
Fairness in an Unfair World:
Fair Multiparty Computation from Public Bulletin Boards
Arka Rai Choudhuri

achoud@cs.jhu.edu

Johns Hopkins University

Matthew Green

mgreen@cs.jhu.edu

Johns Hopkins University

Abhishek Jain

abhishek@cs.jhu.edu

Johns Hopkins University

Gabriel Kaptchuk

gkaptchuk@cs.jhu.edu

Johns Hopkins University

Ian Miers

imiers@cs.jhu.edu

Johns Hopkins University

ABSTRACT
Secure multiparty computation allows mutually distrusting parties

to compute a function on their private inputs such that nothing but

the function output is revealed. Achieving fairness— that all parties

learn the output or no one does – is a long studied problem with

known impossibility results in the standard model if a majority of

parties are dishonest.

We present a new model for achieving fairness in MPC against

dishonest majority by using public bulletin boards implemented

via existing infrastructure such as blockchains or Google’s certifi-

cate transparency logs. We present both theoretical and practical

constructions using either witness encryption or trusted hardware

(such as Intel SGX).

Unlike previous works that either penalize an aborting party or

achieve weaker notions such as ∆-fairness, we achieve complete

fairness using existing infrastructure.

KEYWORDS
Secure Multiparty Computation, Fairness

1 INTRODUCTION
Secure multiparty computation (MPC) allows a collection of mu-

tually distrusting parties to jointly compute a function on their

private inputs while revealing nothing beyond the function output.

Since its conception three decades ago [41, 62], MPC has found

wide applicability to important tasks such as electronic auctions,

voting, valuation of assets, and privacy-preserving data mining.

Fairness. Over the years, several security definitions for MPC

have been studied. One natural and desirable definition for MPC

stipulates that either all parties receive the protocol output or no

party does. This is referred to as fair MPC.

The notion of fairness is very important (and necessary) in appli-

cations such as auctions and contract signing. For example, if Alice

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134092

is the first to learn she did not win an auction, she may abort, claim

a network failure, and try again with a new bid that just exceeds

the previous winning bid. More generally when the “value” of the

function output may be enhanced by an information asymmetry,

e.g., if Alice is better off exclusively knowing the true value of a

financial asset than all parties knowing it, fairness is an issue.

In a seminal work, Cleve [25] proved that fair MPC is impossible

to realize for general functions when a majority of the parties are

dishonest. This result even holds when the parties have access to a

trusted setup such as a common reference string.

The pursuit of fairness. In light of Cleve’s impossibility result,

a vast amount of research effort has been dedicated towards the

study of mitigations to the fairness problem. In particular, two

prominent lines of research have emerged over the years. The first

research direction considers the problem of achieving fairness in

the standard model for a restricted classes of functions [7–9, 45, 47].
The second research direction studies fairness for general func-

tions by augmenting the computation model and/or by relaxing

the definition of fairness. The prominent examples in this direc-

tion range from using a trusted party to restore fairness [20], to

weaker models where the honest parties can recover the output at

computational cost or time at most ∆-times that of the adversary

[13, 31, 34, 42, 59, 60] (where ∆ is a constant), to penalizing aborting

parties monetarily [6, 17, 52, 53]. (See Section 2 for a more elaborate

discussion.)

While these mitigations are helpful, they fall short of solving the

problem in many circumstances. In particular, they either require

appointing trusted parties for very specific tasks (related to the pro-

tocol) that can be hard to find, or require that the parties’ possess

precise estimates of the adversary’s resources and incentives. If the

adversary values exclusive knowledge of the output very highly, it

may not be practical to have a large enough computational differ-

ential or penalty to deter aborts. Indeed, in many cases it may be

impossible value the MPC output at all.

Our Model: Public Bulletin Boards. In this work, we take a new

approach to achieving complete fairness in MPC for general func-

tions. We consider a setting where the parties have access to a

public ledger, or a bulletin board that allows anyone to publish ar-

bitrary strings. Upon publishing its data D on the bulletin board,

a party receives a proof (or a signature) to establish that D was

published. The bulletin board is public, in that anyone can see all

of its contents. The main security requirements from the bulletin

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

719

https://doi.org/10.1145/3133956.3134092

board are that its contents cannot be erased, nor can a proof of

publish be forged.

Our choice of the bulletin board model as a viable model for fair

MPC ismotivated by the fact that implementations of public bulletin

boards already exist in practice. We can realize a bulletin board from

an existing centralized system: Google’s certificate transparency

project which logs issued certificates.
1

A decentralized implementation of a bulletin board can be real-

ized from blockchain-based ledgers such as Etherium and Bitcoin

implemented with proofs of stake or proofs of work [16]. Proof of

work based blockchains rely on the assumption that the majority

of the network’s computational power is honest. In contrast, proof

of stake systems assume that some quorum of users are honest.

For each block, proof of stake systems select the quorum users,

typically at random but proportional to the amount of currency or

stake they have in the system, and that quorum must sign the next

block and (randomly) select the next quorum. The signature on a

block by the quorum constitutes an unforgeable proof that data

is on the bulletin board. In contrast to e.g. byzantine agreement

protocols, however, the user group is ad-hoc and tolerant to churn.

Proof of Stake and hybrid Proof of Stake/Proof of Work systems

are an area of active research.

1.1 Our Results
In this work, we construct theoretical and practical fair MPC proto-

cols for general functions in the bulletin board model. We, in fact,

provide general transformations from any (possibly unfair) n-party
MPC protocol that supports t < n corruptions to a fair MPC proto-

col secure against the same number of corruptions. Crucially, the

assumptions used in our transformations affect fairness only: the

correctness and privacy properties of the underlying MPC scheme

are completely preserved even if the assumptions were not to hold.

I. Fair MPC from Witness Encryption. Our first contribution
is a fair MPC protocol in the bulletin board model assuming the

existence of witness encryption (WE) [37] and injective one-way

functions. In order to rely on the standard security of WE, we

require the bulletin board’s proof of publish to be implemented via

unique signatures [43, 56]. If the bulletin board is implemented via

standard signatures (e.g., in Google Transparency Certificates) or

proofs of stake (e.g., in Etherium), then we require the stronger

assumption of extractable witness encryption [19].

Candidate constructions of WE for NP [37, 39] are known from

multilinear maps [36]. Since present constructions [26, 27, 36, 38] of

multilinear maps are quite inefficient, we view our first construction

as a feasibility result. We note, however, that our construction

requires WE for a specific NP language for which constructing

efficient schemes from simpler assumptions might be easier. Indeed,

a fascinating open question for future work is whether WE for the

specific language used in our constructions can be implemented

from existing constructions for the related notion of hash proof

systems [28].

II. Fair MPC from Secure Processors. Our second contribution

is a fair MPC protocol in the bulletin board where all the parties

1
Looking forward, our protocol only needs to post a constant sized token to the

blockchain and this can readily be embedded in a URL or certificate.

have access to secure processors. In fact, Cleve’s impossibility result

holds even in the presence of secure processors, and was proved

recently in [58]. For concreteness, we work with Intel SGX as a

secure processor, following the formalization of [59]. For this re-

sult, we only need standard cryptographic assumptions such as

secret-key authenticated encryption and signatures. We provide an

implementation of this protocol in Section 8.

Comparison with recent works. Recently, [6, 17] showed how

block-chain based decentralized cryptocurrencies such as Bitcoin

can be used to achieve a notion of fairness with penalties where
aborting parties are forced to pay a pre-agreed financial penalty.

We note that while we also use blockchain based bulletin boards in

our work, our end result is quite different in that we achieve the

standard notion of fairness – either all parties get the output or

none do.

Very recently, [59] studied fairness in themodel where each party

has access to a secure hardware equipped with secure clock. They

achieve a notion of ∆-fairness which guarantees that if an aborting

adversary can learn the output in timeT , then the honest party can

also learn the output in time ∆ · T for ∆ = 2. A disadvantage of

this model is that T is controlled by the adversary, who can set it

arbitrarily to create large delay (e.g., in the order of several minutes

or hours) between the times when it gets the output and when the

honest party does.

We note that while we also use secure hardware for our second

result, we do not require them to implement secure clocks.
2
More

importantly, we achieve the standard notion of fairness.

1.2 Technical Overview
We now describe the main ideas used in our constructions. For

simplicity of exposition, we restrict this discussion to the two-

party case. It is easy to generalize the ideas presented below to the

multiparty case.

Starting Ideas. Our starting idea is to run an unfair MPC protocol

to compute an encryption of the function output as opposed to

computing it in the clear. We then design a special decryption

procedure such that either no party is able to perform the decryption

or both parties can. In other words, we reduce the fairness problem

in MPC to the problem of fair decryption.

At first, it may seem that we haven’t made any progress because

it is unclear why fair decryption would be any easier than achieving

fairness for general functions. Indeed, fair decryption was shown

to be a complete functionality for fair MPC in [46].

Our key insight is that a public bulletin board can be used to
implement a fair decryption protocol for a witness encryption scheme.
We elaborate on this idea below.

Fairness fromWitness Encryption.Awitness encryption scheme

for a language L can be used to encrypt a messagem with a state-

ment x in such a manner that the resulting ciphertext can only be

decrypted using a witness w for x. We now explain how we use

witness encryption to implement our fair MPC protocol.

2
In the specific case where the bulletin board is implemented using a proof of work

blockchain, we can use secure clocks to achieve stronger security guarantees. This

is unnecessary when the bulletin board uses signatures. We discuss this further in

Section 8.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

720

In order to securely compute a function f with complete fairness,

the parties first run a standard (possibly unfair) MPC protocol to

compute a randomized function that takes the private inputs say

(y1,y2) of the parties and returns a witness encryption ciphertext

CT of the desired output F (y1,y2). The statement x associated with
CT is set to be such that a valid witness for x corresponds to the

proof of posting a “release token” α (to be determined later) on the

bulletin board.

The only way for any party to obtain such a witness is to post

α on the bulletin board and obtain the corresponding proof of

posting σ . However, in doing so, the pair (α ,σ) is made public, and

therefore, anyone can obtain it. Thus, if a malicious adversary learns

the witness for decrypting CT, then so can the honest party since

it can simply read the public bulletin board. This mechanism puts

the honest party and the adversary on equal footing and resolves

the fairness problem.

While the above constitutes the core idea behind our work, we

run into several technical issues in implementing this idea. We

discuss these next, together with the solutions.

Issue #1: Setting the release token. An immediate issue with imple-

menting the above idea is that we cannot set the release token α to

be an a priori fixed value that is known to the adversary. Indeed,

if this is the case, then the adversary can simply abort during the

execution of the unfair MPC protocol so that it learns the ciphertext

CT, but the honest party does not. Now, even if the honest party

can obtain (α ,σ) once the adversary has posted it on the bulletin

board, it cannot learn the output F (y1,y2) since it does not have
CT to decrypt.

To address this issue, we set α to be a pair of random values

(α1,α2) where αi is chosen by the i-th party. During the initial

MPC phase, each party uses αi as an additional input such that the

output of the MPC is (β ,CT) where βi = f (αi) for some one-way

function f and β = (β1, β2). Now, even given (β,CT), the value α
is not completely known to the adversary. Therefore, if it aborts

prematurely, then the honest party aborts as well, knowing that

the adversary would not be able to recover the output.

