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ABSTRACT
The functionality and security of all domain names are contingent
upon their nameservers. When these nameservers, or requests to
them, are compromised, all domains that rely on them are a�ected.
In this paper, we study the exploitation of con�guration issues (ty-
posquatting and outdated WHOIS records) and hardware errors
(bitsquatting) to seize control over nameservers’ requests to hijack
domains. We perform a large-scale analysis of 10,000 popular name-
server domains, in which we map out existing abuse and vulnerable
entities. We con�rm the capabilities of these attacks through real-
world measurements. Overall, we� nd that over 12,000 domains are
susceptible to near-immediate compromise, while 52.8M domains
are being targeted by nameserver bitsquatters that respond with
rogue IP addresses. Additionally, we determine that 1.28M domains
are at risk of a denial-of-service attack by relying on an outdated
nameserver.

CCS CONCEPTS
• Security and privacy → Network security; • Networks →
Naming and addressing;
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1 INTRODUCTION
The Domain Name System (DNS) is one of the most important pro-
tocols of today’s Internet, seamlessly converting human-readable
domain names to machine-routable IP addresses. From a branding
perspective, domain names are important because they are essen-
tially the brands which users recognize and interact with. Even
though new TLDs are constantly introduced, short and generic do-
mains in the traditional TLDs are still sold formillions of dollars [46].
From a security perspective (the focus of this paper), domain names
and their properties are implicitly and explicitly trusted by users
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and programs alike. Users are constantly instructed to look at the
domain name of websites that they visit and inspect the domain
part of the sender’s email address when they suspect that they have
received a malicious email. Websites will send reset-password links
to the mail servers listed in a domain’s MX records and intrusion de-
tection systems will treat links as less likely to be malicious if they
point to long-existing domain names, rather than newly created
ones.

In recent years, researchers have identi�ed that attackers will
often register old domains that were allowed to expire in order
to capitalize on the residual trust of these domains. This trust has
been abused to host malware on the domains of old� nancial insti-
tutions [26], masquerade the communication of C&C malware as
tra�c to and from long-established domains [23], and even hijack
entire autonomous systems [32, 33]. In some cases, attackers do
not even have to wait for domains to expire. In addition to guess-
ing/stealing a domain owner’s registrar password and moving that
domain to a new registry [17], researchers have shown that, under
the right conditions, attackers could hijack control of live domains
by abusing the dangling links to stale IP addresses that arise be-
cause of environment idiosyncrasies of public clouds and managed
DNS services [6, 7, 25].

In this paper, instead of focusing on individual domain names,
we perform the� rst, large-scale investigation into the “hijackability”
of nameservers and, consequently, of all the domain names that
trust these nameservers for resolution purposes. More speci�cally,
we focus on exploiting con�guration issues and hardware errors to
gain control over DNS requests to nameservers.

Targeting the nameserver substantially increases the attacker’s
potential. As the actual requested domain name remains unaltered
in the DNS resolution, extreme stealthy o�enses are possible. For in-
stance, invasive MITM attacks enable miscreants to take full control
over the victimized domain and its incoming tra�c. Furthermore,
compromising a nameserver is very e�cient, as a single attack
targets all domains relying on that nameserver simultaneously.

The main contributions of this study are:

• Through extensive analysis and measurements, we describe
and con�rm the presence of typosquatting and bitsquatting
vulnerabilities, speci�cally applied to nameservers.

• We identify instances of targeted exploitation of both name-
server squatting attacks. Meanwhile, we� nd a large corpus
of domains that remain vulnerable for immediate exploita-
tion by making just a few registrations.
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Figure 1: DNS resolution process of a client that connects to host ex-
ample.com for the� rst time. Steps 2-7 depict the recursive resolution
process. Step 9 illustrates the connection that ismade to the IP address
a�er the DNS resolution has taken place.

• We evaluate outdated WHOIS email records of nameserver
domains and� nd several thousand domains at risk of being
compromised due to negligence of their nameserver provider.

• We analyze the security practices of widely used name-
servers and� nd that over a million domains are dependent
on 8-year-old vulnerable BIND versions.

2 PROBLEM STATEMENT
In this section, we introduce the general concept behind the name-
server hijacking attacks and de�ne the scope of this study. Further-
more, we discuss nameserver dependencies which greatly in�u-
ences the impact of the presented attacks.

2.1 Hijacking requests to nameservers
When clients want to connect to a certain domain name, this domain
name� rst needs to be resolved into an IP address. This resolution
process, shown in Figure 1, will typically be executed by a recursive
resolver who will� rst contact the root and TLD nameservers, and
in a last step obtain the IP address from the second-level domain
nameserver (2LD nameserver). In our evaluation, we investigate
various techniques that allow an adversary to take control over
such a 2LD nameserver. As virtually any type of online application
or service makes use of DNS, most without realizing it, the potential
consequences are widespread. In this section, we provide a brief
overview of scenarios that are made possible by exploiting any one
of the attacks described in this paper. It is important to note that in
this overview, we only consider attacks against the most common
software, and therefore the list of described attack scenarios is by
no means an exhaustive one.

Man-in-the-Middle (MITM). As soon as an attacker has taken
control over a domain’s authoritative nameserver, clients wanting
to connect to the victimized domain will send requests for the A
record to the attacker’s nameserver. By replying with an IP address
under his control, the adversary can relay and possibly alter the
tra�c between the client and the domain it intended to contact.
The speci�c consequences of such an attack will largely depend

Rank Nameserver domain Domains

1 domaincontrol.com 39,674,597
2 hichina.com 4,975,760
3 dnspod.net 2,832,233
...

...
10,000 ptserve.info 399
Table 1: First and last part of the top NSDOMs

on the type of service that is being accessed. For instance, in the
case of a webserver, the attacker can secretly intercept sensitive
information, such as credentials and session tokens. In contrast to a
MITM attack on a local network, which may only be able to target
a limited number of clients, a MITM attack based on hijacking the
nameserver a�ects all clients.

Domain-ownership veri�cation. In the case of a MITM attack,
the time period during which the adversary can cause harm to the
domain or its clients is limited to the time he has control over the
nameserver. In addition to such attacks, an adversary can also per-
form actions that may have a more long-lasting e�ect. A number
of such actions are related to the proof of ownership for a domain.
More precisely, a number of services require (website) administra-
tors to verify they are in fact in control of a domain, e.g. by serving
a randomly-generated� le at a prede�ned location. For many Cer-
ti�cate Authorities, including Let’s Encrypt [22], such a veri�cation
is the only requirement in order to obtain a certi�cate for a do-
main. This means that even with only temporary control over a
domain’s nameserver, an adversary can obtain a certi�cate, which
may be valid for multiple years. Moreover, as the issuance was
invoked by the attacker, the domain owner does not have access
to the associated private key, and thus cannot revoke the certi�-
cate. In addition to issuing SSL certi�cates, there are many other
services that provide domain owners with more permanent access
to restricted features. For instance, Google Webmaster Tools gives
domain owners exclusive access to a number of features, such as
the removal of pages from search results.

E-mail. In addition to the aforementioned attacks, miscreants
may also leverage other types of DNS records. For instance, by
returning rogue MX records, an adversary can intercept emails
destined to the targeted domain.With carefully chosen TXT records,
he can spoof e-mail messages from the domain, even in the most
secured setups where SPF, DKIM and DMARC records are veri�ed.

2.2 Scope of study
To evaluate the risk of hijacking domains through their name-
servers, we focus on the most prominent 2LD nameservers. More
speci�cally, we consider the top 10,000 nameserver domains that
are authoritative for the largest number of domain names. To deter-
mine this set of nameservers, on December 15, 2016, we obtained
the zone� les of the top� ve gTLDs (com, net, org, xyz and info)
with respect to the number of second-level domains present in their
zones [15]. For each domain name in each zone� le, we extract the
NS records. Overall, we collect the nameserver information of over
164 million domains.
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Next, we derive the nameserver domain (NSDOM) for each ob-
served nameserver, e.g we extract dnspod.net from the NS record
listing ns2.dnspod.net. Then we determine the largest NSDOMs
in terms of the number of domains that have NS records pointing
to them. Finally, we select the top 10,000 NSDOMs as the starting
point of our analyses. An excerpt of this list is shown in Table 1.

