (which is dominated by the time to
serially evaluate the entire hash chain). We use 221 as our default
hash chain length, resulting in a maximum authentication period
of approximately 2 years and a setup time of less than 15 seconds
on a modern mobile phone (see Section 7 for more details).

6.1 Password Encoding
Since the one-time passwords in our scheme are longer than those
in the HMAC-based TOTP scheme (130 bits vs. 20 bits), we cannot
encode the generated passwords as short numerical codes. Instead,
we provide two encodings, which we believe are better suited for
passwords of this length.

QR Codes. First, our Android app supports encoding the one-
time password as a QR code. Among their many other applications,
QR codes have been widely used for second factor authentication to
transmit information from the authenticating device to the mobile
device. For example, in Google Authenticator, a website presents
the user with a QR code containing the shared secret for the TOTP
scheme, which the user then scans with her mobile phone, thus
providing the authenticator app with the secret. QR codes have
also been used for transaction authentication as a communication
channel from the insecure device to the secure one [60].

In our scheme, QR codes are used in the authentication process
as a communication channel from the secure mobile device to the
authenticating device. Such a use case was previously considered
by [56] and was shown to be practical [54]. Specifically, our app
encodes the 130 bit password as a QR code of size 21 × 21 mod-
ules, which is then displayed to the user. To log in on a different
device, the user can then use that device’s camera to scan the QR
code from the mobile phone’s screen. This method is best suited
for use on laptops, tablets, and phones, where built-in cameras are
ubiquitous, yet it can also be used on desktops with webcams. The
QR code password encoding also provides a clear visualization of
the relatively short length of our passwords compared to schemes
using public key cryptography. For example, the standard ECDSA
digital signature scheme [34] with a comparable level of security
would result in 512-bit long one-time passwords, which would con-
sequently require larger 33× 33 QR codes [62] (a visual comparison
appears in Figures 6a and 6b). More recent digital signature con-
structions [5, 8] could be used to obtain shorter signatures, yet at
384 and 256 bits, respectively, those are still considerably longer
than the one-time passwords in our scheme.

Manual Entry. Since our usage of QR codes requires the sign-in
device to have a camera, we present an alternative method that
can be used for devices without cameras. In these instances, our
Android app also encodes one-time passwords using a public word
list. Using a word list of 2048 short words (1 to 4 letters), as used in
S/Key, results in 12-word passwords, and using a larger 4096 word
list (of words up to 6 letters long), results in 11-word passwords.
Additionally, more specialized word lists such as those in [9] can
be used if word lists that enable autofilling and error correction
are desired. These would be particularly useful if the sign-in device
was a mobile phone.

(a) 21x21 QR encoding of a
128-bit OTP

(b) 33x33 QR encoding of a 512-
bit signature

Figure 6: Password encoding using QR codes: T/Key vs.
ECDSA signatures

Alternatively, it would be possible to generate the one-time pass-
words as arbitrary strings that the user would then manually enter.
Assuming every character in the strings has 6 bits of entropy (which
is roughly the case for case-sensitive alphanumeric strings), the
resulting one-time passwords would be strings composed of 22 char-
acters. While typing these one-time passwords manually would be
cumbersome, they are at least somewhat practical, as opposed to
512 bit/86 character long digital signatures.

Hardware Authentication Devices. USB-based hardware authenti-
cation devices, such as Yubikey [69] are often used instead of mobile
phone apps for generating TOTP passwords. They offer two main
advantages: (i) after the initial setup, the TOTP secret never has
to leave the secure hardware, which makes it more secure against
client-side malware, and (ii) such authentication devices are capable
of emulating a keyboard and can “type” the generated one-time
passwords into the relevant password field when the user presses
a button on the device. However, hardware tokens do not protect
the TOTP secret on the server. Additionally, the registration phase
is still susceptible to malware since the TOTP secret needs to be
loaded into the hardware token. The newer FIDO U2F protocol [59]
addresses these problems, yet it requires specialized support by the
browser and two-way communication.

