
Iron: Functional Encryption using Intel SGX

Ben Fisch∗
Stanford University
bfisch@stanford.edu

Dhinakaran Vinayagamurthy†
University of Waterloo
dvinayag@uwaterloo.ca

Dan Boneh‡
Stanford Univesity

dabo@cs.stanford.edu

Sergey Gorbunov§
University of Waterloo

sgorbunov@uwaterloo.ca

ABSTRACT
Functional encryption (FE) is an extremely powerful cryptographic
mechanism that lets an authorized entity compute on encrypted
data, and learn the results in the clear. However, all current cryp-
tographic instantiations for general FE are too impractical to be
implemented. We construct Iron, a provably secure, and practical
FE system using Intel’s recent Software Guard Extensions (SGX).
We show that Iron can be applied to complex functionalities, and
even for simple functions, outperforms the best known crypto-
graphic schemes. We argue security by modeling FE in the context
of hardware elements, and prove that Iron satisfies the security
model.

CCS CONCEPTS
• Security andprivacy→Public key (asymmetric) techniques;
Hardware-based security protocols;

KEYWORDS
Functional encryption, Intel SGX, secure hardware, provable secu-
rity.

1 INTRODUCTION
Functional Encryption (FE) is a powerful cryptographic tool that
facilitates non-interactive fine-grained access control to encrypted
data [11]. A trusted authority holding a master secret key msk
can generate special functional secret keys, where each functional
key skf is associated with a function (or program) f on plaintext
data. When the key skf is used to decrypt a ciphertext ct, which
is the encryption of some message m, the result is the quantity

∗Supported by the NSF Graduate Research Fellowship.
†Supported by the Cheriton Graduate Scholarship from the University of Waterloo.
‡This work is supported by NSF, DARPA, a grant from ONR, and the Simons Foun-
dation. Opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of DARPA.
§This work is funded by NSERC Discovery grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3133956.3134106

f (m). Nothing else about m is revealed. Multi-Input Functional
Encryption (MIFE) [24] is an extension of FE, where the functional
secret key skд is associated with a function д that takes ℓ ≥ 1 plain-
text inputs. When invoking the decryption algorithm D on inputs
D (skд , c1, . . . , cℓ), where ciphertext number i is an encryption of
messagemi , the algorithm outputs д(m1, . . . ,mℓ). Again, nothing
else is revealed about the plaintext datam1, . . . ,mℓ . Functions can
be deterministic or randomized with respect to the input in both
single and multi-input settings [24, 28].

If FE and MIFE could be made practical, they would have nu-
merous real-world applications. For example, consider a genetics
researcher who collects public-key encrypted genomes from in-
dividuals. The researcher could then apply to an authority, such
as the National Institutes of Health (NIH), and request to run a
particular analysis on these genomes. If approved, the researcher is
given a functional key skf , where the function f implements the
desired analysis algorithm. Using skf the researcher can then run
the analysis on the encrypted genomes, and learn the results in the
clear, but without learning anything else about the underlying data.

In the context of cloud computing, a cloud server storing en-
crypted sensitive data can be given a functional key skf , where the
output of the function f is the result of a data-mining algorithm
applied to the data. Using skf the cloud server can run the algo-
rithm on the encrypted data to learn the results in the clear, but
without learning anything else. The data owner holds the master
key, and decides what functional keys to give to the cloud.

Banks could also use FE to improve privacy and security for their
clients by allowing client transactions to be end-to-end encrypted,
and running all transaction auditing via functional decryption. The
bank would only receive the keys for the necessary audits. Simi-
larly, FE could enable spam filters running on a remotely hosted
email server to detect spam in encrypted email traffic without fully
decrypting the emails.

The problem is that currently there aren’t any practical construc-
tions of FE from standard cryptographic assumptions for anything
more than simple functionalities (e.g., inner products). Moreover,
there is evidence that constructing general-purpose FE is as hard
as constructing program obfuscation [4, 9, 23]. However, existing
candidate constructions for obfuscation are impractical [39] and
rely on very new and unestablished computational hardness as-
sumptions, some of which have been broken [18, 44]. Previous
work proposed using secure hardware to instantiate FE, however it
relied on simulatable hardware “tokens" which did not model real
hardware [19].

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

765

https://doi.org/http://dx.doi.org/10.1145/3133956.3134106

Our contributions. We propose the first practical and provably
secure FE system that can be instantiated today from real commonly
available hardware. We implemented our proposed system, called
Iron, using Intel’s Software Guard Extensions (SGX) and performed
evaluation to show its practical efficiency comparedwith alternative
cryptographic algorithms. We also propose a formal cryptographic
model for analyzing the security of an SGX-based FE system and
prove that Iron satisifes our security definitions.

Intel SGX provides hardware support for isolated program execu-
tion environments called enclaves. Enclaves are encrypted memory
containers that protect against operating system, hypervisor, phys-
ical, and malware attacks. By default, designing an application to
work in an enclave involves partitioning it into trusted and un-
trusted components and defining a communication API between
them. A large component of the SGX architecture is the attesta-
tion property. Intuitively, it allows a user to attest that a remote
party is running a desired program within an enclave and verify
input/output tuples produced by the enclave. Enclaves run at full
processor speeds, so it’s very intuitive that they introduce minimal
performance overheads.

However, designing a provably secure application from Intel SGX
is a non-trivial task. While a number of works showed how to build
cryptographic algorithms and systems from Intel SGX [5–7, 30, 50,
54, 57, 60], only a handful of works have attempted to model and
prove systems security from Intel SGX [6, 7, 30, 48]. Reminiscent to
secure protocols (such as SSL/TLS), which are easy to construct from
basic cryptographic primitives, but are notoriously hard to analyze
and prove, doing so requires careful understanding of nuances and
techniques. We believe Intel SGX (and similar hardware encryption
technologies) will become standard cryptographic tools for building
secure systems. Thus, it is important to understand how to build a
system with a formal model and guarantees from the beginning.

Establishing a rigorous connection between Iron and the cryp-
tographic notion of FE is also particularly useful since FE is a very
general and powerful primitive that can be used to directly construct
many other cryptographic primitives, including fully homomorphic
encryption (FHE) [3, 15] and obfuscation [4, 9]. Thus, rather than a
complete system on its own, we view Iron as a basic framework
upon which a family of more application-specific systems can be
built in the future, and automatically inherit Iron’s rigorous notion
of security.

The security of Iron relies on trust in Intel’s manufacturing
process and the robustness of the SGX system. While we focus
on implementing Iron with Intel SGX, in principle the system
could be instantiated using other isolated execution environments
that also support remote software attestation, such as XOM [40],
AEGIS [55, 56], Bastion [16], Ascend [22] and Sanctum [21]. Each of
these systems have slightly different trust assumptions and trusted
computing bases (TCBs). A detailed comparison of these systems
to Intel SGX is covered in [20]. It is important to acknowledge the
limitations of basing security on trust in any particular hardware
design. For instance, several side-channel attacks have come to
light since SGX’s initial release [13, 38, 52, 58, 59]. In our system,
we ensure that the functionalities we implemented are resistant
to known side-channel attacks on SGX. Generic techniques for
protection against enclave side channels are also under study in
various works [38, 41, 49, 53, 58].

Construction overview. The design of Iron is described in detail
in Section 3. At a high level, the system uses a Key Manager Enclave
(KME) that plays the role of the trusted authority who holds the
master key. This authority sets up a standard public key encryption
system and signature scheme. Anyone can encrypt data using the
KME’s published public key. When a client (e.g., researcher) wishes
to run a particular function f on the data, the client requests autho-
rization from the KME. If approved, the KME releases a functional
secret key skf that takes the form of an ECDSA signature on the
code of f . Then, to perform the decryption, the client runs a Decryp-
tion Enclave (DE) running on an Intel SGX platform. Leveraging
remote attestation, the DE can obtain over a secure channel the
secret decryption key from the KME to decrypt ciphertexts. The
client then loads skf into the DE, as well as the ciphertext to be
operated on. The DE, upon receiving skf and a ciphertext, checks
the signature on f , decrypts the given ciphertext, and outputs the
function f applied to the plaintext.

We implemented Iron and report on its performance for a num-
ber of functionalities. For complex functionalities, this implementa-
tion is (unsurprisingly) far superior to any cryptographic implemen-
tation of FE (which does not rely on hardware assumptions). We
show in Section 4 that even for simple functionalities, such as com-
parison and small logical circuits, our implementation outperforms
the best cryptographic schemes by over a 10,000 fold improvement.
Furthermore, we discuss how Iron could support more expressive
function authorization policies that are not possible with standard
FE.

Security analysis. In this work we formalize our trust assump-
tions and definition of security for hardware-assisted FE, as well as
rigorously prove the security of our system in this formal model
(Section 6 and Section 7). While our construction of SGX-assisted
FE/MIFE is clean and simple, formally proving security turns out
to be complicated and non-trivial. For instance, we encounter a
TLS-like situation where we have to show that no information is
revealed from an encryption ofm whose corresponding secret de-
cryption key is transferred from KME to DE to the third enclave
using the secure channels established between these enclaves. With
an adversary being able to tamper with the inputs and the outputs
of these enclaves, the “simulator” that we construct to prove the
simulation-security of FE requires more care. Section 7 has more
details on this.

1.1 Related Work
A number of papers use SGX to build secure systems. Haven [8]
protects unmodified Windows applications from malicious OS by
running them in SGX enclaves. Scone [5] and Panoply [54] build
secure Linux containers using SGX. VC3 [50] enables secure MapRe-
duce computations while keeping both the code and the data secret
using SGX. A complete security analysis of the system was also
presented but the system evaluation was performed using their
own SGX performance model based on the Intel whitepapers. Ohri-
menko et al. [47] present data-oblivious algorithms for some popu-
lar machine learning algorithms. These algorithms can be used in
conjunction with our system if one wants an FE scheme supporting
machine learning functionalities. Gupta et al. [30] proposed pro-
tocols and theoretical estimates for performing secure two-party

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

766

computation using SGX based on the SGX specifications provided
in Intel whitepapers. Concurrent to our work, Bahmani et al. [6]
proposed a secure multi-party computation protocol where one
of the parties has access to SGX hardware and performs the bulk
of the computation. They evaluate their protocol for Hamming
distance, Private Set Intersection and AES. This work and [48] also
attempt formal modeling of SGX like we do. We discuss the com-
parison between the models in Section 5.1. Also concurrent to our
work, Nayak et al. [46] designed and implemented a construction
for virtual black-box obfuscation (a crypto primitive even stronger
than FE) using a version of secure hardware that they design and
prototype in an FPGA. In contrast, our work focuses on studying
the provable guarantees from a commercially available hardware.

[19] first proposed a way to bypass the impossibility results
in functional encryption by the use of “hardware tokens”. But,
their work is purely theoretical and they model secure hardware
as a single stateless deterministic token, which does not capture
how SGX works because their hardware token is initialized during
FE.Setup (refer Definition 5 of [19]). But in SGX, and hence in our
model, the secure hardwareHW is setup and initialized independent
of FE.Setup by the trusted hardware manufacturer, Intel. After
this point, an adversary who is in possession of the hardware can
monitor and tamper with all the input coming in to the hardware
and the corresponding outputs. Naveed et al. [45] propose a related
notion of FE called “controlled functional encryption”. The main
motivation of C-FE is to introduce an additional level of access
control, where the authority mediates every decryption request.

In general, various forms of trusted hardware (real ones like
TPM [29] and Intel TXT [31] and theoretical ones like tamper-proof
tokens [25, 37]) have enabled applications like one-time programs
[25], a contractual anonymity system [51], secure multi-party com-
putation with some strong security guarantees [27] that are either
not possible or not practical otherwise.

2 INTEL SGX BACKGROUND
Intel Software Guard Extensions (SGX) [43] is a set of processor
extensions to Intel’s x86 design that allow for the creation of isolated
execution environments called enclaves. These isolated execution
environments are designed to run software and handle secrets
in a trustworthy manner, even on a host where all the system
software (including OS, hypervisor, etc) and system memory are
untrusted. The isolation of enclave resident applications from all
other processes is enforced by hardware access controls. The SGX
specifications are detailed and complex [32, 43]. We provide only a
brief overview of its design and capabilities, with emphasis on the
components relevant to our system.

There are three main functionalities that enclaves achieve: Isola-
tion–code and data inside the enclave protected memory cannot be
read/modified by any process external to the enclave. Sealing–data
passed to the host environment is encrypted and authenticated with
a hardware-resident key. And Attestation–a special signing key and
instructions are used to provide an unforgeable report attesting to
code, static data, and (hardware-specific) metadata of an enclave,
as well as outputs of computations performed inside the enclave.

Isolation. Enclaves reside in a hardware guarded area of mem-
ory called the Enclave Page Cache (EPC). The EPC is currently
limited to 128 MB, consisting of 4KB page chunks, and applica-
tions can use approximately 90 MB. When an enclave program is
loaded, its code and static data are copied from untrusted memory
to pages inside the EPC. A measurement of the contents of these
pages called MRENCLAVE (essentially a SHA256 hash of the page
contents) is also stored inside the EPC in a structure that is linked
to the enclave. Entry into the enclave is not permitted throughout
this process until the measurement has been finalized. The creation
process establishes an enclave identity, which is used as a handle
to transfer program control to the enclave. The hardware enforces
that only the executable code pages associated with a particular
enclave identity can access the other pages associated with that
identity.