2.3 Nameserver dependencies
An important aspect of this study is the dependencies that ex-
ist between nameservers. We de�ne a NSDOM as independent
when its own NS records are in-bailiwick (e.g. the NS record for
hichina.com is ns1.hichina.com) and thus the TLD nameserver
will directly return the IP address of the nameserver with a glue
record. In contrast, NSDOMs can be dependent on out-of-bailiwick
2LD nameservers. For instance, when querying ns1.hostgator.sg,
we� nd that the NS records of the nameserver point to hosts under
dynect.net. Since no glue record can be provided for those name-
servers, an additional lookup must be made to resolve the name-
server under dynect.net. Only thereafter, a resolver can query
ns1.hostgator.sg to retrieve the DNS records of a certain domain
name1. In other words, ns1.hostgator.sg is completely depen-
dent on another 2LD nameserver, and by extension, all domains
relying on ns1.hostgator.sg are as well.

This kind of dependency is quite common. In fact, 36.4% of
the top 10,000 NSDOMs are dependent on at least one out-of-
bailiwick nameserver. To further illustrate these dependencies, Fig-
ure 2 maps out the NSDOMs that are dependent on dynect.net,
the managed nameserver provider that su�ered from a massive
DDoS attack in October 2016, rendering o�ine multiple of its high-
pro�le customers [47]. We� nd that dynect.net is the “direct” 2LD
nameserver for 191,068 distinct domains. But if we take into ac-
count the other NSDOMs that are, at least partially, dependent on
dynect.net, we come to a total of 9,242,256 domains “indirectly”
relying on dynect.net (a 48-fold increase). Moreover, dynect.com
is in turn dependent on a higher-level nameserver. Many of these
relationships we observe are full dependencies, i.e. when a NSDOM
is completely and solely dependent on a single external NSDOM. In
contrast, other NSDOMs, are only partially relying on others. These
nameservers usually employ multiple managed DNS providers to
prevent a single point-of-failure.

We� nd certain instances where long chains of nameserver de-
pendencies emerge. In other words, there are domains that rely
on out-of-bailiwick nameservers, who in turn are dependent on
other out-of-bailiwick nameservers, and so forth. We call these
nameserver dependency chains. As an example, some of the chains
depicted in Figure 2 go down to 5 levels (the� gure only shows up to
4 levels for visibility reasons). Moreover, we� nd that one NSDOM
in our dataset had 8 levels of nameserver dependencies. If any of
the nameservers (or the requests) involved in such a dependency
chain would be compromised, the requests to all of the dependent
2LD nameservers down the chain would be a�ected. By extent,
the attacker then has the potential of compromising all domains
relying on those nameservers as well. A similar observation was
1This assumes no caching has taken place. Furthermore, this scenario may be di�erent
in terms of glue records when the domains are in the same TLD zone. Additionally,
some TLD nameservers reply with non-glue records in the additional section for
performance improvements [44].

ABO
UT.CO

M
AM

AZO
N.CO

M
ARVIXE.CO

M
ASM

ALLO
RANG

E.CO
M

BIG
CO

M
M
ERCE.CO

M
BLUEHO

ST.CO
M

BO
O
M
TIM

E.CO
M

BUY.CO
M

CANO
NICAL.CO

M
CIRTEXHO

STING
.CO

M
CLO

UDHO
STED.CO

M
DO

M
AIN.CO

M
DO

M
AINNAM

E.CO
M

DO
M
AINREG

ISTRY.CO
M

DYN.CO
M

EASYPO
ST.CO

M
EDITDNS.NET
EHO

STS.CO
M

EVERYDNS.NET
FASTDO

M
AIN.CO

M
FATCO

W
.CO

M
FLO

W
ERSH...W

O
RK.CO

M
HAYNEEDLE.CO

M
HO

M
ESTEAD.CO

M
HO

STCLEAR.CO
M

HO
STG

ATO
R.CO

M

RO
CHENDNS.CO

M
RO

PO
T.NET

SILVERPO
P.CO

M
SM

ARTERTRAVEL.NET
SUPERPAG

ES.CO
M

THEG
O
LFCHANNEL.CO

M
VO

LUSIO
N.CO

M
W
ALG

REENS.CO
M

W
EBSITEW

ELCO
M
E.CO

M
W
IX.CO

M
W
IXDNS.NET

DYNECT.NET

ARVI...
ARVI...
ARVI...
ASO

S...
LO
CA...

LO
CA...

M
ULT...

SERV...

M
ARK...

RIG
H...

FRAN...
SECU...

REDU...

W
EBD...

DYNAMICNETWORKSERVICES.NET

Figure 2: Fragment of the nameserver dependencies related to
dynect.net. An arrow symbolizes a dependency on another nameserver.
Fully dependent nameservers are marked in bold.

Listing 1: The NS records of polishop.com according to a TLD name-
server. All .com’s TLD nameservers return this answer.
$ dig NS polishop.com @a.gtld -servers.net
...
;; AUTHORITY SECTION:
polishop.com. 172800 IN NS ns -310. awsdns -38. com.
polishop.com. 172800 IN NS ns -1156. awsdns -16. org.
polishop.com. 172800 IN NS ns -1974. awsdns -54.co.uk.
polishop.com. 172800 IN NS ns -566. awsdns -06.ne.
...

made by Ramasubramanian et al. in 2008 [30]. They measured that
the resolution of a domain name is, on average, dependent on 46
di�erent nameservers, while only 2.2 of those are directly appointed
by the domain owner.

3 NAMESERVER TYPOSQUATTING
In this section we describe the main idea of hijacking domains via
typos in nameserver records and present our measurements on the
potential and actual abuse of this phenomenon in the wild.

3.1 Attack vector
Typosquatting is the act of registering domain names that are ty-
pographical errors of authoritative domains. The malicious actors
registering these domains, called typosquatters, attempt to attract
accidental visitors that mistype a domain name in their browser’s
URL bar. As an example, a typosquatter has registered twittre.com
in the hopes of getting a share of twitter.com’s massive amount
of tra�c.

Typosquatting is a well-studied problem [5, 21, 27, 38, 42], how-
ever it has been limited to the scenario where a visitor of a website
is making the typographical error in his browser’s URL bar. In this
paper, we analyze the yet uncharted phenomenon of nameserver
typosquatting. In this scenario, the administrator of the domain
mistypes the NS records while setting up the DNS con�guration of
the domain which usually happens through a web control panel or
API o�ered by the registrar. To illustrate this, we take the case of
polishop.com, a popular Brazilian web shop, which has a miscon-
�gured (last veri�ed on May 15, 2017) NS record (Listing 1).
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Listing 2: The NS records of polishop.com according to any of the do-
main’s authoritative nameservers. All 2LD nameservers return this
answer.
$ dig NS polishop.com @ns -310. awsdns -38. com.
...
;; ANSWER SECTION:
polishop.com. 172800 IN NS ns -1156. awsdns -16. org.
polishop.com. 172800 IN NS ns -1974. awsdns -54.co.uk.
polishop.com. 172800 IN NS ns -310. awsdns -38. com.
polishop.com. 172800 IN NS ns -566. awsdns -06. net.
...

Listing 3: The A record of polishop.com according to one of the do-
main’s authoritative nameservers
$ dig A polishop.com @ns -310. awsdns -38. com.
...
;; ANSWER SECTION:
polishop.com. 300 IN A 54.207.32.165
...

The DNS administrator of polishop.commistyped the NS record
for ns-566.awsdns-06.net while con�guring his entries in the
registry’s zone� le through his registrar.More speci�cally, hemissed
the last character of .net and typed .ne instead. Although this
record is wrong, the result is still a valid domain name that can
be registered and resolved (.ne is the ccTLD of Niger). We can
verify that this domain is in fact an accidental error by querying
the other authoritative nameservers of polishop.com. Listing 2
con�rms this, as ns-310.awsdns-38.com returns the NS record
that correctly ends in .net. Because of the presence of redundant
nameservers, an administrator will likely not notice when a single
NS record is broken.

