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ABSTRACT
We implemented (a simplified version of) the branching-program

obfuscator due to Gentry et al. (GGH15), which is itself a variation of

the first obfuscation candidate by Garg et al. (GGHRSW13). To keep

within the realm of feasibility, we had to give up on some aspects of

the construction, specifically the “multiplicative bundling” factors

that protect against mixed-input attacks. Hence our implementation

can only support read-once branching programs.

To be able to handle anything more than just toy problems,

we developed a host of algorithmic and code-level optimizations.

These include new variants of discrete Gaussian sampler and lattice

trapdoor sampler, efficient matrix-manipulation routines, and many

tradeoffs. We expect that these optimizations will find other uses

in lattice-based cryptography beyond just obfuscation.

Our implementation is the first obfuscation attempt using the

GGH15 graded encoding scheme, offering performance advantages

over other graded encoding methods when obfuscating finite-state

machines with many states. In out most demanding setting, we

were able to obfuscate programs with input length of 20 nibbles (80

bits) and over 100 states, which seems out of reach for prior imple-

mentations. Although further optimizations are surely possible, we

do not expect any implementation of current schemes to be able to

handle much larger parameters.

KEYWORDS
Implementation, Multilinear Maps, Obfuscation, Trapdoor Lattice

Sampling

1 INTRODUCTION
General-purpose code obfuscation is an amazingly powerful tech-

nique, letting one hide secrets in arbitrary running software. The

emergence of plausible constructions for cryptographic general-

purpose obfuscation has transformed our thinking about what can
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and cannot be done in cryptography. Following the first construc-

tion by Garg et al. [10] (herein GGHRSW), most contemporary can-

didates include a “core component” that obfuscates simple functions

(usually expressed as branching programs), and a transformation

that bootstraps this core component to deal with arbitrary circuits.

The core branching-program obfuscator consists of two steps:

• We first randomize the branching program to obscure inter-

mediate states without changing the final outcome.

• Then we encode the randomized programs using a graded-

encoding scheme [9], roughly “encrypting” the randomized

program while still supporting the operations needed to

evaluate it on any given input.

Unfortunately, we essentially have only three candidate graded-

encoding schemes to use for the second step, namely GGH13 [9],

CLT13 [7], and GGH15 [11], and they are all very inefficient.
1
As

a result, so are all existing branching-program obfuscators, to the

point that it is not clear if they can be used for any non-trivial

purpose.

In this report, we describe our implementation of (a simplified

version of) the branching-program obfuscator due to Gentry et

al. [11], which is itself a variation of the GGHRSW construction,

adjusted to use the GGH15 graph-based graded encoding scheme

[11]. To keep within the realm of feasibility, we had to give up

on some aspects of the construction, specifically the “multiplica-

tive bundling” factors that protect against mixed-input attacks.

Hence, our implementation can securely obfuscate only read-once

branching programs. Nonetheless, when stretched to its limits, our

implementation can obfuscate some non-trivial programs (beyond

just point functions). Our use of the GGH15 encoding may offer per-

formance advantages over implementations that use the encoding

from GGH13 [9] or CLT13 [7], especially for obfuscating finite-state

machines with many states. For example we were able to obfuscate

read-once branching programs with input of 20 nibbles (80 bits) and

over 100 states, which seems out of reach for all prior implemented

systems that we know of.

Such branching programs can be used to implement multi-point

functions or even multiple-substring match functions, checking if

the input contains at least one out of a list of 100 possible substrings.

They can also be used to obfuscate superstring match functions,

checking if the input is contained in a longer string of length up to

100 + 20 nibbles (or contained in one of two strings, each of length

50 + 20, etc.).

To handle length 20 branching programs with 100 states over

nibbles, our implementation uses about 400 Gigabytes of memory

1
Moreover, their security properties are still poorly understood.
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and runs for about 23 days.
2
Moreover, each obfuscated program

takes about 9 Terabytes of disk space to specify. Evaluating this

obfuscated program takes under 25 minutes per input. We note

that further optimization of the current implementation is surely

possible, but this scheme probably cannot extend too much beyond

what we achieved.

Why GGH15? Our choice of using the encoding scheme from

[11] was mainly due to the fact that using this scheme in an im-

plementation was not attempted before, and our expectation that

using GGH15 would have somewhat smaller complexity than the

GGH13 and CLT13 encoding schemes when obfuscating programs

with many states.

Specifically, GGH13 and CLT13 encode individual elements, but

branching-program obfuscators need to encode matrices. As a re-

sult, the performance of obfuscators based on CLT13 or GGH13

degrades quadratically with the matrix dimension.
3
In contrast,

GGH15 natively encodes matrices, and its performance is a lot

less sensitive to the dimension of the encoded matrices. From the

performance numbers reported in [16] and in this work, it seems

that CLT13 should be the graded encoding scheme of choice for

small-dimension matrices, while GGH15 would start outperforming

CLT for programs with about 50 states.

Moreover the optimizations that we developed in this work are

likely to be useful beyond obfuscation. In particular our Gaussian

and trapdoor sampling optimizations are likely useful in lattice

cryptography (and of course our optimized matrix manipulations

would be useful in many other settings).

1.1 High-Level Overview
Our implementation consists of three layers: At the top layer, we im-

plemented a simplified variant of the GGH15 obfuscator from [11]

(see Section 2). Below it, in the middle layer, we implemented the

GGH15 graded-encoding scheme [11], including the “safeguards”

suggested there (see Section 3). The main operations needed in

the GGH15 encoding scheme are lattice trapdoor sampling and

matrix manipulations, which are implemented in the bottom layer

of our system (see Sections 4 and 6, respectively). The most notable

aspects of our implementations are:

New Gaussian sampler. We implemented a sampling proce-

dure for the ellipsoidal discrete Gaussian distribution that

can directly work with the covariance matrix (rather than

its square root). Recall that sampling an ellipsoidal Gaussian

over Zn with covariance matrix Σ is equivalent to sampling

a spherical Gaussian over the lattice whose basis is B =
√
Σ.

Hence, one way to implement it would be computing the

basis B and then using the procedure of GPV [13] or Peikert

[19]. However, computing

√
Σ is somewhat inefficient, so we

instead devised a different method which is somewhat simi-

lar to the GPV sampler but works directly with Σ, without
having to find its square root. This method is described in

Section 4.4.

2
The results in Table 4 are for a binary alphabet, featuring the same RAM consumptions

but 1/8 of the disk space and running time as compared to size-16 alphabet.

3
Some obfuscation constructions can handle non-square matrices, but even then it is

likely that both dimensions would grow together.

Trapdoor sampling in the CRT representation. We imple-

mented the Micciancio-Peikert trapdoor sampling algorithm

[18], using a procedure that keeps all the large integers in the

Chinese-Remainder representation (CRT), without having

to convert back and forth between the CRT and standard

integer representations. See Section 4.3.

Efficient matrix manipulation. Our implementation routinely

handles matrices of dimension above 10,000, so efficient ma-

trix multiplication and inversion is critical. We implemented

highly optimized routines, taking advantage of the available

hardware (cache friendly, SIMD enabled, multi-threaded,

etc.). This is described in Section 6.

Threading/memory tradeoffs. We explored multiple paral-

lelization strategies, trading off the level of parallelism against

the need to severely conserve memory. Details are available

in Section 7.2.

Some Design Choices. Most of our design choices were taken for

the sake of speed. For example, this is why we chose to work with

integers in CRT representation (with the CRT basis being either

23-bit numbers or 60-bit numbers, depending on the hardware

platform
4
). That choice dictated that our “gadget matrix” G would

be based on mixed-radix representation relative to our CRT base,

rather than binary representation (see Section 4.3). Another choice

made in the name of speed was to use 1-dimensional rounded

continuous Gaussian distribution instead of the discrete Gaussian

distribution (see Section 4.4).

Other choices were made for more prosaic reasons such as to

simplify the software structure of the implementation. For exam-

ple, since the “safeguards” of GGH15 encoding from [11] already

include Kilian-like randomization, we chose to implement that ran-

domization techniques at the encoding level and leave it out of the

higher-level obfuscation routine. We made many such software-

engineering choices during the implementation, but only report

here on very few of them.

Code availability. We plan to open-source our code after we

document and debug it some more, hopefully sometime in the fall.

1.2 Prior Work
Graded encoding implementations. An implementation of the

CLT13 graded encoding scheme was provided already by Coron et

al. [7], and GGHlite (which is a simplified variant of GGH13 due

to Langlois et al. [15]) was implemented by Albrecht et al. [2]. To

the best of our knowledge, ours is the first implementation of the

GGH15 graded encoding scheme.

Obfuscation implementation. The first attempt at implementing

the GGHRSW obfuscator was due to Apon et al. [4], who used the

CLT13 implementation for the underlying graded encoding scheme,

and demonstrated a 14-bit point function obfuscation as a proof

of concept. That implementation work was greatly enhanced in

the 5Gen work of Lewi et al. [16]: they built a flexible framework

that can use either CLT13 or GGH13 encoding (but not GGH15),

and implemented obfuscation (as well as other primitives) on top

4
We used 23-bit factors when utilizing Intel AVX, and 60 bits when AVX was not

available. See Section 6.

2
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of this framework, demonstrating an obfuscation of an 80-bit point

function using CLT13 encoding.

We note that point functions have branching programs of very

low dimension, making the CLT13-based approach from [16] at-

tractive. However, our implementation should out-perform the

CLT13-based approach once the number of states (and hence the

dimension) grows above a few dozens.

Attacks. The security properties of current-day graded encoding

schemes is poorly understood, and new attacks are discovered all

the time. But no attacks so far seem to apply to the construction

that we implemented. In particular, the attack due to Coron et al. [8]

on GGH15-based key exchange relies on having many encodings of

the same matrices, which are not available in obfuscation. Also, the

quantum attack due to Chen et al. [6] on GGH15-based obfuscation

is not applicable at all to read-once branching programs, since it

specifically targets the “bundling factors” that are used as a defense

against inconsistent evaluation. (Also that attack requires that the

branching-program matrices have full rank, which is not the case

in our setting.)

