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ABSTRACT

Notable recent security incidents have generated intense interest

in adversaries which attempt to subvert—perhaps covertly—crypto-

graphic algorithms. In this paper we develop (IND-CPA) Semanti-

cally Secure encryption in this challenging setting.

This fundamental encryption primitive has been previously stud-

ied in the “kleptographic setting,” though existing results must

relax the model by introducing trusted components or otherwise

constraining the subversion power of the adversary: designing a

Public Key System that is kletographically semantically secure (with

minimal trust) has remained elusive to date.

In this work, we finally achieve such systems, even when all

relevant cryptographic algorithms are subject to adversarial (klepto-

graphic) subversion. To this end we exploit novel inter-component

randomized cryptographic checking techniques (with an offline

checking component), combined with common and simple soft-

ware engineering modular programming techniques (applied to the

system’s black box specification level). Moreover, our methodology

yields a strong generic technique for the preservation of any se-

mantically secure cryptosystem when incorporated into the strong

kleptographic adversary setting.
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1 INTRODUCTION

Despite the remarkable advances in modern cryptography, applying

cryptographic tools to provide robust security in practice is a noto-
rious challenge. One implicit assumption in typical cryptographic

modeling is that the implementations of cryptographic algorithms

actually realize their “official specifications.” In practice, however,

implementations may diverge from their specifications for a variety

of reasons, including programming bugs or malicious tampering. In
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particular, in the kleptographic setting, one considers the pathologi-
cal possibility of fully adversarial implementations of cryptographic
algorithms. The goal of such an adversary is to produce implemen-

tations of cryptographic algorithms which compromise security

while appearing to be correct even in the face of fairly intensive

(black-box) testing. The concrete possibility of these kleptographic

attacks arise whenever a “third-party” software library or hardware

device is relied upon for cryptographic purposes.

The consequences of such attacks are rather surprising: It turns

out that—in wide generality—adversarial implementations of ran-
domized algorithms may leak private information while producing

output that is indistinguishable from the specification. The threat

was first identified over two decades ago by Young and Yung [26, 27].

Recently, starting with [4], the topic has received renewed formal

attention [1–3, 6, 10, 11, 17, 20] motivated by startling evidence

from the Snowden whistleblowing revelations of past deployment

of kleptographic attacks in the USA. One of the most striking re-

cent discoveries [3, 4] establishes that a malicious side channel (also

known as a subliminal channel or steganographic channel) can be

embedded in the output of a subverted randomized (encryption)

algorithm so that secret information can be exclusively leaked to

the adversary via the ciphertext. Such kleptographic attacks can

even be applied in settings where the subverted algorithms are

stateless [3, 20].

This kleptographic setting features an adversary who may pro-

vide malicious implementations of intended cryptographic algo-

rithms and modules. The minimal countermeasure for such strong

attack is to perform testing by a trusted referee, hoping to ensure

that the provided implementation has not been subverted. The

trusted checking party (systematically explored, and called “watch-

dog” in [20]) may test the (adversarially-provided) implementation

of each module against the specification—this testing can provide

a measure of safety to the final users of the implementation. The

major question is whether a combination of careful specification

(a software engineering tool, in general) and testing (new crypto-

graphic tools) can, in combination, preserve security despite such a

powerful adversary. The broad challenge is to rework the classical

framework of cryptographic primitives and constructions so that

they provide security in this new environment.

Recent efforts have partially explored the landscape and clearly

identified the critical role played by randomized algorithms in the

kleptographic setting. Indeed, existing defense strategies roughly

fall into the following three categories: (i). Systematically abandon

randomized algorithms by adopting deterministic counterparts,

e.g., use deterministic encryption with a unique ciphertext prop-

erty (coupled with trusted key generation component) as suggested
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in [2–4, 6] for encryption schemes. (ii). Clipping the power of a

subverted key generation by hashing the output [20] to preserve

security for certain cryptographic primitives. (iii). Use a very power-

ful trusted on-line independent module to re-randomize all incom-

ing/outgoing communication generated by malicious randomized

algorithms [11, 17] (this notion is, in fact, adopted from the notion

of “active warden” in the literature about subliminal channels [7],

which was considered a much stronger assumption than a pas-

sive one). In turn each of the past defending strategy has some

shortcomings (demonstrating the difficulty of the open question):

• While insisting on deterministic algorithms has favorable

properties, it necessarily places many central notions of secu-

rity entirely out of reach: in particular, IND-CPA (semantic)

security for public-key encryptions is unattainable. Further-

more, the process of key generation is inherently stochastic;

thus, it demands a setting where key generation is indepen-

dent trusted method not under the adversary’s control (to

allow pseudorandomness to take care of security through-

out).

• Hashing the output of the key generation indeed restrains

the adversary’s power, however, it does not destroy the sub-

liminal channel (an explicit attack will be shown in section

3.5). The subverted algorithm can still leak some (at least

one bit) information, thus, while being sufficient for other

security purposes it does not solve the open problem: the

IND-CPA security for public key encryptions is still out of

reach.

• The reverse firewall (active warden) model can provide im-

pressive feasibility results, but at the cost of assuming an

active trusted component (in particular, it requires a source

of trusted randomness not controlled by the adversary, which

is not clear howwe can obtain). Additionally, the reverse fire-

wall model requires some “re-randomizable” structure of the

scheme. (That means, such approaches cannot be generic.)

These recent results and the importance of semantic security,

motivated us to consider the following question:

Can we compile any IND-CPA encryption scheme to the
kleptographic setting with strictly weaker assumptions?

We give an affirmative answer to the question. Our principal

techniques are cryptographic testing, combined with modular pro-

gramming methodology which specifies the cryptographic well

defined functions and components to be designed and implemented

separately, so that they can run independently. The former is a

new procedure, whereas the latter is a regular software engineering

requirement (modular programming where a straight line simple

programs simply call these procedures in order). This configuration

is further supported in reality and augmented by the availability of

modern tools for isolated executions of various modules by vari-

ous software architectures (virtual machines) as well as hardware

architectures (e.g., Intel’s SGX). We further remark that modular-

ity is already part of crypto systems’ own definition (e.g., a key

generation module is separated from an encryption module and

separated from a decryption module); we note further that in the

anti subversion literature, all solutions employ separate modules.

Brief description of the model and the split program techniques (as

adopted from software engineering), see below.

Cliptographicmodel and split programmethodology.Wewill

mostly follow the definitional models from [20] that to capture the

security against a kleptographic adversary: in particular, the ad-

versary first supplies implementations of all components of the

cryptographic functionalities. We say a cryptographic scheme is

subversion resistant (clipto-secure), if either the security of the

underlying cryptographic primitive can be preserved even if the

potentially subverted implementations are used; or there is a watch-
dog that can detect the subversion via black-box testing on the

components.

Moreover, the cliptographic model is pretty flexible to reflect

some adjustment. Throughout the paper, we will use the module

design principle and bring it into the algorithm level. Each algo-

rithm may be decomposed into several functional components, and

they will be executed independently and re-assembled correctly.
1

Sometimes, we may need one more basic trusted operation such as

an addition (e.g., needed only for encryption of large size message).

Those can be reflected in the model that the challenger will carry

out all those trusted operations. In practice, they can be done by the

user or the user’s computing base. We remark that those modular

design principle is implicit in all existing deployments, see Fig. 1.

Also, see more detailed discussions in Sec. 3.1 and Appendix. A.
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Figure 1: Modular design v.s. split program.

Our contributions. We construct symmetric-key and public-key

encryption schemes preserving the semantic security when all

the cryptographic algorithms (including key generation and ran-

domness) are subject to subversion. To achieve these, we develop

general techniques that completely eliminate subliminal channels

introduced by malicious implementations. In more detail,

(1) We define a property of “stego-freeness” by adjusting the

models of [4, 20] to characterize whether an implementation

of an algorithm can be considered to be following its spec-

ification in the kleptographic setting. The notion will be a

stepping stone on the way to our main result.

(2) We then consider defending against steganographic channel

attacks by employing the simple module design principle.We

demonstrate a “double-splitting” strategy in which random-

ness generation is carried out by two components RG0,RG1

(which may be subverted and even contain the same back-

door). We prove that when r0, r1 are independently sampled

from RG0 and RG1, mixing them with an immunization

function Φ can indeed destroy subliminal channels in the

1
Note that an environment of independent modules that are isolated is encouraged

in modern computer security teachings, and is supported by a variety of modern

computer architectures (See [9, 12, 14, 16, 18, 23–25]). Furthermore, under the name of

“modular programming” it is a very widely accepted specification and design paradigm

that is simple to implement, and is known to accelerate software development and

software testing.

Session D4:  Crypto Primitives CCS’17, October 30-November 3, 2017, Dallas, TX, USA

908



Our Our

[4] [6] [3] SE PKE [2] [5, 11]

Symmetric key

√ √ √ √√√
n/a n/a

√

Public key n/a n/a n/a n/a

√√√ √ √

Generic × × ×
√√√ √√√

× ×
IND-CPA security

√ √ √ √√√ √√√
×

√

Untrusted key gen × × ×
√√√ √√√

×
√

Untrusted randomness n/a n/a n/a

√√√ √√√
n/a ×

Offline Watchdog × × ×
√√√ √√√

×
√

Dependent execution × × × ××× ××× × ×

Table 1: “Generic” refers to whether the technique can be

used to immunize any encryption scheme. Only determinis-

tic encryption was considered in [2–4, 6], thus we treat it as

“do not apply” in the “untrusted randomness” item.We treat

the decryptability assumption as requiring at least an online

watchdog [20] to ensure it. Regarding “Dependent execu-

tion" item, we note that all existing work require some kind

of isolated execution of components, and none achieves it.

implementation of a wide class of randomized algorithms in

the random oracle model.
2
To necessitate “double” splitting,

we also extend the attacks of [3, 4, 10] to present impossi-

bility of CPA secure public key encryption with blackbox

implementation of randomness generation (even its output

is hashed by a untampered random oracle).

