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ABSTRACT

�e goal of this work is to enable user authentication via finger in-

puts on ubiquitous surfaces leveraging low-cost physical vibration.

We propose VibWrite that extends finger-input authentication be-

yond touch screens to any solid surface for smart access systems

(e.g., access to apartments, vehicles or smart appliances). It inte-

grates passcode, behavioral and physiological characteristics, and

surface dependency together to provide a low-cost, tangible and

enhanced security solution. VibWrite builds upon a touch sens-

ing technique with vibration signals that can operate on surfaces

constructed from a broad range of materials. It is significantly dif-

ferent from traditional password-based approaches, which only au-

thenticate the password itself rather than the legitimate user, and

the behavioral biometrics-based solutions, which usually involve

specific or expensive hardware (e.g., touch screen or fingerprint

reader), incurring privacy concerns and suffering from smudge at-

tacks. VibWrite is based on new algorithms to discriminate fine-

grained finger inputs and supports three independent passcode

secrets including PIN number, lock pa�ern, and simple gestures

by extracting unique features in the frequency domain to capture

both behavioral and physiological characteristics such as contact-

ing area, touching force, and etc. VibWrite is implemented using

a single pair of low-cost vibration motor and receiver that can be

easily a�ached to any surface (e.g., a door panel, a desk or an appli-

ance). Our extensive experiments demonstrate that VibWrite can

authenticate users with high accuracy (e.g., over 95% within two

trials), low false positive rate (e.g., less 3%) and is robust to various

types of a�acks.
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1 INTRODUCTION

�e process of authentication verifies a user’s identity and is fre-

quently deployed at almost every corner of our daily lives. In

particular, the increasingly wide deployment of smart access sys-

tems, which are defined as those used for keyless controlling ac-

cess to corporate facilities/apartment buildings/hotel rooms/smart

homes/vehicle doors, require the authentication process to play a

broader role in numerous daily activities beyond the common form

authentication on touch screen devices, such as mobile phones.

�e classic physical-key based access methods do not possess user

authentication functionality. A market report shows that the de-

ployment of smart security access systems is expected to grow

rapidly at an annual rate of 7.49% and will reach a market value

of $9.8 billion by the year of 2022 [1]. �e current authentica-

tion process in smart security access systems mainly relies on tra-

ditional solutions supported by intercom, camera, card, or finger-

print based techniques. �ese approaches however involve expen-

sive equipment, complex hardware installation, and diverse main-

tenance needs. �e trend of employing low-cost low-power tangi-

ble user interfaces (TUI) to support user authentication in various

facility entrances, apartment doors and vehicles has gained indus-

try a�entions recently. For example, token devices (e.g., smart ring,

glove or pen) could be utilized for associating identities of their

touch interactions [28, 46], and an ultra-thin sensing pad can be de-

ployed in automobiles to perform driver authentication [7]. More-

over, isometric bu�ons appearing on new models of microwave

ovens and stove tops and rotary inputs (e.g., used by iPod) can re-

place the regular physical bu�ons to provide be�er functionality

and flexibility [2]. �ese new approaches appear promising of con-

ducting user authentication and operating appliances/devices in

smart systems leveraging capacitive sensing. However, these tech-

niques require that the touched surface possesses electric conduc-

tivity and an electric field that produces/stores electrical energy,

which largely limits the wide deployment of such solutions.

Along this direction, we start a new search in developing a low-

cost general user authentication approach, which has the capabil-

ity to work with any solid surface for smart access systems. �e
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Figure 1: Illustration of a finger touching on a solid surface

under physical vibration, and three independent types of se-

crets for pervasive user authentication.

convenience of executing user authentication via touching any sur-

face is enticing. For instance, a driver can just place his palm

against the driver side window to access and start the vehicle. �is

has already been visualized in the popular movie ”Mission Impos-

sible 5”, in which the featured BMW muscle car can be unlocked

instantly when the lead actor pressed his palm against the side win-

dow. In another instance, a user can place his hand on the door

panel of his apartment to perform authentication and unlock the

entrance door without card access. Furthermore, electronic appli-

ances in smart homes have a growing need to provide customized

services for advanced safety needs such as prohibiting children and

elderly people to operate risky appliances (e.g., oven and dryer), ad-

justing room temperature/lighting conditions and recommending

TV content. A low-cost solution of tangible user authentication

enabled on any solid surface could eliminate the need of installing

touch screens on such electronic devices and make the customized

services easy to deploy. Toward this end, our work seeks a gen-

eral user authentication solution with smart access capability that

can work with any solid surface (such as a door, a table or a ve-

hicle’s window), not limited to touch screens, and with minimum

hardware and maintenance cost.

Existing Solutions. �e traditional authentication solutions

are based on passwords (i.e., texts and graphical pa�erns) [14, 16,

26, 40, 44]. However, all these approaches are based on the knowl-

edge of the passwords, and thus suffer from password the� or

shoulder surfing. Another direction of authentication involves phys-

iological biometrics (e.g., fingerprints, iris pa�erns and face) [9,

18, 22, 24]. �ese mechanisms are less likely to suffer from iden-

tity the�. However, they usually require installation of expensive

equipments and stir privacy concerns of the users. Furthermore, re-

cent studies [15, 32, 36] allowusers to rely on their familiar biometric-

associated features (e.g., a sequence of 2D handwriting and corre-

sponding pressure) extracted from mobile devices’ sensitive touch

screens instead of tedious passwords for user authentication. �ese

approaches rely on touch screens, and are hard to be extended to

general security access systems such as accessing corporate facil-

ities, apartment buildings and smart homes when touch screens

are not always available. In addition, oily residues, or smudges, on

the touch screen surface may be used to recover user’s graphical

password (i.e., smudge a�acks) [10].

Finger-input based Authentication over Any Surface

through a Single Sensor. In this work, we introduce a new

authentication system grounded on low-cost, low-power tangible

user interface, called VibWrite, which has the flexibility to be de-

ployed on ubiquitous surfaces. VibWrite leverages physical vibra-

tion to support authentication to emerging smart access security

systems. To enable touching and writing on any surface during

the authentication process, VibWrite builds upon a touch sensing

technique using vibrations that is robust to environmental noise

and can operate on surfaces constructed from a broad range of ma-

terials. As shown in Figure 1(a), when a vibration motor actively

excites a surface resulting in the alteration of the shockwave prop-

agation, the presence of the object or finger touching in contact

with the surface can thus be sensed by analyzing the vibrations

received by the sensor. VibWrite supports generalized vibration

sensing based on a low-cost single sensor prototype that can be

a�ached to solid surfaces (such as a door, a table or an appliance)

and sense user touches and perform authentication flexibly from

anywhere. By relying on the vibration signals in a relatively high

frequency band (i.e., over 16kHz), the system is hardly audible or

distracting to the user, and is less susceptible to environmental

interference from acoustic (i.e., mainly within a lower frequency

band [41]) or radio-frequency noise. More importantly, vibration

propagation is highly dependent on the surface material and shape

in specific scenarios. VibWrite thus provides enhanced security

by integrating location/surface uniqueness through such low-cost

and tangible vibration-based user-interface. As another example,

the vibration response of an office door is different from that of

a house door. �e unique behavioral information is embedded in

both the behavioral biometrics as well as the surface being touched

(e.g., the specific door in the office), making the system hard to be

forged by a�ackers.

VibWrite provides users to choose from three different forms of

secrets including PIN, lock pa�ern, and gesture (and signature in

the future) to gain secure access as shown in Figure 1(b). �e au-

thentication process can be enabled on any solid surface beyond

touch screens and without the constraint of the limited screen size.

