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ABSTRACT
In recent years, applications increasingly adopt security primi-

tives designed with better countermeasures against side channel at-

tacks. A concrete example is Libgcrypt’s implementation of ECDH

encryption with Curve25519. The implementation employs the

Montgomery ladder scalar-by-point multiplication, uses the uni-

fied, branchless Montgomery double-and-add formula and imple-

ments a constant-time argument swap within the ladder. However,

Libgcrypt’s field arithmetic operations are not implemented in a

constant-time side-channel-resistant fashion.

Based on the secure design of Curve25519, users of the curve are
advised that there is no need to perform validation of input points.

In this work we demonstrate that when this recommendation is

followed, the mathematical structure of Curve25519 facilitates the
exploitation of side-channel weaknesses.

We demonstrate the effect of this vulnerability on three soft-

ware applications—encrypted git, email and messaging—that use

Libgcrypt. In each case, we show how to craft malicious OpenPGP

files that use the Curve25519 point of order 4 as a chosen cipher-

text to the ECDH encryption scheme. We find that the resulting

interactions of the point at infinity, order-2, and order-4 elements

in the Montgomery ladder scalar-by-point multiplication routine

create side channel leakage that allows us to recover the private

key in as few as 11 attempts to access such malicious files.

CCS CONCEPTS
• Security and privacy → Cryptanalysis and other attacks;
Public key encryption;

KEYWORDS
Side Channel Attacks, Curve25519, Cache-Attacks, Flush+Reload,
Order-4 Elements

1 INTRODUCTION
Since their introduction over a decade ago [13, 62, 63], microarchi-

tectural attacks [32] have become a serious threat to cryptographic
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implementations. A particular threat arises from asynchronous

attacks, where the attacker only has to execute a program concur-

rently with the victim’s program (on the same physical CPU) in

order to collect temporal information about the victim’s behavior.

With this temporal information at hand, the attacker can recover

the internal workings of the victim.

Because microarchitectural attacks execute on the same proces-

sor as the victim, the attacker can only achieve limited temporal

resolution. Typically, the attacker can only distinguish between

event timings if the events are several hundreds or thousands of

execution cycles apart. Consequently, past asynchronous attacks of-

ten target key-dependent variations in either the order of high-level

operations or in their arguments. More specifically, such attacks

usually target the square-and-multiply sequence of the modular

exponentiation in RSA [63, 74], ElGamal [56, 77] and DSA [65], or

the equivalent double and add sequence of scalar-by-point multipli-

cation in ECDSA [6, 10, 67, 73]. A notable exception is the attack

of Pereida García and Brumley [64], which targets the modular

inversion used in ECDSA.

With the increased sophistication of microarchitectural attacks,

many implementations of cryptographic algorithms have had their

side channel robustness investigated, analyzed, and improved. Deal-

ing away with obvious side channel vulnerabilities such as multi-

plication operations on every set key bit and key-dependent table

access, existing implementations have been replaced with more

regular algorithms, while newer schemes are designed with side

channel resistance in mind from the start.

For elliptic curve cryptography, one approach for reducing the

leakage from the scalar-by-point multiplication is to use the Mont-

gomery powering ladder [58]. Performing one point addition op-

eration and one point doubling operation per key bit, regardless

of the value of the bit, makes the Montgomery ladder much more

resilient to side channel attacks compared to other scalar-by-point

multiplication algorithms [50, 61]. Side channel resistance can be

further improved by using unified addition formulas, which elim-

inate operand-dependent branches [18] from point addition and

point multiplication routines.

Since modern cryptographic algorithms and implementations

have almost completely eliminated high-level key-dependent branches

and memory accesses, our work studies the side channel implica-

tions of low-level branches typically performed deep inside basic

integer arithmetic operations, such as modular reductions.

1.1 Our Contribution
In this paper, we present a new microarchitectural key extraction

attack on a highly-regular real-world implementation of Curve-
25519 [14]. We show that the specific mathematical structure and
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recommendations of use for many recently suggested elliptic curves

(including Curve25519) actually allow for an easier exploitation of

low-level side channel weaknesses.

We empirically demonstrate our attack using three real-world ap-

plications of Curve25519: git-crypt [1], a git plugin for encrypting

git repositories; Pidgin-OpenPGP [39], a plugin for the Pidgin chat

client for encrypting chat messages; and Enigmail [68], a popular

Thunderbird plugin for email encryption. All of these applications

use Libgcrypt [2] as their underlying cryptographic library. Since

Libgcrypt’s implementation of Curve25519 uses the Montgomery

ladder for scalar-by-point multiplication, branchless formulas for

point doubling and addition, and built-in countermeasures specially

designed to resist cache attacks, our attack cannot observe high-

level key dependent behavior, such as key-dependent branches or

memory accesses. Instead, we achieve key extraction by combining

the specific mathematical structure of Curve25519 with low-level

side channel vulnerabilities deep inside Libgcrypt’s basic finite field

arithmetic operations. By observing the cache access patterns dur-

ing at most 11 scalar-by-point multiplications, our attack recovers

the entire secret scalar within a few seconds. We note that the

mathematical structure that enables our attacks in also present in

other popular curves such as Curve41417 [15] and Curve448 [44]
(Goldilocks curve) when represented in Montgomery form [58].

The Dangers of Order-4 Elements. To extract the secret key,

our attack uses side channel leakage produced during decryption

with low-order elements, which are present in many recently de-

signed curves. While the side channel risks of order-2 elements

are known [37, 75], attacking Montgomery ladder implementations

using an order-2 element fails to produce key extraction (see Sec-

tion 1.2). Instead, our attack takes advantage of the side channel

leakage produced by decrypting with an order-4 element. The risks

of such elements have been suggested in the past [29], however we

are not aware of any demonstration of a practical attack on elliptic

curve cryptography that exploits elements of order 4.

The Shortcomings of Existing Countermeasures. Many re-

cently designed elliptic curves support scalar-by-point multipli-

cation using single-coordinate ladders, which forces all received

inputs x to be either on the curve or on the “twist” of the curve.

Moreover, these curves are also twist-secure, meaning that the twist

is also resistant to small subgroup attacks. While these properties

mitigate many invalid-curve attacks [14], they also lead implemen-

tations to omit all input validation, causing them to perform secret-

key operations on potentially adversarial inputs. Indeed, while the

recommendation to avoid performing validation [12] makes sense

in the original context of a carefully designed, constant-time imple-

mentation that does not contain side channel weaknesses and is not

vulnerable to small subgroup attacks, we argue that this validation

improves side-channel resistance for implementations that might

not be as carefully designed and implemented for constant-time

side-channel resistant execution. This is because the absence of

input validation leaves the door open for exploiting other potential

side-channel vulnerabilities, as we show in this paper.

Even when countermeasures against low order elements and

small subgroup attacks exist, they often do not prevent all side-
channel attacks. For example, RFC 7748 [54] recommends “ORing

all the bytes (of the output) together and checking whether the

result is zero, as this eliminates standard side-channels in software

implementations.” One reason that this countermeasure does not

work against side-channel attacks that exploit low-order elements

is that it is enacted after the scalar-by-point multiplication has been

performed, when the leakage is already obtained by the adversary.

Thus, we suggest that implementations reject low-order elements

before performing sensitive secret key operations, in addition to de-

ploying other side channel countermeasures such as point blinding

and exponent randomization. See Section 6 for details.

1.2 Attack Description
We target the ECDH public-key encryption algorithm, as specified

in RFC 6638 [49] and NIST SP800-56A [8] and implemented in

OpenPGP [22]. We demonstrate our attack on applications that

use Libgcrypt, the underlying cryptographic library of GnuPG [2].