(3) We apply this general technique to immunize each algo-

rithm of any symmetric-key (single-bit) encryption scheme,

including key generation. Our construction preserves the

IND-CPA security.We then immunize symmetric key encryp-

tion schemes for large message spaces. To defend against

input-trigger-style attacks [6], we further assume the user’s

computing base contains a trusted addition function (e.g.,

in its computing base). We also consider correctness (previ-

ously, it was mostly assumed as a decryptability assumption)

in the cliptographic setting. These techniques can be ap-

plied directly to immunize any public-key encryption, and,

in turn, our generic construction gives the first IND-CPA

secure scheme in the cliptographic setting without relying

on trusted randomness.

Table 1 summarizes our results and the state of the art.

We note that designing cryptosystems immune to kleptographic

subversion is a very active area which has led to remarkable new

models and important techniques; many of these are realizable

by systems and can reduce the threat of subversion attacks under

various relaxation of the setting, or under setup assumptions (all,

justified by the very strong adversary). These earlier works have

motivated us, and further, we felt that semantic security of encryp-

tion – perhaps the most important security notion– deserves to be

better understood theoretically and advanced practically.

2
Same as [20], we only assume the specification Φspec to be an random oracle, while

the implementation Φimpl can be arbitrarily subverted.

2 MAIN RESULTS, ROADMAP AND RELATED

WORK

Following the definitional framework of [20], we describe the defini-

tion of subversion resistant public key encryption, (i.e., IND-CPA in

the cliptographic setting, sometimes we also call it cliptographically

IND-CPA secure) first. As we explained the intuition in introduc-

tion, here we only recall that one can arrive at a variety of different

definitions based on the order of quantification for the watchdog

W and adversaryA, and whetherW is given any further informa-

tion (such as a transcript of the security game). We refer to [20] for

further discussion. In this paper we will adopt the strongest of the

definitions of [20] (which gives the watchdog the least power): in

their terminology, we will consider a universal and offline watchdog.
In such a definition, the watchdog only tests the implementation

once with only oracle access. In particular,W has no access to the

actual communications during the security game. Moreover, the

description of the watchdog is quantified before the adversary. To

make it concrete for IND-CPA secure public key (bit) encryption,

we present the definition as follows:

Definition 2.1. For any public key bit encryption scheme, con-

sider a specification Espec := (KGspec, Encspec,Decspec). We say

specification Espec is subversion resistant in the offline watchdog
model if there exists an offline ppt watchdogW , for any ppt ad-

versary A, such that, at least one of the following conditions hold

in the game defined in Fig. 2:

DetW,A is non-negligible, or, AdvA is negligible,

where the detection probability of the watchdog is defined as:

DetW,A (1λ ) = | Pr[WEimpl (1λ ) = 1] − Pr[WEspec (1λ ) = 1]|,

and, A’s advantage is defined as:

AdvA (1λ ) = | Pr[bC = 1] −
1

2

|.

test phase

W (1λ ) A (1λ , st )

� Eimpl

bW ←W
Eimpl (1λ )

execute phase

C A (1λ , st )

(pk, sk ) ← KGimpl (1
λ )

pk
-

b ← {0, 1}

c = Encimpl (pk,b) c -

� b ′

bC := 1 if b = b ′

bC := 0 otherwise

Figure 2: Subversion-resistant public key bit encryption,

where Eimpl := (KGimpl, Encimpl,Decimpl).
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Note that the definition requires only non-negligible detection

probability on the part of the watchdog, but it can be directly am-

plified by repetition if we are willing to relax the model and allow

the watchdog depends on the running time of the adversary.
3

Main Theorem(informal): For any IND-CPA secure public key bit
encryption, there exists a specification such that it is subversion re-
sistant and correct in the split program model. Furthermore, for any
IND-CPA public key encryption (supporting large input space), there
exists a specification such that it is subversion resistant and correct
assuming further a trusted ⊕ operation.
Roadmap towards constructing a cliptoraphically IND-CPA

secure PKE. In the rest of the paper, we will first formalizing mod-

els for immunizing a subverted randomized algorithm. We then

propose a general technique of of destroying subliminal channels in

the output of a subverted randomized algorithm, via modular design

and isolated execution. With those tools at hand, we demonstrate

how to immunize every subverted algorithm in a bit encryption

scheme one-by-one, we further consider how to achieve secure en-

cryption schemes supporting large messages. Finally, as a corollary,

we obtain subversion resistant public key encryption and finishes

the proof for our main theorem above.

Related works. Kleptography introduced by Young and Yung [26,

27], primarily highlighted the possibility of subverting key genera-

tion, and left open the problem of defending against such subversion.

Recent work of Russell, Tang, Yung and Zhou [20] has made initial

progress on protecting key generation for specific cryptographic

algorithms (trapdoor one-way permutations, pseudorandom gener-

ators, and digital signature scheme). However, these techniques do

not remove steganographic channels needed for semantic security.

Also recently, several research threads have studied the klepto-

graphic setting, developing both new attacks and defense mecha-

nisms. In particular, Bellare, et al. [4] studied subverted randomized

encryption algorithms, building a steganographic channel that leaks

secrets bit by bit; t Indeed, subliminal channel attacks turn out to

be the major obstacle in this area, and have been further explored

by Ateniese et al. [1], Bellare et al. [2, 3], Degabriele et al. [6], and

Dodis et al. [10]. A common feature of these works [2–4, 6] is to

adopt deterministic algorithms and to assume honest key generation.

Additionally, these works do not rely merely on testing: Most, in

fact, require an a priori “decryptability” condition which demands

that every message encrypted using the implementation should be

decrypted correctly using the specification. A notable exception is

[6]; however, they rely on a watchdog that possesses access to the

actual challenger–adversary communication transcript (including

the internal state of the challenger).

The authors of [5, 11, 17] considered defense mechanisms with a

“reverse firewall” that is trusted to generate good randomness and

faithfully “re-randomize” incoming and outgoing communication.

This model is attractive as it may permit quite general feasibility

results; on the other hand, it relies on an independant component

which is a source of trusted randomness, and “re-randomizable”

structure of the underlying algorithms (it generalized such a trusted

3
Trivial amplification transforms a gap of ϵ to 1−δ with k = ϵ−1 log(δ−1 ) repetitions.
As thewatchdog’s running time is independent of the adversary, however, amplification

cannot be adapted to a particular non-negligible function. However, if the watchdog is

permitted a number of samples that depends on the adversary, then one can amplify

non-negligible detection probability to 1 − o (1) for an infinite set of inputs.

A
s

x
y

(a) A randomized algorithm which leaks no information

about s .

Ãz
s

x
y
s

(b) A subverted algorithm depending on a hidden ran-

dom string z . Its output y is indistinguishable from A,
but with knowledge of z it leaks s .

Figure 3: Embedding a subliminal channel in a randomized

algorithm A.

component called “trusted warden” [8] used to eliminate subliminal

channels in authentication protocols).

In contrast to all previous work, our goal is to develop semantic

secure encryptions in a stricter model that does not require clean

keys, trusted randomness, strong watchdogs, or decryptability as-

sumptions (i.e., all cryptographic components can be subverted,

only the very basic computing base is trusted, e.g., the hardware

and the operating system’s basic functions). We stress again, some

trusted component was needed in earlier works, an independent

execution assumption has to be implicitly made (separating the

subverted and the trusted components). This holds for all previ-

ous work which actually employ independent separate modules

(without explicitly claiming this). See the comparisons in Table 1.

3 FUNDAMENTAL BUILDING BLOCKS:

ELIMINATING SUBLIMINAL CHANNELS IN

SUBVERTED RANDOMIZED ALGORITHMS

In this section, we will introduce the technical building blocks

towards proving our main theorem.

3.1 Definitions

As explained in the introduction, our focus will be the challenge of

generically destroying subliminal channels which may have been

adversarially embedded in a subverted algorithm. We briefly recall

the notion of a subliminal channel to set the stage for the basic

definitions below.

Consider an (honest) randomized algorithm A which takes an

input x and has additional access to a “secret” bit s ∈ {0, 1}. The
algorithm produces a random output y, which we assume leaks no

information about s . A fundamental result in steganography [13,

21, 22] asserts that is is possible to construct a subverted algorithm

Ãz , whose behavior is determined by a hidden random string z,
s.t., (i.) for all inputs x and s , the distribution produced by Ãz (x , s )
(including the random selection of z) is identical to the distribution

produced by A(x , s ), and hence leaks no information about s; but,
(ii.) with knowledge of z, the output of Ãz is highly correlated with

s . In particular, an adversary who owns z can use the output of Ãz
to infer s with high probability. See Figs. 3a and 3b.
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In the cliptographic setting, our goal of destroying a subliminal

channel means that the adversary cannot learn any extra informa-

tion from the output of a subverted implementation, so long as it

has passed the checking of the watchdog. We adopt the general

definitional framework of [20], and generalize the notion defined

by the surveillance game in [4] (which was defined only for sym-

metric key encryption) to formulate this intuition, and it defines a

new notion that we call “stego-freeness”. Specifically, we compare

the information leaked by the implementation with that leaked

by the specification (or, equivalently, an honest implementation).

Stego-free specifications for algorithms will be the stepping stones

to our cliptographically IND-CPA secure PKE. We note that our

new notion of “stego-freeness” is defined mostly at the algorithm

level, while the definition of subversion resistence from [20] was

defined at the cryptographic primitive level.

We also remark here that throughout the paper, we consider

only stateless algorithms. While it is easy to see that a subverted

randomness generation can be simulated using a (deterministic)

pseudorandom function if a global state can be synchronized be-

tween the implementation and the adversary, thus no entropy will

be generated. We can still demonstrate feasibility in the setting of

restricted stateful cases, and we will defer those discussions to the

full version.

Defining stego-freeness. We now formally define stego-freeness

for any (randomized) algorithm G under subversion. Following the

basic cliptographic models, the adversaryA prepares a (potentially

subverted) implementation Gimpl of the algorithm G; we let Gspec

denote the specification of the algorithm. Stego-freeness means

either the adversary A cannot learn any extra information from

the outputs of Gimpl (in comparison with that of Gspec), or the

subversion can be detected by the watchdogW (using oracle access

to Gimpl). Depending on how communication is generated and

whether the randomized algorithm can takes rich inputs, we have

a variety of definitions; We emphasize here that different type of

inputs in current setting correspond to different algorithms, and

lead to dramatically different outcome.