It is resilient to side-channel a�acks when an adversary places a

hidden vibration receiver on the authenticating surface or a nearby

microphone to capture the received vibration signals. It is also ro-

bust to various adversarial activities, including the seemingly very

powerful ones that observe the legitimate user’s input multiple

times and are aware of the passcode secret. It can authenticate

the legitimate user and reject a�acks well because of the following

insights: 1) our study shows that vibration signals have the capa-

bility to perform cm-level location discrimination; and 2) unique

features are embedded in a user’s finger pressing at different loca-

tions on a solid surface. Such unique features reflect the charac-

teristics of the user’s finger touching on the medium (e.g., a door

panel or a desk surface) including locations of touching, contacting

area, touching force, and etc., making them capable to discriminate

different touching locations of the same user and different users
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when touching on the same location. �us, VibWrite enables users

to finger-input (i.e., touch or write) on solid surface and is robust

to passcode the� or passcode cracking by integrating 1) passcode,

2) behavioral and physiological characteristics (e.g., touching force

and contacting area), and 3) surface dependency (e.g., house door

or office desk) together to provide enhanced security. �e main

contributions of VibWrite are summarized as follows:

• We develop the first vibration-signal-based finger-input authen-

tication system, which can be deployed on any solid surface for

smart access systems (e.g., apartment entrances, car doors, elec-

tronic appliances and corporate desks).

• VibWrite captures intrinsic human physical characteristics pre-

senting at specific location/surface for authentication through

extracting unique features (e.g., frequency response and cepstral

coefficient) in the frequency domain.

• VibWrite has the flexibility to support three types of secrets (i.e.,

PIN, lock pa�ern, and gesture) to meet different application re-

quirements by developing new techniques of virtual grid point

derivation, featured-based dynamic time warping (DTW) and

distribution analysis based on earth mover’s distance (EMD).

• VibWrite is implemented using a single pair of low-cost vibra-

tion motor and receiver, which involves minimum hardware in-

stallation and maintenance.

• We perform extensive experiments including authenticating le-

gitimate users and modeling various types of a�acks. �e re-

sults demonstrate that VibWrite can effectively verify legitimate

users with over 95% accuracy within two trials and less than 3%

false positive rate.

2 RELATED WORK

User authentication becomes a critical step under the growing pri-

vacy concerns. Traditional user authentications utilize text-based

passwords [26]. To ensure that a user’s password cannot be easily

guessed, the user has to memorize long strings of random char-

acters, making it inconvenient [40]. Graphical passwords are pro-

posed to ease the memory burden by le�ing users choose their

pre-selected images from random choices of pictures [14, 16, 40]

or Cued Clicked Points (CCP) in a sequence of images [12]. Ad-

ditionally, grid lock pa�ern based approaches [25, 44] have been

widely adopted to keep the user’s mobile devices protected. Re-

cent graphical authentication methods can resist shoulder surfing

a�acks by utilizing the Convex Hull Click Scheme [49] or the eye-

gaze version of CCP [20]. However, these strategies eventually

perform the authentication based on the knowledge of the pass-

words (e.g., text-based, image-based and lock pa�ern-based) and

cannot tell whether the password is entered by the legitimate user

or not.

To ensure that the secret inputs used for authentication are

physically from the legitimate user, biometrics-based schemes

(e.g., fingerprints [9], iris pa�erns [22], retina pa�erns [24], and

face [18]) have been drawn considerable a�ention recently. How-

ever, physiological biometrics are sensitive personal information,

which may involve privacy concerns, thus are not widely accepted.

To reduce the privacy concerns, a compromised approach is to au-

thenticate users based on their behavioral characteristics, includ-

ing unique keystroke dynamic [33], mouse movements [50], and

gait pa�erns [31]. Although these approaches are less sensitive in

terms of privacy, they are designed for continuous user verifica-

tion during the period that the user operates the keyboard, moves

a mouse or takes a walk, rather than one-time authentication.

To provide authentication to the emerging smart access systems

needed by corporate facilities, apartment buildings, hotel rooms,

and smart homes, techniques involving intercom [29], camera [43],

access card [34] and fingerprint [9] have been explored. For ex-

ample, KinWrite [43] uses Kinect, a vision-based platform, to cap-

ture the user’s 3D handwriting pa�erns for authentication. �ese

approaches usually involve expensive hardware, complex installa-

tion process, and diverse maintenance efforts. Recent studies suc-

cessfully combine 2D handwriting and behavior features such as

corresponding writing pressure, writing speed, and correlation be-

tween multiple fingers on touch screens to provide enhanced se-

curity [15, 32, 36]. �e limitation is that the authentication relies

on touch screens, which may suffer from smudge a�acks [10] and

are not always available in smart access systems. Toward this end,

we propose VibWrite that extends the authentication process be-

yond touch screens to any solid surface leveraging vibration sig-

nals. VibWrite will have the authentication capability in a broad

array of applications including entry access (e.g., smart building,

car doors) and supporting customized services in appliances and

devices at smart homes. �e authentication process combines pass-

word and human physical traits, and supports three types of secret

independently including PIN, lock pa�ern, and gesture input for

emerging smart access systems.

3 PHYSICAL VIBRATION PROPAGATION

Physical vibration is a mechanical phenomenon, which creates a

mechanical wave transferring the initial energy through amedium.

Similar to the transmission of wireless signals, when a vibration

signal travels through a medium, it experiences a�enuation along

the propagation path and reflection/diffraction when the signal

hits the boundary of two different media (e.g., the contacting area

between a finger and a medium). Figure 2(a) illustrates the reflec-

tion and diffraction of a vibration signal propagating in a solid

surface when a finger touches the area in between the vibration

signal generator and receiver. When the vibration signal hits the

contacting area of the finger, part of the signal reflects back to the

surface and the rest of it propagates into the finger (i.e., absorption)

and bounces back to the surface along a different propagation path.

�e vibration signal is affected by the touching location of the fin-

ger and traverses different paths before reaching the receiver (i.e.,

vibration sensor). �us, the touching location information is em-

bedded in the various interference effects captured at the receiver.

Furthermore, when a finger touches the surface of an object (e.g.,

a table), the flexibility of the object is affected not only by the touch-

ing location but also the strength of touch. A recent study [45] uti-

lizes these properties to enable a commodity phone to recognize

the force applied to its phone body and screen. To mathematically

model the vibration effect on the object under an external force

caused by the finger touch, we consider a spring-mass-damper sys-

tem as shown in Figure 2(b). A free body diagram with the mass

M represents the vibrating surface, while the external force Ft is

caused by the finger touch. Moreover, the vertical sha� has an
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Figure 2: Illustration of the propagation characteristics of

vibration signals on a solid surface.

effective spring constant of Ks and a damping coefficient of Kd .

When the surface has a vertical displacement of x , we have

Ft = Kd (
d

dt
)x + Ksx +M(

d

dt
)2x . (1)

To satisfy the equilibrium condition, the vertical displacement x

is dependent on the external force Ft . �is indicates that the fin-

ger touching force could be captured by analyzing the received

vibration signals and utilized as a biometric-associated feature in

VibWrite. Note that the above analysis also works on vertical pla-

nar surface (e.g., door panel) as the equilibrium condition could be

analyzed along the direction perpendicular to the surface.

In addition, Dong et al. [17] experimentally demonstrate that

the vibration energy absorbed into the human finger-hand-arm

system is different under different vibration frequencies. In our

empirical study we find that the frequency response of the same

user finger-press presents higher correlation than that of different

users when they touch the same location on a surface. �is impor-

tant observation suggests that the vibration propagation proper-

ties are strongly influenced by unique human physical traits such

as contacting area, touching force and etc., which can assist ubiq-

uitous user authentication together with passcode on any surface

beyond touch screens.

4 APPROACH OVERVIEW

In this section, we present the a�ack model and system overview

of VibWrite.

4.1 Attack Model

We consider the following a�acks that are harmful to the proposed

ubiquitous authentication functionalities.
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Figure 3: Overview of VibWrite architecture.

BlindAttack. An adversary randomly touches on the authenti-

cation surface equipped with the VibWrite system, hoping the ran-

dom touching events can result in similar impacts to the vibration

signals as the legitimate user does and passes the authentication.

Credential-aware Attack. An adversary has the prior knowl-

edge of the legitimate user’s credentials, including the PIN number,

lock pa�ern or personal gesture, but does not possess the knowl-

edge of the VibWrite se�ing details such as the grid size, gesture

region, and the authentication surface.

Knowledgeable Observer Attack. An adversary is capable of

both observing the legitimate user’s hand movements when he is

passing the authentication system via shoulder surfing or video

taping as well as knowing the user’s credentials and VibWrite set-

ting details. �e adversary tries to imitate the legitimate user’s

hand or finger movements based on his understanding of the user’s

credentials to pass the authentication.

