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ABSTRACT

Program obfuscation is a powerful security primitive with many

applications. White-box cryptography studies a particular subset

of program obfuscation targeting keyed pseudorandom functions

(PRFs), a core component of systems such as mobile payment and

digital rights management. Although the white-box obfuscators

currently used in practice do not come with security proofs and

are thus routinely broken, recent years have seen an explosion of

cryptographic techniques for obfuscation, with the goal of avoiding

this build-and-break cycle.

In this work, we explore in detail cryptographic program obfusca-

tion and the related primitive of multi-input functional encryption

(MIFE). In particular, we extend the 5Gen framework (CCS 2016) to

support circuit-based MIFE and program obfuscation, implement-

ing both existing and new constructions. We then evaluate and

compare the efficiency of these constructions in the context of PRF

obfuscation.

As part of this work we (1) introduce a novel instantiation of

MIFE that works directly on functions represented as arithmetic

circuits, (2) use a known transformation from MIFE to obfuscation

to give us an obfuscator that performs better than all prior construc-

tions, and (3) develop a compiler for generating circuits optimized

for our schemes. Finally, we provide detailed experiments, demon-

strating, among other things, the ability to obfuscate a PRF with

a 64-bit key and 12 bits of input (containing 62k gates) in under

4 hours, with evaluation taking around 1 hour. This is by far the

most complex function obfuscated to date.

1 INTRODUCTION

The goal of program obfuscation is to hide secrets in the implemen-

tation of a program, where the secrets can be used to evaluate the

program but are guaranteed to remain hidden beyond what can

be deduced from the output. Program obfuscation is a powerful

technique with a wide range of applications, as is evident from

the large number of (heuristic) obfuscators used in practice [e.g.,

1, 5, 7].
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One of the most prominent applications of program obfusca-

tion is white-box cryptography [23], where the goal is to hide the

key of a pseudorandom function (PRF), but nothing else. Payment

processing, digital rights management, and many other systems

use white-box cryptography to secure data, with a large number

of companies offering such products [e.g., 2, 4, 6]. Unfortunately,

all white-box cryptography schemes have been broken, and thus

there is a need for constructions based on a rigorous cryptographic
foundation. In a breakthrough result, Garg et al. [29] presented the

first such candidate construction for general program obfuscation,

spawning a large amount of followup work in both the underlying

security claims and the overall efficiency.

A closely related primitive to program obfuscation is multi-input

functional encryption (MIFE), where decryption takes a key asso-

ciated with an n-input function F, as well as n independently gen-

erated ciphertexts Enc(x1), . . . , Enc(xn ), and outputs F(x1, . . . ,xn ).
Program obfuscation andMIFE are known to imply one another [33].

All existing constructions of (cryptographic) program obfusca-

tion and MIFE use multilinear maps (mmaps) [20], which extend

the idea of bilinear maps to arbitrary polynomials. In order to build

applications on top of and experiment with mmaps, Lewi et al. [36]

introduced the 5Gen framework. This framework implements two

mmap constructions [26, 28] and provides implementations of MIFE

and program obfuscation based on (matrix) branching programs,
which provide a way to view arbitrary functions as sequences of

matrix multiplications. For simple functions, this approach is suffi-

cient. However, the mapping from function to branching program

is exponential, and thus this approach quickly becomes infeasible

as function complexity grows. Due to this blow-up, Lewi et al. were

limited to obfuscating an 80-bit point function.

However, branching programs are not the only approach for

realizing program obfuscation. Both Zimmerman [49] and Apple-

baum and Brakerski [12] showed how to build obfuscators that

operate directly on the circuit representation of a function. This

has several advantages over the branching program approach, not

least of which is that one no longer needs to “compile” the function

into a branching program. When Lewi et al. [36] implemented the

Zimmerman construction, they found the branching program ap-

proach superior for the simple functions they considered (e.g., point

functions). This is because the simple structure of these functions is

better tailored to the branching program representation. However,

for more complex functions, the circuit representation and corre-

sponding circuit obfuscators becomemore efficient. Thus, extending

the 5Gen framework with circuit obfuscators — and also developing

MIFE for circuits — would substantially enhance the framework,

provide a basis for comparison, and push (cryptographic) program

obfuscation further towards practicality.
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1.1 Our Contributions

In this work, we explore in detail MIFE and program obfuscation

for circuits. We implement and evaluate existing constructions as

well as develop new schemes in the context of PRF obfuscation.

Our implementation extends the 5Gen framework introduced by

Lewi et al. [36], which previously included only MIFE and program

obfuscation for branching programs. This enhances the function-

ality of 5Gen and makes our constructions available for use and

experimentation.

Towards this goal, we introduce a new MIFE construction that

works directly on (arithmetic) circuits. Using Goldwasser et al.’s

transformation [33], this gives us an obfuscation scheme which

avoids the extra n multilinearity overhead inherent in prior cir-

cuit obfuscators [12, 49], where n is the number of inputs. To fully

compare our new approach with existing constructions, we im-

plement all known circuit obfuscation approaches, including the

optimization of Applebaum and Brakerski’s scheme [12] for low-

depth PRFs by Lin [38] and our own adaptation of this optimization

to Zimmerman’s scheme [49].

Since our constructions work over arithmetic circuits, we de-

velop a compiler for constructing circuits from high-level program

descriptions. This compiler includes optimizations to reduce the

multiplicative degree of the resulting circuits — a metric not tar-

geted by any existing circuit compilers — which has a huge impact

on which functions are obfuscatable using existing mmaps.

Finally, given our implementation and compiler suite, we experi-

ment with obfuscating a PRF. In particular, we look at obfuscating

both AES and the Goldreich-Goldwasser-Micali (GGM) PRF. While

we are still far from obfuscating the complete AES algorithm, we

are able to demonstrate some surprising results, such as the obfus-

cation of the GGM PRF with a 64-bit key and 12 input/output bits

with 80 bits of security for the underlying mmap.

To summarize, our contributions are as follows:

(1) An instantiation of multi-input functional encryption (MIFE)

for circuits (cf. §5). Prior MIFE constructions [19, 36] required

that the function be compiled as a branching program, which be-

comes infeasible for complex functions, whereas our approach

works directly on the arithmetic circuit representation of a

function. Additionally, using the Goldwasser et al. [33] transfor-

mation fromMIFE to obfuscation, this gives us a new obfuscator

which performs better than all existing obfuscators.

(2) A new circuit compiler which provides optimizations for gener-

ating low degree arithmetic circuits starting from a high-level

specification of the functionality (cf. §6). This tool is of inde-

pendent interest, as it produces function representations which

can be used in the context of multi-party secure computation

or fully homomorphic encryption.

(3) Implementations of our new MIFE construction, an obfusca-

tor based on our MIFE construction, and all existing circuit-

based obfuscators from the literature (cf. §7). As part of this,

we introduce three new components to the 5Gen framework

introduced by Lewi et al. [36]: (1) libacirc, a language and

library for building and computing over arithmetic circuits; (2)

mio, an implementation of circuit-based multi-input functional

encryption and program obfuscation; and (3) cxs, a toolkit for
compiling and (x) synthesizing arithmetic circuits optimized

for minimizing circuit degree. See Figure 1 for the enhanced

5Gen architecture.

(4) A thorough exploration of the performance of the various ob-

fuscators, with a focus on obfuscating a PRF (cf. §8).

In addition, in §3 we review circuit obfuscation and compare it to

the approach using constant-degree mmaps, and in §4 we review

existing circuit obfuscators.

As part of our exploration, we developed a modification of Zim-

merman’s construction [49] that adapted ideas from Lin [38] to

support “Σ-vectors”, which are used for more efficient obfuscation

of low depth PRFs (cf. §4). While this new construction performed

significantly better than all existing obfuscators for a specific class

of GGM PRFs, we found that our MIFE transformation described

in §5 resulted in even better performance, and thus focus on that

construction throughout this paper. However, for completeness we

describe our “Linnerman” construction in Appendix B.

1.2 Why PRFs?

One of themost popular algorithms to obfuscate in practice has been

AES, due to its widespread use in payment systems, digital rights

management, etc. While there have been a plethora of constructions

for obfuscating AES, the majority of them have been quickly broken,

and for the rest of them it remains unclear what security guarantees

they provide. Indeed, there is an ongoing competition for a secure

white-box implementation of AES-128 [3]. Therefore, cryptographic

obfuscation of a keyed PRF would have a significant impact.

Obfuscation of a PRF is also a central building block in “boot-

strapping” program obfuscation for larger function classes [11, 38].

Another interesting property related to PRF obfuscation is that ex-

isting attacks on obfuscation constructions leveraging weaknesses

in the underlying mmaps are not known to break obfuscations of

PRFs
1
. In fact, the most recent obfuscation schemes that provide

security against all known attacks embed a PRF that is evaluated in

parallel with the obfuscated function, and leverage the PRF hardness

to prove security [30].

In light of these facts, we view PRFs as both a primary candidate

for which we should aim to obtain efficient obfuscation and a useful

benchmark for evaluating the efficiency of new approaches.

2 PRELIMINARIES

We let λ denote the security parameter, and let κ denote the mul-

tilinearity of the underlying multilinear map (mmap) used in our

constructions. In this section we review (composite-order) mmaps

(§2.1), multi-input functional encryption (§2.2), and program obfus-

cation (§2.3).

2.1 Composite-order Multilinear Maps

Anmmap provides a way to add and multiply secret encoded values

up to a certain point, at which a given encoding can be “zero-tested”

to determine whether its secret value is zero or non-zero. This can

be thought of in some sense as fully homomorphic encryption with

a “broken” decryption procedure that allows anyone to test the

top-level value for zero. In particular, mmaps provide an Encode

1
Such attacks rely on specific properties of the obfuscated function and do not work

for all functions.
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prog.cry

dsl.hs

cryfsm

obfuscator

mife

libmmap

libclt libgghlite

cxs libacirc

mio

Figure 1: The 5Gen framework architecture, with new components introduced in this work in bold and gray boxes. The original

5Gen architecture takes as input a cryptol program (here given by prog.cry), which is fed into a compiler, cryfsm, to produce

a matrix branching program. This is then fed into either an obfuscator or multi-input functional encryption implementation,

which uses a multilinear map backend (libmmap) that supports both the CLT (libclt) and GGHLite (libgghlite) multilinear

maps. In this work, we introduce four new components: (1) cxs, an arithmetic circuit compiler suite which takes as input

either a cryptol program as before or a program written in a domain-specific language (here given by dsl.hs), (2) libacirc, a
language for describing arithmetic circuits, and (3) mio, an implementation of circuit obfuscation and multi-input functional

encryption.

operation that maps a value into its encoded form, and Add and

Mult operations that allow adding and multiplying encoded values.

At a certain point, the ZeroTest operation can be run to test equality
with zero. Composite-order mmaps allow using multiple slots of
encoded values, where now ZeroTest outputs zero if and only if all
values in all slots are zero.

Most obfuscation constructions are proven secure in an mmap

generic model, which provides oracle access to the various mmap

operations, returning “handles” to encoded values rather than the

encoded values themselves. The composite-order mmap generic

model is a slight strengthening of this to allow encoding values

across all of the mmap slots. We define this formally below.

Definition 2.1. The composite-order mmap generic model [49] is
defined by the operations Setup, Encode, Add, Mult, and ZeroTest,
defined as follows.

• Setup(U, λ,N ) → (pp, sp,p1, . . . ,pN ): Takes as input a top-level
index setU, security parameter λ, and the number of slotsN , and

produces public parameter pp, secret parameter sp, and primes

p1, . . . ,pN .