Sealing. Every SGX processor has a key called the Root Seal Key
that is embedded during the manufacturing process. An enclave can
use the EGETKEY instruction to derive a key called Seal Key from
the Root Seal Key that is specific to the enclave identity, which
can be used to encrypt/authenticate data and store it in untrusted
memory. Sealed data can be recovered by the same enclave even
after enclave is destroyed and restarted on the same platform. But
the Seal key cannot be derived by a different enclave on the same
platform or any enclave on a different platform.

Attestation. There are two forms of attestation: local and re-
mote.

• Local attestation. Local attestation is between two enclaves on
the same platform. Roughly, since enclaves on the same machine
share the same Root Seal Key, they can derive a shared key (called
Report Key) for symmetric authentication. An enclave can call a
special instruction EREPORT that fetches the MRENCLAVE and
metadata of an enclave and MACs it with the Report Key (along
with additional optional data provided as input to the instruction).
This is called a report.
• Remote attestation. Remote attestation generates a report that
can be verified by any remote party. Roughly, an enclave first
local attests to a special enclave called the Quoting Enclave (QE),
sending it a report. The QE verifies local reports and convert
them into a quote. The quote contains the same underlying data
but is signed with a private key for an anonymous group signa-
ture scheme called Intel Enhanced Privacy ID (EPID) [36]. The
QE obtains this private key during through a protocol with the
Intel Provisioning Server upon device initialization. This protocol
includes a symmetric authentication involving Root Provisioning
Key that was embedded in the device during the manufacturing
process and also shared with the Intel Provisioning Server. Cur-
rently, verifying quotes requires contacting the Intel Attestation
Server, though in principle this could be done by any verifier that
has the group public key.

SGX TCB. SGX stands out in that its TCB consists only of the
CPU microcode and privileged containers, however it also requires
the user to trust in Intel’s key management infrastructure for sign-
ing microcode and various service enclaves. In particular, we must

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

767

trust that the root seal keys embedded into devices are not leaked
from the manufacturing facility, and that the Intel Provisioning
Server safely manages root provisioning keys as well as EPID mas-
ter secret keys.

SGX side-channel attacks.The security of SGX is still evolving
[35] but the current version is susceptible various side-channel
attack which can be divided into two classes: physical attacks, which
are mounted by an attacker with physical access to the CPU, and
software attacks, which are mounted by software running on the
same host as the CPU, such as a compromised OS. SGX does not
claim to defend against physical attacks such as power analysis,
although successful physical attacks against SGX have not yet been
demonstrated.

Several software attacks have been demonstrated so far, includ-
ing cache-timing attacks [20], page-fault attacks [59], branch shad-
owing [38] and synchronization bugs [58]. Leaking information
through these side-channels can be avoided by ensuring that en-
clave programs are data-oblivious, i.e. do not have memory access
patterns or control flow branches that depend on the values of
sensitive data. Our implementation of enclave programs that deal
with sensitive information are data-oblivious.

3 SYSTEM DESIGN
3.1 Architecture overview

Platforms. The Iron system consists of a single trusted authority
(Authority) platform and arbitrarily many decryption node plat-
forms, which may be added dynamically. Both the trusted authority
and decryption node platforms are Intel SGX enabled. Just as in a
standard FE system, the Authority has the role of setting up pub-
lic parameters as well as distributing functional secret keys, or the
credentials required to decrypt functions of ciphertexts. A client
application, which does not need to run on an Intel SGX enabled
platform, will interact once with the Authority in order to obtain
credentials (i.e., a secret key) for a function and will then interact
with any decryption node in order to perform functional decryp-
tions of ciphertexts.

Protocol flow. The public parameters that the Authority gener-
ates includes a public encryption key for a public key cryptosystem
and a public verification key for a cryptographic signature scheme.
The Authority manages the corresponding secret decryption key
and secret signing key. Through remote attestation, the Authority
platform provisions the secret decryption key to a special enclave
called a decryption enclave (DE) on the decryption node(s). Cipher-
texts are encrypted using the public encryption key. To authorize a
client application to run a function on ciphertexts, the Authority
signs the function code using its secret signing key, and sends this
signature to the client. When the client sends a ciphertext, function
code, and valid signature on the function code to the decryption
node, the DE with access to the secret key checks the signature,
decrypt the ciphertext, run the function on the plaintext, and output
the result. The enclave aborts on invalid signatures.

Decryption enclaves & function enclaves. Thus far in our simple
description of the protocol flow, there is a single enclave on the
decryption node (the DE) that manages the secret decryption key,

checks function signatures, and performs functional decryption.
This requires the DE to receive code as input (after enclave initial-
ization) and to both check a signature on the code as well as execute
the code. However, in the current version of SGX, enclaves cannot
dynamically allocate new code pages. All enclave memory as well
as the Read, Write, and Execute (RWX) permissions of each page
must be committed before initialization (i.e., at build time). There-
fore, the only way for the DE to execute the function it receives
as native code would be to pre-allocate empty pages at build time
that are both writeable and executable, and to write the function
code it receives to these pages.1 There are several drawbacks to
this approach, namely that it requires the DE to predetermine the
maximum size of any function it will support, and conflicts with
executable space protection (the function code is more vulnerable
to exploits that might overwrite code pages). A second option is
to execute the function inside the DE as interpreted code, but this
could greatly impact performance for more complex functions.

The third option is to load functions in entirely separate function
enclaves and take advantage of local attestation, which already pro-
vides a way for one enclave to verify the code running in another.
This is the cleanest design and the simplest to implement. One trade-
off, however, is that creating a new enclave for each authorized
function is a relatively expensive operation. This has little impact
on applications that run a few functions on many ciphertexts, but
would impact applications that run many functions on only a few
ciphertexts. We demonstrate in our evaluation (Section 4) that for
a simple functionality like Identity Based Encryption (IBE) inter-
preting the function (i.e. identity match) in an enclave is an order
of magnitude faster.

Authorization policies. The Authority has full responsibility over
implementing a given function authorization policy, which governs
how it decides whether or not to provide a given client with a
signed function. The enclaves on the decryption platform do not
play any role in implementing this policy. Typically, the details of
the authorization policy are beyond the scope of an FE construc-
tion and are application specific (we mentioned several examples
in the introduction). It is important to note that in classical FE
once a client obtains a secret key it can use it arbitrarily. Thus
authorization policies are one-time decisions, and cannot cover key
revocation, or limits on the number of times a client may run a
function, etc. In contrast, more expressive policies may be possible
in our SGX-assisted version of FE. For example, the secret key could
be tagged with an expiration time that the enclaves on the decryp-
tion platform could check before running decryption by utilizing
SGX’s trusted time service [34]. Enforcing limits on the number of
times a client can run a function would require maintaining non-
volatile enclave state, for which SGX does not immediately provide
rollback protection (see [42] for a recent system providing rollback
protection using SGX’s monotonic counters [33]. Additionally, it
would require sharing state across all active decryption enclaves
with assistance from the Authority.

Key manager enclave. The Authority uses the key manager en-
clave (KME) to generate encryption and signing keys, and uses
1This will change in SGX2[35], which adds instructions to dynamically load new code
pages into enclaves. We can revisit the design based on this new feature when SGX2
becomes available.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

768

Figure 1: Iron Architecture and Protocol Flow

this enclave as an oracle to authorize functions. This might seem
unnecessary (in our current implementation) as the Authority can
use the KME to sign any function of its choice, however it offers
several advantages. First, it serves as a way to protect the FE master
key against an attacker that does not have long term access to the
machine running the key manager enclave. Furthermore, we can
imagine a more general scenario where the authorization policy is
run entirely inside a key manager enclave, which only signs func-
tions when provided with suitable proof of authorization which
could come from a decentralized authority like a public blockchain
or rely on an independent PKI.

3.2 FE Protocols
FE Setup. The Authority platform runs a secure enclave called

the key manager enclave (KME) that it uses to generate a pub-
lic/private key pair (pkpke, skpke) for a CCA2 secure public key
cryptosystem and a verification/signing key pair (vksign, sksign)
for a cryptographic signature scheme. The keys pkpke and vksign
are published while the keys skpke and sksign are sealed with the
KME’s sealing key and kept in non-volatile storage. Note that the
Authority has full access to the KME and can thus use it to authorize
any function, thus the KME is simply used for key management.
The handle to the KME’s signing function call, which produces
signatures using sksign, serves as the trusted authority’s master
secret key.

FE Decrypt Setup. When a new decryption node is initialized,
the KME establishes a secure channel with a decryption enclave
(DE) running on the decryption node SGX-enabled platform. The
KME receives from the decryption node a remote attestation, which
demonstrates that the decryption node is running the expected
DE software and that the DE has the correct signature verifica-
tion key vksign. The remote attestation also establishes a secure
channel, i.e. contains a public key generated inside the DE. After
verifying the remote attestation, the KME sends skpke to the DE
over the established secure channel, and authenticates this message
by signing it with sksign.At this point, it is not at all obvious why
the KME needs to sign its message to the DE. Indeed, since skpke is
encrypted, it seems that there isn’t anything a man-in-the-middle
attacker could do to harm security. If the message from the KME to
the DE is replaced, the decryption node platform would simply fail
to decrypt ciphertexts encrypted under pkpke. However, it turns
out that authenticating the KME’s messages is necessary for our
formal proof of security to work (see Section 6).

FE Keygen. A client application requests from the Authority
the “secret key" for a function f .The Authority decides whether
the client application is authorized to run the given function f ,
and if not it rejects the request. Otherwise, it produces a secret
key for the function f as follows. The function f is wrapped in
a function enclave program, described in more details below. The
Authority generates an instance of this function enclave and obtains
an attestation report for the enclave including the MRENCLAVE
value mrenclavef. It then uses the KME signing handle to sign
mrenclavef using sksign. The signature sigf is returned to the client
application, and serves as the “secret key" skf .

FE.Encrypt. Inputs are encrypted with pkpke using a CCA2 se-
cure public key encryption scheme.

FE.Decrypt. Decryption begins with a client application connect-
ing to a decryption node that has already been provisioned with the
decryption key skpke. The client application may also run locally
on the decryption node. The following steps ensue:

(1) If this is the client’s first request to decrypt the function
f, the client sends the function enclave binary enclavef to
the decryption node, which the decryption node then runs.
Note that the binary enclavef it initialized by untrusted code
running on the decryption node, not by the DE.

(2) The client initiates a key exchange with the function enclave,
and receives a remote attestation that it has successfully es-
tablished a secure channel with an Intel SGX enclave running
enclavef. (Local client applications skip this step).

(3) The client sends over the established secure channel a vector
of ciphertexts and the KME signature sigf that it obtained
from the Authority in FE.Keygen.

(4) The function enclave locally attests to the DE and passes
sigf . The DE validates this signature against vksign and the
MRENCLAVE value mrenclavef, which it obtains during lo-
cal attestation. If this validation passes, the DE delivers the
secret key skpke to the function enclave. The DE authen-
ticates its message to the function enclave by wrapping it

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

769

inside its own local attestation report.2 Finally, the function
enclave uses skpke to decrypt the ciphertexts and compute f
on the plaintext values. The output is returned to the client
application over the function enclave’s secure channel with
the client application.

4 IMPLEMENTATION AND EVALUATION
We implemented a prototype of the Iron system with a single
decryption node and a client application running locally on the
decryption node. The implementation was developed in C++ us-
ing the Intel(R) SGX SDK 1.6 for Windows3. All enclaves link the
MSR Elliptic Curve Cryptography Library 2.0 MSR_ECClib.lib4

as a trusted static library, which is used to implement the elliptic
curve ElGamal cryptosystem in a Weierstrass curve over a 256-bit
prime field, and sgx_tcrypto.lib, which includes EC256-DHKE key
exchange, ECDSA signatures over the NIST P-256 elliptic curve, Ri-
jndael AES-GCM encryption on 128-bit key sizes, and SHA256. We
implemented a CCA2-secure hybrid encryption scheme using El-
Gamal, AES-GCM, and SHA256 in the standard way. We tested the
prototype implementation on a platform running an Intel Skyake
i7-6700 processor at 3.40 GHz with 8 GiB of RAM and Windows
Server 2012 R2 Standard operating system, compiled with 64-bit
and Debug mode build configurations.

We evaluate three special cases of functional encryption: identity
based encryption (IBE), order revealing encryption (ORE), and three
input DNF (3DNF). We chose these primarily to demonstrate how
our SGX assisted versions of these primitives perform in compari-
son to purely cryptographic versions that have been implemented,
ranging from a widely-used and practical construction (IBE from
pairings) to impractical ones (ORE and 3DNF from multilinear
maps). Our evaluation confirms that the SGX-based functional en-
cryption examples we implemented are orders of magnitude faster
than cryptographic solutions without secure hardware, even for
IBE which is already widely used in practice. We recognize that
more complex functionalities than the ones we have implemented,
particularly functions that operate on data outside the EPC, may re-
quire additional side-channel mitigation techniques such as ORAM,
which will impact performance. However, we would still expect
these to outperform traditional functional encryption by orders of
magnitude.