1.3 Organization
The three layers of our implementation (obfuscation, graded encod-

ing, and trapdoor sampling) are described in Sections 2, 3, and 4,

respectively. Paremeter selection is discussed in Section 5. The

matrix-manipulation optimizations are in Section 6, and more im-

plementation details and performance results are given in Section 7.

2 OBFUSCATING BRANCHING PROGRAMS
We implemented a simplified variant of the obfuscator of Gentry

et al. [11], without the “multiplicative bundling” mechanism that

protects against mixed-input attacks. Hence, in its current form

our implementation is only secure when used to obfuscate oblivi-

ous read-once branching programs (equivalently, nondeterministic

finite automata, NFA).

Recall that a read-once branching program for n-bit inputs is
specified by a length-n list of pairs ofd×d matricesB = {(M1,0,M1,1),
(M2,0,M2,1), . . . , (Mn,0,Mn,1)}, and the function computed by this

program is

fB(x) =
{

0 if

∏n
i=1

Mi,xi = 0;

1 otherwise.

We remark that in other settings it is common to define the function

fB(x) by comparing the product

∏n
i=1

Mi,xi to the identity rather

than the zero matrix. But comparing to the identity requires that

all the matrices be full rank, which for read-once programs will

severely limit the power of this model. Instead, comparing to the

zero matrix allow us to represent arbitrary oblivious NFAs (where

the product is zero if and only if there are no paths leading to the

accept state).

Our goal is to get “meaningful obfuscation,” which is usually

defined as achieving indistinguishability obfuscation (iO). Namely,

we want it to be hard for an efficient distinguisher to tell apart the

obfuscation of two equivalent programs, B,B′ such that fB = fB′ .
For very simple functions, other notions may also be possible such

as one-wayness or virtual black box (VBB) obfuscation. The security

analysis from [11] (sans the “bundling factors”) implies that it may

be reasonable to hope that our implementation satisfies iO for NFAs,

and perhaps also the other notions for limited classes.

The GGH15 construction proceeds in two steps: the input branch-

ing program is first randomized, and the resulting program is en-

coded using the underlying graded encoding scheme. Roughly

speaking, the goal of graded encoding is to ensure that “the only

thing leaking” from the obfuscated program is whether or not cer-

tain matrices are equal to zero, and the goal of randomization is

to ensure that “the only way to get a zero matrix” is to faithfully

evaluate the branching program on some input x . That is, random-

ization needs to ensure that every expression not derived from a

faithful evaluation yields a non-zero matrix with high probability.

2.1 Randomizing the Transition Matrices
The GGH15 construction has three randomization steps: it em-

beds the branching program in higher-dimensional matrices, then

applies Kilian-style randomization [14], and finally multiplies by

“bundling scalars”. In our implementation, we forgo the “bundling

scalars” for performance reasons (see below), and we chose to dele-

gate the Kilian-style randomization to the graded encoding itself

(see Section 3.1), rather than viewing it as part of the obfuscation.

Hence the only randomization that we implemented in the ob-

fuscation layer is embedding in high-dimensional random matrices.

The transition matrix that we want to encode is embedded in the

upper-left quadrant of a higher-dimension block-diagonal matrix,

setting the lower-right quadrant to be a random (small) matrix.

Specifically, we add d ′ = ⌈
√
λ/2⌉ dimensions in the lower-right

d ′ × d ′ quadrant (where λ is the security parameter), with random

entries of magnitude roughly 2
7
. These random matrices therefore

have significantly more than 2λ bits of min-entropy, so they are

not susceptible to guessing (or birthday-type) attacks.

This randomization impedes functionality, however, since after

multiplying we can no longer compare the result to zero. To recover

functionality, we use the “dummy program” method of Garg et al.

[10], where we encode not only the randomized “real” program

but also a second “dummy program” in which all the matrices are

always multiplied to the all-zero matrix. Specifically, for the first

step we use transition matrices that have the identity at the top

rows and zero at the bottom; for the last step we use matrices

where the top rows are zero and the bottom have the identity;

and in between we use the identity. We randomize the “real” and

“dummy” programs using the same random low-norm matrices in

the lower-right quadrants, as illustrated in Figure 1.

After this randomization step, we use the GGH15 graph-induced

encoding scheme to encode the resulting randomized matrices.

As described in Section 3, the GGH15 scheme encodes matrices

relative to edges of a public directed graph, and in our case we use

a construction with two separate chains (with the same source and

sink), one for encoding the “real” branch and the other for encoding

the “dummy” branch. The encoded matrices form our obfuscated

branching program. To evaluate this obfuscated branching program

on some input, we choose the same matrix (0 or 1) from both

the “real” and “dummy” programs, multiply in order, subtract the

product of the “dummy” program from the product of the “real”

one, and test for zero.

3
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ª®¬
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Figure 1: Randomizing transitionmatrices, theRi,b ’s are ran-
dom low-norm matrices, and the same Ri,b is used for the
“real” and “dummy”. Ik and 0k are the k × k identity matrix
and k × k zero matrix respectively.

2.2 No “multiplicative bundling”
The obfuscation scheme as described by Gorbunov et al. in [11] has

another randomization step of “multiplicative bundling” to protect

against “mixed input attacks”: in general branching programs, one

has to ensure that when a single input bit controls many steps of the

branching program, an attacker is forced to either choose the matrix

corresponding to zero in all of the steps or the matrix corresponding

to one (but cannot mix and match between the different steps of

the same input bit). To do that, Gorbunov et al. use a variant of the

encoding scheme that encodes matrices over a large extension ring

(rather than integer matrices), and multiply different matrices by

different scalars (called “bundling factors”) from this large ring.

Our implementation does not use bundling factors, since to get

sufficient entropy for the bundling scalars we would have to work

with scalars from a fairly large extension ring R (rather than just the

integers). This would have required that we scale up all our param-

eters by a factor equal to the extension degree of the large ring (at

least in the hundreds), rendering the system unimplementable even

for very short inputs. As a result, our implementation is vulnerable

to mixed input attacks if it is used for general branching programs,

so it should only be used for read-once programs.

2.3 Non-binary input
Our implementation also supports non-binary input, namely input

over an alphabet ∆ with more than two symbols. The only differ-

ence is that instead of having pairs of matrices in each step of the

program, we have |∆| matrices per step, and the input symbol de-

termines which of them to use. We still have only two branches in

the obfuscated program (“real” and “dummy”), encoded relative to a

DAG with two chains, where on each edge in this DAG we encode

|∆| matrices. The run time and space requirements of obfuscation

are linear in |∆|, while initialization and evaluation are unaffected

by the alphabet size. In our tests, we used |∆| as large as 16.

3 GRAPH-INDUCED ENCODING
Graded encoding schemes are the main tool in contemporary obfus-

cation techniques. They allow us to “encode” values to hide them,

while allowing a user to manipulate these hidden values. A graded

encoding scheme has three parts: key generation, which outputs a

public key and a secret key; an encoding procedure, which uses the

secret key to encode values of interest; and operations that act on

the encoded values using the public key. (These encoding schemes

are “graded” in that the encoded values are tagged and operations

are only available on encoded values relative to “compatible” tags.)

In the GGH15 graph-induced encoding scheme of Gentry, Gor-

bunov, and Halevi [11], the tags correspond to edges in a transitive

directed acyclic graph (DAG). The DAG has a single source node s
and a single sink node t . An instance of this scheme is parameterized

by the underlying graph, and also by some integers n < m < b < q
that can be derived from the graph and the security parameter.

(Roughly, we havem = O(n logq), q = nO (d ), where d is the diame-

ter of the graph and b = qδ for some δ < 1.) With these parameters,

the functionality of the GGH15 scheme is as follows:

• The plaintext space consists of integer matrices M ∈ Zn×n .
An encoding of such an integer matrix M (relative to any

edge i → j) is a matrix C ∈ Zm×mq over Zq . There is an

efficient procedure that takes the secret key, a matrix M ∈
Zn×n , and two vertices i, j , and produces a matrixC ∈ Zm×mq
that encodesM relative to i → j.
• If C1,C2 encode M1,M2, respectively, relative to the same

edge i → j, then their sum modulo q, C = [C1 + C2]q ,
encodes the matrixM1 +M2 relative to the same edge. (Here

and throughout the paper we use [·]q to denote operations

modulo q, representing elements in Zq as integers in the

interval [−q/2,q/2).)
• If C1,C2 encodeM1,M2, relative to consecutive edges i → j ,
j → k , respectively, and if in addition the entries of M1

are all smaller than b in magnitude, then their product C =
[C1 ×C2]q encodes the matrixM1 ×M2 relative to the edge

i → k (in the transitive closure).

• There is an efficient zero-test procedure that, given the public

key and an encoding of some matrixM relative to the source-

to-sink edge s → t , determines ifM = 0.

Inmore detail, key generation in the basic GGH15 scheme chooses

for every vertex i a matrix Ai ∈ Zn×mq , together with a trap-

door as in [18] (see Section 4.1). The secret key consists of all

the matrices and their trapdoors, and the public key consists of

the source-node matrix As . An encoding of a plaintext matrix M
with respect to edge i → j is a “low-norm” matrix C ∈ Zm×m
such that AiC = MAj + E (mod q), for a “low-norm” noise matrix

E ∈ Zn×m . The encoding procedure chooses a random small-norm

error matrix E, computes B = [MAj + E]q , and uses trapdoor-

sampling to find a small-norm matrixC as above. Encoded matrices

relative to the same edge Ai → Aj can be added, and we have

Ai (C + C ′) = (M + M ′)Aj + (E + E ′) (mod q). Furthermore, en-

coded matrices relative to consecutive edges i → j, j → k can be

multiplied, such that

Ai (C ×C ′) = (MAj + E) ×C ′ = M(M ′Ak + E ′) + EC ′

= MM ′Ak + (ME ′ + EC ′) (mod q).