• Encode(sp,x1, . . . ,xN ,S) → h: Takes as input secret parameter

sp, scalars x1, . . . ,xN , and index set S ⊆ U, and returns “encod-

ing” [x1, . . . ,xN ]S , which is a fresh “handle” h
$

← {0, 1}λ . An

entry h 7→ (x1, . . . ,xN ,S) is added to the (internal) table T , and
h is returned.

• Add(pp,h1,h2) → {h,⊥}: Takes as input public parameter pp
and handles h1 and h2. If h1 7→ (x1,1, . . . ,x1,N ,S1) and h2 7→
(x2,1, . . . ,x2,N ,S2) are in T , and S1 = S2 ⊆ U, then compute a

fresh “handle” h and add h 7→ (x1,1 + x2,1, . . . ,x1,N + x2,N ,S1)
to T , returning h; otherwise, return ⊥.
• Mult(pp,h1,h2) → {h,⊥}: Takes as input public parameter pp
and handles h1 and h2. If h1 7→ (x1,1, . . . ,x1,N ,S1) and h2 7→
(x2,1, . . . ,x2,N ,S2) are in T , and S1 ∪ S2 ⊆ U, then compute a

deg(д : Gate):

if д = add(x ,y)
return max(deg(x ), deg(y))

if д = mul(x ,y)
return deg(x ) + deg(y)

else:

return 1

Figure 2: Function to compute the multiplicative degree of

an arithmetic circuit consisting of add,mul, and input gates,

with a single output gate. The degree of a circuit with mul-

tiple outputs is the maximum of the degrees of its outputs

considered individually.

fresh “handle”h and addh 7→ (x1,1 ·x2,1, . . . ,x1,N ·x2,N ,S1∪S2)
to T , returning h; otherwise, return ⊥.
• ZeroTest(pp,n) → {“zero”, “non-zero”,⊥}: Takes as input public
parameter pp and handle h. If h 7→ (x ,S) is in T and S = U,

then return “zero” if x1 ≡ 0 (mod p1), . . . ,xN ≡ 0 (mod pN ),
else “non-zero”; otherwise return ⊥.

Themultilinearity,κ, of the mmap is defined as the multiplicative

degree (defined by Figure 2) required to reach the top-level index

set.

2.2 Multi-input Functional Encryption

Multi-input functional encryption (MIFE) [33] provides a way to

compute a function over multiple ciphertexts such that the “decryp-

tor” only learns that function of the ciphertexts and nothing else.

In this work we utilize the secret-key variant of MIFE introduced

by Boneh et al. [19].
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Definition 2.2. A single-key secret-key multi-input functional en-
cryption (1SK-MIFE) scheme is a tuple of algorithms (1SK-MIFE.Setup,
1SK-MIFE.Enc, 1SK-MIFE.Dec) defined as follows:

• 1SK-MIFE.Setup(λ,C) → (sk, ek): Takes as input the security pa-
rameter λ and an arithmetic circuitC : {0, 1}d1 ×· · ·×{0, 1}dn →

{0, 1}m and returns a secret key sk and an evaluation key ek.
• 1SK-MIFE.Enc(sk, i, x) → ct: Takes as input secret key sk, index
i , and input x, and outputs a ciphertext ct.
• 1SK-MIFE.Dec(ek, ct(1), . . . , ct(n)) → y: Takes as input evalua-
tion key ek and ciphertexts ct(1), . . . , ct(n), and outputs a bitstring
y.

Definition 2.3 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π

is correct if for any multi-input circuit C , and any inputs x (1) ∈

{0, 1}d1 , . . . ,x (n) ∈ {0, 1}dn , if (ek, sk) ← 1SK-MIFE.Setup(1λ ,C)
and for each i ∈ [n], ct(i) ← 1SK-MIFE.Enc(sk, i,x (i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → C(x (1), . . . ,x (m)).

Towards defining security, we introduce the following security

game. Given a circuit C , adversary A, and bit b ∈ {0, 1}, we define
the experiment Expt1SK-MIFE

C,Q,b (A), parameterized over a number of

queries Q :

Experiment Expt1SK-MIFE
C,Q,b (A):

(1) Compute (sk, ek) ← 1SK-MIFE.Setup(1λ ,C) and send ek
to A.

(2) Forq ∈ [Q],A sends (iq ,xq,0,xq,1) and is given ciphertext
ctq ← 1SK-MIFE.Enc(sk, iq ,xq,b ).

(3) A outputs bit b ′ ∈ {0, 1}.

We define security for a 1SK-MIFE scheme in the composite-order

mmap generic model. For this we use the notion of admissible
execution traces [19]. An execution trace includes the sequence of
queries fromA to both its oracle and the mmap. An execution trace

is admissible if for any tuple of queries {(iqj , xqj ,0, xqj ,1)}j ∈[n]
where iqj = j for all j ∈ [n], we have that C(xq1,0, . . . ,xqn,0) =
C(xq1,1, . . . ,xqn,1).

Definition 2.4 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme

is Q-IND-secure if, for all circuits C and all efficient adversaries A,

the quantity

Adv1SK-MIFE
C,Q (A) := |W0 −W1 |

is negligible, where

Wb = Pr

[
Expt1SK-MIFE

C,Q,b (A) outputs 1 and yields

an admissible execution trace

]
.

2.3 Program Obfuscation

Intuitively, program obfuscation allows one party to obfuscate a

program in such a way that any other party cannot learn anything

about the internal workings of the program besides what can be

deduced from input/output relationships.

Definition 2.5. A program obfuscator is a tuple of algorithms

(Obfuscate, Evaluate) defined as follows:

• Obfuscate(λ,C) → Obf: Takes as input the security param-

eter λ and an arithmetic circuit C : {0, 1}n → {0, 1}m , and

returns an obfuscation Obf.
• Evaluate(Obf, x) → z: On input obfuscation Obf and bit-

string x ∈ {0, 1}n , output bitstring z ∈ {0, 1}m .

Definition 2.6 (Correctness). A program obfuscator is correct for
circuit C if for all x ∈ {0, 1}n , it holds that

Evaluate(Obfuscate(λ,C), x) = C(x).

Definition 2.7 (Efficiency). A program obfuscator is efficient for
circuitC if there exists polynomialp(·) such that |Obfuscate(λ,C)| <
p(λ).

Regarding security, the two key notions are virtual black-box
(VBB) obfuscation and indistinguishability obfuscation. While all of

our constructions are secure for the weaker indistinguishability

notion, we heuristically assume that they provide VBB security.
2

Definition 2.8. A program obfuscator is an indistinguishability
obfuscator for circuit class {Cλ } if for all λ ∈ N and for every pair

of circuits C0,C1 ∈ Cλ such that |C0 | = |C1 | and C0(x) = C1(x) for
all inputs x, then

{C0,C1,Obfuscate(λ,C0)} ≈ {C0,C1,Obfuscate(λ,C1)}.

Definition 2.9. A program obfuscator is a virtual black-box obfus-
cator for circuit class {Cλ } if for every efficient adversary A, there

exists a simulator S such that for every λ ∈ N and C ∈ Cλ it holds

that

Pr[A(Obfuscate(λ,C)) = 1] ≈ Pr[SC (λ) = 1],

where SC denotes that the simulator has black-box access to cir-

cuit C .

3 OVERVIEW OF EXISTING TECHNIQUES

In this section, we briefly describe the high-level idea behind circuit

obfuscation (§3.1) and compare it with the approach of obfuscation

from constant-degree mmaps (§3.2).

3.1 Circuit Obfuscation

The main idea behind circuit obfuscation is to run the circuit itself

directly on inputs encoded by the mmap. While this does not hide

the circuit itself (as the circuit is needed by the evaluator to know

which encodings to add and multiply), this can be solved by having

the circuit itself be a universal circuit, taking the particular func-

tion to hide as input. However, in this work we are interested in

obfuscating PRFs, where the PRF functionality is public but the (em-

bedded) key should be hidden from the evaluator, and thus making

the PRF functionality public is not an issue.

In order to prevent the evaluator from computing something

other than the specified circuit, these obfuscators encode a “check

computation” in the encoded inputs, so that a valid result will be

computed if and only if the evaluator correctly computes the circuit.

This is done using composite-order mmaps. These mmaps have

multiple “slots”, where computation occurs in parallel across all the

slots. The idea is then to use one of the slots to embed the check

2
Although VBB obfuscation is impossible in general [17], there is no attack that we

are aware of that breaks indistinguishability obfuscators when viewed (heuristically)

as VBB obfuscators for the functions we consider.
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computation so that it only cancels out if the circuit was correctly

computed. Otherwise, a random value will appear in the resulting

top-level encoding, and thus the ZeroTest operation will return

“non-zero”. Another slot encodes the main computation, which only

returns a valid result if the check computation succeeds.

In circuit obfuscators, every encoded element is indexed by a

(multi-)set of special symbols, called the index set. Only encodings

with the same index set can be added together, resulting in a new

encoding at that same index set. Any encodings can be multiplied

together, resulting in a new encoding at the product of the index sets.

For instance, suppose we have encodings [x]AB at index set {A,B}
and [y]AB also at index set {A,B}. These encodings can be both

added and multiplied. If we add the encodings, the result [x +y]AB
has the same index set. If we multiply the encodings, however, the

result [xy]AABB has index set {A,A,B,B}. The idea then is that as

we compute the arithmetic circuit, we add and multiply encodings,

increasing the size of the index set. Eventually, we reach an output

wire, with the resulting index set viewed as the “top-level” index

set (i.e., the index set at which we can successfully zero-test).

As mentioned above, as we evaluate the circuit we multiply and

add encodings. Each time we multiply encodings, we increase the

noise level of the encoding. Thus, we must generate encodings

to support enough noise such that they still retain fidelity upon

reaching the top-level. Put another way, in the underlying mmap

we must know what the maximum multiplicative degree will be in

order to generate encodings with the appropriate noise tolerance.

3.2 Comparison with Obfuscation from

Constant-degree Multilinear Maps

Starting with the work of Lin [38], a recent and concurrent line

of work has looked at building obfuscation from constant-degree
mmaps [10, 39, 41, 42]. All of these approaches utilize the “bootstrap-

ping” approach for building obfuscation from (succinct) functional

encryption (FE) [9, 18]; namely, the authors design the FE scheme

using constant-degree mmaps, and then use that scheme as the

underlying FE scheme in the bootstrapping procedure. Thus, the

efficiency bottleneck of these schemes becomes the bootstrapping

procedure: even if the necessary FE construction can be built using

very efficient tools, if the bootstrapping is prohibitively expensive

then this approach will not outperform the circuit approach for

many functions.

We focus here on the bootstrapping approach of Bitansky and

Vaikuntanathan [18], who build obfuscation from succinct public-
key FE (the approaches of Ananth and Jain [9] and Lin et al. [40] are

similar). The (simplified) idea is that, given circuitC(x) : {0, 1}n →
{0, 1}m , theObfuscate procedure constructs a functional key FSKC∗
for circuit C∗ defined as

C∗(SK,x) := Sym.Dec(SK,CT)(x),

where SK is a symmetric key,CT = Sym.Enc(SK,C), and (Sym.Enc,
Sym.Dec) defines a symmetric key scheme. Namely, C∗ decrypts a
ciphertext, interprets the decrypted object as a circuit, and evaluates

it on the input x .

Next, the procedure computes (PKC∗ , FSKC∗ ) ← FE.Setup(C∗),
and then recurses by computing

Obfn−1 :=
(
Obfuscate(λ, FE.Enc(PKC∗ ,x1, . . . ,xn−1, 0, SK)),

Obfuscate(λ, FE.Enc(PKC∗ ,x1, . . . ,xn−1, 1, SK))
)
.

