
Defending Against Key Exfiltration: Efficiency Improvements for
Big-Key Cryptography via Large-Alphabet Subkey Prediction

Mihir Bellare
∗

Department of Computer Science and Engineering

University of California, San Diego

mihir@eng.ucsd.edu

Wei Dai
†

Department of Computer Science and Engineering

University of California, San Diego

weidai@eng.ucsd.edu

ABSTRACT
Towards advancing the use of big keys as a practical defense against

key exfiltration, this paper provides efficiency improvements for

cryptographic schemes in the bounded retrieval model (BRM). We

identify probe complexity (the number of scheme accesses to the

slow storage medium storing the big key) as the dominant cost.

Our main technical contribution is what we call the large-alphabet

subkey prediction lemma. It gives good bounds on the predictability

under leakage of a random sequence of blocks of the big key, as a

function of the block size. We use it to significantly reduce the probe

complexity required to attain a given level of security. Together

with other techniques, this yields security-preserving performance

improvements for BRM symmetric encryption schemes and BRM

public-key identification schemes.

1 INTRODUCTION
This paper is concerned with the threat of key exfiltration. This

means attacker-planted malware on the key-storing system uses

the system’s network connection to convey the key to a remote

accomplice. A line of theoretical work has suggested a mitigation,

called the Bounded Retrieval Model (BRM) [1, 2, 10, 13, 14], which

involves using big keys. BKR [5] initiated an effort to take the BRM

(they call it big-key cryptography) to practicality. We continue

this effort. We identify probe complexity (the number of scheme

accesses to the slow storage medium storing the big key) as the

dominant cost. Our large-alphabet subkey prediction lemma allows
us to minimize the probe complexity required to reach a given level

of security, thereby optimizing storage usage. We use this to ob-

tain efficiency improvements for big-key symmetric encryption [5].

We then provide an additional lemma on polynomial-evaluation

entropy preservation, and use the two lemmas in conjunction to

obtain efficiency improvements for the ADW big-key identification

scheme [2].
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Large-alphabet subkey prediction. Let b ≥ 2 be an integer rep-

resenting the block size in a storage system, for example b = 32

or b = 64 for words in memory, or b = 8 · 512 (512 bytes) for

a typical hard-disk drive. Let q = 2
b
be the alphabet size, and

[q] = {0, 1, . . . ,q − 1} the corresponding alphabet. Let K = (K[0],
. . . ,K[k − 1]) ∈ [q]k be a string over [q] of length k , randomly

chosen. It represents a (big) key stored in our storage system as a

sequence of k blocks. We imagine that an adversary-chosen func-

tion Lk: [q]k → [q]ℓ (representing adversary-implanted malware,

and here called the leakage function) is applied to K , and the result

L (representing exfiltrated information, here called the leakage), is

provided back to the adversary. Think of ℓ as somewhat smaller

than k , for example ℓ ≤ k/10, so that the leakage, although not

total, is certainly non-trivial. Despite this, we wish to make secure

use of the big key, specifically to (repeatedly) extract “small” keys

(τ ≥ 1 blocks, for a parameter τ ) for use with conventional cryp-

tography. In any such extraction, we make τ random but distinct

probes i1, . . . , iτ ∈ [k] = {0, 1, . . . ,k − 1} into K to determine J =
K[i1] . . .K[iτ ] as the τ -block short key. Given the leakage L and the
probe positions i1, . . . , iτ , the adversary aims to predict (compute

in its entirety) J . Two metrics (see Section 3 for precise definitions

of what we discuss next) are of interest. First is the subkey prediction
advantage

Advskpq,k,τ (ℓ) , (1)

defined as the maximum probability that an adversary can compute

J , the maximum being over all leakage functions Lk returning ℓ

blocks and over all adversary strategies. It is useful to let k∗ = kb
denote the amount of storage occupied by the big key in bits, and,

correspondingly, ℓ∗ = ℓb the amount of allowed leakage in bits. (We

will want to fix these and vary b, thereby defining k and ℓ.) Now,

in usage, we would ask for a certain number s of bits of security
(for example s = 128), meaning we want the subkey prediction

advantage to be at most 2
−s
, and then want to know the number τ

of probes it takes to get there. This is the probe complexity,

Probesk∗, ℓ∗,s (b) = min

{
τ : Advskp

2
b ,k∗/b,τ

(ℓ∗/b) ≤ 2
−s

}
. (2)

The probe complexity will be our cost in accesses to a potentially

slow storage system, like a disk, and for effiency of the overlying

big-key scheme, we want to minimize it. To this end, Theorem 3.1

gives a good upper bound on the subkey prediction advantage,

whence we obtain a good upper bound on the probe complexity.

Next, we compare our bounds to prior ones, and discuss history

and applications (to big-key cryptography and thus key exfiltration

resistance).
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b
s = 128

Us ADW

1 271 11532

8 61 1584

32 47 592

64 45 434

8 · 512 43 287

8 · 4096 43 285

b
s = 512

Us ADW

1 971 46127

8 219 6335

32 171 2366

64 165 1735

8 · 512 159 1146

8 · 4096 158 1139

Figure 1: Fix the amount of storage we allocate to the big
key at k∗ = 8 · 1011 bits = 100 GBytes. Fix the amount of
leakage at 10% of the length of the big key, ℓ∗ = k∗/10 =
10 GBytes. The first table considers security level s = 128,
while the second considers s = 512. Each table then consid-
ers different block sizesb. (Onceb is chosen, the length of the
big key in blocks is k = k∗/b and the length of the leakage
in blocks is ℓ = ℓ∗/b.) The table entries show upper bounds
on the probe complexity Probesk∗, ℓ∗,s (b). The “Us" column is
our bound via Theorem 3.1, and “ADW” is what is obtained
via [3, Lemma A.3]. The block sizes are chosen to represent
common word or disk sector sizes in storage systems.

Prior work and comparisons. ADW [3, Lemma A.3] is an elegant

and general result that, as a special case, gives an upper bound on

the subkey prediction advantage (and thus probe complexity) for all

values of parameters we consider. The bounds, however are quite

poor, so that, to get a desired level of security, one needs a very

large number of probes (we will see numbers in a bit), resulting in a

significant loss of efficiency for the overlying big-key cryptography

schemes. This lead BKR [5] (in their quest for practical big-key

symmetric encryption) to formulate subkey prediction, and seek

better bounds by direct analysis. They however only considered the
case b = 1 of a binary alphabet. They gave an example to show that

there are non-obvious leakage functions that lead to better subkey

prediction advantage than one might expect, making the problem

of giving a (good) upper bound challenging. Via a combinatorial

analysis, they showed that the worst case is when the pre-images

of the outputs of the leakage function are approximate Hamming

balls in the space of big keys, thereby deriving estimates (not quite

upper bounds, something we rectify) on the subkey prediction

advantage and probe complexity, for the case b = 1 (q = 2), that are

much better than those obtained via ADW [2, Lemma A.3]. They

posed the large alphabet (b > 1) case as an open question, asking,

specifically, to give bounds on subkey prediction advantage and

probe complexity, in the b > 1 case, that are better than the ones

obtained via ADW [3, Lemma A.3]. (The motivation, as we will see

later, was to improve efficiency of big-key symmetric encryption.)

Our work answers this question, giving (good) upper bounds as a

function of the block size b.
In usage, wewould typically first decide on the amount of storage

k∗ (measured in bits) we allocate to the big key, for example k∗ =
8 · 1011 bits = 100 GBytes. Next we would fix the amount of leakage

ℓ∗ (also measured in bits), for example ℓ∗ = k∗/10 = 10 GBytes,

corresponding to 10% of the length of the big key. The block size b
may be determined by the storage system (for example 512 bytes

or 4096 bytes) or chosen to optimize security and efficiency as per

our bounds. Once it is chosen, the length in blocks k = k∗/b of

the big key and ℓ = ℓ∗/b of the leakage are determined. Now, for

a given level s of security, we want to know the probe complexity

Probesk∗, ℓ∗,s (b). Smaller (fewer probes into the likely slow storage

system) is better. We tabulate results in Fig. 1. Our bounds emerge

as substantially better than those obtained via ADW [3, Lemma

A.3]. For example, for s = 128, the improvement ranges from a

factor of 26 (b = 8) to a factor of 6.6 (b = 8 · 4096). Below, we

will see how this translates to efficiency improvements for big-key

cryptography.

The BRM. Assume (for concreteness of this discussion) that the

primitive is symmetric encryption [5] (we will discuss other primi-

tives later), and letK denote the encryption key, k∗ bits long. In the

Bounded Retrieval Model (BRM) [1, 2, 5, 10, 13, 14], an adversary-

chosen function Lk (representing adversary-implanted malware) is

applied to K , and the ℓ∗-bit result L (representing the exfiltrated

information), is provided back to the adversary. Security would

appear impossible, since Lk could be the identity function, so that

L = K , but the idea is that K is big (for example k∗ = 100 GBytes),

while L is assumed to be somewhat smaller (like ℓ∗ = k∗/10 = 10
GBytes). In other words, the model assumes that the amount of data

exfiltrated can be limited, say via network or system monitoring.

Indeed, security product vendors such as McAfee [16] provide tools

for this type of monitoring and detection.

If the scheme is poorly designed, the fact that the exfiltrated

information is somewhat shorter than the key won’t guarantee

security. For example if the scheme applies SHA256 to K to get a

256 bit key K and then uses AES256 to encrypt the data, then Lk(K)
can just return the 256 bit string K = SHA256(K) and security is

entirely compromised no matter how big isK . The first requirement

for a BRM (also called big-key) scheme is thus leakage resilience,
meaning an adversary, given L = Lk(K), still cannot violate security,
and this must be true for any (adversary-chosen) function Lk that

returns ℓ∗ bits.

Probe complexity. Big keys may help for security, but it would be

prohibitively costly to process a 100 GByte key for every encryption.

The BRM addresses this via a condition that says that each encryp-

tion (or decryption) operation should only make a “small” number

of probes into the big key K , meaning have low probe complexity.

Security in the presence of leakage is a difficult goal under any

circumstances, but made even more so here by this requirement.

From bits to blocks. Viewing the big keyK = (K[0], . . . ,K[k∗−1])
as a sequence of bits, BKR encryption [5] begins by making some τ ∗

random probes i1, . . . , iτ ∗ ∈ [k
∗] intoK to extract a τ ∗-bit subkey J

= K[i1] . . .K[iτ ∗ ]. It then applies a (randomized) hash function to J
to get a keyK for a conventional (AES-based) symmetric encryption

scheme, and uses K to encrypt the data. Once J has been obtained,

the computation, being symmetric cryptography operations, is quite

efficient, but K , being big, is likely stored on a slow medium like a

hard drive, and so the encryption cost is dominated by the storage

accesses needed to get J . For a subkey prediction advantage of

s = 128 (based on which BKR show ind-cpa style security of their

encryption scheme at the same security level), BKR will need τ ∗ =
271 probes into the storage. (This is as per the b = 1 row of the first
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table in Fig. 1. BKR’s subkey prediction lemma gives an estimate,

not a bound, so we use our number, but numerically the two are

almost the same.)

But (as BKR themselves point out), their scheme is making very

poor use of storage by drawing only a bit of the big key per probe.

Letting b be some appropriate block size determined by the storage

system (for example b = 8 · 512 bits = 512 Bytes), K would actually

be stored as a sequence of blocks, and a single probe into the storage

can retrieve an entire block at about the same cost as retrieving a

single bit. Indeed, a typical storage API does not even provide a way

to directly access a bit, so an implementation of BKR would, for a

probe for bit-position j, have to draw the block containing this bit

position, take the corresponding bit, and throw the other bits away.

A natural improvement (suggested by BKR) is to draw (and use) an

entire block per probe. Thus, we now view the big key K = (K[0],
. . . ,K[k −1]) ∈ [2b ]k as a sequence of blocks, corresponding to the

way it is actually stored, where k = k∗/b is the number of blocks.

Now, making some τ probes i1, . . . , iτ ∈ [k] into K , one obtains

the subkey J = K[i1] . . .K[iτ ]. The rest of the encryption process

is as before, and as we have already noted, is efficient, even though

J could be a bit longer. Continuing to require a subkey prediction

advantage of s = 128, the question is, what value of τ guarantees

this? This is the question that BKR could not answer. It is answered

by our large-alphabet subkey prediction lemma. Specifically, the

first table of Fig. 1 gives values of τ for different choices ofb. Forb =
512 Bytes, we see that τ = 43. Recalling that BKR needed τ ∗ = 271

probes, we have reduced the number of probes (storage accesses)

by a factor of 271/43 ≈ 6, meaning offer a 6x speedup.