3.2 Amount of tra�c a�ected
In the classic typosquatting scenario, only those visitors that ac-
tually make a typographical mistake in their browser are a�ected.
Furthermore, that single mistake impacts that visitor only once. In
contrast, the impact of nameserver typosquatting is persistent for
as long the miscon�gured NS record is present. It is, however, far
from trivial to determine the exact amount of tra�c an attacker is
able to control once he exploits a single miscon�gured NS record.
We could simplistically assume that the ratio of DNS requests going
to the attacker’s nameserver is equal to the ratio of nameservers the
attacker now controls. In the example of polishop.com, this would
imply that the attacker sees one-fourth of the DNS requests. This
case holds when one of the nameservers is chosen randomly for
every uncached request. This happens when either the TLD name-
server randomizes the returned NS records, or when the client’s
local resolver randomly chooses which nameserver to query. There
exist, however, other possibilities [35] including one where local
resolvers use the best performing nameserver or query all name-
servers in parallel accepting the fastest response. In these scenarios,
an attacker can increase his impact by achieving faster response
times than the authoritative nameservers. Attackers could attempt
to launch a DoS attack on the authoritative nameservers in order
to force the clients to use the attacker’s nameserver, however, we
assume this approach is of limited value since it trades the ability
to conduct long-term stealthy attacks for a temporary increase in
tra�c.

To increase the amount of tra�c they can manipulate, attackers
can also set a higher TTL value on the rogue DNS records that they

Listing 4: The A records of polishop.com according to the a�acker’s
nameserver
$ dig A polishop.com @ns -566. awsdns -06.ne
...
;; ANSWER SECTION:
polishop.com. 3600 IN A 185.53.177.31
...

return thereby extending their cached lifetime, e.g. as shown in
Listing 4 the malicious nameserver sets the TTL of its rogue records
to more than ten times higher than the authoritative records (List-
ing 3). Most administrators favor a short TTL to allow for more
rapid adjustments to their infrastructure, however the default maxi-
mum cache time accepted by BIND, the most popular DNS software,
is 7 days [48]. This allows potential attackers to drastically increase
their impact since their rogue records can be cached thousands of
times longer than authoritative ones.

It is clear that nameserver typosquatting poses an entirely dif-
ferent, complex, and more invasive threat than the traditional ty-
posquatting attacks. An example that demonstrates this di�erence
is that polishop.com nameserver typosquatters are willing to pay
over 400 USD for the price of a single valuable .ne domain [2], a
price that is about 40 times higher than the common gTLDs.

3.3 Potential and current abuse
3.3.1 Dataset. We generated 926,742 typo variations of the top

10,000 NSDOMs and their dependencies using the typo models
described by Wang et al. [42]. These models include character omis-
sion, permutation, substitution and insertion. The substitutions
and insertions are based on the set of characters adjacent to the
given character on a QWERTY keyboard. Additionally, there is
the missing-dot typo model, where we collected the subdomains
present in NS records (e.g. ns1, ns2) and directly concatenated
it with the NSDOM. Overall, we� nd that 95% of the generated
typo NSDOMs were available for registration using the Domainr
API [14].

3.3.2 Available typos. Of the 882,653 available typosquatting
NSDOMs, 2,276 were actively used as nameservers by 6,213 miscon-
�gured domains. Essentially, they are unexploited typosquatting
NSDOMs, i.e. an attacker can simply register those NSDOMs and
instantly compromise a�ected domains. As shown in Figure 3, reg-
istering just 6 typosquatting NSDOMs allows for the immediate
compromise of over 2,000 domains, demonstrating the high impact
of these attacks. 23 out of 6,213 domains are present within the
Alexa top 1 million. Regardless of their Alexa ranking, all of them
remain attractive targets for abuse of residual trust [23, 26, 32, 33].

One of the miscon�gured domains is protect-ns.com. How-
ever, this domain serves as a nameserver for other domains as well.
Thus, when we take into account nameserver dependencies as de-
scribed in Section 2.3, an attacker could compromise 682 additional
domains that rely on a miscon�gured nameserver. Unlike the 6,213
vulnerable domains, these domains have not miscon�gured their
own NS records but are nevertheless vulnerable due to a mistake by
a third party. The indirect nature of this error makes it particularly
hard for these domain owners to, not only realize their domains
can be hijacked, but also to� x the issue since the error happens at
the nameserver which they trust but do not control.
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Figure 3: The amount of domains an a�acker can hijack by register-
ing a number of available typosqua�ing NSDOMs.

3.3.3 Registered typos. We separate the 44,089 registered ty-
posquatting NSDOMs into two categories based on whether they
appear in NS records. 3,233 (7%) of the registered typosquatting
NSDOMs are actively used by domains as a nameserver. These may
be exploited miscon�gured domains or false positives where the
registered typo is coincidentally similar to a domain in the top
10K NSDOMs, but is in fact the intended authoritative domain. In
Section 3.3.4 we will further investigate to determine how many of
these registrations are malicious. The other 40,856 (93%) registered
typosquatting NSDOMs were not currently used as a nameserver
by a domain in our dataset. These may also be false positives where
the similarity to top NSDOMs is a coincidence or a defensive regis-
tration, however, they could potentially be proactive nameserver
typosquatting attacks. That is, a typosquatting NSDOM is preda-
torily registered, waiting for a domain to be miscon�gured in the
future. Given the number of new customers served by some of the
largest nameservers, a well chosen proactive registration could pay
o� in the long term.

3.3.4 Assessing current abuse. To determine whether the regis-
tered typosquatting domains mentioned above are truly malicious
or false positives we send speci�c DNS queries to each one and
analyze the responses. More speci�cally, we request the A record
for a target domain from both the typosquatting nameserver and
the target’s authoritative nameserver and compare the responses.
The typosquatting nameserver can either reply with a Rogue IP (i.e.
one that di�ers from the one given by an authoritative nameserver),
aMatching IP (the same one given by the authoritative nameserver),
or No Response. Cases where the authoritative nameserver does not
respond, but the typosquatting one does are ignored since we are
left without a point of comparison. We argue that a rogue response
suggests active abuse.

We further analyze these responses from the Rogue category
by making an HTTP request to the rogue IP addresses with the
Host header set to the target domain, e�ectively mimicking a user
accidentally ending up at the page due to a nameserver miscon�g-
uration. This allows us to categorize the types of abuse used by the
malicious nameservers. This was a semi-manual process. First, we
established a category for a certain webpage, and afterwards we
gathered other instances that lead to the same or very similar page
(by grouping them by URL and IP address).

Exploitive registrations. We choose a target domain for each of
the 3,233 potentially exploitive typosquatting NSDOMs by selecting

the highest ranked domain (according to Alexa) among all those
con�gured to use that NSDOM.

To reduce false positives, we conservatively consider only those
typosquatting NSDOMswhere the target domain has NS records for
both the authoritative, as well as the typosquatting NSDOM. Hence,
we exclude the cases where the target domain is only con�gured to
use typosquatting NS records. The reasoning here is that a domain
would not correctly resolve if all its NS records are erroneous and
domain owners would notice the mistake immediately. A possible
exception to this would be if an attacker had set up a stealthy
proactive typosquatting NSDOM as a recursive resolver to keep
newly miscon�gured domains fully operational. Nevertheless, we
decide to consider these cases as likely false positives. Additionally,
this� ltering step also ensures that we can compare the responses
of a typo and authoritative nameserver during our DNS tests.

There are 86 typosquatting nameservers serving rogue replies as
shown in Table 2. These 86 malicious nameservers are capable of
hijacking tra�c from 423 domains including dependencies. After
close inspection we� nd that 26 of those nameserver typosquat-
ting registrations are all related to the same actor that performs
the targeted nameserver hijacking attack on polishop.com. These
nameservers allowed zone transfers and by probing with selective
AXFR queries we� nd that they solely contained zone �les for mis-
con�gured domains, with every domain’s A record pointing to the
same IP address. This demonstrates that these malicious setups
are speci�cally targeting those domains with erroneous NS records.
When making an HTTP request to this rogue IP, our instrumented
browser was shown parking pages (Table 3). Although parking
pages are already known to be potentially harmful to end users [41],
these can also be a front for dormant malicious activity [24].