Side-channel resilience. The function and decryption enclave
programs must be implemented to resist the software based side-
channel attacks on SGX described in Section 2. The only enclave
operations that touch secret data are decryption operations (AES-
GCM and ElGamal) and the specific client functions that are loaded
into the function enclave. Our implementation of AES-GCM uses
the SGX SDK cryptographic library, which calls the AES-NI in-
struction for AES-GCM, and hence is resilient to software-based
side-channels. Our implementation of ElGamal decryption uses the
MSR Elliptic Curve Cryptography Library 2.0, which also claims

2Authenticating the DE’s message to the function enclave serves the same purpose as
authenticating the KME’s message to the DE in the formal proof of security.
3https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-
Developer-Reference-for-Windows-OS.pdf
4https://www.microsoft.com/en-us/research/project/msr-elliptic-curve-
cryptography-library

resistance to timing attacks and cache-timing attacks. We imple-
mented oblivious versions of all three client-loaded functions that
we include in our evaluation, which was easy to achieve by imple-
menting data comparisons in x86 assembly with the setg and sete
conditional instructions (similar to [47]).

Performance evaluation. We report on the performance of FE.Decrypt,
FE.Setup, and FE.Keygen (Figures 2 and 3). FE.Encrypt in our sys-
tem is standard public key encryption (our implementation uses
ElGamal), and this is done outside of SGX enclaves.5

Figure 2 contains a break down of the run time for FE.Setup and
FE.Keygen.

create enclave 57 ms
ECDSA setup 74 ms
ElGamal setup 8 ms
server setup 2 ms
sign message 11 ms
Total 141 ms

Figure 2: FE.Setup and FE.Keygen run time, including enclave creation and
generation of public/secret keys for ECDSA and ElGamal on 256 bit EC curves.
FE.Keygen corresponds to sign message, which generates an ECDSA signa-
ture on a 256-bit input.

We evaluated the performance of FE.Decrypt for three special
cases of function encryption: identity based encryption (IBE), order
revealing encryption (ORE), and three input DNF (3DNF). We chose
these functionalities primarily to demonstrate how our SGX assisted
versions of these primitives perform in comparison to their purely
cryptographic versions (IBE from pairings, DNF and 3DNF from
multilinear maps). The table in Figure 3 summarizes the decryption
times for the three functionalities, including a breakdown of the
time spent on the three main ECALLS of the decryption process:
enclave creation, local attesting to the DE, and finally decrypting
the ciphertext and evaluating the function.

Functionality: IBE ORE 3DNF
create enclave 14.5 ms 20.7 ms 19.7 ms
local attest 1.6 ms 2.1 ms 2.1 ms
decrypt & eval 0.98 ms 0.84 ms 0.96 ms
Total 17.8 ms 23.78 ms 22.76 ms

Figure 3: Breakdown of FE.Decrypt run times for each of our SGX-FE im-
plementations of IBE, ORE, and 3DNF. The input in IBE consisted of a 3-byte
tag and a 32-bit integer payload. The input pairs in ORE were 32-bit integers,
and the input triplets in 3DNF were 16-bit binary strings. (The input types
were chosen for consistencywith the 5Gen experiments). The columndecrypt
gives the cost of running a single decryption.

5Note that all the procedures we evaluate are entirely local, which is why we do not
include any network performance metrics. We omit performance measures on decryp-
tion node setup since the setup procedure requires contacting the Intel Attestation
Server to process a remote attestation, which we were unable to test without a license
from Intel. Nonetheless, the setup is a one-time operation that is completed when
a decryption node platform is first established, and thus has little overall impact on
decryption performance.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

770

|msg |:
|c |:
decrypt:
decrypt∗ :

IBESGX IBE[BF01] × increase
35 bits 35 bits NA
175 bytes 471 bytes 2.69
17.8 ms 49 ms 2.75
0.39 ms 49 ms 125.64

ORESGX ORE5Gen × increase
32 bits 32 bits NA
172 bytes 4.7 GB 27.3 · 106
23.78 ms 4 m 10.1 · 103
0.32 ms 4 m 750 · 103

3DNFSGX 3DNG5Gen × increase
16 bits 16 bits NA
170 bytes 2.5 GB 14.7 · 106
22.76 ms 3 m 7.9 · 103
0.45 ms 3 m 400 · 103

Figure 4: Comparison of decryption times and ciphertext sizes for the SGX-FE implementation of IBE, ORE, 3DNF to cryptographic implementations. The 5Gen
ORE and 3DNF implementation referenced here uses the CLT mmap with an 80-bit security parameter. The column decrypt gives the cost of running a single
decryption, and decrypt∗ gives the amortized cost (per ciphertext tuple) of 103 decryptions.

Amortized decryption costs. As shown in Figure 3, for each of the
functionalities the time spent creating the enclave dominates the
time spent on decryption and evaluation by 2 orders of magnitude.
Once the function enclave has been created and local attestation to
the DE is complete, the same enclave can be used to decrypt an arbi-
trary number of input ciphertext tuples. Thus, the amortized cost of
running decryption on many ciphertexts (or tuples of ciphertexts)
is much lower than the cost of running decryption on a single input.
(This is not the case with cryptographic implementations of these
functionalities). The amortized cost of running decryption on 1000
inputs (ciphertext tuples) is included in the next table, Figure 4.

Figure 5: Comparison of time for decrypting 103 ciphertext tuples using
the SGX-FE implementation of IBE, ORE, 3DNF vs cryptographic implemen-
tations from pairings and mmaps respectively.

Comparison to cryptographic implementations. We measured de-
cryption time for an implementation6 of Boneh-Franklin IBE [10]
on our platform. We also include decryption time performance
numbers for the 5Gen implementation7 of mmap-based ORE and
3DNF as reported in [39]. We did not deem it necessary to measure
5Gen implementations of ORE and 3DNF on our platform since
their performance is 4 orders of magnitude slower than that of our
SGX-based implementation. The comparison for these multi-input
functionalities simply illustrates how our SGX-FE system makes
possible primitives that are currently otherwise infeasible to build
for practical use without secure hardware.

6The Stanford IBE command-line utility ibe-0.7.2-win, available at
https://crypto.stanford.edu/ibe/download.html
75Gen, available https://github.com/5GenCrypto

5 FORMAL MODELS AND DEFINITIONS
5.1 Formal HWmodel
We describe a black-box program HW that captures the secure
hardware’s functionality and its interface exposed to the user.

Definition 5.1. The functionality HW for a class of (probabilistic
polynomial time) programs 𝒬 consists of HW.Setup, HW.Load,
HW.Run, HW.Run&Report, HW.Run&Quote, HW.ReportVerify,
HW.QuoteVerify. HW has an internal state state that consists of
two variablesHW.skquote andHW.skreport and a tableT consisting
of enclave state tuples indexed by enclave handles.

• HW.Setup(1λ): This takes in a security parameter λ and gener-
ates the secret keys skquote, skreport, and stores these inHW.skquote,
HW.skreport respectively. Finally, it generates and outputs public
parameters params.
• HW.Load(params,Q): This loads a stateful program into an en-
clave.HW.Load takes as input a programQ ∈ 𝒬 and some global
parameters params. It first creates an enclave and loads Q and
generates a handle hdl that will be used to identify the enclave
running Q . It initializes the entry T [hdl] = ∅.
• HW.Run(hdl, in): This runs an enclave program. It takes in a
handle hdl corresponding to an enclave running the stateful
program Q and an input in. It runs Q at state T [hdl] with input
in and records the output out. It sets T [hdl] to be the updated
state of Q and outputs out.
• HW.Run&Reportskreport (hdl, in): This executes a program in an
enclave and also generates an attestation of its output that can
be verified by an enclave program on the same HW platform. It
takes as inputs a handle hdl for an enclave running a program Q
and an input in forQ . The algorithm first executesQ on in to get
out, and updates T [hdl] accordingly. HW.Run&Report outputs
the tuple report :=

(
mdhdl, tagQ , in, out,mac

)
, where mdhdl is

the metadata associated with the enclave, tagQ is a program
tag that can be used to identify the program running inside the
enclave (it can be a cryptographic hash of the program code
Q) and mac is a cryptographic MAC produced using skreport on
(mdhdl, tagQ , in, out).

• HW.Run&QuoteskHW (hdl, in): This executes a program in an en-
clave and also generates an attestation of its output that can
be publicly verified, e.g. by a remote party. This takes as inputs
a handle hdl corresponding to an enclave running a program
Q and an input in for Q . This algorithm has a restricted access
to the key skHW for using it to sign messages. The algorithm

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

771

first executes Q on in to get out, and updates T [hdl] accord-
ingly. HW.Run&Quote then outputs the tuple quote :=

(
mdhdl,

tagQ , in, out,σ
)
, where mdhdl is the metadata associated with

the enclave, tagQ is a program tag for Q and σ is a signature on
(mdhdl, tagQ , in, out).

• HW.ReportVerifyskreport (hdl
′, report): This is the report verifica-

tion algorithm. It takes as inputs, a handle hdl′ for an enclave and
a report =

(
mdhdl, tagQ , in, out,mac

)
. It uses skreport to verify

the MAC. If mac is valid, it outputs 1 and adds a tuple (report, 1)
toT [hdl′]. Otherwise it outputs 0 and adds (report, 0) toT [hdl′].
• HW.QuoteVerify(params, quote): This is the quote verification
algorithm. This takes params and quote =

(
mdhdl, tagQ , in, out,

σ
)
as input. It outputs 1 if the signature verification of σ succeeds.

It outputs 0 otherwise.

In Appendix A, we formally define the correctness ofHW as well
as the security properties of HW.Run&Report, HW.Run&Quote,
HW.ReportVerify, and HW.QuoteVerify as local attestation un-
forgeability (LocAttUnf) and remote attestation unforgeability (Re-
mAttUnf).

Oracles and handles. HW models a single SGX chip. Our system
involves multiple HW platforms, and each is modeled by a separate
HW instance. When a particular process, e.g. FE.Decrypt, needs
to interact with multiple platforms, the remote interactions are
modeled through oracle calls, which in the real world corresponds
to communicating with a process running on the relevant remote
machine. The handles in the model generated by HW.Load do not
need to secret or unpredictable. They are only relevant to the inter-
faces described in HW, which by definition can only be accessed
by the HW instance itself. More concretely, in the real world SGX
instantiation, these enclave handles are used only by processes
running on the same machine as the enclave(s).

Modeling assumptions. One way of viewing this definition of
HW is that is describes the ideal functionality or oracle that models
the real (physical) world assumptions about the hardware security
properties of Intel SGX), and that an adversary shouldn’t be able to
distinguish between interacting with the real world hardware and
the ideal functionality. This allows us to simulate the adversary’s
interaction with HW in a proof of security, but it is a very strong
assumption on the secure hardware being used, particularly since
the adversary has access to the physical hardware and can closely
monitor its behavior. A weaker assumption, stated informally, is
simply that the adversary gains no more “useful" information from
querying the real hardware on some input beyond the outputs
specified by HW, without requiring that an adversary’s physical
interactions with HW cannot be simulated. Our security proof of
the main system/construction we have presented assumes the first
model. In Appendix D we explore the second model, though it turns
out that we cannot achieve the standard non-interactive notion of
functional encryption in this stronger security model.

Related models. Barbosa et. al. [7] define a similar interface/ideal
functionality to represent systems like SGX that perform attested
computation. Compared to their model, our model sacrifices some
generality for a simpler syntax that more closely models SGX. Their

security model uses a game-based definition of attested computa-
tion, similar to the second security model we discuss in the Appen-
dix.

Pass, Shi, and Tramer [48] also define an ideal functionality for
attested computation in the Universal Composability framework
[14]. The goal of their model is to explore composable security for
protocols using secure processors performing attested computation.
Similar to [7] their syntax is more abstract that ours, e.g. does
not distinguish between local and remote attestation. However,
their hardware security model is more similar in that it allows the
hardware functionality to be simulated. A key difference is that their
simulator does not possess the hardware’s secret signing key(s) used
to generate attestations. Our simulator will be given the hardware’s
secret keys, similar to trapdoor information in CRS-model proofs.

Bahmani et al [6] adapts the SGX model of [7] to deal with
sequences of SGX computations that may be stateful, asynchronous,
and interleaved with other computations. Their model is called
labelled attested computation, which refers to labels being appended
to every enclave input/output in order to track state. This capability
is implicitly captured in our model as well.

5.2 Functional Encryption
We adapt the definition of functional encryption to fit the com-
putational model of our system. Interaction with local enclaves is
modeled as calls to the HW functionality defined in Definition 5.1.
Communication with the remote KME is modeled with a sepa-
rate oracle KM(·). We allow for a preprocessing phase which runs
the setup for all HW instances. A functional encryption scheme
ℱℰ for a family of programs 𝒫 and message space ℳ consists
of algorithms ℱℰ = (FE.Setup, FE.Keygen, FE.Enc, FE.DecSetup,
FE.Dec) defined as follows.