The ECDH decryption operation primarily consists of multiplying

the secret key (a scalar) by a curve point. For the case of ECDH

encryption using Curve25519, Libgcrypt performs the scalar-by-

point multiplication using a Montgomery ladder implementation

with a single branchless formula for simultaneously computing

point addition and doubling. As a protection from cache attacks,

Libgcrypt also contains carefully designed routines for performing

the swap operations needed to implement the Montgomery ladder.

Thus, for every bit of the secret scalar, Libgcrypt performs the same

fixed sequence of operations that do not contain any high-level

operand-dependent branches or memory accesses.

Unlike traditional Weierstrass and Koblitz curves (such as P192,
P224, P256, P384, P521 and Secp256k1) many newly designed curves

(such as Curve25519, Curve41417 and Curve448) can be repre-

sented in Montgomery form [58] to obtain additional performance

speedups. We observe that for a curve to be representable in Mont-

gomery form, it must have an order that is a multiple of four, imply-

ing that it contains low-order elements such as an order-2 element

G2 and in many cases an order-4 element G4. While the existence of

order-2 elements is a known side channel risk [29, 37, 75], this risk

is slightly mitigated for Montgomery curves using a Montgomery

ladder based implementation since the order-2 element is the point

of origin (x = 0,y = 0). When this point is passed into many imple-

mentations of the Montgomery ladder, it causes the result and all

computed intermediate values to be zero, irrespective of the secret

key [29, 69].

Instead, we perform the ECDH decryption operation using an

order-4 element G4, and take advantage of its representation in

projective coordinates. As our analysis in Section 3 shows, using

a Montgomery ladder for decrypting G4 results in curve points of

particular mathematical structure appearing as intermediate values

during the decryption process. Thus, while the operations per-

formed by the Montgomery ladder scalar-by-point multiplication

routine are fixed, our attack links the operands of these opera-

tions to the secret scalar. Exploiting a side channel weakness in

Libgcrypt’s modular reduction operation via a cache side channel,

we can observe this link and recover the secret scalar.

1.3 Targeted Software and Current Status
In this paper, we focus on the ECDH decryption operation and

the Montgomery ladder scalar-by-point multiplication routine as
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implemented in Libgcrypt. We used Libgcrypt version 1.7.6 (which

is the latest version of Libgcrypt at the time of writing) as supplied

as part of the latest Ubuntu 17.04.

We have disclosed our findings to the GnuPG team and are

working with them to implement countermeasures against our

attack. The vulnerability has been assigned CVE-2017-0379.

1.4 Attack Scenarios
Libgcrypt is part of the GnuPG code base [2], and is used in par-

ticular by GnuPG 2.x, a popular implementation of the OpenPGP

standard [22] for encrypting files and emails. While our attack re-

quires the decryption of a specific adversarial input (an order-4

element), Libgcrypt is used as the cryptographic back-end for many

applications, and as such is often supplied with externally con-

trolled inputs. See [3] for a list of supported Libgcrypt front ends.

In Section 4.3, we detail our attacks against the following three

front-end applications:

Enigmail. For an attack on encrypted email we use the Thun-

derbird plugin Enigmail. As Genkin et al. [38] observe, Enigmail

automatically decrypts incoming emails by passing them to GnuPG,

which uses Libgcrypt as its cryptographic engine. To attack Enig-

mail, we inject an element of order 4 into Libgcrypt we send the

victim a PGP/MIME-encoded e-mail [28], with the element of order-

4 as the ciphertext.

Git-crypt. Git-crypt is a git plugin for encrypting files uploaded to

git repositories. The aim is to allow for uploading content to a public

repository and only authorize a select group of users to access the

uploaded content. The user specifies the files to be encrypted, with

encryption taking place automatically when pushing changes to

the repository. The files are automatically decrypted when changes

are pulled from the repository. Git-crypt uses a hybrid encryption

scheme. Repository files are encrypted with a randomly-generated

AES key. For each authorized user, git-crypt encrypts the AES key

with the user’s public key and stores the encrypted AES key in the

repository. An attacker can thus create a malicious key file with

an order-4 element as the ECDH public value in the ciphertext.

Uploading this file as the victim’s encrypted key file. When the

victim pulls the repository, git-crypt automatically tries to decrypt

the repository, resulting in an order-4 element being injected into

Libgcrypt’s scalar-by-point multiplication routine.

Pidgin-OpenPGP. Pidgin is a popular open-source chat appli-

cation that supports communication across a variety of chat net-

works [25]. The Pidgin-OpenPGP plugin allows users to encrypt

and sign their chat messages using GnuPG [39]. For the attack

on Pidgin-OpenPGP, we generate an encrypted chat message and

replace the ciphertext with the element of order 4. When the vic-

tim receives the message, Pidgin-OpenPGP automatically tries to

decrypt it, triggering the attack.

1.5 Attack Feasibility and Limitations
The specific attack that we describe in this paper is realistic in

settings where the attacker can share memory with the victim.

In particular, we have tested the attack when the attacker pro-

cess is running as a separate user within the same operating sys-

tem as the victim process. The Flush+Reload technique we use

has also been shown to be effective in PaaS cloud environments,

where the attacker and the victim execute within two different

containers [78] and in virtualized environments that use memory

de-duplication [48, 74]. In these settings, monitoring cache activity

during the decryption of only a few chat messages, emails, or git

pulls will be sufficient to extract the victim’s secret key.

When the attacker and the victim do not share memory, our

specific attack does not work. However, we note that use the LLC

Prime+Probe attack [56] does not require memory sharing and has

been shown effective in cloud environments [46]. Hence, avoiding

memory sharing does not guarantee protection.

1.6 Related Work
In this section, we review classes of side-channel attacks that built

the foundations for our work.

Physical Side Channel Attacks on ECC Running on Small
Devices. Since the first (simulated) attacks of Coron [26], there

have been numerous physical side channel key extraction attacks

on implementations of elliptic curve cryptography running on

small devices. See the surveys [30, 31] and the references therein.

However, most of these results either attack naive implementations

which contain key-dependent branches (such as the double-and-

add algorithm) or take advantage of subtle effects which are only

visible at bandwidths exceeding the device’s clock rate and are thus

impossible to observe using low-bandwidth channels such as the

cache side channel.

Two exceptions to the above approach are the Refined Power

Analysis attack of Goubin [40] and the Zero-Value Point Attacks

of Akishita and Takagi [5] which do seem to use low-bandwidth-

observable effects. However both of these attacks require obtaining

measurements during the decryption of hundreds of adaptively

chosen ciphertexts in order to perform key extraction, making

them easily detectable.

Physical Side Channel Attacks on ECC Running on Com-
plex Devices. Key extraction attacks against elliptic curve cryp-

tography implementations running on complex devices have also

been demonstrated using both cache and physical side channels.

More specifically, electromagnetic key extraction attacks were

demonstrated by Genkin et al. [35] on GnuPG’s ECDH encryp-

tion using a double-and-add 1NAF implementation running on PCs

and by Genkin et al. [36] and Belgarric et al. [9] for ECDSA signing

routine executed on smartphones.

Attacks onCurve25519. Kaufmann et al. [51] describe an attack

on an implementation of Curve25519, which shows timing vari-

ations when compiled with the Microsoft Visual C compiler. The

attack requires 25000 chosen ciphertexts per each key bit and takes

about a month to recover the key.

Duong [27] describes a theoretical attack against Diffie-Hellman

with Curve25519 which exploits the lack of public key validation.

The attack assumes an adversary that can replace public keys with

the element at infinity, in which case the shared secret will be

known.

Software-based SideChannelAttacks onCryptographyRun-
ning on PCs. Attacks on PC implementations of cryptography

have also been demonstrated using software channels such as the
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timing channel [20, 21]. Starting with [13, 62, 63, 70, 71] cache at-

tacks have been extensively used to break implementations of cryp-

tographic primitives running on PCs. See Ge et al. [32] for a survey.