The 391 typo domains that did not respond may not be acting
maliciously at the time of our resolutions, but there is a clear secu-
rity risk to the miscon�gured domains since they are pointing to
a third party that is not their intended authoritative domain. For
the 35 nameservers with matching responses, while they appear
benign, there is always the potential for attackers to lay dormant,
purposefully returning the appropriate IP address, thereby avoiding
detection of the hijacked nameserver until a time of their choosing.

Proactive registrations. To test the 40,856 unused typosquatting
NSDOMs, we choose the target domain by selecting the highest
ranked domain using the squatted authoritative NSDOM from
which the typo was derived. While there was no response from
most of these domains, among the 3.6% nameservers that replied,
86% of them served rogue responses for the target domain (Table 2).
HTTP requests to the rogue IPs, resulted in a wide variety of ob-
servations (Table 3). The most frequent cases were parking, empty,
error and scam pages. By looking atWHOIS data, we also encounter
one defensive registration though it is unclear whether it was reg-
istered to protect the website of the NSDOM, the nameserver itself,
or both.

Since the typosquatting NSDOMs in this category are not found
in any NS records in our dataset we assume they are not authori-
tative for any domain, however, 204 actually returned the same IP
address as the authoritative domain. Since there is little incentive
for a typical nameserver to answer queries for domains outside
its zone, opening that server up to DoS attacks, this is suspicious
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Rogue Matching No Response Other

Typo (Exploited) 86 35 366 25
Typo (Proactive) 1,295 204 39,218 139
Bitsquatting 522 85 19,141 108

Table 2: Categories of registered typo/bitsqua�ing NSDOMs based on
their responses to target DNS queries.
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Type (Exploited) 1 - - - - 77 8 - -
Type (Proactive) 210 1 15 29 7 914 48 64 7
Bitsquatting 72 1 115 21 5 265 5 36 4

Table 3: Web pages returned from the rogue IP addresses.

behavior which may indicate the type of stealthy proactive attack-
ers who wait for typos to be made and avoid detection until they
choose to initiate an attack. We do not expect these to be defen-
sive registrations because it is more likely that a defensive domain
would either not respond or delegate to the correct nameserver
rather than answering with the correct IP address itself. Finally,
while it is possible that some of these typosquatting NSDOMs are
used by domains outside of the 5 TLDs in our dataset, we consider
it suspicious that they answer correctly for our target domains.

3.4 Measuring vulnerable cases
In order to assess the potential impact of nameserver typosquat-
ting from an attacker’s perspective, we registered six nameserver
typosquatting domains, as listed in Table 4. We partly anonymize
the presented domain names in order to prevent exposure of vul-
nerable entities. Four of these were known to be unexploited. More
speci�cally, we were aware of 47 domains that were currently mis-
con�gured to use these four NSDOMs. Therefore, we expected to
nearly instantly receive DNS requests to these nameservers. We
also made two proactive registrations. For these NSDOMs, we had
no record of them being used as nameservers in the gathered TLD
xzone�les.

3.4.1 Experimental setup. Our experiment mainly aims to gauge
the prevalence of hijack-able DNS resolutions. First, we intend to
measure the number of DNS requests that are made to typosquat-
ting NSDOMs. Second, we aim to determine which miscon�gured
domains names are e�ectively resolved by contacting our name-
server in error. Meanwhile, we want to minimize the impact of our
measurements for the clients resolving those domains.

In order to obtain the necessary data, we adopt a speci�c setup, as
illustrated in Figure 4. To explain this setup, assume we have regis-
tered a typosquatting NSDOM, typo-ns.com, and there exists a do-
main name, misconfigured.com that has listed ns.typo-ns.com
in its NS records. Therefore, when a recursive resolver tries to
resolve misconfigured.com, the com TLD nameserver will point
the resolver to ns.typo-ns.com (1). Instead of simply setting up
ns1.typo-ns.com with a glue record, we introduce an additional
nameserver under our control on a di�erent TLD, namely ns.m1.xyz,
which we refer to as NS M1. As a consequence, the resolver has to
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COM ZONE FILE

misconfigured.com NS ns.typo-ns.com
typo-ns.com NS ns.m1.xyz

XYZ ZONE FILE

m1.xyz NS ns.m1.xyz
ns.m1.xyz A 1.2.3.4

TYPO-NS.COM ZONE FILE

*.typo-ns.com A 5.6.7.8

Figure 4: Experimental setup for monitoring the resolutions to ty-
posqua�ing nameservers. The servers in the gray area are under our
control.
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Figure 5: Requests per minute to typosqua�ing nameserver for two
di�erent miscon�gured domains.

launch a request to NS M1 (3). This e�ectively creates the name-
server dependency scenario described in Section 2.3. As NS M1 is
authoritative for the typo-ns.com zone, the resolver is forced to
query it to get the IP address of ns.typo-ns.com (5), allowing us to
log that a request for ns.typo-ns.com has been made. Afterwards,
the resolver� nally obtains the IP address of misconfigured.com’s
nameserver (NS M2) and will subsequently make a request to it (7).
At NS M2, we are able to log that a request for misconfigured.com
is made, completing the log for that resolution.

In order to gather information concerning the clients behind
recursive resolvers, we enable ECS (EDNS Client Subnet) [10] on
both NS M1 and M2.

Ethical Considerations. To minimize the negative impact of our
experiments we set the TTL of records for the domain names we
registered to only 5 seconds. We also chose not to respond to re-
quests for domains names we did not control. As a result, the�nal
request to the M2 nameserver for misconfigured.com’s IP address
will timeout, just as it would have when the typo was unexploited.
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We used ECS in our experiments to obtain IP information of incom-
ing requests, but this only allowed us to observe the /24 subnet for
a small number of queries, maintaining clients’ anonymity.

3.4.2 Findings. Over a one month period (Dec 22, 2016 - Jan
22, 2017), we received 734,300 DNS requests on NS M1 for all six
registered typosquatting nameservers domains (step 5 in Figure 4).
For the “missing-dot” typos (e.g. ns[*]luehost.com), there is gen-
erally only one nameserver queried, as that typo is speci�c to a
particular subdomain. For the other cases, as shown in Table 4, we
�nd that multiple nameservers on di�erent subdomains are queried
for a single typosquatting domain.

We previously determined that there were 47 domains in our
dataset that were erroneously using one of our registered typosquat-
ting NSDOMs. On NS M2, we logged resolutions for all of these
expected victim domains, con�rming that a typosquatting name-
server can e�ectively compromise all miscon�gured domains. More
speci�cally, we logged 3,013,420 “follow-up” DNS requests (step
7 in Figure 4) for those 47 domains, averaging to over 2,000 DNS
requests per domain per day. The di�erence in the number of re-
quests logged at NS M1 and M2 is in�uenced by the TTL and other
factors previously discussed in Section 3.2. Interestingly, one of
the two proactive registrations (domaincon[*].com) did receive re-
quests, either for domains from di�erent TLDs or for domains that
were miscon�gured afterwards. Other typo NSDOMs also observed
requests for additional domains that su�ered from temporal miscon-
�guration. For example, we recorded 342 queries for p[*]hex.com
over the course of four days (Jan 18-21) while one of its NS records
was mistakenly con�gured to ns[*]luehost.com.

We further record requests for a plethora of services and subdo-
mains. For instance, we received 46 requests for DKIM public keys
and 79 requests for DMARC records.

We want to note that the six experimental nameserver typosquat-
ting registrations in this experiment were not chosen to simulate
the maximum impact of an attacker, but rather to obtain diverse
and representative measurements. An attacker could target more
pro�table cases, as described in Section 3.3.1.

Themost frequently resolved FQDN for each registered typosquat-
ting NSDOM is shown in Table 5. Based on WHOIS data, at least
the� ve most resolved domains using ns2.[*]tal.co.uk are all
owned by the same entity. We further analyzed the requests of one
of these domains, dating.n[*]sex.com, on January 21, 2017, the
day we recorded the most queries. Several abnormal characteristics
come to light. As displayed in Figure 5, we witnessed several intense
bursts of requests lasting for exactly 15 minutes each time. The re-
quest rate stays nearly constant during such a burst, but varies from
100 to over 600 requests per minute overall. Moreover, if we look
at ECS information supplied by some requests (only 1%), we�nd
that 83% of queries were made from IP address ranges belonging
to 9 di�erent hosting and cloud infrastructure companies. In other
words, these requests are not coming from human website visitors,
but from hosted servers. This kind of automated, coordinated and
distributed suggests a miscon�gured botnet infrastructure. In con-
trast, the bottom part of Figure 5 shows the requests pattern of a
regular domain that was miscon�gured.