• FE.Setup(1λ): On input security parameter λ (in unary), out-
put the master public key mpk and the master secret key
msk.
• FE.Keygen(msk, P): On input the master secret keymsk and
a program P ∈ 𝒫 , output the secret key skP for P .
• FE.Enc(mpk,msg): On input the master public keympk and
an input message msg ∈ℳ, output a ciphertext ct.
• FE.DecSetupKM(·),HW(·) (mpk): The decryption node setup
algorithm has access to the KM oracle and the HW oracles.
On input the master public key mpk, output a handle hdl to
be used by the actual decryption algorithm.
• FE.DecHW(·) (hdl, skP , ct): On input a handle hdl for an en-
clave, a secret key skP and a ciphertext ct and outputs P (msg)
or ⊥. This algorithm has access to the interface for all the
algorithms of the secure hardware HW.

Correctness. A functional encryption scheme ℱℰ is correct if for
all P ∈ 𝒫 and all msg ∈ℳ, the probability for FE.DecHW(·)

(
hdl,

skP , ct
)
to be not equal to P (msg) is negl(λ), where (mpk,msk) ←

FE.Setup(1λ), skP ← FE.Keygen(msk, P), ct← FE.Enc(mpk,msg)
and hdl ← FE.DecSetupKM(·),HW(·) (mpk) and the probability is
taken over the random coins of the probabilistic algorithms FE.Setup,
FE.Keygen, FE.Enc, FE.DecSetup.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

772

Non-interaction. Non-interaction is central to the standard no-
tion of functional encryption. Our construction of hardware assisted
FE requires a one-time setup operation where the decryptor’s hard-
ware contacts the KME to receive a secret key. However, this in-
teraction only occurs once in the setup of a decryption node, and
thereafter decryption is non-interactive. To capture this restriction
on interaction we add to the standard FE algorithms an additional
algorithm FE.DecSetup, which is given oracle access to a Key Man-
ager KM(·). The decryption algorithm FE.Dec is only given access
to HW.

Security definition. Here, we define a strong simulation-based
security of FE similar to [2, 11, 26]. In this security model, a polyno-
mial time adversary will try to distinguish between the real world
and a “simulated” world. In the real world, algorithms work as
defined in the construction. In the simulated world, we will have
to construct a polynomial time simulator which has to do the ex-
periment given only the program queries P made by the adversary
and the corresponding results P (msg).

Definition 5.2 (SimSecurity-FE). Consider a stateful simulator 𝒮
and a stateful adversary 𝒜. Let Umsg (·) denote a universal oracle,
such thatUmsg (P) = P (msg).

Both games begin with a pre-processing phase executed by the
environment. In the ideal game, pre-processing is simulated by 𝒮 .
Now, consider the following experiments.

Expreal
ℱℰ

(1λ) : Expideal
ℱℰ

(1λ) :

(mpk, msk) ← FE.Setup(1λ) mpk← 𝒮 (1λ)

(msg) ← 𝒜FE.Keygen(msk, ·) (mpk) msg← 𝒜𝒮 (·) (mpk)

ct← FE.Enc(mpk, msg) ct← 𝒮Umsg (·) (1λ, 1|msg|)

α ← 𝒜FE.Keygen(msk, ·),HW,KM(·) (mpk, ct) α ← 𝒜𝒮Umsg (·) (·) (mpk, ct)

Output (msg, α) Output (msg, α)

In the above experiment, oracle calls by𝒜 to the key-generation,
HW and KM oracles are all simulated by the simulator 𝒮Umsg (·) (·).
An FE scheme is simulation-secure against adaptive adversaries if
there is a stateful probabilistic polynomial time simulator 𝒮 that
on each FE.Keygen query P queries its oracle Umsg (·) only on the
same P (and hence learn just P (msg)), such that for every proba-
bilistic polynomial time adversary 𝒜 the following distributions
are computationally indistinguishable.

Exprealℱℰ (1
λ)

c
≈ Expidealℱℰ (1λ)

Note that the above definition handles one message only. This
can be extended to a definition of security for many messages by
allowing the adversary to adaptively output many messages while
providing him the ciphertext for a message whenever he outputs
one. Here, the simulator will have an oracleUmsgi (·) for everymsgi
output by the adversary.

Simulating HW. As previously discussed, we let the simulator
intercept all the adversary’s queries to HW and return simulated
responses, just as in [19]. If we do not allow simulation of HW, it
is impossible to achieve Definition 5.2. In Appendix D we provide

a modified FE definition to allow minimal interaction8 with an effi-
cientKM oracle during every run of FE.Dec, and give a construction
that realizes this modified FE in the stronger security model.

6 FORMAL CONSTRUCTION
We present here the formal description of our FE system using the
syntax of the HW model from Definition 5.1. The trusted authority
platformTA and decryption node platform DN each have access to
instances of HW. Let PKE denote an IND-CCA2 secure public key
encryption scheme (Definition B.3) and let S denote an existentially
unforgeable signature scheme (Definition B.2).

Pre-processing phase. TA and DN run HW.Setup(1λ) for their
HW instances and record the output params.

FE.SetupHW (1λ). The key manager enclave program QKME
is defined as follows. The value tagDE , the measurement of the
program QDE , is hardcoded in the static data of QKME . Let state
denote an internal state variable.

QKME :
• On input (“init", 1λ):
(1) Run (pkpke, skpke) ← PKE.KeyGen(1λ) and (vksign, sksign) ←

S.KeyGen(1λ)
(2) Update state to (skpke, sksign, vksign) and output (pkpke, vksign)
• On input (“provision", quote, params):
(1) Parse quote =

(
mdhdl, tagQ , in, out, σ

)
, check that tagQ =

tagDE . If not, output ⊥.
(2) Parse in = (“init setup”, vksign) and check if vksign matches with

the one in state. If not, output ⊥.
(3) Parse out = (sid, pk) and run b ← HW.QuoteVerify(params,

quote) on quote. If b = 0 output ⊥.
(4) Retrieve skpke from state and compute ctsk = PKE.Enc(pk,

skpke) and σsk = S.Sign(sksign, (sid, ctsk)) and output (sid,
ctsk , σsk).

• On input (“sign", msg):
Compute sig← S.Sign(sksign, msg) and output sig.

Run hdlKME ← HW.Load(params,QKME) and (pkpke, vksign) ←
HW.Run(hdlKME , (“init", 1λ)). Output themaster public keympk :=
(pkpke, vksign) and the master secret key msk := hdlKME .

FE.KeygenHW (msk, P). Parse msk = hdlKME as a handle to
HW.Run. Derive tagP and call sig ← HW.Run(hdlKME , (“sign",
tagP)). Output skp := sig.

FE.Enc(mpk,msg). Parse mpk = (pk, vk). Compute ct←
PKE.Enc(pk,msg) and output ct.

FE.DecSetupHW,KM(·) (skP , ct). The decryption enclave program
QDE is defined as follows. The security parameter λ is hardcoded
into the program.

QDE :
• On input (“init setup", vksign):
(1) Run (pkra, skra) ← PKE.KeyGen(1λ).
(2) Generate a session ID, sid← {0, 1}λ .
(3) Update state to (sid, skra, vksign), and output (sid, pkra).

8Allowing unbounded interaction would lead to trivial constructions whereKM simply
decrypts the ciphertext and returns the function of the message.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

773

• On input (“complete setup", sid, ctsk , σsk):
(1) Look up the state to obtain the entry (sid, skra, vksign). If no entry

exists for sid, output ⊥.
(2) Verify the signature b ← S.Verify(vksign, σsk , (sid, ctsk)). If b =

0, output ⊥.
(3) Runm ← PKE.dec(skra, ctsk) and parsem = (skpke).
(4) Add the tuple (skpke, vksign) to state9.
• On input (“provision", report, sig):
(1) Check to see that the setup has been completed, i.e. that state

contains the tuple (skpke, vksign). If not, output ⊥.
(2) Check to see that the report has been verified, i.e. that state

contains the tuple (1, report). If not, output ⊥.
(3) Parse report =

(
mdhdl, tagQ , in, out, mac

)
and compute b ←

S.Verify(vksign, sig, tagQ). If b = 0, output ⊥.
(4) Parse out as (sid, pk). If b = 1 output (sid, PKE.Enc(pk, skpke)).

Else, output ⊥.

Run hdlDE ← HW.Load(params,QDE). Parse mpk = (skpke,
vksign) and call quote← HW.Run&QuoteskHW (hdlDE , “init setup",
vksign). Query KM(quote), which internally runs (sid, ctsk ,σsk) ←
HW.Run(hdlKME , (“provision", quote, params))10. And now, call
HW.Run(hdlDE , (“complete setup", sid, ctsk ,σsk)). Output hdlDE .

FE.DecHW(·) (hdl, skP , ct). Define a function enclave program
parameterized by P .

QF E (P):
• On input (“init"):
(1) Run (pkla, skla) ← PKE.KeyGen(1λ).
(2) Generate a session ID, sid← {0, 1}λ .
(3) Update state to (sid, skla), and output (sid, pkla).
• On input (“run", reportsk , ctmsд):
(1) Check to see that the report has been verified, i.e. that state

contains the tuple (1, reportsk). If not, output ⊥.
(2) Parse reportsk =

(
mdhdl, tagQ , in, out, mac

)
. Parse out as (sid,

ctkey).
(3) Look up the state to obtain the entry (sid, skla). If no entry exists

for sid, output ⊥.
(4) Compute skpke ← PKE.dec(skra, ctkey) and use it to decrypt

x ← PKE.dec(skpke, ctmsд).
(5) Run P on x and record the output out := P (x). Output out.

Run hdlP ← HW.Load(params,QF E (P)) and call report ←
HW.Run&Reportskreport (hdlP , “init"). Run HW.ReportVerifyskreport
(hdlDE , report) with hdlDE = hdl and then call reportsk ←
HW.Run&Report(hdlDE , (“provision", report, sig)) with sig = skP .
Finally, runHW.ReportVerifyskreport (hdlP , reportsk) and call out←
HW.Run(hdlP , “run", reportsk , ctmsд) with ctmsд = ct. Output
out.

7 SECURITY
We first explain the crux of our security proof here. More details
will follow.

We construct a simulator 𝒮 which can simulate FE.Keygen,HW,
KM oracles and simulate the challenge ciphertext for the challenge
message msg∗ provided by the adversary 𝒜. The only information
9vksign is already in state as part of the outputs of the previous “init setup” phase, but
it is useful store and use this tuple as result of a successfully completed setup.
10We could use HW.Run&Quote here instead of explicitly creating the signature σk .
If we do that, the verification step in DE would involve using the Intel Attestation
Service.

that 𝒮 will get about msg∗ other than its length is the access to
the Umsg∗ oracle which reveals P (msg∗) for the P ’s queried by 𝒜
to FE.Keygen. At a high level, the proof idea is simple: 𝒮 encrypts
zeros as the the challenge ciphertext ct∗ and FE.Keygen is simu-
lated honestly. In the ideal experiment, 𝒮 intercepts 𝒜’s queries to
HW and provides simulated responses. It can use itsUmsg∗ oracle
to get P (msg∗) and simply send this back to 𝒜 as the simulated
HW output. If𝒜 queries HW on any ciphertexts that do not match
the challenge ciphertext ct∗, 𝒮 can decrypt them honestly since it
possesses msk. Since 𝒮 has to modify the program descriptions in
enclaves, we provide 𝒮 access to the HW keys skreport and skquote
to produce reports and quotes.

Despite the apparent simplicity, the following subtleties make
the proof of security more challenging than on first sight:

(1) The simple proof sketch does not account for all of 𝒜’s
interaction with HW between sending ct∗ and receiving
back P (msg∗). HW communicates through 𝒜 as a proxy. 𝒜
might even tamper with these intermediate messages and
observe howHW responds. We need to ensure that anything
𝒜 observes in the real experiment can be simulated in the
ideal experiment.

(2) We use IND-CCA2 public key encryption to secure communi-
cation between enclaves that is intercepted by𝒜. 𝒮 will need
to simulate this communication. Proving that 𝒜 cannot dis-
tinguish this involves a reduction to the IND-CCA2 security
game, showing that if 𝒜 can distinguish the real and sim-
ulated communication then it would break the IND-CCA2
security. The IND-CCA2 adversary will need to simulate
the entire FE system for 𝒜 without knowledge of the corre-
sponding secret keys for the public keys that the enclaves are
using to secure their communication. In particular, it must
see if 𝒜 tampers with messages in a way that would cause
the system to abort). This is what necessitates an extra layer
of authentication on the communication between enclaves

(3) The final challenge is that the adversary can also load modi-
fied programs of its choice into different enclaves and test
their behavior with honest or tampered inputs. This aspect
in particular makes the security proof challenging because
the FE simulator in the ideal world has to identify whether
honest attested programs are running inside the enclaves,
and produce simulated outputs only for those enclaves. This
gets tricky as there are three enclaves each with multiple
entry points.