The price we pay (as alluded to above) is that J is longer, specifi-
cally, 271 bits for BKR and 43 · 512 ≈ 22 KBytes for us. This means

the hashing of J to obtain the AES key K takes longer, but modern

hash functions are fast, and the time saved in storage accesses is

more than the time lost in extra hashing [11, 12]. This is especially

true since the hashing can be pipelined, taking advantage of the

iterated structure of hash functions to process blocks incrementally

as soon as they are retrieved rather than delaying hashing until

after all blocks are retrieved.

Big-key identification. In a (public-key) identification scheme, a

user (called the prover) has a secret key sk whose associated public

key pk is held by the server (called the verifier). Access control

is enforced by having the prover identify itself as the owner of

sk via an interactive identification protocol. The Schnorr [19] and

Okamoto [17] schemes are well-known examples, but they are

of course conventional (small-key) schemes. Identification is an

interesting target for a BRM scheme. Here it is the secret key sk
that would be big (100 GBytes)— we want the public key pk to

remain of conventional size. The usage we envision is hardware-

assisted access control, where sk is on an auxiliary device like a

USB stick that the user plugs into a possibly infected machine to

identify herself (login) to the server across the network. The key

being large, and reading from a USB being slow, the malware will

have difficulty obtaining enough information about the key (10

GBytes) to violate BRM security, even after a significant number of

usages (logins) by the user.

Identification in the BRM was first treated by ADW [2], who

gave (asymptotic) security definitions and a clever scheme that

involves combining multiple instances of the Okamoto scheme [17]

in a compact way. We target making this scheme practical. The

quest is meaningless in the absence of concrete security, for prac-

ticality is fundamentally about maximizing efficiency for a given

level (eg. 128 bits) of security. A first and central step is thus a

concrete-security treatment. We render the definitions of big-key

identification (the goal is security against impersonation under ac-

tive attack) concretely, then revisit the asymptotically-stated result

of ADW [2] to render it, too, in concrete form. We note that for

the ADW scheme, probe complexity dictates the computational

cost of the two most costly phases of the protocol, the response

phase and verification phase (as we will demonstrate in Fig. 11).

Hence, improvements in probe complexity directly translate into

improvements in efficiency. Towards lowering probe complexity for

a given level of security, we first improve the concrete security of the

reduction via a lemma on the entropy preservation of polynomial

evaluation that improves bounds from ADW [2]. We then obtain

further reductions in probe complexity, by using our large-alphabet
subkey prediction lemma in place of ADW’s own [3, Lemma A.3].

The large-alphabet aspect here is crucial, for the scheme draws,

from the big key, a value in Zmp , where p is a prime of 512 bits long

(for 128-bit security of the identification scheme), andm ≥ 2 is an

integer parameter, so probes need to return blocks of the (large)

size b =m · ⌈log
2
(p)⌉. Putting it all together gives a reasonable-cost

big-key identification scheme, and the first concrete rendition of the

ADW big-key identification scheme. A preliminary implementation

shows that with a pairing-friendly group of 512 bits, the execution

of the protocol takes a few seconds.

2 PRELIMINARIES
For n a positive integer, we let [n] = {0, 1, . . . ,n − 1}, and [1..n] =
{1, . . . ,n}. We also use the notation Zn to denote the set [n] in
contexts where we use the underlying algebraic structure modulo

n. If x is a vector, then |x| denotes its length and x[i] denotes its i-th
coordinate. We call x an n-vector if |x| = n. We number coordinates

starting from 0. For example if x = (10, 0, 11) then |x| = 3 and

x[2] = 11. We let ε denote the empty vector, which has length

0. If 0 ≤ i ≤ |x| − 1 then we let x[0..i] = (x[0], . . . , x[i]), this
being ε when i = 0. We say that x is a vector over set S if all its

coordinates belong to S . We let Sn denote the set of all n-vectors
over S and we let S∗ denote the set of all finite-length vectors

over the set S . If S is a set then |S | denotes its size. If τ ≤ |S | is
a positive integer, we let S(τ ) be the set of τ -vectors over S with

distinct entries. Strings are treated as the special case of vectors

over {0, 1}. Thus, if x is a string then |x | is its length, x[i] is its
i-th bit, x[0..i] = x[0]...x[i], ε is the empty string, {0, 1}n is the set

of n-bit strings and {0, 1}∗ the set of all strings. For K ∈ [q]k and

p ∈ [k]∗, we let K[p] = (K[p[0]],K[p[1]], . . . ,K[p[|p| − 1]]), this

being ε when p = ε .
If X is a finite set, we let x ←$ X denote picking an element of X

uniformly at random and assigning it to x . Algorithms may be

randomized unless otherwise indicated. Running time is worst case.

IfA is an algorithm, we lety ← A(x1, · · · ; r ) denote runningAwith

random coins r on inputs x1, · · · and assigning the output to y. We

let y←$A(x1, · · · ) be the result of picking r at random and letting
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y ← A(x1, · · · ; r ). We let [A(x1, · · · )] denote the set of all possible
outputs of A when invoked with inputs x1, · · · .

We use the code-based game-playing framework [8] (see Fig. 2

for an example). By Pr[G] we denote the probability that game G
returns true. Uninitialized boolean variables, sets and integers are

assume initialized to false, the empty set and 0, respectively.

Following [7], our random oracleH is variable range. This means

it takes two inputs, x and Rng, where the latter is a (description of)

an efficiently sampleable set, and returns as output a random point

in Rng. In schemes, we (implicitly or explicitly) fix a unique descrip-

tion for each range set that is used. For example, x ←$ H(x , [k])will
return a random element in [k], and p←$ H(x , [k](τ )) will return a

random τ -dimensional vector over [k] with distinct entries.

3 LARGE-ALPHABET SUBKEY PREDICTION
Here we define the subkey prediction problem parameterized by

alphabet size and give our results about it.

3.1 The Problem
We consider the subkey-prediction game, Gskp

q,k,τ (A, Lk), shown on

the left of Fig. 2. (Ignore the other game for now.) The quantities

involved in the game, as well as associated ones, are as follows:

– q ≥ 2— the alphabet size. A block is an element of [q].

– b ≥ 1— the block length, meaning q = 2
b
. Theorem 3.1 does not

assume q is a power of two, but it is in some applications.

– k— the length in blocks of the big key

– Lk: [q]k → [q]ℓ— the leakage function

– ℓ— the length of the output of the leakage function, called the

leakage length, in blocks

– L— the leakage, an ℓ-vector over [q] returned by Lk
– K— the big key, a vector of length k over [q]

– τ ≤ k— the number probes into the big key K

– p— the probe vector, a τ -vector over [k] all of whose coordinates
are distinct

– A— the adversary

– k∗— the length of the big key in bits, k∗ = kb

– ℓ∗— the length of the leakage in bits, ℓ∗ = ℓb

– ρ = ℓ∗/k∗ = ℓ/k— the leakage rate.

In the game on the left in Fig. 2, a k-vector K over [q], called the

big key, is randomly chosen from [q]k . Then, a random τ -vector p
is chosen from [k](τ ), so that its coordinates are all distinct. (Recall

that [k](τ ), the set from which p is selected in the game in Fig. 2,

denotes the set of all τ -vectors over [k] all of whose coordinates are
distinct.) We refer to p as the probe vector. Each of its coordinates

is a probe, pointing to a location in the big key. Adversary A is

given the leakage L = Lk(K) and the probe vector p. Its goal is
to predict (compute, output) K[p] = (K[p[1]], . . . ,K[p[τ ]]), the τ -
vector consisting of the coordinates ofK selected by the coordinates

of the probe vector. The adversary returns J as its guess, and the

game returns true if A succeeds, meaning J = K[p]. We define the

Game Gskp

q,k,τ (A, Lk)

K ←$ [q]k ; L ← Lk(K )

p←$ [k ](τ )

J ←$ A(L, p)
Return (J = K [p])

Game Grskp

k,τ (A, K)

K ←$ K

p←$ [k ](τ )

J ←$ A(p)
Return (J = K [p])

Figure 2: Left: Subkey prediction game Gskp

q,k,τ . Right: Re-

stricted subkey prediction game Grskp

k,τ (used in Section 3.3).

following advantage metrics:

Advskpq,k,τ (A, Lk) = Pr

[
Gskp

q,k,τ (A, Lk)
]
,

Advskpq,k,τ (Lk) = max

A
Advskpq,k,τ (A, Lk),

Advskpq,k,τ (ℓ) = max

Lk:[q]k→[q]ℓ
Advskpq,k,τ (Lk).

The first advantage is the probability that the game outputs true,
meaning the probability that the adversary successfully returns

K[p]. The second advantage is obtained by maximizing the first

one over all adversariesA. Note that this is well-defined since here

we consider all computationally unbounded adversaries. The third

advantage is obtained by maximizing the second advantage over

all leakage functions Lk that output ℓ blocks.

Now fix some big-key length k∗ (in bits) and leakage length ℓ∗

(in bits). Also fix an integer s representing the desired security. For

any block length b ≥ 1 such that b divides k∗ and ℓ∗, we let

Probesk∗, ℓ∗,s (b) = min

{
τ : Advskp

2
b ,k∗/b,τ

(ℓ∗/b) ≤ 2
−s

}
. (3)

Here, we have set the alphabet size to q = 2
b
. The length k of the

big key and ℓ of the leakage in blocks are determined, respectively,

by k = k∗/b and ℓ = ℓ∗/b. Then, Probesk∗, ℓ∗,s (b) is the smallest

number of probes τ that will guarantee that Advskpq,k,τ (ℓ) is at most

2
−s
.

The subkey prediction game and problem formulated by BKR [5]

differs in two ways. First, they had only considered the q = 2 case

(that is, b = 1) of a binary alphabet. The large alphabet aspect of

our treatment refers to the fact that our alphabet size is a parameter

q that we view as quite large. In some applications, q = 2
b
where b

is the block size of our storage medium, but Theorem 3.1 does not

assume q is a power of two. The second difference with BKR [5] is

that their probes p[1], . . . , p[τ ] were random and independent, so

in particular two of them might be the same, but ours are random

subject to being distinct. This is important towards our being able

to get a provable upper bound on the subkey prediction advantage,

whereas BKR were only able to get (for their setting) an estimate

or approximate upper bound.

Now our goal is to upper bound, as well as possible, the subkey

prediction advantage Advskpq,k,τ (ℓ) as a function of q,k,τ , ℓ. Thence

we will obtain upper bounds on Probesk∗, ℓ∗,s (b).
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3.2 Subkey Prediction Theorem
The bound in our subkey prediction theorem is the ratio of the sizes

of two q-ary hamming balls. We start with the relevant definitions.

Hamming balls. We define the weight of a n-vector v over [q] to
be

w(v) =
���{i ∈ [n] | v[i] , 0}

��� ,
the number of coordinates of v that are non-zero. Let K ⊆ [q]n for

some integer n, we define the weight of K to be

w(K) =
∑
x ∈K

w(x) ,

the sum of weights of vectors in K . For 0 ≤ r ≤ k , the q-ary

hamming ball of radius r over [q]k is the set

Bq,k (r ) =
{
v ∈ [q]k : w(v) ≤ r

}
of k-vectors over [q] that have more at most r non-zero coordinates.
We let Bq,k (r ) denote the size of the set Bq,k (r ) and note that

Bq,k (r ) =
r∑
i=0
(q − 1)i

(
k

i

)
.

For convenience of stating our results, we establish the following

conventions: if r > k then we let Bq,k (r ) = Bq,k (k) = qk , and if

k = 0 then for all r ≥ 0 we let Bq,k (r ) = 1. We also define the

function

rdq,k (N ) = max

{
r ∈ [k + 1] : Bq,k (r ) ≤ N

}
to return the largest radius r in the range 0 ≤ r ≤ k such that the

ball Bq,k (r ) has size at most N .

Large-alphabet subkey prediction theorem. We now give the main

result of this section.

Theorem 3.1 (Subkey-prediction bound). Let q,k, ℓ,τ be in-
tegers with q ≥ 2 and ℓ,τ ≤ k . Let r be any integer in the range
0 ≤ r ≤ rdq,k (q

k−ℓ). Then

Advskpq,k,τ (ℓ) ≤
Bq,k−τ (r )

Bq,k (r )
. (4)

The theorem allows us to pick the parameter r arbitrarily in

the given range, so for the best estimates we would pick a r that
minimizes the ratio. We postpone the proof to first discuss how this

compares to prior work and how to use it to get numerical bounds.