Interestingly, the most requested name for domaincon[*].com
is an inverse address. The typo is present in the zone� le for an IP

Authoritative Typosquatting N° of expected Queried
NSDOM registration victim domains subdomains

uniregistrymarket.link ns[*]niregistrymarket.link 19 -
krystal.co.uk [*]tal.co.uk 11 ns1, ns2
hostgator.com ns[*]ostgator.com 16 -
bluehost.com ns[*]luehost.com 1 -
domaincontrol.com domaincon[*].com 0 ns50, ns74, ns78
dnspod.net f1[*]nspod.net 0 -

Table 4: Registered nameserver typosqua�ing domains and the sub-
domains that were queried.

Requested name Typo NS record Requests

www.o[*]mes.net. ns2.[*]tal.co.uk 738,581
[*].40.12.in-addr.arpa ns74.domaincon[*].com 81,964
g[*]ong.com ns[*]niregistrymarket.link 36,285
a[*]mga.co.ao ns[*]luehost.com 1,177
p[*]tor.xyz ns[*]ostgator.com 92
- f1[*]nspod.net -

Table 5: The most queried name for each typosqua�ing nameserver
registration during 31 days.

address space managed by AT&T of which the reverse DNS lookups
are partially delegated in error to ns74.domaincon[*].com. This
peculiar case involves di�erent possibilities than a regular DNS
query. It would allow an attacker to return false hostnames for
IP address owned by another organization, allowing for instance
denial-of-service attacks by associating the IP address with black-
listed domain names connected to malware or spam.

3.5 Summary
In this section we explored the potential exploitation of nameserver
typosquatting. We found 6,213 unexploited miscon�gured domains
available in the wild and showed that a large number of them could
be compromised with less than ten typosquatting registrations. 682
additional domains were found to be exploitable not through any
fault of their own, but because the nameservers they rely on made
typos. 86 currently registered typosquatting NSDOMs actively reply
with rogue IP addresses, impacting 423 miscon�gured domains.
Moreover, we discovered that there exist many more proactive
typosquatting registrations with 1,295 of them also responding
with rogue IP addresses.

By registering 6 of our own typosquatting NSDOMs we success-
fully hijacked tra�c from 100% of the 47 miscon�gured domains
pointing to our nameservers, recording more than 3 million DNS
requests for those domains over a one-month period. We also found
evidence of new temporary miscon�gurations during this period,
proving that there is value to proactive typo registrations.

4 NAMESERVER BITSQUATTING
The second attack described in this paper, nameserver bitsquatting,
is related to the typosquatting attack. However, the main premise
of this attack is not human error, but hardware malfunction. As
in Section 3, we� rst describe the attack vector and its impact,
followed by an analysis of registered bitsquatting NSDOMs and an
experiment to measure bit-�ipped DNS resolutions to nameservers.
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4.1 Attack vector
Bitsquatting is the act of registering domain names to receive un-
intentional tra�c caused by random bit-�ip errors in the memory
of devices and computers. These bit-�ips occur due to faulty hard-
ware, extreme temperatures or radiation, and thus are by nature
rare and unpredictable. However, bitsquatting is a documented
phenomenon and multiple studies have been published reporting
on its impact [13, 29], as well as conditions and causes [34, 40].
In DRAM, bit errors are typically mitigated with Error Correcting
Codes (ECCs). Although the adoption of these techniques is com-
mon, they are still often missing in consumer devices and even in
DRAM-containing components of enterprise class systems such as
NICs and hard drives [13].

If these bit-�ips alter the in-memory representation of a domain
name, it can e�ectively lead to a request to another domain name.
For instance, a bit-�ip can cause a computer to accidentally connect
to twitte2.com instead of twitter.com (the binary ASCII code
for “2” is 0011 0010, which is a single bit-�ip away from 0111
0010, the ASCII code for “r”). A study by VeriSign [43], reported
that about one in every 107 – 108 DNS resolutions su�ers from a
bit-level error.

In previous studies, researchers observed requests to bitsquat-
ting domain names that occurred before, as well as during DNS
resolution. However, these studies focussed on bitsquatting connec-
tions to a web server’s domain name. In this paper, we analyze the
possibility of bitsquatted DNS requests to nameservers. NSDOMs
are involved in more DNS requests than “regular” domain names,
making them statistically more exposed to bit-�ips. Furthermore,
the impact of nameserver bitsquatting is potentially larger due
to cache poisoning. We identify three speci�c requirements for a
bitsquatting nameserver attack to enfold:

(1) The bit-�ip must corrupt the domain in a NS record that is
or will be accepted by the recursive resolver.

(2) The attack can only occur during a DNS resolution of a
domain name whose nameserver is in another TLD zone.
When they are in the same TLD zone, the nameserver’s IP
address is returned immediately via glue records and no
actual lookup for the NS records is made.

(3) The bit-�ip cannot occur during transmission, since a mis-
match between the DNS request and response in the question
section will be rejected by the resolver [3].

4.2 Amount of tra�c a�ected
Previously studied bitsquatting attacks, as� rst described by Di-
narburg [13], a�ect only a single domain name at a time. When a
rogue IP address for a domain name is cached, it can a�ect multiple
clients for a prolonged period. Although gauging the probability of
bitsquatting vectors is extremely hard, we argue that nameserver
bitsquatting could be more prevalent and more impactful than its
previously studied counterpart.

First, as NSDOMs are often shared by many domains, NS records
are, on a global scale, involved in a lot more DNS requests than a
single domain name. Thus, a bit error is in general more likely to
corrupt the in-memory representation of a widely-used nameserver
than that of a website’s domain name.
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Figure 6: Bit-flip during recursive resolution involving an indepen-
dent (top) and a dependent nameserver (bo�om). Red indicates where
bit-flips occur and green signi�es poisoned cache entries.

Second, instead of just poisoning the cache entry of a domain
name, the entry of a nameserver can be poisoned. In that case, the
attack will a�ect all domains of that victimized nameserver (for all
the clients of the poisoned recursive resolver). However, this is only
possible in the dependent nameserver scenario, as presented in
Section 2.3. More speci�cally, as shown in Figure 6, when a second
nameserver has to be queried (step 5) to retrieve the IP address of
the dependent nameserver (7), an opportunity arises to poison the
cache entry for the dependent nameserver (8).

4.3 Assessing current abuse
4.3.1 Dataset. We generated 605,965 domain bit-�ips from the

top 10,000 NSDOMs and their dependencies as in the work by
Dinaburg [13]. As in Section 3.3, we included the subdomains of
the NSDOMS since the� rst dot (0010 1110) may bit-�ip to an ‘n’
(0110 1110) creating a new second level domain. 586,109 (97%) of
bit-�ipped domains were available for registration.

4.3.2 Finding malicious cases. For the 19,856 registered bitsquat-
ting domains we investigate how many of them are malicious bit-
squatting domains and how many are false positives. The bitsquat-
ting scenario is similar to the proactive typosquatting in that the
NSDOM is not necessarily actively used by any domains, but the
attacker is betting that there will be bit-�ips which will lead to
their NSDOM. Therefore, we use the same methodology as in Sec-
tion 3.3.4 to test the bitsquatting domains. The results of the DNS
queries for the target domains are shown in Table 2. We found
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the categories are proportionally similar between bitsquatting and
proactive typosquatting with 3.1% of domains set up as nameservers
and 86% of those nameservers serving rogue IP addresses. There is
some overlap of NSDOMs which were both bitsquatting and proac-
tive typosquatting domains, but 433 of the 522 Rogue NSDOMswere
uniquely bitsquatting names. This indicates that attackers value
bitsquatting in addition to typosquatting despite its less predictable
nature. These 522 malicious NSDOMs are capable of capitalizing
on potential bit-�ips from at least 52,888,224 distinct domains (not
taking into account dependencies).