More generally, if we have a sequence of Ci ’s representingMi ’s

relative to (i − 1) → i for i = 1, 2, . . . ,k , then we can set C∗ =

4
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[∏k
i=1

Ci
]
q and we have

A0C
∗ =

( k∏
i=1

Mi
)
Ak +

k∑
j=1

( j−1∏
i=1

Mi
)
Ej

( k∏
i=j+1

Ci
)

︸                           ︷︷                           ︸
E∗ :=

(mod q).

If we set the parameters so as to ensure that ∥E∗∥ ≪ q, then we still

have the invariant that C∗ is an encoding of M∗ =
∏

Mi relative

to the source-to-sink edge 0→ k . By publishing the matrix A0, we

make it possible to recognize the case M∗ = 0 by checking that

∥A0C
∗∥ ≪ q.

3.1 The GGH15 “Safeguards”
Since the security properties of their construction are still unclear,

Gentry et al. proposed in [11] certain “safeguards” that can plausibly

make it harder to attack. With every matrix Ai , we also choose a
low-norm “inner transformation matrix” Pi ∈ Zn×n and a random

“outer transformation matrix”Ti ∈ Zm×mq , both invertible modulo q.
For the source node A0 and sink node Ak , we use the identity

matrices P0 = Pk = In×n and T0 = Tk = Im×m .

To encode a matrix M ∈ Zn×n relative to the edge i → j,
we first apply the inner transformation to the plaintext, setting

M ′ = [P−1

i MPj ]q , then compute a low-norm C as before satisfying

AiC = M ′Aj + E, and finally apply the outer transformation to

the encoding, outputting Ĉ = [TiCT−1

j ]q . For the invariant of this
encoding scheme, Ĉ encodesM relative to i → j if

Ai (T−1

i ĈTj ) = (P−1

i MPj )Aj + E (mod q), (1)

where E andC = [T−1

i ĈTj ]q have low norm. Since we get telescopic

cancellation on multiplication (and the 0 and k transformation

matrices are the identity), then the non-small matrices all cancel

out on a source-to-sink product. Setting C∗ =
[∏k

i=1
Ĉi

]
q , we get

A0C
∗ =

( k∏
i=1

Mi
)
Ak +

k∑
j=1

( j−1∏
i=1

Mi
)
Pj−1Ej

( k∏
i=j+1

Ci
)
(mod q).

(2)

3.2 A Few Optimizations
Special case for source-based encoding. Encoding relative to an

edge 0 → i can be substantially optimized. This is easier to see

without the safeguards, where instead of publishing the vertex-

matrix A0 and the encoding-matrixC , we can directly publish their

product A0C = [MAj + E]q . Not only would this save some space

(since A0C has dimension n × m rather than m × m), we could

also do away with the need to use the trapdoor to compute a low-

norm C . Instead, we just choose the low-norm E and compute

B = [MAj + E]q .
When using the safeguards, we recall that P0 andT0 are both set

as the identity, and so to encodeM wewould computeM ′ = [MPj ]q ,
then set B = [M ′Aj + E]q , and output B̂ = [BT−1

j ]q .

Special case for sink-bound encoding. We can also optimize en-

codings relative to an edge j → k by choosing a much lower-

dimensional matrixAk . Specifically, we makeA ∈ Zn×1

q , i.e. a single

Trapdoor Generation & Sampling (§4.1)

G-sampling (§4.3) Ellipsoidal Gaussians (§4.4)

Stash (§4.5) 1-dimensional Gaussians (§4.4)

Figure 2: Components of our trapdoor-sampling.

column vector. Note that we cannot choose such a matrix with a

trapdoor, but we never need to use a trapdoor for the sink Ak .
EncodingM relative to j → k is done by choosing a low-norm

column vector E, setting B = [P−1

j MAk + E]q ∈ Zn×1

q , using the Aj

trapdoor to sample a small C ∈ Zm×1

q such that AjC = B (mod q),
and finally outputting C̃ = [T−1

j C]q .

4 TRAPDOOR SAMPLING
We implemented the trapdoor-sampling procedure of Micciancio

and Peikert [18]. The structure of this implementation is depicted

in Figure 2. At the bottom level, we have an implementation of one-

dimensional discrete Gaussian sampling, with a stash for keeping

unused samples. At the next level, we have procedures for sam-

pling high-dimension ellipsoidal discrete Gaussians and solutions

to equations of the form G®z = ®v (mod q), where G is the “easy

gadget matrix.” At the top level, we have procedures for choosing

a matrix A with a trapdoor and then using the trapdoor to sample

solutions to equalities of the form A®x = ®u (mod q).

4.1 Background: The Micciancio-Peikert
Trapdoor Sampling Procedure

Recall that the Micciancio-Peikert approach [18] is based on a

“gadget matrix” G ∈ Zn×w for which it is easy to sample small

solutions ®z to equations of the formG®z = ®v (mod q). The trapdoor-
generation procedure outputs a (pseudo)random matrix A ∈ Zn×mq
together with a low-norm trapdoor matrix R ∈ Zm̄×w such that

A ×
(
R
I

)
= G (mod q), where

(
R
I

)
has the top rows taken from R

and the bottom rows taken from the identity matrix I . In our im-

plementation, the entries of R are drawn independently from a

Gaussian distribution over the integers with parameter r = 4.

Given the matrix A, the trapdoor R, and a target syndrome vec-

tor ®u ∈ Znq , Micciancio and Peikert described the following proce-

dure for sampling small solutions to A®x = ®u (mod q):
(1) Sample a small perturbation vector ®p ∈ Zm according to an

ellipsoidal discrete Gaussian distribution, with covariance

matrix that depends on R.
(2) Set ®v = ®u −A®p mod q.
(3) Sample a small solution ®z to the equation G®z = ®v (mod q),

according to a spherical discrete Gaussian.

(4) Output ®x = ®p +
(
R
I

)
®z mod q.

Note that this indeed yields a solution to A®x = ®u (mod q), since

A®x = A
(
®p +

(
R
I

)
®z
)
= A®p +G®z = A®p + ®v = ®u (mod q).

Also, if ®p is chosen relative to covariance matrix Σp and ®z is chosen
from a spherical discrete Gaussian with parameter σz , then the co-

variancematrix of the resulting ®x will be Σx = Σp+σ
2

z ·
(
R
I

)
×
(
RT |I

)
.
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Parameters: σ , e,k and the pi ’s
Input: u ∈ Z
1. for i = 0 to k − 1, for j = 0 to e − 1

2. t ← DpiZ+u,σ // Sample a σ -short t ∈ Z, t = u (mod pi )
3. Set ®z ′[j + i · e] := t
4. Set u := (u − t)/pi // Update u after each iteration

5. Output ®z ′

Figure 3: The G-sampling procedure

Thus, to get a solution ®x sampled from a spherical Gaussian with

(large enough) parameter Sx = σx I , we need to set the covariance

matrix for ®p to Σp = σ 2

x I − σ 2

z

(
R
I

)
(R |I ). (This means that σx must

be sufficiently large relative to σz and the singular values of R, so
that Σp is positive definite.)

4.2 The Gadget Matrix G
The “Gadget matrix” in [18] is based on binary representation, but

for our implementation we use a mixed radix representation instead

(which makes CRT-based processing easier, see below). Specifically,

we use a list of small co-prime factors (in the range from 71 to 181),

which we denote here by p1,p2, . . . ,pk .
We also have a parameter e that specifies how many times we

repeat each factor (by default e = 3). Thus our big modulus is

q =
∏k

i=1
pei , where we take k large enough to give us as many bits

in q as we need.

Given all these co-prime factors, we define the vector ®д as the

mixed-radix vector with the pi ’s appearing e times each. That is,

the first entry is ®д[0] = 1, and for each following entry we have

®д[i + 1] = ®д[i] · p ⌊i/e ⌋ :

®дT =
(
1, p1, . . . , p

e−1

1
, pe

1
, p2p

e
1
, . . . , pe−1

2
pe

1
,

. . . P∗, pkP
∗, . . . , pe−1

k P∗
)
.

where P∗ =
∏

i<k p
e
i . Once ®д is defined, our gadgetmatrix is just the

tensorGn = ®дT ⊗ In , whose dimensions are n-by-w forw = e ·k ·n.

4.3 The G-Sampling Routine
Our G-sampling routine is an extension of the power-of-two pro-

cedure from [18, Sec. 4.2]. Specifically, we are given as input a

syndrome vector ®u ∈ Znq , in CRT representation, and we need to

sample a random small vector ®z ∈ Znek such that Gn × ®z = ®u
(mod q).

SinceGn = ®дT ⊗ In , each block of ek entries of ®z can be sampled

separately. In particular, for each entry u in ®u, we sample ®z ′ ∈ Zek
such that ⟨®z ′, ®д ⟩ = u (mod q). It is straightforward to generalize

the power-of-two procedure from [18, Sec. 4.2] for choosing ®z ′ to
our mixed-radix representation. The generalized procedure would

work as depicted in Figure 3. For Step 2 in this procedure, we

sample from the distribution DpiZ+u,σ with Gaussian parameter

σ = 4 · 181 = 724, where p1 = 181 is the largest of our small factors.

4.3.1 Working with ®u in CRT Representation. One of the main

reasons for our use of a modulus of the form q =
∏k

i=1
pei is to be

able to use Chinese-Remainder (CRT) representation for elements

in Zq . Namely, each element x ∈ Zq is represented by a vector

(xi = x mod pei )i ∈[1,k ]. Using a CRT representation allows for

significantly faster processing.

In our implementation, we are given as input the syndrome

vector ®u in the CRT representation, so an entry u in ®u is itself

represented by a vector ®v = (u mod pej )j ∈[1,k ]. We would like to

implement the procedure from Figure 3 without having to convert

the entries of ®u from the CRT representation to the standard repre-

sentation. We stress that while we use CRT encoding for the input,
the output ®z ′ consists of only short integers and is returned in

binary representation.

Considering the code in Figure 3, most of it can be applied as-

is to each coefficient of the CRT representation of u. The only

parts that require attention are Step 2, when we need to compute

u mod pi , and Step 4, when we update u := (u − t)/pi . In Step 2,

we see that knowing vi = u (mod pei ) is all we need in order to

compute u mod pi . All of the other components can be ignored for

the purpose of that step.