On the other hand, if the first phase is successfully completed,

then the parties execute a second phase where each party i simply

sends over αi to the other party. Of course, the adversary may abort

in this phase after learning α . However, in order to decrypt CT, it
will have to post α on the bulletin board which means the honest

party would learn it as well. This restores the balance between the

honest party and the adversary.

Issue #2: Security of WE. The standard definition of witness encryp-

tion only guarantees semantic security for a ciphertext CT if the

statement x associated with it is false. In our case, the statement

is always true. The only way to argue security in this case is to

use a stronger notion of extractable witness encryption [19] which

guarantees that for any statement x, if an adversary can distinguish

between witness encryption ofm from an encryption ofm′ , m,

then one can efficiently recover from that adversary a witness w
for x. Now, if the witnessw is computationally hard to find, then

we can get a contradiction.

It was shown in [19] that for languages with statements that

have only polynomially many witnesses, the standard definition

of WE implies the stronger definition of extractable WE. We note

that if we set f to be an injective one-way function and implement

the proof of posting on the bulletin board via unique signatures

[43, 56], then we can bound the number of valid witnesses. In this

case, we can rely on the standard definition of WE.

Issue #3: Rewinding. We run into yet another issue while arguing

security of the above construction. Recall that in order to prove

security of a fair MPC protocol, we must construct a simulator who

can “force” the correct output on the real adversary, provided that

the adversary did not abort prematurely. In our protocol, the only

opportunity for the simulator to “program” the output is inside the

ciphertext CT computed during the initial MPC phase. However,

this point in our overall protocol is “too early” for the simulator to

determine with enough confidence whether the real adversary is

going to later abort or not. If the simulator’s decision to program the

output turns out to be wrong, then it would immediately lead to a

distinguisher between the outputs of the real and ideal experiments.

To deal with this issue, we use a rewinding strategy previously

used in [40, 44, 46] to determine the aborting probability of the

adversary with enough accuracy, while still ensuring (expected)

polynomial running time for the simulator. In order to ensure in-

distinguishability of the adversary’s view in the real and ideal ex-

periments, we allow the simulator to also rewind the bulletin board

to a previous state, as and when necessary. Indeed, without this

capability, the simulator cannot prevent an adversary from “de-

tecting rewinding” by continuously posting on the bulletin board.

A consequence of this is that we must model the bulletin board

as a “local” functionality as opposed to a “global” functionality

[21, 22]. Furthermore, since our simulator performs rewinding, we

only achieve stand-alone security.

Fairness from Secure Hardware. Roughly, the main idea in our

second protocol is to replace the witness encryption in the plain

model with a secure hardware that implements (essentially) the

same functionality as witness encryption. We require that each

party is equipped with such a secure hardware (e.g., Intel SGX).

While much of the details in this protocol are similar to the previous

one, there are some key differences. We explain them below.

Once the parties have “installed” an appropriate program P (dis-

cussed below) in their own local secure hardware and attestation of

the same is successfully performed by everyone, they run (as in the

previous protocol) an execution of a standard MPC protocol to com-

pute an encryption CT of the desired output. Unlike the previous

scheme where CTwas computed using witness encryption, here we

use a regular secret-key encryption scheme. The secret key K used

for encryption is secret-shared amongst the parties who use their

respective shares as additional inputs to the MPC. The key K is also

loaded in each party’s secure hardware, and is in fact computed by

the secure hardware devices during an initial key-exchange phase.

As in the previous protocol, we require that the ciphertext CT
can only be decrypted if the release token α has been posted on

the bulletin board. The program P loaded in each party’s secure

hardware implements such a conditional decryption mechanism.

Specifically, upon receiving a ciphertext CT, a release token α and

a corresponding proof of posting σ , the program P verifies the

validity of α and σ . If the verification succeeds, then it decrypts CT
and returns the output; otherwise it returns ⊥.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

721

We remark upon two security issues: first, in order to prevent

malleability attacks, we require that an authenticated encryption

scheme is used in order to compute CT. Further, to prevent an ad-

versary from performing a related key attack (by changing its input

key share in the MPC), we require that the secure hardware also

provide commitmentsCi of each key shareKi to all the parties upon
generation of K . A party i is required to input the decommitment

to Ci in the MPC protocol, and the MPC functionality checks that

all the input key shares are valid by verifying the decommitment

information.

Second, for this protocol, we can completely dispensewith rewind-

ing and instead construct a black-box, non-rewinding simulator.

This is because the use of secure hardware allows the simulator to

“program” the output at the very end, when the adversary makes

a decryption query to its secure hardware.
3
Indeed, in the secure

hardware model, the simulator has the ability to observe (and mod-

ify) the queries made by the adversary to its secure hardware. This

means that when the adversary makes a final decryption query, the

simulator can check if it is valid. If this is the case, then it queries

the trusted party to obtain the function output. At this point, the

simulator sends a “fake” decryption query to the secure hardware

that already contains the desired output. Upon receiving this query,

the secure hardware returns the programmed output to the adver-

sary. We note that this programming technique for secure hardware

was recently used in [59].

Because of the above modifications, in this protocol, we can

model the bulletin board as a global functionality. In this manuscript,

however, we do not prove UC security of our protocol and leave it

for future work.

Realizing the Bulletin Board.Our constructions assume a public

bulletin board that is capable of producing an unforgeable proof

that a string has been published to the bulletin board. Such bul-

letin boards can easily be constructed practice if one is willing to

instantiate the board using a single trusted party. While this seems

a strong assumption, the advantage of this approach is that such

systems already exist and have been widely deployed in practice for

applications such as Certificate Transparency [1]. Re-using them

to achieve fairness in arbitrary MPC protocols requires no specific

to the existing systems.

Alternatively, a bulletin board can be realized using a decentral-

ized systems such as proof of stake blockchains (e.g., [49]). These
systems allow a quorum of honest users – who together possess

a majority ownership “stake” in a cryptocurrency – to securely

authenticate an append-only log using signatures. Finally, a weaker

notion of security can be achieved using a proof of work blockchain.

In the latter case, the “proof” of publication is not a cryptographi-

cally unforgeable signature, but rather the solution to a sequence

of one or more computational puzzles which may be, in practice,

prohibitively expensive for an attacker to forge.
4
We explore this

approach in our experimental implementation, although we stress

3
We also use an MPC in the common random string (CRS) model (e.g., [23]) to imple-

ment the first phase of the protocol. By using the CRS trapdoor, the simulator for this

phase can avoid any rewinding of the adversary.

4
In practice, such proof of work blockchains provide a slightly weaker security that is

related to ∆-fairness. An attacker, given enough time, may be able to forge the proof

of work necessary to prove publication. However, in the trusted hardware setting we

are able to mitigate this concern to some extent by requiring the attacker to provide a

proof in a limited period of time, as judged by the hardware.

that this is merely an implementation detail. Our bulletin board

could easily be replaced with one of the alternatives above.

Optimizations. We mention a few optimizations to the above

protocols to improve efficiency. First, we can add an optimistic
decryption phase in the above protocols that allows the parties to

learn the output using a simple decryption process, without using

the bulletin board, provided that all the parties are honest. Roughly,

the MPC protocol executed in the first phase now additionally

computes another encryptionCT′ of the function output, whereCT′

is implemented using a regular encryption scheme. The decryption

key K ′ corresponding to CT′ is secret-shared between the parties.

Now, if the release-token exchange performed in the second phase

is successful, then the parties execute a third phase (that we refer

to as the optimistic decryption phase) where they exchange the key

shares corresponding to K ′. If all the parties are honest, then they

all learn K ′ and use it to decrypt CT′, without using the bulletin

board. However, if one or more parties are adversarial and abort in

this phase, then the honest parties can still post the release token α
(that they learned in the second phase) on the bulletin board and

then use the proof of posting to decrypt CT as before.

We remark that in order to avoid related key attacks by an ad-

versary, we would need a slight modification to the above protocol

where the MPC in the first phase outputs commitments to each

key share K ′i to both the parties. During the optimistic decryption

phase, each party must reveal the decommitment value together

withK ′i . A party only accepts the key share as valid if the associated

decommitment information is correct.

Finally, we note that the size of the release token α = (α1,α2)
used in the above described protocols grows with the number of

partiesN . However, it is easy to make it independent ofN by setting

α = ⊕iαi and using β = f (α) to verify the correctness of release

token. An advantage of this modification is that the witness length

for the witness encryption used in our construction, as well as the

length of the string that is posted on the bulletin board becomes

independent of the number of parties.

2 RELATEDWORK
A large body of research work has addressed the problem of fair-

ness in secure protocols over the years. Below, we provide a non-

exhaustive summary of prior works. A more elaborate summary

can be found, e.g., in [17].

Fairness in Standard Model. Assuming an honest majority of

parties, fair MPC can be achieved in both computational [41] and

information-theoretic setting [61]. Cleve [25] proved the impossi-

bility of MPC for general functions n the dishonest majority setting.

Subsequently, an exciting sequence of works [7–9, 45, 47] have

shown that complete fairness can still be achieved for a restricted

class of functions. The works of [5, 14, 48] study the problem of

partial fairness.

Optimistic Models. Starting from the early work of [15], opti-

mistic models for fair exchange have been studied in a long se-

quence of works [11, 12, 30, 33, 54, 57]. An optimistic model for

fair two-party computation using a semi-trusted third party was

studied in [20, 51].

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

722

Gradual Release Mechanisms. A different approach to fairness

that avoids trusted third parties was considered in a long sequence

of works [18, 32, 35, 60], following the early works of [13, 31, 42].

The protocols in these works employ a “gradual release” mechanism

where the parties take turns to release their secrets in a bit-by-bit

fashion. The intuitive security guarantee (formalized in [34]) is

that even if an adversary aborts prematurely, the honest party can

recover the output in time comparable to that of the adversary by

investing equal (or more) computational effort.

∆-Fairness. Very recently, [59] considered a notion of ∆-fairness
with the guarantee that if an adversary aborts, then the honest party

can learn the output in time ∆ ·T , whereT is the time in which the

adversary would learn the output. They propose a fair two-party

computation protocol with (∆ = 2)-fairness assuming that all the

parties have secure hardware equipped with secure clocks.

Fairness with Penalties. Recently, with the popularity of decen-

tralized cryptocurrencies such as Bitcoin, a sequence of works [6,

17, 52, 53] have shown how to implement a fairness-with-penalties

model for MPC where adversarial parties who prematurely abort

are forced to pay financial fines. Prior works in similar spirit con-

sidered fairness with reputation systems [10] and legally enforced

fairness [24, 55].

3 DEFINITIONS
3.1 Fair Multi Party Computation
A secure fair multi-party computation protocol is a protocol exe-

cuted by n number of parties P1, · · · , Pn for a n-party functionality

F . We allow for parties to exchange messages simultaneously. In

every round, every party is allowed to broadcast messages to all

parties. We require that at the end of the protocol, all the parties

receive the output F (x1, . . . ,xn), where xi is the i
th

party’s input.
5

We formalize the security notion below.