We begin with the following elementary version for randomized

algorithms—such as key generation—that rely only on a length

parameter.

Definition 3.1 (stego-free, basic form). Consider a (randomized)

algorithm G with specification Gspec. We say such Gspec is stego-
free in the offline watchdog model if there exists a ppt watchdogW

so that for any ppt adversary A playing the following game (see

Fig. 4), it satisfies that

either AdvA is negligible, or DetW,A is non-negligible

where the detection probability is

DetW,A (1λ ) = ���Pr[W
Gimpl (1λ ) = 1] − Pr[Pr[WGspec (1λ ) = 1]

��� .
and adversary’s advantage is defined as:

AdvA (1λ ) = ��Pr[bC = 1] − 1/2�� .

More general definitions of stego-freeness. In the above game,

G only takes as input a fixed security parameter (often ignored

later in the paper); Besides the security parameter, we can consider

algorithms which take richer inputs. Such extensions will be im-

portant for applications. But they significantly complicate the task

test phase

W (1λ ) A (1λ, st )

bW ← WGimpl (1λ ) � Gimpl

execute phase

C (1λ ) A (1λ, st )
β ← {impl, spec}

for i = 1 to q � 1
q

yi ← Gβ (1
λ )

y1, . . . , yq -

bC := 1 if β = β ′ � β ′

bC := 0 otherwise

Figure 4: A game for stego-freeness.

of destroying an embedded steganographic channel. One note is

that for input taken from a small domain, (for example, {0, 1}), we

simply allow the adversary to query the evaluation on all inputs.

Beyond the previous cases, we may consider algorithms tak-

ing inputs from a large domain. The most straightforward adap-

tation permits the adversary to sample Gimpl (xi ) at inputs xi of
her choice. However, this model suffers from a crippling “input

trigger” attack [6] (where the adversary hides some secret at a “trig-

ger” location x , which can be impossible for an offline watchdog to

detect); we discuss this in detail later. However, there is a compro-

mise setting that captures many cases of actual interest and permits

strong feasibility results. In this setting we permit the adversary

to determine inputs to a randomized algorithm G by specifying

a randomized input generator IG: The input generator may be an

arbitrary ppt algorithmwith the condition that given 1
λ
it produces

(typically random) outputs of length λ. This implicitly defines the

randomized algorithm G(1λ , IG(1λ )). (See remark below for concrete
use case.) In our setting, the watchdog is provided (oracle access)

to IG, which it may use during its testing of Gimpl. Note that IG is

chosen by the adversary during the security game; it is by default

could be “subverted”. Revisiting the security game in this new set-

ting, challenges {yi } are generated by first samplingmi ← IG(1λ ),

and then obtaining yi ← Gβ (1
λ ,mi ) by calling Gβ using inputs

1
λ
andmi . Note that the adversary could use IG to produce some

specific input “triggers” where Gimpl deviates from Gspec.

Definition 3.2 (stego-free, general form). We say that a specifica-

tion Gspec (of a randomized algorithm G) is stego-free in the offline

watchdog model if it satisfies Def. 3.1 with the security game of

Fig. 5. Note that the ppt input generator IG may be determined by

A during the game.

Remark: use cases of the above definitions. Definition 3.1 can

capture algorithms like randomness generation and key generation

when we instantiate G to be the corresponding functionality. While

the more general notion (Def. 3.2) of stego-freeness (allowing adver-

sary to supply an input generator IG) captures algorithms that take

the output of other implementation as input. For instance, Encimpl
will take the output of KGimpl as an input. Which of the definitions
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test phase

W (1λ ) A (1λ, st )

� Gimpl, IG

bW ← WGimpl, IG (1λ )

execute phase

C A (1λ, st )
β ← {impl, spec}

for i = 1 to q � 1
q

mi ← IG(1λ )

yi = Gβ (1
λ,mi )

{yi }i∈[q] -

bC := 1 if β = β ′ � β ′

bC := 0 otherwise

Figure 5: The stego-freeness game with input distribution

{1λ } × IG.

(3.1 or 3.2) is appropriate for a given randomized algorithm can be

determined from context, depending on whether IG is specified.

As mentioned above, an even stronger definition is obtained

by permitting the adversary to simply choose the input mi for

each yi directly. This notion reflects stego-freeness for algorithms

with adversarially chosen inputs. Such a subverted implementation

may have a hidden “trigger” that was randomly drawn during the

(adversarial) manufacturing process and can permit the adversary

to easily win the stego-freeness distinguishing game. In fact, such

a trigger attack does not even require that G be randomized: for

example, consider the algorithm Gspec (1
λ ,x ) := x , defined for x ∈

{0, 1}λ . The adversary then uniformly draws z ← {0, 1}λ and defines

Gimpl (1
λ ,x ) = 0

λ
if x = z. As the placement of the trigger (z) is

random, the watchdog cannot detect disagreement between Gimpl

and Gspec, while the adversary can distinguish these algorithms

easily by querying z. In a practical setting, an algorithm with such

an input trigger can leak arbitrary private data to an adversary

in a way undetectable to an offline watchdog. This was formally

demonstrated in [6]. Nevertheless, we will discuss in Section 4.1

a method for sidestepping this impossibility with only an offline

watchdog by assuming some small piece of extra trusted operation,

such as “one trusted addition.”
4

Discussions about stego-freeness and steganography.We em-

phasize two properties of these definitions. First, if a proposed spec-

ification satisfies such definitions, direct use of the implementation

preserves the typical security guarantees originally possessed by

the specification. This enables us to provide fairly modular security

proofs by designing Stegofree specifications for each algorithm.

The second, and more critical, issue pertains to the feasibility

of achieving these notions of stego-freeness: at first glance they

appear hopeless. It is known that general steganography is always

possible over a channel with sufficient entropy [13, 21, 22]. This

implies that the subverted algorithm Gimpl can always produce a

4
All previous works either simply assume it won’t happen (the decryptability assump-

tion) or employ at least an online watchdog who has access to the transcript between

the challenger C and the adversary A, (sometimes the secret key of C). And trusted

addition is still weaker than the re-randomizer needed in the reverse firewalls.

sequence of messages that enable the adversary to retrieve secrets

from the (public) outputs y1, . . . ,yq . As a simple example of such

subversion in our setting, consider the algorithm Gspec (1
λ ) which

outputs a uniformly random element of {0, 1}λ . Consider then the

subverted implementationGz
impl

(1λ ) whose behavior is determined

by a uniformly random string z ← {0, 1}λ chosen by the adversary:

the algorithm Gz
impl

(1λ ) outputs a uniformly random element from

H = {w ∈ {0, 1}λ | lsb(Fz (w )) = 0} ,

where lsb(x ) denotes the least-significant bit of x and Fz (·) denotes
a pseudorandom function (PRF) with key z. (Note that elements

of H can be drawn by rejection sampling.) Of course, it is easy

for the adversary to distinguish Gimpl from Gspec (as Gimpl only

outputs strings with a particular property that is easily testable

by the adversary who has z). On the other hand, no watchdog can

distinguish these algorithms without breaking the PRF.

The above suggests that if the user makes only black-box use

of the subverted implementation of randomized algorithms, it is

hopeless to achieve stego-freeness. This again motivates the non-
black-box style of the split-program model.

The split-programmethodology.To overcome the steganographic

attacks, we allow the specification of an algorithm to be split into

several components. Fortunately, the definitional framework of

[20] is quite general and flexible, that enables us to describe a more

fine-grained module design principle. In this split-program model,
the adversary has to provide implementation for each of the compo-

nent, otherwise she violates the specification in a trivial way. The

watchdog can thus check them individually. And the components

will be executed independently and then composed correctly by

the user or his computing base. See also Appendix A.
5
To not

frustrate reader too much, we choose not to present a model for

each different splitting, instead, one can follow the above general

principle to infer how the model should be tuned implicitly.

One example of this framework is the simple method proposed

in [20] to study certain randomized algorithms: they begin by speci-

fying a (general) randomized algorithm G as a pair (RG, dG) where
RG is the randomness generation algorithm, responsible for gener-

ating a uniform random string of appropriate length, and dG is a

deterministic algorithm that takes the random coins produced by

RG to produce the final output. They then add to this specification a

third deterministic algorithm Φ which acts as a kind of “immuniza-

tion function” for the random bits generated by RG. Specifically,
given the implementations (RGimpl, dGimpl, Φimpl), the challenger

amalgamates them by first querying r0 ← RGimpl, “sanitizing” this

randomness by passing it into Φimpl to receive r ← Φimpl (r0) and,
finally, running y ← dGimpl (r ). They show that in several contexts

such an “immunization” can preserve security even under subver-

sion. We remark that a simple decomposition of this form cannot

destroy steganography in general, and we show an explicit attack;

see Sec. 3.5.

5
To reflect the re-assembly is done properly, the challenger will execute the com-

ponents independently and amalgamate the outputs to yield the fully functional

implementation in the security game. In general, if we need to power the user with

some basic trusted operation–which may come from user’s computing base–trusted

operation can be reflected in the game that the challenger carries out such operation.

We refer to Sec. 4.1 for one such example of assuming a trusted ⊕.

Session D4:  Crypto Primitives CCS’17, October 30-November 3, 2017, Dallas, TX, USA

912



In this paper, we will show that this general methodology has re-

markable power against subversion: with further decomposition, we

show it is possible to generically destroy steganographic channels.

This provides us a family of tools for developing cliptographyically-

secure cryptography without abandoning randomized algorithms.