7.1 Security proof
Theorem 7.1. If S is an EUF-CMA secure signature scheme, PKE

is an IND-CCA2 secure public key encryption scheme and HW is a
secure hardware scheme, then FE is a secure functional encryption
scheme according to Definition 5.2.

Proof. We will construct a simulator 𝒮 for the FE security game
in Definition 5.2. 𝒮 is given the length |msg∗ | and an oracle access
to Umsg∗ (·) (such that Umsg∗ (P) = P (msg∗)) after the adversary
provides its challenge message msg∗. 𝒮 can use thisUmsg∗ oracle
on the programs queried by the adversary𝒜 to FE.Keygen. 𝒮 has to
simulate the pre-processing phase and a ciphertext corresponding

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

774

to the challenge message msg∗ along with answering the adver-
sary’s queries to the KeyGen, HW and the KM oracles.

Pre-processing phase: 𝒮 simulates the pre-processing phase simi-
lar to the real world. 𝒮 runs HW.Setup(1λ) and records (skquote,
skreport) generated during the process.𝒮 measures and stores tagDE .
𝒮 also creates empty lists 𝒦,ℛ,𝒩 ,LKM ,LDE ,LDE2,LF E which
will be used later.

FE.Keygen∗ (msk, P). When𝒜makes a query to the FE.Keygen
oracle, 𝒮 responds the same way as in the real world except that 𝒮
now stores all the tagP corresponding to the P ’s queried in a list 𝒦.

FE.Enc∗ (mpk, 1 |msg∗ |). 𝒮 outputs ct∗ ← PKE.Enc(pk, 0 |msg∗ |)
and stores ct∗ in the list ℛ.

HW oracle. For 𝒜’s queries to the algorithms of the HW oracle,
𝒮 runs the corresponding HW algorithms honestly and outputs
their results except for the following oracle calls.
• HW.Run(hdlKME , “provision”, quote, params):When a provision
query is made to KME, 𝒮 parses quote =

(
mdhdl, tagQ , in, out,

σ
)
and outputs ⊥ if out < LDE2. Else, it honestly runs the HW

algorithm and then replaces ctsk with PKE.Enc(pk, 0 |skpke |). 𝒮
also generates and replaces σsk for the modified ctsk . Finally, 𝒮
stores (sid, ctsk) in LKM .
• HW.Load(params,Q): When the load algorithm is run for a Q
corresponding to that of a DE, 𝒮 runs the load algorithm honestly
and outputs hdlDE . In addition, it stores hdlDE in the list 𝒟.
When the load algorithm is run for a Q of the form QF E (P),
𝒮 adds the output handle hdlP to the list 𝒦 as follows. 𝒮 first
checks if the tagP corresponding to this has an entry in𝒦, and if
it exists 𝒮 appends hdlP to its handle list. Else, 𝒮 adds the tuple
(0, tagP , hdlP) to 𝒦.

• HW.Run(hdlDE , “init setup”, vksign): When an init setup query
is made to a hdlDE ∈ 𝒟, 𝒮 checks if vksign matches with the one
in mpk. Else, it removes hdlDE from 𝒟. 𝒟 will remain as the list
of handles for DEs with the correct vksign fed as input. Then, 𝒮
runs HW.Run honestly on the given input and outputs the result.
It also adds (sid, pkra) to the list LDE2.
• HW.Run(hdlDE , “complete setup”, sid, ctsk ,σsk): When a com-
plete setup query is made to a hdlDE ∈ 𝒟, 𝒮 outputs ⊥ if (sid,
ctsk) < LKM . Else, it honestly executesHW.Run. Similar changes
are made for HW.Run&Report and HW.Run&Quote on this set
of inputs.
• HW.Run(hdlDE , “provision”, report, sig):When a provision query
is made to a hdlDE ∈ 𝒟, 𝒮 parses report =

(
mdhdl, tagQ , in, out,

mac
)
and outputs ⊥ if out < LF E . Else, it honestly executes

HW.Run. At the end, 𝒮 adds the output (sid, ctkey) to LDE .
• HW.Run(hdlP , “init”): When an init query is made to a hdlP ∈ 𝒦
whose tuple in𝒦 has the honest bit set, 𝒮 runsHW.Run&Report
honestly and outputs the result. It also adds (sid, pkla) to the list
LF E .
• HW.Run(hdlP , “run”, reportsk , ctmsд):When a run query ismade
to hdlP ∈ 𝒦whose tuple in𝒦 has the honest bit set, 𝒮 first parses
reportsk =

(
mdhdl, tagQ , in, out,mac

)
and outputs ⊥ if out <

LDE . Else, it runs HW.Run on the given inputs. If the output is
⊥, 𝒮 outputs ⊥. Else, it parses out as (sid, ctkey) and retrieves

skpke from msk. If ctmsд < ℛ, 𝒮 computes x ← PKE.dec(skpke,
ctmsд), runs P on x and outputs out := P (x). If ctmsд ∈ ℛ, 𝒮
queries itsUmsg∗ oracle on P and outputs the response.
• For the HW.Run&Report and HW.Run&Quote queries, similar
changes are made as in the respective HW.Runs above. But,
report and quote are generated for unmodified tag’s of the un-
modified programs descriptions. (This is to prevent the adversary
from being able to distinguish the change in hybrids just by
looking at the report or quote.)

KM oracle. For 𝒜’s queries to the KM oracle with input quote,
𝒮 uses the provision queries to HW.Run for KME with the changes
mentioned above.

Now, for this polynomial time simulator 𝒮 described above, we
will show that for experiments in Definition 5.2,

(msg,α)real
c
≈ (msg,α)ideal (1)

We prove this by showing that the view of the adversary 𝒜 in the
real world is computationally indistinguishable from its view in the
ideal world. It can be easily checked that the algorithms KeyGen∗,
Enc∗ and oracle KM∗ simulated by S correspond to the ideal world
specifications of Definition 5.2 (because the only information that 𝒮
obtains about msg∗ is through the Umsg∗ (·) oracle which it queries
on the FE.Keygen queries made by 𝒜). We will prove through a
series of hybrids that 𝒜 cannot distinguish between the real and
the ideal world algorithms and oracles.

Hybrid 0 ExprealFE (1λ) is run.

Hybrid 1 As in Hybrid 0, except that FE.Keygen∗ run by 𝒮 is
used to generate secret keys instead of FE.Keygen. Also, the ct∗

returned by FE.Enc for the encryption of the challenge message
msg∗ is stored in the list ℛ. Also, when HW.Load(params,Q) is
run for the Q of a DE, store the output in the list 𝒟, and when
HW.Run(hdlDE , “init setup”, vksign) is run with a vksign different
from that in mpk, remove hdlDE from 𝒟. Also, when HW.Load is
run for aQ of the formQF E (P), the output handle hdlP is added to
the list 𝒦 in the tuple corresponding to tagP . If tagP does not have
an entry in 𝒦, the entire tuple (0, tagP , hdlP) is added to 𝒦.

Here, FE.Keygen∗ and FE.Keygen are identical. And storing in
lists does not affect the view of𝒜. Hence,Hybrid 1 is indistinguish-
able from Hybrid 0.

Hybrid 2 As in Hybrid 1, except that when the HW.Run&Report
is queried with (hdlDE , (“provision", report, sig)) for hdlDE ∈ 𝒟,
𝒮 outputs ⊥ if tagP that is part of report does not have an entry in
𝒦 with the honest bit set.

If sig is not a valid signature of tagP , then the S.Verify step
during the execution of HW.Run&Report(hdlDE , ·) would make
it output ⊥. Hence, Hybrid 2 differs from Hybrid 1 only when
a valid signature sig for tagP is part of the “provision” query to
HW.Run&Report(hdlDE , ·)with a hdlDE that has the correct vksign
in its state and with a P that𝒜 has not queried to FE.Keygen∗. But,
if 𝒜 does make a query of this kind to HW.Run&Report with a

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

775

valid sig, Lemma C.1 shows that this can be used to break the exis-
tential unforgeability of the signature scheme S.

Hybrid 3.0 As in Hybrid 2, except that 𝒮 maintains a list LKM
of all the “provision” query responses from KM i.e., the (sid, ctsk)
tuples. Then, on any call to HW.Run(hdlDE , “complete setup”, sid,
ctk ,σk) for hdlDE ∈ 𝒟, if (sid, ctsk) < LKM , 𝒮 outputs ⊥.

The proof at a high level will be similar to the previous one.
HW.Run(hdlDE , “complete setup”, ·) already outputs⊥ inHybrid 2
if σsk is not a valid signature of (sid, ctsk) or if an entry for the
session ID sid is not in state. So, Hybrid 3.0 differs from Hybrid 2
only when𝒜 can produce a valid signature σsk on a (sid, ctsk) pair
for a sid which it has seen before in the communication between
KM and a DE whose handle is in 𝒟. This is proved in Lemma C.2.

Hybrid 3.1 As in Hybrid 3.0, except that 𝒮 maintains a list LDE
of all the “provision” query responses from hdlDE ∈ 𝒟 i.e., the
(mdhdl, tagQDE

, (report, sig), (sid, ctkey)) tuples. And, on call to
HW.Run(hdlP , reportsk , ctmsд) with hdlP having an entry in 𝒦
with its honest bit set, 𝒮 outputs ⊥ if reportsk =

(
mdhdl, tagQ , in,

(sid, ctkey),mac
)
with tagQ = tagDE , sid having an entry in state

and (sid, ctkey) < LDE .

Local attestation helps in proving the indistinguishability of the
hybrids. For honest hdlP s, HW.Run(hdlP , reportsk , ctmsд) already
outputs ⊥ in Hybrid 3.0 if for reportsk =

(
mdhdl, tagDE , (report,

sig), (sid, ctkey),mac
)
, mac is not a valid MAC on (mdhdl, tagDE ,

(report, sig), (sid, ctkey)), or if sid does not have an entry in state.
So, the only change in Hybrid 3.1 is that HW.Run also outputs
⊥ if mac is a valid MAC but on a (sid, ctkey) < LDE . Hence, 𝒜
can distinguish between the hybrids only when it produces a valid
mac on a tuple with (sid, ctsk) not in LDE . But this happens with
negligible probability due to the security of local attestation.

Hybrid 4 As in Hybrid 3.1, except that when HW.Run is queried
with (hdlP , “run", reportsk , ctmsд) where reportsk is a valid MAC
of a tuple containing an entry in LDE and hdlP ∈ 𝒦 with the
honest bit set. If ctmsд ∈ ℛ, 𝒮 uses the Umsg∗ oracle to answer
the HW.Run query. If ctmsд < ℛ, 𝒮 uses the skpke from FE.Setup
to decrypt ctmsд instead of the one got by decrypting ctkey i.e.,

• On input (“run", reportsk , ctmsд):
(4) If ctmsд < ℛ, retrieve skpke from msk. Compute

x ← PKE.dec(skpke, ctmsд). Run P on x and record
the output out := P (x). Output out.

(5) If ctmsд ∈ ℛ, query Umsg∗ (P) and output the re-
sponse.

In Hybrid 3.1, the decryption of ctkey is used by 𝒮 to decrypt
ctmsд while runningHW.Run(hdlP , ·). This ctkey is a valid encryp-
tion of skpke because Hybrid 3.0 and Hybrid 3.1 ensure that the
encryption of skpke sent from KME to DE and then the one from DE
to FE both reach FE unmodified. Hence, the skpke got by decrypting
ctmsд is same as the one from msk. Thus, Hybrid 4 is indistin-
guishable from Hybrid 3.1 for any ctmsд < ℛ. Now, let us consider
the case of ctmsд ∈ ℛ. 𝒮 has the restriction that it can use the
Umsg∗ oracle only for a P for which tagP ∈ 𝒦. From Hybrid 3.1, we

know thatHW.Run(hdlP , ·) does not output ⊥ only when run with
a valid reportsk =

(
mdhdl, tagDE , (report, sig), (sid, ctkey),mac

)
which is output by a DE “provision” query. Hence, sig is a valid
signature of the tagP contained in report. Also, tagP ∈ 𝒦 with
the honest bit set, as ensured in Hybrid 2. So, when a HW.Run
“run” query is made for hdlP , 𝒮 is allowed use its Umsg∗ oracle to
output the FE.Dec result. Thus, Hybrid 4 is indistinguishable from
Hybrid 3.1 for any ctmsд .

The following set of hybrids will help 𝒮 replace an encryption
of skpke with an encryption of zeros. In order to prove the indistin-
guishability, we will argue that all the FE algorithms run indepen-
dent of the skpke encrypted in ctsk , and that 𝒜 does not get any
information about the value encrypted in ctsk .

Hybrid 5.0 As in Hybrid 4, except that 𝒮 maintains a list LDE2 of
all (sid, pkra) that are part of quote = (mdhdl, tagDE , “init setup”,
(sid, pkra),σ) output byHW.Run&Quote(hdlDE , “init setup”, ·) for
hdlDE ∈ 𝒟. And now, whenHW.Run(hdlKME , “provision”, quote,
params) is called 𝒮 outputs ⊥ when (sid, pkra) < LDE2.