In Step 4, we have two cases: one is how to update the compo-

nentsvj = u (mod pej ) for j , i , and the other is how to update the

component vi = u (mod pei ). Updating vj for j , i is easy: since pi
and pj are co-prime we can simply set vj := [(vj − t) · p−1

i ]pej . In
our implementation, we pre-compute all the values p−1

i mod pej for

i , j, so that updating each vj takes only one modular subtraction

and one modular multiplication.

Updating the component vi = u (mod pei ) is a different story.
Clearly the new value (u − t)/pi mod pei depends not only on the

value ofvi itself but on the values of all thevj ’s, so we cannot hope
to be able to compute the updated vi without reconstructing the

entire integer u. Luckily, it turns out that in this case we do not

need to fully update vi . To see this, notice that the only reason

we need the value of vi = u (mod pei ) in this computation is to be

able to compute u (mod pi ) in Step 2, and we only need to use it e
times. After the first time, we can update vi := (vi − t)/pi (treating
vi as an integer and using the fact that t = u = vi (mod pi ) and
therefore vi − t is divisible by pi ). The updated vi may no longer

satisfy vi = u (mod pei ), but we do have the guarantee that vi = u

(mod pe−1

i ), and this is sufficient for us since all we need is to be

able to use vi for computing u mod pi . More generally, after the

kth time that we use vi , we update it as vi := (vi − t)/pi , and
we know that the updated value satisfies vi = u (mod pe−ki ). We

also do not need to update any of the vj ’s for j < i , since we will
never need them again in this computation. The resulting code for

implementing theG-sampling routine withu in CRT representation

is given in Figure 4.

4.4 Sampling Gaussian Distributions Over Z
One-dimensional Gaussians. Our current implementation uses

the “shortcut” of sampling from the one-dimensional rounded con-

tinuous Gaussian distribution instead of the discrete Gaussian distri-

bution. (I.e., instead of DZ−x,r , we sample from the corresponding

one-dimensional continuous Gaussian distribution and round to

the nearest z − x for integral z.) This “shortcut” makes our one-

dimensional sampling routine faster and easier to implement, but

introduces a noticeable variation. We are not aware of any security

6
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Parameters: σ , e,k and the pi ’s

Input: ®v ∈ Zk// v[j] = u mod pej
1. for i = 0 to k − 1, for j = 0 to e − 1

2. t ← DpiZ+v[i],σ
// Sample a σ -short t ∈ Z s.t. t = v[i] = u (mod pi )

3. Set ®z ′[j + i · e] := t
4. form = i + 1 to k − 1 // Update v[m] form > i
5. v[m] :=

[
(v[m] − t) · p−1

i
]
pem

6. v[i] := (v[i] − t)/pi // Update v[i] as an integer

7. Output ®z ′

Figure 4: The G-sampling procedure in CRT representation

vulnerability due to this deviation. We also note that any one-

dimensional sampling implementation can be plugged in to our

code without changing anything else, but this is one aspect that we

did not experiment with.

Multi-dimensional ellipsoidal Gaussians. Recall that the perturba-
tion vector ®p in the Micciancio-Peikert procedure is drawn from an

ellipsoidal discrete Gaussian distribution with covariance matrix

Σp = σ 2

x I −σ 2

z

(
R
I

) (
RT |I

)
. Prior work due to Gentry et al. [13] and

Peikert [19] showed how to sample from this distribution by first

computing

√
Σp , a rather expensive operation. Instead, we devised

and implemented a sampling procedure for the ellipsoidal discrete

Gaussian that is somewhat similar to the GPV sampler in [13] but

can work directly with the covariance matrix rather than its square

root. Specifically, we choose each entry in ®p from a one-dimensional

discrete Gaussian distribution, conditioned on the previous entries.

To approximate the conditional mean and variance, we use the

corresponding values from the continuous case. Specifically, for a

vector (x ,y) with covariance matrix Σ and mean µ we have:

ΣY |X = ΣY ,Y − ΣY ,X Σ−1

X ,X ΣX ,Y
µY |X=x = µY + ΣY ,X Σ−1

X ,X (x − µX )
(3)

where ΣX ,X , ΣX ,Y , ΣY ,X , ΣY ,Y are the four quadrants of the covari-

ance matrix Σ, and µX , µY are the two parts of the mean vector µ.
(Note that when x is one-dimensional, as in our case, then Σ−1

X ,X is

just 1/σ 2

x .) Below we show that this procedure yields the right prob-

ability distribution up to a negligible error, as long as the singular

values of the matrix Σp are all ω(log(λn)). 5

Analysis of the ellipsoidal Gaussian sampler. Belowwe useD
Zn,
√
Σ

to denote the n-dimensional discrete Gaussian distribution with

covariance matrix Σ. For index sets A,B ⊂ [n], we define ΣA,B to

be the submatrix obtained by restricting Σ to the rows in A and

the columns in B. (When the set only has one element, we sim-

ply write, e.g., ΣA,i instead of ΣA, {i } .) We will be interested in

the kth diagonal entry Σk,k , the top-left (k − 1) × (k − 1) subma-

trix Σ[k−1],[k−1], and the submatrices Σk,[k−1] and Σ[k−1],k . (Note
that Σk,[k−1] = ΣTk,[k−1], since Σ is positive definite and therefore

symmetric.)

5
The proof below works when the underlying one-dimensional sampling is from a

discrete Gaussian, and will incur noticeable deviation when using rounded continuous

Gaussian.

We then define

Sk := Σk,k − Σk,[k−1]Σ
−1

[k−1],[k−1]Σ[k−1],k , and (4)

®vk := Σ−1

[k−1],[k−1]Σk,[k−1] .

(Note that Sk ∈ R is a scalar and ®vk ∈ Rk−1
is a (k −1)-dimensional

vector. For convenience, we also define S1 := Σ1,1 and ®v1 := ®0.)
Sk is known as the Schur complement of Σ[k−1],[k−1] in Σ[k ],[k ],
a very well-studied object [21]. In particular, the following claim

shows that the kth coordinate of a (continuous) Gaussian with

covariance Σ conditioned on the first k − 1 coordinates taking the

value ®x ′ ∈ Rk−1
is exactly the Gaussian with variance Sk and mean

⟨®vk , ®x ′⟩, as we discussed above.

Claim: For any vector ®x ∈ Rn and symmetric matrix Σ ∈ Rn×n ,
let Sn and ®vn be defined as above, and let ®x ′ ∈ Rn−1

be the first

n − 1 coordinates of ®x . Then, if Sn and Σn,n are non-zero and

Σ[n−1],[n−1] is invertible, then ®xT Σ−1 ®x = (xn − ⟨®vn , ®x ′⟩)2/Sn +
®x ′T Σ[n−1],[n−1] ®x ′ .

Proof. Note that

Σ−1 =

©­­­«
Σ−1

[n−1],[n−1] + ®vn ®v
T
n /Sn −®vn/Sn

−®vTn /Sn 1/Sn

ª®®®®¬
.

(One can check this by simply multiplying by Σ. We note that the

identity does not hold when Σ is not symmetric.) The result then

follows by directly computing ®xT Σ−1 ®x . □

We will also need the following well-known fact, which follows

immediately from the Poisson summation formula.

Lemma 4.1. For any s ≥ 1 and any x ∈ R,

(1 − 2
−s2 ) · ρs (Z) ≤ ρs (Z − x) ≤ ρs (Z) .

Here, ρs (x) is the one-dimensional Gaussian function with pa-

rameter s , and for a set of points X , ρs (X ) is the sum of ρs over

these points. We now prove the correctness of our sampler.

Theorem 4.2. Consider the following procedure that takes as input
a positive-definite matrix Σ ∈ Rn×n .

(1) Set ®z ← ®0.
(2) For k = 1, . . . ,n, compute Sk and ®vk as defined above.
(3) For k = 1, . . . ,n, sample zk from µk + DZ−µk ,

√
Sk
, where

µk := ⟨®vk , ®z ⟩, and set ®z ← ®z + zk · ®ek .
(4) Return ®z.

Then, the output vector ®z is within statistical distance n2
−S ofD

Z,
√
Σ
,

where S := mink Sk .

Proof. Note that the first coordinate of ®z is distributed exactly

asDZ,√S1

= D
Z,
√
Σ1,1

. Let Σ′ := Σ[k−1],[k−1]. We assume for induc-

tion that the first k −1 coordinates of ®z, which we call ®z ′, are within
statistical distance (k − 1) · 2−S of D

Zk−1,
√
Σ′ . If this were exactly

the distribution of ®z ′, then for any fixed integer vector ®y ∈ Zk with

first k coordinates ®y ′, we would have

Pr[®z ′ = ®y ′ and zk = yk ] =
ρ√

Σ′(®y
′)

ρ√
Σ′(Zk−1)

·
ρ√Sk (yk − µk )
ρ√Sk (Z − µk )

.
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Here, the ρ functions aremulti-dimensional Gaussians. By Claim 4.4,

we have ρ√
Σ′(®y

′)·ρ√Sk (yk−µk ) = ρ√
Σ[k ], [k ]

(®y). And, by Lemma 4.1,

we have that

(1 − 2
−Sk ) · ρ√Sk (Z) ≤ ρ√Sk (Z − µk ) ≤ ρ√Sk (Z) .

Therefore, Pr[®z ′ = ®y ′ and zk = yk ] is within a factor of 1− 2
−Sk of

ρ√
Σ[k ], [k ]

(®y)/ρ√
Σ[k ], [k ]

(Zk ). It follows that the real distribution of

the first k coordinates of ®z is within statistical distance (k − 1)2−S +
2
−Sk ≤ k2

−S
of D

Zk ,
√
Σ[k ], [k ]

, as needed. □

Finally, we note that we can relate the Schur complement to the

eigenvalues of Σ, which makes it easier to compare the performance

of our sampler with prior work, such as [13, 19].

Lemma 4.3. [17, Corollary 2.4] For any positive-definite matrix
Σ ∈ Rn×n , σn (Σ) ≤ Sk ≤ σ1(Σ) for all k = 1, . . . ,n, where σi is the
ith largest eigenvalue of Σ.