Remark: random oracles. In some settings, we establish results

in the conventional random oracle model which requires some spe-

cial treatment in the model above. In a kleptographic setting with

complete subversion, we must explicitly permit the adversary to

tamper with the “implementation” of the random oracle supplied to

the challenger. In such settings, we provide the watchdog – as usual

– oracle access to both the “specification” of the random oracle

(simply a random function) and the adversary’s “implementation”,

which may deviate from the random oracle itself. For concreteness,

we permit the adversary to “tamper” with a random oracle h by pro-

viding an efficient algorithm Th (x ) (with oracle access to h) which

computes the “implementation"
˜h – thus the implementation

˜h(x )

is given by Th (x ) for all x . Likewise, during the security game, the

challenger is provided oracle access only to the subverted implemen-

tation
˜h of the random oracle. As usual, the probabilities defining

the security (and detection) games are taken over the choice of

the random oracle. In this sense, the random oracle assumption

used in our complete subversion model is weaker than the classical

one, since we can allow even imperfect random oracles. Fortunately,

when the random oracle is applied to a known input distribution,

an offline watchdog can ensure that the implementation is almost

consistent with its specification (see Lemma 3.3).

3.2 Purifying subverted randomness via double

splitting

Next, we present our main result: a generic transformation that

destroys subliminal channel which relies on “double-splitting” the

randomness generation coupled with a public immunizing function.

We also present simple results that “single” splitting already work

if randomness is trusted, however, if the randomness generator is

implemented by the adversary, we present an explicit attack, thus

our double splitting is necessary. See sections. 3.4, 3.5.

Basic guarantees provided by an offline watchdogW : First,

W can at least guarantee that the output r0 of an implementation of

randomness generation RGimpl is unpredictable to the adversaryA.

Otherwise, the distribution given by RGimpl would have significant

(non-negligible) collision probability,
6
which can be easily tested

byW who simply draws two samples and rejects if it observes a

collision. (As with the other tests we discuss, the success of this test

can be amplified by repetition.) On the other hand, the collision

probability of RGspec is negligible.

Second,W can ensure that the implementation of a deterministic
algorithm disagrees with its specification (Gspec (x ) , Gimpl (x ))
with negligible probability when inputs are drawn from a known

input distribution IG. To see this,W can simply draw samples from

IG and compare the evaluations using Gimpl and Gspec.This also

follows directly from Lemma 3.3 from [20], (see below). That said,

6
Observe that if D is a probability distribution on a set X , the optimal strategy for

predicting the result of drawing an element of X according to D is simply to guess

maxx D (x ). If this maximum probability is ϵ , then the collision probability of D ,

equal to

∑
x D (x )2 , is at least ϵ 2 .

deterministic algorithms with a public input distribution satisfy

stego-freeness in a straightforward fashion. Throughout, we use

the term “public” distribution to refer to any efficiently sampleable

source that the watchdog can construct, either using IG supplied

by the adversary or some honest distribution.

Lemma 3.3 ([20]). Consider Πimpl := (F1impl, . . . , F
k
impl), an adver-

sarial implementation of a specification Πspec = (F1spec, . . . , F
k
spec),

where F1, . . . , Fk are deterministic algorithms. Additionally, for each
security parameter λ, public input distributions X 1

λ , . . . ,X
k
λ are de-

fined respectively. If ∃j ∈ [k], Pr[F jimpl (x ) , F jspec (x ) : x ← X
j
λ] is

δ , this can be detected by a ppt offline watchdog with probability at
least δ .

Intuitions. From a first look, a specification of an algorithmGwith

form of (RGspec, dGspec,Φspec), whereRGspec (1
λ ) → r0;Φspec (r0) →

r , and dGspec (r ) generates the final output, may already provide

security in a kleptographic setting if the immunization function

Φ can suitably interfere with generation of biased output by the

implementation of RG. To simplify our presentation, we assume

throughout that RGspec produces at least λ bits of randomness; this

does not affect the generality of the results. (Our techniques can

be adapted to a low-entropy setting with some changes to running

time of the watchdog.
7
) This suggests the intuition that Φspec (r0)

may appear to A to be a randomly drawn value if Φspec is a ran-

dom oracle. Unfortunately,A also holds the backdoor z which may

contain information about the final output r = Φimpl (r0) generated
by the sampling and “cleaning” process. In particular, we will show

an attack in Sec. 3.5, the subverted implementation has full access

to Φspec and may thus bias the output r = Φspec (r0) as a function
of z, which can be noticed by A.

To circumvent the above obstacle, we introduce a new tech-

nique that further splits RG into two random algorithms, RG0

spec

and RG1

spec
, and combines their outputs using an immunization

function Φspec; we shall see that this mechanism can destroy sub-

liminal channels. In general, in the split program model, the user

simply runs RGimpl twice independently to simulate two separate

RG0

impl
and RG1

impl
and passes the joint outputs to Φimpl; the final

output will have the form r = Φimpl (r0 ◦ r1) (where ◦ denotes con-
catenation). The main idea behind this strategy is that it frustrates

attempts by RG0

impl
and RG1

impl
to launch sophisticated rejection-

sampling because the final output is not fully determined by either

output. (Neither can evaluate Φimpl (r0 ◦ r1) during the generation
of r0 or r1.) In this way, if Φspec is modeled as a random oracle,

the final output Φspec (r0 ◦ r1) will be uncorrelated with A’s state

(which includes both A’s random oracle queries and z). Now we

can safely claim that r looks uniform even to A.
8

With this approach, we demonstrate a qualitative advantage of

the split-program methodology. We first describe a stego-free spec-

ification of randomness generation in Fig. 6, and then proceed to

7
Observe that if RGspec produces onlyO (logn) random coins then an offline watch-

dog, by a suitable regimen of repeated sampling, can empirically approximate (with

high probability) the distribution of RGimpl with high accuracy. This can be directly

compared with RGspec using distance in total variation. Note that such a watchdog

requires a number of samples polynomial in the resulting error.

8
We stress again that Φimpl can be subverted, but it is a deterministic function with a

known input distribution, the inconsistency can be ensured to be at only a negligible

fraction of places due to the watchdog, see Lemma 3.3.
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give an immunization strategy for arbitrary randomized algorithms

so long as they have a public input distribution (or a small input

domain). We apply these tools in next section to compile encryption

schemes that retains semantic security.

Φspec

RG0

spec

RG1

spec

r1

r0

r

Figure 6: A stego-free spec for randomness generation.

Theorem 3.4. Consider randomness generation RG with specifi-
cation (RG0

spec,RG
1

spec,Φspec) as described in Fig. 6:

• RG0

spec andRG
1

spec, given 1
λ , output uniformly random strings

of length λ;
• Φspec is a hash function so that Φspec (w ) has length ⌈|w |/2⌉;
• the specification for RG(1λ ) is the trusted composition:
Φspec (RG0

spec (1
λ ),RG1

spec (1
λ )).

Then RGspec is stego-free in the split program model if Φspec is mod-
eled as a random oracle.

Proof. If the specification of Fig. 6 is not stego-free, then for any

offline watchdogW there is an adversary A that can prepare an

implementation RGimpl := (RG0

impl
,RG1

impl
,Φimpl) satisfying the

following: (1.)W cannot distinguish RGimpl from RGspec via oracle

access; (2.) The adversaryA can distinguish output of RGimpl from

RGspec. We will then define an offline watchdog such that these

two conditions cannot hold simultaneously for any adversary.

An offline watchdog. The watchdog W ’s strategy is as follows:

W first draws a constant number of samples from RG0

impl
and

RG1

impl
; ifW observes a collision in either distribution, it rejects

the implementation outright (as collisions are negligible in spec).

Next,W draws pairs of samples (again) from RG0

impl
and RG1

impl

and evaluates Φimpl on (the concatenation of) each pair to ensure

that the result is consistent with Φspec.

Next, we will show, for any ppt A, if the detection probability

DetW,A is negligible (this is the sum of detection probability for

collision denoted by δc , and the detection probability for inconsis-

tency δi ), then the advantage AdvA will also be negligible, thus

the two conditions cannot hold simultaneously.

Game transitions. We will go through the security game part of

Def. 3.1 step by step. Without loss of generality, we assume the

challenge r contains only one element.

In Game-0, A prepares subverted implementations RGimpl :=

(RG0

impl
,RG1

impl
,Φimpl); we letQ be the set of randomoracle queries

A made during preparation of RGimpl.

The challenger C samples from RG0

impl
and RG1

impl
respectively

and receives r0 and r1; then C evaluates Φimpl at r0 ◦ r1 and sends

the output r as the challenge to A. Let Qb (for b = 0, 1) be the

set of random oracle queries made by RGb
impl

before outputting

rb . All random oracle queries will be (consistently) answered with

randomly chosen values.

Game-1 is identical to Game-0, except that Φimpl is replaced with

Φspec; Game-2 is identical to Game-1, except that C simply chooses

a uniform r and directly sends it to A as the challenge; Game-3 is

identical to Game-2, except that RGimpl is completely replaced with

RGspec; Game-4 is identical to Game-3, except that r is generated
as in Game-0, but the challenger uses RGspec instead.

Probabilistic analysis. We will analyze the gaps of each game tran-

sition parametrized by the quantity DetW,A .

First, since Φspec is deterministic and with a public input distri-

bution (which is RG0

impl
× RG1

impl
), following Lemma 3.3,

Pr

[
Φimpl (r0 ◦ r1) , Φspec (r0 ◦ r1) :
r0 ← RG0

impl
, r1 ← RG1

impl

]
≤ δi .

Otherwise, the watchdogW will notice the inconsistency with

probability at least δi (by choosing 1 random sample from RG0

impl
×

RG1

impl
, evaluate on both Φspec,Φimpl and compare). It follows that

replacing Φimpl with Φspec would incur a DetW,A difference, thus:

| Pr[bC = 1 in Game-0] − Pr[bC = 1 in Game-1]| ≤ δi .

Second, we will argue that the probability that r0 ◦ r1 is ever

queried (falling in Q ∪ Q0 ∪ Q1) is negligible, and now we are in

Game-1 using Φspec which is a random oracle.

It is easy to see that Pr[r0 ◦ r1 ∈ Q] ≤
√
δc · poly(λ); otherwise,

the watchdog will observe a collision in RGi
impl

with probability

δc . To see this, let R0 = {r0 | ∃r1, r0 ◦ r1 ∈ Q }, note that Q,R0 are
only polynomially large. If the probability that r0 ◦ r1 falls into

Q (thus also the probability that r0 falls into R0) is δ , that means

the value r0 will be generated by RG0

impl
with probability at least

δ0 = δ/|R0 |. It follows that the collision probability that RG0

impl

produces the same output r0 would be δ
2

0
. While on the other hand,

RG0

spec
produces uniform bits, the collision probability (that RG0

impl

produces the same uniform output string r0) would be negligible.