The Remote Attestation security ensures that 𝒜 can provide a
fake quote on a pkra not provided by DE only with negligible proba-
bility (Lemma C.4). Thus ensures that KME provides an encryption
of skpke only under a public key pkra generated inside QDE ∈ 𝒟
i.e., when HW.Run(hdlKME , “ provision”, quote, params) is called
with a valid quote output by a valid instance of DE.

Hybrid 5.1 As in Hybrid 5.0, except that 𝒮 maintains a list LF E
of all (sid, pkla) that are part of report = (mdhdl, tagP , (“init”, sid,
pkla),mac) output by HW.Run&Report(hdlP , “init”, ·) for hdlP ∈
𝒦 with the honest bit set. And when HW.Run&Report(hdlDE ,
“provision”, report, sig) is called for a hdlDE ∈ 𝒟, 𝒮 outputs ⊥
when report contains tagP ∈ 𝒦 but (sid, pkla) < LF E .

This is ensured by the Local Attestation security (Lemma C.5).
And, this shows thatQDE only outputs skpke encrypted under some
pkla that was generated by a QF E (hdlP , ·) running a program P
that has been queried to FE.Keygen.

Hybrid 5.2 As in Hybrid 5.1, except that when the KM oracle
calls HW.Run(hdlKME , (“provision", ·, ·)), 𝒮 replaces ctsk in the
output with PKE.Enc(0 |skpke |).

Lemma C.4 and Lemma C.5 ensure that skpke is encrypted only
under pkra and pkla generated by valid enclaves and 𝒜 has no ac-
cess to the corresponding secret keys. Now, Lemma C.6 will use
the IND-CCA2 security gameto argue that 𝒜 cannot distinguish
whether ctsk has an encryption of zeros or skpke under pkra of the
DE, and whether ctkey is an encryption of zeros or skpke under
pkla of a valid FE.

Hybrid 6 As in Hybrid 5.2, except that FE.Enc∗ is used instead
of FE.Enc.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

776

We are now ready to use the IND-CCA2 security property of
PKE to replace ctmsд which was an encryption of msg) with an
encryption of zeros, as shown in Lemma C.7.

8 EXTENSIONS AND FUTUREWORK
Private Key MIFE. There is a private key variant of MIFE where

producing a valid ciphertext for the ith input to a function requires
a secret encryption key eki . Invoking the decryption algorithm on
inputs produced with an invalid key does not reveal any informa-
tion about the plaintext data. For some multi-input functionalities,
private key MIFE is necessary to achieve meaningful security. For
example, consider the order function ord (x ,y) = 1 iff x > y. In the
public key setting, given an encryption cx of x and a functional
key for ord the decryptor can produce valid ciphertexts for any
arbitrary integer y in order to learn ord (x ,y), and can recover x
by binary search. Iron supports private key MIFE. In this mode,
the Authority appends a signature on the appropriate index to the
public encryption key, i.e. eki = siдi | |pkpke where siдi is a signa-
ture on the integer i using sksign. To encrypt a message m with
eki , the encryptor uses pkpke to produce a public key encryption
ci,m of siдi | |m. When an enclave on the decryption node receives
ci,m as the ith input to a function, it uses skpke to decrypt ci,m and
validates the signature appended to the message using vksign. If
this is not a valid signature on the index i then the enclave aborts
the operation, and otherwise it proceeds withm.

Function Private FE. Currently, Iron supports a version of FE
where the function to be evaluated is not hidden from the decryptor,
and moreover, it is not hidden from the decryption node. Function
private FE [12] could be supported by running a single enclave on
the decryption node that receives encrypted and signed function
code, decrypts the function code, checks the signature, and executes
the decrypted code either through an interpreter or by writing
the code to pre-allocated WX enabled pages. However, doing this
securely would require the capability of full program obfuscation in
SGX. It has not yet been demonstrated that this is possible to achieve
practically for generic programs given the current side-channel
attacks on SGX, though some effort in this direction was made in
[49] and demonstrated on SGX-like special purpose hardware in
[46].

Multi-Authority FE. In multi-authority FE [17], the trust is dis-
tributed among multiple authorities instead of having a single au-
thority manage all the credentials. Clients must obtain secret keys
from all (or a suitably large subset) of the authorities in order to
be able to decrypt ciphertexts. Since the secret keys in Iron are
simply signatures, it would be easy to augment Iron to support
this feature by using threshold-signatures and multiple KMEs.

Application-specific implementations. In addition to the above
general purpose extensions, we envision that future work can build
more application-specific FE systems on top of Iron. This could
involve supporting more complex functionalities (and measuring
their performance) as well as more expressive authorization policies,
such as utilizing SGX’s trusted time and monotonic counters as
discussed earlier.

ACKNOWLEDGMENTS
This work was funded by NSF, DARPA, a grant from ONR, and the
Simons Foundation. Opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.

A HW CORRECTNESS AND SECURITY
DEFINITIONS

Correctness. AHW scheme is correct if the following things hold
(using the syntax from Definition 5.1): For all aux, Q ∈ 𝒬, all in in
the input domain of Q and all handles hdl′ ∈ ℋ,

• Correctness of Run: out = Q (in) if Q is deterministic. More
generally, ∃ random coins r (sampled in run time and used
by Q) such that out = Q (in).
• Correctness of Report and ReportVerify:

Pr
[
HW.ReportVerifyskreport (hdl

′, report) = 0
]
= negl(λ)

• Correctness of Quote and QuoteVerify:

Pr
[
HW.QuoteVerify(params, quote) = 0

]
= negl(λ)

A.1 Local attestation unforgeability
The local attestation unforgeability (LocAttUnf) security is defined
similarly to the unforgeability security of a MAC scheme. Infor-
mally, it says that no adversary can produce a report =

(
md′hdl,

tagQ , in, out,mac
)
that verifies correctly for any hdl′ ∈ ℋ and

out = Q (in), without querying the inputs (hdl, in).
This is formally defined by the following security game.

Definition A.1. (LocAttUnf-HW). Consider the following game
between a challenger 𝒞 and an adversary 𝒜.

(1) 𝒜 provides an aux.
(2) 𝒞 runs the HW.Setup(1λ , aux) algorithm to obtain the pub-

lic parameters params, secret keys (skHW, skreport) and an
initialization string state. It gives params to 𝒜, and keeps
(skHW, skreport) and state secret in the secure hardware.

(3) 𝒞 initializes a list query = {}.
(4) 𝒜 can run HW.Load on any input (params,Q) of its choice

and get back hdl.
(5) 𝒜 can run HW.Run&Report on input (hdl, in) of its choice

and get report :=
(
mdhdl, tagQ , in, out,mac

)
. For every run,

𝒞 adds the tuple (mdhdl, tagQ , in, out) to the list query.
(6) 𝒜 can also run HW.ReportVerify on input (hdl′, report) of

its choice and gets back the result.

We say the adversary wins the above experiment if:

(1) HW.ReportVerify(hdl′∗, report∗) = 1, where report∗ = (md∗hdl,
tag∗Q , in

∗, out∗,mac∗) and
(2) (md∗hdl, tag

∗
Q , in

∗, out∗,mac∗) was not added to query be-
fore 𝒜 queried HW.ReportVerify on (hdl′∗, report∗).

The HW scheme is LocAttUnf-HW secure if no adversary can
win the above game with non-negligible probability.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

777

A.2 Remote attestation unforgeability
The remote attestation unforgeability (RemAttUnf) security is de-
fined similarly to the unforgeability security of a signature scheme.
Informally, it says that no adversary can produce a quote =

(
hdl,

tagQ , in, out,π
)
that verifies correctly and out = Q (in), without

querying the inputs (hdl, in).
This is formally defined by the following security game.

Definition A.2. (RemAttUnf-HW). Consider the following game
between a challenger 𝒞 and an adversary 𝒜.

(1) 𝒜 provides an aux.
(2) 𝒞 runs the HW.Setup(1λ , aux) algorithm to obtain the pub-

lic parameters params, secret keys (skHW, skreport) and an
initialization string state. It gives params to 𝒜, and keeps
(skHW, skreport) and state secret in the secure hardware.

(3) 𝒞 initializes a list query = {}.
(4) 𝒜 can run HW.Load on any input (params,Q) of its choice

and get back hdl.
(5) Also, 𝒜 can run HW.Run&Quote on input (hdl, in) of its

choice and get quote :=
(
mdhdl, tagQ , in, out,π

)
. For every

run, 𝒞 adds the tuple (mdhdl, tagQ , in, out) to the list query.
(6) Finally, the adversary outputs quote∗ = (md∗hdl, tag

∗
Q , in

∗,

out∗,π∗).
We say the adversary wins the above experiment if:

(1) HW.QuoteVerify(params, quote∗) = 1,
(2) (md∗hdl, tag

∗
Q , in

∗, out∗) < query

The HW scheme is RemAttUnf-HW secure if no adversary can
win the above game with non-negligible probability.

Note that the scheme is secure even if 𝒜 can produce a quote∗
different from the query outputs for some (md∗hdl, tag

∗
Q , in

∗, out∗) ∈
query. But quote∗ cannot be a proof for a different program or input
or output. This definition resembles the existential unforgeability
like notions.

We also point out some other important properties of the secure
hardware that we impose in our model.
• Any user only has black box access to these algorithms and
hence hidden from the internal secret key skHW, initial state
state or intermediary states of the programs running inside
secure containers.
• The output of the HW.Run&Quote algorithm is succinct: it
does not include the full program description, for instance.
• We also require the params and the handles hdl to be inde-
pendent of aux. In particular, for all aux, aux′,

(params, skHW, skreport, state) ← HW.Setup(1λ , aux)

(params′, sk′HW, sk
′
report, state

′) ← HW.Setup(1λ , aux′)

and for hdl← HW.Loadstate (params,Q) and hdl′ ←
HW.Loadstate′ (params′,Q), the tuples (params, hdl) and (params′,
hdl′) are identically distributed.

B CRYPTO PRIMITIVE DEFINITIONS
Secret key encryption. A secret key encryption scheme E support-

ing a message domain ℳ consists of a probabilistic polynomial

time key generation algorithm E.KeyGen(1λ) that takes in a se-
curity parameter and outputs a key sk from the key space 𝒦, a
probabilistic polynomial time encryption algorithm E.Enc(sk,msg)
that takes in a key sk and a message msg ∈ ℳ and outputs the
ciphertext ct, and a deterministic polynomial time decryption algo-
rithm E.Dec(sk, ct) that takes in a key sk and a ciphertext ct and
outputs the decryption msg.

A secret key encryption scheme E is correct if for all λ and all
msg ∈ℳ,

Pr
[
E.Dec

(
sk, E.Enc(sk,msg)

)
, msg

����
sk← E.KeyGen(1λ)

]
= negl(λ) (2)

where the probability is taken over the random coins of the proba-
bilistic algorithms E.KeyGen, E.Enc.

A secret key encryption scheme E is said to have indistinguisha-
bility security under chosen plaintext attack (IND-CPA) if there is no
polynomial time adversary 𝒜 which can win the following game
with probability non-negligible in λ:

Definition B.1. (IND-CPA security of E). We define the following
game between a challenger 𝒞 and an adversary 𝒜.

(1) The challenger run the E.KeyGen algorithm to obtain a key
sk from the key space 𝒦.

(2) The challenger also chooses a random bit b ∈ {0, 1}.
(3) Whenever the adversary provides a pair of messages (msg0,

msg1) of its choice, the challenger replies with E.Enc(sk,
msgb).

(4) The adversary finally outputs its guess b ′.
The advantage of adversary in the above game is

Advenc (𝒜) := Pr[b ′ = b] −
1
2

A signature scheme. A digital signature scheme S supporting a
message domain ℳ consists of a probabilistic polynomial time
algorithm S.KeyGen(1λ) that takes in a security parameter and
outputs the signing key sk and a verification key vk, a probabilistic
polynomial time signing algorithm S.Sign(sk,msg) that takes in a
signing key sk and a message msg ∈ℳ and outputs the signature
σ , and a deterministic verification algorithm S.Verify(vk,σ ,msg)
that takes in a verification key vk, a signature σ and a messagemsg
and outputs 0 or 1.

A signature scheme S is correct if for all msg ∈ℳ,

Pr
[
S.Verify

(
vk, S.Sign(sk,msg),msg

)
= 0

����
(sk, vk) ← S.KeyGen(1λ)

]
= negl(λ) (3)

where the probability is taken over the random coins of the proba-
bilistic algorithms S.KeyGen, S.Sign.

A signature scheme S is said to be existentially unforgeable under
chosen message attack (EUF-CMA) if there is no polynomial time
adversary which can win the following game with probability non-
negligible in λ.

Definition B.2. (EUF-CMA security of𝒮).We define the following
game between a challenger 𝒞 and an adversary 𝒜.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

778

(1) The challenger runs the S.KeyGen algorithm to obtain the
key pair (sk, vk), and provides the verification key vk to the
adversary.

(2) Initialize query = {}.
(3) Now, whenever the adversary provides a query with a mes-

sage msg, the challenger replies with S.Sign(sk,msg). Also,
query = query ∪msg.