Hardware authentication devices and T/Key could therefore be
well-suited for each other: the hardware device would generate
the hash chain, store the secret, and provide the server with the
initial password.When the user needs to authenticate, the hardware
token would traverse the chain and generate the one-time password.
T/Key would provide the security against server-side hacks, and the
hardware tokenwould provide the security against client-side hacks.
Moreover, the ability of the hardware token to automatically “type”
the password would address one of T/Key’s main disadvantages,
namely that the passwords are too long for manual entry.

7 EVALUATION
We evaluated the performance of our scheme to ensure the running
times of its different stages are acceptable for a standard authenti-
cation scenario. The client Android app was tested on a Samsung
Galaxy S7 phone (SM-G930F) with a 2.3 Ghz Quad-Core CPU and 4
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Table 3: Scheme Performance.
130 bit long passwords, 30 second time slots, 20 mixed checkpoints.

Auth. Period Mean Time Setup Time Password Generation Time Verification Time
Between Logins (seconds) (seconds) (seconds)

average case worst case

1 year 1 week 7.5 0.3 0.6 0.4
2 years 2 weeks 14 0.5 0.9 0.8
4 years 1 month 28 0.8 1.6 1.6

GB of RAM. The server side Linux PAM module was tested on a
2.6 Ghz i7-6600 CPU with 4 GB RAM running Ubuntu 16.04.

Our evaluation uses 130-bit passwords and hash chains of length
one, two, and four million, corresponding to one-year, two-year, and
four-year authentication periods when a new password is generated
every 30 seconds. We evaluate the following times:
• Client setup time: the time it takes for the mobile phone to
first generate the salt and the secret and then traverse the
entire hash chain to compute the initial password and create
the registration QR code.
• Client password generation time: the time to traverse the
chain from the closest checkpoint.We present both theworst-
case time, which corresponds to the maximal distance be-
tween two checkpoints, as well as the expected time, which
we simulate with respect to several typical exponential dis-
tributions.
• Server verification time: the time to traverse the entire chain
on the server. This captures the longest possible period be-
tween logins. In practice, this time will be much shorter if
the user logs in regularly.

Results appear in Table 3. In general, we view several seconds
as being an acceptable time for the initial setup and a sub-second
time as acceptable for both password generation and verification.

We attribute some of the differences between the hash chain
traversal time on the server and the traversal time on the phone to
the fact that the former was tested using native C code, whereas
the latter was run using a Java App on the mobile phone.

8 ATTACKS WITH PREPROCESSING
One limitation of the previously discussed security model is that
we do not allow the adversary’s algorithm to depend on the choice
of the random function h. In practice, however, the function h is not
a random function, but rather some fixed publicly known function,
such as SHA-256. This means that the adversary could perhaps
query the function prior to receiving a challenge and store some
information about it that could be leveraged later. In this section,
we bound the probability of success of such an attack by (ST /N )2/3,
where N = 2n is the size of the hash function domain. To mitigate
the risk of such attacks, we show that by salting all hash functions
with a random salt of length n, we can bound the probability of
success by (T /N )2/3 (assuming S ≤ N ).

More formally, an inverting attack with preprocessing proceeds
as follows:
• First, a pair of algorithms (A0,A1) are fixed.

• Second, the function h is sampled from some distribution
(e.g., the uniform distribution over all random functions over
some set).
• Third, given oracle access to h (which is now fixed), prepro-
cessing algorithm A0 creates an advice string sth .
• Finally, the online algorithm A1 is given the advice string
sth , oracle access to the same h, and its input y = h(x ).

Throughout, we write Ah1
(
Ah0 ,h(x )

)
to denote the output of this

process. The complexity of an attack in this model is usually mea-
sured by the maximal length in bits of the advice string sth , which
is referred to as the “space” of the attack and denoted by S , and the
maximal number of oracle queries of the algorithm A1, which is
often referred to as the “time” of the attack and is denoted by T .
Note that at least for lower bounds we: (i) allow the preprocess-
ing algorithm an unlimited number of queries to its oracle and (ii)
only measure the number of queries made by A1, ignoring all other
computation.