Brumley and Hakala [19] perform a cache attack on an implementa-

tion of ECDSA. The Flush+Reload technique we use has been used

for attacks on RSA [74], AES [43, 48], ECDSA [6, 10, 67, 73] and

BLISS [41]. The attacks of [4, 73] are of special relevance as they

are the only prior works to use microarchitectural attacks to break

an implementation that uses the Montgomery ladder. Their attacks,

however, exploited a high-level conditional statement that does not

exist in the Libgcrypt implementation of the ladder.

Side Channel Attacks on GnuPG. Starting with [38, 59, 74],

GnuPG has been targeted by various key extraction attacks. These

include attacks on GnuPG’s RSA and ElGamal implementations [33,

34, 37, 38, 56, 74] as well as attacks on GnuPG’s ECDH encryp-

tion [35] and ECDSA signatures implementations [10, 67]. We note

that the attacks of [10, 35, 67] are not applicable to the implementa-

tion of Montgomery ladder based ECDH encryption that we attack

in this paper; after version Libgcrypt 1.6.5, GnuPG no longer uses

the Double-and-Add 1NAF implementation attacked by [35], and

the attacks of [10, 67] that mount a lattice attack on ECDSA using

partially known nonces are not applicable for ECDH.

Attacks Using Low-Order Elements. The risk of performing

public key cryptographic operations on elements of low order has

been previously demonstrated on various types of public key en-

cryption methods. Yen et al. [75] and Genkin et al. [37] achieve key

extraction by using an order-2 element as a chosen ciphertext with

implementations of RSA and ElGamal that are based on the square-

and-always-multiply exponentiation algorithm. For Elliptic Curve

Cryptography, low-order elements have been used for mounting in-

valid point attacks [17, 55] as well as for fault injection attacks [29].

More specifically, Fan et al. [29] present a theoretical fault injection

attack against elliptic-curve Diffie-Hellman key exchange operat-

ing over NIST curves, which do not have low-order elements. The

attack starts by performing a Diffie-Hellman key exchange using a

valid curve point with a short Hamming distance to a point of low

order on a twist of the curve. Next, the attacker can (theoretically)

inject a carefully-timed fault in the hope of flipping bits in the

point’s coordinates thus causing the implementation to perform a

scalar-by-point multiplication operation with a low-order element

on the twist. While Fan et al. [29] do not empirically demonstrate

their attack, they do argue, similar to our analysis in Section 3, that

the leakage (via physical side channels) resulting from performing

the scalar-by-point multiplication with a low order point (order-4

or order-2) should contain enough information to reveal the secret

key.

2 PRELIMINARIES
2.1 Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) is an approach to public-key

cryptography using elliptic curves over finite fields. The underlying

hardness assumption in ECC schemes is the Elliptic Curve Discrete

Logarithm Problem (ECDLP): given an elliptic curve group G, a
generator G, and a point P it is assumed to be hard to find a scalar

k satisfying P = [k]G. (Here and onward, we use additive group

notation, and [k]G denotes scalar-by-point multiplication further

described in Section 2.2 below.) The running time of the best known

algorithm for solving ECDLP (without the presence of side channel

leakage) is linear with the square root of the order of the subgroup

generated by the elliptic curve’s generator.

Curve Formulas. Elliptic curves can be expressed with several

different representations. The traditional model for elliptic curves

is the Weierstrass equation y2 = x3 + ax + b. Every elliptic curve

over a finite field Fp of a prime order can be converted to this form.

Some widely-used examples of curves expressed in this form are

the NIST curves from FIPS 186-4 [52] and the Brainpool curves [57].

Alternative elliptic curve representations are often used for

speed. Montgomery [58] introduced the eponymous Montgomery

form elliptic curves, which are specified using the curve shape

By2 = x3 + Ax2 + x . A main advantage of curves of this form

is that scalar-by-point multiplication can be implemented using

only the x coordinate. The single-coordinate version of the Mont-

gomery ladder algorithm for scalar-by-point multiplication requires

fewer arithmetic operations than standard Weierstrass scalar-by-

point multiplication methods while offering better side channel

resistance [50, 61]. The most widely used curve of this form is

Curve25519, which was introduced by Bernstein [14]. Other curves

that can be specified in this form include Curve41417 [15] and

Curve448 [44] (the Goldilocks curve).

Domain Parameters and Cofactors. An elliptic curve group

is defined by a set of domain parameters which consists of the

following values: p, a prime which defines the prime-order finite

field Fp in which the curve operates; A and B, the coefficients of

the curve equation; G, a generator of a subgroup of a prime order

on the curve; n, the order of the subgroup that G generates; and

h, the cofactor, which is equal to the number of curve points w
divided by n. Elliptic curve groups are typically chosen to have

small cofactors to limit the number of elements of small order on

the curve and to limit the checks required to protect against small

subgroup attacks [14]. NIST recommends a maximum cofactor

for various curve sizes [52]. The NIST curves over prime order

fields specified in FIPS 186-4 are in the Weierstrass form and have

a cofactor 1, but curves in the Montgomery form always have a

cofactor that is a multiple of 4 [58].

ECDH Encryption. We target the OpenPGP ECDH public-key

encryption scheme, ECDH encryption, as specified in RFC 6637 [49]

and defined as method C(1e,1s,ECC CDH) in NIST SP800-56A [8].

ECDH encryption is a hybrid scheme that combines elliptic curve

Diffie-Hellman key exchange with a symmetric-key cipher such as

AES. To generate a key pair given an elliptic curve group gener-

ator G, Alice first generates a random scalar k as her private key,

and computes [k]G as her public key. To encrypt a messagem to

Alice, Bob chooses a random scalar k ′ and computes [k ′]([k]G),
where [k]G is Alice’s public key. Bob uses the result to derive a

symmetric encryption key x . The messagem is then symmetrically

encrypted using x to obtain Encx (m), and the ciphertext is set to

c = (Encx (m), P), where P = [k ′]G is the ephemeral public key,

which also plays the role of a ciphertext in our chosen ciphertext

attack. To decrypt c , Alice computes [k](P) = [k]([k ′]G). She then
derives from it a symmetric key x ′. This key can then be used to
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symmetrically decrypt Encx (m) to get message m′. By the com-

mutative property of elliptic curve scalar-by-point multiplication

[k]([k ′]G) = [k ′]([k]G). Hence we have x ′ = x andm′ =m.

Point Representation. Elliptic curve points can be represented

in many different forms. The canonical representation uses the

affine coordinates, where a point on the curve is represented by a

pair of integers (x ,y) that satisfy the curve equation. However, this

representation requires an expensive field inversion operation to

add two elliptic curve points. Using projective coordinates, where a
point (x ,y) is represented by the triplet (X ,Y ,Z ), where (x ,y) =
(X/Z ,Y/Z ) for Z , 0, obviates the field inversion [23]. A special

“point at infinity” is represented by Z = 0. Points can have many

different representations depending on the value of Z , and this

equivalence class is denoted (X : Y : Z ).

Optimization for Montgomery Coordinates. Elliptic curve

points support arithmetic operations based on the elliptic curve’s

group addition law. For Montgomery curves, the group addition

law which adds two projective points (X0,Y0,Z0) and (X1,Y1,Z1)
to produce the sum (Xs ,Ys ,Zs ) computes Xs and Zs without using
the y-coordinates at all. This allows us to represent a point P =
(x ,y) without the y-coordinate using the projective Montgomery
coordinates P = (X ,Z ), where x = X/Z for Z , 0. This form loses

some information: there is no way to distinguish between the points

(x ,y) and (x ,−y) since they both have the representation (X ,Z ),
but this is not an issue for the application of ECDH key exchange.

These x-coordinate point operations on Montgomery curves are

extremely fast, and they also allow points to be represented with

only half as many bits, so that a public key can be represented with

only x = X/Z instead of (x ,y).