Corollary 4.4. The output of the procedure described in The-
orem 4.2 is within statistical distance n2

−σn (Σ) of D
Zn,
√
Σ
, where

σn (Σ) is the smallest eigenvalue of Σ.

4.5 Using a Stash of Samples
OurG-Sampling Routine (see Section 4.3) requires us to sample from

DpZ+u,σ for a factor p taken from the short list in Section 4.2 and

an input integer u. For the small factors p that we use (all between

71 and 181), this is done by repeatedly sampling short integers

from DZ,σ until we hit one that satisfies t = u (mod p). A naive

implementation of this procedure will need to sample p/2 > 50

times (on the average) before it hits a suitable t , making for a very

slow implementation. In our tests, this naive implementation spent

about 30% of the obfuscation time sampling 1D Gaussians.

To do better, we keep for each factor p a stash of unused samples.

Whenever we need a new sample we first check the stash. Only if

there are no hits in the stash do we sample new points, and all the

points which are not equal tou modulop are then stored in the stash
for future use. (This is similar to the “bucketing” approach described

in [18, Sec. 4.1], but without the online/offline distinction.)

The stash itself is implemented as a simple size-p array of in-

tegers, where stashp [i] contains the latest sample that was equal

to i modulo p (if that sample was not yet used). An alternative

approach would be to keep for each entry i a queue of all sample
values satisfying x = i (mod p), but such an implementation would

be considerably more complex.

It is easy to see that the use of stash does not bias the distribu-

tion from which we sample: by definition each non-empty entry

j contains a random element x ← D, constrained only by x = j
(mod pi ). (Note that we use a separate stash for each factor pi .)

As we show now, that simple stash implementation already

reduces the required number of trials per sample from p/2 to ≈√
2p, reducing the sampling time from 30% to about 3% of the total

running time. To see how the simple implementation above reduces

the overhead, denote by f the fraction of full entries in the stash

just prior to a sample operation. The expected change in the number

of full entries after the sample operation (whereu mod p is uniform

in Zp ) is described by the formula

E[ch] = f · (−1)+(1− f ) · ((1− f ) ·p−1)/2 = 1

2

· ((1− f )2 ·p−1− f ) ,

where the second term follows from the fact that each empty entry
other than i has 1/2 probability of being filled before we sample

a match. Assuming that the sampler reaches a steady state (with

expected change equal to zero), the value of f ∈ [0, 1] is

f =
1 + 2p − √1 + 8p

2p
= 1 −

√
2/p + Θ(1/p) .

The expected work per sampling operation is therefore f · 1 + (1 −
f ) · p ≈ √2p.

Thread-safety of our stash implementation. One important reason

that we chose to implement the stash using the simple procedure

above (rather than implementing a full queue per entry) is that

it is easier to make it thread-safe. Implementing a queue per en-

try would require the use of semaphores to coordinate between

the threads, whereas having only one integer per entry lets us

use simple atomic test-and-set operations (implemented via the

C++11’s atomic<int> type). Since the simple implementation al-

ready reduced the overhead to about 3%, we did not attempt the

more complicated one.

5 SETTING THE PARAMETERS
In setting the parameters, we try to minimize the dimensionm and

the bit size of the modulus q, subject to functionality and security.

For security, we need the dimensionsm,m̄ to be large enough rela-

tive to q, so that the relevant computational problems are hard (m̄
is the number of rows in the trapdoor matrix R). For functionality,
we need q to be sufficiently larger than the largest noise compo-

nent that we get, and we also need the large dimensionm to be

sufficiently large (relative to n logq) for our trapdoor sampling pro-

cedure. These security and functionality considerations imply a set

of constraints, described in Equations (7) through (10) below, and

our implementation searches for the smallest values that satisfy all

these constraints.

5.1 Functionality
Basic facts. We use the bound from [18, Lemma 2.9] on the sin-

gular values of random matrices. Namely, if the entries of an a-by-b
matrix X are chosen from a Gaussian with parameter σ , then the

largest singular value of X (denoted s(X )) is bounded by

Pr

[
s(X ) > const · (

√
a +
√
b + t)

]
< 2
−t 2

(5)

for some absolute constant const, and our empirical results show

that we can use const = 1. Below we use Eqn. (5) also in situations

where the entries of X are not independent, such as when every

column of X is chosen using the trapdoor sampling procedure from

Section 4.1. Namely, if C is anm-by-m encoding matrix (before the

“outer transformation”) with the columns chosen from a Gaussian

with parameter σx (over some coset in Zm ), then we heuristically

use 2

√
m to estimate its largest singular value.

The parameter r . The starting point of our parameter setting

is the smallest Gaussian parameter that we use for sampling the

8
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trapdoor R over Z. This choice ripples through the entire imple-

mentation and has dramatic effect on efficiency, so we would like to

make it as small as we possibly could. Following Micciancio-Peikert

[18], we set this parameter to r = 4 (which also seems large enough

to defeat the Arora-Ge attacks [5]).

Output size of trapdoor sampling. Next consider the size of vec-
tors that are output by the trapdoor sampling procedure. The trap-

door sampling procedure samples a solution ®x to A®x = ®u (mod q),
according to a spherical Gaussian distribution with some parameter

σx , and we would like to make σx as small as we can. The proce-

dure works by sampling a perturbation vector ®p and a solution ®z
to G®z = ®u − A®p (mod q), then outputting ®x = ®p +

(
R
I

)
®z mod q.

The vector ®z is drawn from a spherical Gaussian with parameter

σz (to be determined shortly), and the perturbation ®p has covari-

ance Σp = σ 2

x I − σ 2

z

(
R
I

) (
Rt |I

)
. Hence the overriding constraint in

setting the parameters for this procedure is to ensure that Σp is pos-

itive definite, which we can do by setting σ 2

x > σ 2

z (s + 1)2 ≈ (σzs)2,
where s is an upper bound (whp) on the largest singular value of R.

To determine the value of σz that we can get, recall that each

entry in ®z is drawn from a Gaussian Dv+piZ,σz , where pi is one
of our small co-prime factors that are listed in Section 4.2 (so in

particular pi ≤ 181). To be able to sample efficiently from this

distribution, it is sufficient to set

σz = r ·max

i
(pi ) = 4 · 181 = 724 (6)

Using Eqn. (5), the largest singular value of our m̄-by-w matrix R
(with entries chosen with Gaussian parameter r ) is bounded whp

by s = r · (
√
m̄ +
√
w + 6) (to get 2

−36
error probability). Hence to

ensure σx > σz · s it is enough to set

σx > (r ·max

i
(pi )) · (r · (

√
m̄+
√
w +6)) ≈ 2900 · (

√
m̄+
√
w +6). (7)

As usual when setting parameters for lattice-based system, there

is some weak circularity here since m̄,w depend on the size of q,
which in turn depends on the output size our sampling procedure,

that depends on σx . But this circular dependence is very weak,

and it is easy to find a solution that satisfies all the constraints.

For example, in our largest setting L = 20 we have m̄ ≈ 6000 and

w ≈ 8000, for which the above bound yields σx ≈ 2
18.9

.

The modulus q. The vectors ®x that are output by the trapdoor

sampling procedure (which are drawn from a spherical Gaussian

with parameter σx over some coset in Zm ) form the columns of the

GGH15 encoding matricesC before the outer transformation of the

GGH15 “safeguards”. As explained in Section 3.1, the noise term

when we multiply L encodings is

noise =
L∑
j=1

( j−1∏
i=1

Mi
)
Pj−1Ej

( L∏
i=j+1

Ci
)

where the Mi ’s are the “plaintext matrices” that we encode, the

Pi ’s are the inner transformation matrices used in the GGH15 “safe-

guards”, the Ei ’s are the error matrices that we choose, and theCi ’s
obtained using our trapdoor sampling procedure. Since theCi ’s are
much larger than the other matrices in this expression, the only

relevant term in this sum is the first one, namely E1 ×
∏L

i=2
Ci .

Below we use the largest singular value of the matrix product

E1 ×
∏L

i=2
Ci to represent its “size”. By Eqn. (5) the singular values

of all the Ci ’s are bounded by σx (2
√
m + 6) ≈ 2σx

√
m, and that

of E is bounded by 2
7(
√
m +
√
n + 6) ≈ 2

7
√
m. (Each entry of E

is chosen from a Gaussian with parameter 2
7
.) Therefore we can

heuristically bound the largest singular value of the product by

2
7 · 2L−1 ·mL/2 · σL−1

x . For our zero-test we check that the noise is

no more than q/210
, so we need q to be 2

10
times larger than this

bound, or in other words:

log
2
q ≥ 7 + log

2
σx · (L − 1) + log

2
m · L/2 + (L − 1) + 10. (8)

Once we have a bound on q we choose the number k of co-prime

factors so that the product

∏k
i=1

pei exceeds that bound. The pa-

rameter e depends on the hardware architecture: For performance

reasons we always use e = 3 when running on a platform with Intel

AVX (so all the pei factors are less than 23 bits long, see Section 6),

and on platforms without Intel AVX we use e = 8 (so the pei ’s are
just under 60 bits long).

For our largest parameters (with L = 20 and σx ≈ 2
18.9

) we need

to setm ≈ 2
13.8

for security breasons (see below). Hence we set

log
2
q ≥ 7+ 18.9 · 19+ 13.8 · 10+ 29 ≈ 535, and with e = 3 we need

k = 26 co-prime factors.

The large dimensionm. To be able to generate trapdoors, we must

also ensure that the parametersm (number of columns inA) is large
enough. Specifically, for a given lower bound m̄ on the number of

columns in Ā (obtained by security considerations), and given the

parameters k (number of co-prime factors), e (number of times each

factor repeats — either 3 or 8), and n (the dimension of “plaintext

matrices” to encode), we need to ensure thatm ≥ nke + m̄. (In all

cases, the bound that we get onm due to security considerations

was larger than this functionality-based bound.)