The power of preprocessing was first demonstrated in the sem-
inal work of Hellman [29], who showed that with preprocessing,
one-way permutations can be inverted much faster than by brute
force. Specifically, Hellman showed that for every one-way per-
mutation f : [N ] → [N ] and for every choice of parameters S,T
satisfying T · S ≥ N , there exists an attack with preprocessing
which uses space S and time T . Hellman also gave an argument for
inverting a random function with time-space tradeoff T · S2 ≥ N 2.
Subsequently, Fiat and Naor [20] gave an algorithm that works for
all functions. The inversion algorithm was further improved when
Oechslin [49] introduced rainbow tables and demonstrated how
they can be used to break Windows password hashes.

Yao [68] investigated the limits of such attacks and proved that
S ·T ≥ Ω(N ) is in fact necessary to invert a random function on
every point in its image. Yao’s lower bound was further extended
in [17, 23, 63], which showed that attacks that invert a random
function with probability ϵ must satisfy ST ≥ Ω(ϵN ). Recently,
Dodis, Guo, and Katz [18] extended these results by proving that
the common defense of salting is effective in limiting the power
of preprocessing in attacks against several common cryptographic
primitives. Specifically, for one way functions, they show:

Theorem 8.1 ([18]). Let h : [M] × [N ] → [N ] be a random
function. Let (A0,A1) be a pair of algorithms that get oracle access to
h such that A0 outputs an advice string of length S bits, A1 makes at
most T oracle queries, and

Pr
h,m∈[M] ,x ∈[N ]

[
h

(
m,Ah1 (A

h
0 ,m,h(m,x ))

)
= h(m,x )

]
= ϵ .
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Then,

T
(
1 +

S

M

)
≥ Ω̃(ϵN ) .

The above result can be interpreted as stating that by using a
large enough salt spaceM (e.g., takingM = N ), one can effectively
remove any advantage gained by having an advice string of length
S ≤ N . Here, we study the potential of using salts to defeat attacks
with preprocessing on hash chains.

Let ℱM,N denote the uniform distribution over the set of all
functions from [M] × [N ] to [M] × [N ] such that for all f ∈ ℱM,N
and all (s,x ) ∈ [M] × [N ], f (s,x ) = (s,y).

Theorem 8.2. Let functions h1, . . . ,hk ∈ ℱM,N be chosen inde-
pendently and uniformly at random, where k = o(

√
N ). Let (A0,A1)

be a pair of algorithms that get oracle access to each of the functions
{hi }

k
i=1, such that A0 outputs an advice string of length S bits, A1

makes at most T oracle queries, and

Pr
h1, ...,hk ∈ℱM,N
m∈[M] x ∈[N ]

[
h[1,k]

(
m,Ah (Ah0 ,h[1,k] (m,x ))

)
= h[1,k] (m,x )

]
= ϵ .

Then,

T
(
1 +

S

M

)
≥ Ω̃(ϵ3/2N ).

We prove this theorem in Appendix B.

Optimality. We do not know whether the above loss in the de-
pendence on ϵ is optimal. It would be interesting to try to prove a
stronger version of the above bound by directly applying the tech-
niques of [23]. Even in the setting of constant ϵ , where one looks
for the optimal dependence between S,T and N , we do not know
of an attack matching the above bound for arbitrary intermediate
values of T and S (apart from the boundary scenarios T = N or
S = N

k ). Rainbow tables [49], which are the best generic attack to
invert random functions, give S

√
2T = N . Since a hash chain is not

a random function (it has many more collisions in expectation), the
expected performance of rainbow tables in our case is far from ob-
vious. For arbitrary (rather than random) functions, the best known
attacks [20] have higher complexity TS2 = qN 3, where q is the
collision probability of the function. Finding better attacks is an
interesting open question.

8.1 Security of T/Key against preprocessing
Within the context of T/Key, Theorem 8.2 leaves us a few steps
short of our goal of making the salted T/Key scheme as secure
against attacks with preprocessing as it is secure against attacks
without preprocessing. First it has suboptimal dependence on the
success probability ϵ . Note that if one only wants to rule out attacks
that succeed with constant success probability (say 1/2 or 0.01),
then this gap is immaterial in terms of its impact on the security
parameters. Second, the theorem currently bounds the probability
to invert the entire hash chain, whereas to use it in Attack Game 4.5,
one needs to prove a stronger version in which the attacker can
invert a chain suffix of his choice. We leave these two gaps as open
problems.