Comparison. BKR [5] give an upper bound we denoteGbkr

k,τ (2
k−ℓ)

on the subkey prediction advantage in their setting. Recall that their

setting differs from ours in two ways. First, q = 2 in their case. Sec-

ond, in their game, the τ probes are random and independent, while

in our game they are random but distinct. Their function Gbkr

k,τ (N )

is a sum of rd
2,k (N ) terms. It is quite complex and it is hard to

estimate numerically. BKR gave a simpler expression, that approxi-

mates Gbkr

k,τ (N ), and that they use for numerical estimates, but this

expression is not an upper bound, and thus it is not clear their

numerical estimates are upper bounds either. Our bound, the ratio

of the sizes of two q-ary Hamming balls, is simpler than the bound

of BKR (this makes crucial use of the probes being distinct), and,

we will see, more analytically tractable, even when q = 2. In partic-

ular, we are able to upper boundminr Bq,k−τ (r )/Bq,k (r ), subjected

to 0 ≤ r ≤ rdq,k (q
k−ℓ), quite nicely for numerical estimates, as

discussed next.

Tools for deriving numerical bounds. Theorem 3.1 upper bounds

the subkey prediction advantage as the ratio of the sizes of two

hamming balls. Below, we present tools to bound this ratio. First,

we need some definitions. Let H2 be the binary entropy function,

defined for x ∈ [0, 1] by H2(x) = −x log2(x) − (1 − x) log2(1 − x).
We note that the value of x logq (x) is taken to be 0 when x = 0.

This ensures that H2 is continuous over [0, 1]. More generally, for

an integer q ≥ 2 the q-ary entropy function is defined for x ∈ [0, 1]
by

Hq (x) = x logq (q − 1) − x logq (x) − (1 − x) logq (1 − x)

=
H2(x)

log
2
(q)
+ x logq (q − 1) .

We note that Hq attains its maximum at x = 1 − 1/q. We define

its inverse function, H−1q : [0, 1] → [0, 1 − 1/q] to be such that

H−1q (Hq (x)) = x for any x ∈ [0, 1 − 1/q]. We define the following

error function for q ≥ 2 and 0 ≤ r ≤ k ,

ϵ(q,k, r ) = logq (e)

(
1

12r
+

1

12(k − r )
−

1

12k + 1

)
+
1

2

logq

(
2πr (k − r )

k

)
.

(5)

The following lemmas, the proofs of which are given in Section 3.4,

are key to deriving numerical bounds. The first gives both upper

and lower bounds on the size of a Hamming ball.

Lemma 3.2. Let k,q, r be integers with q ≥ 2 and 0 ≤ r ≤ k . Then,

qkHq (r/k )−ϵ (q,k,r ) ≤ Bq,k (r ) . (6)

Additionally, if 0 ≤ r ≤ k(1 − 1/q),

Bq,k (r ) ≤ qkHq (r/k ) . (7)

The second lemma lower bounds the value of rdq,k (N ).

Lemma 3.3. Let N ,q,k be positive integers such that q ≥ 2 and
N ≤ qk . Then, ⌊

H−1q

(
logq (N )

k

)
· k

⌋
≤ rdq,k (N ).

The following provides a two-sided bound on H−1q :

Lemma 3.4. Let q ≥ 2 be an integer, and x ∈ [0, 1] a real number.
Then,

min(x , 1 −
1

q
) −

1

log
2
(q)
≤ H−1q (x) ≤ x(1 −

1

q
) .

These bounds are good when q is large.

Deriving numerical bounds. We now use the above to derive

upper bounds for example parameter values. Let b ≥ 1 be a block

size, so that the alphabet has size q = 2
b
. Fix some big-key length

k∗ (in bits) and leakage length ℓ∗ (in bits) that are multiples of b,
and let k = k∗/b and ℓ = ℓ∗/b be the big-key and leakage lengths,

respectively, in blocks. We assume that τ and ℓ satisfy that ℓ ≥ τ ,
as the below method only apply when this condition is met. We

note that this is a reasonable assumption for practical applications,
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as leakage length ℓ is usually large, and we are attempting to keep

the probe complexity, τ , small. Now, suppose we have obtained

some integer value r such that: (1) r ≤ rdq,k (q
k−ℓ) and (2) 0 ≤

r ≤ (k − τ )(1 − 1/q). Then, we use Equation (6) to lower bound

Bq,k (r ). Given condition (2), we can use Equation (7) to upper bound
the quantity Bq,k−τ (r ). This results in an upper bound, denoted

RatioBoundq,k, ℓ,τ (r ), for the ratio Bq,k−τ (r )/Bq,k (r ):

RatioBoundq,k,τ (r ) =
q(k−τ )Hq (r/(k−τ ))

qkHq (r/k )−ϵ (q,k,r )
.

Note that in the above expression, the termsHq (r/(k −τ )),Hq (r/k)
and ϵ(q,k, r ) can be computed numerically for any given value of

q,k,τ and r . Hence, deriving numerical upper bound for the ratio

Bq,k−τ (r )/Bq,k (r ) amounts to obtaining a value r satisfying the

two conditions given above. We take r to be rq,k, ℓ , defined as

rq,k, ℓ =
⌊
H−1q (

k − ℓ

k
) · k

⌋
.

Here, we assume that a method of obtaining numerical lower

bounds for H−1q (x) is available
1
. We now check the two conditions

required. For condition (1), we know that rq,k, ℓ ≤ rdq,k (q
k−ℓ)

by Lemma 3.3 (taking N = qk−ℓ ). For condition (2), note that by

Lemma 3.4 and the assumption that ℓ ≥ τ ,

H−1q (
k − ℓ

k
) ≤

k − ℓ

k
(1 − 1/q) ≤

k − τ

k
(1 − 1/q) .

Hence,

rq,k, ℓ =
⌊
H−1q (

k − ℓ

k
) · k

⌋
≤ (k − τ )(1 − 1/q) .

We consider the quantity

Adv
skp

q,k,τ (ℓ) = RatioBoundq,k, ℓ,τ (rq,k, ℓ) . (8)

We note that since r = rq,k, ℓ satisfies condition (1) and (2), by

Theorem 3.1 and above analysis,

Advskpq,k,τ (ℓ) ≤
Bq,k−τ (rq,k, ℓ)

Bq,k (rq,k, ℓ)
≤ Adv

skp

q,k,τ (ℓ) .

Hence, Adv
skp

q,k,τ (ℓ) is an upper bound for Advskpq,k,τ (ℓ). Now, given

a particular desired security level, s , we want to find the smallest τ

such that Adv
skp

q,k,τ (ℓ) ≤ 2
−s
. We let

Probesk∗, ℓ∗,b (s) = min

{
τ ∈ [k + 1] : Adv

skp

q,k,τ (ℓ) ≤ 2
−s

}
.

Note that this is similar to the definition of Probesk∗, ℓ∗,b (s) (Equa-

tion (3)), only thatAdvskpq,k,τ (ℓ) is replacedwithAdv
skp

q,k,τ (ℓ). Thence,

Probesk∗, ℓ∗,b (s) ≤ Probesk∗, ℓ∗,b (s) . (9)

We note that Probesk∗, ℓ∗,b (s) can be computed numerically by

iteratively incrementing τ and computingAdv
skp

q,k,τ (ℓ). Fig. 1 shows

values of Probesk∗, ℓ∗,b (s) for various practical values of k∗, ℓ∗, b
and s .

1
For example, this is available in mathematical software Sage. Also, when q is large,

Lemma 3.4 provides a good lower bound for H−1q that is easily computed numerically.
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− log2(Advskp
q,k,47(ℓ)) vs. ℓ∗/k∗

Figure 3: Fix the big key length k∗ to be 100 GBytes. The
top graph plots (an upper bound on) Probesk∗,ρk∗,128(32) as
a function of the leakage rate ρ. The bottom graph plots
(a lower bound on) − log

2
(Advskp

2
32,k,47(ρk)) as a function of ρ,

where k = k∗/32.

Plots. For the top plot, we fix the following:

– Blocksize b = 32 bits, so that q = 2
32
.

– Leakage length ℓ∗ = 8 · 1010 bits = 10 GBytes, so that ℓ = ℓ∗/32.

– Desired security level s = 128 bits.

The top graph in Fig. 3 plots Probesℓ∗/ρ, ℓ∗,b (s), upper bound for

Probesℓ∗/ρ, ℓ∗,s (b), as a function of the leakage rate ρ. The top

plot shows that the number of probes needed to maintain s bits
of security increases faster once the leakage rate goes over 50%.

Hence, for applications, it may be beneficial to use big keys that are

big enough so that the leakage rate can be assumed to be less than

50%. For example, if 10 GBytes is the leakage bound, one might, for

efficiency, target big key of size at least 20 GBytes.

For the bottom plot, we fix the following

– Blocksize b = 32 bits, so that q = 2
32
.

– Big key length k∗ = 8 · 1011 bits = 100 GBytes, so that k = k∗/32.

– Number of probes τ = 47.

The number 47 has been chosen because, as per Fig. 1, it ensures

Advskpq,k,τ (k/10) ≤ 2
−128

. Now with b,k∗,τ (and thus also q,k)

fixed, the bottom graph plots − log
2
(Adv

skp

q,k,τ ρ · k), lower bound

for − log
2
(Advskpq,k,τ (ρ · k)), as a function of leakage rate ρ. The

bottom plot in Fig. 3 demonstrates that, even though a scheme is de-

signed for 10% leakage, security degrades gradually as the leakage

rate goes over 10%.
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3.3 Proof of Theorem 3.1
We follow the framework of the proof of BKR [5].

Restricted subkey prediction. The proof involves consideration
of a simpler game, called the restricted subkey prediction game,

denoted Grskp
and shown on the right in Fig. 2. Game Grskp

is

similar to game Gskp
, except that there is no leakage function Lk

and leakage L. Instead, the big key K is drawn from a restricted

subset K ⊆ [q]k of big keys. We define the following advantage

metrics:

Advrskpk,τ (A,K) = Pr

[
Grskp

k,τ (A,K)
]
,

Advrskpk,τ (K) = max

A
Advrskpk,τ (A,K),

Advrskpq,k,τ (N ) = max

K⊆[q]k , |K |=N
Advrskpk,τ (K).

The first advantage is the probability that the game outputs true,
meaning the probability that the adversary successfully returns

K[p]. The second advantage is obtained by maximizing the first

one over all adversaries A. The third advantage is obtained by

maximizing the second advantage over all sets K ⊆ [q]k that have

size N . We note that the first two advantages do not have q in the

subscript, which is due to the fact that K encodes the value of q.

Monotone sets. Let x ,x ′ be vectors in [q]k . We say that x dom-

inates x ′, or x ′ is dominated by x , written x ′ ≤ x , if x ′ can be

obtained by changing non-zero coordinates of x to 0. We let

DSq,k (x) = {x
′ ∈ [q]k : x ′ ≤ x}

be the set of all x ′ dominated by x . A set K ⊆ [q]k is monotone if⋃
x ∈KDSq,k (x) ⊆ K .

That is, if x ∈ K , and x ′ is dominated by x , then x ′ ∈ K . For

example, a Hamming ball in [q]k , of any radius, is a monotone set.

Some notation. For integers x ,τ ≥ 0, we let

x(τ ) =
τ−1∏
i=0
(x − i) =

x∏
j=x−τ+1

j . (10)

Notice that x(τ ) = 0 if τ > x . This can be seen because, if τ > x ,
then, in the second product above, the starting value for j is ≤ 0,

and since x ≥ 0, this means the term j = 0 is included in the

product. Also when τ = 0, the product has zero terms, and hence

by convention takes value 1, meaning x(0) = 1 for all x ≥ 0. We use

below the notation from Equation (10).

For a nonempty K ⊆ [q]k , we define the function

дk,τ (K) =
1

|K |

∑
x ∈K

(k −w(x))(τ )

k(τ )
. (11)

The following lemma says that ifK is monotone, then the restricted

subkey prediction advantage for big keys drawn from K can be

expressed exactly, and in particular by the function of Equation (11).

Lemma 3.5. Let q,τ ,k be positive integers such that τ ≤ k and
q ≥ 2. Let K ⊆ [q]k be a non-empty monotone set. Then,

Advrskpk,τ (K) = дk,τ (K).