Ideal World. We start by describing the ideal world experiment

where n parties P1, · · · , Pn interact with an ideal functionality for

computing a function F . An adversary may corrupt any subset

PA ⊂ P of the parties. We denote the honest parties byH .

Inputs: Each party Pi obtains an initial input xi. The adversary
Sim is given auxiliary input z. Sim selects a subset of the

parties PA ⊂ P to corrupt, and is given the inputs x
k
of

each party P
k
∈ PA .

Sending inputs to trusted party: Each honest party Pi sends its
input xi to the trusted party. For each corrupted party Pi ∈
PA , the adversary may select any value x∗

i
and send it to

the ideal functionality.

Trusted party computes output: Letx∗
1
, . . . ,x∗

n
be the inputs that

were sent to the trusted party. If any of the received inputs

were⊥, then the trusted party sends⊥ to all the parties. Else,

the trusted party sends F (x∗
1
, . . . ,x∗

n
) to all the parties.

Outputs: Honest parties output the function output they obtained

from the ideal functionality. Malicious parties may output

an arbitrary PPT function of the adversary’s view.

5
One can also consider asymmetric functionalities where every party receives a dif-

ferent output. Since there are generic transformations from the symmetric case to

the asymmetric case, we only consider symmetric functionalities for simplicity of

exposition.

The overall output of the ideal-world experiment consists of

the outputs of all parties. For any ideal-world adversary Sim with

auxiliary input z ∈ {0, 1}∗, input vector ®x , and security parameter λ,
we denote the output of the corresponding ideal-world experiment

by IDEALSim,F
(
1
λ , ®x , z

)
.

Real World. The real world execution begins by an adversary A

selecting any arbitrary subset of parties PA ⊂ P to corrupt. The

parties then engage in an execution of a real n-party protocol Π.
Throughout the execution of Π, the adversaryA sends all messages

on behalf of the corrupted parties, and may follow an arbitrary

polynomial-time strategy. In contrast, the honest parties follow the

instructions of Π.
At the conclusion of all the update phases, each honest party Pi

outputs whatever output it received from the computation. Mali-

cious parties may output an arbitrary PPT function of the view of

A.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input
vector ®x , and security parameter λ, we denote the output of the

MPC protocol Π by REALA,Π
(
1
λ , ®x , z

)
.

MPC with Complete Fairness. We say that a protocol Π is a

secure protocol if any adversary, who corrupts a subset of parties

and runs the protocol with honest parties, gains no information
about the inputs of the honest parties beyond the protocol output.

Definition 3.1. A protocol Π is a secure n-party protocol comput-

ing F with complete fairness if for every PPT adversary A in the

real world, there exists a PPT adversary Sim corrupting the same

parties in the ideal world such that for every initial input vector ®x ,
every auxiliary input z, it holds that

IDEALSim,F

(
1
λ , ®x , z

)
≈c REALA,Π

(
1
λ , ®x , z

)
.

Security with Abort. For our constructions, we shall require a

weaker security notion of MPC referred to as security with abort.

This definition differs from the above only in the ideal world, where

the adversary receives the output prior to the honest parties and

then decides if the trusted party should give the output to the honest

parties or not.

3.2 Authentication Scheme with Public
Verification

An authentication scheme with public verification consists of three

polynomial algorithms (Gen, Tag, Verify).

– Gen is PPT algorithm that takes as input λ and generates a

key for signing. sk← Gen(λ).
– Tag is a deterministic algorithm that computes a tag on a

message x . σ = Tagsk(x).
– Verify is a deterministic algorithm that allows for public

verification of the tag. Verify(x ,σ) returns 1 if the tag σ
verifies.

Definition 3.2. A scheme Σ = (Gen, Tag,Verify) is an authentica-

tion scheme with public verification if for any sequence of messages

m1, . . . ,mq and any PPT adversary A, the following is negligible

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

723

in the security parameter:

Pr

sk← Gen(λ);
∀i σi = Tagsk(mi);

(m′,σ ′) ← A
(
{mi ,σi }

q
i=1

) :

Verify(m′,σ ′) = 1∧
m′ < {m1, . . . ,mq }

3.3 Witness Encryption
In this section, we define witness encryption [39] and state its

relation with extractable witness encryption [19] for polynomial

witness languages.

Definition 3.3 (Extractable Witness Encryption). An extractable

witness encryption ExtWE = (Enc,Dec) for a NP language L asso-

ciated with relation R consists of the following algorithms:

– Encryption, Enc(1λ ,x ,m): On input instancex andmessage

m ∈ {0, 1}, it outputs a ciphertext CT.
– Decryption, Dec(CT,w): On input ciphertext CT and wit-

nessw , it outputsm′.

We require that the above primitive satisfies the following proper-

ties:

– Correctness: For every x ∈ L, letw be such that (x ,w) ∈ R,
for everym ∈ {0, 1},

Pr[m ← Dec(Enc(x ,m),w)] = 1

– Security: LetA be a PPT adversary such that the following

holds: for every x ,m0,m1, every auxiliary information z ∈

{0, 1}poly(λ):���Pr[1← A(1λ , Enc(x ,m0))] − Pr[1← A(1λ , Enc(x ,m1))]

��� ≤ ε

Then there exists a PPT extractor Ext such that:

Pr[w ← ExtA (1
λ ,x) : (x ,w) ∈ R] ≥ ε − negl

We now define the notion of polynomial witness languages.

Definition 3.4 (Witness Languages). Consider an NP language L

and let R be its associated relation. We say that L is a polynomial

witness language if there exists a fixed polynomial p such that for

every x ∈ L it holds that there exists a size p(|x |) set of witnesses

w such thatw ∈ {0, 1}poly(|x |) and (x ,w) ∈ R.

Definition 3.5 (Witness Encryption). A witness encryption WE =
(Enc,Dec) for a NP languageL consists of the following algorithms:

– Encryption, Enc(1λ ,x ,m): On input instance x , messagem
and it outputs a ciphertext CT.

– Decryption, Dec(CT,w): On input ciphertext CT and wit-

nessw , it outputsm′.

We require that the following properties hold:

– Correctness: For every x ∈ L, letw be such that (x ,w) ∈ R,
for everym ∈ {0, 1},

Pr[m ← Dec(Enc(x ,m),w)] = 1

– Message Indistinguishability: For every PPT adversary

A, there is a negligible function ε , such that for every x < L
the following holds:���Pr[1← A(1λ , Enc(x ,m0))] − Pr[1← A(1λ , Enc(x ,m1))]

��� ≤ ε .

The following theorem was shown in [19].

Theorem 3.6. Suppose L is a polynomial witness language. Then,
witness encryption for L implies extractable witness encryption for
L.

4 MODELING THE BULLETIN BOARD
We describe briefly our modeling of the bulletin board. The bulletin

board models a public ledger that lets parties publish arbitrary

strings. On publishing the string on the bulletin board, the party

receives a proof to establish the string was indeed published. In our

setting, we model these proofs via authentication tags that can be

publicly verified and the string subsequently publicly accessible.

For security, we require that the authentication tags follow the

standard notion of unforgeability described earlier (see definition

3.2).

In addition, the bulletin board implements a counter. Each time a

string is published on the bulletin board, the counter is incremented

and the authentication tag is produced on the string and counter

pair. While the counter value of the bulletin board is assumed to

be publicly accessible, we shall model it as an explicit query. The

counter also serves as an index to the string on the bulletin board.

Hence, we model the bulletin board BB through the following

queries:

– getCurrentCounter: the bulletin board returns the current

value of the counter.

t ← BB(getCurrentCounter).

– post: on receiving value x , the bulletin board increments the

counter value by 1 to t , computes the authentication tag on

(t | |x) and responds with the tag and t to the posting party.
The value and the corresponding tag can be retrieved by

querying the bulletin board on t .

(σ , t) ← BB(post,x)

such that VerifyBB(σ , (t | |x)) = 1.

– getContent: on receiving input t , it returns the value and the
corresponding tag stored at counter value t . If t is greater
than the current counter value, it returns ⊥. Else,

(σ ,x) ← BB(getContent, t)

We note that bulletin boards have previously been considered in

works such as [50], but their model differs significantly from ours.

5 FAIR MPC FROMWITNESS ENCRYPTION
Overview. We start by giving an overview of our protocol. Our

protocol builds on anMPC protocol that achieves the weaker notion

of security with abort, where the fairness condition is not required

to hold. The initial phase constitutes of the parties using this unfair

MPC protocol to compute a witness encryption ciphertext of the

function value they wish to compute. To decrypt, a party must

post messages of a specific form (referred to as “release tokens”)

on to the bulletin board which the bulletin board validates with

an authentication tag. The idea then is that any party can use this

posted information and authentication tag to decrypt the witness

encryption ciphertext. The release token must include shares of all

parties that are secret prior to the completion of this initial phase.

These shares must also be easily verifiable. Our construction uses

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

724

injective one-way functions, where the images of these shares are

sent out during the initial phase.

The next phase, on completion of the initial phase, constitutes

of parties sending these secrets to every other party. Once a party

releases its share, it must not abort until it is sure that the other

parties cannot post to the bulletin board, and hence decrypt the

message thereafter. Otherwise, the adversary on receiving the secret

shares will wait for the honest parties to abort before posting to the

bulletin board. This is resolved by parameterizing the protocol by a

cut-off period which once elapsed, effectively ends the protocol. If

there isn’t a valid post to the bulletin board at this time, no party

gets the output.

To argue security, we require each statement in the language

corresponding to the witness encryption to have only a polynomial

size witness set. To do so, we use an injective one-way function

and a unique signature scheme. The witness for the statement are

the pre-images of the values sent during the initial phase, and the

corresponding tag from the bulletin board. This pair is unique for

a given statement. But we need to incorporate the cut-off period

into the witness. This is enforced by the counter in the bulletin

board as described in section 4. In the protocol, this translates to

a window (set) of counter values which qualify as the additional

variable in the witness. To ensure that the number of witnesses

are still polynomial, the window size has to be polynomial. We

parameterize the protocol with the size of this window, and the

parties choose the start point of the window.

As discussed in the introduction, for the proof in this model, it

is essential that the simulator is able to reset the bulletin board to a

prior point (in essence, rewinding).

– rewind: This functionality is reserved for the simulator in

the ideal world. On receiving additional input t , the bulletin
board internally resets its counter to t and clears all data

stored beyond the counter value t . The simulator gets no

output on this query.

⊥← BB(rewind, t)

We want to stress that this additional capability is only limited

to the construction in this section and the construction in the next

section (using trusted hardware) we will not require this.

We additionally discuss an extension to an optimistic phase

where the parties can share some additional secrets (different from

before) that enable them to decrypt a (different) ciphertext con-

taining the output, without having to post to the bulletin board.

Of course, the adversary can prematurely abort in this phase and

obtain the output for itself. To protect against this, the optimistic

phase is reached only once it has been established that the parties

have enough information that would enable them to use the bulletin

board, to decrypt to the output, in case the adversary aborts in this

phase.

Construction.We now proceed to describe our protocol Πfair. It

uses the cryptographic primitives and a bulletin board as described

below. The formal protocol description is given in Figure 1.