9 RELATEDWORK
For a discussion of themanyweaknesses of static passwords, see [30].
One-time passwords were introduced by Lamport [38] and later
implemented as S/Key [27]. HOTP and TOTP were proposed in [47]
and [48], respectively. For a review and comparison of authentica-
tion schemes, see [10, 50]. Leveraging trusted handheld devices to
improve authentication security was discussed in [2] and [40]. Two-
factor authentication schemes were analyzed rigorously in [56],
which proposes a suite of efficient protocols with various usability
and security tradeoffs.

Online Two-Factor Authentication. A large body of work has
been devoted to the online setting, where one allows bidirectional
digital communication between the server and the second-factor
device [15, 22, 40, 55, 59]. In this setting, secrets on the server can
usually be avoided by using public-key cryptography. We especially
call the reader’s attention to the work of Shirvanian et al. [56], who
study multiple QR-based protocols. In one of their schemes, called
“LBD-QR-PIN,” the mobile device generates a key pair and sends
the public key to the server. Subsequently, on each authentication
attempt, the server generates a random 128-bit challenge, encrypts
it using the client’s public key, and sends it to the authenticating
device. The authenticating device encodes the challenge as a QR
code, which the user then scans using his mobile device. The mobile
device decrypts the challenge using its stored private key, computes
a short 6 digit hash of the challenge, and presents it to the user.
The user then enters this 6 digit code on the authenticating device,
which sends it to the server for verification. A big advantage of
this scheme lies in the fact that the messages that the client sends
are very short and can therefore easily be entered manually by the
user.

Hash Chains. For an overview of hash chains and their applica-
tions, see [13, 26, 31, 33]. In particular, Hu et al. [31] provide two
different constructions of one-way hash chains, the Sandwich chain
and the Comb Skipchain, which enable faster verification. They
are less suited for our setting since skipping segments of the chain
requires the prover to provide the verifier with additional values
(which would result in longer passwords). Goyal [26] proposes a
reinitializable hash chain, a hash chain with the property that it can
be securely reinitialized when the root is reached. Finally, [13, 33]
discuss optimal time-memory tradeoffs for sequential hash chain
traversal. On the theoretical side, statistical properties of the com-
position of random functions were studied as early as [53] and
gained prominence in the context of population dynamics in the
work of Kingman [37]. The size of the image of a set under the
iterated application of a random function was studied by Flajo-
let and Odlyzko [21] and later in the context of rainbow tables in
[1, 49]. The size of the image of a set under compositions of indepen-
dent random functions was studied by Zubkov and Serov [70, 71],
who provide several useful tail bounds, some of which we use in
Appendix A.

Attacks with preprocessing. Time-space tradeoffs, which we use
as our model in Section 8, were introduced by Hellman [29] and
later rigorously studied by Fiat and Naor [20]. The lower bound
to invert a function in this model was shown by Yao [68] and,
subsequently, extended in [17, 18, 23, 63]. The work of Gennaro
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and Trevisan [23] was particularly influential due to its introduction
of the “compression paradigm” for proving these kinds of lower
bounds. More attacks in this model were shown by Bernstein and
Lange [6].

10 CONCLUSIONS
We presented a new time-based offline one-time password scheme,
T/Key, that has no server secrets. Prior work either was not time-
based, as in S/Key, or required secrets to be stored on the server,
as in TOTP. We implemented T/Key as a mobile app and showed
it performs well, with sub-15 second setup time and sub-second
password generation and verification. To speed up the password
generation phase, we described a near-optimal algorithm for storing
checkpoints on the client, while limiting the amount of required
memory. We gave a formal security analysis of T/Key by proving a
lower bound on the time needed to break the scheme, which shows
it is as secure as the underlying hash function. We showed that by
using independent hash functions, as opposed to iterating the same
function, we obtain better hardness results and eliminate several
security vulnerabilities present in S/Key. Finally, we studied the
general question of hash chain security and proved a time-space
lower bound on the amount of work needed to invert a hash chain
in the random oracle model with preprocessing.
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A COLLISIONS IN RANDOM FUNCTIONS
We first need to investigate some statistical properties of composi-
tions of random functions. Starting with the work of Kingman [37],
the distribution of the image size ���h[1,k] ([N ])���, and specifically its
convergence rate to 1 ([16, 19]), was studied. In our setting, we are
more interested in the properties of h[1,k] for moderate values of k ,
and specifically, we assume k = o

(√
N

)
.