Low-Order Elements. Every elliptic curve group has an order-1

element called the identity element, which we will denote G1. G1
is often called the “point at infinity”. For every prime divisor pi
of the group order w , there exists an element on the curve with

order pi . Because Montgomery curves must have a cofactor that is

a multiple of 4, such curves must contain an element G2 of order 2.
(That is because 2 is a prime that divides the group order). Next,

since 4 divides the group order for Montgomery curves, there is

also a subgroup of order 4. This does not imply that the curve has

an order-4 element, but this is often the case. We denote order-4

elements as G4 when they exist. In the Montgomery projective

coordinates, the point at infinity is represented by (X , 0 : Z = 0),
the element of order 2 by (X = 0 : Z , 0). The coordinates of the
elements of order 4, when they exist, depend on the specific curve.

Curve25519. Introduced by Bernstein [14], Curve25519 is speci-
fied in the Montgomery form as y2 = x3 + 486662x2 + x over the

field with prime modulus p = 2
255 − 19. Curve25519 has a cofac-

tor 8, meaning that the order of the curve is 8 · n, for a prime n.
Curve25519 also has two order-4 elements with affine coordinates

(x = 1,y = ±
√
486664). Both these elements are represented in the

Montgomery projective coordinates by (X = λ : Z = λ), where
λ , 0. The curve has no element with affine x-coordinate x = −1,
however such elements, represented by (X = λ : Z = −λ) exist on
the twist of the curve, where they have an order 4. For the purposes

of this work, the elements of order 4 on the curve and on the curve’s

twist behave in a similar manner and we refer to all of them as G4.

When introduced, Curve25519 timings were more than twice as

fast as previously reported times for elliptic curves of an equivalent

security level, while also including “free key compression, free

key validation, and state-of-the-art timing-attack protection” [14].

Implementations are not required to perform key validation, since

by definition secret keys have the low-order bits set to zero, so

there is no risk of leaking these bits in a small subgroup attack [14].

Moreover, the use of the Montgomery ladder scalar multiplication

algorithm provides side-channel resistance [50, 61]. Curve25519
was standardized by RFC 7748 [54], and is implemented in a wide

variety of protocols and software [45].

Public Key Validation for Curve25519. Part of the appeal of

using Diffie-Hellman with Curve25519 is that implementations

are not required to validate public keys, including the ephemeral

public key in ECDH. Not only is validation not required, but the

recommendation is to not validate public keys because “The Curve-
25519 function was carefully designed to allow all 32-byte strings

as Diffie-Hellman public keys” [11]. This recommendation is the

subject of debate, where proponents claim that key validation is not

required [66] whereas critics maintain that the recommendation is

risky [7, 27].

In this work we identify another risk associated with this rec-

ommendation. The recommendation implicitly assumes that the

implementations of the curve functions and of the underlying field

arithmetic are constant-time. Our attack exploits the failure to reject

low-order elements, combined with a non-constant-time implemen-

tation of the underlying field arithmetic.

2.2 Scalar-by-Point Multiplication
Scalar-by-point multiplication is one of the core operations in el-

liptic curve cryptography. Given a positive scalar k and an elliptic-

curve point P, the scalar-by-point multiplication operation adds P
to itself k times to produce the point [k]P. There are several popular
methods for implementing scalar-by-point multiplication in the

literature.

Double-And-Add. The simplest method is the double-and-add

method, which is similar to the square-and-multiply algorithm in

modular exponentiation. For each bit of the scalar k , the algorithm
performs one doubling operation. Additionally, in case the bit is

set, the algorithm also performs an addition operation. However,

the fact that the sequence of doubles and adds performed by this

algorithm leaks the bits of k is a major side channel weakness [26].

Montgomery Ladder. Implementations that wish to protect

against side channel attacks can use the Montgomery ladder al-

gorithm [58] for scalar-by-point multiplication. This algorithm

performs the same number of addition and double operations re-

gardless of the value of the scalar k . As such, the algorithm can

be implemented without any key-dependent branches, making it

more side channel resistant [50, 61].

The Montgomery ladder is based on the observation that given

[⌊n/2⌋]P and [⌊n/2⌋ + 1]P, we can easily calculate [n]P and [n+ 1]P.
More specifically, if we have R0 = [⌊n/2⌋]P] and R1 = [⌊n/2⌋ + 1]P,
for even n we calculate R1 ← R0 + R1, R0 ← [2]R0, and for odd

n we use R0 ← R0 + R1, R1 ← [2]R1. We note that in both cases

we perform one addition and one doubling operation and the only

difference between the cases is the roles that the variables play.
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Algorithm 1 Montgomery ladder scalar-by-point multiplication

operation.

Input: A positive scalar k and an elliptic-curve point P, where
k =
∑n−1
i=0 2

i · ki and ki ∈ {0, 1} for all i = 0, · · · ,n − 1.
Output: [k]P.
1: procedure montgomery_ladder(k, P)
2: R0 ← G1 ▷ G1 represents the order-1 identity element

3: R1 ← P
4: dif_x← P.x
5: for i ← n − 1 to 0 do
6: b ← ki
7: Q0, Q1 ← conditional_swap(R0, R1,b)

▷ Constant time swap when b = 1

8: S0, S1 ← montgomery_step(Q0, Q1, dif_x)
▷ S0 = [2]Q0, S1 = Q0 + Q1

9: R0, R1 ← conditional_swap(S0, S1,b)
▷ Constant time swap when b = 1

10: return R0

Naive implementations of theMontgomery ladder scan the scalar

from the most significant bit to the least significant. For each bit,

they conditionally execute one of the computations specified above,

based on the value of the bit. However, such implementations are

known to be vulnerable to side channel attacks [4, 73]. A common

mitigation, which Libgcrypt uses, is to conditionally swap the values

of R0 and R1 before and after the computation. Algorithm 1 shows

the pseudocode of such an implementation. The conditional swaps

can be implemented using bit manipulations to avoid any branches

or memory access operations that depend on secret-key bits. Such

implementations are protected against timing and cache-based side

channel attacks.

As mentioned earlier, one of the advantages of Montgomery

curves is that the Montgomery step, which sums its two arguments

and doubles one of them (Line 8 of Algorithm 1), can be calculated ef-

ficiently using only the x-coordinates in the projective Montgomery

form. Algorithm 2 shows a pseudo code of an implementation of

the Montgomery step. We note that the implementation does not

contain any branches or memory accesses that depend on secret

values.

2.3 Libgcrypt’s Implementation
Wenowdescribe Libgcrypt’s implementation ofMontgomery curves

and point operations. Libgcrypt stores points using projective Mont-

gomery coordinates. Each point is represented as a pair (X ,Z ),
where each element is a large integer stored using Libgcrypt’s arith-

metic library, MPI. MPI stores large integers as arrays of limbs,
which are 64-bit words on the x86-64 architecture used in our tests.

For Curve25519, field elements are calculated modulo 2
255 − 19

hence integers can have up to four limbs. Multiplication and squar-

ing operations on field elements can be up to 510 bits long before

modular reduction and may require 8 limbs for storage.

Libgcrypt’s Scalar-by-Point Multiplication. Libgcrypt uses

the Montgomery ladder (Algorithm 1) for scalar-by-point multipli-

cation. In order to protect from side channel attacks, Libgcrypt’s

implementation uses a side-channel-resistant constant-time point

Algorithm 2 Libgcrypt’s Montgomery step operation (simplified).

Input: Two points Q0 = (X0,Z0) and Q1 = (X1,Z1) in projective

coordinates on an elliptic-curve based group of order p, and
dif_x which should be equal to the difference in x-coordinates
of the input points.