(1) A injective one-way functions f .
(2) An authentication schemewith public verification (Gen, Tag,

VerifyBB) such that the authentication tags are unique for a

given message.

(3) A witness encryption WE for the language

LWE,∆t =
{ (
{yi }i ∈[n],T

) ��� ∃ (
t ,σ , {ρi }i ∈[n]

)
s.t.

(∀i ∈ [n], yi = f (ρi)) AND

t ∈ {T ,T + 1, · · · ,T + ∆t} AND

VerifyBB((t | |ρ1 | | · · · | |ρn),σ) = 1

}
For a given x ∈ LWE,∆t , if f is an injective one-way function

and (Gen, Tag,VerifyBB) is a scheme that generates unique

authentication tags, it is easy to see that there are only ∆t +1
witnesses for x . If ∆t is set to be polynomial in the size of x ,
there are only polynomially many witnesses for any given

statement, and thus LWE,∆t is a polynomial witness language

(see Definition 3.4). From Theorem 3.6, given LWE,∆t is a

polynomial witness language, we know that a witness en-

cryption for LWE,∆t is also an extractable witness encryption

for LWE,∆t .

(4) An MPC protocol that computes:

F ′∆t ((x1, ρ1, t1), · · · , (xn , ρn , tn)) =
(
c, { f (ρi)}i ∈[n] ,T

)
where T = max(t1, · · · , tn) and c = WE.Enc(xWE,∆t ,F (x1,
· · · ,xn)) for xWE,∆t = ({ f (ρi)}i ∈[n] ,T). We do not require

this protocol to be fair. Importantly, we use the MPC protocol

in the common random string (CRS) model. This allows for

black-box simulation of the adversary without the necessity

of rewinding. For this section, we shall drop the CRS notation,

but it will be implicit.

Remark 1. In the construction described above, the size of the
witness encryption circuit is dependent on the number of parties in
the protocol. This can be remedied by using the XOR of the ρi values
as the release token, and applying the injective one-way function on
this. The rest of the protocol remains the same.

5.1 Proof of Security
We prove the security of our construction in the F ′∆t -hybrid model.

Simulator S. We start by constructing a simulator S. Our simu-

lator uses rewinding strategy similar to the one described in [44]

(which in turn builds on [40]). The simulator has access to an ideal

functionality for computing F , and simulates F ′∆t for the real world

adversary. In addition, for the proof in this model, the simulator re-

serves the right to reset the bulletin board to prior point (in essence,

rewinding). (We will not require this property in the protocol based

on secure hardware.) Further, S forwards any queries the adver-

sary makes to the bulletin board, and returns the corresponding

response from the bulletin board.

(1) S receives inputs {(xa , ρa , ta)}a∈A sent by the adversary

that are intended for F ′∆t .

(2) Mark the current value of the counter so that S can rewind

the bulletin board to this point.

tmark ← BB(getCurrentCounter)

(3) S simulates the output of ideal functionality computing F ′∆t
as follows:

(a) Set T = max{{ta }a∈A , tmark}.

(b) Randomly pick {ρh }h∈H for the honest parties.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

725

Protocol Πfair in the F ′∆t -Hybrid model
Inputs: Each party Pi has an input xi .
Common input: The verification key for the bulletin board vkBB.
The protocol:

(1) Computation of F ′∆t .

– Pi samples token ρi
$

← {0, 1}poly(λ).

– Pi queries the bulletin board to get the current counter value, i.e. ti ← BB(getCurrentCounter).

– Pi sends (xi , ρi , ti) to the ideal functionality F ′∆t and receives

(
c, {yi }i ∈[n],T

)
. It aborts if it receives ⊥ from the ideal

functionality.

(2) Exchange of tokens. Pi broadcasts ρi to all other parties, and receives {ρ̂l }l ∈[n]\{i } .

(3) Obtaining the output. We split this into three cases, where either (i) Pi can post on the bulletin board to receive a valid

witness; or (ii) Pi waits for another party to post to the bulletin board; or (iii) no party posts to the bulletin board.

(i) Pi received ρ j from all the other parties, such that ∀j ∈ [n] \ {i} : f (ρ j) = yj . In this case, Pi waits for the counter to get to T
before posting to the bulletin board. Prior to posting, it check to see if another party has already posted the same. This could

be done either by observing the broadcasts sent (to the bulletin board), or querying the bulletin board at most ∆t times. On

obtaining the appropriate authentication tag, the witness encryption can be decrypted to get the output.

(ii) Pi received a ρ j such that f (ρ j) , yj , or ρ j =⊥ (i.e. a party didn’t send its token). In this case, Pi checks if the right message is

posted to the bulletin board for counter values between T and T + ∆T . If it finds the right value, it obtains the authentication
tag and decrypts the witness encryption to get the output.

(iii) If there are no posts on the bulletin board satisfying the given requirements, and the counter has progressed beyond T + ∆t ,
Pi aborts.

Figure 1: Πfair in the F ′∆t -Hybrid model. The protocol relies on the security of witness encryption for a polynomial witness
language, injective one-way functions and authentication scheme with public verification and unique tags.

(c) ∀i ∈ [n], yi B f (ρi).
(d) Compute ôut← F(x̂1, · · · , x̂n) where x̂h = 0 for all h ∈
H .

(e) Set xWE B
(
{yi }i ∈[n],T

)
and compute

c ←WE.Enc
(
xWE, ôut

)
.

(f) Send (c, {yi }i ∈[n],T) to the adversarial parties.

(g) If the adversary responds with an abort, S sends abort to
the ideal functionality computing F , and exits. For our

analysis, we denote this by abort1.
(4) S sends values {ρh }h∈H to the adversary. If the adversary

sends values {ρa }a∈A such that ∀a,ya = f (ρa); or sends
a post query to the bulletin board with value (ρ1 | | · · · | |ρn)
when counter value is betweenT andT+∆t such that∀i,yi =
f (ρi), the adversary has not aborted.

(5) If the adversary aborted in the previous step, S sends abort
to the ideal functionality computing F , and exits. For our

analysis, we denote this by abort2.
(6) If the adversary didn’t abort prior to this, we need to estimate

the probability of the adversary not aborting. Letq represents
the true of probability of this event, where the randomness is

over random coins used in step 3(b) and 3(e). The estimated

probability will be denoted by q̃.
(a) S fixes some number t = poly(λ).
(b) S rewinds the adversary to step 3, rewinds the bulletin

board BB(rewind, tmark) and repeats steps 3 and 4 (other

than 3(g)) with fresh randomness each time. Repeat till

the adversary has not aborted t times.

(c) S estimates q as q̃ = t
of repetitions

. The polynomial defin-

ing t is chosen to be large enough that

Pr
[
1

2

≤
q

q̃
≤ 2

]
> 1 − 2λ .

(7) The simulator sends {xa }a∈A to the ideal functionality for

F and receives out. S repeats the following at most
t
q̃ times.

(a) With fresh randomness each time, S rewinds the adver-

sary to step 3, rewinds the bulletin board BB(rewind,
tmark) and repeats steps 3 and 4 (other than 3(g)) replacing

ôut with out.
(b) If the adversary does not abort, we output its view and

the simulator terminates.

(8) If S has not terminated yet, output fail and terminate the

simulation.

Claim 1. If simulator S does not outputs fail, the hybrid world
and the ideal world are indistinguishable.

Proof. We split the analysis into two cases:

– Case 1: The adversary does not abort. Since the simulator

does not output fail, it has successfully got the adversary to

accept the transcript for the right output. In this case, the

main thread of the adversary is statistically indistinguishable

from the real execution. Additionally, since the simulator is

able to rewind the bulletin board, the adversary’s view of

the bulletin board is that of a straight line execution. Thus

the joint distribution consisting of the view of the adversary

and the honest party outputs is indistinguishable.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

726

– Case 2: The adversary aborts. As noted in the simulator, the

adversary can abort in two phases of the protocol. We deal

with the two case separately:

abort1: The adversary aborts immediately after running the

MPC for F ′∆t . In both the real and ideal world, honest par-

ties do not get any output. Thus, we need to argue that the

adversary’s view is indistinguishable when he receives a wit-

ness encryption of the actual output as opposed to when he

received the witness encryption of a random string. To the

contrary, assume that the adversary can distinguish between

these two cases. Since there only polynomially many wit-

nesses, we use the extractor for the adversary to recover the

witness. Since the honest parties aborts without revealing its

share of the token, we can use the extractor to construct an

adversary that breaks the security of the injective one-way

function.

abort2: The adversary aborts on receiving the honest party’s
tokens without posting to the bulletin board. We use the

same technique as above, leveraging the extractor for wit-

ness encryption, to construct an adversary that breaks the

unforgability of the authentication tags issued by the bulletin

board.

�

Claim 2. The simulator S outputs fail with only negligible proba-
bility.

The proof can be found in Appendix A.;

We assume that the value ofT chosen in the protocol is such that

the real execution of the protocol ends in time bounded above by a

polynomial д(λ). Otherwise F ′∆t implements an additional check

to ensure this.

Claim 3. The simulator S runs in expected polynomial time.

Proof. With probability 1−q, the simulator aborts prior to step

6. With probability q, the simulator goes through the estimation

phase and then attempts to force an accepting transcript onto the

adversary. The expected number of iterations for the estimation

phase is
t
q and the cut-off point for forcing the transcript is

t
q̂ <

t
2q .

Hence the total expected running time is bounded by

д(λ) · q ·

(
t

q
+
2t

q

)
= д′(λ)

Thus S runs in expected polynomial time. �

Given the above claims, the following theorem follows.

Theorem 5.1. Assuming the security of injective one-way func-
tions, witness encryption for polynomial witness language and the
unforgeability of the authentication scheme, the above protocol satis-
fies Definition 3.1 in the F ′∆t -hybrid model.

Asmentioned in the introduction, in order to rely on the standard

security ofWE, we require the bulletin board’s proof of publish to be

implemented via unique signatures [43, 56]. If the bulletin board is

implemented via standard signatures (e.g., in Google Transparency

Certificates) or proofs of stake (e.g., in Etherium), then we require

the stronger assumption of extractable witness encryption [19].

6 FAIRNESS FROM SECURE HARDWARE
A key limitation of our previous constructions is the need to use

Witness Encryption (WE) to protect the output of the MPC protocol.

Unfortunately, current proposed WE construction are inefficient,

due to the high overhead of current constructions of multilinear

maps. Moreover, the Witness Encryption paradigm requires the

parties to compute a new WE ciphertext for each invocation of the

MPC protocol.

In this section we investigate an alternative paradigm that uses

secure hardware. Our work is motivated by the recent deployment

of commodity virtualization technologies such as Intel’s Software

Guard Extensions (SGX). These technologies allow for the deploy-

ment of secure “enclave” functionalities that can store secrets and

perform correct computation even when executed in an adversarial

environment. Moreover, these systems allow an enclave to remotely

attest to their correct functioning, which allows for the establish-

ment of trustworthy communications between enclaves running

on different machines.

Model Following the approach of Pass et al. [59] we model all

available trusted hardware processors from a given manufacturer

as a single, globally shared functionality denoted Gatt (see Figure 5).