Side-channel Attack. An adversary makes an effort to hack

the VibWrite system directly in the hope of capturing the similar

vibration signals of the legitimate user by placing a hidden vibra-

tion receiver on the authentication surface or employing a micro-

phone in a nearby location.

4.2 System Overview

�e basic idea underlying VibWrite is to analyze unique features

from the received vibration signals to enable authentication on

ubiquitous object surfaces such as entrances (e.g., apartment build-

ing or car doors) and smart home appliances (e.g., hot stove and

dryer). In particular, VibWrite can be triggered when a person

moves closer to the security access area (e.g., a door panel), which

can be easily achieved using low power proximity sensors or mo-

tion sensors [37, 39]. As illustrated in Figure 3, the vibration motor

then generates low annoyance vibrations and VibWrite starts tak-

ing inputs of vibrational signals from the vibration receiver. �e

system first performs Data Calibration (Section 5.2) including data

synchronization and clock dri� effect mitigation to ensure the re-

ceived vibration signals always synchronized and eliminate the
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effects caused by the clock dri� (i.e., inconsistent sampling fre-

quency).

VibWrite then extracts and selects vibration features (Section 5)

in the frequency domain from the synchronized vibration signals

within a sliding window. We find that Spectral Point-based Feature

(i.e., frequency amplitude of each spectral point) and MFCC-based

Feature (Mel-frequency cepstral coefficient [27]) reflect the intrin-

sic physical traits embedded in the user’s finger inputs. �e system

further performs feature selection based on the Fisher Score [19]

on top of the Spectral Point-based and MFCC-based features by se-

lecting a subset of features exhibiting more discriminative power

among different touching locations as well as maintaining feature

consistency within each touching location.

�e extracted vibration features are used by two phases in Vib-

Write: profiling and authentication. In both PIN number based and

lock pa�ern based authentications, a grid is drawn on the touch-

ing surface. In the profiling phase, the features are extracted and

captured while a user first enrolls in the system and presses his

finger at different grid points on the touching surface. �ese fea-

tures are labeled and saved to build the user’s profile in Grid Profile

Construction.

During the authentication phase, the received vibration signals

are utilized to extract vibration features. �e extracted features

then serve as inputs to Grid Point Index Trace Derivation via a clas-

sifier based on Supporting Vector Machine (SVM) trained by the

grid profiles. �e classifier compares the extracted features with

the stored ones in the profile to filter out the signal segments be-

fore and a�er the finger inputs and derive grid point trace con-

taining finger touching inputs. �e derived grid point trace would

then be put into Grid Point Index Filtering (Section 6.2) to eliminate

the incorrectly classified grid point indices and obtain the ones

corresponding to the finger presses in the grid point index trace.

Next, the filtered grid point trace would be recovered to the PIN

sequence/lock pa�ern via PIN Sequence Derivation or Lock Pa�ern

Derivation (Section 6.3). �e recovered PIN number/lock pa�ern is

then compared with the local stored PIN/lock pa�ern information

for the final authentication.

Independently, VibWrite also enables the user to perform simple

gestures (e.g., drawing a circle on the surface) for authentication

without the restrictions of pressing/passing the grid points on the

authentication surface. Different from the fixed grids in PIN/lock

pa�ern based authentication, using gestures provides more flex-

ibility for authentication. However, even for the same user, the

same finger gesture could be slightly different at different authen-

tication times due to the lack of consistency. �us, the mecha-

nism for gesture-based authentication in VibWrite needs to cap-

ture the intrinsic gesture behavior to deal with gesture inconsis-

tency while preserving individual diversity. In particular, during

the gesture-based authentication, VibWrite first identifies the sig-

nal segment containing the gesture operation via Gesture Segmen-

tation. In the profiling phase, the extracted feature sequence (i.e.,

Spectral Point-based and MFCC-based features) from the gesture

segments are saved to build the specific user’s profile. To measure

the similarity of generated features in the authentication phase to

the gesture profiles, VibWrite addresses the gesture inconsistency

problem by considering both time warped feature sequences and

the distribution of the features. �is is achieved by calculating
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Figure 4: Example of generated vibrations between 16kHz

and 22kHz.

both MD-DTW (Multi-Dimensional Dynamic Time Warping) Dis-

tance [42] and EMD (Earth Mover Distance) [35] of the extracted

feature sequences to the profiles. �e weighted distance combina-

tion inWeighted Distance Matching obtains the combined distance

from the two techniques. Finally, VibWrite makes decision as user

authenticated or access denied by checking a threshold to the cal-

culated distances between input gestures and the stored profiles.

5 VIBRATION SIGNAL DESIGN AND
FEATURE EXTRACTION & SELECTION

In this section, we first describe the details of vibration signal de-

sign and calibration. We then present how to extract and select

unique features for the authentication process in VibWrite.

5.1 Vibration Signal Design

To facilitate finger-input based user authentication via physical vi-

bration, the vibration signals used in our system need to contain a

broad range of frequencies to increase the diversity of vibration fea-

tures in the frequency domain. Specifically, we generate repeated

chirp vibration signals to linearly sweep frequency from 16kHz to

22kHz, which are hardly audible to most human ears [21]. Addi-

tionally, such frequency range is much higher than the frequency

range of ambient noise and the vibrations caused by human body

(e.g., breathing and heart beating). �is makes our system less pos-

sible to be interfered by these unrelated noises. Figure 4 illustrates

an example of the generated vibration signal and its correspond-

ing spectrogram.In particular, there is a short pseudo-noise (PN)

sequence preamble played before the repeated chirp vibrations,

which is used for the signal synchronization. We leave the details

in Section 5.2. A�er transmi�ing PN pilot, with a 50ms pause, the

vibration motor repeatedly transmits the chirp vibration signal to

keep its continuous sensing capability while performing authenti-

cation. �e length of each chirp vibration signal is set to T=10ms ,

which provides high time resolution to enable continuously finger-

input sensing.

5.2 Vibration Signal Calibration

Vibration Signal Synchronization. �e timing of the VibWrite’s

vibration motor and receiver needs to be synchronized, so that we

could guarantee that each sliding window being used to extract

vibration features contains the same parts of the chirp vibration

signals without time delay. �erefore, they can be used for further

comparison of their extracted features and capture the difference
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Figure 5: Illustration of clock dri� effect mitigation.

in each window when the finger touches different positions on the

surface. In order to avoid the uncertainty, we add a pseudo-noise

(PN) sequence preamble (i.e., 2400 samples) [38], which has ideal

autocorrelation properties, at the beginning of the generated chirp

vibration signals as illustrated in Figure 4. We then synchronize

the received vibrations using cross-correlation between the PN se-

quence of the received vibration signal and the known generated

PN sequence.

Clock Dri� Effect Mitigation. When the vibration receiver

senses the vibration, the analog voltage signals created by the sen-

sor will be converted into the digitized signals via an Analog to

Digital Converter (ADC). �e ADC can be configured at a wide

range of rates, and it is usually set to sample the analog signals at

a fixed frequency driven by different application requirements. For

instance, a few options (e.g., 32kHz, 44.1kHz and 48kHz) can be set

in most smartphones’ audio ADCs in terms of the required audio

recording quality. However, we experimentally find that the sam-

pling ratemay be not a fixed value over time due to imperfect clock,

and there exists a small gap between the real sampling rate and the

configured sampling rate. To eliminate the effect caused by the

clock dri�, we estimate the sampling rate offset during a short cal-

ibration phase at the beginning. During the calibration, the vibra-

tion motor periodically sends a short vibration chirp with a fixed

time interval (e.g., 2s). �e time intervals between these chirps

should be fixed value as well if there is no clock dri�. We use cross-

correlation to measure the sample delays of the received vibration

chirps over time, which is illustrated in Figure 5. We observe that

the number of the delayed samples increases linearly over time, in-

dicating that the real sampling rate is slightly larger than the con-

figured sampling rate but remains a relative fixed value. We then

use a least-squares based approach to fit a quadratic curve to the

measured delayed samples, and obtain the slop k to shi� the start-

ing point Sp of each received vibration chirp to Sp = Sp − ⌊kt⌋,

where t is the time interval between the current vibration chirp

and the first received vibration chirp.