5.2 Security
The trapdoor dimensionm̄. Recall that trapdoor generation chooses

a uniform Ā and small R, then sets A = [Ā|G − ĀR] mod q (so that

A×
(
R
I

)
= G (mod q)). We would like A to be random, so we need

to argue thatG − ĀR is nearly uniform, even conditioned on Ā. This
is typically done by appealing to the leftover hash lemma, but doing

so requires that each column of R has more than n log
2
q bits of

min-entropy. In our implementation the entries of R have constant

magnitude, so to use the leftover hash lemma we need R to have at

least Ω(n log
2
q) rows (and of course Āmust have the same number

of columns).

Micciancio and Peikert observed in [18] that we can get by with

lower-dimension R if we are willing to haveA pseudorandom (under

LWE) rather than random. Splitting Ā into two parts Ā = [Ā1 |Ā2],
and denoting the corresponding two parts of R by R =

(
R1

R2

)
(and

assuming that Ā2 is square and invertible), we have that

AR = A1R1 +A2R2 = Ā2

(
(Ā−1

2
Ā1)R1 + R2

)
︸                 ︷︷                 ︸

=A′R1+R2

,

9
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which is pseudorandom under LWE. Using this argument requires

that R be chosen from the LWE error distribution. Our implemen-

tation therefore relies on the assumption that LWE is hard even

when the error distribution uses Gaussian parameter r = 4.

Moreover, this LWE-based assumption also requires that m̄ is

large enough so we can use m̄ − n as the “security parameter” for

LWE. (Recall that m̄ is the number of columns in Ā.) In our setting

of parameters, we in particular must set m̄ large enough so given Ā
andA′ = ĀR it will be hard to find R. Finding each column of R is an

instance of the small-integer-solution (SIS) problem in dimensions

n-by-m̄ over Zq , so we must set m̄ large enough to get the level of

security that we want. Setting the dimension to get SIS-security is

not entirely straightforward and typically involves consulting some

tables [1], but in the range that we consider (with λ ∈ [80, 256]) it
behaves very roughly as

6

m̄ ≥ (
√
λ + 2) ·

√
n log

2
q. (9)

With n ≈ 100 (for NFAs with 100 states) and log
2
q ≈ 535, this

means that we must ensure m̄ ≥ (
√
λ + 2) ·

√
100 · 535 ≈ 2545.

The large dimension m. We use the formula from [12, Appen-

dix C] to relate the lattice dimensionm in the LWE instances to the

desired security level.
7
Namely to get security level λ we need the

dimension m to be at least m ≥ log
2
(q/fresh-noise-magnitude) ·

(λ + 110)/7.2. The fresh noise magnitude does not have a crucial

impact on our parameters, so we can choose it rather large (e.g.,

Gaussian of parameter ≈ 2
7
). Thus we get the constraint

m ≥ (log
2
q − 7)(λ + 110)/7.2 . (10)

With log
2
q ≈ 535 and λ = 80, this yields m ≥ (535 − 7) · (80 +

110)/7.2 ≈ 2
13.8

.

5.3 Putting it together
Given the desired program length L, the dimension of plaintext

matrices n (which depends on the number of states in the branch-

ing program), the parameter e (which depends on the hardware

platform), and the security parameter λ, our implementation tries to

find the smallest number k of co-prime factors that satisfies all the

constraints above. Trying k = 1, 2, 3, . . ., we set q =
∏

i<k p
e
i , then

setm using Eqn. (10), computew = nek and m̄ =m −w , and verify

that this value of m̄ satisfies Eqn. (9). Next we compute σx using

Eqn. (7), and finally check if the value of q satisfies the functionality

constraint from Eqn. (8). Some example parameter values that we

used in our tests can be found in Table 1.

L : 5 8 10 12 14 17 20

σx : 2
18.0

2
18.3

2
18.4

2
18.6

2
18.7

2
18.8

2
18.9

k : 6 10 12 15 18 22 26

log
2
q : 133 219 261 322 382 458 542

m̄ : 1462 2471 2950 3614 4253 4998 5955

m : 3352 5621 6730 8339 9923 11928 14145

Table 1: Parameters in our tests, security λ = 80, plaintext
dimension n = 105

6
This yields root Hermite factors of δ ≈ 1.006 for λ = 80, δ ≈ 1.0044 for λ = 128,

and δ ≈ 1.0023 for λ = 256.

7
That formula is somewhat out of vogue these days, and should really be replaced by

more refined analyses such as [3], but it still gives reasonable values.

6 EFFICIENT MATRIX ARITHMETIC
The majority of the obfuscation time is spent doing matrix arith-

metic, either modulo small integers or over single-precision integers

(or floating point numbers). We first discuss the modular matrix

arithmetic.

6.1 Matrix multiplication in Zt
As discussed in Section 4.3, we use a CRT representation of Zq ,
where q is the product of small co-prime factors. The parameters

are typically chosen so that each factor has a bit-length at most 23

(or at most 60), the reason for this will be explained shortly.

So assume that we are working modulo a small number t of bit-
length at most 23 bits. The two main operations of concern are large

matrix multiplication and inversion over Zt , where the dimensions

of the matrices are measured in the thousands. For matrix inversion,

we assume that t is a prime power. Consider computing the product

C = AB, where A and B are large matrices over Zt .

Cache friendly memory access. To obtain cache friendly code, all

the matrices are organized into panels, which are matrices with

many rows but only 32 columns. We compute the ith panel of C
by computing ABi , where Bi is ith panel of B. If multiple cores are

available, we use them to parallelize the computation, as the panels

of C can be computed independently.

Next consider the computation of AP , where P is a single panel.

We can write AP =
∑
j AjPj , where each Aj is a panel of A and

each Pj is a 32 × 32 square sub-matrix of P . We thus reduced the

problem to that of computing

Q ← Q + RS, (11)

where Q and R are panels, and S is a 32 × 32 square matrix. The

matrix S is small and fits into the first-level cache on most machines

— that is why we chose a panel size of 32. While the panels Q and

R typically do not fit into the first-level cache, the data in each

panel is laid out in contiguous memory in row-major order. In the

implementation of Eqn. (11), we process the panels a few rows at

a time, so the data in each panel gets processed sequentially, and

we rely on hardware prefetch (which is common on modern high-

performance systems) to speed up the memory access. Indeed, the

computation of Eqn. (11) can be reduced to operations of the form

u ← u +vS, (12)

where u consists of a few rows of Q and v consists of a few rows

of R. While we may need to fetch u and v from a slower cache,

the hardware prefetcher should help a bit, and, more significantly,

these slower fetches are paired with a CPU-intensive computation

(involving S , which is in the first-level cache), so the resulting code

is fairly cache friendly.

Fast modular arithmetic. The basic arithmetic operation in any

matrix multiplication algorithm is the computation of the form

x ← x +yz, where x and y are scalars. In our case, the scalars lie in

Zt . Unfortunately, modern CPUs do not provide very good direct

hardware support for arithmetic in Zt . However, by restricting

t to 23 bits, we can use the underlying floating point hardware

that is commonly available and typically very fast. Indeed, if we

have 23-bit numbersw and xi and yi , for i = 1, . . . ,k , then we can

compute w +
∑
i xiyi exactly in floating point, provided k is not

10
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too big: since standard (double precision) floating point can exactly

represent 53-bit integers, we can take k up to 2
53−23·2 = 2

7
. If k is

larger than this, we can still use the fast floating point hardware,

interspersed with occasional “clean up” operations which convert

the accumulated floating point sum to an integer, reduce it mod t ,
and then convert it back to floating point.

Using AVX instructions. By using this floating point implemen-

tation, we can also exploit the fact that modern x86 CPUs come

equipped with very fast SIMD instructions for quickly performing

several floating point operations concurrently. Our code is geared to

Intel’s AVX (and AVX2) instruction set, which allows us to process

floating points operations 4 at a time (the next-generation AVX512

instruction set will allow us to process 8 at a time).

The core of our matrix arithmetic code is a routine that computes

Eqn. (12) in floating point using Intel’s AVX (and AVX2) instructions.

Supposeu andv are single rows. If the ith entry ofv isvi and the ith
row of S is Si (for i = 1, . . . , 32), then the computation of Eqn. (12)

can be organized as u ← u +
∑
i viSi .

To carry this out, we load the vector u from memory into eight

AVX registers, into which we will accumulate the result, and then

store it back to memory. To accumulate the result, for i = 1, . . . , 32,

we do the following:

• Use the AVX “broadcast” instruction to initialize an AVX

register r with 4 copies of vi .
• Load the values of Si four at a time into an AVX register,

multiply by the register r , and add the result into the corre-

sponding accumulator register. (For AVX2, we use a fused

multiply-add instruction, which saves the use of an instruc-

tion and a temporary register.)

That is the simplest implementation, but not necessarily the

fastest. We experimented with a number of different implementa-

tions. In our actual implementation, we process 2 or 3 rows of Q
and R at a time in Eqn. (11), so that u and v in Eqn. (12) consist

of either 2 or 3 rows. (The choice depends on whether we have a

fused multiply-add instruction, as without it, we run out of AVX

registers more quickly.) With this strategy, values loaded from S
into AVX registers can participate in several arithmetic operations

instead of just one — while loads from S are fast (it is in first-level

cache), they are still not as fast as direct register access.

6.2 Matrix inversion in Zt
Let A be a high-dimension square matrix over Zt . We perform

an “in place” Gaussian elimination, performing elementary row

operations on A until we get the identity matrix, but we store the

entries of the inverse in A itself. Our algorithm works when t is
a prime or a prime power.

8
This is easy to do: when selecting a

pivot, instead of choosing any non-zero pivot, we always choose

an invertible pivot modulo t .
Just as for multiplication, we organize A into panels. In carrying

out Gaussian elimination, we start with the first panel, and we carry

out the algorithm just on this panel, ignoring all the rest. After this,

we perform a series of panel/square operations, as in Eqn. (11)

to perform the same elementary row operations on the remaining

panels ofA that were performed on the first panel (if any rows in the

8
For a composite t , it can fail even if A is invertible modulo t .

first panel were swapped, we first perform those same swaps of the

remaining panels before performing the panel/square operation). If

multiple cores are available, these panel/square operations can be

done in parallel. After we finish with the first panel, we move on

to the second panel, and so on, until we are done with the whole

matrix. We use the same floating point strategy for arithmetic in

Zt as we did above, exploiting AVX instructions, if available.