We describe the functionalities required for our construction, and

refer the reader to [59] for details. install loads the program prog
onto the attested hardware. It returns an enclave identifier eid. (For
simplicity, we skip the session identifier used in [59].) The enclave

identifier is be used to identify the enclave upon resume. resume
allows for a stateful resume using the unique enclave identifier

generated. On running over a given input, the output produced is

signed to attest that the enclave with identifier eid was installed

with a program prog, which was then executed to produce the

output. The program’s input is not included in the attestation.

Description. We describe here the main ideas in this construction

that differ from the previous construction. Upon loading the pro-

gram onto the attested hardware (enclaves), there is an initial key

exchange to establish a secure authenticated channel between the

enclaves. Any information passed over this channel is hidden from

the parties. It is important that enclaves attest to the fact that they

are running the correct programs prior to the key exchange.

Next, the shares of the release token and the key are input to

the enclave. The enclaves use the established secure authenticated

channel to exchange this information and set up consistent param-

eters (over all enclaves) for the decryption circuit. The parties then

run an MPC protocol external to the enclaves to compute an en-

crypted version of the output. As in our previous construction, the

players exchange shares of the release token that they are required

to post onto the bulletin board in order to decrypt.

For technical reasons, we need to ensure that the key share that

a party sends to the enclave is the one used in the MPC. This is en-

sured by using a commitment scheme which the MPC computation

verifier before returning the output.

Our protocol makes requires the following primitives:

(1) A one-way function f .6

(2) A signature schemes (Gen, Sign,Verify).

6
In practice we suggest using a hash function.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

727

(3) An authentication schemewith public verification (Gen, Tag,
VerifyBB).

(4) A multi-party computation in the CRS model for computing

F ′ defined as

F ′
({
xi ,ki , {comi j }j ∈[n], ri

}
i ∈[n]

)
=

⊥ if ∃i, i ′ s.t.
(
{comi j }j ∈[n]

)
,
(
{comi′j }j ∈[n]

)
⊥ if ∃i s.t. comii , Com(ki ; ri)

y otherwise

where y = AE.Enc⊕n
i=1 ki

(F (x1, · · · ,xn)). Essentially the

MPC takes in a the input, key share, a commitment tuple

and a decommitment from each party. It checks if the tuple

pairs received are the same throughout and the commitment

linked to each party decommits to the key share. If this check

fails it just returns ⊥, or it returns the output y.
(5) Two instances of AE scheme (Enc,Dec) with INT-CTXT

security for authentication and semantic security.

(6) A commitment scheme (Com) with computational hiding

and statistically binding.

We describe and prove the protocol in the two party setting.

Both extended naturally to the multi-party setting. The protocol is

described in Figure 2.

We note that there are two trapdoors installed into functionalities

of progfair. These are used for the security reduction of the one-way

function, and to program the output correspondingly. Specifically,

the trapdoor is used to get the enclave to attest to a value of choice.

These trapdoors can be used by an adversarial party, but this makes

no difference to the security since these values are not sent across

to the other party.

Theorem 6.1. Assume that F is one-way, the signature scheme is
existentially unforgeable under chosen message attacks, the authenti-
cation scheme satisfies standard notion of unforgeability, the encryp-
tion scheme is perfectly correct, authenticated encryption scheme that
is perfectly correct and satisfies standard notions of INT-CTXT and
semantic security, decisional Diffie-Hellman assumption holds in the
algebraic group adopted. Then, the above protocol satisfies Definition
3.1 in the (Gatt,F ′)-hybrid model.

The proof can be found in Appendix A.2.

7 INSTANTIATING THE BULLETIN BOARD
Our proposed paradigm relies on a verifiable public bulletin board

that makes three guarantees about entries posted to it:

– The entry’s presence can be cryptographically verified using

a public operation.

– Once posted, the entry is available to all parties.

– Entries are assigned a unique monotonically increasing se-

quence number.

We now consider several existing techniques that we can leverage

to obtain such a bulletin board.

Certificate TransparencyLogs.Certificate Transparency (CT) [1]
is a public audit log operated by a coalition of browser vendors and

certificate authorities. CT allows individual certificate authorities

to post newly-issued certificates to a public log. These entries are

then (1) signed by the log maintainer, and (2) added to a Merkle

hash tree. The root of the hash tree is also signed by (one or more)

log maintainers and published to the world.

A collection of users known as monitors can access the CT log

to view the contents of certificates. While the CT log is itself not

fundamentally tamper resistant – since the servers operating it can

remove portions and/or be disabled by remote network attacks –

any tampering is detectable due to the structure of the Merkle hash

tree. The location of the entry within the Merkle hash tree also

serves to act as a proxy for a monotonically increasing sequence

number.

Under the assumption that the existing CT logs are reliable and

trustworthy, we can use CT to build fairness systems by entombing

the required public data into a component of an X.509 certificate

signing request and requesting the certificate from a free certificate

authority such as LetsEncrypt [2]. Because LetsEncrypt submits all

certificates to a public log
7
it is possible for any party to recover

these certificates and verify a cryptographic proof that the entries

have been published.

Public blockchains.Crypto-currencies such as Bitcoin or Etherium
rely on a publicly available data structure called a blockchain. Block-
chains are an append-only ledger that is maintained by an ad-hoc

group of network peers. Blockchains come in two basic types. The

first type use computational proofs of work to determine which

peer should be allowed to add a new block of transactions to the

blockchain. Clients accept the longest chain that contains well

formed transactions; as a result the system is secure as long as a

supermajority of the computational power in the network is con-

trolled by honest peers. This approach is tolerant of churn, and

thus we need not pick a set of honest parties in advance.

An alternative approach uses proof of stake [16]. In these systems

a quorum of peers is sampled from the network with probability

proportional to the fraction of monetary holdings controlled by

each peer. This quorum is responsible for producing the next block

and selecting the next quorum by the same mechanism. The peers

authenticate the resulting block by signing it using a secure digital

signature scheme. The security assumption here assumes that the

parties with the largest share of the cryptocurrency have a vested

interest in keeping it running. Proof of stake systems are in their

infancy both in terms of deployment and theory. However, they

provide an interesting middle ground between the costs of a pure

proof of work approach and the challenges with selecting a set of

trusted parties a priori to maintain the bulletin board.

8 IMPLEMENTATION
In this section we present an implementation of the protocol given

in Section 6, and show that the protocol is efficient. Our implemen-

tation consists of three major pieces: the bulletin board instantiated

using Bitcoin, the MPC protocol instantiated using the SPDZ frame-

work [3, 29], and a “witness decryptor” instantiated using an Intel

SGX secure enclave. We describe each component in more detail

below.

7
See https://crt.sh/?id=15707024

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

728

progfair[∆t , P0, P1, vkBB, i] where i ∈ {0, 1} //for party Pi

On input (“keyex”):

Let a
$

← Zp , and return дa

On input (“init”, k , t , ρ, r):
let ki B k , ti B t , ρi B ρi
comi B Com(ki ; r), return comi

On input (“send”, дb):

let sk =
(
дb

)a
, cti ← AE.Encsk(ki , ti , ρi , comi)

return cti
On input (“receive”, ct′

1−i):

assert “init” and “send” have been called.

(k1−i , t1−i , ρ1−i , com1−i) B AE.Decsk
(
ct′
1−i

)
return com1−i

On input (“getParams”, v):
assert “init”, “send” and “receive” have been called

T B max{t0, t1}, y B f (ρ0 ⊕ ρ1), K B k0 ⊕ k1
if v ,⊥, return v , else return (T ,y)

On input (“output”, ctMPC, t , ρ, σ , v):
if v ,⊥, return v
assert “getParams” has been called

assert t ∈ {T ,T + 1, · · · ,T + ∆t}
assert f (ρ) = y
assert VerBB(t , ρ,σ)
return AE.DecK (ctMPC)

Protfair[F ,∆t , P0, P1, vkBB, i] where i ∈ {0, 1} //for party Pi , Pj = P1−i

Input: xi
Protocol:

(1) let eidi ← Gatt.install(progfair[∆t , P0, P1, vkBB, i]).

(2) Initiate the key exchange procedure. Let (дa ,σi) ← Gatt.resume(eidi , “keyex”). Send (eidi ,дa ,σi) to Pj , await
(
eidj ,дb ,σj

)
from Pj .

Check if Vermpk((eidj , progfair[∆t , P0, P1, vkBB, j],д
b),σj) = 1, else abort.

(3) ki
$

← {0, 1}λ , ρi
$

← {0, 1}λ , ri
$

← {0, 1}λ , ti ← BB(getCurrentCounter).
(4) Initialize the enclave with the values obtained in the previous step. (comi , _) B Gatt.resume(eidi , “init”, ρi ,ki , ti , ri).
(5) Set up the exchange of information between enclaves. Let (cti , _) ← Gatt.resume(eidi , “send”). Send cti to Pj and wait for ctj in

response. On receiving ctj , send it to the enclave (com1−i , _) ← Gatt.resume(eidi , “receive”, ctj). At this point, both commitments are

available to the party.

(6) Get parameters for the MPC computation, (T ,y) ← Gatt.resume(eidi , “getParams”,⊥)

(7) Send (xi ,ki , com0, com1, ri) to F
′
and receive ctMPC. Abort if ⊥ is received. // ctMPC of the form AE.EncK (F (x0,x1))

(8) Send token share ρi to Pj and wait for token share ρ j .
– If ρ j not received, or f (ρ0 ⊕ ρ1) , y, then wait to see if Pj posts the right value on the bulletin board, when the counter is between

T and T + ∆t . If the counter goes beyond T + ∆t , and no such value posted, abort. If the right value is posted at counter tBB,
(σBB, ρ) ← BB(getContent, tBB).

– ρ j received and f (ρ0 ⊕ ρ1) = y. Wait for the counter value to get to T , and then post ρ0 ⊕ ρ1 on the bulletin board to get the

corresponding authentication tag, i.e. (σBB, tBB) ← BB(post, ρ0 ⊕ ρ1).
– Output Gatt.resume(eidi , “output”, tBB, ρ0 ⊕ ρ1,σBB,⊥).

Figure 2: Two party fair protocol Protfair in the (Gatt,F ′)-hybrid model.

Initialization Decrypt

mean 1.180 ± 0.112 0.039 ± 0.001

mean 0.002 ± 0.000 0.037 ± 0.001

Table 1: Performance of SGX enclave setup and decryption (not MPC). Average and standard deviation of 500 runs.

Bitcoin as a bulletin board. For our prototype implementation

we use the Bitcoin network, which supports a limited scripting

system called Bitcoin Script. In Bitcoin each transaction contains

a script that is evaluated to ensure the transaction is authorized.