5.3 Spectral Point-based Feature Extraction

In order to extract unique vibration features from the received vi-

brations to discriminate the finger touches on different surface lo-

cations and distinguish different users touching a same surface lo-

cation, we first analyze the received vibration signals in the fre-

quency domain using a 200ms sliding window. Figure 6(a) presents

an example of the Fast Fourier Transform (FFT) of a time series of

the received vibration signals, ranging from 16kHz to 22kHz, in a
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(b) Distinguishable spectral points when
a finger presses 4 different locations

Figure 6: Illustration of the frequency response of the re-

ceived vibrations in a 0.2s time window. And the frequency

response is depicted at spectral points when a finger presses

4 different locations of a desk.

sliding window. �e transmi�ed chirp vibration signal has funda-

mental frequencies that are all multiples of the frequency 1/T Hz,

where T is the time duration of each chirp vibration signal (e.g.,

T = 0.01s in VibWrite). We find that the amplitudes of some des-

ignated frequency components in the signals (i.e., peak values in

Figure 6(a)), called spectral points, are most sensitive to the minute

changes caused by finger touching or swiping. �ese spectral

points aremore sensitive to the finger touches and could be utilized

to differentiate different surface locations finger presses or finger

moving along. For example, in our preliminary experiments, the

vibration signals are collected when a user’s finger presses at four

different locations of a solid surface (i.e., wooden table) equipped

with our vibration motor and receiver. We observe obvious distin-

guishable pa�erns of the frequency amplitude at these 60 spectral

points (i.e., 22000−16000
100 = 60) between different locations, which

are shown in Figure 6(b). Furthermore, the spectral points in the

frequency domain may not be exactly spaced at 100Hz due to im-

perfect sampling module. We thus design a threshold-based strat-

egy (i.e., minimum distance between two neighboring peaks and

minimum height of each detected peak) to find peaks of the fre-

quency response to extract each spectral point feature.

5.4 MFCC-based Feature Extraction

�e Mel-frequency cepstral coefficient (MFCC) is widely used to

represent the short-term power spectrum of acoustic or vibration

signals [27] and can represent the dynamic features of the signals

with both linear and nonlinear properties. While the MFCCs are

able to distinguish people’s sound differences in speech and voice

recognition, we find that they can also characterize the vibration

signals transmi�ing via themedium of a solid surface onwhich the

user’s finger touches, because the user’s behavioral and physiolog-

ical characteristics (e.g. touch area and pressure) and the touching

position can cause different changes to the vibration propagation.

We thus extract theMFCC-based features to characterize the differ-

ent vibration signatures when the user touches or writes at differ-

ent positions on the surface. In particular, we calculate the MFCCs

of the received vibration signals in each sliding window. �e num-

ber of filterbank channels is set to 32, and 16-th order cepstral coef-

ficients are computed in each 20ms Hanning window, shi�ing 2ms

each time.
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Figure 7: MFCC feature illustration: (a) Example of the ex-

tractedMFCC features and (b) Pearson Correlation between

MFCC features when a finger presses three different loca-

tions on a desk surface.

Figure 7(a) shows the MFCCs extracted from the received vibra-

tion signals in a 0.2s sliding window when the user presses on a

solid surface. We observe that the extracted MFCCs have a period-

ical pa�ern, which is caused by the cycle of the repeated vibration

chirp signals. Figure 7(b) shows Pearson correlation coefficient [8]

of theMFCC-based featureswhen the user’s finger touches at three

different locations. In this experiment, twenty consecutive sliding

time windows (i.e., instances) are used to extract MFCCs for each

finger-touching location to compare the similarity between differ-

ent finger touches. We observe that theMFCC features of the same

finger-touching location present higher correlation than that of dif-

ferent locations, which confirms the effectiveness of utilizing the

MFCC features to characterize the user’s finger-touching on the

surface.

5.5 Feature Selection based on Fisher Score

From our experiments, we observe that not all extracted features

including both spectral points and MFCC are unique enough to

discriminate different touching locations and distinguish different

users touching the same location. �e discrimination power is de-

pendent on the extracted features at specific frequencies or Mel-

frequency bands. We therefore propose to select features based

on Fisher Score [19] to find a subset of features which are more

distinct between classes (i.e., touching locations per user) and con-

sistent within a class. �e fisher score of the r -th feature candidate

is defined as follows:

Fr =

∑c
i=1 ni (µi − µ)2

∑c
i=1 niδ

2
i

, (2)

where ni is the number of instances in class i . And µi and δ
2
i denote

the mean and variance of class i , i = 1, ..., c , corresponding to the r -

th feature candidate. µ denotes the mean of r -th feature candidates

in the whole data sets.

To analyze the feature difference between different frequency

bands, we consider each spectral point orMFCCs at each frequency

band as an individual feature candidate. Figure 8 shows the nor-

malized fisher scores of both the spectral point based and MFCC

based features that we use to perform user authentication. In Vib-

Write, we empirically choose top 30 spectral point based features,

and top 8 MFCC based features which are more sensitive to the

finger pressing and swiping.
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Figure 8: Fisher score of the feature candidates (a) spectral

point based and (b) MFCC based.

6 AUTHENTICATION USING PIN NUMBERS
AND LOCK PATTERNS

�e VibWrite system allows users to perform PIN number based

authentication by touching grid points on a solid surface or con-

duct lock pa�ern based authentication by swiping finger through

the grid points. Depending on the type of applications, the solid

surface could be a range of options including an apartment door, a

car door, an executive’s office desk or a smart appliance. VibWrite

first converts the received vibration signals to a time series of grid

point indices, then filters out the incorrectly classified grid point

indices and finally determines the PIN sequence/lock pa�ern based

on the derived grid point indices.

6.1 Deriving Grid Point Index Traces

�e system takes the received vibration signals as input when the

user enters PIN sequence/lock pa�ern. In particular, we apply a

sliding window to the vibration signals and derive vibration fea-

tures (e.g. spectrum-based feature and MFCC-based feature) in ev-

ery sliding window. We then apply a machine learning-based grid

point classifier based on the Support Vector Machine (SVM) using

LIBSVM [11] to estimate the finger-press positions in terms of the

grid point index for each sliding window, by leveraging the user’s

personal grid profile. �e resulted grid point index trace is actually

an estimated finger-press position trace which reflects the finger

position changes among the grid point indices in the entire PIN se-

quence/lock pa�ern input duration. Note that when we derive grid

point index trace, it involves user’s behavior and physical charac-

teristics. It is highly difficult for an unauthorized user to obtain

correct grid point index at this step because the system needs to

compare with the authorized user’s profile, which integrates both

PIN/Lock pa�ern and the user’s behavior characteristics. Based on

the derived grid point index trace, we can recognize the user’s PIN

sequence/lock pa�ern input and verify their identities.

Figure 9 shows an example of the user’s PIN sequence/lock pat-

tern based authentication on a solid surface (e.g. an apartment

door) with a 3 × 3 grid. �e predesigned grid is drawn in-between

the receiver and vibration motor as shown in Figure 9(a), and the

distance between the grid points is 3cm. �e user first builds a

personal grid profile, which is discussed in Section 6.4. �e user

then presses the grid points “1267” sequentially to input a PIN se-

quence and swipes the finger through the grid points “1-2-5-9” to

input a lock pa�ern as shown in Figure 9(a). �e vibration features

during the PIN sequence/ lock pa�ern input are extracted in each
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(b) Estimated finger position trace in
terms of grid point index when the user
enters the PIN sequence “1267”
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(c) Estimated finger position trace in
terms of grid point index when the user
swipes the lock pa�ern “1 − 2 − 5 − 9”
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(d) Example of an a�acker entering the
legitimate user’s PIN sequence “1267” on
the same grid of the same desk surface.