Lemma A.1. Let k,N ∈ N such that k = o
(√

N
)
. Then,

E
h1, ...,hk

[
|h[1,k] ([N ]) |

]
= O

(N
k

)
.

Proof. A formal proof can be found in [70]. Here, we provide a
brief sketch of the argument. Let

αk = E
h1, ...,hk

[���h[1,k] ([N ])��� /N
]
.

Then,
αk+1 = E

hk+1
[|hk+1 ([αkN ]) |/N ] .

The last expression can be interpreted as a simple occupancy prob-
lem of independently throwing αkN balls into N bins and reduces
to the probability that a bin is not empty:

αk+1 = 1 − (1 − 1/N )αkN .

For large N , we can make the approximation (1 − 1/N )N ≈ 1/e .
Substituting this gives

αk+1 = 1 − e−αk

and Taylor expanding the resulting expression gives the following
approximation for the recursive relation:

αk+1 = 1 − (1 − αk + α2k/2 −O (α3k )) = αk − α
2
k/2 +O (α3k ) .

Plugging-in the guess αk = 2/k +O (1/k3) into the right hand side
gives

αk+1 = 2/k − 2/k2 +O (1/k3) = 2(k − 1)/k2 +O (1/k3)

= 2/(k + 1) − 2/(k2 (k + 1)) +O (1/k3) = 2/(k + 1) +O (1/k3)

and therefore

αk = 2/k +O (1/k3)

satisfies the recursive relation. □

We also need to estimate the probability that any two points
in the domain collide under the hash function. We make use of
the following lemma, due to [70], and give a short proof here for
completeness and clarity.

Lemma A.2 ([70]). Let k,N ∈ N such that k = o
(√

N
)
, and let

x ,x ′,x ′′ ∈ [N ] be 3 distinct integers. Then,

Pr
h1, ...,hk

[
h[1,k] (x ) = h[1,k] (x

′)
]
=

k

N
− o

(
1
N

)
Pr

h1, ...,hk

[
h[1,k] (x ) = h[1,k] (x

′) = h[1,k] (x
′′)
]
=

k (3k − 1 + oN (1))
2N 2 .

Proof. Observe that since h1, . . . ,hk are independent, the ran-
dom variables h[1,i+1] (x ) and h[1,i+1] (x

′) are independent when
conditioned on h[1,i] (x ) , h[1,i] (x ′). Using this fact gives

Pr
h1, ...,hk

[
h[1,k] (x ) , h[1,k] (x

′)
]

=

k∏
i=1

Pr
hi

[
h[1,i] (x ) , h[1,i] (x

′)���h[1,i−1] (x ) , h[1,i−1] (x
′)
]

=

k∏
i=1

(
1 −

1
N

)
=

(
1 −

1
N

)k
and subsequently,

Pr
h1, ...,hk

[
h[1,k] (x ) = h[1,k] (x

′)
]
= 1 −

(
1 −

1
N

)k
= 1 −

(
1 −

k

N
+O

(
k2

N 2

))
=

k

N
− o

(
1
N

)
.