The obfuscation is then (Obfn−1, FSKC∗ ).
It is important to note in this construction that when we re-

curse, we view the FE.Enc operation as the circuit to embed in

the functional secret key. Thus, if FE.Enc is a complex operation,

it quickly becomes infeasible to even just view it as a circuit; for

example, a single 1024-bit modular exponentiation requires over
four billion gates [47]. The best current FE construction uses tri-

linear maps [41], and thus the circuit representations would have

to include such trilinear map operations, resulting in a circuit of

infeasible size. Thus, we conclude that the approach to obfuscation

utilizing bootstrapping in its current form is much more expen-

sive than the circuit approach we investigate in this work (and we

also note that the non-black-box use of constant-degree mmaps

seems inherent [45]). However, efficiency improvements to either

the bootstrapping step or the underlying FE primitive could change

this, and are interesting open problems.

4 CIRCUIT OBFUSCATORS

In this section we review the three existing circuit obfuscators in

the literature: the Zimmerman obfuscator [49], denoted by Zim,

the Applebaum-Brakerski obfuscator [12], denoted by AB, and the

Lin obfuscator [38], denoted by Lin.

4.1 Obfuscation using Zim
In Zim, each “public” input bit xi is encoded under symbol Xi,b ;
namely, the obfuscation contains encodings x̂i,b := [b,αi ]Xi,b ,

whereb ∈ {0, 1} andαi denotes the check value associatedwith that
input. For each “secret” input yj , the obfuscation contains encoding

ŷj := [yj , βj ]Y , where βj denotes the check value associated with

that input and Y is a common symbol for all secret inputs.

For a multiplication gate with inputs [x]X and [y]Y , the index set
of the output [xy]X∪Y is the union of the input index setsX andY.

For addition gates, when two inputs with equal index sets are added

the encodings can be added directly. To support additions for inputs

with unequal index sets, encodings of one are provided. These

encodings are associated with a particular (public) input through

its index set; namely, ûi,b := [1, 1]Xi,b . When an addition gate

has input wires with unequal index sets, the evaluator multiplies

each input the minimum number of times with the appropriate

encodings of one to bring them into alignment.

Computing κ. Let n be the number of inputs to the circuit C ,
and let deg(·) denote the multiplicative degree of its input. Besides

the evaluation of C , there are an additional n multiplications to

construct the straddling sets in order to prevent “mix-and-match”

attacks. Thus, we have

κZim ≤ n +
∑
i ∈[n]

deg(xi ).

Results. See Table 1 for κ values across various circuits. Note that

the above formula is exact only when the circuit has a single output

bit. However, for circuits with multiple output bits this formula
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AB/Lin Zim/LZ MO

Circuit # Enc κ # Enc κ # Enc κ

aes1r 66,691 22,999 66,307 239 33,669 128

ggm_1_32 690 250 594 17 399 14

ggm_1_128 2,706 250 2,322 17 1,551 14

ggm_2_32 1,218 34,706 1,122 81 667 74

ggm_2_128 4,770 34,706 4,386 81 2,587 74

ggm_3_32 1,746 5.0e+06 1,650 385 935 374

ggm_3_128 6,834 5.0e+06 6,450 385 3,623 374

ggm_4_32 2,274 7.2e+08 2,178 1,889 1,203 1,874

ggm_4_128 8,898 7.2e+08 8,514 1,889 4,659 1,874

Table 1: Number of encodings (# Enc) andmultilinearity val-

ues (κ) for several circuits across the circuit-based program

obfuscators considered in this work. See Appendix A for cir-

cuit details.

may result in a large over-approximation of the actual value of κ
needed. To calculate the “real” κ, we use a “dummy” mmap which

tracks the degree of each encoded element. We can then take the

maximum degree over all of the output encodings as the “real” κ.
This can often make a huge difference in practice. For example, for

aes1r, the above formula gives κ = 567, whereas using the dummy

mmap approach gives κ = 239, a 2.5× improvement.

4.2 Obfuscation using AB
The AB approach is similar to Zim in that it uses a “check slot”

to enforce that the circuit is correctly computed. However, the

particular details differ. In AB, every element is a pair (R,Z ) where
R contains some randomness and Z contains a secret masked by

that randomness. For example, each “public” input bit xi is encoded
as Rxi,b := [ri,b,1, ri,b,2] and Zx

i,b := [ri,b,1 · b, ri,b,2 · αi ], where

ri,b,1, ri,b,2, and αi are random. Likewise, “secret” inputs yj are

encoded as R
y
j := [r j,1, r j,2] and Z

y
j := [r j,1 ·yj , r j,2 · βj ] where r j,1,

r j,2, and βj are random.

This “El-Gamal”-style encoding directly supports both addition

andmultiplication: Suppose we have two pairs of encodings (R1,Z1)
and (R2,Z2). An addition gate results in the pair of encodings

(R1R2,Z1R2 + R1Z2) and a multiplication gate results in the pair of

encodings (R1R2,Z1Z2). The downside to this is of course that both
addition and multiplication now require multiplication of encod-

ings, and thus an (often substantial) increase in the overall degree.

To contrast this approach to Zim, consider the following (sim-

plified) example. We wish to add two encodings [x]A and [y]AB . In
AB, these values are represented as (Rx ,Zx ) = ([rx ]A, [rxx]A) and
(Ry ,Zy ) = ([ry ]AB , [ryy]AB ), with addition producing

(RxRy ,ZxRy + ZyRx ) = ([rx ry ]AAB , [rx ryx + rx ryy]AAB ).

In Zim, these values are represented directly by [x]A and [y]AB ,
and the addition can be computed by raising x by the appropriate

encoding of 1 and then adding the resulting encoding to [y]AB .
Thus, in AB we increase the degree, whereas in Zim the degree

stays the same.

Computing κ. Let n be the input length and d the multiplicative

degree of the circuit. Lin [38] defines the notion of type-degree,
which captures the growth of the degree given the El-Gamal-style

encodings of AB. Let typedeg(i) be the type-degree of the ith input.

Lin upper-bounds the multilinearity of this construction as

κAB ≤ 3 + 2n + d +
∑

i ∈[n+1]

typedeg(i) ≤ 5(t + n),

where t is the maximum type-degree of all the inputs, which Lin

proves is < 2
depth

.

Results. See Table 1. As in Zim, we calculated these κ values

using a dummy mmap. Note how much worse the κ values are

for AB versus Zim. This is because all addition gates in AB require

multiplying encodings; asκ is a function of themultiplicative degree

of the top-level encodings, needing multiplication for both addition

and multiplication quickly blows up κ.

4.3 Obfuscation using Lin
In a breakthrough result, Lin showed how to construct obfuscation

from constant-degree mmaps [38]. To do so, Lin designed a “boot-

strap” circuit with constant degree which uses a polynomial-size

input domain PRF. Lin’s PRF is a variant of the “GGM” PRF of Gol-

dreich, Goldwasser, and Micali [32], which constructs a PRF directly

from a PRG. While the particular details for now are not important

(see §8 for more details on Lin’s variant of the GGM PRF), we note

that the core technique is to split the input into “Σ-vectors”. A Σ-
vector is a vector of bits, where to represent the integer i (mod n)
we have a “1” in the ith position and “0” elsewhere:[

0 . . . 0︸︷︷︸
i−1

1 0 . . . 0︸︷︷︸
n−i

]
.

That is, a Σ-vector can be viewed as a unary encoding of a value

in the domain {0, . . . , |Σ| − 1}. For example, a Σ-vector of length
|Σ| = 16 can encode log

2
(16) = 4 possible “real” inputs. Put another

way, a 16-bit input can be viewed as four Σ-vectors each of length

|Σ| = 16, or alternatively, two Σ-vectors each of length |Σ| = 256

(since 16 = 4 · log
2
(16) = 2 · log

2
(256)).

The advantage of Σ-vectors is that sub-string selection only

requires multiplicative degree two. This works by multiplying the

string pairwise with the appropriate Σ-vector and summing up the

result. For instance, to get the jth bit of string x ∈ {0, 1}n , compute∑
i ∈[n] eixi , where e is a Σ-vector encoding of j . This approach also

generalizes to strings composed of longer sub-strings than single

bits. Let ℓ be the length of the sub-string you wish to obtain and

let x ∈ {0, 1}ℓn . Then, to use e to select a sub-string, compute∑
i ∈[n]

eixiℓ+1∥
∑
i ∈[n]

eixiℓ+2∥ · · · ∥
∑
i ∈[n]

eixiℓ+ℓ . (1)

Lin introduced a variant of the Applebaum-Brakerski obfuscator

that supports Σ-vectors. We denote this obfuscator as Lin. Note that
when Σ-vectors are not used, Lin reduces to (a slight variant of) the

AB scheme.

Computing κ. The computation of κLin is the same as in AB.

Results. As mentioned above, Lin performs the same as ABwhen

Σ-vectors are not in use; see Table 1. However, for certain functions,

using Σ-vectors can have a huge improvement. In Table 2 we show

the effect on κ when using Σ-vectors for the GGM PRF (cf. §8.2).

We can see huge improvements going from κAB to κLin, and κLin is

competitive with κZim, at least for smaller input lengths.
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n k κAB κZim κLin κLZ κMO

4 128 250 17 17 7 7

8 128 34,706 81 123 34 33

12 128 5.0e+06 385 977 163 161

16 128 7.2e+08 1,889 8,163 797 794

Table 2: Multilinearity values (κ) for the GGM PRF using AB,
Zim, Lin, LZ, and MO for various input lengths (n) and key

lengths (k), in bits. For the Lin, LZ, and MO obfuscators the

inputs are treated as Σ-vectors with |Σ| = 16.

Basing Lin on Zim. As Lin builds on AB, which has much worse

multilinearity than Zim, this leaves open the question whether the

techniques in Lin could be applied directly to Zim. In Appendix B,

we present the “Linnerman” obfuscator, denoted by LZ, which does

exactly this. And we indeed realize the expected improvement. For

example, obfuscating the GGM PRF with 16 “real” input bits and

a 128-bit key results in κLin = 8,163 versus κLZ = 797, a ten-fold

improvement (cf. Table 2). Looking ahead, however, we find that

our MIFE-based construction presented in §5 results in even better
multilinearity than our “Linnerman” construction.

5 MULTI-INPUT FUNCTIONAL ENCRYPTION

FROM CIRCUITS

In this section we present our new construction for (single-key)

multi-input functional encryption (MIFE).We beginwith some high-

level intuition before describing the scheme in detail in §5.1. In §5.2

we present a security proof, in §5.3 we describe some optimizations,

and in §5.4 we show how to build an obfuscator from our MIFE

construction.

Our MIFE construction expands the functionality of the scheme

presented by Boneh et al. [19], which supports a single key repre-

sented as a branching program. Our construction allows the func-

tional key to be described as an (arithmetic) circuit. To do so, we

leverage techniques from the circuit obfuscation construction of

Zimmerman [49].

Program obfuscators provide the capability to evaluate the (ob-

fuscated) function on any possible input. Thus, existing obfuscators

(both for branching programs and circuits) provide encodings for

both zero and one for each input bit. On the other hand, in the

MIFE setting we need to enforce that the only inputs on which

the functionality can be evaluated should correspond to the inputs

encrypted in valid ciphertexts. That is, one should not be able to

mix-and-match input bit values from different ciphertexts for the

same slot.