Figure 9: Example of PIN sequence/lock pattern derivation in sliding windows when entering a PIN sequence/lock pattern on

a solid surface.

sliding window and are inpu�ed to the SVM-based classifier. �e

estimated finger position trace (i.e., grid point index trace) for the

PIN sequence input “1267” is shown in Figure 9(b). We observe

that when the user presses on a number with the finger staying on

the virtual key, the consecutive same grid points corresponding to

the key can be obtained, and when the user moves the finger in the

air to the next key, the vibration signals are classified as “E” repre-

senting “Empty” based on the vibration profile collected when no

finger presses the surface.

Figure 9(c) shows the estimated finger position trace of the lock

pa�ern “1-2-5-9”. We observe that when the finger swipes near

a virtual key, the vibration signals will be classified to the corre-

sponding grid point index. In particular, the consecutive same grid

points can be obtained for the duration beginning from the finger

moving close to, pressing on, to just swiping away from the virtual

key. �us the derived grid point index trace can reflect the user’s

finger positions on the grid and can be utilized to further derive

the user’s PIN sequence/lock pa�ern inputs.

6.2 Grid Point Index Filtering

However, the derived grid point index traces contain incorrectly

classified grid point indices, which are due to the unstable vibra-

tion features caused by the varying finger touching area and force

when the finger is just detaching or pressing on the surface (e.g.,

the noises in Figure 9(b)), or are because the swiping finger is far

from any of the predesigned profiled virtual keys (e.g., the noisy in-

dices in Figure 9(c)). �ese incorrectly classified grid point indices

should be excluded when deriving the passcode pa�erns.

We develop a grid point index filter to determine the segments

that have consecutive same grid point indices. Intuitively, these

segments are corresponding to the time periods when the user’s

finger is pressing on or swiping near a grid point, which means

they aremore reliable results for identifying the PIN sequence/lock

pa�ern. �e grid point index filter consists of three steps: 1) cal-

culating the difference between every two consecutive grid point

indices in the trace and the firm presses will generate consecutive

“0” for the differential grid point index; 2) searching for the starting

and ending points of the consecutive differential grid point indices

(i.e., 0s) to extract finger-press segment, indicating the finger posi-

tions of the firm finger presses right on or near virtual keys; 3)

removing the grid point indices from the trace that are out of the

finger-press segments. �e red dots in Figure 9(b) and Figure 9(c)

are filtered grid point indices for the PIN sequence and lock pa�ern

derivation, respectively.

6.3 PIN Sequence/Lock-pattern Derivation

Next, we further confirm each finger-press segment based on their

time length and remove the incorrect finger location estimations

to derive the PIN sequence/lock pa�ern. �e intuition is that when

users enter their PIN sequences, the finger press for each PIN num-

ber lasts for a certain amount of time. And when users draw their

lockpa�erns, the duration beginning from the finger swiping close,

right pressing on, to finger swiping away from each virtual key

should last for an amount of time. �e grid point index segments

shorter than this amount of time are highly possible to be incorrect

finger location estimations. We empirically determine the thresh-

old of minimum finger-press duration (i.e., 300ms) to remove the

finger-press segments with shorter time duration. Finally, given

the length of the user’s PIN sequence/lock pa�ern, the system finds

the same number of the longest finger-press segments as the valid

finger-press segments and derives the PIN sequence/lock pa�ern

by mapping the segments’ grid point indices to the virtual keys.

6.4 Grid Profile Construction

Wenotice that the users can generate individually unique vibration

features even by pressing at the same position of a solid surface

due to the individual’s different behavioral and physiological char-

acteristics (i.e., touching area and pressure on the surface). �e

user’s such unique vibration features can provide another level

of security to our user authentication in addition to the secrecy

of passcodes.Our PIN/Lock-pa�ern based authentication requires

constructing the user’s profile corresponding to every grid point,

which enables successful identification of the input virtual keys

during authentication. Specifically, the VibWrite system records a

short time period (e.g., 1 to 5 seconds per grid point) of received

vibration signals when the user presses at each grid point. �e

recorded vibration signals are used to derive the vibration features

in sliding windows. �e feature in each sliding window is labeled

with corresponding grid point index. In addition, we also build

a profile when no finger touches the surface and label it as “E”

(i.e.,“empty”) to discriminate whether finger presses on the surface.

To illustrate the security provided by the user’s unique vibration

features in addition to the passcodes for PIN number/lock pa�ern

based authentication. We ask an a�acker to enter the legitimate
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Figure 10: Illustrationof the four pre-definedfinger gestures

for gesture-based authentication.

user’s same PIN number “1267” via VibWrite on the same grid and

the same surface as shown in Figure 9(a). �e VibWrite processes

the a�acker’s vibration signals based on the legitimate user’s grid

profile and the results are shown in Figure 9(d). We observe that

nearly all the vibration features of the a�acker are incorrectly clas-

sified and thus cannot pass the authentication, which verifies the

effectiveness of the individual physical characteristics contained

in the user’s grid profile.

7 AUTHENTICATION USING GESTURES

Different from PIN/lock pa�ern based authentications, using ges-

tures provides more flexibility for authentication. In particular,

VibWrite defines four simple finger gestures as shown in Figure 10:

swiping a single finger along three pa�erns including a triangle,

square and circle, and swiping two fingers horizontally.

7.1 Gesture Segmentation

To facilitate the gesture-based authentication, our system needs to

first detect the occurrence of the user’s gesture input from the re-

ceived vibration signals and remove the vibration signals with no

gestures (i.e., no touch on the surface). Specifically, VibWrite ex-

tracts vibration features from spectral points and MFCC and then

calculates vibration feature differences between the received vibra-

tion signals and those in the profile when no finger touches on the

surface. �e intuition is that when the user inputs a gesture, the

finger swipes on the surface, causing the vibration features to dif-

fer largely from those when there is no finger touching. Figure 11

shows an example of calculated vibration feature differences when

the user inputs square gestures on the surface for five times. For

all the five gesture inputs, we observe the vibration feature differ-

ence grows higher (e.g. over 300) when the finger swipes on the

surface and falls back to lower values (e.g., around 200) when the

finger releases from the surface. We thus normalize the vibration

feature differences and segment each gesture via a threshold.

7.2 Distance Calculation of Feature Sequence

User authentication using such simple gestures is much harder due

to lack of unique secrecy to discriminate different users. More-

over, the speed, duration, and trajectory of the same user’s gestures

could be different from time to time, which causes gesture incon-

sistency and makes the generated vibration signals present differ-

ent lengths and results in varying density of locations within the

swiped pa�ern. In addition to feature extraction containing user’s

unique physical traits, we resort to two techniques to complete

the authentication process in high accuracy to cope with these

challenges: the Dynamic Time Warping (DTW) [42] is exploited
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to deal with gesture inconsistency, and the earth mover’s distance

(EMD) [35] technique is employed to preserve individual diversity

because the feature distribution of the same user should have a

higher similarity than that from different users.

Specifically, we first derive a time series of vibration features

based on the vibration signals in segmented gestures using a slid-

ing window. �e DTW technique stretches and compresses re-

quired parts to allow a proper comparison between two data se-

quences. �erefore, it is useful to compare the vibration feature

traces extracted from two segmented gestures regardless of dif-

ferent swiping speeds. In our system, vibration features are in a

format that reports both frequency amplitude at multiple spectral

points and MFCC coefficients, which is discussed in Section 5. To

performmultidimensional sequence alignment, our system applies

Multi-Dimensional Dynamic Time Warping (MD-DTW) [42], in

which the vector norm is utilized to calculate the distance matrix

according to:

d(vi ,v
′
j ) =

P∑

p=1

(vi (p) −v ′
j (p))

2
, (3)

where V = v1,v2, ...,vT and V ′=v ′
1,v

′
2, ...,v

′
T

are two vibration

feature traces for gesture discrimination, and P is the number of

dimensions of the sequence data (i.e., the number of extracted fea-

tures within each window). A least cost path is found through

this matrix and the MD-DTW distance is the sum of the matrix

elements along the path.