Proof (of Lemma 3.5). Let A0 be the adversary that, on input

p, always returns the all-0 τ -vector. We claim that this adversary

maximizes the advantage, meaning

Advrskpk,τ (K) = Advrskpk,τ (K,A0) .

This follows from the assumption that K is monotone. Now, we

compute the advantage of A0. For K ∈ [q]k , let Z(K) denote the
set of all p ∈ [k](τ ) such that K[p] = (0, . . . , 0). We have

Advrskpk,τ (K,A0) =
1

|K |

∑
K ∈K

|Z(K)|

|[k](τ ) |

=
1

|K |

∑
K ∈K

(k −w(K))(τ )
k(τ )

= дk,τ (K) .

□

We say that a setK ⊆ [q]k is sandwiched between hamming balls
if

Bq,k (r ) ⊆ K ⊂ Bq,k (r + 1)

for r = rdq,k (|K |). For N an integer such that 1 ≤ N ≤ qk , we
define

Gq,k,τ (N ) =
1

N

rdq,k (N )∑
i=0

(q − 1)i
(
k

i

)
(k − i)(τ )

k(τ )

+

(
1 −

Bq,k (rdq,k (N ))

N

)
(k − (rdq,k (N ) + 1))(τ )

k(τ )
.

(12)

The following says that if K is monotone and sandwiched between

Hamming balls, then the restricted subkey prediction advantage for

big keys drawn from K can be expressed exactly, and in particular

by the function of Equation (12).

Lemma 3.6. Let q,τ ,k be positive integers such that τ ≤ k and
q ≥ 2. Let K ⊆ [q]k be a non-empty monotone set that is also
sandwiched between hamming balls, i.e. Bq,k (r ) ⊆ K ⊂ Bq,k (r + 1)
for r = rdq,k (|K |). Then

Advrskpk,τ (K) = Gq,k,τ (|K |) .

Proof (of Lemma 3.6). Let N = |K |. By Lemma 3.5, we have

Advskpk,τ (K) =
1

N

∑
x ∈K

(k −w(x))(τ )

k(τ )
.

Since Bq,k (r ) ⊆ K ⊂ Bq,k (r + 1). This means Bq,k (i) ⊆ K for

i = 0, . . . , r , and K contains N − Bq,k (r ) vectors of weight r + 1.
Thus, the above equals

N − Bq,k (r )

N

(k − r − 1)(τ )

k(τ )
+

1

N

r∑
i=0
(q − 1)i

(
k

i

)
(k − i)(τ )

k(τ )

= Gq,k,τ (N )

as claimed. □

Next, we show that monotone sets sandwiched between Ham-

ming balls are the extremal cases for the restricted subkey prediction

game, meaning that they maximize the restricted subkey predic-

tion advantage. The following is analogous to [5, Lemmas 6,8]. We

streamline their analysis and extend it to large alphabets.
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Lemma 3.7. Letq,k,N be positive integers. Supposeq ≥ 2,N ≤ qk

and τ ≤ k . Then, there is a non-empty monotone setK ⊆ [q]k of size
N such that

Advrskpq,k,τ (N ) = Advrskpk,τ (K) .

Additionally, K is also sandwiched between hamming balls, i.e. for
r = rdq,k (N ),

Bq,k (r ) ⊆ K ⊂ Bq,k (r + 1) .

The proof of Lemma 3.7 is deferred to Section 3.3.1. As a direct

corollary of Lemma 3.6 and Lemma 3.7, we get the following result.

Corollary 3.8. Let q,τ ,k be positive integers such that τ ≤ k
and q ≥ 2. Then,

Advrskpq,k,τ (N ) = Gq,k,τ (N ) . (13)

Hence, from this point on, we identify the two functionsAdvrskpq,k,τ (·)

and Gq,k,τ (·). Next, we observe a useful property of Gq,k,τ (N ). In

particular, it is decreasing in the domain [1..qk ].

Lemma 3.9. Let q,τ ,k be positive integers such that τ ≤ k and
q ≥ 2. Let i, j be integers such that 1 ≤ i ≤ j ≤ qk . Then,

Gq,k,τ (i) ≥ Gq,k,τ (j) .

We proceed to relate the restricted subkey-prediction game to

the subkey-prediction game via the lemma below.

Lemma 3.10. Let ℓ,q,k,τ be integers such that 0 ≤ ℓ ≤ k , q ≥ 2,
and 1 ≤ τ ≤ k . Then,

Advskpq,k,τ (ℓ) ≤ Advrskpq,k,τ (q
k−ℓ) .

The proofs of Lemma 3.9 and Lemma 3.10 are deferred to Sec-

tion 3.3.2. Finally, we give a way to bound the expressionGq,k,τ (N ).
In particular, we show that it is at most the ratio of two hamming

balls of the same radius rdq,k (N ); one with dimension k − τ and

one with dimension k . Recall that BKR did not give concrete nu-

merical upper bounds for their subkey-prediction advantage, only

estimates. Due to assuming the uniqueness of probes, we are able

to simplify our expression Gq,k,τ (N ). In particular, we note that

for non-negative integers k, i,τ such that i,τ ≤ k ,(
k

i

)
(k − i)(τ )

k(τ )
=

k(i)

i(i)
·
(k − i)(τ )

k(τ )
=
(k − τ )(i)

i(i)
=

(
k − τ

i

)
. (14)

This property allows us to prove the following lemma.

Lemma 3.11. Let N ,q,k,τ , r be positive integers such that q ≥ 2,
N ≤ qk , τ ≤ k and r ≤ rdq,k (N ). Then

Gq,k,τ (N ) ≤
Bq,k−τ (r )

Bq,k (r )
.

Proof (of Lemma 3.11). By Lemma 3.9,

Gq,k,τ (N ) ≤ Gq,k,τ (Bq,k (r )).

By Equation (12) and Equation (14),

Gq,k,τ (Bq,k (r )) ≤
1

Bq,k (r )

rdq,k (Bq,k (r ))∑
i=0

(q − 1)i
(
k

i

)
(k − i)(τ )

k(τ )

=
1

Bq,k (r )

r∑
i=0
(q − 1)i

(
k − τ

i

)
=

Bq,k−τ (r )

Bq,k (r )
.

□

The proof of Theorem 3.1 follows directly.

Proof. (of Theorem 3.1). Note that when r = 0, Equation (4)

is trivially true. Hence, we let r ≤ rdq,k (N ) be a positive integer.
Then,

Advskpq,k,τ (l) ≤ Advrskpq,k,τ (q
k−l ) (Lemma 3.10)

= Gq,k,τ (q
k−l ) (Corollary 3.8)

≤
Bq,k−τ (r )

Bq,k (r )
. (Lemma 3.11)

□

3.3.1 Proof of Lemma 3.7.

Proof (of Lemma 3.7). Let

T =
{
K ⊆ [q]k : |K | = N and Advrskpk,τ (K) = Advrskpq,k,τ (N )

}
.

Let K ∈ T be the minimal weight element, i.e. the element K ∈ T

that minimizes the value w(K) =
∑
x ∈K w(x). We will show that

K is a set satisfying the properties claimed in the lemma. We will

prove the two properties separately, namely that K is monotone

and Bq,k (r ) ⊆ K ⊂ Bq,k (r + 1). We first claim that K is monotone.

The idea is to define a “shifting” operation for any set K ′ ⊆ [q]k

at a coordinate to increase Advrskpk,τ (K
′) while decreasing w(K ′).

Seeking a contradiction, suppose K is not monotone. Without loss

of generality, suppose that for all pairs of x ∈ K and y < K such

that y ≤ x , we have that x and y differ only in the first component.

We build another set K ′ with the following properties.

(1) |K ′ | = |K |

(2) w(K ′) ≤ w(K)

(3) Advrskpk,τ (K
′) ≥ Advrskpk,τ (K)

We first explain briefly explain the construction of K ′ on the high

level before giving the formal construction. Let z ∈ [q]k−1. We

will attempt to “swap” vectors of the form α ∥z, for α ∈ [q], in and

out of K . The swapping is done in two cases. We define Dz to

contain the α ’s such that α ∥z ∈ K . First, if 0 ∈ Dz or Dz = ∅, no

swapping will be done. Second, if 0 < Dz and Dz , ∅, then we will

do the following. Let β = maxDz . We will remove the element β ∥z
from K and add the element 0∥z to K . After such operations are

done for all z ∈ [q]k−1, the resulting set will be K ′. Formally, the

construction of K ′ is given below. K ′ is constructed from K via

the function ϕ : [q]k → [q]k , which is defined relative to the set B
(set A is used in the later analysis). Sets A and B partition the set of
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strings of length k − 1. Set A consists of z’s such that no swapping

will be done. Set B consists of z’s such that swapping will be done.

The formal definition for A,B,ϕ, and K ′ is as follows:

A =
{
z ∈ [q]k−1 : 0 ∈ Dz or Dz = ∅

}
,

B =
{
z ∈ [q]k−1 : 0 < Dz and Dz , ∅

}
,

ϕ(α ∥z) =


0∥z if z ∈ B and α = maxDz

(maxDz )∥z if z ∈ B and α = 0

α ∥z otherwise

,

K ′ =
{
ϕ(x) : x ∈ K

}
.

By construction, we note that the swapping operation preserves

the size of the set and only decreases its overall weight. Hence,

|K ′ | = |K | and w(K ′) ≤ w(K). It remains to show property (3).

Let A be an adversary such that Advrskpk,τ (A,K) = Advrskpk,τ (K).

Consider the adversary A ′ that behaves exactly as A with the

exception that it always guess 0 for the first position. More precisely,

A ′ does the following.

Adversary A ′((s1, . . . , sτ ))

J ′ ← A((s1, . . . , sτ ))
For i ← 1, . . . ,τ do

If si = 1 then J ′[i] ← 0

Return J ′

Let P(·) denote the probability function in game Grskp

k,τ (A,K) and

P ′(·) the probability function in game Grskp

k,τ (A
′,K ′). We now de-

fine three events for both gamesGrskp

k,τ (A,K),G
rskp

k,τ (A
′,K ′), where

z ∈ [q]k−1.

win : The game returns true
one : 1 ∈ {s1, . . . , sτ }

sz : (K[1..k] = z), one and (∀i, si , 1 : J ′[i] = K[si ])

Note that P(one) = P ′(one), and P(win |¬one) = P ′(win |¬one).
We claim that P(win | one) ≤ P ′(win | one). If so we have

Advrskpk,τ (A,K)

= P(win)

= P(win | one) · P(one) + P(win | ¬one) · P(¬one)

= P(win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

≤ P ′(win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

= P ′(win) = Advrskpk,τ (A
′,K ′) .

So now we need to show that P(win | one) ≤ P ′(win | one). We

have

P(win | one) =
∑

z∈[q]k−1
P(win | sz ) · P(sz )

=
∑

z∈[q]k−1
P(win | Sz ) · P

′(Sz ) (15)

≤
∑

z∈[q]k−1
P ′(win | Sz ) · P

′(Sz ) (16)

= P ′(win | one) .

Equation (15) is true because P(sz ) = P ′(sz ) for all z ∈ [q]
k−1

, since

the swapping operation do not change the last k − 1 component

of any vector. Next, we argue the validity of Equation (16). Let

z ∈ [q]k−1 such that P(Sz ) , 0 (and hence P ′(Sz ) , 0), which

means that there is some α ∈ [q] such that α ∥z ∈ K . For any

z ∈ [q]k−1, consider the sets Uz = {α ∈ [q] : α ∥z ∈ K} and
Vz = {α ∈ [q] : α ∥z ∈ K

′}. Note that P(win | sz ) ≤ 1/|Uz | and
P ′(win |sz ) ≤ 1/|Vz |. Additionally, we note that |Uz | = |Vz |, andVz
always contains 0. SinceA ′ always guess 0 for the first component,

we have P ′(win | sz ) = 1/|Vz |. Therefore,

P(win | sz ) ≤
1

|Uz |
=

1

|Vz |
= P ′(win | sz ) .