Thus thewatchdog can easily distinguishRG0

impl
fromRG0

spec
when

drawing, say 2 samples. It follows that δ2
0
≤ δc , and we can obtain

δ ≤
√
δc |R0 |.

Similarly, we bound the probability for Q0,Q1. Let R0,1 = {r1 |
∃r0, r0 ◦ r1 ∈ Q0}. Since RG0

impl
,RG1

impl
are independently run, the

probability that r1 falls into the polynomially large setR0,1 would be√
δc · |R0,1 |; otherwise, if RG1

impl
outputs r1 with probability more

than δc , thenW can notice the difference between RG1

impl
and

RG1

spec
by identifying collisions. Thus Pr[r0 ◦ r1 ∈ Q0] ≤ Pr[r1 ∈

R0,1] ≤
√
δc · poly(λ). The same holds for Q1.

The adversary A is holding the set of random oracle queries

Q , and a backdoor z. The only way r may correlate with z is that
r0 ◦ r1 is queried during the execution of RG0

impl
, or RG1

impl
. If

r0 ◦ r1 < Q ∪Q0 ∪Q1, r0 ◦ r1 will be independent with A’s view

(Q, z), thus r = Φspec (r0 ◦ r1) = RO(r0 ◦ r1) looks uniform to A.

We can claim that:

| Pr[bC = 1 in Game-1] − Pr[bC = 1 in Game-2]| ≤
√
δc · poly(λ).

Next, it is easy to see that Pr[bC = 1 in Game-2] = Pr[bC =
1 in Game-3] since the adversary receives the identical challenge.

Also, Pr[bC = 1 in Game-3] = Pr[bC = 1 in Game-4] since query-

ing RGspec yields a uniform output RO(u0 ◦ u1), where u0,u1 are
uniformly chosen.

To conclude, we have

| Pr[bC = 1 in Game-0]−Pr[bC = 1 in Game-4]| ≤ δi+O (
√
δc )·poly(λ) .
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Observe that Game-0 corresponds to the case that challenger

flips a coin to be 0, i.e., C uses RGimpl to generate the challenge

messages, while Game-4 corresponds to the case that b = 1, when

C uses RGspec. Since we assume DetW,A is negligible, It follows

that:

AdvA = ��Pr[bC = 1] − 1/2�� ≤ negl(λ) .

Combine all, we conclude the theorem. □

Implementation considerations. Practical deployment of such

splitting—especially as it requires independence—clearly requires

detailed consideration of the particular computational environment.

There exist a lot of research in this domain: e.g., [12, 16, 18, 24].

Here we list some lightweight examples. Modern lightweight virtu-

alization layers such as Docker [9], insulate individual copies of the

adversary’s code; we remark that this also permits state duplication

(which may be necessary for the watchdog in the stateful case).

Even more lightweight solutions such as the AppArmor [14] or

TOMOYO [23] infrastructure also have been deployed. These pro-

vide on-the-fly trapping of system calls, and have been successfully

applied to isolate code for security purposes. In particular, these

solutions can be applied to externally compiled executables. More

aggressive complete virtualization is also possible. An alternate

approach relies on constraining the source code (or the compiler)

to directly limit I/O and system calls; this has the advantage that

the components can be run efficiently in the native environment.

Finally, there may also be settings where it is possible to isolate the

program in the architectural/hardware layer or physically separate

various components (e.g., using Intel SGX [25], or even move one

RGi
outside the user’s computer, use a random beacon, etc.).

Transition to the standard model. We also consider how to

achieve stego-freeness without a random oracle. The main observa-

tion is that the watchdog can guarantee that each copy of RGi
impl

provides at least logn bits of (min-)entropy. If we are willing to

have more components (or simply executes one piece of implemen-

tation independently for more times) for randomness generation,

we can accumulate entropy using a simple immunizing function

and stretch the result using a PRG. We defer the detailed discussion

about standard model constructions in the full version.

3.3 Stego-free specifications for randomized

algorithms; a general transformation

Now we are ready to establish the general result yielding a stego-

free specification for any randomized algorithm that is with a public

input distribution. Furthermore, it can be generalized directly to

the setting with an extra small input. As discussed in Sec. 3.1, those

randomized algorithms already cover many of the interesting cases

such as key generation and bit encryption.

The transformation. Consider a randomized algorithm G which

uses λ = λ(n) random bits for inputs of length n. Let (dG,RG) de-
note the natural specification of G that isolates randomness genera-

tion, so that RG(1λ ) produces λ uniformly random bits and dG(r ,x )
is a deterministic algorithm so that for every x , G(x ) is equal to

dG(RG(1λ (n),x ) forn = |x |. (“Equal” here simplymeans these have

identical output distributions.) As described above, we consider

the transformed specification for G of the form (RG1,RG2,Φ, dG)

where dG is as above, both RG1 (1
λ ) and RG2 (1

λ ) produce λ uni-

formly random bits, and Φ is a hash function that carries strings

of length 2k to strings of length k . (See Fig. 7 below, which shows

the transformation applied to an algorithm with a public input

distribution generated by IG.) We will prove that when Φspec is

given by a random oracle, this is a stego-free specification of G.

RG0

spec

RG1

spec
r1

r0

RGspec

r

x
IG

Φspec

dGspec
y

Figure 7: A stego-free specification for randomized algo-

rithm G, where x ← IG.
Security analysis. Following Lemma 3.3, we know that a subverted

implementation dGimpl of a deterministic algorithm will be consis-

tent with its specification with an overwhelming probability when

the inputs are sampled from some public distribution, which is

IG×RGimpl. Thus dGimpl can be considered as good as dGspec when

restricted to this public input distribution. Furthermore, RGspec is

stego-free, as discussed above. Thus all implementations can be

replaced with their specifications, and the security follows easily.

We record this in the theorem below, and we defer the detailed

proof to Appendix D.

Theorem 3.5. For any randomized algorithmG, consider the speci-
fication Gspec := (RGspec, dGspec), where RGspec generates λ = λ(n)
bits of uniform randomness and dGspec is deterministic. We define
RGspec to be (RG0

spec,RG
1

spec,Φspec) as above. If (1.) RG0

spec (1
λ ) and

RG1

spec (1
λ ) output λ uniform bits; (2.) Φspec takes r0 ◦ r1 as input,

and outputs r (so it maps strings of length 2λ to strings of length λ)
(see Fig. 7), then Gspec is stego-free with a trusted combining. Here
Φspec is modeled as a random oracle, and RG0

impl,RG
1

impl are executed
independently.

It is straightforward to generalize the result to support algo-

rithms with an extra small size (polynomially large q) input as
they essentially expand the input distribution to be q distributions,

which can all be checked by the watchdog.

Corollary 3.6. For any randomized algorithm G, consider a specifi-
cation Gspec := (RGspec, dGspec), where RGspec is defined as in Fig.
6: If dGspec takes r , x ,m as input, where x is generated by a sampler
IG, andm is taken from a polynomial size public domain D. Then
the specification Gspec is stego-free with a trusted combing, if Φspec
is modeled as a random oracle.

3.4 Eliminating subliminal channels with

trusted randomness

For completeness, we also briefly explain how we can immunize

subverted randomized algorithms generically if we assume that

the user has access to trusted randomness. This is as assumed

in the reverse firewall model [11, 17]. However, using our split-

program strategy, we do not need to rely on specific structure
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(e.g., homomorphic property) of the underlying algorithm or some

further trusted operations for re-randomization.

It proceeds simply as follows: every randomized algorithmG can

be decomposed into RG, dG, where RG generates random coins r ,
and dG is a takes r and some samples from a public distribution

IG as inputs. The specification will require the implementation

to be in this form explicitly, thus the implementation provided

by the adversary will be (RGimpl, dGimpl). Now that the user has

trusted randomness, he can simply ignore RGimpl, and use his own

trusted randomness R instead. The problem of immunizing Gimpl

simply becomes achieving stego-freeness of dGimpl. It follows from

Lemma 3.3 directly that when a deterministic algorithm is with

a public input distribution, it is almost always consistent with its

specification. As dGspec will take inputs from a known distribution

IG × R, thus will be stego-free when restricted to IG × R.

3.5 Impossibility of publicly immunizing

subverted random source

One may wonder whether the “double-splitting” strategy is neces-

sary. Unfortunately, the steganographic attacks of [3, 4] can still be

carried out in the “single” split-program model above, if the user is

only given one subverted randomness generator RGimpl (instead of

trusted randomness) together with the corresponding deterministic

part dGimpl.

Here we point out that such an attack exists even if we hash the

output of RGimpl, as described in [20]. In fact, this approach can

fail even in the most generous setting when the hash Φ is given by

a untampered random oracle and the adversary only subverts RG.
The attack is a straightforward adaptation of the techniques

from [3, 4]: the subverted implementation RGimpl can evaluate

dGspec and appropriately query the random oracle Φspec during

the procedure of rejection sampling. It is easy, then, to arrange

for the the output of RGimpl to be biased in a way only detectable

by the adversary. While a generic attack is possible, for concrete-

ness we present an attack on a subverted public-key cryptosystem

which permits the adversary to effortlessly determine the (plaintext)

message bit. This indicates that more sophisticated non-black-box

techniques such as ours are necessary to remove steganographic

channels in general. A detailed description appears in Sec. C.

4 SUBVERSION-RESISTANT ENCRYPTION

Now we are ready to immunize encryption schemes.

4.1 Subversion-resistant symmetric encryption

We first construct subversion-resistant symmetric-key bit encryp-

tion in the case when all algorithms are subject to subversion. We

then discuss correctness in the setting of large size messages and

how to remove the “decryptability” assumption in previous works,

it requires that every ciphertext generated by the subverted imple-

mentation can be correctly decrypted using the specification. While

this helps to achieve security, it seems difficult to justify; see the

criticism in [6]. In general, then, correctness is not placed on the

same footing as security (which is established via the specification

in tandem with watchdog testing), but is rather provided by fiat.