A possible approach for achieving the above in the circuit set-

ting would be to adapt ideas from Boneh et al.’s branching program

construction. There, the authors introduced the notion of an ex-
clusive partition family, which allows one to generate “straddling

sets” for the bits in each MIFE ciphertext with the property that

any evaluation that uses encodings from different ciphertexts can

obtain an encoding at the zero-testing level only with negligible

probability. However, these techniques crucially rely on the way

branching programs are evaluated as a sequence of matrix multi-

plications. This property is no longer true for circuit evaluations

and thus poses substantial challenges to extending the straddling

techniques to work with circuits. Instead, we develop a different

approach, inspired by the check value idea from circuit obfuscation

constructions.

As discussed in §3 and §4, circuit obfuscators employ two main

techniques: (1) they enforce that an evaluation can reach the zero-

testing level if and only if it uses consistent assignment to each

input bit, and (2) they ensure that the function evaluated is the

intended function by using an additional check slot in the mmap

encodings.

The first technique is not easily amenable to changes that could

help prevent mix-and-match attacks across MIFE ciphertexts for

the same MIFE slot. Instead, we propose a way to extend the check

value technique to enforce that all encodings from a ciphertext are

used consistently. Recall that in Zimmerman’s construction, each

input bit encoding has two slots, where the first slot contains the

actual bit value and the second slot has a fixed value; for example,

the encodings for input bits zero and one for the ith input bit

encode the pairs [0,αi ] and [1,αi ]. Thus, any honest evaluation of

the obfuscated function f on n input bits should be an encoding

at the zero-testing level with value f (α1, . . . ,αn ) in the second

slot. The obfuscation provides an encoding of [0, f (α1, . . . ,αn )] at
the zero-testing level, which can be subtracted and enables zero-

testing encodings obtained with honest evaluation of the obfuscated

function. The proof of security uses the Schwartz-Zippel lemma to

show that the probability of an adversary obtaining an encoding

at the zero-testing level with a zero value in the second slot in any

other way than the honest evaluation is negligible.

We adapt this technique to the setting where we want to guar-

antee that a subset of the input bits are used consistently together.

In particular, in the MIFE setting these subsets of bits correspond

to the MIFE ciphertext for a particular MIFE slot. We handle this by

using a designated mmap slot for each MIFE slot. The first mmap

slot corresponds to the actual circuit evaluation, whereas the other

n slots (for an n-input MIFE) correspond to a “check slot” for each

MIFE slot.

Let C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m be our n-input MIFE

circuit, with the ith input being of length di , and for simplicity

assumem = 1 for now. A ciphertext for MIFE slot i contains a set
of di encodings, where encoding j ∈ [di ] has random value α j in
the (i + 1)th mmap slot. For a ciphertext in MIFE slot k , i , the
(i + 1)th mmap slot has value 1. The ciphertext for MIFE slot i also
provides an encoding ŵi that has value 1 in all of its mmap slots,

except in its (i + 1)th mmap slot it has the value

C(1, . . . , 1︸  ︷︷  ︸
d1

, . . . , 1, . . . , 1︸  ︷︷  ︸
di−1

,α1, . . . ,αdi , 1, . . . , 1︸  ︷︷  ︸
di+1

, . . . , 1, . . . , 1︸  ︷︷  ︸
dn

).

That is, the (i + 1)th mmap slot contains the output of circuit C
evaluated on all ones except for the ith MIFE slot which contains

its associated α values.

On decryption, the ŵi values are multiplied in to reach the zero-

testing level and then subtracted, thus guaranteeing that an evalua-

tor can obtain an encoding at the zero-testing level with zero in its

(i + 1)th mmap slot if and only if it has used the bits of a ciphertext

for the ith MIFE slot consistently.
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Thus, on honest decryption, the resulting zero-testing encoding

is [C(ct(1), . . . , ct(n)), 0, . . . , 0], where ct(i) denotes the ith cipher-

text. On dishonest decryption, the resulting encoding is [C∗,C∗
1
, . . . ,

C∗n ], where C
∗
denotes the output of the maliciously evaluated cir-

cuit, andC∗i denotes the output of that same circuit on the ith check

slot. By the Schwartz-Zippel lemma, these C∗i values are non-zero
with overwhelming probability.

We note that the increased number of mmap slots required in

our construction only affects performance if this is more slots than

available in the underlying mmap. However, for the CLTmmap [26]

which we use in our implementation, this does not occur when

using reasonable security settings and input lengths. In particular,

the number of slots in the CLT mmap is a function of both the

security parameter and multilinearity. As an example, for a single

gate circuit with security parameter 80, the CLT scheme requires

9,632 slots, and the 12-bit PRF we obfuscate (cf. §8) requires 13,111

slots, well above the number of inputs of these two circuits.

5.1 Construction

Let C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m be an arithmetic circuit

on boolean inputs, let deg(x(i)) denote the maximum degree of the

bits of the ith MIFE slot across all output bits, and let deg(x(i)o )
denote the maximum degree of the bits of the ith MIFE slot for

output bit o ∈ [m]. Our 1SK-MIFE construction works as follows:

1SK-MIFE.Setup(1λ ,C):

(1) Define top-level index set

U := Z
∏
i ∈[n]

W (i)(X (i))deg(x
(i )).

(2) Compute (pp, sp,pev,pchk1, . . . ,pchkn ) ← Setup(U, λ, 1 + n).
(3) Generate the following encoding:

Ĉ∗ := [0, 1, . . . , 1︸  ︷︷  ︸
n

]
Z
∏
i∈[n](X (i ))deg(x

(i ))

(4) For i ∈ [n], generate the following encoding:

ûi := [1, 1, . . . , 1︸  ︷︷  ︸
n

]X (i ) .

(5) For o ∈ [m], generate the following encoding:

ẑo := [δo , 1, . . . , 1︸  ︷︷  ︸
n

]
Z
∏
i∈[n]W (i )(X (i ))deg(x(i ))−deg(x

(i )
o )
,

where δo ← Zpev .

(6) Set sk := (sp,C) and ek :=
(
pp,C, {ẑo }o∈[m], {ûi }i ∈[n], Ĉ

∗
)
.

1SK-MIFE.Enc(sk, i, x ∈ {0, 1}di ):

(1) For j ∈ [di ], generate the following encoding:

x̂ j := [x j , 1, . . . , 1︸  ︷︷  ︸
i−1

,α j , 1, . . . , 1︸  ︷︷  ︸
n−i

]X (i ) ,

where α j ← Zp
chki

.

(2) For o ∈ [m], generate the following encoding:

ŵo := [0, 1, . . . , 1︸  ︷︷  ︸
i−1

,C†o , 1, . . . , 1︸  ︷︷  ︸
n−i

]W (i ) ,

where

C†o := C(1, . . . , 1︸  ︷︷  ︸
d1

, . . . , 1, . . . , 1︸  ︷︷  ︸
di−1

, {α j }, 1, . . . , 1︸  ︷︷  ︸
di+1

, . . . , 1, . . . , 1︸  ︷︷  ︸
dn

)o ∈ Zp
chki
.

(3) Output ciphertext ct :=
(
{x̂ j }j ∈[di ], {ŵo }o∈[m]

)
.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(n)):

(1) Parse ek as

(
pp,C, {ẑo }o∈[m], {ûi }i ∈[n], Ĉ

∗
)
.

(2) For i ∈ [n], parse ct(i) as
(
{x̂
(i)
j }j ∈[di ], {ŵ

(i)
o }o∈[m]

)
.

(3) For o ∈ [m], evaluate the oth output of circuit C on inputs

x̂
(1)

1
, . . . , x̂

(1)

d1
, . . . , x̂

(n)
1
, . . . , x̂

(n)
dn

, using {ûi } as needed (as is done

in Zimmerman [49, §3]). Denote the final term as

Ĉo := [C(x(1), . . . , x(n))o , (C
†
o )
(1), . . . , (C†o )

(n)]∏
i∈[n] (X (i ))

deg(x(i )o )

(4) For o ∈ [m], compute

t̂o := ẑoĈo − Ĉ
∗
∏
i ∈[n]

ŵ
(i)
o .

(5) Output the bitstring resulting from running ZeroTest(t̂o ) for
o ∈ [m].

5.2 Proof of Security

Theorem 5.1. The construction in §5.1 is correct according to
Definition 2.3.

Proof. Correctness follows directly by inspection. ■

Theorem 5.2. The construction in §5.1 is secure according to Defi-
nition 2.4.

Proof. In the generic mmap model the distributions of the en-

codings obtained during the encryption oracle queries are inde-

pendent of the bit b. Thus, we need to argue that the answers

obtained from successful zero testing queries in Expt1SK-MIFE
C,Q,0

(A)

and Expt1SK-MIFE
C,Q,1

(A) are negligibly close.

The zero-testing returns a value different from ⊥ only on encod-

ings at the top-level index setU. We consider the two main ways

to obtain an encoding at the zero testing level: either using Ĉ∗ or
not using it.

(1) Using Ĉ∗: The only way to obtain encoding at the zero testing

level from Ĉ∗ is by multiplying it with

∏
i ∈[n] ŵ

(i)
.

(2) Not using Ĉ∗: Monomials that represent encodings at levelU

are of the form©«
∏
j ∈[di ]

(x̂
(i)
j )

mi (û
(i)
j )

deg(x̂ (i )j )−mi ª®¬ ẑ (2)

where x̂
(i)
j , û

(i)
j , ẑ belong to ciphertexts for MIFE slot i .

Therefore, valid zero-testing queries will be linear combinations

of monomials of the form either Ĉ∗
∏

i ∈[n] ŵ
(i)

or Equation 2. An

encoding successfully zero-tests if and only if the values in all of

its mmap slots are zero. By the Computational Schwartz-Zippel

Lemma [49, Lemma 3.12], the values in the mmap slots are zero

with non-negligible probability if and only if the polynomial over

the encoded values evaluates to zero.
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We consider mmap slot j for j ∈ [2, . . . ,n + 1]. Since each en-

coding in the ciphertext for MIFE slot i = j − 1 contains a random
value at mmap slot j and the encoding ŵ from the ciphertext at

MIFE slot i has valueC† := C(1, . . . , 1, {α j }j ∈[di ], 1, . . . , 1) at mmap

slot j, in order to obtain a polynomial that evaluates identically to

zero, this polynomial needs to have as a divisor the polynomial

C(1, . . . , 1, {x̂
(i)
j }j ∈[di ], 1, . . . , 1)ẑ−Ĉ

∗ŵ(i) ·⋆ · · ·⋆︸ ︷︷ ︸, where⋆ denotes
an encoding that has value one in mmap slot j (for clarity, we have

omitted the multiplications with encodings û
(i)
j ). In other words,

this means that all monomials can use encodings only from a single

ciphertext at MIFE slot i . Applying this reasoning to all MIFE slots

we conclude that the polynomials that evaluate to zero must be

of the form C({x̂
(i)
j }i ∈[n], j ∈[di ]) − Ĉ

∗∏
i ∈[n] ŵ

(i)
(again omitting

encodings û
(i)
j ), except with negligible probability.

However, since for all admissible tuples of queries in the MIFE

security game the circuitC evaluates to the same value independent

of the challenge bit b, it follows that the encodings that successfully
zero-test will also be independent of the challenge bit b, completing

the proof. ■

5.3 Optimizations

We note an optimization that can help reduce the overall mul-

tilinearity by two for certain functions. When using MIFE on a

circuit with constants, the naive approach is to utilize one slot

to encode the constants. However, this slot can instead be “rolled

into” the encodings generated in 1SK-MIFE.Setup, as follows. Sup-
pose the (n + 1)th MIFE slot contains the constants. Instead of

computing Ĉ∗ := [0, 1, . . . , 1]
Z
∏
i∈[n+1](X (i ))deg(x

(i )) , we directly com-

pute the combination of Ĉ∗ and ŵ
(n+1)
o ; that is, we replace Ĉ∗ with

ŵ
(n+1)
o := [0, 1, . . . , 1︸  ︷︷  ︸

n

,C†o ]ZW (n+1)∏
i∈[n+1](X (i ))deg(x

(i )) for o ∈ [m].