(4) Finally, the adversary outputs a forged signature σ ∗ corre-
sponding to a message msg∗.

The advantage of 𝒜 in the above security game is

Advsign (𝒜) := Pr
[
S.Verify(vk,σ ∗,msg∗) = 1���msg∗ < query

]

Public key encryption. A public key encryption (PKE) scheme
supporting a message domainℳ consists of a probabilistic poly-
nomial time algorithm PKE.KeyGen(1λ) that takes in a security
parameter and outputs a key pair (pk, sk), a probabilistic encryption
algorithm PKE.Enc(pk,msg) that takes in a public key pk and a
message msg ∈ℳ and outputs a ciphertext ct, and a deterministic
decryption algorithm PKE.Dec(sk, ct) that takes in a secret key sk
and a ciphertext ct and outputs the decryption msg or ⊥.

A PKE scheme PKE is correct if for all λ and msg ∈ℳ,

Pr
[
PKE.Dec

(
sk,PKE.Enc(pk,msg)

)
, msg

����
(pk, sk) ← PKE.KeyGen(1λ)

]
= negl(λ)

where the probability is taken over the random coins of the proba-
bilistic algorithms KeyGen, Enc.

A PKE scheme provides confidentiality to the encrypted message.
Formally, a PKE scheme PKE is said to have indistinguishability
security under adaptively chosen ciphertext attack (IND-CCA2) if
there is no polynomial time adversary𝒜 which can guess b ′ = b in
the following game with probability non-negligible in λ, plus half.

Definition B.3. (IND-CCA2 security of PKE). We define the fol-
lowing game between a challenger 𝒞 and an adversary 𝒜.

(1) 𝒞 runs the PKE.KeyGen algorithm to obtain a key pair (pk,
sk) and gives pk to the adversary.

(2) 𝒜 provides adaptively chosen ct and get back PKE.Dec(sk,
ct).

(3) 𝒜 provides msg0,msg1 to 𝒞.
(4) 𝒞 then runsPKE.Enc(pk) to obtain ct∗ = PKE.Enc(pk,msgb)

for b
$
← {0, 1}. 𝒞 provides ct∗ to 𝒜.

(5) 𝒜 continues to provide adaptively chosen ct and get back
PKE.Dec(sk, ct), with a restriction that ct , ct∗.

(6) 𝒜 outputs its guess b ′.

A PKE scheme may also be “weakly robust” [1]. Informally, this
means that a ciphertext when decrypted with an “incorrect” secret
key should output ⊥ when all the algorithms are honestly run.

Definition B.4. ((Weak) robustness property of PKE). A PKE
scheme PKE has the (weak) robustness property if for all λ and
msg ∈ℳ,

Pr
[
PKE.Dec

(
sk′,PKE.Enc(pk,msg)

)
,⊥

]
= negl(λ)

where (pk, sk) and (pk′, sk′) are generated by runningPKE.KeyGen(1λ)
twice, and the probability is taken over the random coins of the
probabilistic algorithms PKE.KeyGen,PKE.Enc.

C SECURITY PROOF LEMMATA
Lemma C.1. If the signature scheme S is existentially unforgeable

as in Definition B.2, thenHybrid 2 is indistinguishable fromHybrid 1.

Proof. Let 𝒜 be an adversary which distinguishes between
Hybrid 1 and Hybrid 2. We will use it to break the EUF-CMA
security of S. We will get a verification key vk∗sign and an access to
S.Sign(sk∗sign, ·) oracle from the EUF-CMA challenger. 𝒮 sets this
vk∗sign as part of the mpk. Whenever 𝒮 has to sign a message using
sk∗sign, it uses the S.Sign(sk∗sign, ·) oracle. Also, our construction
does not ever need a direct access to sk∗sign; it is used only to sign
messages for which the oracle provided by the challenger can be
used. Now, if 𝒜 can distinguish between the two hybrids, as we
argued earlier, it is only because 𝒜 makes a “provision” query to
the HW.Run&Report(hdlDE , ·) oracle with a hdlDE ∈ 𝒟 that has
vk∗sign in its , and with a valid signature sig on a tagP < 𝒦. We will
output (tagP , sig) as our forgery to the EUF-CMA challenger. □

Lemma C.2. If the signature scheme S is existentially unforge-
able as in Definition B.2, then Hybrid 3.0 is indistinguishable from
Hybrid 2.

Proof. Let 𝒜 be an adversary which distinguishes between
Hybrid 2 and Hybrid 3.0. We will use it to break the EUF-CMA
security of S. We will get a verification key vk∗sign and an access to
S.Sign(sk∗sign, ·) oracle from the EUF-CMA challenger. 𝒮 sets this
vk∗sign as part of the mpk. Whenever 𝒮 has to sign a message with
sk∗sign, it uses the S.Sign(sk

∗
sign, ·) oracle. As mentioned in the proof

of Lemma C.1, 𝒮 never needs a direct access to sk∗sign. Now, if𝒜 can
distinguish between the two hybrids, as we argued earlier, it is only
because𝒜makes a “complete setup” query to the HW.Run(hdlDE ,
·) oracle with a valid signature σsk for (sid, ctsk) < LKM but sid
has an entry in , . Also, hdlDE ∈ 𝒟 and hence has vk∗sign in its , .
We will output ((sid, ctsk),σsk) as our forgery to the EUF-CMA
challenger. □

Lemma C.3. If the Local Attestation process of HW is secure as in
Definition A.1, then Hybrid 3.1 is indistinguishable from Hybrid 3.0.

The proof of this lemma is similar to Lemma C.2, since skreport
is not used by 𝒮 other than to produce a report.

Lemma C.4. If Remote Attestation is secure as in Definition A.2,
then Hybrid 5.0 is indistinguishable from Hybrid 4.

The proof of this lemma is similar to Lemma C.2 since skquote is
not used by 𝒮 except for producing a quote.

Lemma C.5. If Local Attestation is secure as in Definition A.1, then
Hybrid 5.1 is indistinguishable from Hybrid 5.0.

The proof of this lemma is again similar to Lemma C.2 since
skreport is not used by 𝒮 except for producing a report.

Lemma C.6. If PKE is an IND-CCA2 secure encryption scheme,
then Hybrid 5.2 is indistinguishable from Hybrid 5.1.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

779

Proof. We will run two IND-CCA2 games in parallel, one for
ctsk and another for ctkey . It can be easily shown that this vari-
ant is equivalent to the regular IND-CCA2 security game. The
IND-CCA2 challenger provides two challenge public keys pk∗1 and
pk∗2. 𝒮 sets pkra = pk∗1 and pkla = pk∗2. Now,

{
skpke, 0 |skpke |

}
is

provided as the challenge message pair for both the games. The
challenger returns ct∗1 and ct∗2, which are encryptions of either the
left messages or the right messages from the each pair. Note that
we use the same challenge bit for both the games. 𝒮 sets ctsk = ct∗1
and ctkey = ct∗2.

Now we argue that when the left messages are encrypted, the
view of𝒜 is equivalent toHybrid 5.1, and when the right messages
are encrypted, the view is equivalent to Hybrid 5.2. This is because
the other information that 𝒜 gets do not depend on the value en-
coded in ctsk or ctkey . We argue this as follows. We have already
established that 𝒜 only gets ctsk encrypted with a pkra generated
in DE from KME. Similarly, 𝒜 only gets ctkey encrypted with a
pkla generated in a valid FE from DE. In addition to these, when
interacting with messages from a valid QDE or QF E (·), 𝒮 either
uses the skpke from msk or theUmsg oracle to answer the queries
and not the decryption of ctkey .

Hence, when 𝒜 decides between the two hybrids we forward
the corresponding answer to the IND-CCA2 challenger. If 𝒜 can
distinguish between these two hybrids with non-negligible prob-
ability, then the IND-CCA2 security of PKE can be broken with
non-negligible probability. □

Lemma C.7. If PKE is an IND-CCA2 secure encryption scheme,
then Hybrid 6 is indistinguishable from Hybrid 5.2.

Proof. The IND-CCA2 challenger provides the challenge public
key pk∗. During FE.Setup 𝒮 sets pkpke = pk∗. Now,msg and 0 |msg |

are provided as the challenge messages. The challenger returns ct∗,
which is an encryption of either of those with equal probability. 𝒮
sets ctmsд = ct∗. When HW.Run(hdlP , “run”, reportsk , ctmsд) is
called with a valid reportsk to hdlP ∈ 𝒦 with the honest bit set, 𝒮
uses the Umsg∗ oracle for a challenge ciphertext ctmsд ∈ ℛ from
Hybrid 4. Now, for any ctmsд < ℛ,𝒮 neither has the oracles nor has
the sk∗ corresponding to pk∗ inmsk. But, the decryption oracle pro-
vided by the IND-CCA2 challenger can be used for any ctmsд < ℛ.
Hence, 𝒮 can answer all theHW.Run(hdlP , “run”, reportsk , ctmsд)
queries. Thus, the view of 𝒜 is identical to Hybrid 5 when msg
is encrypted in ct∗ and Hybrid 6 when zeros are encrypted in ct∗.
So we can forward the answer corresponding to 𝒜’s answer to
the IND-CCA2 challenger. If 𝒜 can distinguish between these two
hybrids with non-negligible probability, the IND-CCA2 security of
PKE can be broken with non-negligible probability. □

D STRONGER HW SIMULATION MODEL
Definition D.1 (StrongSimSecurity-FE). Consider a stateful simu-

lator 𝒮 and a stateful adversary 𝒜. LetUmsg (·) denote a universal
oracle, such that Umsg (P) = P (msg).

Both games begin with a pre-processing phase executed by the
environment. In the ideal game, pre-processing is simulated by 𝒮 .
Now, consider the following experiments.

Exprealℱℰ (1
λ) :

(1) (mpk,msk) ← FE.Setup(1λ)
(2) (msg) ← 𝒜FE.Keygen(msk, ·) (mpk)
(3) ct← FE.Enc(mpk,msg)
(4) α ← 𝒜FE.Keygen(msk, ·),𝒪msk (·) (mpk, ct)
(5) Output (msg,α)

Expidealℱℰ (1λ) :

(1) (mpk,msk) ← FE.Setup(1λ)
(2) (msg) ← 𝒜𝒮 (msk, ·) (mpk)
(3) ct← 𝒮Umsg (·) (1λ , 1 |msg |)

(4) α ← 𝒜HW,𝒮Umsg (·) (·) (mpk, ct)
(5) Output (msg,α)

In the above experiment, oracle calls by𝒜 to the key-generation
and KM oracles are simulated by the simulator 𝒮Umsg (·) (·). But the
simulator does not simulate the HW algorithms, except HW.Setup.
We call a simulator admissible if on each input P , it just queries its
oracleUmsg (·) on P (and hence learn just P (msg)).

The FE scheme is said to be simulation-secure against adaptive
adversaries if there is an admissible stateful probabilistic polyno-
mial time simulator 𝒮 such that for every probabilistic polynomial
time adversary 𝒜 the following distributions are computationally
indistinguishable.

Exprealℱℰ (1
λ)

c
≈ Expidealℱℰ (1λ)

E FE CONSTRUCTION IN THE STRONGER
SECURITY MODEL

We present here the formal description of our second FE construc-
tion which can be proven secure in the stronger security models
of HW and FE. The trusted authority platform TA and decryption
node platform DN each have access to instances of HW. We as-
sume HW.Setup(1λ) has been called for each of these instances
before they are used in the protocol and the output params was
recorded. Let PKE denote an IND-CCA2 secure public key encryp-
tion scheme (Definition B.3) with the weak robustness property11,
let S denote an existentially unforgeable signature scheme (Defini-
tion B.2) and E denote an IND-CPA secure secret key encryption
scheme (Definition B.1).

FE.Setup(1λ). The key manager enclave program QKME is de-
fined as follows. Let state denote an internal state variable.

QKME :
• On input (“init", 1λ):
(1) Run (pkpke, skpke) ← PKE.KeyGen(1λ) and (vksign, sksign) ← S.KeyGen(1λ)
(2) Update state to (skpke, sksign, vksign) and output (pkpke, vksign)
• On input (“provision", quote, params):
(1) Parse quote =

(
mdhdl, tagP , in, out, σ

)
, and parse out = (sid, pk1, pk2,

skP , ctk).
(2) Run b ← HW.QuoteVerify(params, quote) on quote. If b = 1, retrieve

skpke and vksign from state. If b = 0 output ⊥.
(3) Run b ← S.Verify(vksign, skP , tagP). If b = 0, output ⊥.
(4) Run (ek, h) ← PKE.Dec(skpke, ctk)
(5) Compute ct1sk = PKE.Enc(pk1, ek | |vksign) and ct2sk = PKE.Enc(pk2,

ek | |vksign)

11We actually need one PKE scheme with IND-CPA security and weak robustness
property and another PKE scheme with IND-CCA2 security

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

780

(6) Computeσsk = S.Sign(sksign, (sid, ct1sk , ct
2
sk , h)) and output (sid, ct

1
sk ,

ct2sk , h, σsk).
• On input (“sign", msg):

Compute sig← S.Sign(sksign, msg) and output sig.