To prove the second assertion of the lemma, we break down the
probability of a 3-collision between x ,x ′,x ′′ by iterating through
the different levels in the hash chain where a collision between x
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and x ′ could occur. We have that

Pr
[
h[1,k ] (x ) = h[1,k ] (x

′) = h[1,k ] (x
′′)
]

= Pr
[
h[1,k ] (x ) = h[1,k ] (x

′′)���h[1,k ] (x ) = h[1,k ] (x
′)
]
· Pr

[
h[1,k ] (x ) = h[1,k ] (x

′)
]

=

k−1∑
i=0

(
Pr

[
h[1,k ] (x ) = h[1,k ] (x

′′)���min
{
i′ : h[1,i′] (x ) = h[1,i′] (x ′)

}
= i + 1

]

· Pr
[
min

{
i′ : h[1,i′] (x ) = h[1,i′] (x ′)

}
= i + 1

] )

=

k−1∑
i=0

(
1 −

(
1 −

2
N

)i
·

(
1 −

1
N

)k−i )
·

(
1 −

1
N

)i
·
1
N

=

k−1∑
i=0

(
1 −

(
1 −

2i
N
+ o

( 1
N

))
·

(
1 −

k − i
N
+ o

( 1
N

)))
·

(
1 −

i
N
+ o

( 1
N

))
·
1
N

=

k−1∑
i=0

(
i + k
N 2 + o

( 1
N 2

))
=

3k2 − k
2N 2 + k · o

( 1
N 2

)

as desired. □

The next lemma estimates, for every x ∈ [N ], the expected
number of preimages of the point h[1,k] (x ) and its variance. We
use IA to denote the indicator variable of probability event A.

Lemma A.3. Let {hi }ki=1 ∈ ℱN be independent random functions,
and let Lj =

∑N
i=1 Ih[1,k ] (i )=j be a random variable of the number of

different preimages under h[1,k] of j ∈ [N ]. For every x ∈ [N ],

E
h1, ...,hk

[
Lh[1,k ] (x )

]
= k + 1 − o(1)

Var
h1, ...,hk

[
Lh[1,k ] (x )

]
=

1
2
(k + 1)2 .

Proof. From the linearity of expectation and the previous lemma,
we find that

E
h1, ...,hk

[
Lh[1,k ] (x )

]
= E

h1, ...,hk



N∑
x ′=1

Ih[1,k ] (x )=h[1,k ] (x ′)



=

N∑
x ′=1

E
h1, ...,hk

[
Ih[1,k ] (x )=h[1,k ] (x ′)

]

=

N∑
x ′=1

Pr
h1, ...,hk

[
h[1,k] (x ) = h[1,k] (x

′)
]

= 1 + (N − 1) ·
(
k

N
− o( 1

N )

)
= k + 1 − o(1).

Additionally,

E
h1, . . .,hk

[
L2h[1,k ] (x )

]

= E
h1, . . .,hk



N∑
x ′=1

N∑
x ′′=1

Ih[1,k ] (x )=h[1,k ] (x ′) · Ih[1,k ] (x )=h[1,k ] (x ′′)


= E
h1, . . .,hk



N∑
x ′,x ′′=1

Ih[1,k ] (x )=h[1,k ] (x ′)=h[1,k ] (x ′′)


= (N − 1) (N − 2) · E

h1, . . .,hk
x,x ′,x ′′ different

[
Ih[1,k ] (x )=h[1,k ] (x ′)=h[1,k ] (x ′′)

]

+ 3(N − 1) · E
h1, . . .,hk
x,x ′

[
Ih[1,k ] (x )=h[1,k ] (x ′)

]
+ 1

= (N − 1) (N − 2) ·
(
k (3k − 1 + oN (1))

2N 2

)
+ 3(N − 1) ·

(
k
N
− o

(
1
N

))
+ 1

= 3
2k

2 +
(
5
2 + oN (1)

)
k + 1

and thus

Var
h1, ...,hk

[
Lh[1,k ] (x )

]
= E

h1, ...,hk

[
L2h[1,k ] (x )

]
− E
h1, ...,hk

[
Lh[1,k ] (x )

]2

= 1
2k

2 +
(
1
2 + oN (1)

)
k ≤ 1

2 (k + 1)
2. □

Lemma A.4. Let {hi }ki=1 ∈ ℱN be independent random functions,
and let Lj =

∑N
i=1 Ih[1,k ] (i )=j be a random variable of the number of

different preimages under h[1,k] of j ∈ [N ]. For every x ∈ [N ],

Pr
h1, ...,hk

[
Lh[1,k ] (x ) ≥

2k
√
ϵ

]
≤

ϵ

2
.