Table 3 shows the results of HTTP requests (with the host header
set to the target domain) to the rogue IP addresses served by the
malicious bitsquatting NSDOMs. Compared with the same cate-
gories for proactive typos, the number of domains associated with
a security company stands out. All 115 of these NSDOMs were
registered by the same person which is a signi�cant investment in
bitsquatting.

As we discussed for proactive typos, it is suspicious behavior for
a nameserver to respond with the correct IP if it not listed in any NS
records. We� nd that 48 of the 85 Matching bitsquatting NSDOMs
do not have any NS records pointing to them and therefore fall into
this suspicious category.

4.4 Measuring bit-�ip occurrences
We registered ten distinct bitsquatting variations of popular NSDOMs,
as listed in Table 6. Nine of these have other nameservers depen-
dent on them, creating an opportunity for cache poisoning the
nameserver entry, as described in above.

In order to monitor which bitsquatting variations of nameservers
are contacted and log the domains that are being resolved using
them, we deploy the same experimental setup that was used for the
nameserver typosquatting measurements (Section 3.4), involving
two measurement nameservers NS M1 and M2. At NS M1 we re-
ceive requests for the bitsquatting nameserver, while at NS M2 we
record requests for domains using that nameserver. We evaluate
the data for a one-month period (Dec 22, 2016 - Jan 22, 2017).

Ethical Considerations. The same measures that were applied in
the experiments of Section 3.3 were used again here to minimize
the impact of our experiments. We set the TTL of our responses
to only 5 seconds to prevent long term cache poisoning, and we
did not respond to requests for domain names we did not own,
instead allowing them to timeout as they would in the case of an
unexploited bit-�ip.

4.4.1 Findings. We witness resolutions for each bitsquatting
NSDOM on NS M1, though the vast majority are queries for the
second-level domain or common subdomains, such as mail or www,
presumably made by crawlers and DNS scanners. For 3 out of 10
bitsquatting registrations however, we receive requests to very
speci�c subdomains on which nameservers reside on the author-
itative NSDOM. For instance, we observed resolvers requesting
the A record of dns9.hi[*].com and ns4.p18.dy[*].net. The
authoritative counterpart of those NS records are used by 3,210,418
and 9,658 domains respectively. In total we received 33 requests
to speci�c nameserver subdomains on the bitsquatting NSDOMs
over the one-month experiment, averaging to about one per day.

Authoritative NSDOM Bitsquatting registration Dependants

domaincontrol.com domain[*].com 3
dynect.net dy[*].net 3
hichina.com hi[*].com 3
1and1-dns.org [*]-dns.org -
ui-dns.org [*]ns.org 3
dnsv2.com d[*].com 3
dynamicnetworkservices.net dynamicnetwor[*]s.net 3
ultradns.org ult[*].org 3
verisigndns.com veri[*]s.com 3
worldnic.com [*]nic.com 3

Table 6: Registered nameserver bitsqua�ing domains.

For most requests we did not receive a follow-up request on NS M2.
We assume that either a correct nameserver was queried in parallel
and delivered a faster response than us, or that our response was
rejected due to a question section mismatch at the resolver’s side.

For three requests, however, we did receive a follow-up DNS
request on NS M2 i.e., an attempt to resolve a certain domain name
using the bitsquatting nameserver. These observations are shown
in Table 7. The� rst case occurred on December 22, 2016. An IP
address of a Pakistani ISP requested two nameserver subdomains of
domain[*].com . The� rst is pdns03, where its authoritative coun-
terpart is con�gured as a nameserver by 194,594 domains. We subse-
quently receive a follow-up request for odin.g[*]oo.mx, on NSM2.
The domain name g[*]oo.mx does indeed have NS records pointing
to pdns03.domaincontrol.com and pdns04.domaincontrol.com,
con�rming that the resolution was caused by a bit-�ip. Concerning
the second subdomain that was queried, pd.304, we deduce that
this is a query for the second nameserver (pdns04), but containing
two additional bit-�ips (“n” to “.” and “s” to “3”).

The next two cases are very similar to each other and occurred
on January 17 and 21, 2017. In both observations, we received a
query for a nameserver subdomain of domain[*].com made by an
IP address of Google’s public DNS service. Afterwards, we observed
three consecutive queries for a domain name on M2. As we do not
respond to these queries, presumably, these are two retries of the
same query. Although the source IP address di�ers for each of these
requests, they all belong to the same Google DNS infrastructure
located in Singapore [18]. Moreover, the ECS information provided
in the initial, as well as the follow-up requests all match up, further
con�rming that all requests are part of a single DNS resolution. In
both cases, the� nal requested domain names (u[*]ock.global
and s[*]ppy.global) are using the authoritative counterpart of
the bitsquatting nameserver.

For all three observations, the requested domain name is on
a di�erent TLD than its nameserver, satisfying the criteria for a
successful nameserver bitsquatting hijack (Section 4.1). Since we
are minimizing the impact of our measurements by not replying
to the� nal requests and setting the TTL of the nameserver to
just 5 seconds, we are unable to observe the true impact of cache
poisoning.

4.5 Summary
In this section we investigated the potential of nameserver bit-
squatting. We found 522 currently registered bitsquatting NSDOMs
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Time From ECS (Hash) NS Requested name

19:02:11.4 202.[*].[*].33 - M1 A pdns03.domain[*].com.
19:02:11.7 202.[*].[*].33 - M1 A pd.304.domain[*].com.
19:02:11.9 202.[*].[*].33 - M2 A odin.g[*]oo.mx.

06:58:37.1 74.125.190.132 0baf1a2 /24 M1 A ns34.domain[*].com.
06:58:37.3 74.125.190.147 0baf1a2 /24 M2 MX u[*]ock.global.
06:58:39.0 74.125.190.145 0baf1a2 /24 M2 MX u[*]ock.global.
06:58:40.7 74.125.190.12 0baf1a2 /24 M2 MX u[*]ock.global.

04:03:40.5 74.125.190.141 e814a06 /24 M1 A ns11.domain[*].com.
04:03:40.7 74.125.190.8 e814a06 /24 M2 A s[*]ppy.global.
04:03:42.4 74.125.190.16 e814a06 /24 M2 A s[*]ppy.global.
04:03:44.1 74.125.190.143 e814a06 /24 M2 A s[*]ppy.global.

Table 7: Observed nameserver bitsqua�ing occurrences.

responding with rogue IPs with the potential to abuse bit-�ips that
occur from 52,888,224 domains.

By registering 10 bitsquatting NSDOMs we were able to verify
that bit-�ipped requests, while rare, do occur. Within one month
we observed 3 legitimate bit-�ipped requests which would allow
for hijacking and cache poisoning of the requested domain name.

5 WHOIS EMAIL HIJACKING
In this section, we introduce the techniques allowing for take-overs
of entire NSDOMs by targeting email addresses listed in theWHOIS
records, and evaluate their applicability.

5.1 Attack vector
Nameserver domains can be hijacked by abusing out-of-date and
inaccurate information in the WHOIS records. The idea is that
either access can be gained to the registrar’s web control panel, or
an ownership transfer of the victim domain name can be issued.
Both cases allow an attacker to set up a malicious nameserver using
the victim’s domain. Consequently, the attacker will be able to
hijack all domains dependent on that nameserver. The WHOIS�eld
that is the most ripe for abuse is that of email contacts. Typically,
the registrant contact is the person who created the account with
the registrar and their email is trusted for retrieving forgotten
usernames and resetting forgotten passwords.

An attacker can hijack the email accounts listed in a WHOIS
record in two ways. First, some webmail providers will expire an
account and make the address available again when a user does not
log in for a long period of time. If the email listed in the WHOIS
records is an expired webmail account, then the attacker can merely
register that address again with the webmail provider. There are
known cases of this type of attack. For instance, in 2009, an attacker
was able to steal internal documents of Twitter by re-registering
an expired Hotmail account as a way of gaining access to a Twitter
employee’s primary GMail account [11].