Run hdlKME ← HW.Load(params,QKME) and (pkpke, vksign) ←
HW.Run(hdlKME , (“init", 1λ)). Output themaster public keympk :=
pkpke and the master secret key msk := hdlKME .

FE.Keygen(msk, P). Parse msk as a handle to HW.Run. De-
rive tagP and call sig← HW.Run(hdlKME , (“sign", tagP)). Output
skp := sig.

FE.Enc(mpk,msg). Parsempk = (pk, vk). Sample an ephemeral
key ek← E.KeyGen(1λ) and use it to encrypt the message ctm ←
E.Enc(ek,msg). Then, encrypt the ephemeral key under pk along
with the hash of ctm : ctk ← PKE.Enc(pk, [ek,H (ctm)]). Output
ct := (ctk , ctm).

FE.DecHW,KM(·) (skP , ct). The decryption enclave programQDE
parametrized by P is defined as follows. The security parameter λ
is hardcoded into the program. The QDE here can be seen as the
merge of the QDE and QF E in our first construction.

QDE (P):
• On input (“init dec", skP , ctk):
(1) Run PKE.KeyGen(1λ) twice to get (pk1ra, sk

1
ra) and (pk2ra, sk

2
ra).

(2) Generate a session ID, sid← {0, 1}λ .
(3) Update state to (sid, sk1ra, sk

2
ra), and output (sid, pk1ra, pk

2
ra, skP , ctk).

• On input (“complete dec", (sid, ct1sk , ct
2
sk , h), σsk):

(1) Look up the state to obtain the entry (sid, sk1ra, sk
2
ra). If no entry exists

for sid, output ⊥.
(2) Verify the signature b ← S.Verify(vksign, σk , (sid, ct1sk , ct

2
sk , h)). If b =

0, output ⊥.
(3) Check that h = H (ctm). If not, output ⊥.
(4) Decryptm ← PKE.dec(sk1ra, ct

1
sk).

(5) Ifm = ⊥, decrypt and output out← PKE.dec(sk2ra, ct
2
sk).

(6) Parsem = (ek, vksign) and compute x ← E.dec(ek, ctm).
(7) Run P on x and output out := P (x).

Run hdlDE ← HW.Load(params,QDE) and call quote←
HW.Run&QuoteskHW (hdlDE , “init dec", skP , ctk). QueryKM(quote),
which internally runs (sid, ct1sk , ct

2
sk ,h,σsk) ← HW.Run(hdlKME ,

(“provision", quote, params))12. CallHW.Run(hdlDE , (“complete dec",
sid, ct1sk , ct

2
sk ,h,σsk)) and output its result out.

E.1 Security overview
Theorem E.1. If E is an IND-CPA secret key encryption scheme, S

is an EUF-CMA secure signature scheme, PKE is an IND-CCA2 secure
public key encryption scheme with weak robustness property and HW
is a secure hardware scheme, then FE is a secure functional encryption
scheme according to Definition D.1.

Wewill mention here some of the challenges faced while proving
the security of our construction and refer the interested readers
to the full version of the paper for a detailed security proof. The
main difference from the proof of our first construction is that
the HW algorithms are not simulated but are run as in the the
real world. Hence, when we use the IND-CCA2 security of PKE to
12We could again useHW.Run&Quote here instead of explicitly creating the signature
σk . If we do that, the verification step in DE would involve using the Intel Attestation
Service.

prove that the adversary does not learn any information from the
communication between the enclaves, the decryption enclave will
not have the correct secret key to decrypt the PKE ciphertext and
hence cannot proceed to generate the correct output. To remedy that
situation, DE sends two public keys and KME sends two ciphertexts
during that step so that when the IND-CCA2 game is run for one of
ciphertexts, the other ciphertext can be decrypted by DE to satisfy
the correctness of the FE scheme. During this step, we will also use
the indistinguishability of ciphertexts when the same messages are
encrypted under different public keys. Also during this step, to help
the programs decide whether the message got after decryption is
correct or not, we require the robustness property from our PKE
scheme which ensures that decryption outputs⊥when a ciphertext
is decrypted with a “wrong” key.

Discussion. This construction can be modified to work like the
first construction, where the decryption enclave is separated from
the function enclave written by the user programmer.

This construction allows us to achieve the stronger security no-
tions of FE and HW. But, one might wonder how our KM oracle
compares with the notion of hardware tokens in [19]. With an “or-
acle” being necessary due to the FE impossibility results, we made
the functionality of the KM oracle minimal. In our construction,
KM performs minimal crypto functionality: basic signing/encryp-
tion. (And it is an independent enclave DE without access to msk
which runs the user-specified programs on user-specified inputs).
Hence, it is relatively easier to implement the KM functionality
secure against side-channels, when compared to the powerful hard-
ware tokens. Also from a theoretical perspective, KM runs in time
independent of the runtime of program and the length of msg, in
contrast to the hardware tokens whose runtime depends on both
the program and msg.

The similarity of C-FE with our notion is that there is an “au-
thority” mediating every decryption. If mediation by KM were a
concern to an application of FE, the message sent by DE to the KME
can be encrypted and anonymous communication mechanisms like
TOR can be used to communicate to KM so that KM cannot dis-
criminate against specific decryptor nodes (also helped by remote
attestation using blind signatures). Also, our construction could
be modified to achieve C-FE when the efficiency constraints are
relaxed for the authority oracle such that they run in time inde-
pendent on the length of the input but dependent on the function
description length. The construction in [45] requires the authority
to run in time proportional to the length of function description
and input.

REFERENCES
[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. 2010. Robust Encryption. In

TCC. 480–497.
[2] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.

2013. Functional Encryption: New Perspectives and Lower Bounds. In CRYPTO.
500–518.

[3] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon,
Stefano Tessaro, and David A. Wilson. 2013. On the Relationship between
Functional Encryption, Obfuscation, and Fully Homomorphic Encryption. In
IMACC. 65–84.

[4] Prabhanjan Ananth and Abhishek Jain. 2015. Indistinguishability Obfuscation
from Compact Functional Encryption. In CRYPTO I. 308–326.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

781

[5] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In OSDI.
689–703.

[6] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-
Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017. Secure Multiparty
Computation from SGX. In FC.

[7] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
2016. Foundations of Hardware-Based Attested Computation and Application to
SGX. In EuroS&P. 245–260.

[8] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In OSDI. 267–283.

[9] Nir Bitansky and Vinod Vaikuntanathan. 2015. Indistinguishability Obfuscation
from Functional Encryption. In FOCS. 171–190.

[10] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the
Weil Pairing. In CRYPTO. 213–229.

[11] Dan Boneh, Amit Sahai, and Brent Waters. 2012. Functional Encryption: A New
Vision for Public-key Cryptography. Commun. ACM 55, 11 (Nov. 2012), 56–64.
https://doi.org/10.1145/2366316.2366333

[12] Zvika Brakerski and Gil Segev. 2015. Function-Private Functional Encryption in
the Private-Key Setting. In TCC II. 306–324.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. CoRR abs/1702.07521 (2017).

[14] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In FOCS. 136–145.

[15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. 2015. Ob-
fuscation of Probabilistic Circuits and Applications. In TCC II. 468–497.

[16] David Champagne and Ruby B. Lee. 2010. Scalable architectural support for
trusted software. In HPCA. 1–12.

[17] Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. 2015. Functional
Encryption: Decentralised and Delegatable. Cryptology ePrint Archive, Report
2015/1017. (2015). http://eprint.iacr.org/2015/1017.

[18] Yilei Chen, Craig Gentry, and Shai Halevi. 2017. Cryptanalyses of Candidate
Branching Program Obfuscators. In EUROCRYPT. 278–307.

[19] Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. 2013. Functional Encryp-
tion from (Small) Hardware Tokens. In ASIACRYPT II. 120–139.

[20] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016), 086.

[21] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In USENIX Security. 857–874.

[22] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A secure
processor architecture for encrypted computation on untrusted programs. In
STC. ACM, 3–8.

[23] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. 2013. Candidate Indistinguishability Obfuscation and Functional
Encryption for all Circuits. In FOCS. 40–49.

[24] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. 2014. Multi-input
Functional Encryption. In EUROCRYPT 2014. 578–602.

[25] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time
Programs. In CRYPTO. 39–56.

[26] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. 2012. Functional
Encryption with Bounded Collusions via Multi-party Computation. In CRYPTO.
162–179.

[27] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. 2010. Founding Cryptography on Tamper-Proof Hardware Tokens. In
TCC. 308–326.

[28] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. 2015. Functional
Encryption for Randomized Functionalities. 325–351.

[29] Trusted Computing Group. 2009. Trusted Platform Module. https://
trustedcomputinggroup.org/. (2009).

[30] Debayan Gupta, BenjaminMood, Joan Feigenbaum, Kevin R. B. Butler, and Patrick
Traynor. 2016. Using Intel Software Guard Extensions for Efficient Two-Party
Secure Function Evaluation. In FC Workshops. 302–318.

[31] Intel. 2009. Intel Trusted Execution Technology. (2009).
[32] Intel. 2016. Intel Software Guard Extensions Programming Reference.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-system-programming-manual-325384.
pdf

[33] Intel. 2016. SGX documentation: sgx_create_monotonic_counter. https://
software.intel.com/en-us/node/696638. (2016).

[34] Intel. 2016. SGX documentation: sgx_get_trusted_time. https://software.intel.
com/en-us/node/696636. (2016).

[35] Intel. 2017. Intel SGX Version 2. http://www.intel.
com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf. (2017).

Accessed: 2017-02-16.
[36] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. 2016. Intel Software

Guard Extensions: EPID provisioning and attestation services.
[37] Jonathan Katz. 2007. Universally Composable Multi-party Computation Using

Tamper-Proof Hardware. In EUROCRYPT. 115–128.
[38] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security.

[39] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel
Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova.
2016. 5Gen: A Framework for Prototyping Applications Using Multilinear Maps
and Matrix Branching Programs. In CCS. 981–992.

[40] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan
Boneh, John C. Mitchell, and Mark Horowitz. 2000. Architectural Support for
Copy and Tamper Resistant Software. In ASPLOS. 168–177.

[41] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and
Elaine Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation. In ASPLOS. 87–101.

[42] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. Cryptology ePrint Archive, Report 2017/048. (2017).
http://eprint.iacr.org/2017/048.

[43] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution.. In HASP@ ISCA. 10.

[44] Eric Miles, Amit Sahai, and Mark Zhandry. 2016. Annihilation Attacks for
Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13.
In CRYPTO.

[45] MuhammadNaveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFengWang, Er-
man Ayday, Jean-Pierre Hubaux, and Carl A. Gunter. 2014. Controlled Functional
Encryption. In CCS. 1280–1291.

[46] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam,
Elaine Shi, and Vipul Goyal. 2017. Hop: Hardware makes obfuscation practical.
In NDSS.

[47] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In USENIX Security. 619–636.

[48] Rafael Pass, Elaine Shi, and Florian Tramèr. 2017. Formal Abstractions for Attested
Execution Secure Processors. In EUROCRYPT.

[49] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In USENIX Security. 431–446.

[50] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. In IEEE SP. 38–54.

[51] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. 2010. Contractual
Anonymity. In NDSS.

[52] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
CoRR abs/1702.08719 (2017).

[53] Jaebaek Seo, Byoungyoung Lee, Sungmin Kim,Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout Ran-
domization for SGX Programs. In NDSS.

[54] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY:
Low-TCB Linux Applications with SGX Enclaves. In NDSS.

[55] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In ICS. 160–171.

[56] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. 2007. Aegis: A
Single-Chip Secure Processor. IEEE Design & Test of Computers 24, 6 (2007),
570–580.

[57] Chia-che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen,
Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.
Porter. 2014. Cooperation and security isolation of library OSes for multi-process
applications. In EuroSys. 9:1–9:14.

[58] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza. 2016.
AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In ESORICS
I. 440–457.

[59] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In IEEE SP.
640–656.

[60] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In NSDI. 283–298.

Session D1: Functional Encryption and Obfuscation CCS’17, October 30-November 3, 2017, Dallas, TX, USA

782

https://doi.org/10.1145/2366316.2366333
http://eprint.iacr.org/2015/1017
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
https://software.intel.com/en-us/node/696638
https://software.intel.com/en-us/node/696638
https://software.intel.com/en-us/node/696636
https://software.intel.com/en-us/node/696636
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://eprint.iacr.org/2017/048

	Abstract
	1 Introduction
	1.1 Related Work

	2 Intel SGX Background
	3 System Design
	3.1 Architecture overview
	3.2 FE Protocols

	4 Implementation and evaluation
	5 Formal Models and Definitions
	5.1 Formal HW model
	5.2 Functional Encryption

	6 Formal construction
	7 Security
	7.1 Security proof

	8 Extensions and Future Work
	A HW correctness and security definitions
	A.1 Local attestation unforgeability
	A.2 Remote attestation unforgeability

	B Crypto primitive definitions
	C Security proof lemmata
	D Stronger HW simulation model
	E FE construction in the stronger security model
	E.1 Security overview

	References