Next, we show that K must be sandwiched between two ham-

ming balls. We first claim that Bq,k (r ) ⊆ K . Seeking a contradic-

tion, suppose that Bq,k (r ) ⊈ K . Let x ′ be a point in Bq,k (r ) \ K
of minimal Hamming weight. Let x be a point in K \ Bq,k (r ) of
maximal Hamming weight. We claim that w(x) > w(x ′), other-
wise Bq,k (r ) ⊆ K . Let K ′ be obtained by removing x from K

and then adding x ′, i.e. K ′ = (K \ {x}) ∪ {x ′}. Because x ′ was
minimal in Hamming weight and x was maximal in Hamming

weight, the setK ′ continues to be monotone, and it has size N . Also

дk,τ (K) < дk,τ (K
′) becausew(x) > w(x ′). Hence, by Lemma 3.5

Advrskpk,τ (K) = дk,τ (K) < дk,τ (K
′) = Advrskpq,k,τ (K

′) .

This contradicts the assumption that Advrskpq,k,τ (N ) = Advrskpk,τ (K).

Hence, it must be that Bq,k (r ) ⊆ K . Now supposeK ⊈ Bq,k (r + 1).
Let x ′ be a point in Bq,k (r + 1) \ K . Such a point exists because

we know that N < Bq,k (r + 1). It must be that w(x ′) = r + 1

since Bq,k (r ) ⊆ K . Let x be a point in K \ Bq,k (r + 1) of maximal

Hamming weight. Note that w(x) > r + 1 = w(x ′). Let K ′ be
obtained by removing x fromK and then adding x ′, meaningK ′ =

(K \ {x}) ∪ {x ′}. The set K ′ continues to be monotone, and it has

size N . Also дk,τ (K) < дk,τ (K
′) becausew(x) > w(x ′). Hence, by

Lemma 3.5,

Advrskpk,τ (K) = дk,τ (K) < дk,τ (K
′) = Advrskpk,τ (K

′).

This contradicts the assumption that Advrskpq,k,τ (N ) = Advrskpk,τ (K).

Hence, it must be that K ⊂ Bq,k (r + 1). □

3.3.2 Proof of Lemma 3.9 and Lemma 3.10. To prove Lemma 3.9

and Lemma 3.10, we recall the notion of discrete concavity. Suppose
F : [1..M] → R. We say that F is concave if F (a + 1) − F (a) ≤
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F (b + 1) − F (b) for all a,b ∈ [1..M] satisfying a ≥ b. Now suppose

t ,m are integers with 1 ≤ m ≤ t . Then we let

S(M,m, t) =
{
(x1, . . . ,xm ) ∈ [1..M]

m
: x1 + · · · + xm = t

}
.

Define Fm : [1..M]m → R by Fm (x1, . . . ,xm ) = F (x1)+ · · ·+F (xm ).
We use the the following lemma proved by [5].

Lemma 3.12 ([5]). Suppose F : [1..M] → R is concave. Suppose
1 ≤ m ≤ t are integers such thatm divides t and t/m ∈ [1..M]. Then

max

(x1, ...,xm )∈S (M,m,t )
Fm (x1, . . . ,xm ) =m · F (t/m) □

Lemma 3.13. The function, Fq,k,τ : [1..qk ] → R, defined below,
is concave.

Fq,k,τ (N ) =
N

qk
· Advrskpq,k,τ (N ).

Proof. Let N0,N1 be two integers such that qk ≥ N0 ≥ N1 ≥ 1.

Consider, for i = 0, 1,

∆i = Fq,k,τ (Ni + 1) − Fq,k,τ (Ni ),

For i = 0, 1, we let ri be defined as follows. If Ni = Bq,k (r ) for
some r , then we take ri to be the value such that Bq,k (ri ) = Ni .

Otherwise, we let ri = rdq,k (Ni )+ 1. Note that we can now express

∆i in terms of ri as follow (via Equation (12)),

∆i = q
k ·
(k − ri )(τ )

k(τ )
.

Since N0 ≥ N1, we note that r0 ≥ r1. Therefore, we have ∆0 ≤ ∆1

and that Fq,k,τ is concave. □

We first prove Lemma 3.9 using Lemma 3.13.

Proof (of Lemma 3.9). Note that,

Gq,k,τ (N ) =
qk · Fq,k,τ (N )

N
.

We let∆i = q
k ·Fq,k,τ (i+1)−q

k ·Fq,k,τ (i) for all i = 0, . . . ,qk−1. We

define ∆0 = q
k · Fq,k,τ (1) = q

k ·Gq,k,τ (1). Hence, by construction

Gq,k,τ (i) = (
∑i−1
j=0 ∆i )/i . Note that since Fq,k,τ (·) is concave in

the domain [1..qk ], the sequence ∆1, . . . ,∆qk−1 is non-increasing,

meaning that ∆i ≥ ∆j whenever 1 ≤ i ≤ j ≤ qk − 1. Additionally,

we check that ∆0 = qk and ∆1 ≤ qk , hence ∆0 ≥ ∆1. Therefore,

the partial averages of the sequence ∆0, . . . ,∆qk−1,(i−1∑
j=0

∆j
)
/ i = Gq,k,τ (i) ,

is non-increasing as claimed. □

Lastly, we prove Lemma 3.10 using Lemma 3.12 and 3.13.

Proof (of Lemma 3.10). Let M = qk , m = qℓ and t = qk . We

note that the leakage function Lk : [q]k → [q]ℓ defines a partition

of [q]k into qℓ sets, with each set being Lk−1(L) for some L ∈ [q]ℓ .

Hence, we can expand Pr[Gskp

q,k,τ (A, Lk)] by conditioning on the

value of L. Suppose [q]ℓ = {L1, . . . ,Lm }. We let Ni = |Lk−1(Li )|.
We derive

Advskpq,k,τ (ℓ)

= max

Lk

(∑
L

|Lk−1(L)|

qk
·max

A
Pr[ Gskp

q,k,τ (A, Lk) | Lk(K) = L ]

)
= max

Lk

(∑
L

|Lk−1(L)|

qk
· Advrskpk,τ (Lk

−1(L))

)
≤ max

(N1, ...,Nm )∈S (M,m,t )

m∑
i=1

Fq,k,τ (Ni )

= max

(N1, ...,Nm )∈S (M,m,t )
Fmq,k,τ (N1, . . . ,Nm )

=m · Fq,k,τ (2
k−ℓ) (17)

=m ·
qk−ℓ

qk
· Advrskpq,k,τ (q

k−ℓ) = Advrskpq,k,τ (q
k−ℓ) . (18)

Equation (17) is justified since Fq,k,τ is concave and t/m = 2
k−ℓ

.

Equation (18) is by definition of F and becausem = qℓ . □

3.4 Proofs of Lemmas 3.2, 3.3, and 3.4
We need the following version of Stirling’s approximation of n!.

Lemma 3.14. [18] For any n ∈ Z+,

√
2πn

(n
e

)n
e

1

12n+1 ≤ n! ≤
√
2πn

(n
e

)n
e

1

12n .

We first prove Lemma 3.2.

Proof (of Lemma 3.2). We first show the lower bound Equa-

tion (6) . Notice that by definition of Hq (r/k),

qkHq (r/k ) = (q − 1)r (r/k)−r (1 − r/k)r−k .

Hence, by Lemma 3.14,

Bq,k (r ) =
r∑
i=0
(q − 1)i

(
k

i

)
≥ (q − 1)r

k!

r !(k − r )!

≥ (q − 1)r
√
2πk(ke )

ke
1

12k+1

√
2πr ( re )

r e
1

12r
√
2π (k − r )(k−re )

k−r e
1

12(k−r )

= qkHq (r/k )
√
ke

1

12k+1√
2πr (k − r )e

1

12r e
1

12(k−r )

= qkHq (r/k )−ϵ (k,r ).
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Now, we assume that r ≤ k − k/q and derive the upper bound,

Equation (7).

Bq,k (r )

qkHq (r/k )
=

∑r
i=0(q − 1)

i (k
i
)

(q − 1)r (r/k)−r (1 − r/k)r−k

=

r∑
i=0

(
k

i

)
(q − 1)i−r (r/k)r (1 − r/k)k−r

=

r∑
i=0

(
k

i

)
(q − 1)i (1 − r/k)k

( r/k

(q − 1)(1 − r/k)

)r
≤

r∑
i=0

(
k

i

)
(q − 1)i (1 − r/k)k

( r/k

(q − 1)(1 − r/k)

)i
=

r∑
i=0

(
k

i

)
(r/k)i (1 − r/k)k−i

≤

k∑
i=0

(
k

i

)
(r/k)i (1 − r/k)k−i

= 1 ,

where the first inequality is by the fact that r/k ≤ (q − 1)(1 − r/k)
if r ≤ k − k/q. □

Lemma 3.3 follows from Lemma 3.2.

Proof (of Lemma 3.3). Per definition of rdq,k (N ), it suffices to

show that

Bq,k (r ) ≤ N ,

for r = ⌊H−1q (logq (N )/k) ·k⌋. Per definition ofH−1q , r ≤ (1−1/q) ·k .

Hence, we can apply Equation (7) and obtain

Bq,k (r ) ≤ qkHq (r/k ) ≤ qkHq (H−1q (logq (N )/k)) = N .

□

Lastly, we prove Lemma 3.4.

Proof (of Lemma 3.4). We first show the lower bound that

min(x , 1 −
1

q
) −

1

log
2
(q)
≤ H−1q (x) . (19)

Note that this is trivially true if the left-hand side of Equation (19) is

negative. Hence, we suppose that the left-hand side of Equation (19)

is non-negative. As noted before, Hq is increasing in the domain

[0, 1 − 1/q]. Additionally, note that min(x , 1 − 1/q) − 1/log
2
(q) ≤

1 − 1/q. Hence, it suffices to show

Hq

(
min(x , 1 −

1

q
) −

1

log
2
(q)

)
≤ x . (20)

We consider two cases. Case 1, x ≤ (1 − 1/q). Case 2, (1 − 1/q) ≤
x ≤ 1. We claim that both cases follow from the equation below,

which holds for x ∈ [log
2
(q), 1].

Hq (x −
1

log
2
(q)
) ≤ x . (21)

Case 1 is directly implied by Equation (21). For case 2, note that

the left-hand side of Equation (19) always evaluate to 1 − 1/q −
1/log

2
(q). Hence, by Equation (21), Hq (1 − 1/q − 1/log2(q)) ≤ 1 −

1/q ≤ x . Finally, we justify Equation (21). Recall that Hq (x) =
H2(x)/log2(q) + x logq (q − 1). We compute

Hq (x −
1

log
2
(q)
) =

H2(x −
1

log
2
(q) )

log
2
(q)

+ (x −
1

log
2
(q)
) logq (q − 1)

≤
1

log
2
(q)
+ x logq (q ·

q − 1

q
) −

logq (q − 1)

log
2
(q)

=
1

log
2
(q)
+ x − x logq (

q

q − 1
) −

logq (q − 1)

log
2
(q)

= x +
1

log
2
(q)
(1 − logq (

q(x log
2
(q))

(q − 1)(x log
2
(q)−1)

))

≤ x +
1

log
2
(q)
(1 − logq (q))

= x .

Next, we show the upper bound that

H−1q (x) ≤ x(1 −
1

q
) . (22)

Similar to the lower bound we just obtained, we note that it suffices

to show Hq (x(1 −
1

q )) ≥ x . Let us define, for x ∈ [0, 1]:

f (x) =
x

q
logq (

x

q
) − x logq (x) − (1 − x +

x

q
) logq (1 − x +

x

q
) .

We will show that Hq (1(1 − 1/q)) = x + f (x). The derivation is as

follows.

Hq (x(1 − 1/q))

= x(1 − 1/q) logq (q − 1) − x(1 − 1/q) logq (x(1 − 1/q))

− (1 − x + x/q) logq (1 − x + x/q)

≥ x logq (q − 1) − x/q logq (q − 1)

− x(1 − 1/q)(logq (x) + logq (1 − 1/q))

− (1 − x + x/q) logq (1 − x + x/q)

= x logq (q − 1) − x/q logq (q − 1)

− x logq (x) − x logq (1 − 1/q) + x/q logq (x) + x/q logq (1 − 1/q)

− (1 − x + x/q) logq (1 − x + x/q)

= x
(
logq (q − 1) + logq (q/(q − 1))

)
− x logq (x)

− x/q
(
logq (q − 1) + logq (1/x) + logq (q/(q − 1))

)
− (1 − x + x/q) logq (1 − x + x/q)

= x + x/q logq (x/q) − x logq (x) − (1 − x + x/q) logq (1 − x + x/q)

= x + f (x) .