Proof. Applying Chebyshev’s inequality, we obtain

Pr
h1, . . .,hk

[
Lh[1,k ] (x ) ≥

2k
√
ϵ

]

≤ Pr
h1, . . .,hk


Lh[1,k ] (x ) ≥ (k + 1) +

√
2
ϵ
·

√
1
2
(k + 1)


≤
ϵ
2
. □

Lemma A.5. Let {hi }ki=1 ∈ ℱM,N be independent random func-
tions, and let Lj =

∑N
i=1 Ih[1,k ] (i )=j be a random variable of the

number of different preimages under h[1,k] of j ∈ [M] × [N ]. For
every (s,x ) ∈ [M] × [N ],

Pr
h1, ...,hk

[
Lh[1,k ] (s,x ) ≥

2k
√
ϵ

]
≤

ϵ

2
.

Proof. Fix s ∈ [M], and define hi,s (x ) to be the last n bits
of hi (s,x ). Applying the previous lemma to {hi,s }ki=1 yields the
result. □

B PROOF OF THEOREM 8.2
Our proof reduces the problem of inverting a random function to
the problem of inverting a random hash chain.

Let 𝒟 be a distribution over functions from 𝒳 to 𝒳 such that
for every x ∈ 𝒳

Pr
h1, ...,hk ∈𝒟

[
Lh[1,k ] (x ) ≥

2k
√
ϵ

]
≤

ϵ

2
. (7)

Let (A0,A1) be a pair of oracle algorithms that get oracle access
to the functions h1, . . . ,hk ∈ 𝒟. Let A0 output an advice string of
length S bits, and let A1 make at most T oracle queries to all of its
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oracles combined and successfully invert with probability ϵ ∈ (0, 1).
For every choice of functions {hi }ki=1 ∈ 𝒟, let

Gh1, ...,hk =

{
x ∈ 𝒳 :

(
Ah1 (A

h
0 ,h[1,k] (x )) = x

)
∧

(
Lh[1,k ] (x ) ≤

2k
√
ϵ

) }
be the set of good points, where we say that a point is good if
A1 outputs x when executed on h[1,k] (x ), and the point does not
have many collisions under h[1,k]. Note that the first condition is
stronger than the condition thatA1 merely invertsh[1,k] (x ). Denote
by h[1,k] (Gh1, ...,hk ) the corresponding set of good images. Observe
that the second condition above guarantees that each point in the
image h[1,k] (Gh1, ...,hk ) has at most 2k√

ϵ
preimages under h[1,k].

Using this observation and a union bound, we conclude that

Pr
h1, . . .,hk
x∈𝒳

[
x ∈ Gh1, . . .,hk

]
≥

√
ϵ

2k
· Pr
h1, . . .,hk
x∈𝒳

[
h[1,k ] (x ) ∈ h[1,k ] (Gh1, . . .,hk )

]

≥

√
ϵ

2k
·
*..
,

Pr
h1, . . .,hk
x∈𝒳

[
Ah1 (A

h
0 , h[1,k ] (x )) ∈ h

−1
[1,k ] (h[1,k ] (x ))

]

− Pr
h1, . . .,hk
x∈𝒳

[
Lh[1,k ] (x ) ≥

2k
√
ϵ

]+//
-
.

Plugging in the probabilities given by the theorem hypothesis
and Equation 7, we obtain

Pr
h1, ...,hk
x ∈𝒳

[
x ∈ Gh1, ...,hk

]
≥

√
ϵ

2k
· (ϵ − ϵ

2 ) ≥
ϵ3/2

4k
.

For every i ∈ [k], letGi
h1, ...,hk

be the subset of points inGh1, ...,hk

on which A1 queries its i-th oracle function at most 2T
k times. Note

that for every input and every choice of hash functions, the total
number of queries is at most T , and so for every input, A1 queries
at least 1/2 of its oracle functions at most 2T

k times. Therefore

Pr
h1, . . .,hk
x∈𝒳
i∈[k ]

[
x ∈ G i

h1, . . .,hk

]

= Pr
h1, . . .,hk
x∈𝒳
i∈[k ]

[
x ∈ G i

h1, . . .,hk

����x ∈ Gh1, . . .,hk

]
· Pr
h1, . . .,hk
x∈𝒳

[
x ∈ Gh1, . . .,hk

]

≥
ϵ 3/2

8k
.