Now, the right-hand-side computation in Step (4) of 1SK-MIFE.Dec
is just

∏
i ∈[n+1] ŵ

(i)
o . This reduces the multilinearity by one for

functions with constants where the number of inputs is larger than

the overall degree of the circuit.

We can reduce this computation further by combining ŵ
(i)
o with,

say, the ŵ
(1)
o values corresponding to the first MIFE slot. Thus, the

final right-hand-side product becomes

∏
i ∈[n] ŵ

(i)
, reducing the

multilinearity by two versus the naive approach.

Computing κ. The main cost of our construction is the computa-

tion of C , plus one additional multiplication to reach the top-level

index set. However, if the multilinearity from computing C is less

than the number of inputs, the right-hand-side computation of

Step (4) of 1SK-MIFE.Dec dominates. Thus, we get the following:

κ ≤ max{1 +
∑
i ∈[n]

deg(x(i)),n}.

5.4 Obfuscation from MIFE

OurMIFE construction immediately gives us an obfuscation scheme

using the transformation of Goldwasser et al. [33]: set each MIFE

slot to be a single bit, with the obfuscation being the 2n encryptions

corresponding to the zero and one values in each MIFE slot, and

evaluation being the MIFE decryption operation. We denote this

construction by MO. Note that we can also directly support Σ-
vectors by encrypting each σ ∈ Σ for each MIFE slot.

MO.Obfuscate(1λ ,C):

(1) Compute (sk, ek) ← 1SK-MIFE.Setup(1λ ,C).
(2) For i ∈ [n], b ∈ {0, 1}, compute cti,b ← 1SK-MIFE.Enc(sk, i,b).
(3) Output the following as the obfuscated program(

ek, {cti,0, cti,1}i ∈[n]
)
.

MO.Evaluate(Obf, x):

(1) Parse Obf as
(
ek, {cti,0, cti,1}i ∈[n]

)
.

(2) Output 1SK-MIFE.Dec(ek, ct1,x1 , . . . , ctn,xn ).

Computing κ. This approach gives us the same κ values as our

MIFE construction. We also note that MO requires many fewer

encodings than existing approaches, as we are in some sense trading

the use of encodings withmmap slots to enforce security. See Table 1
for some examples; roughly,MO requires up to 2× fewer encodings

than all existing approaches, which directly impacts the obfuscation

time and size.

Results. See Table 1 and Table 2 for results. We can see that MO
is better than all existing schemes, both in terms of κ values as well

as the number of encodings needed.

6 COMPILING CIRCUITS FOR OBFUSCATION

The running time of circuit obfuscation is directly related to the

multilinearity of the underlying mmap: the larger the multilinearity,

the longer the running time and resulting size. Indeed, for existing

mmaps, the running time is exponential in the multilinearity. As the

multilinearity is always greater than or equal to the multiplicative

degree, reducing the multiplicative degree often has a direct impact

on the multilinearity. In this section we focus on the (multiplicative)

degree, whereas throughout the rest of the paper the focus is on

multilinearity.

The degree is calculated as follows. As we evaluate an arithmetic

circuit, the degree of an addition gate is the maximum degree of

its inputs, whereas the degree of a multiplication gate is the sum

of the degree of its inputs (see Figure 2). Thus, in the worst case

the degree of the whole circuit is exponential in its depth — this

occurs when a circuit contains only multiplication gates. However,

in the best case the degree can be much lower — this occurs when

the multiplication gates are “spread out” effectively in the circuit.

The primary goal when compiling circuits is in reducing the degree

required, even at the cost of increasing the total number of gates.

Existing circuit compilers for secure computation either mini-

mize the number of gates [35, 43] or the depth [22]. As an early

attempt, we took a similar approach using off-the-shelf tools: tak-

ing a Cryptol
3
function as input, we used the Software Analysis

Workbench [27] to generate circuits composed of and and not

gates, optimized them using either ABC [21], a tool for synthesiz-

ing and optimizing binary sequential logic circuits, or Yosys [48],

a tool for synthesizing and optimizing Verilog scripts, and then

3
Cryptol is a domain-specific language designed for writing programs over streams of

bits [37].
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finally translated the outputs to an arithmetic circuit. These tools

were somewhat effective, but they did not provide the ability to use

custom optimizations to reduce the degree and thus often produced

poorly performing circuits. Thus, we built our own circuit compiler

to address this gap. As an example, for 1-round AES we were able

to reduce the degree from 14,900 to 33 when using our compiler.

The compiler itself is an embedded domain specific language

(DSL) in Haskell which directly constructs arithmetic circuits from

addition, multiplication, and subtraction gates. This is less a limi-

tation than it seems, since we can use the full power of Haskell to

construct circuits. For example, access to low-level representations

allows for clever circuit optimizations, such as replacing a subrou-

tine with a lookup table. The DSL can also compose circuits, which

allows us to use heavily optimized sub-circuits as subroutines. Fi-

nally, the DSL provides generic optimizations specifically tailored

to reduce the degree.

In §6.1 we discuss circuit optimizations. This includes improve-

ments to the way a circuit is initially constructed, as well as op-

timizations we apply after the circuit is created. Then, in §6.2 we

show howwell the optimizations perform on a circuit that computes

a single round of AES.

6.1 Circuit Optimizations

In this section we describe each of our circuit optimization ap-

proaches: using off-the-shelf optimizers (§6.1.1), using aDSL (§6.1.2),

encoding lookup tables (§6.1.3), folding constants (§6.1.4), and cir-

cuit flattening (§6.1.5).

6.1.1 Off-the-Shelf Boolean Circuit Optimizers. Our early com-

piler generated boolean circuits which could then be fed into off-

the-shelf optimizers. We were inspired by TinyGarble [46] to use

ABC [21] and Yosys [48], tools which are used by hardware en-

gineers for optimizing circuits. We then converted the optimized

(boolean) circuit to arithmetic. The advantage of this approach is

that existing optimizers are well developed, easy to use, and effec-

tive. Using this method, if we compile the AES S-Box directly as an

arithmetic circuit, it has degree 283. Optimizing with ABC takes

the degree down to 250, and further optimization with Yosys takes

the degree down to 220. However, these tools optimize for size, not

degree, and the resulting degrees are well beyond values that we

could hope to obfuscate in a reasonable amount of time.

6.1.2 Using a Domain-specific Language. In order to take ad-

vantage of low-level circuit optimizations that are not captured by

existing off-the-shelf tools, we developed our own DSL for building

circuits. The basic idea is to build a circuit directly from gates in

Haskell. The user primarily interacts with “Refs”, which are indices

into an array of wires. We provide functions for addition, subtrac-

tion, multiplication, etc., based on Refs. There is also a mechanism

for avoiding duplicate gates. The user can use Haskell functions to

create their circuits, dynamically passing Refs around, and exist-

ing circuits can be imported as sub-circuits. This allows us to take

the best compilation method for every circuit, or to pre-compute

sub-circuits that have a long optimization step. Finally, the DSL

provides tools for exploring new optimization techniques (both

during and after compilation), as described below.

6.1.3 Encoding a Lookup Table as a Circuit. One simple but

effective optimization we can do is to replace ann-input circuit with
a lookup table of degree n. The cost is an exponential blowup in the

number of gates in the circuit, corresponding to every possible input.

However, since size is not the limiting factor for our obfuscation

schemes, we apply this optimization whenever we can.

As an example, consider the circuit corresponding to a truth

table with single-bit entries

[
0 1 1 0

]
, where on input i the circuit

returns the ith bit of the table. We can convert this circuit to the

formula

((1 − i1) · i0) + (i1 · (1 − i0)),

where i1i0 corresponds to the base-2 representation of i , giving us

a circuit of degree two.

Using the DSL and the above lookup table encoding reduces the

degree of the AES S-Box from 220 to 8, a 27× improvement.

6.1.4 Folding Constants. Another simple optimization which

is surprisingly effective is “constant folding”. Namely, we scan the

circuit for gates that add or multiply constants and replace such

gates with new constants. We can also remove gates that add or

subtract zero or multiply by one. Our circuits often contain these

gates since we use 1 − x to simulate not(x). Such gates also occur

if we fix input bits to a constant.

6.1.5 Circuit Flattening. This optimization uses the fact that our

arithmetic circuits emulate boolean circuits in that every wire only

ever carries zero or one. We can take advantage of this to reduce the

circuit degree as follows: (1) convert the circuit to a polynomial; (2)

“expand” the polynomial by converting it from a product of sums to

a sum of products; (3) remove all exponentiations, possible because

the variables in the polynomial are boolean; and (4) simplify and

convert back to circuit form.

As an example, consider the circuit represented by the poly-

nomial (1 − x1)(1 − x1x2). Expansion produces the polynomial

(1 − x1 − x1x2 + x
2

1
x2). Since the inputs are bits we can remove all

exponents from the polynomial. Simplifying, we get the polynomial

(1−x1), which has degree one, in comparison to the original which

has degree three.

Polynomial expansion has exponential blow-up, so this optimiza-

tion only works for sufficiently small circuits (experimentally, we

found around depth 14 to be the limit). We thus locate high-degree

sub-circuits, flatten these independently, and then use the DSL to

stitch them back in, repeating until a fixed-point is reached. This

method takes the degree of 1-round AES-128 from 57 to 33.

6.2 Optimization Results

See Table 3 for a comparison of the various DSL optimization ap-

proaches on two variants of one-round of AES-128: aes1r denotes

one-round of AES-128, and aes1r_64_1 denotes one-round of AES-
128 with 64-bits of the input fixed and only one output bit. We can

see that in both cases, we see benefits to using our circuit flattening

optimization, reducing the degree from 57 to 33 in the case of aes1r
and reducing the degree from 26 to 18 in the case of aes1r_64_1.
Constant folding only sees a benefit for aes1r_64_1; this is because
in that circuit 64 input bits are fixed, and thus can be folded into

the computation, reducing the degree from 41 to 26.
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Circuit Opt. Level # Gates # Muls Degree

-O0 22,368 5,600 57

-O1 22,368 5,600 57aes1r
-O2 80,564 9,203 33

-O0 1,101 569 41

-O1 820 420 26aes1r_64_1
-O2 1,324 614 18

Table 3: Comparison of DSL optimizations. ‘-O0’ denotes no

optimizations; ‘-O1’ denotes constant folding; and ‘-O2’ de-

notes constant folding and sub-circuit flattening. See §A for

circuit details.

Note that the circuit flattening optimization often increases both

the total number of gates and the number of multiplication gates.

For example, using sub-circuit flattening increases the number of

gates in the aes1r circuit by almost 4× and the number of multipli-

cation gates by almost 2×. However, as mentioned before, degree
is the main efficiency bottleneck, and thus this extra increase is

largely irrelevant from an efficiency standpoint given the reduction

in degree.

7 IMPLEMENTATION

We implemented the MIFE scheme described in §5 and all of the

obfuscators discussed in §4, §5, and Appendix B. We have packaged

these into a program, mio, containing around 20,000 lines of C

code and using libmmap as the underlying mmap library (and in

particular, the instantiation of the CLT mmap [26] available as part

of libmmap). We also developed a language and associated library,

libacirc, for describing arithmetic circuits. All the code is available

at https://github.com/5GenCrypto/.