Defining subversion resistance and correctness. Similar as Def

2.1, we follow the definitional framework of [20] to define a subver-

sion-resistant symmetric-key encryption scheme. As mentioned in

Sec. 3.1, we focus on stateless encryption algorithms and defer the

discussions about special stateful encryption in the full version.

Definition 4.1. A (stateless) symmetric-key (bit) encryption scheme

with specification Espec := (KGspec, Encspec,Decspec) is subver-
sion-resistant in the offline watchdog model if there exists a ppt

watchdogW so that, for any ppt adversary A playing the game

described in Figure 8, either

AdvA is negligible, or DetW,A is non-negligible.

where AdvA (1λ ) = ��Pr[bC = 1] − 1/2�� , and,
DetW,A (1λ ) = ���Pr[W

Eimpl (1λ ) = 1] − Pr[Pr[WEspec (1λ ) = 1]
��� .

test phase

W (1λ ) A (1λ, st )

bW ← WEimpl (1λ ) � Eimpl

execute phase

C (1λ ) A (1λ, st )
K ← KGimpl (1

λ )

for i = 1 to q � 1
q

ci,0 = Encimpl (K, 0)
ci,1 = Encimpl (K, 1)

{ci,0, ci,1 }i∈[q] -

b ← {0, 1}
c = Encimpl (K, b )

c -

for i = 1 to q′

c′i,0 = Encimpl (K, 0)
c′i,1 = Encimpl (K, 1)

{c′i,0, c
′
i,1 }i∈[q′] -

bC := 1 if b = b′ � b′

bC := 0 otherwise

Figure 8: Subversion-resistant symmetric-key bit

encryption. (The stateless case.), where Eimpl :=

(KGimpl, Encimpl,Decimpl)
Correctness under subversion is an overlooked (or simply assumed,

e.g., in [4], as the “decryptability” assumption), but fundamental

property. One can imagine that the adversary “hates” a certain

messagem that is unknown to the watchdog (e.g., “your cryptosys-

tem is subverted”). The subverted implementation can then check

whether the plaintext matches m and, if so, Decimpl outputs an
arbitrary value other thanm. This can be used by the adversary to

effectively implement censorship. We say a public key encryption

scheme is correct under subversion if the following holds: ∀m,

Pr

[
Decimpl (sk, c ) ,m :

C ← Encimpl (pk,m), (pk, sk ) ← KGimpl (1
λ )

]
≤ negl(λ),

where the probability is over the coins used in KGimpl and Encimpl.

Subversion resistant symmetric-key bit encryption. We pro-

ceed to design a specification for any secure symmetric-key bit

encryption scheme so that the subliminal channels in all of the

algorithms can be destroyed. With the general tools we developed

in Sec. 3.2, we will “immunize” the algorithms one by one.
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First, the (symmetric-key) key generation algorithm simply takes

the security parameter as input and produces a random element

in the key space. Following Thm. 3.4 directly, the specification

KGspec := (KG0

spec
,KG1

spec
,ΦKG

spec
) (see Fig. 9) is stego-free; here

KG0

spec
,KG1

spec
both output random elements in the key space K ,

and ΦKG
spec

: K × K → K , is modeled as a random oracle. As

discussed above, the random oracle can be removed if we allow

randomness generation to be further subdivided; see appendix. ??.

ΦKG
spec

KG0

spec

KG1

spec

K1

K0

K

Figure 9: Stego-free spec for symmetric key generation

Next, consider the encryption algorithm; we focus first on bit en-

cryption. In this case, the encryption algorithm takes three inputs:

a security parameter, a small domain input (a bit), and a pair given

by the random coin and the key, which come from a public input

distribution RGimpl × KGimpl. From Corollary 3.6, the specifica-

tion Encspec := (RGspec, dEncspec) (as described in Fig. 10), where

RGspec := (RG0

spec
,RG1

spec
,ΦRG

spec
) defined as in Fig. 6, is stego-free

if Φspec is assumed to be a random oracle.

ΦRG
spec

RG0

spec

RG1

spec

r1

r0
r

dEncspec C
m ∈ {0, 1}

K

Figure 10: Stego-free specification for encryption algorithm

in a symmetric-key bit encryption scheme.

Finally, consider the decryption algorithm. It does not influence

CPA security, but directly influences correctness. Fortunately, when

considering bit encryption only, the decryption algorithm is deter-

ministic with a public input distribution. To see this, the decryption

algorithm will input a key K (generated by KGimpl) and a cipher-

textC (generated by encrypting 0 or 1 using K with uniform coins).

The watchdog can sample from the input distribution of Decimpl
to check the correctness, i.e., the consistency with Decspec.

With all of the algorithms handled individually, we present the

first general immunizing result for randomized encryption.

Theorem 4.2. Given any stateless IND-CPA secure symmetric bit
encryption scheme, the specification described above is subversion
resistant and correct according to Def. 4.1.

Proof. (sketch) The specification is described above (with the

randomized algorithm split into randomness generation and a de-

terministic part, and the randomness generation split into two

components together with an immunizing function as in Figure 6.).

Security. The watchdog is the combination of those described above:

it guarantees that RGspec is stego-free (making samples to observe

collisions) and guarantees that dEncimpl is consistent with the spec-

ification on inputs sampled from KGimpl × RGimpl (with 0 and 1);

cf. Lemma 3.3. Here we only sketch the game changes and explain

the negligible differences arising during the game transitions con-

ditioned the watchdog’s result.

Game-0 is the original game as described in Figure 8 with a

trusted combining; Game-1 is the same as Game-0 except KGimpl

is replaced with KGspec; Game-2 is the same as Game-1 except

Encimpl is replaced with Encspec.
The adversary’s advantage in Game-0 and Game-1 are negligibly

close because of the stego-freeness of KGspec. To see this, a sim-

ulator can simulate the rest of the games in Game-0 (or Game-1)

after receiving K sent by the challenger in the game defining stego-

freeness for KGspec. If one can distinguish Game-0 from Game-1,

then the simulator can easily tell apart KGimpl from KGspec (even if

the challenger does the composition). Similarly, we can argue Game-

1 and Game-2 are indistinguishable because Encspec is stego-free.
The fact that Encspec is stego-free follows from Corollary 3.6.

Every algorithm used in Game-2 is faithfully implemented; thus

the IND-CPA security of the underlying encryption scheme holds.

Regarding correctness. As described above, the decryption algo-

rithm for a bit encryption scheme has a public input distribution.

The watchdog can sample random keys and check whether Decimpl
works properly for bit encryption. Following Lemma 3.3, we con-

clude that: ∀b ∈ {0, 1},

Pr [Decimpl (K , Encspec (K ,b)) , b : K ← KGimpl] ≤ negl(λ),

while for the encryption algorithm, Encimpl can be used inter-

changeably with Encspec. Thus, ∀b ∈ {0, 1},

Pr[Decimpl (Encimpl (K ,b)) , b : K ← KGimpl] ≤ negl(λ) .

Combining these yields the statement of the theorem. □

Subversion resistant symmetric encryption with large mes-

sage spaces. For large message spaces, the security game must

allow the adversary to query; see Fig 13 in appendix. B. As men-

tioned in Sec 3.1, this immediately invites an input-trigger attack.

Specifically, for a particular querymi (chosen randomly by A dur-

ing subversion), the subverted encryption algorithm may directly

output the secret key; the same threat exists for stateful bit encryp-
tion, where a particular sequence of encryption bits may act as a

trigger. Note that this simply cannot be detected by a ppt watch-

dog (making polynomially many samples). Furthermore, the same

attack can be launched on Decimpl to ruin correctness (as Decimpl
can output a different value). This suggests the principle that a

subverted implementation should never be given a “naked” input

generated by the adversary, e.g., the queried message.

However, observe that if the input message is forced to come

from a known distribution U (e.g., the uniform distribution), the

watchdog can check consistency between dEncimpl and dEncspec
on U (we ignore other inputs for simplicity, as they are from a

public input distribution). Indeed, the watchdog can guarantee that

with an overwhelming probability dEncimpl is as good as dEncspec
when the input is sampled according toU . Now, to defend against

an input-trigger attack, we must ensure that the probability that

any particular m causes an inconsistency is negligible. This sort

of “worst-case vs. average-case” relationship arises in the theory
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of self-correcting programs [19], where one wants to transform a

program with a negligible fraction of bad inputs into a negligible

error probability for every input.With these observations, we return

to the large-message space challenge.

Constructions. First, we consider bit-wise encryption. When en-

crypting a messagem =m1 . . .mℓ for ℓ = |m |, the user generates
the ciphertext by calling Encimpl ℓ times, yieldingC := (c1, . . . , cℓ ),
where ci = Encimpl (K ,mi ). Since the bit encryption scheme we

developed above preserves IND-CPA security; IND-CPA security

follows via a simple hybrid argument. (Note, however, that in this

case it is important that the encryption algorithm is stateless.)

To develop a more efficient scheme that can further handle long

message (also stateful encryption) we augment the model by permit-

ting the user (i.e., the challenger) to carry out one trusted addition
operation

9
for each encryption and decryption, see Fig. 11. (We

continue to assume trusted combining, as before.) We augment the

specification of the encryption algorithm with a random message

generator MGspec. Specifically, the specification of the encryption

algorithm Encspec has the form (RGspec, dEncspec,MGspec), where
MGspec has the specification (MG0

spec
,MG1

spec
,ΦMG

spec
), and RGspec

is as before (as in Fig. 6). When encrypting a messagem, the user

first runsMGimpl (the implementation) to sample a random mes-

sage u, and computes m′ = m ⊕ u. The user will call Encimpl to
encrypt the new messagem′ and obtains the ciphertext c ′. This
includes calls to KGimpl,RGimpl and passing the corresponding out-

puts K , r together withm′ to dEncimpl; see Figure 11. Observe that
m′ is a uniformly chosen message (as the watchdog can ensure thatu
is safely generated). The new ciphertext C now includes u together

with the ciphertext c ′. For decryption, the user first runs Decimpl
on c ′ and obtainsm′; then the user computesm =m′ ⊕ u.