Second, if the email account listed in the WHOIS resides on a
domain which has been allowed to expire, then an attacker can
register that domain name and set up a mail server to receive emails
destined for that domain. As soon as attackers control the email
address they can initiate a password reset with the registrar and set
a new password through the link sent to the stolen email address. If
two-factor authentication is not set up, the attacker will gain access
and have full control over the nameserver domain.

An attacker can make it more di�cult for the original owner
to regain control of their domain by transferring it to a di�erent

High Risk Medium Risk Low Risk

scs[*]ver.info 394 fsi[*]ebs.net 461 pul[*]ion.fr 3,642
log[*]rks.net 565 bla[*]sun.ca 5,542 max[*]ech.com 1,912
nic[*]rup.com 1,934 [*].amsterdam 2,594 ube[*]tor.com 2,205
idc[*]com.net 689 web[*]ost.net 546
iqn[*]ion.com 1,019
par[*]ost.net 1,425

A�ected 6,021 8,596 8,302
Dependents 29 16 112
Total 6,050 8,612 8,414

Table 8: NSDOMs with outdated WHOIS records and the number of
domains dependent on them, categorized by their risk of being hi-
jacked.

registrar. Once a domain has been transferred away, the original
owner is left with little recourse [17]. In order to transfer a domain,
an attacker needs to provide an authorization code (also called an
EPP code) which is obtained from the original registrar either via
a web-accessible control panel or through email from the admin
email contact. ICANN requires registrars to respond to such email
requests within� ve days, but the registrar may still force the owner
to log in to obtain the auth code. Once the attacker has the auth
code, they can provide it to the new registrar to initiate the transfer
process. The new registrar will send an email to the admin contact in
the WHOIS and expect a response to verify consent to the transfer.
Auth codes are required for any TLDs managed by ICANN [19].
ccTLDs (managed by registries in each country and not by ICANN)
may have more or less restrictive policies regarding transfers, but
.fr and .ca, the two ccTLDs in our list of vulnerable domains, do
require auth codes [4][8].

5.2 Finding vulnerable nameservers
To� nd nameservers vulnerable to email-based hijacking, we began
by obtaining the WHOIS records for the top 10,000 NSDOMs and
their dependencies using the Whoxy API [45]. From these records,
we extracted the email addresses for the registrant, administrator,
technical, and billing contacts. Using the Domainr API [14], we
found that 11 of the domains used in these email addresses were
available for registration. To� nd expired webmail accounts we used
the Email-Hippo [16] validation API to� lter active email addresses.
For each email account that Email-Hippo� agged as “undeliverable”,
we checked whether it was available for re-registration. To that
end, we developed a Selenium-based crawler that attempts to create
a new email account using, as our address of choice, each of the
�agged emails. If a webmail service did not present us with an
availability error, that meant that that email address was available
for registration. Note that in our experiments we took advantage
of the UI present in the registration pages of all modern webmail
providers which, through the use of appropriate AJAX calls, pro-
vides immediate feedback to the user as to whether the selected
email address is available and not taken. As such, we do not need
to actually register an email account in order to verify whether it
is available. This allows us to ethically quantify the abuse potential
of this attack vector without exploiting it and without creating any
accounts on webmail providers. We found two such cases of previ-
ously existing addresses, both on hotmail.com, which had expired
and were available to re-register.
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5.3 Potential impact
In total, we found 13 NSDOMs with vulnerable WHOIS emails. We
split them into 3 categories based on severity. Table 8 shows the
nameserver domains by category. For each nameserver, the number
of domains which use it in an NS record is given.

Over 6,000 domains could be impacted by hijacking the six do-
mains in the High Risk category. The High Risk category includes
all domains where the vulnerable email address was the registrant
contact. If an attacker uses the registrant email to gain access to
the registrar’s control panel then they have full control over the
domain including the ability to change all other email contacts in
the WHOIS record.

The Medium Risk category includes domains with a vulnerable
admin email, but not a vulnerable registrant email. Even if it does
not directly grant access to the account, control of the admin email
could be used in an attempt to request an auth code from the
registrar. Depending on how strict the registrar is about obtaining
auth codes, this may require some amount of social engineering.
Control of the admin email provides the appearance of authority
which would aid such an attempt. Since the admin email is the�rst
point of contact for domain transfers, an attacker could transfer the
domain if they are able to obtain an auth code or if they are dealing
with registries which do not require auth codes for transfers of
particular TLDs.

The Low Risk category includes domains with vulnerable emails
which are not admin or registrant contacts. It is unlikely that these
emails could be used to gain access to the account or transfer the
domain. However, there is still some amount of trust that comes
along with being listed in a domain’s WHOIS. For example, when
obtaining an SSL certi�cate for a domain, certi�cate authorities,
such as StartSSL [37], allow one to prove ownership of the domain
using email addresses found in WHOIS. This assumption that the
owner of an email in the WHOIS must be the owner of the domain
makes any of these emails useful for social engineering. Therefore,
even if attackers are not able to altogether hijack these Low-Risk
domains, they could certainly request SSL certi�cates for them and
abuse them in MITM scenarios.

Ethical ConsiderationsWhile we identify vulnerable NSDOMS,
we do not register their emails or attempt to compromise any of
them. We have reported the WHOIS inaccuracies for the expired
emails to ICANN [20] who will forward them to the appropriate
registrars.

6 SECURITY PRACTICES OF NAMESERVERS
Following the idea that a domain name’s security is entirely jeopar-
dized when (the connection to) the nameserver is compromised, we
set out to explore the security risks of the most widely used name-
servers. To this end, we evaluated the patching practices of 312,304
nameservers (i.e., all hosts behind the fully-quali�ed domain names
of the top 10K NSDOMs and the parent servers on which they
depend), using patching as a proxy variable for a server’s overall
security. This decision is based on the assumption that a security-
conscious administrator will be determined to update the DNS
software to a version for which there are no known vulnerabilities.

6.1 Analysis
To determine whether the deployed DNS software is up-to-date,
we obtained version information that is being exposed through the
banners on port 53, both for TCP as well as UDP. By analyzing these
banners, we found that, by far, BIND is the most popular software
for DNS servers – out of the 165,012 nameservers for which we
received a non-empty banner, 78.33% were using BIND. Because
of this uneven distribution of DNS software in the domain name
ecosystem, we focus our analysis on the patching practices in BIND.

Leveraging the information extracted from the banner, we tried
to determine the exact version of BIND that was used. Surprisingly,
only 9,032 nameservers (6.99% of all BIND servers) reported version
information. Most likely, this is because it is considered a best prac-
tice to hide this data from attackers, making it harder for them to
determine which exploit they could use. For the servers where we
could extract the version information, we determined the release
date of the employed installation, along with the number of days it
had been outdated. As a point of reference, we used the release date
of the latest vulnerability-free versions that were available at the
time of our scan (versions 9.9.9-P6, 9.10.4-P6, and 9.11.0-P3). Using
this information, we mapped out the distribution of nameservers
by the number of days they were outdated, as shown in Figure 7.
This graph clearly shows that the vast majority of the nameservers
for which we could determine the version are running an outdated
version of BIND. More precisely, 7,703 evaluated nameservers are
vulnerable to a denial-of-service attack (CVE-2016-2776), for which
an exploit is publicly known [39]. Even when being more conserva-
tive with regards to considering a version out of date, we still�nd
7,214 nameservers (79.87% of the BIND servers that returned ver-
sion information) that are vulnerable to a second denial-of-service
attack (CVE-2015-5477), for which an exploit is readily available in
the Metasploit framework [31].

Lastly, we want to point out that because nameservers are a
common building block typically shared among thousands or even
millions of domain names, all these domains are directly a�ected
by the security of their nameservers. The 7,214 nameservers we
found to be vulnerable to the DoS exploit in Metasploit, are directly
jeopardizing the availability of at least 1.28M unique domain names,
out of which 514 operate as nameserver themselves. As a case
in point, the nameservers yns1.yahoo.com and yns2.yahoo.com
report to use BIND version 9.4.3-P3, which was released in July 2009,
making the software almost 8 years old. Unless the reported version
is incorrect – we have no reason to believe so, as this would make
the server more likely to attract unwarranted attacks – more than
646,290 domain names are put at risk by having these nameservers
as their sole authoritative nameservers.