6.3 Integration into NTL
Our new matrix arithemtic has been integrated into NTL (see http:

//www.shoup.net/ntl/), which has an interface that supports matrix

arithmetic modulo small numbers p that “fit” into a machine word.

On 64-bit machines, the bit length of the modulus p may go up to

60 (or 62, with a special compilation flag).

For p up to 23 bits, the strategy outlined above is used. For larger

p, the code reverts to using scalar integer instructions (rather than

the AVX floating-point instructions), but still uses the same “cache

friendly” panel/square memory organization, and utilizing multiple

cores, if available.

Besides matrix multiplication and inverse, the same strategies

are used for general Gaussian elimination, and image and kernel

calculations.

6.4 Multi-dimensional Gaussian sampling
In Section 4.4, we sketched our basic strategy for sampling from

Gaussian distributions. As discussed in that section, to sample from

a multi-dimensional Gaussian distribution, we need to compute the

conditional mean and covariance as in Eqn. (3). It turns out that

this computation is very similar in structure to Gaussian elimina-

tion (over floating point numbers). As such, we were able to easily

re-purpose our AVX-enabled floating-point code for Gaussian elim-

ination, discussed above, to significantly improve the performance

of this computation. This resulted in a roughly 10× speedup over

a straightforward implementation (of the same algorithm) of the

mean and covariance computation.

6.5 Experimental results for matrix arithmetic
Our testing was done on a machine with Intel Xeon CPU, E5-2698

v3 @2.30GHz (which is a Haswell processor), featuring 32 cores

and 250GB of main memory. The compiler was GCC version 4.8.5,

and we used NTL version 10.3.0 and GMP version 6.0 (see http:

//gmplib.org).

We compared NTL’s new matrix multiplication and inverse code

to the current versions of FFLAS, (see http://linbox-team.github.io/

fflas-ffpack/) and FLINT (see http://www.flintlib.org/).

• FFLAS refers to the current version of FFLAS (version 2.2.2,

available at http://linbox-team.github.io/fflas-ffpack/). FFLAS

stands for “Finite Field Linear Algebra Subprograms”, and

provides an interface analogous to the well-known BLAS

interface for linear algebra over floating point numbers.

Roughly speaking, FFLAS works by reducing all linear alge-

braic operations over Zt to matrix multiplication over float-

ing point numbers, and then uses a BLAS implementation

for the latter. In our tests, we use the BLAS implementation

OpenBLAS (see http://www.openblas.net/), which is recom-

mended by the FFLAS authors. OpenBLAS itself is highly

11

Session D1:  Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

793

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://gmplib.org
http://gmplib.org
http://linbox-team.github.io/fflas-ffpack/
http://linbox-team.github.io/fflas-ffpack/
http://www.flintlib.org/
http://linbox-team.github.io/fflas-ffpack/
http://www.openblas.net/


optimized for many different architectures. We configured

and built OpenBLAS so that it was optimized for our Haswell

architecture.

For small t , this floating point strategy has some similarities

to NTL’s strategy, although NTL implements everything

directly (in particular, NTL does not use BLAS and is not

so well optimized for anything other than AVX-enabled x86

CPUs).

For larger t , FFLAS uses a Chinese remaindering strategy,

while NTL does not (for larger, but still word-sized t , NTL
uses scalar integer arithmetic, as discussed above).

• FLINT refers to the current version of FLINT (version 2.5.2,

available at http://www.flintlib.org/). FLINT stands for “Fast

Library for Number Theory”. FLINT only uses scalar integer

arithmetic — it does not use any floating point. For matrix

multiplication, it uses Strassen’s recursive algorithm. This

gives slightly better asymptotic complexity, and more im-

portantly it yields much more cache-friendly code. Matrix

inversion is implemented by a reduction to matrix multipli-

cation.

Wewere able to compare both single-threaded andmulti-threaded

performance of NTL’s and FFLAS’s multiplication routines, as de-

scribed in Table 2. FLINT’s multiplication does not exploit multiple

threads. Neither FFLAS’s nor FLINT’s inversion routine exploit mul-

tiple threads. We can see that NTL’s multiplication is a bit slower

than FFLAS’s, while NTL’s inversion is a bit faster. Both NTL and

FFLAS are several times faster than FLINT.

We also mention here that for matrix inversion, both FFLAS

and FLINT require that the modulus t be a prime number, but the

modulus in our application is a prime power rather han a prime.

NTL’s inverse routine directly supports prime-power moduli, with

no extra computational cost. In contrast, using FFLAS or FLINT

directly would require some type of Hensel lifting to go from prime

to prime-power, which would significantly increase the cost of the

inverse operation.

Table 3 gives some timing data for matrix multiplication and

inversion over Zt for different sized moduli t . Data for 20-bit and
60-bit t is presented. We compared NTL and FLINT, along with an

old version of NTL. The old version of NTL uses only scalar integer

operations, and is very naive and very cache-unfriendly; also, its

performance is not sensitive to the size of t , so we only collected

data for 60-bit t . For 20-bit t , the current version of NTL is about

35× faster than the old version for matrix multiplication, and about

70× faster for inversion. Looking at NTL vs FLINT, we see that for

60-bit t , the times are pretty close; as we already saw, for 20-bit t ,
NTL’s floating point strategy gives it a huge advantage over FLINT.

7 IMPLEMENTATION DETAILS
7.1 Initialization, Obfuscation, and Evaluation
Our program includes three main stages: initialization, which gener-
ates the public and secret keys for the encoding scheme, obfuscation,
which uses the secret key to obfuscate a given branching program,

and evaluation, which computes the obfuscated program value on

a given input (using the public key). After each stage we write the

results to disk, then read them back as needed in the next stages.

Initialization. This is where we choose the public and secret keys.
As described in Section 3, this includes choosing random node ma-

tricesAi with their trapdoors Ri , and also the “inner transformation

matrix” Pi ∈ Zn×n and “outer transformation matrix” Ti ∈ Zm×mq .

Once Ri and Ai are chosen, we compute the perturbation co-

variance matrix Σp = σx I − σz
(
R
I

)
(R |I ) as per Section 4.1 (with

σx and σz as derived in Section 5), then compute the conditional

covariance matrices as per Eqn. (3) in Section 4.4 (and we optimize

it as in Section 6.4). We also compute the modular inverses of the

transformation matrices, namely P−1
and T−1

. (See Section 6.2.)

Since keeping all these matrices in memory consumes a lot of

RAM (especially T and T−1
), our initialization phase processes one

node at a time, writing all the matrices to disk as soon as it computes

them and before moving to the next node.

Obfuscation. Given a branching program to obfuscate, we first

randomize it as described in Section 2, where for each matrix in

the program we generate a pair of higher-dimension “real” and

“dummy” matrices. We then use the trapdoors and transformation

matrices that we computed to encode the resulting pairs of matrices.

The most expensive parts of this stage are the trapdoor sampling

and the multiplication by the transformation matrices T and T−1
,

all of which are part of the GGH15 encoding procedure.

Here too, we need to conserve memory, and so we only keep in

RAM one or two GGH15 nodes at a time. As the real and dummy

matrices in each pair are encoded relative to different edges, we

cannot encode them together. Hence, we first generate all the |Σ|
real/dummy pairs for the current input symbol and keep them all

in memory. (These matrices only take little memory.) We then read

from disk the edge on the “real” path and encode the “real” matrices

from all the pairs. Finally, we read the edge on the “dummy” path

and encode the “dummy”” matrices from all the pairs.

Evaluation.Once we have all the encoded matrices written on disk

and we are given the input string, we simply read the corresponding

matrices from disk, multiply them, subtract the “dummy” from the

“real” product and check for smallness. One important consideration

here is the order in which to multiply the matrices. Recall from

Section 3.2 that encodings relative to the sink-bound edges consist

of a single vector. So, it is much better to begin with these matrices

and then multiply backwards. In this way, we only need to do

matrix-vector products as we accumulate the multipliers, rather

than full matrix-matrix products. This optimization is one reason

why evaluation is many orders of magnitude faster than obfuscation.

(Another reason is that we only need to process two matrices per

step when evaluating, while during obfuscation we had to generate

2|Σ| matrices per step.)

7.2 Parallelization Strategies
We implemented and tested various multi-threading strategies, try-

ing to parallelize the computation at different levels. Below we

describe these different strategies, focusing mostly on the initializa-

tion and obfuscation stages (which are much more expensive). We

briefly touch on parallelism during the evaluation stage at the end.

7.2.1 Parallelism Across Different Nodes. The easiest strategy to

implement is a high-level strategy in which all of the nodes of the

graph are processed in parallel. This is trivial to implement, as the
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n = 4096 n = 8192

threads 1 4 16 1 4 16

NTL 3.7 1.28 0.52 26.4 9.49 3.12

FFLAS 3.1 0.89 0.52 21.9 6.62 3.65

FLINT 15.6 111.8

(a) Multiplication

n = 4096 n = 8192

threads 1 4 16 1 4 16

NTL 4.8 1.78 1.27 37.9 11.8 7.6

FFLAS 6.7 43.2

FLINT 32.6 219.9

(b) Inversion

Table 2: Time (in seconds) for multiplication and inversion of n × n matrices modulo a 20-bit prime

n = 4096 n = 8192

# bits 20 60 20 60

NTL 3.7 27.7 26.4 194.5

FLINT 15.6 30.6 111.8 214.8

NTL (old) 125.2 1000.9

(a) Multiplication

n = 4096 n = 8192

# bits 20 60 20 60

NTL 4.8 45.0 37.9 354.5

FLINT 32.6 57.7 219.9 402.5

NTL (old) 333.2 2776.3

(b) Inversion

Table 3: Time (in seconds) for multiplication and inversion of n × n matrices modulo 20- and 60-bit primes

computation at each node is independent of all other nodes. For

small parameters, this strategy works quite well. Unfortunately, it

does not scale very well, as it requires the data for many nodes to

be in memory at the same time. We found that this strategy quickly

consumed all available RAM, and ultimately had to be abandoned.