Lastly, we show that f (x) ≥ 0 for any x ∈ [0, 1]. First, we check
that f (0) = f (1) = 0. Next, check that the second derivative of f ,

f ′′(x) =
q − 1

x(qx − q − x)
≤ 0 ,

is at most 0 for any x ∈ [0, 1]. We omit the details of the derivative

computation here. Hence, f is concave over the domain [0, 1], with

f (0) = f (1) = 0. Thence, f (x) ≥ 0 for all x ∈ [0, 1]. □
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Game Gkey

KEY(A)

b ←$ {0, 1}; K←$ [q]k

(Lk, σ ) ←$ AH( )

L ← LkH(K)
b′←$ AROR,H(L, σ )
Return (b′ = b)

ROR( )

R←$ {0, 1}r

If (b = 0) then K ←$ {0, 1}κ

Else K ← KEYH(K, R)
Return (R, K )

H(x, Rng)

If not T [x, Rng] then
T [x, Rng] ←$ Rng

Return T [x, n]

Figure 4: Game for defining the security of a big-key key en-
capsulation algorithm KEY: {0, 1}k × {0, 1}r → {0, 1}κ .

Algorithm XKEYHq,k,κ,τ ,r (K, R) // K ∈ [q]
k
, |R | = r

p← H(R, [k ](τ )); J ← K[p]; K ← H(R ∥ J , [k ]); Return K

Figure 5: Encapsulation algorithm XKEY. Given a length-k
big-key K and a length-r selector R, the algorithm returns
a length-κ subkey K . The value τ specifies the number of
unique probes used.

4 BIG-KEY SYMMETRIC ENCRYPTION
In [5], Big-Key symmetric encryption schemes are constructed

modularly from Big-Key encapsulation schemes. In this section, we

present a block-based big key encapsulation scheme that is more

efficient than achieved previously.

Key Encapsulation Schemes. A (symmetric, Big-Key) encapsula-

tion schemes, on input a big key K and a random string R, returns
a (short) key K . The string R encapsulates the short key K in the

sense that any party holding the big key K can deriveK from R. The

security of a key encapsulation schemes is captured by Gkey

KEY(A)

(Fig. 4). In this game, a big key K is randomly sampled. The goal of

the two-stage adversary A is to guess whether the real-or-random

oracle, ROR, is returning real keys, derived using key encapsula-

tion scheme KEY from randomly sampled R, or randomly sampled

keys that is independent of R. In its first stage, A gets access to

H and chooses a leakage function Lk and state σ . Next, the game

computes L← LkH(K) and run the second stage of A with inputs

L,σ and oracles ROR and H. A wins the game if it successfully

guesses the bit b. We define the following advantage of A against

key encapsulation scheme KEY

AdvkeyKEY(A) = 2 · Pr

[
Gkey

KEY(A)
]
− 1.

Our construction. Our random oracle model construction is given

in Fig. 5.

Theorem 4.1. Let k,b,κ,τ , r ≥ 1 be integers. Let q = 2
b . Let

KEY = XKEYq,k,κ,τ ,r be the big-key encapsulation scheme associated
to them as per Fig. 5. LetA be an adversary making at most t queries
to its ROR oracle and leaking ℓ · b bits. Assume the number of H
queries made by A in its first stage, plus the number made by the
oracle leakage function Lk that it outputs in this stage, is at most q1,

Algorithm SE.EncH(K, M )

R←$ {0, 1}r ; K← KEYH(K, R)
C ← SE.Enc(K, M ); C ← (R, C)
Return C

Algorithm SE.DecH(K, M )

(R, C) ← C
K ← KEYH(K, R)
M ← SE.Dec(K, C)
Return M

Figure 6: Big-Key Symmetric Encryption Scheme [5, Section
5], SE, using a standard symmetric key encryption scheme
SE and a key encapsulation mechanism KEY.

and the number of H queries made byA in its second stage is at most
q2. Then

AdvkeyKEY(A) ≤ q2 · t · Adv
skp

q,k,τ (ℓ) +
t · (2q1 + t − 1)

2
r+1 (23)

The proof of Theorem 4.1 is included in the full version [4].

Sampling unique probes. In XKEY, we have outsourced the sam-

pling of the unique probes to the variable-range random oracle. We

note that sampling from [k](τ ) can be done via rejection sampling

efficiently.

Symmetric Encryption Schemes. To obtain a (big-key) symmetric

encryption scheme, one can plug our XKEY construction directly

into the (big-key) symmetric encryption scheme (in Fig. 6) by BKR.

For security, we omit the details here and appeal to [5, Theorem

13].

Efficiency. Let k∗ = 8 · 1011 = 100 GBytes, and ℓ∗ = 10 GBytes.

Using b = 8 · 512 = 512 Bytes, our XKEY makes roughly the same

number of H queries compared to [5] but makes significantly less

access into the big key K (43 vs. 271, Fig. 1). In practical instanti-

ations where K is stored on slow storage medium (e.g. hard disk),

this translate to 6x improvement in efficiency.

5 BIG-KEY IDENTIFICATION
Identification schemes. An identification scheme ID specifies the

following:

– Via prm←$ ID.Pg, parameter generation algorithm ID.Pg gen-
erates parameter prm, which is a common input to all other

algorithms.

– Via (sk, vk, hlp) ←$ ID.Kg(prm), key generation algorithm ID.Kg
is run by the prover to generate secret key sk, corresponding
verification key vk and a string hlp called the help string. The

last is information that, conceptually, can be viewed as part of

the public verification key vk, meaning public and available to

the adversary, but to keep the verification key small, hlp is stored
by the prover along with sk.

– Via (com, st) ←$ ID.Com(prm), commitment algorithm ID.Com
is run by the prover to generate its first message com, called the

commitment, along with state information st that it saves.

– Via chl←$ {0, 1}ID.Chl
, the verifier generates a random challenge

chl to return to the prover.

– Via rsp ← ID.Rsp(prm, hlp, sk, st, chl), deterministic response

algorithm ID.Rsp is run by the prover to generate its response

rsp.
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Game Gimp

ID, ℓ (A)

prm←$ ID.Pg; s ← 0

(sk, vk, hlp) ←$ ID.Kg(prm)
st←$ A .SetupLeakℓ,Prover,H(prm, vk, hlp)
(com, st′) ←$ A .ComH(st); chl←$ {0, 1}ID.Chl

rsp←$ A .RspH(prm, hlp, sk, st′, chl)
d ←$ ID.VrfH(prm, vk, com, chl, rsp)
Return d

Prover(i, args)

If pst[i] = ⊥ then // Commit

(pcom[i], pst[i]) ←$ ID.Com(prm) ; return pcom[i]
If prsp[i] = ⊥ then // Response

prsp[i] ←$ ID.RspH(prm, hlp, sk, pst[i], args)
Return prsp[i]

Return ⊥

Leakℓ (f )

L←$ f (sk) ; s ← s + |L |
If s ≤ ℓ then return L else return ⊥

H(x, Rng)

If T [x, Rng] = ⊥ then T [x, Rng] ←$ Rng
Return T [x, Rng]

Figure 7: Game defining security of identification scheme ID
under pre-impersonation leakage.

– Via d ← ID.Vrf(prm, vk, com, chl, rsp), deterministic decision

algorithm ID.Vrf returns a boolean decision d for the verifier to

accept or reject.

In the ROM, algorithms may have oracle access to the random

oracle H. This syntax is non-asymptotic, in that there is no explicit

security parameter. Correctness requires that

Pr[ExecuteID(prm, vk, sk, hlp)] = 1

for all prm ∈ [ID.Pg] and (sk, vk, hlp) ∈ [ID.Kg(prm)], where

Game ExecuteID(prm, vk, sk, hlp)

(com, st) ←$ ID.Com(prm)
chl←$ {0, 1}ID.Chl

rsp← ID.Rsp(prm, hlp, sk, st, chl)
d ← ID.Vrf(prm, vk, com, chl, rsp)
Return d

Security of identification schemes. We give definitions allowing

concrete-security assessments. The core definition is that of adver-

sary advantage. The notion captured is security against imperson-

ation under active attack [6, 15] in the further presence of leakage

on the secret key [2].

Let ID be an identification scheme. Let ℓ be an integer represent-

ing a bound (in bits) on the leakage. Let A be an impersonation
adversary, made up of component algorithms A.Setup, A.Com,

and A.Rsp. We associate to these the game of Fig. 7. First, the pa-

rameters and keys are generated. Next, A.Setup is run with access

to a leakage oracle Leakℓ a prover oracle Prover and the random

oracle H. The leakage oracle takes input a function Lk from the

adversary and returns leakage L = Lk(sk). This oracle can be called

Game Gcdh

G
(A)

(G, GT , д, e, p) ← G
x, y←$ [p]
h←$ A(G, дx , дy )
Return (h = дxy )

Game Gdl

G
(A)

(G, GT , д, e, p) ← G
x ←$ [p]
x ′←$ A(G, дx )
Return (x = x ′)

Figure 8: Games Gcdh

G
and Gdl

G
defining the security of CDH

and DL problems in G.

adaptively and any number of times, its code ensuring that the total

number of bits returned to the adversary does not exceed ℓ. The

prover oracle allows an active attack in which the adversary, play-

ing the role of a dishonest verifier, can generate prover instances

and interact with them. The commitment and state of instance i
are produced by the game and stored as pcom[i] and pst[i], respec-
tively. If instance i has been activated, meaning pst[i] , ⊥, then the

adversary can submit, via args, a challenge of its choice, and obtain
response prsp[i]. After exiting this setup phase, the adversary turns
into a dishonest prover, aiming to convince the honest verifier to

accept. It produces its commitment via A.Com, receives a random

challenge chl, and produces its response via A.Rsp. The game re-

turns the boolean decision d of the verifier’s decision function. We

define the leakage impersonation advantage of A against ID to be

Advimp

ID, ℓ(A) = Pr

[
Gimp

ID, ℓ(A)
]
.

Groups. We fix a bilinear group description G = (G,GT ,д, e,p),
where

– p ≥ 3 is a prime number that will be the order of the groups

– G,GT are (cyclic) groups of order p

– д ∈ G is a generator of G

– e : G ×G → GT is an efficiently computable, non-degenerate

bilinear map. This means that (1) e(дa ,дb ) = e(д,д)ab for all

a,b ∈ [p], and (2) e(д,д) is not the identity element of GT .

We will base security on the assumed hardness of the CDH (Com-

putational Diffie-Hellman) and DL (Discrete Logarithm) problems

in G. The definitions are based on games Gcdh
and Gdl

in Fig. 8,

associated to G and an adversaryA. We define the following CDH

and DL advantages:

Advcdh
G
(A) = Pr[Gcdh

G
(A)]

Advdl
G
(A) = Pr[Gdl

G
(A)] .

Hardness of CDH of course implies hardness of DL. Quantitatively,

givenA, one can constructA ′ with similar running time such that

Advdl
G
(A) ≤ Advcdh

G
(A ′).

ADW identification scheme. We present a variant of ADW’s iden-

tification scheme [2], which uses a random oracle to derive the

challenges (as considered in [2] without analysis). The scheme

ID = ADW[G,k,m,τ , r ] is parameterized by a bilinear group de-

scription G and positive integers k,m,τ , r . We require thatm ≥ 2

and k ≥ τ ≥ 1. Here k is the number of blocks of the secret key,

where each block is an m-dimensional vector over Zp , and τ is
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Game Gpskp

p,m,k,τ (A, Lk)

For i ∈ [k ] do sk[i] ←$ Zmp
p←$ [k ](τ ); e ←$ Zp
For j ∈ [m] do

sk∗[j] =
∑τ−1
i=0 (sk[p[i]][j])e

i

L ← Lk(sk); sk←$ A(p, e, L)
Return (sk∗ = sk).

Figure 9: Game Gpskp

p,m,k,τ (A, Lk). Where Lk : [q]k → [q]ℓ is

a leakage function. [k](τ ) contains the set of τ -dimensional
vectors over [k] with distinct entries.

the number of probes that algorithms make into the secret key.

The parameter r determines the challenge length, meaning we set

ID.chl = r . The algorithms ID.Pg, ID.Kg, ID.Com, ID.Rsp, ID.Vrf
are given in Fig. 10.