Output: Two points Dbl = (Xd ,Zd ) and Sum = (Xs ,Zs ) in projec-

tive coordinates such that Dbl = [2]Q0 and Sum = Q0 + Q1.
1: procedure montgomery_step(Q0, Q1, dif_x)
2: l1 ← X1 + Z1 mod p
3: l2 ← X1 − Z1 mod p
4: l3 ← X0 + Z0 mod p
5: l4 ← X0 − Z0 mod p
6: l5 ← l4l1 mod p
7: l6 ← l3l2 mod p
8: l7 ← l2

3
mod p

9: l8 ← l2
4
mod p

10: l9 ← l5 + l6 mod p
11: l10 ← l5 − l6 mod p
12: Xd ← l7l8 mod p
13: l11 ← l7 − l8 mod p ▷ l11 = 4X0Z0 (see Equation 5)

14: Xs ← l2
9
mod p

15: l12 ← l2
10

mod p
16: l13 ← l11 · (A − 2)/4 mod p ▷ A = 486662 for Curve25519
17: Zs ← l12 · dif_x mod p
18: l14 ← l7 + l13 mod p
19: Zd ← l14l11 mod p
20: return ((Xd ,Zd ), (Xs ,Zs ))

swap function to set the inputs and outputs of themontgomery_step
function based on the value of the secret key bit in each loop itera-

tion.

Libgcrypt’s Montgomery Step Implementation. The mont-

gomery_step function receives inputs Q0, Q1, and dif_x which is

the affine x-coordinates of the input point P. It returns ([2]Q0, Q0 +
Q1). Doubling of Q0, represented in the projected Montgomery co-

ordinates as (X0,Z0), is computed by

Xd = (X0 + Z0)
2 (X0 − Z0)

2
(1)

Zd = (4X0Z0) ((X0 + Z0)
2 + ((A − 2)/4) ∗ (4X0Z0)), (2)

and the Montgomery addition operation for computing Q0 + Q1
performs

Xs = ((X0 − Z0) (X1 + Z1) + (X0 + Z0) (X1 − Z1))
2

(3)

Zs = dif_x((X0 − Z0) (X1 + Z1) − (X0 + Z0) (X1 − Z1))
2, (4)

where A is a curve parameter.

Algorithm 2 shows a simplified version of Libgcrypt’s implemen-

tation of the montgomery_step algorithm for projective Mont-

gomery coordinates. The actual Libgcrypt implementation re-uses

the coordinates of the input variables for temporary storage during

the computation and precomputes (A− 2)/4. For clarity, we replace
these with local variables and explicit formulas.

We pay special attention to the multiplication on Line 19, which

we target in Section 3. In particular we note that the value l11
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Algorithm 3 Libgcrypt’s modular reduction operation (simplified).

Input: Two integers x andm, represented as a sequence of limbs

x0 . . . xl−1 andm0 . . .mk−1.

Output: x modm.

1: procedure modular_reduction(x ,m)

2: l ← size_in_limbs(x)
3: k ← size_in_limbs(m)
4: if l < k then
5: return x ▷ Early exit if x is smaller thanm

6: for i ← l − 1 downto k − 1 do
7: q ← (xi · 2

64 + xi−1)/mk−1 ▷ Estimate quotient q
8: if q(mk−1 · 2

128 +mk−2) > xi · 2
128 + xi−1 · 2

64 + xi−2
then

9: q ← q − 1 ▷ If q is too large, adjust estimate

10: x ← x − q ·m · 264(i−k ) ▷ Subtract from x

11: return x ▷ x holds the remainder

computed in Line 13 of Algorithm 2 is

l11 = l7 − l8 = l
2

3
− l2

4

= (X0 + Z0)
2 − (X0 − Z0)

2

= (X 2

0
+ 2X0Z0 + Z

2

0
) − (X 2

0
− 2X0Z0 + Z

2

0
)

= 4X0Z0.

(5)

Libgcrypt’s Modular Reduction Routine. After each arith-

metic operation in montgomery_step (Algorithm 2), the result is

reduced modulo p using Libgcrypt’s modular reduction function.

Algorithm 3 shows a simplified version of this function, which uses

the classical long division algorithm formalized by Knuth [53]. The

quotient q is estimated in each iteration of the loop and adjusted if

the initial estimate was off by 1. Then, the appropriate multiple of q
is subtracted from the input before execution returns to the top of

the loop. Notice that code execution only reaches the body of the

main for loop at Line 6 when the number of limbs of the number

being reduced, is equal to or greater than the number of limbs ofm,

the modulus. Otherwise, when the input is shorter, and therefore

guaranteed to be smaller, thanm, the algorithm exits early without

performing a modular reduction.

As we show in Section 3, detecting the early exit in Line 5 shows

that the value l14 · l11, as computed in Line 19 of Algorithm 2, is

smaller than the order of the group, p, allowing the attacker to

determine the order of the group elements being multiplied. Using

this information, the attacker can then extract the bits of the secret

scalar k , resulting in a complete key extraction.

3 CRYPTANALYSIS
In this section we present our non-adaptive chosen ciphertext side-

channel attack against Libgcrypt’s ECDH implementation. Since

the sequence of arithmetic field operations performed by the Mont-

gomery ladder is not key-dependent, we wish to find some elliptic

curve point P that, when multiplied by the secret key k , will cause
an observable correlation between the intermediate values used as

operands of these arithmetic operations and the bits of k . We then

use a side-channel attack to obtain information about the values of

the operands of these operations, achieving complete key recovery.

Chosen Ciphertext as Order-2 Element. Previous work [37,

75] used an order-2 element as a chosen ciphertext for attacks

on RSA and ElGamal in order to create an observable correlation

between the operands of the arithmetic operations performed by

the exponentiation routine and the secret key. Unfortunately, this

approach does not work in our case. The order 2 element is G2 =
(X = 0,Z , 0). If we use P = G2, we have dif_x = G2.x = 0 in Line 4

of Algorithm 1. As Ransom [69] observes, this is an exceptional case

that causes incorrect results for theMontgomery addition computed

by montgomery_step. More specifically, because Zs is set to 0 on

Line 17 of Algorithm 2, the sum (Xs ,Zs ) = G1 + G2 is computed

as (X = 0,Z = 0), which is illegal in the Montgomery projective

representation. Subsequent iterations of the loop in Algorithm 1

treat this undefined point as G1 instead of G2. The consequence of
this irregularity is that when we use P = G2, all of the intermediate

values in Algorithm 1 are the invalid point irrespective of the secret

key bits. We stress that the irregularity in the implementation only

happens when P = G2. For every other value of P, the point addition
will involve at least one value that is neither G1 nor G2 and the

results of the algorithm are correct.

3.1 Long and Short Modular Reductions and
Order-2 Elements

Our attack exploits the early exit in Line 5 of Algorithm 3. We say

that the modular reduction in l14 ·l11 mod p (Line 19 of Algorithm 2)

is short when the number of limbs in l14 · l11 is smaller than the

number of limbs in p, causing an early exit. Otherwise, we say that

modular reduction in l14 · l11 mod p is long. We later show that by

monitoring the cache, we can detect the early exit. We now proceed

to describe when early exits occur and how we can recover the key

based on them.

Order-1 and Order-2 Arguments Imply Short Modular Re-
ductions. Consider the case where the first argument Q0 to mont-
gomery_step (Algorithm 2) is either the order-1 element G1 or the
order-2 element G2. As mentioned in Section 2.1, for G1 we have
(X0 , 0,Z0 = 0) and for G2 we have (X0 = 0,Z0 , 0). In both cases

the value l11 = 4X0Z0 (see Equation 5) computed in Line 13 is equal

to 0. Next, since l11 is zero we obtain that the value l14 ·l11 computed

in Line 19 is also equal to 0. Finally, since the representation of 0

consists of only one limb, the condition in line Line 4 of Algorithm 3

is true, causing an early exit on Line 5, and the modular reduction

in Zd ← l14 · l11 mod p is short.
Order-4 Arguments Typically Imply Long Modular Reduc-
tions. As we discuss in Section 2.1, an order-4 element G4 has
the form (X = λ,Z = ±λ), with λ ∈ [1, . . . ,p − 1]. The fact that

the affine point x = 1 can be expressed in this way with projective

coordinates actually helps our attack. As above, consider passing

the order-4 element (X0 = λ,Z0 = ±λ) as the Q0 argument of

montgomery_step. We now look at the values of l11 and l14 used
in Line 19. From Equation 5 we have l11 = 4X0Z0 = ±4λ

2.