This scripting system supports an instruction named OP_RETURN,
which allows the sender of a transaction to embed up to 40 bytes of

arbitrary data into a transaction that is transmitted for inclusion in

the Bitcoin blockchain. Each block of transactions in the blockchain

contains a computational proof of work (PoW) that is computed

by the network. This proof is bound cryptographically to all of the

transactions within a block, as well as to the hash of the previous

block. At current network difficulty, computing a proof of work for

a single block requires an expected 2
64

invocations of the SHA2

hash function on the standard Bitcoin network. To verify publica-

tion on the bulletin board, our implementation requires a fragment

consisting of six consecutive blocks (where the transaction is lo-

cated in the first block of the fragment). The cost of forging such a

fragment scales linearly in the number of blocks required.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

729

We note that the use of a computational proof of work bul-

letin board provides somewhat different fairness properties than a

signature-based bulletin board, e.g., Certificate Transparency or a

proof-of-stake blockchain. Specifically, in this setting an attacker

with sufficient time or computational power can always “forge” a

satisfying chain of blocks, and use this private result as a witness

to enable decryption. Such an attack would be economically costly,

since the corresponding effort – if applied to crypto-currency min-

ing –would be worth a substantial sum of money.
8
However, we can

further restrict this attacker by employing a trusted clock within

the witness decryptor (e.g., Intel SGX) 9. This optimization requires

the attacker to complete the forgery within a pre-defined time limit

that approximates the expected time for the full Bitcoin network.

Thus a successful attacker must possess most of the available hash-

power of the Bitcoin network (which currently approximates the

electrical consumption of Turkmenistan).

For our experiments, we use the public Bitcoin testnet. The

Bitcoin testnet functions similarly to the main Bitcoin network, but

uses a zero-value currency and a low difficulty setting for the proof

of work. We selected testnet for our experiments mainly because

blocks are mined extremely rapidly and transactions require no

monetary expenditure for “transaction fees”. However our code can

use the production Bitcoin blockchain without any code changes.

MPC Protocol. Our protocol can be used to extend any MPC

scheme that supports efficient symmetric encryption. We note that

one could employ Intel SGX directly to perform a naive form of

MPC. However, our goal in this work is to demonstrate that our

approach works efficiently even when instantiated with a “crypto-

graphic” MPC protocol.
10

Thus for our implementation we use the SPDZ-2 framework

developed by the University of Bristol [3]. SPDZ-2 is designed to

tolerate dishonest majorities during computation. In SPDZ circuits

are designed in python and then compiled down into a circuit struc-

ture. The computation is done in two phases: an offline phase that

does not require the computation inputs and an online phase that

performs the actual computation. In order to optimize the running

time of the online phase, the pre-computation and compilation

phases are relatively more time consuming.

The maintainers of SPDZ-2 have implemented the AES-128 ci-

pher in order to benchmark its efficiency. We repurpose this code

to build a simple authenticated encryption system for that uses 3

rounds of AES to encrypt and authenticate one 128-bit block of

data output from the computation. The encryption scheme takes

as input each party’s private computation input xi and keyshare

ki . It computes as output a ciphertext C encrypted under msk. We

also use this AES-128 cipher to implement a commitment scheme.

8
At present rates as of July 2017, this opportunity cost is approximately $28,000 per

block forged.

9
Correctly accessing trusted time from within an enclave is part of the Intel SGX

specification, but it is not yet supported as it relies on platform services which are not

active. In our implementation, we include code to properly access trusted time, but do

not include it in our measurements because of the lack of support.

10
Additionally, we remark that if SGX is used to implement the MPC protocol itself,

a security breach of the SGX system will result in the loss of all security properties

provided by the MPC. On the other hand, if we employ a cryptographic MPC protocol,

then a failure of Intel’s SGX risks only the fairness property. We view this as a benefit

of our approach.

The randomness of the commitment scheme is used as the key to

the cipher, with the commitment message as the plaintext.

We construct an MPC circuit for SPDZ-2 that takes in a private

input xi , a keyshare ki , a randomness share ri , and commitment to

the master key com(msk; r). The first circuit computes the output

of the desired MPC functionality f (x1, . . . ,xN). Next it computes

r = ⊕1≤i≤N ri and opens the commitment. It compares ⊕1≤i≤N ki
with the msk from the commitment. If they do not match, sets

f (x1, . . . ,xN) = 0. Finally, the circuit computes the encryption of

f (x1, . . . ,xN) using msk and outputs the final ciphertext.

SGX as Witness Decryptor. Intel’s SGX is a set of extensions to

the x86 instruction set that allows for code to be executed in a

protected enclave. SGX programs are segmented into two pieces:

an untrusted application and a trusted enclave. The application

consists of standard software running on a standard operating

system and we assume that it may behave maliciously if the ith

player is corrupted. Code within an enclave is verified upon startup

and isolated from inspection and tampering, even from an adversary

that controls the system’s operating system. The root of trust of

an SGX enclave is the Intel processor, which enforces the enclave’s

isolation. It is worth noting that the code run within an enclave is

not private; however secrets may be generated or retrieved after

the enclave is initialized. Note that the enclave has no direct access

to network communications, and must rely on the untrusted part

of the application.
11

We adapt an existing SGX-bitcoin client called Obscuro [4] to

perform the role of the Witness Decryptor. This enclave is instanti-

ated by each of the N parties participating in the protocol. A single

master instance of the enclave uses the sgx_read_rand function,
supplied by the SGX environment, to generate an AES master key

msk that will eventually encrypt the output of the MPC circuit.

Additionally, the master enclave generates a random 320-bit re-

lease token t that must be verifiably posted to a bulletin board

before the ciphertext can be decrypted. Next, the master applies a

secret sharing scheme to derive secret shares (k1, . . . ,kN) of msk
and (t1, . . . , tN) of t. Finally, the master computes a commitment

com(msk; r) and secret shares the randomness into r1 . . . rN . Now

for i = 1 to N it distributes the tuple (ki , ti ,msk, t, com(msk; r), ri)
to the ith enclave via a secure channel.

12

Once all secrets have been distributed by the master enclave, the

channels are closed and each enclave outputs its key share ki to
the application. The users now invokes SPDZ to conduct the MPC

protocol, using as its private inputs xi , ki , ri , and com(msk; r). If the
MPC protocol does not complete successfully, the application aborts

and a full restart is required. Otherwise, the application obtains a

ciphertextC output by the MPC protocol and provides this as input

to the enclave. The enclave attempts to decrypt the ciphertext under

msk and if and only if this decryption check completes successfully

(and the result is the proper format and length), it releases ti , which
the application then transmits to all of the remaining parties.

To access the encrypted output of the MPC, at least one party

must re-compute the release token as t = (t1 ⊕ · · · ⊕ tN) and post

11
This enables the application to censor or tamper with communications between the

application and the network.

12
SGX supports the creation of authenticated, secure channels using attestation and

DHKE.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

730

this value to the Bitcoin network inside of a transaction. Each user’s

application monitors the Bitcoin network using RPC calls to a local

Bitcoin client bitcoincli which is running on the user’s machine.

This userland code then feeds the resulting blockchain fragment

(which consists of six consecutive blocks) back to the enclave, which

confirms that the release token matches its stored value t, and also

verifies the proofs of work on each block. While an adversarial user

can block this response, they are unable to falsify or tamper with it

due to the fact that such tampering would require an impractical

amount of computation. The application also supplies the enclave

with the output of the MPC C .
If all verifications succeed, the enclave decrypts the ciphertextC

using an authenticated encryption scheme under msk, and outputs

the resulting plaintext.

Optimizations. In a bid to optimize the implementation, there are

a few differences from the described protocol in section 6. They do

not make a difference to the security of the protocol, and are briefly

described here:

– Instead of each party generating its key and token shares,

a designated master enclave chooses them and distributes

them to the other enclaves.

– Instead of a commitment for each share of the key, there is

only a single “master commitment” of the key.

Sample computation and performance. For proof of concept,
we implemented a search program that takes as input a search value

x from one party and a list (y1, . . . ,yn), from the other party. These

circuits each calculate an integer output M and encrypt the result

as Enc(
⊕n

1
ki ;M). Since these are two-party functions we tested

with N = 2 and n = (100, 500, 1000).

Figure 3: Mean runtimes for a linear search on n items using
SPDZ taken over 50 iterations. Only the online portion of
the MPC is shown. In blue, we show the cost of running the
search without any provision for fairness. In red, the over-
head from AES encryption needed for fairness.

Cost of fairness in the MPC. Our implementation demonstrates

that our approach can be used add fairness to MPC schemes effi-

ciently using current technology. We recall that fairness in MPC is

Figure 4: Mean runtimes for our AES circuit varied over the
number of players participating. Only the online portion of
the MPC is shown. This circuit is dominated by 3 AES oper-
ations.

particularly important when the output of the MPC is extremely

valuable.While adding three rounds of AES to a simpleMPC scheme

represents a high cost, it adds a only a negligible cost when consid-

ering more time consuming computations. In Figure 3 we show the

average runtime over 50 trials of a number of different circuits in

SPDZ-2. The cost of encryption is clearly dwarfed by large search

problems and set intersection.

While we ran the MPC experiments with N=2 players, SPDZ-2

allows computationswithmore players. In Figure 4we consider only
the cost of running the encryption component of the MPC protocol

with higher numbers of players. Because each player contributes

a key share, the cost of running the protocol increases with each

player. While the runtime of the encryption operation does increase,

we note that it is still adds only a fraction of one second of online

computation time up to N = 6.

SGX Runtime. Intel SGX offers an extremely efficient method

of trusted program execution. We benchmark our SGX Enclave

over 500 trials of the two party protocol for some fixed parame-

ters. We run our test on an Intel i5-6600K 3.5GHz processor with

16 GB of RAM running Ubuntu 14.04 and SGXSDK-1.7, running

both the master and minion on the same hardware. For the pur-

pose of benchmarking, we hardcode into the master enclave the

master AES key and fix the release token to be the results of an

OP_RETURN instruction in a known block of the Bitcoin Testnet.

Additionally, we run the MPC protocol once to generate a valid

ciphertext. With the pre-fixed values, we can effectively check the

running time of the various parts of the enclave’s execution. All

key exchange and interaction with the bitcoincli is still run as in

the real protocol. In Table 1 we show the average running times of

the various segments of the enclave, both for the master instance

and minion instance. For the minion’s execution time, we pause the

timer while it is waiting for the minion to open a network connec-

tion. It is clear that the slowest piece of the program is the enclave

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

731

initialization. This is because the enclave must provision all mem-

ory that it may require from the SGX driver during initialization.

Our implementation allocates more memory than it will use to be

conservative.

9 ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-

dation under awards CNS-1010928, CNS-1228443, CNS-1653110,

CNS-1414023 and EFMA-1441209; The Office of Naval Research

under contract N00014-14-1-0333; DARPA/ARL Safeware Grant

W911NF-15-C-0213; and the Mozilla Foundation.

REFERENCES
[1] 2017. Certificate Transparency. Available at https://www.certificate-transparency.

org/. (2017).

[2] 2017. Let’s Encrypt. Available at https://letsencrypt.org/. (2017).

[3] 2017. Multiparty computation with SPDZ online phase and MASCOT offline

phase. Github. (2017). https://github.com/bristolcrypto/SPDZ-2.

[4] 2017. Obscuro. Github. (2017). https://github.com/BitObscuro/Obscuro.

[5] Bar Alon and Eran Omri. 2016. Almost-Optimally Fair Multiparty Coin-Tossing

with Nearly Three-Quarters Malicious. In TCC, Part I. 307–335.
[6] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Secure Multiparty Computations on Bitcoin. In IEEE Symposium
on Security and Privacy. 443–458.