Ethical Considerations. The choice to obtain nameserver ver-
sions by reading their banners provided a non-invasive method
to explore their security. This has a minimal impact on the name-
servers and avoids the risk of more in depth security tests on live
third-party systems.

7 DISCUSSION
Summary of�ndings. Hijacking domains through their name-
servers is an extremely stealthy and powerful attack vector, capable
of compromising domains en masse through, among others, MITM,
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Figure 7: The cumulative distribution of nameservers by the amount
of days their BIND version is outdated.

domain-ownership veri�cation and email attacks. In this study, we
presented, for the� rst time, three nameserver attacks based on
con�guration errors and hardware issues that were evaluated on
the top 10,000 nameserver domains.

We found that 6,213 domains can be hijacked, where 2,000 can
be compromised with just six targeted registrations. Moreover, we
raise the issue of nameserver dependencies and identify that 682
additional domains could be exploited due to a typographical error
made by a third party, preventing the victims to directly locate
and resolve the issue themselves. Furthermore, by evaluating the
possibility of re-registering email addresses present in outdated
WHOIS records of nameserver domains, we discovered that at least
6,050 additional domains are at high risk of compromise. In total, we
conservatively estimate that 12,945 domains are directly or indirectly
exposed to being hijacked through a con�guration error related
to their nameserver. In terms of current exploitation in the wild,
we discover that attackers are already aware of these issues and
register domains to exploit typos and bit-�ip errors in NS records.

Lastly, our study of security practices of nameservers revealed
that 7,214 nameservers are susceptible to an 8-year-old exploitable
nameserver DoS vulnerability. Thereby, they are exposing 1.28M
domains, enabling a large-scale denial-of-service similar to the
October 2016 Dyn attack [47] without even requiring a botnet.

DNSSEC.DNSSEC is an extension to DNS which provides integrity
to DNS by allowing nameservers to add digital signatures for their
resource records and establishing chains of trust from the root zone
to the authoritative nameserver. DNSSEC, when deployed properly,
is capable of defending against the attacks described in this paper.

We refer the reader to a more complete overview of DNSSEC [9],
but for the purposes of this paper the most important component
is the DS record which is added to the domain’s parent zone. This
record tells the DNS resolver to expect signed responses from the
next nameserver in the chain and contains a hash of the public key
signing key for the next zone which is used to verify the source of
the signed responses. When an administrator creates the DS record,
they are adding a secondary reference to the correct nameserver
beyond the standard NS record. If a victim domain points to a mali-
cious nameserver, regardless of whether it was due to a mistyped
NS record, a bit-�ip, or stolen control of the nameserver domain,
the attacker will be unable to correctly sign its responses. Without a
proper signature generated by the key pairs that match the hashed
public key in the DS record, a DNSSEC validating resolver will
reject any response from the malicious nameserver.

However, in order for a full DNSSEC deployment to work prop-
erly there are several requirements involving responsibility and/or
cooperation between domain owners, nameserver owners, reg-
istries, and ISPs. The complexity of deployment has led to slow
adoption despite the age of DNSSEC [12]. For instance, in the com
zone, only 0.56% of domains are signed at the time of writing [1].

Other defenses. Next to DNSSEC, we suggest the need for addi-
tional defenses requiring less cooperation between parties that can
be adopted faster than DNSSEC.

To reduce the number of miscon�gured domains, registrars can
check for typos by comparing all NS records that administrators
are entering into the registrar’s control panel. A warning could be
shown when two records� t one of the typo models proposed by
Wang et al. [42], extended with our speci�c adjustments for NS
records (Section 3.3.1). Alternatively, registrars could require admin-
istrators to enter new NS records twice, similar to creating a new
password. Known typosquatting and bitsquatting defenses, such as
large-scale defensive registrations, the use of ECC-enabled DRAM,
and� ling abuse complaints, are also applicable in the nameserver
realm. These kinds of countermeasures are especially interesting
for large managed nameserver providers as they are most often
victimized and have the means to execute them.

Regarding outdated WHOIS information, we suggest that regis-
trars periodically verify the email addresses listed in the WHOIS
records. To prevent validation of stolen email accounts, the veri�-
cation process should involve the registrant authenticating with
the registrar after clicking a link received on the email account. Ad-
ditionally, we encourage the adoption of two-factor authentication
for access to a registrar’s control panel.

Finally, we argue that many of the problems discussed in this
paper are due to the inconspicuous nature of nameservers. While
they are not directly visible to end users and often not even admin-
istrators, they do play an extremely crucial and security sensitive
role for all Internet services.

8 RELATEDWORK
To the best of our knowledge, this work is the� rst one that investi-
gates the threat of hijacking domain names through nameservers
by taking advantage of con�guration errors and hardware issues.
At the same time, in recent years, the research community has
exhibited a rekindled interest in the Domain Name System because
of DNS’ central involvement in carrying out attacks.

8.1 Hijacking domain names
In 2015, Bryant showed that one could hijack domain names by
iteratively requesting public IP addresses from AWS and identifying
the domain names that were still pointing to these IP addresses
because their owners had once utilized AWS for hosting purposes
but had forgotten to update their DNS records after shutting down
their virtual machines [6]. Liu et al. showed that these techniques
could be abused to attack more public clouds and presented addi-
tional cases where websites could be hijacked by dangling DNS
records [25]. Even though the authors position their work as ca-
pable of identifying all types of dangling DNS records, including
dangling nameserver records (the subject of this paper), they were
only able to� nd four con�rmed cases of dangling NS records in the
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Alexa top 1 million list. Contrastingly, in this study, we follow a
top-down methodology where we start with popular nameservers
(as de�ned by the number of domains utilizing them for resolu-
tions) and identify not only the domains with dangling records, but
also the current name squatting abuse of miscon�gured domains.
Furthermore, we consider the important role that nameserver de-
pendencies play regarding these issues and highlight the ability to
hijack nameserver domains via expired WHOIS email accounts.

In recent work, Bryant identi�ed another type of dangling DNS
vulnerability related to managed DNS providers [7] showing that
he could hijack control of more than 120K domain names using the
managed DNS services of public cloud providers while their own-
ers had stopped using the hosting services of the aforementioned
companies. While Bryant’s techniques could be straightforwardly
incorporated to identify more hijack-able nameservers, we chose
to focus on techniques that were hoster-agnostic i.e., techniques
that do not rely on the use of speci�c cloud providers.

8.2 Abusing expired domains
In 2012, Nikiforakis et al. discovered that popular websites con-
tained stale, remote script inclusions that were referring to domains
that had expired [28] allowing attackers to register them and deliver
malicious JavaScript code. Starov et al. investigated the ecosystem
of malicious web shells discovering that some webshells were re-
questing remote resources from expired domains which allowed
researchers (or competing hacking groups) to learn about each new
shell deployment and hijack their deployed shells [36].

In 2014, Moore and Clayton investigated the use of old domain
names that belonged to US banks and� nancial institutions and
were left to expire after merges or after the companies went out
of business [26]. The authors discovered that these domains were
often re-registered by attackers who abused the residual trust asso-
ciated with these domains for SEO activities and malware spreading.
Lever et al. analyzed six years of domain data and, among others,
discovered that 8.7% of the domains that appear in public blacklists
are re-registered after their former owners allow them to expire [23].
Schlamp et al. took the abuse of expired domains even further by
showing that attackers can (and already have [32]) hijack entire
autonomous systems by re-registering the appropriate expired do-
mains present in the databases of Regional Internet Registrars, such
as RIPE and ARIN [33].

9 CONCLUSION
In this paper, we investigated the applicability of issues that are com-
monly thought of as end-host issues, to nameservers. We found that
typosquatting, bitsquatting, and the expiration of email addresses
can all be abused to hijack thousands of domain names through their
nameserver records. By registering our own typosquatting and bit-
squatting domains, we showed how attackers can receive millions
of DNS requests by merely registering the appropriate domains. We
quanti�ed the thousands of BIND DNS servers that are running out-
dated software with known vulnerabilities and publicly-available
exploits. Lastly we explained why poorly-adopted DNSSEC can de-
fend against most of our described attacks, and suggested pragmatic
approaches that registrars could adopt to reduce the likelihood of
miscon�gurations in the short-term.
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