For l14 we have:

l14 = l7 + l13 mod p = l2
3
+ l11 · (A − 2)/4 mod p

= (X0 + Z0)
2 + 4λ2 · (A − 2)/4 mod p

= λ2 · (A ± 2) mod p
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where the ±2 depends on whetherG4 is on the curve or on its twist,

i.e. whether Z0 = λ or Z0 = −λ. Consequently, if λ < (2192/(A +

2))1/4 orp−λ < (2192/(A+2))1/4, we have that l14l11 < 2
192

and the

reduction in Line 19 is short. Otherwise, we have that l14l11 > 2
192

and the reduction is long, except with a negligible probability of

2
192−510

.

3.2 Order-4 Element as a Chosen Ciphertext
We now consider decryption when the adversary sends an element

of order 4 G4 as chosen ciphertext. Recall that there are two elements

of order 4, an element on the curve, with affine x-coordinate of 1
and an element on the twist with x-coordinate of −1. However, for
our purposes these elements behave the same so we refer to both

as G4. The relevant rules of point addition for order-4 elements are

as follows:

[2]G4 = G2

G1 + G4 = G4

G2 + G4 = G4

Montgomery Ladder Invariant Revisited. Next, we recall that

in the Montgomery ladder, the difference in affine coordinates of

the tracked values R0 and R1 is P, the input point. Based on the

addition rules above, when the input point is G4, as is the case in
our attack, one of R0 and R1 must be G4 and the other must be either

G1 or G2.

Determining Key Bits. We now show how, an attacker that

knows the value of the i-th key bit, ki can leverage the side channel

leakage to learn the value of bit ki−1. Repeating this argument for

all of the bits of k results in a complete key extraction. Indeed, note

that based on the invariant and the rules above, every time the

montgomery_step function is executed in Algorithm 1, the output

value S1 = Q0 + Q1 must be an order 4 element G4. Next, since
S1 = G4 the Montgomery ladder invariant implies that S0 is either
G1 or G2. The values held by S0 and S1 after processing bit ki will
propagate to the Montgomery step of bit ki−1 as the values held by

Q0 and Q1, possibly getting swapped at two locations: Line 9 if bit

ki is set, and Line 7 in the next loop iteration in case bit ki−1 is set.
Thus, we consider the following two cases based on the values

of the key bits ki and ki−1:

(1) ki−1 = ki . When propagating from S0 and S1 to Q0 and Q1,
the values will either be swapped twice if ki = ki−1 = 1, or not

swapped at all, when ki = ki−1 = 0. In both cases, Q0 ∈ {G1, G2}
and Q1 = G4. As stated in Section 3.1, having Q0 ∈ {G1, G2}
implies that the modular reduction in Line 19 of Algorithm 2

performed during the processing of ki−1 will be short.
(2) ki−1 , ki . When propagating from S0 and S1 to Q0 and Q1, the

values will be swapped exactly once, since only one of ki and
ki−1 is set. In either case, Q0 = G4 and Q1 ∈ {G1, G2}. As stated in
Section 3.1, having Q0 = G4 implies that the modular reduction

in Line 19 of Algorithm 2 performed during the processing of

ki−1 will be long.
Hence, when the attacker knows ki , observing the length of the

modular reduction will allow the attacker to determine the value

of ki−1. This culminates in an easy procedure for recovering bits

directly from a sequence of short and long reductions: a short re-
duction means that the current bit is the same as the previous bit,

and a long reduction means that the current bit is the complement

of the previous bit.

Key Extraction. Confirming the above, in Figure 1 we show a

sequence of modular reductions performed in Line 19 during 39

loop iterations of Montgomery ladder (Algorithm 1). As can be seen,

some modular reductions are long while others are short, which
clearly indicates the leakage of secret key material.

Assuming that the bit preceding the captured sequence was 0, we

apply our easy rule: a long reduction implies that the value of the

next bit (the first captured) is 1. The next modular reduction is long
again, and we can conclude that the bit is 0. The third reduction is

short, indicating that the value of the bit remains 0 and so forth.

Small values of λ. A minor limitation of the above approach

is that, as discussed above, when doubling G4 with a small λ, the
modular reductionwill be short. Experimentally, we find that during

most of the algorithm the probability of this happening is negligible.

However, when Libgcrypt initializes R1, it sets λ = 1. Nevertheless,

the length of λ increases rapidly, reaching the full size of four limbs

(255 bits) within four loop iterations. However, during these first

four iterations the value of λ is small, hence our attack is unable to

determine the first four key bits used during these iterations.

4 EXPERIMENTAL RESULTS
4.1 Attack Technique
For the side channel, we use the Flush+Reload attack [74] in con-

junction with the amplification attack of Allan et al. [6]. Microarchi-

tectural attacks such as Flush+Reload leak information on programs

by monitoring the effects that executing a program has on the state

of the components of the processor. See Ge et al. [32] for a survey

of published microarchitectural attacks. In particular, the Flush+

Reload attack leaks information by monitoring the presence of

memory locations in the cache.

The Flush+Reload Attack. The Flush+Reload attack consists of

two phases. In the flush phase, the attacker evicts the contents of

one or more monitored memory addresses from the cache. This is

typically achieved by using a dedicated instruction, such as the x86

clflush, but in the absence of such an instruction, the attacker can

use other mechanisms to achieve eviction [42, 76]. After the flush

phase is completed the attacker waits for a short while to allow the

victim time to execute. Then, during the reload phase, the attacker

reads the contents of the memory addresses, measuring the time it

takes to perform the read.

In case the victim accesses one or more of the monitored memory

addresses between the flush and the reload phases, the contents of

these addresses will be cached again causing the attacker’s reads

to be fast. Conversely, in case the victim does not access a mon-

itored memory address, the contents will not be cached, causing

the attacker’s read to take longer. Performing the attack repeatedly,

the attacker can trace the victim’s memory accesses to specific ad-

dresses over time. In case the monitored memory addresses are part

of the victim’s code, the attacker learns some information about

the victim’s execution patterns.

Session D3:  Logical Side Channels CCS’17, October 30-November 3, 2017, Dallas, TX, USA

852



 0

 200

 400

 600

 800

 1000

 1200

1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0

R
e

d
u

c
ti
o

n
 t

im
e

 (
c
y
c
le

s
)

Secret key

Long reduction
Short reduction

Figure 1: Trace (excluding four first bits) of scalar-by-point multiplication of a secret key with an element of order 4. We can
learn the bits of the scalar (shown on the x-axis) from the sequence of long and short modular reduction operations: a short
reduction implies that the current bit is the same as the previous bit, whereas a long reduction means that the current bit is
the complement of the previous bit.
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Figure 2:Memory access times of the Flush+Reload attack, with the lengths of the horizontal bars corresponding to the lengths
of modular reductions. The results were obtained by flushing and reloading four memory locations, two within the constant-
time swap code and two within the multiplication code. In each sample, we perform a flush followed by a reload for each
of these four memory locations, measuring access times. We show the minimum of the access times for the two memory
locations in the constant-time swap code in red, and the minimum of the access times for the two memory locations in the
multiplication code in blue.