Attacks on CLT. While our MIFE and obfuscation schemes are se-

cure in the composite-order mmap generic model, in our implemen-

tation we instantiate this generic model using the CLT mmap [26].

Unfortunately, the CLT mmap is prone to several attacks. Most rele-

vant to our constructions, Coron et al. [24] demonstrated an attack

on the Zimmerman construction for the specific circuit comprised

of the product of an odd number of inputs. However, it is not clear

how to extend their attack to arbitrary circuits, and in particular,

to PRFs. Intuitively, it appears that any successful partitioning of

the input space needed in their attack would lead to an attack on

the underlying PRF, although this remains to be formalized.

More recently, Coron et al. [25] demonstrated attacks on matrix

branching program constructions using the CLT mmap, but again,

we are not aware of how to map this attack to the more general

circuit approach. Existing attacks rely on some inherent structure

of the computation, be it matrix multiplication using branching

programs or multiplications when attacking the product circuit

in Zimmerman’s construction. In addition, embedding PRFs in ob-

fuscation constructions based on the GGH mmap [28] has been

used to eliminate all known attacks [30], albeit in the branching

program context. This seems to suggest that when obfuscating PRFs

themselves, the “lack of structure” provided by the PRF prevents

existing attacks from working. Thus, while we do not have a proof

that our construction circumvents all known attack techniques, we

believe existing attacks do not affect our construction when applied

to obfuscating PRFs.

8 PERFORMANCE RESULTS

We found that for functions that can be mapped efficiently to finite

automata, the matrix branching program approach of 5Gen is supe-

rior. In particular, for order-revealing encryption and point function

obfuscation we were unable to produce circuits with smaller κ than

5Gen. However, as the complexity of the circuit grows, the circuit-

based approach quickly becomes superior. Indeed, we were unable

to even compile branching program representations for any of the

circuits considered below.

We investigate two function classes to obfuscate: AES (cf. §8.1)

and the Goldreich, Goldwasser, Micali (GGM) PRF (cf. §8.2). We

explored a number of other PRF constructions, including MiMC [8]

and the PRF of Applebaum and Raykov [14]. However, both ap-

proaches require finite field operations resulting in circuits of very

high degree. For example, we found the Applebaum-Raykov PRF

with 8-bit input and 24-bit key to have multiplicative degree greater

than 10
26
.

We note that all of the obfuscators we implemented only sat-

isfy the weaker indistinguishability obfuscation definition; thus, we

assume heuristically that our constructions are virtual black-box
obfuscators for the specific functions considered below. Due to its

efficiency over the other obfuscators, both in terms of multilinearity

and number of encodings, all of the below experiments are done

using our MIFE-based construction from §5.

8.1 AES

Obfuscating AES can be seen as the “holy-grail” of program ob-

fuscation due to its wide-spread use in industry. Unfortunately,

obfuscating the entire 10-round AES-128 construction is well be-

yond our capabilities at the moment. For a single round of AES we

can achieve κ = 128, but for even two rounds of AES this balloons

to over 2,000.

Recall from Table 3 that the multiplicative degree of our circuit is

33, yet the resulting multilinearity is 128. This is due to the fact that

our obfuscator has a minimal multilinearity equal to the number

of inputs, and thus in some sense we cannot take advantage of

the low multiplicative degree in this case. Thus, an interesting

open problem is constructing a circuit obfuscation scheme that

has multilinearity independent of the number of inputs, while also

making only black-box queries to the underlying mmap to avoid

the efficiency bottleneck of using mmaps in a non-black-box way

(cf. §3.2).

8.2 Goldreich-Goldwasser-Micali PRF

AES is not particularly suited to our program obfuscation approach

due to its many rounds, and thus high degree. As mentioned above,

we explored other PRFs but found the Goldreich, Goldwasser, and

Micali (GGM) PRF [32] as the most feasible approach.

Let Fk : {0, 1}n → {0, 1}n denote a PRF. GGM introduced a way

to construct Fk directly from a stretch-two
4
PRG G : {0, 1}n →

{0, 1}2n as follows. Let G(k) = G0(k)∥G1(k), where Gi : {0, 1}
n →

{0, 1}n denotes the ith n-bit block of output of G. The idea is to

4
We define a stretch-t PRG to be one that on n-bit input, produces a tn-bit output.
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repeatedly apply G, using the input bits of the PRF as an index

into which half of the output of G to return. Namely, letting x :=

x1 · · · xn , we define Fk (x) := Gxn (Gxn−1 (· · · (Gx1 (k)))).
Lin [38] used a variant of the GGM PRF in her construction of

obfuscation from constant-degree mmaps (cf. §3.2). Her variant uses

a PRGwith polynomial stretch (as opposed to the GGM construction,

which only requires stretch two), which allows for minimization of

the depth and thus degree of the resulting circuit. In particular, Lin

showed that by using a special unary “Σ-vector” encoding of the
input (cf. §4.3) and a polynomial stretch PRG we can minimize the

depth of the resulting PRF.

More formally, let x := σ1 · · ·σn , where σi ∈ Σ, and let |Σ| de-

note the length of Σ. Using a PRGG : {0, 1}n → {0, 1} |Σ |n , our PRF

becomes Fk (x) := Gσn (Gσn−1 (· · · (Gσ1 (k)))). Note that the “real”

length of x (i.e., the number of bits of input that x can encode)

corresponds to n · log
2
(|Σ|), since a Σ-vector of length |Σ| corre-

sponds to a unary encoding of a value in the set {0, . . . , |Σ| − 1}. In
particular, this approach reduces the number of PRG evaluations

by log
2
(|Σ|).

Thus, the main “cost” (in terms of degree) of the PRF becomes the

particular PRG it is instantiated with. Tomeasure this, we calculated

the depth, degree, and multilinearity of the GGM PRF with the PRG

instantiated by an identity function. When using four Σ-vector
inputs each of length 16 (corresponding to 64 bits of “real” input)

and a key length of 128, we get a depth of 20, a degree of 5, and a

multilinearity of 6. On the other hand, instantiating the PRF with

an actual PRG (in this case, Goldreich’s PRG as discussed below),

we get a depth of 48, degree of 781, and multilinearity of 1,126.

8.2.1 Selecting a PRG for the GGM PRF. As the PRG choice

greatly effects the overall degree of the circuit, and thus the required

multilinearity when obfuscating, choosing an appropriate PRG is

of vital importance to efficiency. In particular, we would like a

polynomial-stretch PRG in NC
0
(the class of boolean circuits with

constant depth) due to its low depth, and thus low degree. One

of the main candidate PRGs in this space is by Goldreich [31]:

letting G : {0, 1}n → {0, 1}m be our PRG, for some fixed k take

m random k-tuples of the n input bits and apply a predicate P :

{0, 1}k → {0, 1} to each tuple, producingm bits of output. Due to

the parallelizability of this approach, the degree of G is simply the

degree of the predicate P .
There are various possible choices of both the predicate P and

its input size k . Goldreich [31] suggested choosing P at random.

O’Donnell and Witmer [44] suggested the xor-and predicate

P(x1,x2,x3,x4,x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 (mod 2).

Finally, Applebaum and Lovett [13] suggested the xor-maj predi-
cate

P(x1, . . . ,xd ) = x1 ⊕ · · · ⊕ x ⌊d/2⌋ ⊕ Majority(x ⌊d/2⌋+1, . . . ,xd ).

In order to choose the most efficient predicate, we compare

xor-maj and xor-and, along with the (completely insecure) linear
predicate P(x1, . . . ,x5) =

⊕
xi to get an idea of the “simplest”

predicate we could hope for. See Table 4 for the results.

We found that all three predicates have roughly the same mul-

tilinearity, with xor-and and linear being slightly better than

xor-maj. This is due to the fact that we are computing boolean op-

erators using arithmetic circuits. In particular, the XOR operation is

no longer cheap: XOR(x ,y) := x +y − 2xy, thus requiring one mul-

tiplication and three linear operations, whereas AND(x ,y) := xy,
costing one multiplication but no linear operations. Since the main

cost is the multiplicative degree, we can ignore the cost of the linear

operations and thus XOR and AND end up costing the same.

We also experimented with the block-local PRG of Barak et

al. [15], but found its performance worse than the above instan-

tiations. Thus, we chose to instantiate our PRG in the GGM PRF

construction using the xor-and predicate.

8.2.2 Implementing the GGM PRF. We implemented the GGM

PRF within our DSL for both “standard” (boolean) inputs and Σ-
vector inputs; see Table 5 for the results. We found that Σ-vector
inputs produced much smaller κs than their boolean input counter-

parts. This is due to two reasons: (1) we require fewer applications

of the PRG, reducing the overall depth and thus degree of the circuit,

and (2) we can produce very small lookup tables by directly using

the Σ-vector as the index (i.e., the e value in Equation (1)).

8.2.3 Performance Results. See Table 6 for performance results.

All results were run on a machine with 2 TB of RAM and four Xeon

CPUs running at 2.1 GHz, with sixteen cores per processor and two

threads per core (resulting in 128 “virtual” cores). We used λ = 80

throughout. Due to the long running time, the numbers correspond

to a single execution.

The largest circuit we were able to obfuscate and evaluate was

a 12-bit GGM PRF with a 64-bit key
5
. This took 3.7 hours to ob-

fuscate, resulting in an obfuscation of 120 GB and an evaluation

time of 67 minutes. While still far from practical, this is by far the

most complex function obfuscated to date that we are aware of. In

particular, Lewi et al. [36] obfuscated an 80-bit point function, and

Halevi et al. [34] obfuscated a 100-state non-deterministic finite

automaton with 68 input bits. On the other hand, our obfuscated

circuit contains 48 input bits (albeit in Σ-vector form), 12 output

bits, and 62,227 gates.

We also compared the tradeoff of Σ-vector length versus number

of PRG applications. As the number of PRG applications increases,

the overall multilinearity does as well. Indeed, for a single PRG

application, we can achieve κ = 7, whereas with two applications

this jumps to 33, and with three applications we reach 161, outside

the realm of runnability. Thus, playing with the Σ-vector length,
we compared the running time of an 8-bit PRF with |Σ| = 256

(resulting in one application of the PRG and thus κ = 7) versus

|Σ| = 16 (resulting in two applications of the PRG and thus κ = 33).

Interestingly, the PRF with the lower κ ended up taking much

longer to obfuscate and resulted in a much larger obfuscation. This

is due in a large part to the huge number of encodings needed when

using |Σ| = 256. As an example, for key length 128 we need 67,872

encodings for |Σ| = 256 versus 1,064 encodings for |Σ| = 16. Thus,

even though κ is around 4× larger in the latter case, we need to

encode 64× fewer values, reducing the obfuscation time (10 hours

versus 130 minutes) and size (121 GB versus 13 GB). However,

we do note that the evaluation time is much faster for |Σ| = 256:

5
We successfully obfuscating a 12-bit GGM PRF with a 128-bit key, but evaluation ran

out of memory.
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Predicate n m # Gates # Muls Depth Degree κ

linear 32 32 504 126 9 5 33

linear 32 128 1,904 476 9 5 33

linear 64 64 1,024 256 9 5 65

linear 64 128 2,028 507 9 5 65

linear 128 128 2,028 507 9 5 129

xor-and 32 32 414 126 7 5 33

xor-and 32 128 1,609 484 7 5 33

xor-and 64 64 827 254 7 5 65

xor-and 64 128 1,645 502 7 5 65

xor-and 128 128 1,656 510 7 5 129

xor-maj 32 32 829 414 9 5 32

xor-maj 32 128 3,159 1,622 9 5 32

xor-maj 64 64 1,914 895 9 6 64

xor-maj 64 128 3,756 1,783 9 6 64

xor-maj 128 128 5,350 2,794 10 7 128

Table 4: Circuits computing Goldreich’s PRG for various choices of predicate. ‘n’ denotes the number of input bits; ‘m’ denotes

the number of output bits.