Besides time warped feature sequence, we find that the his-

togram of the spectral point based features preserve individual di-

versity and can be used to distinguish different users when even

the same gesture is swiped. Figure 12 shows the feasibility study

results where two users swipe their fingers following an exactly

same circle gesture pa�ern on a desk surface. �e histogram of fre-

quency response (quantized to 10 bins) at a specific spectral point

during their swiping presents distinct distributions that can clearly

distinguish these two users. We thus take the advantage of the

EMD-based distribution difference to preserve the individual diver-

sity during gesture based authentication. Specifically, we normal-

ize the EMD distance and MD-DTW distance to be integrated for

final authentication. If the integrated distance to the gesture pro-

files is larger than a threshold, VibWrite regards the swiped gesture

as an unknown gesture and fails the authentication. Otherwise, we
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consider the swiped gesture is from the user whose profile results

in the minimum integrated MD-DTW and EMD distance.

7.3 Gesture Profile Construction

Unlike grid point profile construction, VibWrite does not need to

construct profiles for each grid point for the gesture-based authen-

tication. Instead, when constructing the gesture profile for a par-

ticular user, VibWrite collects the vibration signals while the user

swipes a finger following a predefined gesture. In particular, we

use the sequence of the vibration features extracted from the seg-

mented signals for building individual gesture profile. �ough the

profile only contains simple gestures, such profile contains the

user’s unique behavior and physiological characteristics and is suf-

ficient to perform user authentication. We also build a profile with

the vibration signals when there is no finger touching on the sur-

face to determine the presence of finger touching or not for gesture

segmentation.

8 PERFORMANCE EVALUATION

In this section, we first describe the experimental setup and

methodology. We then present the performance of VibWrite in

terms of authenticating the legitimate user and its robustness un-

der various a�acking scenarios.

8.1 Prototyping and Experimental Setup

We evaluate the performance of user authentication using PIN and

lock pa�erns on a 3×3 square-shaped grid. In practice, the grid pat-

terns could be flexibly extended as needed. �e grid is drawn on a

solid surface in a typical office environment. �e distance between

every two adjacent grid points is 3cm. We test with two different

surfaces as shown in Figure 13: one with the testing region resided

below the vibration motor and receiver on a wooden table (e.g., the

executive’s desk in a company), and the other with the testing re-

gion resided in between the motor and receiver on a door panel

(e.g., an apartment door). For the user authentication using ges-

tures, we remove the restriction of pressing/passing the grid points

on the authentication surface, and aim to utilize the simplest finger

gestures as shown in Figure 10. We want to demonstrate that even

the simplest finger gestures carry the unique behavioral and phys-

iological characteristics reflected by the physical vibrations. �e

gesture pa�erns are drawn on the table within a 6cm × 6cm region

between the vibration motor and receiver to guide user’s swiping.

�e vibration generator is implemented with a Linear Resonant

Actuator (LRA) based motor, which has a wide frequency response.

�e frequency and amplitude of the generated vibration can be reg-

ulated by the frequency and peak-to-peak voltage of an input ana-

log signal. �e low-cost vibration receiver is implemented with

a vibration receiver (i.e., piezoelectric sensor) and a low-power

consumption amplifier, which can be easily plugged into the stan-

dard audio jack of any audio recording device (e.g., mobile phone)

to sense vibration signals. �e sampling rate of the vibration re-

ceiver is determined by the audio recording device, which is typi-

cally 48kHz. �e size of vibration motor and receiver is very small,

which makes them easily to be a�ached to any solid surface. Com-

pared to other authentication systems based on cameras, touch

screens, or biometric readers, in VibWrite we seek to explore using
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Figure 13: Experimental setup of VibWrite on a wooden ta-

ble and door panel.

low-cost sensor se�ings (i.e., vibration motor and receiver) for the

potential of wide-deployment such as in apartment buildings, hotel

rooms, smart homes, office desks, etc. Besides the vibration motor

and receiver, our system needs additional supporting hardware in-

cluding, but not limited to, amplifier, ADC, micro-controller and

storage device to perform necessary data process, feature extrac-

tion and profile matching. With these required components, we

roughly estimate the cost of an end-to-end system could be main-

tained around tens of dollars (e.g., $20 ∼ $50). As a comparison,

some existing authentication systems (e.g., face recognition based

and fingerprint based [3, 5, 6]) may usually cost hundreds of dol-

lars.

8.2 Evaluation Scenarios & Data Collection

8.2.1 Legitimate User Verification. We recruit 15 participants to

evaluate the performance of VibWrite under three types of authen-

tication. 1 Our data is collected across three-month period, and 15

participants were involved across different days. Additionally, be-

fore the data collection, we allow users to practice multiple rounds

of authentication inputs on the authenticating surface to get famil-

iar with the VibWrite system. 1) For PIN number based authenti-

cation, each user is asked to sequentially press the 9 grid points

for 5s to create his/her grid profiles. During verification, each user

presses 10 random 4-digit PIN sequences as their passcodes. 2)

For lock pa�ern based authentication, our system uses the same

grid point profiles. During testing, each user swipes his/her finger

through 10 lock pa�erns to verify the system’s authentication per-

formance. 3) For gesture based authentication, each user chooses

one of the four gestures as shown in Figure 10 as their preferred

gestures and swipes the finger gesture 10 times. In total, we col-

lected 450 genuine input passcodes (i.e., PIN sequences, lock pat-

terns and gestures) for each motor/receiver placement to evaluate

legitimate user access authentication. We further collected a�ack

data to evaluate the VibWrite performance under a�ack scenarios.

8.2.2 Various A�ack Scenarios. We evaluate the robustness of

VibWrite under various types of a�ack. Specifically, we choose one

user as a legitimate user and the rest users as a�ackers to launch

the a�acks.

Blind Attack. �e a�acker randomly guesses the legitimate

user’s PIN, lock pa�ern and gesture and uses his/her finger to press

and swipe on the solid surface for 10 times. In total, we collected

420 blind a�ack inputs.

1�e study has been approved by our institute IRB.
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Figure 14: Performance of verifying legitimate users when the testing region is below the vibration motor and receiver.

Credential-awareAttack. �ea�acker gets to know the legiti-

mate user’s PIN/lock pa�ern/gesture. But he has not observed how

the legitimate user presses his/her PIN numbers or swipes his/her

lock pa�erns and gestures on the authentication surface. �e at-

tacker performs the same PIN/lock pa�ern/gesture as the legiti-

mate user did without knowing the legitimate user’s detailed be-

havior. Each a�acker inputs the PIN/lock pa�ern/gesture 10 times.

In total, we collected 420 inputs.

Knowledgeable Observer Attack. �e a�acker not only

knows the legitimate user’s PIN/lock pa�ern/gesture but also ob-

serves how the legitimate user inputs them on the authentica-

tion surface. Each a�acker practices 5 times and then inputs the

PIN/lock pa�ern/gesture 10 times, trying to pass the authentica-

tion. Again, 420 inputs are collected.

Side-channel Attack. In addition, we perform the side-

channel a�ack by placing additional vibration receivers on the

authentication surface. In particular, two receivers are employed:

one is placed adjacent to the original receiver, whereas the other

is placed at the other side of the surface opposite to the original

receiver.

8.3 Evaluation Metrics

Verification Accuracy/Attack Success Rate of PIN Number-

based Authentication. �e verification accuracy/a�ack success

rate shows the percentage of correctly verified PIN numbers en-

tered by the legitimate user or a�acker respectively during the user

authentication process. Specifically, it includes the complete PIN

sequence verification accuracy and the PIN digit verification accu-

racy. �e complete PIN sequence verification accuracy measures

the rate of the user’s input PINs being completely recognized (i.e.,

all numbers in the PIN sequence are correctly recognized), while

the PIN digit identification accuracy shows the rate of successfully

recognizing each single PIN digit.

VerificationAccuracy/Attack Success Rate of Lock Patten-

based Authentication. �e verification accuracy/a�ack success

rate shows the percentage of correctly verified lock pa�erns input

by the legitimate user or a�acker respectively during the user au-

thentication phase. Similarly, it includes the complete lock pa�ern

verification accuracy and lock pa�ern segment verification accu-

racy.

ROCCurve of Gesture-basedAuthentication. ROC curve is

a plot of true positive rate (TPR) over false positive rate (FPR). �e

TPR denotes the rate of the legitimate users passing the authentica-

tion while FPR denotes the rate of the a�ackers successfully pass-

ing the system. �rough varying the feature distance threshold in

gesture-based authentication, we can achieve varied TPR and FPR

and obtain ROC curves to evaluate the system performance.