The Amplification Attack. Because the Flush+Reload attack

executes concurrently with the victim, the Flush+Reload attack has

a limited temporal resolution. To improve the attack resolution,

Allan et al. [6] suggest slowing the victim down. At high level, this

is done by identifying frequently accessed, or “hot”, sections of the

victim code and then repeatedly evicting these sections from the

cache. Next, in order to execute code that has been evicted, the

victim has to wait until the processor loads the code from the main

memory. This, in turn, increases the time it takes the victim to

execute each operation and provides a larger time window for the

attacker to make accurate side-channel measurements. To evict the

code from the cache, Allan et al. [6] use the clflush instruction,

hence like the Flush+Reload attack, amplification only works when

the victim and the attacker share memory.

4.2 Attacking the Scalar-by-Point
Multiplication

Experimental Setup. We target Libgcrypt’s implementation

of the Montgomery ladder scalar-by-point multiplication routine.

We first demonstrate the attack’s feasibility by directly invoking

Libgcrypt’s scalar multiplication on an order-4 element. As de-

scribed in Section 1.3, we target Libgcrypt 1.7.6, which is the latest

version of Libgcrypt at the time of writing this paper, as supplied in

the latest Ubuntu 17.04. Below, all experiments and cache attacks

Session D3:  Logical Side Channels CCS’17, October 30-November 3, 2017, Dallas, TX, USA

853



were performed on a Dell Optiplex 9010 desktop, equipped with an

i7-3770 3.4 GHz processor and 8GB of memory, running unmodi-

fied Ubuntu 17.04. To mount the Flush+Reload attack, we used the

FR-trace utility of the Mastik toolkit [72]. FR-trace provides a

command-line interface for performing the Flush+Reload attacks

as well as support for the amplification attack of Allan et al. [6].

Applying the Flush+Reload Attack. To extract information

about whether the modular reduction in Line 19 of Algorithm 2

was long or short during each iteration of the main loop of Algo-

rithm 1, we set FR-trace to monitor four memory locations within

the Libgcrypt library. Two of these locations are within the field

multiplication code (which executes before the modular reduction

operation) and the other two are within the conditional_swap
function (which executes after the modular reduction operation).

As Allan et al. [6] observe, monitoring two memory locations with

the same functionality reduces the probability that the attack will

miss a memory access due to overlap between the victim’s memory

accesses during the attacker’s reload phase. To improve our ability

to detect the length of the modular reduction operation, we use

the amplification attack of [6] to repeatedly evict the code of the

operation. This increases the time to perform modular reduction

by a multiplicative factor of 11.1.

Recall that our attack correlates the bits of the secret key and

the time it takes to perform the modular reduction in Line 19 of

Algorithm 2. Since this modular reduction operation is executed

between our two measurement points, we expect that the temporal

separation between the two measurements will reveal the length

of the modular reduction, i.e. whether it is long or short.
Trace Analysis. Figure 2 shows a sample of a trace of a scalar

multiplication. For eachmeasured functionality (field multiplication

code and the conditional_swap function) we plot the shorter of
reload times of the two measurement locations. Recall that the

reload time of a monitored location is shorter following a victim’s

access to that location. In our test environment, we find that loads

from memory take over 150 cycles, whereas loads from the cache

take less than 100 cycles. Thus, whenever the reload takes below 100

cycles we can assume that the victim has accessed the monitored

location.

Observing Swap Operations. Looking at Figure 2, we see a

sequence of “dips” which indicate various victim accesses. Dips

in the swap line (solid red) indicate that the victim performed the

constant time swap operation. Due to the low temporal resolution

of the Flush+Reload attack, we are unable to distinguish between

the swap that occurs at the end of one loop iteration of Algorithm 1

and the swap at the start of the next one. Hence, the four dips visible

in the solid red line show the times where processing of one scalar

bit ends and processing of the following bit starts during the main

loop of Algorithm 1.

Observing Multiplication Operations. Dips in the multiply

line (dashed blue) indicate times when the victim performed the

multiplication operations in Algorithm 2. Gaps between the dips

correspond to all of the other operations that the algorithm per-

forms. Due to the amplification attacks, the dominant component

in the gaps is the time it takes to compute the modular reduction.

The amplification attack only amplifies the main loop of the mod-

ular reduction. Hence, when Algorithm 3 exits early, its timing is

not affected by the attack. Due to the limited temporal resolution of

the Flush+Reload attack, in the case of a short reduction, the attack
is unable to distinguish between the timing of the multiplication in

Line 19 of Algorithm 2 and the following swap operation.

Observing Long and ShortModularReductions. Wenow turn

our attention to the gap between the last observed multiplication

operation and the following swap. These are marked with black

horizontal bars. We note that in the case of a long reduction this

gap is due to the modular reduction in Line 19 of Algorithm 2.

However, as discussed above, in the case of a short reduction, Fl-
ush+Reload samples this multiplication in the same time as the swap

operation. Hence, the gap is due to the preceding multiplication, in

Line 16. Because one of the multiplicands in Line 16 is short, the

multiplication result is short and the modular reduction in this case

is faster than that of a long reduction.

As we can see, Figure 2 shows one short gap, followed by two

long and another short gap. These correspond to long and short
modular reductions. Hence, by measuring the length of the gap,

the attacker can recover the information on the length of the last

modular reduction, and from it recover the bits of the key.

Handling Measurement Errors. Side-channel attacks rarely

produce error-free results. To measure the number of errors in our

attack, we captured 1000 traces and compared with the ground

truth. On average, there are 3.8 errors in a trace. See Figure 4 for

the distribution of the number of errors in traces.

Overall Attack Performance. To correct the errors, we selected

five arbitrary traces (see Figure 3), aligned them manually (about

10 minutes of wall-clock time) and used a simple majority rule

to decide the length of each modular reduction operation. From

this we were able to deduce for all but the leading four key bits

whether the modular reduction in Line 19 of Algorithm 2 was

long or short. Finally, applying the cryptanalysis from Section 3,

we successfully recovered all but the first four bits of a randomly

generated Curve25519 scalar. The leading bits can then easily be

found using exhaustive search.

4.3 Attacking Applications
We now turn our attention to attacking applications that use Lib-

gcrypt.We attack three applications: git-crypt [1], Pidgin’s OpenPGP

plugin [25, 39], and Enigmail [68]. We first describe these appli-

cations with a focus on how they use encryption and the attack

vector. We then describe the attack results.

4.3.1 Git-crypt

Git-crypt is a plugin for the git revision control system, used to

selectively encrypt files in a repository. When initialized, git-crypt

selects a random AES key, which is used for encrypting the files

stored in the git repository. To publish the repository’s AES key,

git-crypt creates encrypted key files using the Gnu Privacy Guard

(GnuPG) software. Each of the key files is encrypted with the public

key of an authorized user and is stored in the repository. When git

processes modifications to an encrypted file, it invokes git-crypt,

which calls GnuPG to retrieve the repository’s AES key. Git-crypt

then encrypts or decrypts the modified file.
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four first bits) in traces of the scalar multiplication.

Attack Scenario. Weuse the default install of git-crypt on Ubuntu

17.04. To attack, we modify the victim’s encrypted key file by re-

placing the ECDH ephemeral public key with the element of order 4

and commit the change into the repository. Once the victim pulls

the modified key file, any attempt to encrypt or decrypt files in the

repository will send an element of order 4 into Libgcrypt’s scalar

multiplication routine, allowing the attacker to collect side channel

information.

AttackResults. Running the attack on real-world software rather

than on the scalar multiplication code only, presents two problems.

The first is that GnuPG performs several public key operationswhen

trying to match the public key used for encrypting the key file with

the victim’s key storage (called keyring in the GnuPGnomenclature).

These operations access both the constant-time swap code and the

multiplication code which our attack monitors. Consequently, the

side channel attack collects much more information and we need

to distinguish between the ECDH scalar multiplication operation

and the other operations. To achieve that, we also use FR-trace
to monitor the entry to the ECDH decryption code and ignore all

accesses to monitored code that precede the entry.

The second problem we witness is that when running more

software the system is more noisy, increasing the error rate. On

average, we find that we have 14.9 errors in a trace and therefore

we require 11 traces to recover the secret key.