[7] Gilad Asharov. 2014. Towards Characterizing Complete Fairness in Secure Two-

Party Computation. In TCC. 291–316.
[8] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. 2015. Com-

plete Characterization of Fairness in Secure Two-Party Computation of Boolean

Functions. In TCC, Part I. 199–228.
[9] Gilad Asharov, Yehuda Lindell, and Tal Rabin. 2013. A Full Characterization of

Functions that Imply Fair Coin Tossing and Ramifications to Fairness. In TCC.
243–262.

[10] Gilad Asharov, Yehuda Lindell, and Hila Zarosim. 2013. Fair and Efficient Secure

Multiparty Computation with Reputation Systems. In ASIACRYPT. 201–220.
[11] N. Asokan, Matthias Schunter, and Michael Waidner. 1997. Optimistic Protocols

for Fair Exchange. In CCS ’97, Proceedings of the 4th ACM Conference on Computer
and Communications Security, Zurich, Switzerland, April 1-4, 1997. 7–17.

[12] N. Asokan, Victor Shoup, and Michael Waidner. 1998. Optimistic Fair Exchange

of Digital Signatures (Extended Abstract). In EUROCRYPT. 591–606.
[13] Donald Beaver and Shafi Goldwasser. 1989. Multiparty Computation with Faulty

Majority. In CRYPTO. 589–590.
[14] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 2011. 1/p-Secure

Multiparty Computation without Honest Majority and the Best of Both Worlds.

In CRYPTO. 277–296.
[15] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. 1985. A

Fair Protocol for Signing Contracts (Extended Abstract). In ICALP. 43–52.
[16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies without

proof of work. In International Conference on Financial Cryptography and Data
Security. Springer, 142–157.

[17] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair

Protocols. In CRYPTO. 421–439.
[18] Dan Boneh and Moni Naor. 2000. Timed Commitments. In CRYPTO. 236–254.
[19] Elette Boyle, Kai-Min Chung, and Rafael Pass. 2014. On Extractability Obfuscation.

In TCC. 52–73.
[20] Christian Cachin and Jan Camenisch. 2000. Optimistic Fair Secure Computation.

In CRYPTO. 93–111.
[21] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In Theory of Cryptography, 4th Theory
of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February
21-24, 2007, Proceedings. 61–85.

[22] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. 2014. Practical UC security

with a Global Random Oracle. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. 597–608.

[23] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally

composable two-party and multi-party secure computation. In Proceedings on
34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada. 494–503.

[24] Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. 2004. Concurrent Signa-

tures. In EUROCRYPT. 287–305.
[25] Richard Cleve. 1986. Limits on the Security of Coin Flips when Half the Processors

Are Faulty (Extended Abstract). In STOC. 364–369.

[26] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2013. Practical

Multilinear Maps over the Integers. In CRYPTO. 476–493.
[27] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2015. New Multi-

linear Maps Over the Integers. In CRYPTO. 267–286.
[28] Ronald Cramer and Victor Shoup. 1998. A Practical Public Key Cryptosystem

Provably Secure Against Adaptive Chosen Ciphertext Attack. In Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 23-27, 1998, Proceedings. 13–25.

[29] Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2012. Practical Covertly Secure MPC for Dishonest Majority – or:

Breaking the SPDZ Limits. Cryptology ePrint Archive, Report 2012/642. (2012).

http://eprint.iacr.org/2012/642.

[30] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. 2007. Optimistic Fair Ex-

change in a Multi-user Setting. In Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in Public-Key Cryptography, Bei-
jing, China, April 16-20, 2007, Proceedings. 118–133.

[31] Shimon Even, Oded Goldreich, and Abraham Lempel. 1985. A Randomized

Protocol for Signing Contracts. Commun. ACM 28, 6 (1985), 637–647.

[32] Juan A. Garay and Markus Jakobsson. 2002. Timed Release of Standard Digital

Signatures. In Financial Cryptography. 168–182.
[33] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. 1999. Abuse-Free

Optimistic Contract Signing. In CRYPTO. 449–466.
[34] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. 2006.

Resource Fairness and Composability of Cryptographic Protocols. In TCC. 404–
428.

[35] Juan A. Garay and Carl Pomerance. 2003. Timed Fair Exchange of Standard

Signatures: [Extended Abstract]. In Financial Cryptography, 7th International
Conference, FC 2003, Guadeloupe, French West Indies, January 27-30, 2003, Revised
Papers. 190–207.

[36] Sanjam Garg, Craig Gentry, and Shai Halevi. 2013. Candidate Multilinear Maps

from Ideal Lattices. In EUROCRYPT. 1–17.
[37] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness Encryp-

tion and its Applications. Cryptology ePrint Archive, Report 2013/258. (2013).

http://eprint.iacr.org/2013/258.

[38] Craig Gentry, SergeyGorbunov, and Shai Halevi. 2015. Graph-InducedMultilinear

Maps from Lattices. In TCC, Part II. 498–527.
[39] Craig Gentry, Allison B. Lewko, and Brent Waters. 2014. Witness Encryption

from Instance Independent Assumptions. In CRYPTO. 426–443.
[40] Oded Goldreich and Ariel Kahan. 1996. How to Construct Constant-Round

Zero-Knowledge Proof Systems for NP. J. Cryptology 9, 3 (1996), 167–190.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game. In STOC.
[42] Shafi Goldwasser and Leonid A. Levin. 1990. Fair Computation of General

Functions in Presence of Immoral Majority. In CRYPTO. 77–93.
[43] Shafi Goldwasser and Rafail Ostrovsky. 1992. Invariant Signatures and Non-

Interactive Zero-Knowledge Proofs are Equivalent (Extended Abstract). In

CRYPTO. 228–245.
[44] S. Dov Gordon. 2010. On Fairness in Secure Computation. Ph.D. Dissertation.

(2010). https://www.cs.umd.edu/~jkatz/THESES/gordon.pdf.

[45] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. 2008. Complete

fairness in secure two-party computation. In STOC. 413–422.
[46] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. 2010.

On Complete Primitives for Fairness. In TCC. 91–108.
[47] S. Dov Gordon and Jonathan Katz. 2009. Complete Fairness in Multi-party

Computation without an Honest Majority. In Theory of Cryptography, 6th Theory
of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009.
Proceedings. 19–35.

[48] S. Dov Gordon and Jonathan Katz. 2010. Partial Fairness in Secure Two-Party

Computation. In EUROCRYPT. 157–176.
[49] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In CRYPTO
’17.

[50] Dafna Kidron and Yehuda Lindell. 2011. Impossibility Results for Universal

Composability in Public-Key Models and with Fixed Inputs. J. Cryptology 24, 3

(2011), 517–544. https://doi.org/10.1007/s00145-010-9069-7

[51] Handan Kilinç and Alptekin Küpçü. 2016. Efficiently Making Secure Two-Party

Computation Fair. In Financial Cryptography and Data Security - 20th International
Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected
Papers. 188–207. https://doi.org/10.1007/978-3-662-54970-4_11

[52] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing Secure Computation with

Penalties. In ACM CCS. 418–429.
[53] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to Use Bitcoin to Play

Decentralized Poker. In ACM CCS. 195–206.
[54] Alptekin Küpçü and Anna Lysyanskaya. 2010. Usable Optimistic Fair Exchange.

In CT-RSA. 252–267.
[55] Yehuda Lindell. 2009. Legally Enforceable Fairness in Secure Two-Party Commu-

nication. Chicago J. Theor. Comput. Sci. 2009 (2009).

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

732

https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://letsencrypt.org/
https://github.com/bristolcrypto/SPDZ-2
https://github.com/BitObscuro/Obscuro
http://eprint.iacr.org/2012/642
http://eprint.iacr.org/2013/258
https://www.cs.umd.edu/~jkatz/THESES/gordon.pdf
https://doi.org/10.1007/s00145-010-9069-7
https://doi.org/10.1007/978-3-662-54970-4_11

[56] Anna Lysyanskaya. 2002. Unique Signatures and Verifiable Random Functions

from the DH-DDH Separation. In CRYPTO. 597–612.
[57] Silvio Micali. 2003. Simple and fast optimistic protocols for fair electronic ex-

change. In PODC. 12–19.
[58] Rafael Pass, Elaine Shi, and Florian Tramèr. 2016. Formal Abstractions for Attested

Execution Secure Processors. IACR Cryptology ePrint Archive 2016 (2016), 1027.
http://eprint.iacr.org/2016/1027

[59] Rafael Pass, Elaine Shi, and Florian Tramèr. 2017. Formal Abstractions for Attested

Execution Secure Processors. In EUROCRYPT. 260–289.
[60] Benny Pinkas. 2003. Fair Secure Two-Party Computation. In EUROCRYPT. 87–

105.

[61] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty

Protocols with Honest Majority (Extended Abstract). In STOC. 73–85.
[62] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In FOCS. 160–164.

A PROOFS
A.1 Proof of Claim 2
The analysis for the proof below is taken from [40, 44].

Proof. The simulator S outputs fail only if it has reached step 7

and then fails in producing an accepting transcript. S fails to reach

step 7 with probability q.
We denote byp, the probability that the adversary does not aborts

when given the witness encryption of the correct functionality,

i.e., p is the probability when the adversary is given the witness

encryption of F (x1, · · · ,xn). Recollect that q is the probability of

the adversary not aborting when given the witness encryption of

F (x̂1, · · · , x̂n)where ∀a, x̂a = xa and ∀h, x̂h = 0. From the security

of witness encryption, we require |q−p | is negligible in the security.

(probability is taken over the random coins used to generate the

output of F ′∆t .)

Pr[S outputs fail] = q
∑
i

(
Pr

[
1

q̃
= i

])
(1 − p)t ·i

≤ qPr
[
q

q̃
≥

1

2

]
(1 − p)

t
q̃ + qPr

[
q

q̃
<

1

2

]
≤ q(1 − p)

t
2q + negl(λ) (1)

To show that the above equation is negligible in λ, we split the
analysis into two cases:

– Case 1: p ≥ q
2
. Substituting, we get

(1 − p)
t
2q ≤

(
1 −

q

2

) t
2q
< e−

t
4

which is negligible is λ since t is polynomial in λ.
– Case 1: p < q

2
. To the contrary, let us assume Equation 1 is

non-negligible. Then, there is a polynomial poly and infin-

itely many values λ such that

q ≥ q(1 − p)
t
2q + negl(λ) >

1

poly(λ)
.

Thus q > 1

poly′(λ) for some polynomial poly′. This gives us

|q − p | >
���q
2

��� > 1

2poly′(λ)
.

This breaks the security of the witness encryption scheme.

Thus S outputs fail with only negligible probability. �

A.2 Proof of Theorem 6.1
We consider the two party setting where P1 is corrupted. The other
case is symmetric. The simulator S works as follows:

(1) Unless otherwise mentioned, S passes through messages

between adversary A(P1) and Gatt.
(2) S loads the program to get the corresponding eid0, i.e. eid0 ←
Gatt.install(progfair[∆t ,P0,P1, vkBB, 0]).