8.4 System Performance of Verifying
Legitimate Users

PIN Number-based Verification. Figure 14(a) shows the identi-

fication accuracy of each PIN digit and the complete PIN sequence

of 15 legitimate users. Our PIN number based authentication can

achieve a high verification accuracy. Specifically, the users can ob-

tain over 95% verification accuracy of recognizing each PIN digit

and the mean verification accuracy of the complete PIN sequence

reaches 90%. Moreover, the verification accuracy of each PIN digit

is higher than that of PIN sequence, since the complete PIN ver-

ification accuracy result requires that all the PIN numbers in the

PIN sequence are correctly identified. �e results demonstrate our

system is effective in verifying all the legitimate users.

Lock Pattern-based Verification. Figure 14(b) shows the av-

erage authentication accuracy of the lock-pa�ern based verifica-

tion with different number of trials. Specifically, the average ver-

ification accuracy of the complete lock pa�ern reaches 79% and

95% with a single trial or two trials respectively, which requires

all the segments of the lock pa�ern to be correctly identified. In

addition, the accuracy of the lock pa�ern identification is slightly

lower than that of the PIN sequence based authentication, which

indicates that swiping a finger continuously on the surface gener-

ates more errors than pressing the finger separately on each grid

point. �e above verification results show that our VibWrite can

achieve a good performance to authenticate users by lock pa�erns.

Gesture-based Verification. Figure 14(c) illustrates the effec-

tiveness of legitimate user verification in gesture-based authentica-

tion with ROC curves. 15 legitimate users perform their preferred

simple gestures (i.e., one of our four predefined gestures as shown

in Figure 10) ten times. With only one training instance (i.e., one

time swiping) for each user, we observe that given a requirement

of a 90% true positive rate, we can achieve as low as a 5% false

positive rate on average, which indicates only around 5% of ges-

ture trials have gained unauthorized access. We also observe that

the using both DTW and EMD techniques can provide slightly bet-

ter performance than that of only using EMD technique, since it

considers the similarity in both timewarped feature sequences and

the features’ distributions. �e obtained high verification accuracy
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and the low-training efforts demonstrate that VibWrite is capable

to distinguish different users even though they perform the same

simple gesture due to their distinct behavioral biometrics (i.e., fin-

ger tip size and structures).

Multiple Authentication Trials and Fall-back Strategy.

Figure 14(b) shows the average verification rate under different

number of trials. We observe that our system can achieve over 99%

verification rate with both of the PIN number and lock pa�ern in-

puts when users enter three trials. For the first-time user input, our

system can achieve around 89% and 79% accuracies when users en-

ter their PIN numbers or lock pa�erns, respectively. Additionally,

our system can integrate with any fall-back strategy to let the legit-

imate user bypass the system, e.g., the legitimate user can always

use a physical key to enter his vehicle/apartment.

8.5 Attacks on Legitimate User’s Credentials

Under blind a�acks, both our PIN number and lock pa�ern based

authentications can achieve close to zero a�ack success rate. �e

results are intuitive because the a�ackers’ random PIN guesses or

lock pa�ern guesses are nearly impossible to pass the legitimate

user’s system within limited trials. Similarly, for gesture-based au-

thentication, the TPR in the obtained ROC curve is close to 100%

when the FPR is close to 0%, which shows that the a�ackers’ ran-

dom gestures cannot successfully access the system.

Under credential-aware a�acks, our system also achieves high

accuracy (i.e., close to 0% a�ack success rate) for all three types of

authentications. Since the a�ackers do not possess the knowledge

of the VibWrite se�ing details (e.g., grid size, gesture region and

the authentication surface), the a�ackers’ finger-inputs are hard to

generate the similar impacts on the vibration propagation as the

legitimate users do. Knowledgeable observer a�ack is the most ex-

treme a�ack, where the a�acker is capable of knowing the user’s

credentials and observing the legitimate user’s finger inputs. Ad-

ditionally, the a�acker has the knowledge of the VibWrite se�ing

details and can perform the finger inputs on the same authentica-

tion surface. �us in the rest of this paper, we present the perfor-

mance evaluation results of our system under this more challeng-

ing knowledgeable observer a�ack.

PIN Number-based Authentication. Figure 15(a) shows the

performance of our VibWrite in PIN number based authentication

under knowledgeable observer a�ack, where 1 of 15 users alterna-

tively behaves as victim and other 14 users play as a�ackers. We

find that the VibWrite system is very effective in defending against

a�ackers even though they have the knowledge of the legitimate

user’s PIN and use the same VibWrite se�ing (e.g., grid size and

authentication surface). In particular, the a�ackers can only break

an average of around 7% single PIN digits. Furthermore, even if

the a�ackers can successfully verify several PIN digits, it is even

harder for them to break the complete PIN sequences of the legiti-

mate user. In particular, the a�ackers can only achieve an average

of 2% a�ack success rate in verifying complete PIN sequences.

Lock Pattern-based Authentication. Similarly, we ask the

15 users to alternatively play one victim and fourteen a�ackers,

who swipe 10 lock pa�erns a�er practice based on the knowledge-

able observation. Figure 15(b) depicts the a�ack success rate of

lock-pa�ern based authentication on each legitimate user under

the knowledgeable observer a�ack. �e results show that the at-

tackers are hard to pass the system even though they imitate the

legitimate user’s behavior to swipe the same lock pa�erns on the

same grid of the same authentication surface a�er practice. Specif-

ically, for the user 4, 6-8 and 12-15, all the fourteen a�ackers can

hardly pass the legitimate user’s complete lock pa�erns in 10 trials

though they can successfully swipe around 5% accurate segments

of the lock pa�erns. �e average a�ack success rates of the lock

pa�ern segment and the complete lock pa�ern are around 5% and

11% respectively. Moreover, we find the performance of the lock

pa�ern based authentication under knowledgeable observer a�ack

is comparably good to that of the PIN number based authentica-

tion.

Gesture-basedAuthentication. Weevaluate the performance

of VibWrite in gesture-based authentication under knowledgeable

observer a�acks, where a�ackers try tomimic the legitimate user’s

swiping gestures. In order to test the worst case in VibWrite, we

only rely on one single training data for the legitimate user. Fig-

ure 15(c) shows the ROC curve, where we can achieve as low as a

3% false positive on average given a requirement of a 80% true pos-

itive rate. Even for only using EMD technique, we can still achieve

as low as a 8% false positive rate on average given a requirement of

a 80% true positive rate. �e results indicate that, even for themost

challenging knowledgeable observer a�ack, VibWrite is still effec-

tive in defending against a�ackers and successfully authenticate

legitimate users in the meanwhile.

8.6 Side-channel Attacks

Attacks via a Vibration Receiver. One may suspect that a�ack-

ers can place hidden vibration receivers on the authentication sur-

face to recover the vibration signals and obtain the unique features

of the legitimate user. In reality, the hidden receiver cannot be

placed at the exact same location as the VibWrite’s receiver. �us,

our Hidden1 and Hidden2 are placed at two representative loca-

tions that an adversary may choose to launch a side-channel at-

tack. Particularly, Hidden1 is placed adjacent to the original re-

ceiver, whereas Hidden2 is placed at the other side of the authen-

tication surface (around 3cm thickness) opposite to the original re-

ceiver. Figure 16 shows the mean and standard deviation of the

Pearson Correlation coefficients [8] between the signals received

by the original receiver and two hidden receivers a�er the designed

vibration chirps are generated 20 times. We observe that Hidden1

and Hidden2 can only achieve a very low correlation coefficient

less than 0.2. �is indicates that the vibration signals received by

hidden receivers present very different pa�erns comparing to that

received by the original receiver even when the hidden receivers

are placed very close to the original receiver, making the a�acks

via a hidden vibration receiver ineffective.