4.3.2 Pidgin

Pidgin is a popular open-source chat application that supports

communication across a variety of chat networks [25]. We target

Pidgin’s OpenPGP plugin [39], which allows a sender to encrypt

messageswith the recipient’s public GnuPG key.When the recipient

has the plugin enabled and receives a PGP-encrypted message, the

message is automatically decrypted using GnuPG with no action

required by the recipient.

Attack Scenario. We use the default APT distribution of Pid-

gin and the OpenPGP plugin for Ubuntu 17.04. To carry out the

attack, we first enable PGP for the chat session and then send a

chat message, replacing the ECDH ephemeral public key with an

element of order 4. When the victim receives the message, Pidgin

uses GnuPG to decrypt the ciphertext, calling the scalar multiplica-

tion function in Libgcrypt with the order-4 element and enabling

the side-channel attack.

Attack Results. We sent 100 malicious Pidgin messages contain-

ing an order-4 element to the target machine, while monitoring its

cache activity. This resulted in 100 traces containing an average of

7.6 errors with 3 of the traces containing unusable data. Overall we

recovered the victim key using information from 7 traces.

4.3.3 Enigmail
Enigmail is an add-on for the Mozilla Thunderbird email client that

enables the sender to encrypt emails using the recipient’s public

GnuPG key. When the recipient views a GnuPG-encrypted email,

Enigmail passes the ciphertext to GnuPG to be decrypted.

Attack Scenario. For our attack, we assume that the victim is

running Mozilla Thunderbird in Ubuntu 17.04 with the default ver-

sion of Enigmail installed. The attacker sends a GnuPG-encrypted

email with the ECDH public key replaced with an order-4 element.

When the victim clicks on the encrypted email, Enigmail passes

the ciphertext to GnuPG for decryption, enabling a side-channel

attack similar to the above.

Attack Results. Similar to the Pidgin attack above, we used

Enigmail to decrypt 100 encrypted email messages containing order-

4 elements on the target machinewhile monitoring its cache activity.

This resulted in 100 traces containing an average of 9.1 errors with

9 of the traces containing unusable data. Overall we recovered the

victim key using information from 7 traces.

5 SOFTWARE COUNTERMEASURES
Our attack works by passing specially chosen ciphertexts (order-4

curve points) to the ECDH decryption routine to be multiplied

by the secret scalar. Due to the mathematical structure of these

inputs and the Montgomery ladder algorithm, they trigger key-

dependent leakage patterns deep inside Libgcrypt’s basic finite field

arithmetic operations. Observing these patterns using the cache side
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channel, we are able to recover the secret key.We now briefly review

common countermeasures for preventing such chosen ciphertext

attacks. See Fan et al. [30] and Fan and Verbauwhede [31] for more

extended discussions.

Constant Time Arithmetic. Both the original publication of

Curve25519 [14] and the NaCl library [16] use constant-time field

arithmetic. Replacing Libgcrypt’s code with any of these implemen-

tations would prevent our attack as well as any known microarchi-

tectural side-channel attack. We repeat here the recommendation

stated in RFC 7748 [54] as our attack uses a similar type of leak-

age from Libgcrypt’s arithmetic library in order to achieve key

extraction: “it is important that the arithmetic used not leak infor-

mation about the integers modulo p, for example by having b · c be
distinguishable from c · c .”

Rejecting Known Bad Points. To protect against small sub-

group attacks against Curve25519 and related curves that have

a small set of low-order elements, an implementation can simply

check if the received public key is in the set. Bernstein [12] provides

a full list of these points for Curve25519, but suggests that rejecting
these points is only necessary for protocols that wish to ensure

“contributory” behavior. Langley and Hamburg [54] have a similar

suggestion. We argue that rejecting these points would also give

better side-channel protection. While this protection may seem

unnecessary when used with constant-time code, as Kaufmann

et al. [51] demonstrate, constant-time code is fragile and may fail

to provide adequate protection.

Point Blinding. To protect the scalar k that is multiplied by a

potentially-malicious ciphertext P, one can generate a random point

R, compute [k](P+ R), and then subtract [k](R) from the result [26].

This countermeasure completely protects against the chosen ci-

phertext attack we describe in this paper, since the attacker can

no longer choose the point P to be multiplied with k . However,
this countermeasure introduces an extra scalar-by-point multipli-

cation for each decryption, so the negative performance effect of

this countermeasure is significant.

Scalar Randomization. Many side-channel attacks rely on com-

bining the leakage over several decryption operations in order to

extract the key. A possible countermeasure to prevent such aver-

aging is scalar randomization [26], which adds a random multiple

of the group order to the scalar k before performing the scalar-

by-point multiplication operation. This changes the sequence of

elliptic curve operations performed for every decryption operation,

hindering the averaging operation. A similar countermeasure splits

the scalar k into n parts k1, ...kn such that k =
∑n
i=1 ki , performs

the scalar-by-point multiplication operation separately on each ki ,
and then combines the result [24]. This countermeasure is cheaper

than point blinding, but not as effective.

According to Bernstein [14], the order of the base point of Curve-
25519 is

2
252 + 27742317777372353535851937790883648493.

Wenote that this number has a sequence of 128 consecutive zero bits.

Ciet and Joye [24] note that scalar randomization with multipliers

of this form still reveals a large number of bits. Thus, we do not

recommend using this countermeasure.

Defense in Depth. The cache attack described in this paper will

not work against an implementation that has truly constant-time

code, since the attack relies on subtle timing differences deep within

arithmetic functions. However, writing constant-time code is a non-

trivial task; even the side-channel resistant Montgomery ladder

algorithm still leaves room for error, as this paper demonstrates.

Rather than providing the bare minimums for security, we argue

that systems should be designed to have defense in depth, so that a

single mistake on the part of the developer does not have disastrous

consequences for security.

With regard to the attack described in this paper, the lack of input

validation caused sensitive secret-key operations to be performed

on adversarial inputs, which allowed us to transform an existing

side-channel weakness into a full key-recovery attack. Thus, we

recommend that in addition to writing side-channel resistant code,

developers should also deploy the aforementioned countermea-

sures. This would have the effect of reducing the capability of an

attacker to mount key-extraction attacks by exploiting side-channel

weaknesses.

6 CONCLUSIONS
In this work, we demonstrate a side-channel attack against Libgcrypt’s

implementation of ECDH encryption with Curve25519, which uses

the Montgomery ladder and branchless formulas for point addition

and doubling. Instead of relying on easily observable behavior such

as high-level key-dependent branches or memory accesses, our

attack exploits a low-level side channel vulnerability deep inside

Libgcrypt’s basic finite field arithmetic operations. We find that by

passing order-4 elements into the decryption routine, we can trig-

ger specific key-dependent code execution paths that a cache side

channel attack is able to detect. From these key-dependencies, we

are able to recover the key within about a second of measurements.

Chosen Ciphertext as Order-8 Element. While we did not

investigate passing in order-8 elements as inputs to the decryption

routine, these points would also introduce mathematical structure

into the operands of the elliptic curve operations in the scalar-by-

point multiplication. We expect that a similar attack would at least

achieve partial key recovery.

Future Work. Our attack uses multiple decryption traces and av-

erages the results to reduce the error rate. Overcoming side-channel

noise to enable an attack with only a single trace is an open prob-

lem. Our attack relies on the special mathematical properties of the

representation of the elements of order 4. Rejecting these points

is an effective countermeasure to our attack; however, it does not

address the underlying problem of having vulnerable arithmetic

operations. It may be possible to extend our work to attack the

arithmetic operations without using a low-order group element.

Finally, our techniques should also be applicable for mounting

low-bandwidth key extraction attacks against Libgcrypt’s imple-

mentation of Curve25519 using physical side channels. Mounting

such attacks remains an open problem.
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