Therefore, there exists some fixed index i∗ ∈ [1,k] and some
fixed choice of all the other hash functionsh∗1, . . . ,h

∗
i∗−1,h

∗
i∗+1, . . . ,h

∗
k

that achieves a probability of at least ϵ 3/2
8k over a random hi∗ and a

random x ∈ Gh1, ...,hk . For every function h, denote by Gi∗
h the set

Gi∗
h1, ...,hk

with hi∗ = h and the other functions fixed as above. We
get

Pr
h∈𝒟
x ∈𝒳

[
x ∈ Gi∗

h

]
≥

ϵ3/2

8k
. (8)

Consider the following pair of algorithms (A′0,A
′
1) for invert-

ing a random function h ∈ 𝒟. Algorithm A′0 generates S bits of
advice by running A0. During the execution of A0, A′0 uses its own
oracle h as the i∗-th oracle of A0 and the hard-coded functions

h∗1, . . . ,h
∗
i∗−1,h

∗
i∗+1, . . . ,h

∗
k as the other k − 1 oracles A0 needs. Al-

gorithm A′1 gets the advice string generated by A′0 and an input
z ∈ 𝒳 , on which it computes y = h[i∗+1,k] (z) and then simulates
A1 on y as follows: It feeds its own advice string toA1, uses its own
oracle to answer oracle queries tohi∗ , and uses the hard-coded func-
tions h∗1, . . . ,h

∗
i∗−1,h

∗
i∗+1, . . . ,h

∗
k to answer all other oracle queries.

Furthermore, A′1 bounds the number of queries to h by 2T
k . Thus, if

during the simulation A1 tries to make more than this number of
queries tohi∗ , algorithmA′1 aborts. Otherwise,A

′
1 obtainsA1 (A′0,y)

and then computes and outputs h[1,i∗−1] (A1 (A′0,y)).
The choice of i∗ as well as the explicit description of the functions

h∗1, . . . ,h
∗
i∗−1,h

∗
i∗+1, . . . ,h

∗
k can be hard coded into the algorithms

(A′0,A
′
1) since Theorem 8.1, and therefore also our reduction, can be

arbitrarily non uniform in the input size. Another way of thinking
about this is that since our model charges the algorithm only for
oracle queries, an algorithm in this model can determine the best i∗
and the remaining functions by simulating (A0,A1) on all possible
inputs (without making any oracle queries).

To analyze the success probability of (A′0,A
′
1), the key observa-

tion is that ifw ∈ h[1,i∗−1] (Gi∗
h ), then A′1 inverts h(w ) successfully.

To see this, note that if w = h[1,i∗−1] (x ) for x ∈ Gi∗
h , then A′1

simulates A1 on

y = h[i∗+1,k] (h(w )) = h[1,k] (x ) ∈ G
i∗
h ,

thus A1 (A′0,y) = x , and A′1 (A
′
0,h(w )) = h[1,i∗−1] (A1 (A′0,y)) = w

as desired. Therefore

Pr
h∈𝒟
w ∈𝒳

[
A′1 (A

′
0,h(w )) ∈ h−1 (h(w ))

]
≥ Pr

h∈𝒟
w ∈𝒳

[
w ∈ h[1,i∗−1] (G

′)
]

= Pr
h∈𝒟
x ∈𝒳

[
x ∈ Gi∗

h

]
≥

ϵ3/2

8k
,

where the penultimate equality holds because h[1,k] and therefore
also h[1,i∗−1] have no collisions on Gi∗

h , and the last inequality
follows from Equation 8.

To complete the proof of the theorem, we apply the lower bound
given by Theorem 8.1 to algorithms (A′0,A

′
1) and the distribution

SM,N over all salted functions, which gives

2T
k

(
1 +

S

M

)
≥ Ω̃

(
ϵ3/2N

8k

)
,

and therefore

T
(
1 +

S

M

)
≥ Ω̃(ϵ3/2N )

as required. □
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