ΦMG
spec

MG0

spec

MG1

spec

u1

u0

MGspec

RG0

spec

RG1

spec

r1

r0

ΦRG
spec

RGspec

r

dEncspec C

u

m

⊕m ⊕ u

K

Figure 11: Stego-free encryption specification supporting

large messages, where K ← KGimpl.

Security analysis. The intuition that this simple method works is

as follows: First, we generalize Theorem 4.2 that symmetric-key

encryption for random messages are also subversion resistant. To

see this, we analyze the stego-freeness algorithm by algorithm. The

9
We remark here that such addition operation can be considered to be from user’s

basic computing infrastructure, and furthermore, such extra assumption is still weaker

than previous works, such as the reverse firewall.

key generation is the same as the bit encryption. The encryption al-

gorithm now takes input a uniform message, together with the key

and security parameter. It means that the encryption algorithm (the

deterministic part dEncspec) now takes inputs from public input dis-

tributions, i.e., KGimpl × RGimpl ×UM , whereUM is the uniform

distribution over message spaceM. Following Theorem 3.5, such

encryption algorithm will be stego-free as long as the specification

is designed as Figure 7. Now for the decryption algorithm, since

the encryption is for uniform messages, thus the decryption algo-

rithm now also takes a public input distribution. Next, we show the

encryption specification defined in Figure 11 indeed takes uniform

messages as input. (1.) Following Theorem 3.4, the uniformmessage

sampler MGspec is stego-free. (2.) With the trusted addition opera-

tion, when a that Encimpl takes as input will bem′ =m ⊕ u, where
u looks uniform even to the adversary, thusm′ would look uniform
to Encimpl (actually the deterministic part dEncimpl). Similar to the

analysis of Theorem 4.2, we can show a stronger result that han-

dles the correctness and subversion resistance for symmetric-key

encryption supporting long messages.

Theorem 4.3. For any IND-CPA secure symmetric-key encryption,
the specification described as in Fig. 11 is subversion resistant and
correct according to Def. B.1, assuming a trusted ⊕ operation.

4.2 Cliptographically IND-CPA secure PKE

Nowwe turn to public-key encryption, which follows fairly directly

from the previous construction. The major difference arises with

key generation, as asymmetric key generation has to be treated

with more care than simple randomness generation; see Figure 12,

which indicates the construction. Specifically, the basic techniques

used for symmetric key encryption above can be adapted for public

key encryption. Key generation must be considered as a random-

ized algorithm producing structured output (with only security

parameter as input). With these tools at hand, we resolve the major

open problem to construct a IND-CPA secure PKE when facing

subversions that we asked at the beginning of the paper. We remark

that the assumption of “trusted ⊕” in the theorem below can be

removed if the message space is small.

Φspec

RG0

spec

RG1

spec

r1

r0
r

dKGspec (pk, sk )

Figure 12: Stego-free asymmetric key generation.

Theorem 4.4. For any IND-CPA secure public key bit encryption,
there exists a specification such that it is subversion resistant and
correct in the split-program model. Furthermore, for any IND-CPA
public key encryption (supporting large input space), there exists a
specification design such that it is subversion resistant and correct
according to Def. B.2, if the user can do a trusted ⊕.

5 CONCLUSIONS AND OPEN PROBLEMS

In this paper, we overcome the major obstacle in post-Snowden

cryptography: We developed a general technique to eliminate sub-

liminal channels in the subverted implementations, and we then
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applied the technique to construct the first IND-CPA secure public

key encryption scheme without relying on a trusted party. Fur-

thermore, our symmetric key encryption scheme also advances the

state of art in a way that we allow all algorithms to be subverted

and we remove the unrealistic assumption of decryptability that

was adopted in previous results.

Many interesting questions remain open, and we highlight a few

below. Given that one of the major threats are due to the subverted

randomness generation, the natural next question is whether we

can generically correct a uniform distribution, for example, consider

correcting a random oracle. The second one is whether we can

apply our general technique to other scenarios where stenographic

channels should be eliminated. One promising example might be to

use our technique to construct collusion free protocols [15]. Third,

our general technique can defend against the subliminal channel

attack due to bad randomness, however the other simpler hidden-

trigger attack is quite difficult to defend, e.g., in the setting of

digital signature. Existing work either require an online watchdog

[20] or has to require a trusted key generation with a verifiability

assumption [1]. Giving a systematic study of defendingmechanisms

against a hidden-trigger would be important. Last but not least,

we mostly consider stateless algorithms in this paper, in practice,

some algorithms might be stateful, e.g., a counter mode encryption.

Extending our research to the setting of stateful algorithms will be

with both theoretical and practical importance.
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A THE CLIPTOGRAPHIC MODEL, IN BRIEF

We will mostly follow the definitional framework introduced in

[20]. It is meant to capture a situation where an adversary has

the opportunity to implement (and, indeed, “mis-implement” or

subvert) our basic cryptographic tools. On the other hand, the

adversary prefers to keep the subversion under the radar of any

detection; this was reflected in the model via a checking component

“watchdog” who will attempt to check, via black-box testing, that

the cryptographic tools have been faithfully implemented by the

adversary. The model, in brief:

Specification (see also ⋆ below.) The cryptographic primitive

is specified as a tuple Πspec = (F 1
spec
, . . . , Fk

spec
) of “func-

tionalities.” Note that when specification contains multiple

components, that means implementation of each compo-

nent should be supplied. Each F i
spec

is either a function

F : {0, 1}∗ → {0, 1}∗ (which specifies a deterministic al-

gorithm) or a family of probability distributions, so that F (x )
is a probability distribution over {0, 1}∗ for each x (which

specifies a randomized algorithm).

Subversion. The adversary provides us with an “implementation”

Πimpl = (F 1
impl
, . . . , Fk

impl
) for each of the functionalities
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F I
impl

. Observe that the adversary may provide even the algo-

rithms that generate randomness and random objects such as

keys. Of course, in general the implementation for each com-

ponent F i
impl

may disagree with the specification component

F i
spec

, which can provide the adversary a novel avenue to

attack the primitive. (The adversary, therefore, has a full sub-

version power over the functional cryptographic modules;

Note that the basic non-cryptographic and simple firmware

functions as well as the watchdog (below) are assumed to be

correct since otherwise no computation or faithful checking

may be possible).

Testing; thewatchdog. The algorithmic and cryptographic build-

ing blocks are then sent to a trusted testing facility, thewatch-
dog. The watchdog is aware of the official specification, and

may query the adversary’s implementations (treating each

of the component as a block-box) in an attempt to detect

disagreements between Πimpl and Πspec.

The security game. After that the watchdog is satisfied, the im-

plementations Πimpl are pressed into service,
10

then their

security is modeled by a conventional security game, except

that the challenger uses Πimpl.

⋆ Remark: modular design.We permit the designer of the cryp-

tographic primitive (who determines its specification) an

extra dimension of freedom which can assist the watchdog

in his verification task: We permit the designer to function-

ally decompose the primitives into a fixed number of “pieces.”,

which is commonplace in software engineering where a big

program with well defined pieces is simply designed to have

a module for each piece and a simple program which just

calls the pieces. We call this split-program model. For exam-

ple, rather than specifying a function of interest f : X → Y ,
the designer may instead specify two functions h : X →W
and д :W → Y with the property that f = д ◦h. (Thus h and

д together specify f .) An important example in our setting

is specifying a randomized algorithm G(x ) as a composition

dG(x ,RG(1λ )), where dG is deterministic and RG, given the

input 1
λ
, produces λ uniformly random bits as output. In

general, the decomposition may be arbitrary, but may only

involve O (1) pieces (in practice these composition is going

to be natural as it follows the crypto system control flow).

See right side of Fig. ?? and Sec. 2 for details.

There are two points we would like to emphasize. (i.) Once

the decomposition is specified (simply long the control flow

of the system), the implementation of an algorithm has to

individually supply each component, otherwise the watch-

dog will trivially reject; (ii.) Such decomposition follows

the various operations of the system naturally, and is no

different from the modular design principle that is widely

utilized in software engineering practice, explicitly or im-

plicitly. For example, any encryption scheme, may, in fact,

be defined arbitrarily, but is always described as containing

three independent components: key generation, encryption,

and decryption (the first two components may even have

10
To ensure the implementations tested and used are the same, we may deploy simple

methods such as code signing.

access to an external library for randomness generation in

the actual system). See also Fig. 1 in Sec. 1.

B OMITTED DEFINITIONS

B.1 Subversion resistant symmetric-key

encryption with long messages

Definition B.1. For any randomized symmetric-key encryption

scheme, consider a specificationEspec := (KGspec, Encspec,Decspec).
We say specification Espec is subversion resistant with a trusted ad-
dition and amalgamation in the offline watchdog model, 11 if there
exists an offline pptwatchdogW , for any ppt adversaryA, playing

the game defined in Figure 13, either,

AdvA is negligible, or, DetW,A is non-negligible.

where AdvA (1λ ) = | Pr[bC = 1] − 1

2
|, and

DetW,A (1λ ) = | Pr[WEimpl (1λ ) = 1] − Pr[WEspec (1λ ) = 1]|,

test phase

W (1λ ) A (1λ , st )

� Eimpl

bW ←W
Eimpl (1λ )

execute phase

C (1λ ) A (1λ , st )

K ← KGimpl (1
λ )

�
m′

1
, . . . ,m′q′

for i = 1 to q′

c ′i = Encimpl (K ,m′i )
c ′
1
, . . . , c ′q′ -

� m0,m1

b ← {0, 1}

c = Encimpl (K ,mb )
c -

�
m′′

1
, . . . ,m′′q′′

for i = 1 to q′′

c ′′i = Encimpl (K ,m′′i )
c ′′
1
, . . . , c ′′q′′ -

� b ′

bC := 1 if b = b ′

bC := 0 otherwise

Figure 13: Subversion-resistant symmetric-key en-

cryption with trusted addition, where Eimpl :=

(KGimpl, Encimpl,Decimpl)
.