Instead, we opted to process the nodes in the graph sequentially,

and parallelized computations inside each node, as described below.

7.2.2 Trapdoor Sampling. As discussed in Section 3, when en-

coding a matrixM w.r.t. edge i → j, we choose a low-norm E and

compute B = [MAj+E]q , then use trapdoor sampling to find a small

normmatrixC such thatAiC = B (mod q). This trapdoor sampling

routine samples each column of C separately, by invoking the trap-

door sampling procedure from Section 4.1 to solve AiCk = Bk
(mod q) (with Bk the k’th column of B and Ck the corresponding

column ofC). In our implementation we therefore parallelize across

the different columns, sampling together as many of these columns

as we have threads. As discussed in Section 4.5, we used a stash

to speed up the computation, and we implemented the stash in a

thread-safe manner so that it could be shared between the threads.

We note that it is also possible to parallelize trapdoor sampling at

a lower level: specifically the procedure for solving A®c = ®b involves

solving G®z = ®u with G the “gadget matrix”. Due to the structure

of G , we can sample the entries of ®z in batches of size ek , where all
the batches can be processed independently. Although we did not

test it, we expect this strategy to perform worse than parallelism

across the different columns.

7.2.3 Gaussian Sampling. As discussed in Section 4.4, during

initialization we compute the conditional mean and covariance

matrices as in Eqn. (3). This computation essentially has the same

structure as standard Gaussian elimination, and we implemented a

parallel version of it as described in Section 6.4.

7.2.4 CRT-level Parallelism. A significant amount of time is

spent performing matrix multiplication and inversion operations

over Zq . Since q is chosen to be the product of small co-prime

factors and the matrices represented using Chinese remaindering,

these matrix operations can be performed independently modulo

each small factor qi .

7.2.5 Lower-level Parallelism. Wealso implementedmulti-threaded

versions of matrix multiplication and inversion modulo each of the

small factors in our CRT base. However, we found empirically that

it was more effective not to parallelize at this lowest level, but rather

at the higher CRT level.

7.2.6 Disk I/O Pipelining. Each of the three stages (initialize,

obfuscate, evaluate) reads its inputs from disk and writes its output

to disk. The amount of data transferred between main memory and

disk is huge, and we found that a significant amount of time was

just spent waiting for disk I/O operations to complete. The problem

was only made worse as the multi-threading strategy reduced the

computation time relative to the I/O time. To mitigate this problem,

we used a multi-threaded “pipelining” strategy. One thread was

dedicated to reading from disk, one thread was dedicated to writing

to disk, and the remaining threads are used for the actual computa-

tions. In this way, while the next block of data to be processed is

being read in, and the previous block of data is being written out,

the current block of data is being processed.

7.2.7 Parallelizing the Evaluation Stage. Recall that in the evalu-

ation stage, we have to multiply encodings along a “main path” and

along a “dummy path”. In our implementation, each path is pro-

cessed on a different thread. Specifically, the system sets one thread

for processing the dummy branch and one for the main branch (re-

gardless of the total number of threads set during run-time). Then,

when processing each branch, the programs sets the number of

threads to half of the overall number of threads set during run-time.

However, since only each node multiplication is parallelized, and

the run-time is relatively negligible for this function, we do not see

a difference in the run-time of the evaluation for different number

of threads (see Figure 8).
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L m Initialization Obfuscation Evaluation

Intel Xeon CPU,E5-2698 v3:

5 3352 66.61 249.80 5.81

6 3932 135.33 503.01 13.03

8 5621 603.06 1865.67 56.61

10 6730 1382.59 4084.14 125.39

12 8339 3207.72 8947.79 300.32

14 9923 7748.91 18469.30 621.48

16 10925 11475.60 38926.50 949.41

17 11928 16953.30 44027.80 1352.48

18 12403 20700.00 out-of-RAM

4 x 16-core Xeon CPUs:

17 11928 16523.7 84542.3 646.46

19 13564 36272.9 182001.4 1139.36

20 14145 46996.8 243525.6 1514.26

Table 4: Running time (seconds) as a function of the
branching-program length, with security λ = 80, 100 states,
and a binary alphabet (L=BPlength, m=large dimension)

7.3 Results
Most of our testing was done on a machine with Intel Xeon CPU,

E5-2698 v3 @2.30GHz (which is a Haswell processor), featuring 32

cores and 250GB of main memory. The compiler was GCC version

4.8.5, and we used NTL version 10.3.0 and GMP version 6.0 (see

http://gmplib.org).

Because of memory limitations, the largest value of L we could

test on that machine was L = 17 (though initialization was also

possible for L = 18). These tests are described in the top part of

Table 4. For even larger parameters, we run a few tests on a machine

with 4×16-core Xeon CPUs and 2TB of DRAM. All these tests were

run on binary alphabets and security parameter λ = 80. The results

of these tests appear in the lower part of Table 4.

8 CONCLUSIONS AND FUTUREWORK
In this work we implemented GGH15-based branching-program

obfuscation, showing that on one hand it is feasible to use it to

obfuscate non-trivial functions, and on the other hand that the class

of functions that it can handle is still extremely limited. In the course

of this work we developed many tools and optimizations, that we

expect will be useful also elsewhere. In particularWe expect that our

Gaussian sampling techniques will find use in other lattice-based

cryptographic constructions. In this context, it will be interesting

to explore using these techniques also in the realm of ring-LWE

schemes.

An interesting topic to explore is hardware acceleration (with

GPUs or FPGAs), which may be able to reduce overhead to a point

where some niche applications can use it.
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A MORE PERFORMANCE DETAILS
A.1 Asymptotics of Obfuscation
For a given branching-program length L and security parameter λ,
our choice of parameters from before ensures that ℓ = log(q) and
the lattice dimensionm satisfy ℓ ≥ Ω(L logm + λ) andm ≥ Ω(ℓλ).
It is easy to see that these constraints imply ℓ ≥ Ω(λ + L log(λL))
andm ≥ Ω(λ2 +λL log(λL)). This means that each encoding matrix

C ∈ Zm×mq takes space ℓm2 = Ω(λ5 +λ2L3
log

3(λL)) to write down,
andmultiplying or inverting suchmatrices takes time ℓm3 = Ω(λ7+

λ3L4
log

4(λL)).
For a length-L branching program over an alphabet of size σ , the

obfuscated program consists of 2σ (L − 1) matrices, so:
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• the total space that it consumes is Ω(σλ5L+σλ2L4
log

3(λL))),
and

• the time to compute it is Ω(σλ7L + σλ3L5
log

4(λL)).
In words, the obfuscation running time is linear in σ , sextic in λ,
and quasi-quintic in L, and the hard-disk size needed is linear in σ ,
quintic in the security parameter, and quasi-quartic in L.

We note, however, that our implementation is parallelized across

the different CRT components, whose number is proportional to

ℓ = logq, so we expect one factor of ℓ from the running-time to be

eaten up by this parallelism. We thus expect the wall-clock time of

the obfuscation to be “only” quasi-quartic in the program length

Ω̃(L4), and sextic in the security parameter Ω(λ6).
For the RAM requirements, our implementation keeps only two

matrices in RAM at the same time so it uses Ω(λ5 + λ2L3
log

3(λL))
memory, but this could be reduced further (by only keeping a small

number of CRT components in memory, or only keeping a small

number of slices of each matrix in memory).

A.2 Concrete Results
To save time, we did almost all of our experiments with binary

alphabet |Σ| = 2, but for our parameter L = 15 we also ran it where

the input is expressed in nibbles |Σ| = 16, to verify that it works also

for that setting. As expected, initialization and evaluation were not

affected by the alphabet size, and RAM usage during obfuscation

was only marginally higher, while running-time and disk usage in

obfuscation were exactly 8 times larger for |Σ| = 16 than for |Σ| = 2.

The timing results for various settings can be found in Table 4, and

memory and disk-space usage are described in Figures 6, 7, and 8.

We also ran tests to examine the effectiveness of our paralleliza-

tion strategies, comparing the running times for the same parame-

ters (L = 8, binary alphabet, and 12 CRT factors) across different

number of threads. As expected given our choice of parallelism

across CRT component, increasing the number of threads upto the

number of CRT factors reduces the running time, but adding more

threads after that has no effect. The detailed results are described

in Figure 5.
9

9
Our code always allocates 1-2 threads for pipelined I/O, and only increases the number

of worker threads after that, hence the decrease in running-time only begins at 2-3

threads. Also the running time plateaus at 15 threads, even though there are only 12

CRT factors.

# of threads Initialization Obfuscation Evaluation

1 3840.2 15809.2 90.4

2 3833.6 15837.1 91.2

3 2032.0 15844.3 89.5

4 1451.8 8605.9 87.2

6 1120.0 4917.8 89.7

12 803.0 3298.5 88.7

16 560.1 2375.8 91.8

32 568.9 2168.1 98.5

Figure 5: Running time (seconds) as a function of the num-
ber of threads.

L m RAM

(Obfuscation)

5 3352 5.5

6 3932 8.7

8 5621 25

10 6730 43

12 8339 81

14 9923 137

16 10925 184

17 11928 241

20 14145 401

Figure 6: RAM usage (Gigabytes) as a function of the BP-
length. (L = input size, m = large dimension)
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L m Initialization (GB) Obfuscation (GB)

5 3352 3.7 2.3

6 3932 7.3 5.0

8 5621 28 13

10 6730 61 50

12 8339 141 120

14 9923 280 244

16 10925 432 383

17 11928 602 538

20 14145 1236 1124

Figure 7: Hard disk usage as a function of the input length.
(L = input size, m = large dimension)

# of threads Initialization (GB) Obfuscation (GB) Evaluation (GB)

1 10 33 8.2

2 10 33 8.2

3 12 33 8.2

4 14 33 8.2

6 18 33 8.2

12 28 39 8.3

16 29 41 8.3

32 29 45 7.9

Figure 8: Memory usage for different number of threads,
length L = 8.
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