κ

n k Boolean Σ

4 128 14 7

8 128 74 33

12 128 374 161

16 128 1,874 794

Table 5: Multilinearity values for the GGM PRF obfuscated

usingMO for both boolean and Σ-vector inputs with |Σ| = 16.

4.9 minutes versus 29 minutes using our previous example. This

presents an interesting tradeoff of obfuscation time/size versus

evaluation time.

9 CONCLUSION

In this work, we present a thorough investigation of circuit-based

multi-input functional encryption (MIFE) and program obfuscation,

introducing a newMIFE scheme and associated program obfuscator

that performs better than all existing approaches when obfuscating

pseudorandom functions (PRFs). This allowed us to obfuscate the

Goldreich-Goldwasser-Micali (GGM) PRF for a small number of

inputs; however, the multilinearity quickly increases as we increase

the input size, preventing us from being able to obfuscate “real-

world” input sizes.

This work motivates several interesting research questions. The

running time of obfuscating the GGM PRF depends heavily on

the pseudorandom generator (PRG) used within the PRF; can one

construct a more “obfuscation-efficient” PRG for this use case?

Can one construct a lower degree PRF than the GGM PRF? More

generally, can one construct a more efficient circuit obfuscator than

our MIFE construction, and in particular, one that has multilinearity

independent of the input length while still being black-box in the

mmap? Finally, as all of these constructions rely heavily on the

efficiency of the underlying mmap, a major open question is the

construction of more efficient (composite-order) mmaps.
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n |Σ | # PRGs k # Gates # Enc κ Obf time Obf size Obf RAM Eval time Eval RAM

8 256 1 32 23,710 67,680 7 10 h 121 GB 268 GB 4.4 m 143 GB

8 256 1 64 27,692 67,744 7 10 h 121 GB 270 GB 4.7 m 155 GB
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12 64 2 64 62,227 9,904 33 3.7 h 120 GB 270 GB 67 m 128 GB

12 64 2 128 121,798 10,032 33 3.7 h 122 GB 274 GB — —

Table 6: Obfuscation details for various GGM PRF circuits. ‘n’ denotes both the number of “real” input bits (i.e., n = #PRGs ·
log

2
(|Σ|)) and the number of output bits of the circuit; ‘|Σ|’ denotes the size of the Σ-vectors; ‘# PRGs’ denotes the number of

applications of the PRG; ‘k’ denotes the key length; ‘# Gates’ denotes the number of gates in the circuit; ‘# Enc’ denotes the
number of mmap encodings required for obfuscation; ‘κ’ denotes the required multilinearity of the mmap; ‘Obf time’ denotes
the obfuscation time; ‘Obf size’ denotes the obfuscation size; ‘Obf RAM’ denotes the maximum amount of RAM used during

obfuscation; ‘Eval time’ denotes the evaluation time; and ‘Eval RAM’ denotes the maximum amount of RAM used during

evaluation. ‘—’ denotes that we ran out of memory.
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A CIRCUIT INFORMATION

In Table 7, we list the circuits we consider in this work, as well as

attributes about those circuits relevant to obfuscation. We describe

each circuit below.

• aes1r: One-round AES.

• aes1r_x_y: One-round AES with x input bits and y output

bits.

• ggm_x_y: The GGM PRF using x applications of Goldreich’s

PRG, using the xor-and predicate, and y bits of output.

• ggm_sigma_x_y: The GGM PRF using Σ-vectors with x ap-

plications of Goldreich’s PRG, using the xor-and predicate,

and y bits of output.

B THE LINNERMAN OBFUSCATOR

In this section we introduce the “Linnerman” obfuscator, denoted

by LZ, which combines Zim and Lin. Lin is based off AB, which as

noted in §4 results in very large values for κ. We thus adapt Lin
to be based off Zim, resulting in much smaller values for κ. Our
approach is similar to that taken by Lin [38] (cf. §4.3) by adapting

Zim to support Σ-vectors. In what follows, we give the high-level

intuition of our construction; full details are in §B.1.

Supporting Σ-vectors. Recall from §4.3 that a Σ-vector is a symbol

represented in unary as follows: if s ∈ Σ represents the “ith” symbol,

we encode s as a ℓ-length vector (where ℓ = |Σ|) of all zeros except
the ith, which is set to one. The main challenge is thus enforcing

that an evaluator inputs s “as a whole”, and cannot mix-and-match

bits from s with bits from some other Σ-vector s ′. For example, if

s := 0b01 and s ′ := 0b10, we must enforce that the evaluator cannot

input s ′′ := 0b11.

We do this by assigning an index set Sk,s to each Σ-vector input
k ∈ [c] and each Σ-vector s ∈ Σ. Then, for each j ∈ [ℓ], we place a
random valueαk, j in the check slot. For example, the input encoding

of s := 0b01 for the kth input is {[0,αk,1]Sk,s , [1,αk,2]Sk,s }; like-
wise, the encoding of s ′ := 0b10 for the kth input is {[1,αk,1]Sk,s′ ,
[0,αk,2]Sk,s′ }. Note that αk, j is common across these two encod-

ings. Now, suppose the evaluator wants to input (invalid) symbol

0b11. It can try to use {[1,αk,1]Sk,s′ , [1,αk,2]Sk,s }; however, these
are each encoded under different index sets, and thus the evaluator

will be unable to produce a valid encoding at the top-level. Like-

wise, the check elements αk, j enforce that the evaluator cannot
mix-and-match encoded elements within an encoding of a single

Σ-vector. For example, {[1,αk,2]Sk,s , [1,αk,2]Sk,s } would fail due

to the top-level check slot not canceling out.

B.1 Construction

LetC : Σc ×{0, 1}m → {0, 1}γ . Let q = |Σ| and let ℓ be the bitlength
of elements in Σ. Let Sk,,s :=

∏
s ′,s ∈Σ Sk,s ′ , and Sk,Σ :=

∏
s ∈Σ Sk,s .

Let deg(xko ) denote the degree of xk for output bit o ∈ [γ ]. We

construct our obfuscator as follows:

LZ.Obfuscate(1λ ,C, y):

(1) Construct top-level index-set

U = Y deg(y)
∏
k ∈[c]

(Sk,Σ)
deg(xk )ZkWk .

(2) Compute (pp, sp,pev,pchk) ← Setup(U, 1λ , 2).
(3) For k ∈ [c], j ∈ [ℓ], compute αk, j ← Zpev .

For k ∈ [c], s ∈ Σ, o ∈ [γ ], compute γk,s,o ← Zpev , δk,s,o ←
Zp

chk
.

For i ∈ [m], compute βi ← Zp
chk

.

(4) For o ∈ [γ ], compute

C∗o := C((α1, j )j ∈[ℓ], . . . , (αc, j )j ∈[ℓ], β1, . . . , βm )o ∈ Zpchk .

(5) For k ∈ [c], s ∈ Σ, j ∈ [ℓ], generate the following encoded

elements:

ŝk,s, j := [sj ,αk, j ]Sk,s
ûk,s := [1, 1]Sk,s .

For k = 1, s ∈ Σ, o ∈ [γ ], generate the following encoded

elements:

ẑ1,s,o := [δ1,s,o ,γ1,s,o ]SZkWk
,

where S := Y deg(y)−deg(yo )(Sk,s )
deg(xk )−deg(xko )(Sk,r,s )

deg(xk )
.

For k ∈ {2, . . . , c}, s ∈ Σ, o ∈ [γ ], generate the following

encoded elements:

ẑk,s,o := [δk,s,o ,γk,s,o ]SZkWk
,

where S := (Sk,s )
deg(xk )−deg(xko )(Sk,r,s )

deg(xk )
.

For k ∈ [c], s ∈ Σ, o ∈ [γ ], generate the following encoded

elements:

ŵk,s,o := [0,γk,s,o ]Wk
.

For i ∈ [m], generate the following encoded elements:

ŷi := [yi , βi ]Y .

For o ∈ [γ ], generate the following encoded elements:

Ĉ∗o := [0,C∗o ]Y deg(y)∏
k∈[c ] (Sk,Σ)

deg(xk )Zk
.

Finally, generate the following encoded element:

v̂ := [1, 1]Y

(6) Output the following as the obfuscated program:(
pp, {ŝk,s, j }k ∈[c],s ∈Σ, j ∈[ℓ], {ûk,s }k ∈[c],s ∈Σ,

{ẑk,s,o , ŵk,s,o }k ∈[c],s ∈Σ,o∈[γ ], {ŷi }i ∈[m], v̂, {Ĉ
∗
o }o∈[γ ]

)
LZ.Evaluate(Obf, x):
(1) For o ∈ [γ ], use Add and Mult (as is done in Zimmerman’s

construction [49, §3]) to compute

Ĉo :=
[
C(s1, . . . , sℓ ,y1, . . . ,ym )o ,

C((α1, j )j ∈[ℓ], . . . , (αc, j )j ∈[ℓ], β1, . . . , βm )o
]
S
,

where S := Y deg(y)∏
k ∈[c](Sk,Σ)

deg(xk )
.
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Circuit n m # Gates # Muls Depth Degree κ

aes1r∗ 128 128 80,564 9,203 25 33 128

aes1r_2_1∗∗ 2 1 4 1 3 2 3

aes1r_4_1∗∗ 4 1 44 17 7 5 6

aes1r_8_1∗∗ 8 1 1,282 389 15 9 10

aes1r_16_1∗∗ 16 1 1,282 389 15 9 16

aes1r_32_1∗∗ 32 1 1,282 389 15 9 32

aes1r_64_1∗ 64 1 1,324 614 23 18 64

aes1r_128_1∗ 128 1 1,951 967 23 33 128

ggm_1_32 4 32 7,031 2,212 12 9 14

ggm_1_64 4 64 14,453 4,690 12 9 14

ggm_1_128 4 128 29,696 9,775 12 9 14

ggm_2_32 8 32 13,647 4,348 24 49 74

ggm_2_64 8 64 28,727 9,315 24 49 74

ggm_2_128 8 128 59,247 19,519 24 49 74

ggm_3_32 12 32 20,188 6,391 36 249 374

ggm_3_64 12 64 43,063 14,002 36 249 374

ggm_3_128 12 128 88,905 29,244 36 249 374

ggm_4_32 16 32 27,102 8,570 48 1,249 1,874
ggm_4_64 16 64 57,538 18,600 48 1,249 1,874
ggm_4_128 16 128 118,315 38,916 48 1,249 1,874
ggm_sigma_1_16_32 16 4 937 310 12 6 7

ggm_sigma_1_16_64 16 4 954 318 12 6 7

ggm_sigma_1_16_128 16 4 956 320 12 6 7

ggm_sigma_1_32_32 32 5 2,326 758 13 6 7

ggm_sigma_1_32_64 32 5 2,375 786 13 6 7

ggm_sigma_1_32_128 32 5 2,393 798 13 6 7

ggm_sigma_1_64_32 64 6 5,309 1,676 14 6 7

ggm_sigma_1_64_64 64 6 5,629 1,855 14 6 7

ggm_sigma_1_64_128 64 6 5,726 1,904 14 6 7

ggm_sigma_1_256_32 256 8 23,710 7,021 16 6 7

ggm_sigma_1_256_64 256 8 27,692 8,666 16 6 7

ggm_sigma_1_256_128 256 8 29,889 9,780 16 6 7

ggm_sigma_2_16_32 32 8 8,580 2,730 24 31 33

ggm_sigma_2_16_64 32 8 16,138 5,224 24 31 33

ggm_sigma_2_16_128 32 8 31,431 10,332 24 31 33

ggm_sigma_2_32_32 64 10 17,022 5,227 26 31 33

ggm_sigma_2_32_64 64 10 31,997 10,099 26 31 33

ggm_sigma_2_32_128 64 10 62,416 20,171 26 31 33

ggm_sigma_2_64_32 128 12 32,998 9,913 28 31 33

ggm_sigma_2_64_64 128 12 62,227 19,090 28 31 33

ggm_sigma_2_64_128 128 12 121,798 38,383 28 31 33

ggm_sigma_3_16_32 48 12 16,173 5,064 36 156 161

ggm_sigma_3_16_64 48 12 31,259 10,085 36 156 161

ggm_sigma_3_16_128 48 12 61,989 20,400 36 156 161

ggm_sigma_4_16_32 64 16 23,682 7,461 48 781 794

ggm_sigma_4_16_64 64 16 46,418 15,050 48 781 794

ggm_sigma_4_16_128 64 16 92,394 30,324 48 781 794

Table 7: Circuits and their associated attributes. All of these circuits were compiledwith constant folding (-O1), with
∗
denoting

those run through the sub-circuit flattener optimization (-O2) and
∗∗

denoting those run through the full-circuit flattener (-

O3). ‘n’ denotes the number of input bits; ‘m’ denotes the number of output bits; ‘# Gates’ denotes the total number of gates;