Intuitively, the scheme consists of k generalized Okamoto identi-

fication scheme [2, 17], and one instance of BLS signature scheme

[9]. Each block of the secret key (in Zmp ) is a secret key for a gener-

alized Okamoto identification scheme of dimensionm. The public

keys, pk[0], . . . , pk[k−1], of thek Okamoto’s identification schemes,

are signed using the BLS signature scheme under signing key s ,
yielding signatures σ [0], . . . ,σ [k − 1]. The public verification key

of the identification scheme, consists only of the verification key,

vk, of the BLS signature scheme. During identification, a random

τ instances out of k instances is chosen (via H by the verifier) and

compressed via polynomial evaluation to sk∗, pk∗, and σ ∗ by the

prover. During response phase, the prover, in addition to answering

the challenge from the Okamoto identification scheme, needs to

transmit pk∗ and σ ∗ to the verifier. We note that the signing key,

s , of the underlying signature scheme must not be visible to the

attacker. This signing key is simply be discarded after Kg. (However,
we note that, as ADW has pointed out, there are advanced uses of

this key such as updating the big secret key.) The correctness of

ID = ADW[G,k,m,τ , r ] is checked as follows. Let prm ∈ [ID.Pg]
and (sk, vk, hlp) ∈ [ID.Kg(prm)]. We claim that, during a honest ex-

ecution of the protocol (ExecuteID(prm, sk, vk, hlp)), the flags A,B
in ID.Vrf will both be set to true. A is set to true because

m−1∏
i=0

д
z[i]
i =

m−1∏
i=0

дy[i]+c
∗ ·sk∗[i]

=

m−1∏
i=0

дy[i] · (
m−1∏
i=0

дsk
∗[i])c

= a · pk∗c
∗

.

B is set to true because

e(pk∗
τ−1∏
i=0

H(p[i],G)e
i
, vk) = e(

τ−1∏
i=0

pk[p[i]]e
i
τ−1∏
i=0

H(p[i],G)e
i
,дs )

= e(
τ−1∏
i=0
((pk[p[i]]H(p[i],G))s )e

i
,д)

= e(
τ−1∏
i=0
(σ [p[i]])e

i
,д)

= e(σ ∗,д) .

Hence, Pr[ExecuteID(prm, sk, vk, hlp)] = 1, and ID satisfies correct-

ness.

Efficiency. As pointed out in [2], the identification scheme has

nice efficiency properties. First, the public key (verification key) is

very short (one group element). Second, the communication costs of

all phases are very small. The bulk of communication happens in the

response phase, which outputs 2 group elements andm elements

from Zp . Third, the scheme has probe complexity depending τ ,
which can be made small while preserving security. In particular,

during each run of the protocol, only τ locations of the secret-

key will be accessed (each location consist ofm elements of Zp ).
Fig. 11 demonstrates the computation and communication costs

of different operations. Note that very small values of τ makes

the scheme insecure. The crux of the security analysis amounts to

giving a lower bound of τ for a desired security level. Here is where

we make significant concrete security improvements over ADW.

Concrete-security analysis. Before we present the theorem stating

the concrete security of the ADW identification scheme, we first

need to define the following special subkey prediction game. The

game Gpskp

p,m,k,τ (Lk,A) (Fig. 9) captures a particular type of subkey
prediction game in which the subkey is interpreted as a tuple of

polynomials. In this game, the adversary A needs to predict the

value of these polynomials at a random point e , which is given to

A. We define the following prediction advantage

Advpskpp,m,k,τ (ℓ) = max

A,Lk:(Zmp )k→(Z
m
p )

ℓ
Pr

[
Gpskp

p,m,k,τ (A, Lk)
]
.

We state a theorem which captures the concrete security of the

ADW identification scheme. The theorem streamlines the original

analysis of ADW to a precise relation of advantages, which allows

us to instantiate parameters of practical sizes.

Theorem 5.1. Let G = (G,GT ,д, e,p) be a group with efficient
pairngs. Let ID = ADWG,k,m,τ ,r be the ADW identification scheme
shown in Fig. 10. Let A = (A.Setup,A.Com,A.Rsp) be a leakage
impersonation adversary. Letq denote the number ofH queries plus the
number of Prover queries that A.Setup and A.Com makes. Fig. 14
and Fig. 15 gives two adversaries A

cdh
and A

dl
such that

Advimp

ID, ℓ(A)
2 ≤ Advcdh

G
(A

cdh
) +m · Advdl

G
(A

dl
) (24)

+ Advpskpp,m,k,τ (ℓ + k/m) +
q

2
r +

1

p
. (25)

Additionally, let t1 be the running time ofA.Setup, t2 be the running
time of A.Com, t3 be the running time of A.Rsp, and let t4 be the
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Algorithm ID.Pg()

For i ∈ [m] do дi ←$G
Return (д0, . . . , дm−1)

Algorithm ID.Com(prm)

y←$ (Zp )
m

a←$

∏m−1
j=0 дy[j ]i

Return (a, y)

Algorithm DeriveH(R)

p← H(R, [k ](τ ))
e ←$ H(0∥R, [p]); c∗←$ H(1∥R, [p])
Return (p, e, c∗)

Algorithm ID.KgH(prm)

s ←$ Zp ; vk← дs

For i ∈ [k ] do
sk[i] ←$ (Zp )

m

pk[i] ←
∏m−1

j=0 (дi )
sk[i ][j ]

σ [i] ←$ (H(i, G)pk[i])s

hlp← (pk, σ )
Return (sk, vk, hlp)

Algorithm ID.RspH(prm, hlp, sk, st, chl)

(p, e, c∗) ← DeriveH(chl)

For j ∈ [m] do
sk∗[j] ←

∑τ−1
i=0 (sk[p[i]][j])e

i

pk∗ ←
∏τ−1
i=0 pk[p[i]]e

i

σ ∗ ←
∏τ−1
i=0 σ [p[i]]

e i

For j ∈ [m] do z ← y[j] + c∗ · sk∗[j]
Return (pk∗, σ ∗, z)

Algorithm ID.VrfH(prm, vk, com, chl, rsp)

a ← com

(p, e, c∗) ← DeriveH(chl)

(pk∗, σ ∗, z) ← rsp

A← (
∏m−1
i=0 дz[i ]i = a(pk∗)c

∗
)

B ← (e(pk∗
∏τ−1
i=0 H(p[i], G)e

i
, vk) = e(σ ∗, д))

Return (A ∧ B)

Figure 10: Algorithms of identification scheme ID = ADW[G,k,m,τ , r ] associated to bilinear group descriptionG = (G,GT ,д, e,p)
and parameters k,m,τ , r satisfyingm ≥ 2 and k ≥ τ ≥ 1. Here H is a variable range function, meaning H(·,Rng) returns outputs
in the set (described by) Rng. In addition, algorithms Kg,Com,Rsp,Vrf also takes prm as argument.

Computation cost
Kg Com Chl Rsp Vrf

Mult G k ·m m − 1 0 2τ m + τ
Exp G k(m + 1) + 1 m 0 2τ − 2 τ +m + 1
Mult Zp 0 0 0 m 1

Exp Zp m 0 0 2τ τ
e eval 0 0 0 0 1

Communication cost
G - 1 0 2 0

Zp - 0 0 m 0

{0, 1}r - 0 1 0 0

Figure 11: Table illustrating computation and communica-
tion cost of different operations of the identification scheme
ADWG,k,m,τ ,r .Chlhere represents the challenge phase of the
protocol.

running time of ID.Kg. We have that the running time of A
cdh

and
A

dl
is approximately t1 + t2 + 2 · t3 + t4.

The proof of Theorem 5.1 is given in Section 5.1. The following

lemma relates Advpskpp,m,k,τ (ℓ + k/m) to the large-alphabet subkey

prediction advantage (as bounded in Section 3.3).

Lemma 5.2. Let p,m,k,τ , ℓ be positive integers, then

Advpskpp,m,k,τ (ℓ) ≤

√
Advskppm,k,τ (ℓ) +

τ

p
.

Wenote thatwith Lemma 5.2, we can bound the termAdvpskpp,k,k,τ (ℓ)

for any value p,m,k,τ , ℓ. Hence, the only term that is not explicity

bounded on the right-hand side of Equation (24) are Advcdh
G
(A)

andm · Advcdh
G
(A), which can be assumed to be small when the

CDH and DL problems are suspected to be hard in group G.

m τ (Us) τ (ADW)

2 718 3951

4 349 2397

8 245 1996

16 201 1840

32 180 1771

64 169 1739

Figure 12: Example parameters for ADW scheme to achieve
128-bit security. The schemes uses group of size p such that
2
511 < p < 2

512, and we impose a bound on the leakage of 10%
on a big-key of size 100GB = 8× 1011 bits. For each value ofm
on the left column, we look the value of τ needed to achieve
128-bit security for the identification scheme, both using our
bound and using ADW’s bound.

Comparison with ADW’s analysis. Our analysis of ADW’s iden-

tification scheme improves upon the original analysis in the fol-

lowing ways. First, we analyze the scheme in which the challenge

is generated using a random oracle directly. (The construction

that uses a random oracle to derive the challenge is mentioned

to be secure in [2] with no proof.) Second, while ADW’s analysis

is offered in the asymptotic case, we state and prove a reduction

that gives concrete security, which lead to practical instantiation

of parameters. The reduction gives a bound of the impersonation

advantage in terms of three dominating quantities: CDH and DL

advantages in G, and a special form of subkey-prediction advantage

under polynomial compression, Advpskpp,m,k,τ (Lk,A). Hence, giving
a good numerical bound of the impersonation advantage amounts

to bounding Advpskpp,m,k,τ (Lk,A). Here is where we make signifi-

cant improvements: we use the large-alphabet subkey prediction

lemma (Theorem 3.1) as well as a tighter polynomial-evaluation en-

tropy preservation lemma (Lemma 5.2) to give significantly better

concrete bounds. The comparison of parameters can be found in

Fig. 12.
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Parameter instantiation. We give an example instantiation of the

ADW identification scheme with 128-bits security. First, we find a

pairing friendly group G with symmetric pairing e : G ×G → GT .
Because of the square-root loss of security, we need 256-bit of

security for CDH and DL inG . Hence,G needs to be of size roughly

512 bits. We consider G = (G,GT ,д, e,p), where p is a prime of

roughly 512 bits (2
511 < p < 2

512
). We represent elements in

Zp using exactly 512 bits. We pick a big key size of 100 GB, i.e.

k∗ = 8 · 1011. For a choice ofm ≥ 2, we have that the block size

in bits is b =m · 512. We let k = k∗/b be the size of the big key in

blocks. We fix a leakage rate of 10%. By Theorem 5.1 and Lemma 5.2,

to achieve 128-bit security for the identification scheme, we need

512 bits of security from Advskppm,k,τ (ℓ +
k
m ). Hence, we need

τ = Probesk∗, ℓ∗+k∗/m,s (m · 512)

probes. Values of Probesk∗, ℓ∗+k∗/m,s (m ·512) versus various values
ofm is shown in Fig. 12 using both our bound and ADW’s bound.

Entropy preservation under polynomial evaluation. Lemma 5.2

relates the prediction advantage to the large-alphabet subkey pre-

diction advantage. Note that our bound is quantitatively better than

[2, Corollary A.1]. In particular, we prove
1

2
rate entropy preser-

vation while ADW proves a rate of
1

3
. Before proving the lemma,

we define the following quantities for jointly distributed random

variables (X ,Y ). Let X be a random variable, the prediction and

collision probability of X is defined, respectively, to be

Pred(X ) = max

x
Pr[X = x], CP(X ) = Pr[X = X ′],

where X ′ is an independent random variable that is identically

distributed to X . Additionally, suppose that (X ,Y ) are jointly dis-

tributed, we define the conditional prediction and collision proba-

bility of X given Y , respectively, to be

P̃red(X | Y ) = EY [Pred(X | Y )],

C̃P(X | Y ) = EY [CP(X | Y )].
We note that Pred(X | Y ) and CP(X | Y ) are random variables in Y .
We need the following well-known lemma,

Lemma 5.3. Let (X ,Y ) be jointly distributed random variables,
then

C̃P(X | Y ) ≤ P̃red(X | Y ) ≤
√
C̃P(X | Y ).

The proof of Lemma 5.3 is given in the full version [4].

Proof (of Lemma 5.2). LetA be any adversary and Lk : [q]k →

[q]ℓ be a leakage function. Consider the sample space defined by

the experiment Gpskp

p,m,k,τ (A, Lk) (all the coins used by the experi-

ment and adversary A). We consider all the variables used inside

Gpskp

p,m,k,τ (A, Lk), e.g. sk
∗,L = Lk(K), as random variables. We note

that

Pr

[
Gpskp

p,m,k,τ (A, Lk)
]
≤ P̃red(sk∗ | p,L, e).

Furthermore, by Lemma 5.3,

P̃red(sk∗ | p,L, e) ≤
√
C̃P(sk∗ | p,L, e).