Definition B.2. For any public key encryption scheme, consider

a specification Espec := (KGspec, Encspec,Decspec). We say specifi-

cation Espec is subversion resistant in the offline watchdog model if
there exists an offline ppt watchdogW , for any ppt adversary A,

such that, at least one of the following conditions hold in the game

defined in Figure 2:

11
We remark here that for the succinctness of the definition, we put the trusted addition

operation implicitly in the specifications, and it will be carried out by the challenger.
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DetW,A is non-negligible, or, AdvA is negligible,

where the detection probability of the watchdog is defined as:

DetW,A (1λ ) = | Pr[WEimpl (1λ ) = 1] − Pr[WEspec (1λ ) = 1]|,

and, the adversary’s advantage is defined as:

AdvA (1λ ) = | Pr[bC = 1] −
1

2

|.

test phase

W (1λ ) A (1λ , st )

� Eimpl

bW ←W
Eimpl (1λ )

execute phase

C (1λ ) A (1λ , st )

(pk, sk ) ← KGimpl (1
λ )

pk
-

� m0,m1

b ← {0, 1}

c = Encimpl (pk,mb )
c -

� b ′

bC := 1 if b = b ′

bC := 0 otherwise

Figure 14: Subversion-resistant public key encryp-

tion supporting large messages, where Eimpl :=

(KGimpl, Encimpl,Decimpl).

We say a public key encryption scheme is correct under subver-
sion if the following holds: ∀m,

Pr

[
Decimpl (sk, c ) ,m :

C ← Encimpl (pk,m), (pk, sk ) ← KGimpl (1
λ )

]
≤ negl(λ),

where the probability is over the coins used in KGimpl and Encimpl.

C AN ATTACK ON SINGLE-SOURCE

RANDOMNESS PRIMITIVES

Subverted randomness generation attack: In the following at-

tack on pubic key encryption, the adversary honestly implements

the key generation and decryption, and only subverts the encryp-

tion algorithm. Suppose the specification of the (public-key) encryp-

tion algorithm is defined as Encspec := (RGspec, dEncspec,Φspec).
The meaning of each component is self-evident: RGspec generates

uniformly random bits r0, the function Φspec “cleans” r0 to produces
the final random bits r , and, finally, dEncspec takes the random bits

r , the encryption keypk , and the message bit as inputs and produces

a ciphertext C .

The attack: The adversary A first randomly chooses a backdoor z,
and prepares a subverted implementation Encz

impl
which is com-

posed of (RGimpl, dEncimpl,Φimpl) with the backdoor embedded.

In particular, RGimpl := RGz
impl

carries out rejection sampling to

ensure that the ciphertext encrypting 0 and the ciphertext encrypt-

ing 1 can be distinguished by applying a PRF (using z as the key);
the algorithms dEncimpl and Φimpl are honestly implemented (that

is, identical to the specifications). Later the adversary A can easily

learn secret information (indeed, the plaintext) from the ciphertext

generated by the subverted algorithms by applying the PRF (using

her backdoor z as the key). See Figure 15 for detailed description.

RGz
impl

(pk ):

Repeat:

r0 ← RGspec

c0 = dEncspec (pk, 0;Φspec (r0))

c1 = dEncspec (pk, 1;Φspec (r0))

Until: PRF(z, c0) = 0 ∧ PRF(z, c1) = 1

Return r0

A (z,C ):

b = PRF(z,C )
Return b

Figure 15: Subverted randomness generation and the mes-

sage recovery algorithms

Security analysis. Due to the rejection sampling condition, it is

easy to see that the adversary defined in Figure 15 can determine

the plaintext bit perfectly from the ciphertext. As for the detection
probability, the randomness output by RGspec is a uniform λ-bit
string; in contrast, the randomness output by RGimpl is a string

selected uniformly from a (random) subset S of {0, 1}λ (determined

by the PRF). The subset S consists of all strings that carry 0 and 1

to ciphertexts satisfying a criterion given by the PRF. Let us think
of the PRF as a random function, that means the rejection sampling

condition will be satisfied with probability 1/4 for each r0 uniformly

sampled. Essentially, we can consider S as a random subset of {0, 1}λ

with (expected) size 2
ℓ−2

. If there is no collision whenW asks q
queries, then the q different bit strings observed byW can come

from either of the whole space {0, 1}λ or a subset S (with size larger

than q). This means conditioned on no collision, no watchdog can

tell apart RGimpl from RGspec. Using the total probability theorem,

we can bound the distinguishing advantage by the probability that

a collision appears in q queries when sample from S .

PropositionC.1. For any CPA-secure (public-key) encryption scheme,
for any public function Φ, the adversary A shown in Figure 15 can
learn the plaintext with probability 1 given the ciphertext generated
by Enczimpl even if the randomness generation is separated and im-
munized by a random oracle. Furthermore, suppose RGimpl outputs ℓ
bits of randomness; then the detection advantage is q2/2ℓ−4+negl(λ)
for all ppt watchdogs making q queries during the interrogation,
assuming PRF is a secure pseudorandom function.

Proof. The effectiveness of A is straightforward, since the ran-

domness generated by RGimpl makes the ciphertext to be distin-

guishable using the PRF, thus the adversary A who knows the

backdoor recovers the message bit perfectly.

Next, we will argue that no offline watchdog can notice the

subversion, particularly RGimpl. (All other components are honestly

implemented). We define the game sequence as follows:

Game-0 is the game thatW is interacting with RGimpl.

Game-1 is the same as Game-0 except that the PRF used inRGimpl

is replaced with a random function R.
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Game-2 is the same as Game-1 except that RGimpl resamples, if

W notices a collision in the responses to the q queries.

Game-3 is the same as Game-2 except that RGimpl is replaced

with RGspec.

Game-4 is the same as Game-3 except removing the resampling

condition.

Analyzing the gaps, we see: Game-0 and Game-1 are indistin-

guishable because of the PRF security; Game-1 and Game-2 are

identical, if there is no collision among the q queries in Game-2. In

Game 2, for any r0, the probability that R (c0) = 0 ∧ R (c1) = 1 is

1/4, where c0, c1 are ciphertexts encrypting 0, 1 respectively using

Φ(r0) as the coin. Suppose S is the set that contains all the values

that satisfies R (c0) = 0 ∧ R (c1) = 1, then the expected size of S ,

E[|S |] = 2
ℓ/4 = 2

ℓ−2
. It follows that with negligible probability,

|S | ≤ E[ |S |]
2
= 2

ℓ−3
. Then the probability that there exists a collision

among q samples from S would be bounded by q2/|S | ≤ q2/2ℓ−3.
Game-2 and Game-3 is identical, since the responses can either

appear in a random subset or the whole space. Game-3 and Game-4

are identical except there is collision when sampling q uniform

points. The probability of such collision exist is q2/2ℓ . Combining

them above, we have the proposition. □

Remark C.1. We remark that for this particular attack we assume
that the implementation has access to a public key—this yields an
intuitively natural attack against a encryption scheme which permits
full recovery of the message. However, the basic structure of the attack
can be adapted to randomized algorithms in generality.

D OMITTED PROOFS

Theorem 3.5. For any randomized algorithmG, consider the speci-
fication Gspec := (RGspec, dGspec), where RGspec generates λ = λ(n)
bits of uniform randomness and dGspec is deterministic. We define
RGspec to be (RG0

spec,RG
1

spec,Φspec) as above. If (1.) RG0

spec (1
λ ) and

RG1

spec (1
λ ) output λ uniform bits; (2.) Φspec takes r0 ◦ r1 as input,

and outputs r (so it maps strings of length 2λ to strings of length λ)
(see Fig. 7), then Gspec is stego-free with a trusted combining. Here
Φspec is modeled as a random oracle, and RG0

impl,RG
1

impl are executed
independently.

Proof. The watchdogs will be a combination of the ones in The-

orem 3.4 and Lemma 3.3 to guarantee unpredictability of RGb
impl

and the overwhelming consistency for deterministic algorithms

with a public input distribution. Here dGspec is a deterministic algo-

rithm and the output of RGspec× IGwould be the input distribution

to dGspec.

We here only describe briefly about the game changes.

Game-0 is the same as Figure 4, the adversary A prepares every

piece of the implementation, and the challenger simply calls them

and passes the inputs to the next implementation as defined (doing

the basic amalgamation).

Game-1 is the same as Game-0 except that the randomness r is
uniformly sampled by C.

Game-2 is the same as Game-1 except that dGimpl is replaced

with dGspec.

Note that in Game-0, it corresponds to b = 0, while in Game-2,

every implementation of the algorithm (except input generation) is

now the specification, it corresponds to b = 1.

From Theorem 3.4, with a trusted amalgamation, the output from

the implementation RGimpl := (RG0

impl
,RG1

impl
,Φimpl) is pseudo-

random to the adversaryA who made RGimpl. Thus in the security

game defined in Figure 4, we can let the challenger simply generate

r uniformly to reach Game-1.

From Lemma 3.3, dGspec will be a deterministic algorithm with

a public input distribution, thus dGimpl would be consistent with

dGspec with an overwhelming probability when inputs are sampled

according to RGspec × IG, thus Game-2 can be reached with only a

negligible gap.

Once in Game-2, all components are specification. □

Session D4:  Crypto Primitives CCS’17, October 30-November 3, 2017, Dallas, TX, USA

922


	Abstract
	1 Introduction
	2 Main Results, Roadmap and Related Work
	3 Fundamental Building Blocks: Eliminating Subliminal Channels in Subverted Randomized Algorithms
	3.1 Definitions
	3.2 Purifying subverted randomness via double splitting
	3.3 Stego-free specifications for randomized algorithms; a general transformation
	3.4 Eliminating subliminal channels with trusted randomness
	3.5 Impossibility of publicly immunizing subverted random source

	4 Subversion-Resistant Encryption
	4.1 Subversion-resistant symmetric encryption
	4.2 Cliptographically IND-CPA secure PKE

	5 Conclusions and Open Problems
	References
	A The Cliptographic Model, in Brief
	B Omitted Definitions
	B.1 Subversion resistant symmetric-key encryption with long messages

	C An attack on single-source randomness primitives
	D Omitted Proofs