(3) Next, S initiates the key exchange phase (дa ,σ0) ← Gatt.
resume(eid0, “keyex”) and sends (eid0,дa ,σ0)message toA.

(4) S waits to receive

(
eid1,дb ,σ1

)
from A.

The simulator sees messages between A and Gatt, and can

see if

(
eid1,дb ,σ1

)
sent by A is different from the corre-

sponding tuple it received from Gatt. If the tuples differ and

the signature verifies, output ⊥Gatt and exit.

(5) Pick k0
$

← {0, 1}λ , ρ0
$

← {0, 1}λ , r0
$

← {0, 1}λ , t0 ←
BB(getCurrentCounter) and initialize Gatt with these val-

ues, (com0, _)Gatt.resume(eid0, “init”, ρ0,k0, t0, r0). Simula-

tor sees the values (ρ1,k1, t1, r1) that A sends to Gatt.

(6) S calls (ct1, _) ← Gatt.resume(eid0, “send”), sends ct1 to A
and waits for ct0.
As before, the simulator observes if ct0 sent byA is different

from the value it received from Gatt. If so, and Gatt doesn’t

throw an exception, output ⊥AE1 and exit.

(7) Make a call to Gatt to get the parameters, (T ,y, _) ← Gatt.
resume(eid0, “getParams”,⊥).

(8) Wait for A to send (x1,k
′
1
, com′

0
, com′

1
, r ′
1
) intended for F ′.

If the commitment values are not the same as the ones

received earlier, send abort to the ideal functionality and

send ⊥ to the adversary. If k ′
1
, k1, i.e. the key shares sent

at different points differ, and if com′
1
= Com(k ′

1
; r ′
1
) out-

put ⊥com and exit. Else, pick K ′ randomly and compute

ctMPC ← AE.EncK ′(F (0,x1)) to send to A.

(9) S obtains its token share from Gatt, (ρ0, _) ← Gatt.resume
(eid0, “getTokenShare”,⊥).

(10) If A aborts immediately after receiving the output from F ′

without the honest party getting it, send abort to the ideal

functionality. But continue running S. If the adversary sends

to the bulletin board or enclave the correct pre-image of y,
S outputs ⊥f and exits.

(11) IfA has not aborted, send ρ0 toA. If the adversary does not

send ρ1, or post a valid pre-image during the intervalT toT +
∆T , but queries Gatt for the output on a valid authentication

tag, then we output ⊥BB and exit.

(12) Alternatively, we split the behavior of the simulator three

cases:

– If A responds with a valid ρ1 (i.e. f (ρ0 ⊕ ρ1) = y), then
post to the bulletin board. Recollect that S has reached

this point only if the key shares sent by A were consis-

tent. Send x1 to the ideal functionality to receive out. IfA
makes the correct query to the enclave, i.e. the ciphertext

sent is the same as the one from the MPC, S programs the

output by returningGatt.resume(eid1, “output”, tBB,σBB, out).
If the ciphertext is different and authenticates under key

K ′, then output ⊥AE2 and exit.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

733

http://eprint.iacr.org/2016/1027

– If the adversary does not send ρ1 but posts a pre-image

of y during the interval T to T + ∆T , S follows the same

approach as the previous step.

– If A attempts to use the backdoor, forward the message

to Gatt without modification.

We prove indistinguishability of the real and ideal worlds through

a sequence of hybrids.

Hyb
0
: Identical to the real execution.

Hyb
1
: Identical to Hyb

0
except that we introduce the following

check. Observe the messages between A and Gatt, and can see if(
eid1,дb ,σ1

)
sent by A is different from the corresponding tuple

it received from Gatt. If the tuples differ and the signature verifies,

output ⊥Gatt and exit.

Claim 4. Assuming that the underlying signature scheme is secure,
Hyb

1
is computationally indistinguishable from Hyb

0
.

Proof. Hyb
1
exits with output ⊥Gatt with only negligible prob-

ability. If not, we can use A to construct an adversary that breaks

the signature scheme. �

Hyb
2
: Identical to Hyb

1
except that we replace all occurrences

of sk = дab with a random key.

Claim 5. Assuming that DDH holds, Hyb
2
is computationally

indistinguishable from Hyb
1
.

Proof. Follows directly from DDH security. �

Hyb
3
: Identical to Hyb

2
except that we add the following addi-

tional checks:

– observe if ct0 sent byA is different from the value it received

from Gatt. If so, and Gatt doesn’t throw an exception, output

⊥AE1 and exit.

– if A sends a different key share k ′
1
intended for F ′∆t and

com′1 = Com(k ′
1
; r ′
1
), output ⊥com and exit.

– if A aborts immediately after receiving the output from F ′

(without the honest party getting it), send abort to the ideal

functionality. Additionally, wait to see if the adversary sends

to the bulletin board or enclave the correct pre-image of y.
If so, outputs ⊥f and exit.

– if the adversary does not send ρ1 and does not post a valid

pre-image during the interval T to T + ∆T but queries Gatt
on a valid authentication tag, output ⊥BB and exit.

Claim 6. Assuming the security of one-way permutation, statisti-
cal binding of the commitment scheme INT-CTXT security of AE and
unforgeability of the authentication scheme Hyb

3
is computationally

indistinguishable from Hyb
2
.

Proof. The only changes are in the checks performed. We argue

that Hyb
3
will output a special abort with only negligible probabil-

ity:

– ⊥AE1 is output with only negligible probability. Else, we can

leverage the adversary to break the INT-CTXT security of

the AE scheme.

– ⊥com is output with only negligible probability. Else, we

can leverage the adversary to break the statistical binding

property of the commitment scheme.

– ⊥f is output with only negligible probability. Else we can

break the security of the one way function. This follows

from the fact that the simulator is see the queries that the

adversary makes to the enclave and the bulletin board. Since

we want to force the challenge value y∗ onto the adversary,

we use a backdoor in the function. This backdoor does not

give the adversary any undue advantage as the value is not

sent across to the other party.

– ⊥BB is output with negligible probability. Else, we can lever-

age the adversary to break the unforgeability of the authen-

tication scheme for the bulletin board. This is because the

adversary was able to produce a signature that has not been

queried for before.

�

Hyb
4
: Identical to Hyb

3
except that we intercept the ciphertext

query for the output, and program the output using the trapdoor

to be AE.DecK (ct) if the other conditions are satisfied. Here K is

the key in the enclave.

Claim 7. Hyb
4
is statistically indistinguishable from Hyb

3
.

Proof. This follows from the fact that it was only a statistical

change. This is because we moved the exact check to the outside of

the enclave. �

Hyb
5
: Identical to Hyb

4
except that replace com2 to be a com-

mitment of a random value.

Claim 8. If the commitment scheme is computationally hiding,
Hyb

5
is computationally indistinguishable from Hyb

4
.

Proof. If the two hybrids are distinguishable, we can leverage

the adversary to break the computational hiding of the commitment

scheme. �

Hyb
5
: Identical to Hyb

4
except that we pick K ′ randomly and

use K ′ to encrypt the output. Now, the output is programmed in

the last round with respect to the key K ′.

Claim 9. If the semantic security of the AE scheme holds, Hyb
5
is

computationally indistinguishable from Hyb
4
.

Proof. If the two hybrids are distinguishable, then we can build

an adversary that breaks the semantic security of the AE scheme.

�

Hyb
6
: Identical to Hyb

5
except that we add the following addi-

tional checks. If the ciphertext differs from the MPC output and it

authenticates under key K ′, then output ⊥AE2 and exit.

Claim 10. If INT-CTXT security of the AE scheme holds, Hyb
6
is

computationally indistinguishable from Hyb
5
.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

734

Proof. Since the only changes are additional checks, it is enough

to show that S outputs ⊥AE2 with only negligible probability. This

follows directly from the INT-CTXT security of the AE scheme.

Specifically, we can receive the challenge ciphertext to the be the

encryption of the function value (either under the challenge key,

or a random key). If the adversary is able to produce a verifying

ciphertext different from the one it receives it constitutes a forgery,

thus breaking the INT-CTXT security of the AE scheme. �

Hyb
7
: Identical to Hyb

6
except that if check did not result in a

failure, send x1 to the trusted party to obtain out. If the witness
checks succeeds, program the output of the enclave to be out. Else
program output to be ⊥.

Claim 11. Hyb
7
is statistically indistinguishable from Hyb

6
.

Proof. The change is only statistical since the execution thread

reaches the point only if all prior checks pass. �

Hyb
8
: Identical to Hyb

7
except that we replace the value inside

the ciphertext to be F (0,x1).

Claim 12. If the semantic security of the encryption scheme holds,
Hyb

8
is computationally indistinguishable from Hyb

7
.

Proof. If the two hybrids are distinguishable, then we can build

an adversary that breaks the semantic security of the encryption

scheme. �

Hyb
9
: Identical to Hyb

8
except that we replace all occurrences

of sk with дab again.

Claim 13. Assume DDH is hard, Hyb
9
is computationally indis-

tinguishable from Hyb
8
.

Proof. Follows directly from DDH security. �

Hyb
9
is the same as our simulator, and hence we’re done.

B SGX FUNCTIONALITY
The SGX functionality is presented in Figure 5. Additional notation

from [59] used is described below:

– P is the identifier of party.

– reg refers to the registry of machines with the trusted hard-

ware.

– prog is the program.

– inp, outp refers to the input and output.

– mem is the program’s memory tape.

– Σ is a signature scheme.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

735

Gatt[Σ, reg]
//initialization

On initialize : (mpk,msk) ← Σ.Gen(1λ), T = ϕ

//public query interface

On receive
∗ getpk() from some P : send mpk to P

Enclave operations
//local interface — install an enclave

On receive
∗ install(idx, prog) from some P : ∈ reg

if P is honest, assert idx=sid
generate nonce eid ∈ {0, 1}λ , store T [eid,P] B (idx, prog, 0)

//local interface — resume an enclave

On receive
∗ resume(eid, inp) from some P : ∈ reg

let (idx, prog,mem) B T [eid,P], abort if not found.
let (outp,mem) B prog(inp,mem), update T [eid,P] B (idx, prog,mem)
let σ ← Σ.Signmsk(idx, eid, prog, outp) and send (outp,σ) to P.

Figure 5: A global functionality modeling an SGX-like secure processor. Blue (and starred*) activation points denote reentrant

activation points. Green activation points are executed at most once. The enclave program progmay be probabilistic and this is important for

privacy-preserving applications. Enclave program outputs are included in an anonymous attestation σ . For honest parties, the functionality
verifies that installed enclaves are parameterized by the session id sid of the current protocol instance.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

736

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Related work
	3 Definitions
	3.1 Fair Multi Party Computation
	3.2 Authentication Scheme with Public Verification
	3.3 Witness Encryption

	4 Modeling the Bulletin Board
	5 Fair MPC from Witness Encryption
	5.1 Proof of Security

	6 Fairness from Secure Hardware
	7 Instantiating the Bulletin Board
	8 Implementation
	9 Acknowledgments
	References
	A Proofs
	A.1 Proof of Claim 2
	A.2 Proof of Theorem 6.1

	B SGX Functionality