Attacks via a Nearby Microphone. Furthermore, a nearby

microphone can record the acoustic sounds emi�ed by the vibra-

tion motor, however, the additional transmission path (i.e., air be-

tween the vibration motor and microphone) can largely change

the vibration pa�erns, making it also difficult to recover the simi-

lar vibration signals received by VibWrite’s vibration receiver. Ad-

ditionally, a few new studies demonstrate that physical vibrations

can be recovered to a certain extent by using wireless signals [48]
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(c) Gesture based authentication

Figure 15: Performance of user authenticationunderknowledgeable observer attackswhen

the testing region is below the vibration motor and receiver.
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Figure 16: Similarity

between the vibrations

received by VibWrite’s orig-

inal receiver and hidden

receivers.

and high-speed cameras [13]. However, these solutions can only

recover relatively low-quality audio/vibrational signals due to the

limits of the hardware sensing ability in both vibration amplitude

and frequency. �us, they are mainly used for eavesdropping hu-

man speech sounds whose frequency typically falls below 1KHz.

8.7 Impact of Training Data Size

PIN Number/Lock Pattern based Verification. Our system can

achieve around 90% accuracy in identifying each PIN digit/lock-

pa�ern segment with the grid point training time over 0.4 seconds

while the identification of complete PIN sequences or complete

lock pa�ern achieve over 80% accuracy with the grid point train-

ing time over 0.6 seconds as shown in Figure 17. Moreover, the PIN

sequence/lock pa�ern based authentication can achieve higher ac-

curacy with longer training time and the accuracy reaches stable

when the training size is over around 2 seconds.

Gesture-based Verification. From the results as shown in Fig-

ure 14(c) and Figure 15(c), we observe that our gesture-based verifi-

cation can obtain very high authentication accuracy with the train-

ing profile only containing one single gesture training instance.

�e results also indicate that our gesture-based authentication sys-

tem could work with a very small training data size.

8.8 Impact of Surface and Vibration
Motor/Receiver Placement

We change the positions of the vibration motor and the piezoelec-

tric sensor to the center of each side and evaluate the PIN sequence

verification accuracy on the grid of the door panel surface. Ten

users are first asked to construct their individual grid profile and

then input their PIN sequences with this new experimental setup

for verification. �e results in Figure 18 show that our PIN number

based authentication can achieve comparably high verification ac-

curacy for this setup. In particular, the accuracies of verifying the

complete PIN sequence and PIN digit are 88% and 94% respectively.

�e similar results can also be observed for lock pa�ern based and

gesture based authentication. �us our system is robust for differ-

ent vibration generator/receiver placements.

9 DISCUSSION

Serving as a concrete starting point of vibration-based authenti-

cation system, VibWrite is a low-cost and easy-to-deploy solution

that has a high potential to work at various places such as apart-

ment buildings, hotel rooms, smart homes, etc. We admit that the

current system is still not ready for the industrial deployment in

terms of its authentication/false-accept rates, thus a large space is

le� for us to further improve the system. In this section, we in-

troduce a few limitations of the current VibWrite system and the

potential for future improvements.

Accuracy, and Further Improvement. �e current system

achieves around 89% and 79% authentication rates with a single

trial when users enter their PIN numbers or lock pa�erns, respec-

tively. �e accuracy number is comparable to a few recent low-cost

authentication/verification solutions (e.g., [23, 30, 47, 51]), which

use either gait pa�erns captured by existing Wi-Fi/smartphone or

passive sensing of embedded sensors on smartphones. Specifically,

the gait pa�ern based solution could achieve around 80% detec-

tion rate of unauthorized users when leveraging accelerometers

on smartphones [30] and 79% user recognition accuracy when us-

ing off-the-shelf Wi-Fi [47]. Multi-sensor (i.e., gyroscope, magne-

tometer and accelerometer) based smartphone authentication can

achieve around 70% and 90% accuracy in the studies [51] and [23],

respectively. However, the current VibWrite system is still far from

practical deployment as a legitimate user may need to try a few

times to pass the system. To improve the system performance, we

target to explore the following aspects in our future work includ-

ing deploying multiple sensor pairs, refining the hardware, and

improving the authentication algorithms. Specifically, more than

one pair of vibration transmi�ers and receivers can be employed to

help increase the dimension of the surface sensing features, which

can be�er represent each individual’s behavioral and physiological

characteristics. In addition, empirically we noticed that the unique-

ness of the features is affected by the stableness of the hardware

components as the weak analog signals extracted by the piezoelec-

tric sensor can be easily distorted when passing through electronic

components (e.g., amplifier andADC).We thus could build a higher

standard hardware signal processing component (e.g., ultra-low-

noise signal amplifier) to enhance the system. Meanwhile, the im-

provement of the vibration motor in terms of its power level, sta-

bleness and frequency response could become another venue to

explore.

CopingwithAdditional Physical Attacks. In addition to the

side channel a�acks via a hidden vibration receiver or a nearby mi-

crophone, other types of physical a�acks might be launched when
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the system is deployed in practice. We discuss a couple of repre-

sentative ones below and show how VibWrite could be extended

in coping up with such a�acks. Given that the proposed system

is highly dependent on the a�ached surface, such surface depen-

dency might be employed by an adversary to launch a denial-of-

service (DoS) a�ack (e.g., adhering tiny objects or a hidden vibra-

tion motor to the surface) to prevent the legitimate user from pass-

ing the system. To combat the DoS a�ack, VibWrite can develop

a simple mechanism to perform the surface sanity check periodi-

cally by comparing the received vibration signals with the empty

surface training profile. If the surface dissimilarity is detected, the

authentication surface will be examined. �e most extreme case is

when an adversary gets access to the cable connecting the vibra-

tion motor/sensor and cut it to make the system not function at

all. On one hand, to deal with such a physical a�ack, the vibration

motor and receiver could be placed at the opposite side of the au-

thenticating surface hidden from the users and even placed inside

some enclosed cases hard to access without authorization. On the

other hand, the adversary does not gain much benefit in this a�ack

as he still cannot pass the authentication system. We leave the de-

tailed study of these adversarial cases as an avenue for our future

work.

System Maintenance. As a starting point, our system is eval-

uated in a relatively stable indoor environment. However, in prac-

tical deployment, there are many environmental factors that need

to be taken into consideration and may affect the system perfor-

mance. For instance, if the surface (e.g., car door panel) is exposed

to an outdoor environment, the surface’s vibration response may

be changed across different days affected by temperature, humid-

ity, wind, wetness, dirt, etc. Additionally, the temporary presence

of additional objects placed on the surface (e.g., a book placed

on the desk) could alter the received vibrations slightly different

from the trained one. �e noticeable effect caused by these factors

might be reduced through further filtering or directional sensing

techniques. More robust machine learning methods grounded on

deep learning [4] can also be built in our future work to deal with

various environmental-related elements. In addition, future work

should continue the evaluation with more/diverse population sam-

ples, longer time periods and more influential factors to improve

the system robustness.

10 CONCLUSION

In this paper, we propose VibWrite, which implements the idea

of low-cost low-power tangible user authentication beyond touch

screens to any solid surface to support smart access applications

(e.g., apartment entrances, vehicle doors, or smart appliances). Uti-

lizing low-cost physical vibration, VibWrite performs ubiquitous

user authentication via finger-input by integrating passcode, be-

havioral and physiological characteristics, and surface dependency

together to provide enhanced security. VibWrite is built upon

a vibration-based touch sensing technique that enables touching

and writing on any solid surface through analyzing unique vibra-

tion signal features (e.g., frequency response and cepstral coeffi-

cient) in the frequency domain. It is easy to deploy and flexibly

provides users with three independent forms of secrets (includ-

ing PIN number, lock pa�ern, and simple gesture) to gain security
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access by developing new techniques of virtual grid point deriva-

tion, featured-based dynamic time warping (DTW) and distribu-

tion analysis based on earth mover’s distance (EMD). We perform

extensive experiments with participants input their passcodes by

using three forms of secrets. We also study the robustness of Vib-

write under various a�acks trying to impersonate the legitimate

user or launching side-channel a�acks to hack the VibWrite sys-

tem directly. Our results indicate that VibWrite is resilient to side-

channel a�acks. And it can verify legitimate user with high accu-

racy under minimum training efforts while successfully deny the

access requests from unauthorized users with a low false positive

rate.
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