Wenowneed to bound C̃P(sk∗ |p,L, e). To compute this quantity.We

consider another independent execution ofGpskp

p,m,k,τ (A, Lk), where

the variables in the second execution is denoted with
′
, e.g. sk′. We

restrict to the event that Lk(sk) = Lk(sk′) and p = p′. We define

polynomials p1, . . . ,pj , which are functions of sk, sk′, p, pj (x) =∑τ−1
i=0 (sk[p[i]][j]−sk

′[p[i]][j])x i . Notice that these polynomials are

of degree at most τ . If sk , sk′, then at least one of pj is a non-zero
polynomial, and has at most τ roots. Hence, if sk , sk′, over a
independently uniform e , the probability that pj (e) = 0 is at most

τ
p when pj is not the zero polynomial. Finally, we derive that

C̃P(sk∗ | p,L, e)

= Ep,L,e
[
CP(sk∗ | p,L, e)

]
≤ Ep,L,e

[
Pr

[
sk[p] = sk′[p] | p,L, e

]
+ Pr

[∀j ∈ [m] : pj (e) = 0 | sk[p] , sk′[p], p,L, e
] ]

= C̃P(sk[p] | p,L) + Ee
[
Pr

[∀j ∈ [m] : pj (e) = 0

] ]
≤ P̃red(sk[p] | p,L) +

τ

p

≤ Advskppm,k,τ (ℓ) +
τ

p
.

□

5.1 Proof of Theorem 5.1
We follow the proof technique used by [2].

Proof. (of Theorem 5.1). Let ID = ADWG,k,m,τ ,r be theADW

identification scheme. The reduction is very similar to the reduc-

tion from [2, Appendix B.5]. Rewind attemps to run a given leakage

impersonation adverasry A twice with two different programmed

challenges that only differ in the element c∗ (R and e stay the same).

Rewind takes an algorithm Gen that generates (prm, vk, sk, hlp,T ),
where T is the table used by H. Rewind simulates H for A using

HRewind as decribed by the code. Rewind returns the success status

of the rewinding process, along with the two responses of the two

executions (rsp
1
, rsp

2
), plus the honest response (rsp∗) and the hon-

estly generated and compressed secrete key (sk∗). Let x ∈ {1, 2},
we use Pr[Rewindx (Gen,A)] to denote the probablity that the first
component of the output of Rewindx is true. First, using the well-
known rewind technique [6], we will argue that

Pr[Rewind1(Gen,A)] ≥ Advimp

ID, ℓ(A)
2 −

1

p
. (26)

We now justify Equation (26). We consider the event that the flags

A,B,C are all set to true. Notice that the marginal probability that

A is true and the marginal probability that B is ture are both exactly

Pr[Gimp

ID, ℓ(A)]. We partition the random tape for Gimp

ID, ℓ(A) into two

parts: the random tape that is used upto right before A.Rsp is run,

and the rest of the tape that is used afterA.Rsp starts its execution.

Let T be a random variable denoting the first part of the random

tape. For any value of T , say t , we let G(t) be the game Gimp

ID, ℓ(A)
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Game Rewind1(Gen, A) Rewind2(Gen, A)

(prm, vk, sk, hlp, T ) ← Gen(); s ← 0

st←$ A .SetupLeak,Prover,HRewind (prm, vk, hlp)
(com, st′) ← A .ComHRewind (st); chl← {0, 1}ID.Chl

T1[0∥chl, [p]] ←$ [p]; T1[1∥chl, [p]] ← ⊥
T1[chl, [k ](τ )] ←$ [k ](τ ); T2 ← T1
If C[chl] then

bad← true
T [0∥chl, [p]] ← ⊥; T [1∥chl, [p]] ← ⊥; T [chl, [k ](τ )] ← ⊥

rsp
1
← A .RspHRewind[T1](st′, chl)

rsp
2
← A .RspHRewind[T2](st′, chl)

For j ∈ [m] do y[j] ← 0

(pk∗, σ ∗, z∗) ← ADW.RspHRewind[T2](prm, hlp, vk, sk, y, chl)
(p, c, e) ← DeriveH(chl)
For j ∈ [m] do sk∗[j] ←

∑τ−1
i=0 (sk[p[i]][j])e

i

A← VrfHRewind[T1](prm, vk, com, chl, rsp
1
)

B ← VrfHRewind[T2](prm, vk, com, chl, rsp
2
)

C ← (T1[1∥chl, [p]] , T2[1∥chl, [p]])
Return (A ∧ B ∧C, rsp

1
, rsp

2
, rsp∗, sk∗)

HRewind[T ′](x, Rng)

If Rng = [p] then b ∥x ← x
C[x ] ← true
If T [x, Rng] then return T [x, Rng]
If T ′ then

If not T ′[x, Rng] then T ′[x, Rng] ←$ Rng
Return T ′[x, Rng]

Else if not T [x, Rng] then T [x, Rng] ←$ Rng
Return T [x, Rng]

Gen()

prm←$ Pg(); (vk, sk, hlp) ←$ Kg(prm)
Return (prm, vk, sk, hlp, ⊥)

Prover(i, args)

If pst[i] = ⊥ then // Commit

(pcom[i], pst[i]) ←$ ID.Com(prm)
Return pcom[i]

Else If prsp[i] = ⊥ then // Response

prsp[i] ←$ ID.RspHRewind (prm, hlp, sk, pst[i], args)
Return prsp[i]

Return ⊥

Figure 13: Game Rewind1 and Rewind2 (boxed). The oracle
Leak is the same as the one given in Fig. 7.

with the first part of random tape fixed to t . We have that

Pr

[
Rewind1(Gen,A)

]
= Pr [A ∧ B ∧C]

= ET [Pr [A ∧ B ∧C | T ]]

≥ ET [Pr [A ∧ B | T ] − Pr [¬C | T ]]

= ET [Pr [G(T )]2] −
1

p

≥ Pr

[
Gimp

ID, ℓ(A)
]
2

−
1

p
,

Adversary A
cdh
(G, v, h)

(G, GT , д, e, p) ← G
(t, rsp

1
, rsp

2
, rsp∗, sk∗) ← Rewind2(Gen

cdh
, A)

(pk∗
1
, σ ∗

1
, z(1)) ← rsp

1

(pk∗
2
, σ ∗

2
, z(2)) ← rsp

2

(pk∗, σ ∗, z∗) ← rsp∗

σ̂ ← ((σ ∗
1
)
c∗
1 /(σ ∗

2
)
c∗
2 ) · σ ∗c

∗
2
−c∗

1

ω =
∑m
j=1 γj (z

(1)

j − z
(2)

j − x
∗
j (c
∗
1
− c∗

2
))

s′ ← (σ̂ )1/ω

Return s′

Gen
cdh
()

(G, GT , д, e, p) ← G
For j ∈ [m] do

γj ← Zp ; дj ← hγj
prm = (д0, . . . , дm−1, д); vk← v
For i ∈ [m] do

sk[i] ← [p]m ; pk[i] ←
∏m−1

j=0 дsk[i ][j ]j

βi ← [p]; σ [i] ← vkβi

T [i, G] ← дβi /pk[i]
hlp← (pk, σ )
Return (prm, vk, sk, hlp, T )

Figure 14: Adversary A
cdh

.

Adversary A
dl
(G, X )

(t, rsp
1
, rsp

2
, rsp∗, sk∗) ← Rewind2(Gen

dl
, A)

(pk∗
1
, σ ∗

1
, z(1)) ← rsp

1

(pk∗
2
, σ ∗

2
, z(2)) ← rsp

2

(pk∗, σ ∗, z∗) ← rsp∗

For j = 1, . . . ,m do

ˆsk
∗
[j] ← (z(1)[j] − z(2)[j])/(c∗

1
− c∗

2
)

x ← (
∑
i∈[m]−{ρ } xi ( ˆsk

∗
[i] − sk∗[i]))/(sk∗[ρ] − ˆsk

∗
[ρ])

Return x

Gen
dl
()

ρ ←$ [m]; дρ ← X
For j ∈ [m] − {ρ } do

x j ←$ Zp ; дj ← дxj
prm = (д0, . . . , дm−1, д)
(pk, sk, hlp) ← ADW.Kg(prm)
Return (prm, pk, sk, hlp, ⊥)

Figure 15: Adversary A
dl
.

where at the last step we used Jensen’s inequality and the convexity

of squaring. This justifies Equation (26). Second, we argue that

Pr[Rewind1(Gen,A)] − Pr[Rewind2(Gen,A)]

≤ Pr[Rewind1(Gen,A) sets bad] =
q

2
r .

(27)

This is because the size of the tableC is upper-bounded by the num-

ber of queries that A.Setup and A.Com makes to H and Derive,
which is q. Next, we attempt to bound Pr[Rewind2(Gen,A)]. We
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define the following events in the game Rewind2(Gen,A).

E : A ∧ B ∧C ∧
( (pk∗

1
)(c
∗
1
)

(pk∗
2
)(c
∗
2
)
= (pk∗)c

∗
1
−c∗

2

)
,

E : A ∧ B ∧C ∧
( (pk∗

1
)(c
∗
1
)

(pk∗
2
)(c
∗
2
)
, (pk∗)c

∗
1
−c∗

2

)
.

Notice that per construction of the events,

Pr[Rewind2(Gen,A)] = Pr[E] + Pr[E]. (28)

Consider A
cdh

(Fig. 14) and A
dl
(Fig. 15), which attemps to break

CDH and DL problems, respectively, using Rewind2. We will show

the following (in)equalities

Pr[E] = Advcdh
G
(A

cdh
), (29)

and

Pr[E] ≤ m · Advdl
G
(A

dl
) + Advpskpp,m,k,τ (ℓ +

k

m
). (30)

This part of the analysis follows from [2, Appendix B.5] and we

restate their derivation here. Assume E or E, since the signatures

verifies, forw =
∏τ

i=0 H(p[i],G)
e i
, we have

σ ∗ = (pk∗w)s , σ ∗
1
= (pk∗

1
w)s , σ ∗

2
= (pk∗

2
w)s .

If E, the following two values are distinct

(σ1)
c∗
1

(σ2)
c∗
2

=

(
w(c

∗
1
−c∗

2
)
(pk∗

1
)c
∗
1

(pk∗
2
)c
∗
2

)s
, (σ ∗)c

∗
1
−c∗

2 =
(
wc∗

1
−c∗

2 (pk)c
∗
1
−c∗

2

)s
.

Hence, the value σ̂ computed by A
cdh

is

σ̂ =

(
(pk∗

1
)c
∗
1

(pk∗
2
)c
∗
2

·
1

(pk∗)c
∗
1
−c∗

2

)s
=

(
дω

)s
.

Therefore,A
cdh

can compute дs and solve the CDH problem that it

was given. This concludes the proof for Equation (29). If E, then we

claim that sk∗ = ˆsk with probability at most Advpskpp,k,k,τ (ℓ + k/m).

This is true per definition of Advpskpp,k,k,τ (ℓ + k/m). Notice that if

sk∗ , ˆsk, then with probability
1

m , A
dl
can solved the DL problem

that it embedded into the parameters. This is because A
dl
has two

representation of pk∗ in the basis д0, . . . ,дm−1, namely sk∗ and ˆsk.
This concludes the proof of Equation (30). Notice that Equations

(26), (28), (27), (29), and (30) together implies the theorem. Finally,

notice thatA
cdh

andA
dl
has roughly the running time of Rewind2

and ADW.Kg, which is about t1 + t2 + 2t3 + t4. □

6 CONCLUSION
Towards the goal of defending against key exfiltration, we have

made practical improvements for big-key cryptography in the sym-

metric encryption and public-key identification setting. We have

identified the probe complexity of big-key access as the dominant

cost in both settings. We have significantly improved the probe

complexity of existing schemes via our large-alphabet subkey pre-

diction lemma, which is our main technical contribution. Improving

upon BKR’s results, our big-key symmetric encryption scheme uses

less probes by utilizes blocks of the underlying storage medium

(instead of bits). Improving upon ADW’s results and analysis, we

prove a reduction that gives concrete security, which we use to find

instantiation of parameters for the big-key identification proto-

col that is significantly more efficient. We believe that our new

large-alphabet subkey prediction lemma is key to bridging the gap

between theory and practice for the bounded-retrieval model.

For future research, we point out that the reduction in proof of

Theorem 5.1 incurs two square-root losses. Improving either will

further increase the efficiency of the identification scheme.
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