‘# Muls’ denotes the number of multiplication gates; ‘Depth’ denotes the multiplicative depth of the circuit; ‘Degree’ denotes
the multiplicative degree of the circuit; and ‘κ’ denotes the multilinearity value computed using MO.

(2) For o ∈ [γ ], use Add and Mult to compute

ẑo := Ĉo
∏
k ∈[c]

ẑk,sym(k ),o − Ĉ
∗
o

∏
k ∈[c]

ŵk,sym(k ),o ,

where sym(k) returns the symbol s ∈ Σ that corresponds to

input k .
(3) Output the bitstring resulting from running ZeroTest(ẑo ) for

o ∈ [γ ].

B.2 Proof of Security

Theorem B.1. The construction in Appendix B.1 achieves indistin-
guishability obfuscation for NC1 in the noisy composite-order multi-
linear map generic model.

Proof. For simplicity, we assume that there is only a single output

bit (i.e., o = 1), and let Ĉ∗ := Ĉ∗
1
. We can generalize the proof to

multiple output bits using a similar approach as is done by Zim-

merman [49, Remark 3.18].

Our proof follows the same framework as Zimmerman’s proof.

We begin by proving a “structural lemma” on the index sets.

Lemma B.2. LetA be an efficient adversary in the composite-order
multilinear map generic model, and let z be a formal polynomial
produced by A at the top-level index-setU. Then any monomial t
occurring in the formal expansion of z has one of the following two
forms:
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(1) For values x1, . . . ,xc ∈ Σ and for constant a ∈ Z:

t = aĈ∗
©«
∏
k ∈[c]

ŵk,xk
ª®¬

(2) For values x1, . . . ,xc ∈ Σ and for monomial function h:

t = h
(
(ŝ
1,x 1, j , û1,x 1, j )j ∈[ℓ], . . . , (ŝc,x

c , j , ûc,xc , j )j ∈[ℓ], (ŷi )i ∈[m], v̂
)

·
©«
∏
k ∈[c]

ẑk,xk
ª®¬ .

Proof. Consider monomial t with index-setU. Note that t must

contain encodings with theZk indices, and thus must contain either

encoding Ĉ∗, or encodings ẑk,s .

(1) Suppose t contains Ĉ∗. Then the only missing indices are the

Wk s, which are contained in the encodings ŵk,s . Thus, t must

contain one of (ŵk,s )s ∈Σ for each k ∈ [c]. For k ∈ [c], define

xk = s such that t contains ŵk,s . Thus, form (1) is satisfied.

(2) Suppose t does not contain Ĉ∗. Then it must contain one of

(ẑk,s )s ∈Σ for each k ∈ [c]. For k ∈ [c], define xk = s such that

t contains ẑk,s . As ẑk,xk contains indices (Sk,,xk )
deg(xk )

, we

conclude that t cannot contain encodings ŝk,s, j and ûk,s, j for

s , xk and j ∈ [σ ]. Thus, form (2) is satisfied. ■

We use the notion of an input profile used by Barak et al. [16] and
Zimmerman [49], and refer to those works for its formal definition.

Lemma B.3. LetA be an efficient adversary in the composite-order
multilinear map generic model. For all valid toplevel polynomials z
generated byA in the above construction, (1) the input profile prof(z)
is a set of strings in {0, 1}n , of which none are partial, and (2) prof(z)
can be computed (inefficiently) given z.

Proof. Part (1) follows from Lemma B.2. Part (2) follows from the

definition of prof: we can directly apply the algorithm for comput-

ing prof(z) given z. ■

We now utilize these lemmas to prove Theorem B.1. LetA be an

efficient adversary. We construct a simulator S as follows. On input

circuit C : Σc × {0, 1}m → {0, 1}, S runs Obfuscate(1λ ,C, 0m ),
using the generic multilinear map oracle M for the Setup and

Encode operations, and forwards the output obfuscated program

to A. The simulator S forwards all queries made by A to Add and

Mult toM. On a ZeroTest query on some handle h, S proceeds as

follows. If, based on the internals ofM,h is not a formal polynomial

at index setU, thenS returns⊥. Otherwise, it follows the algorithm

in Figure 3. When A terminates, S forwards the output of A to

the distinguisher.

Correctness follows using the same argument as used by Zim-

merman [49]. Thus, we need to show that for any valid zero-test

query z, the response made by S is indistinguishable from that

made in the real world.

By Lemma B.2, any zero-test query z must be of the form z =∑
x∈prof(z) fx, where:

fx = hx
(
(ŝ
1,x 1, j , û1,x 1, j )j ∈[ℓ], . . . , (ŝc,x

c , j , ûc,xc , j )j ∈[ℓ], (ŷi )i ∈[m], v̂
)

·
∏
k ∈[c]

ẑk,xk + axĈ
∗
∏
k ∈[c]

ŵk,xk

for multivariant polynomial hx and constant ax ∈ Z. As the encod-
ings ûk,s, j and v̂ encode 1, they can be ignored, and thus we can

consider the simplified expressions f ′x and h′x, where:

f ′x = h
′
x

(
(ŝ
1,x 1, j )j ∈[ℓ], . . . , (ŝc,x

c , j )j ∈[ℓ], (ŷi )i ∈[m]

) ∏
k ∈[c]

ẑk,xk

+axĈ
∗
∏
k ∈[c]

ŵk,xk .

Note that in the real world, the first component takes the form:

f ′x = h
′
x

(
(ŝ
1,x 1, j )j ∈[ℓ], . . . , (ŝc,x

c , j )j ∈[ℓ], (ŷi )i ∈[m]

)
·
∏
k ∈[c]

δk,xk (mod pev)

and the second component takes the form:

f ′x = (h
′
x + axC)((α1, j )j ∈[σ ], . . . , (αc, j )j ∈[σ ], β1, . . . , βm )

·
∏
k ∈[c]

γk,xk (mod p
chk
).

Now consider the simulator’s zero-test decision procedure. We do

a case analysis.

(1) There exists some x ∈ prof(z) such that z′x(= h′x + axC) . 0.

This case captures the setting where the check slot results in

non-zero. Let x∗ = x1, . . . ,xc be the lexicographically first such
x. We need to show that with high probability

(h′x∗ + ax∗C)((α1, j )j ∈[σ ], . . . , (αc, j )j ∈[σ ], β1, . . . , βm )

·
∏
k ∈[c]

γk,xk . 0 (mod p
chk
).

Wefirst consider the expressionh′x∗+ax∗C . Note that the total de-

gree is bounded by 2
d
Thus, we can apply the Schwartz-Zippel

lemma to conclude that the probability h′x∗ + ax∗C evaluates to

zero is negligible.

Now consider the entire query z. From the above we know that

the coefficient of

∏
k ∈[c] γk,xk is non-zero with high probability,

and thus we conclude that z is non-zero with high probability.

Thus, the simulator’s response of “non-zero” is correct (with all

but negligible probability).

(2) For every x ∈ prof(z) we have z′x ≡ 0, but there exists at least

one x ∈ prof(z) such that z′′x , 0 and C(x, y) , 0. This case

captures the setting where the correct evaluation of C is non-

zero. Let x∗ be the lexicographically first such x. We need to

show that

f ′x = h
′
x(x

1, . . . ,xc )
∏
k ∈[c]

δk,xk . 0 (mod pev).

Wehave thath′x∗+ax∗C ≡ 0 and thush′x∗ (x
∗, y) = −ax∗C(x∗, y) ,

0.

Now consider the entire query z. From the above we know that

the coefficient of

∏
k ∈[c] δk,xk is non-zerowith high probability,

and thus we conclude that z is non-zero with high probability.

Thus, the simulator’s response of “non-zero” is correct.
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On input formal polynomial z, proceed as follows:

(1) Compute prof(z).
(2) For each x := x1 · · · xk ∈ prof(z), proceed as follows.

(a) Compute z′x ∈ Z[ŝk,x 1,1, . . . , ŝk,x 1,σ , . . . , ŝk,xc ,1, . . . , ŝk,xc ,σ , ŷ1, . . . , ŷm ] as z with its variables substituted as follows:

ẑk,xk , ŵk,xk 7→ 1 ẑk,,xk , ŵk,,xk 7→ 1

Ĉ∗ 7→ C((ŝ
1,x 1, j )j ∈[σ ], · · · , (ŝc,xc , j )j ∈[σ ], ŷ1, · · · , ŷm ) ûk,s, j , v̂ 7→ 1

(b) Compute z′′x ∈ Z as z with its variables substituted as follows:

Ĉ∗, ŵk,xk 7→ 1 ŵk,,xk 7→ 0 ŝk,s, j , ŷi , ẑk,s 7→ 0 ûk,s, j , v̂ 7→ 1

Next, do the following:

• If z′x . 0, return “non-zero”.

• If z′x ≡ 0:

– If z′′x = 0, continue to next x ∈ prof(z).
– If z′′x , 0, query the oracle on C(x, y).
∗ If C(x, y) , 0, return “non-zero”.

∗ If C(x, y) = 0, continue to next x ∈ prof(z).
(3) Return “zero”.

Figure 3: Simulator’s decision procedure to handle a valid ZeroTest query made by A.

(3) For every x ∈ prof(z) we have z′x ≡ 0 and either z′′x = 0 or

C(x, y) = 0. This case captures the setting where the correct

evaluation of C is zero. We need to show that

f ′x = h
′
x(x

1, . . . ,xc )
∏
k ∈[c]

δk,xk ≡ 0 (mod pev).

Since h′x ≡ −axC it holds that h′x(x, y) = −axC(x, y), and since

either ax = 0 orC(x, y) = 0we conclude that h′x(x, y) = 0. Thus,

the simulator’s response of “zero” is correct. ■

Computing κ. Instead of providing a closed form formula for

determining κ for a given circuit, we instead compute it directly

using a dummy multilinear map. This gives an exact value for κ
as opposed to a potential over-approximation, as we found for the

formulas for Zim, AB, and Lin.
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