
Practical UC-Secure Delegatable Credentials with Attributes
and Their Application to Blockchain

Jan Camenisch

IBM Research - Zurich

jca@zurich.ibm.com

Manu Drijvers

IBM Research - Zurich & ETH Zurich

mdr@zurich.ibm.com

Maria Dubovitskaya

IBM Research - Zurich

mdu@zurich.ibm.com

ABSTRACT

Certification of keys and attributes is in practice typically realized

by a hierarchy of issuers. Revealing the full chain of issuers for

certificate verification, however, can be a privacy issue since it

can leak sensitive information about the issuer’s organizational

structure or about the certificate owner. Delegatable anonymous

credentials solve this problem and allow one to hide the full dele-

gation (issuance) chain, providing privacy during both delegation

and presentation of certificates. However, the existing delegatable

credentials schemes are not efficient enough for practical use.

In this paper, we present the first hierarchical (or delegatable)

anonymous credential system that is practical. To this end, we

provide a surprisingly simple ideal functionality for delegatable

credentials and present a generic construction that we prove secure

in the UC model. We then give a concrete instantiation using a

recent pairing-based signature scheme by Groth and describe a

number of optimizations and efficiency improvements that can be

made when implementing our concrete scheme. The latter might be

of independent interest for other pairing-based schemes as well. Fi-

nally, we report on an implementation of our scheme in the context

of transaction authentication for blockchain, and provide concrete

performance figures.

KEYWORDS

Credentials, Delegation, Hierarchical issuance, Privacy-preserving

authentication, Composable Security, Zero-knowledge, Blockchain

1 INTRODUCTION

Privacy-preserving attribute-based credentials (PABCs) [6], orig-

inally introduced as anonymous credentials [10, 21], allow users

to authenticate to service providers in a privacy-protecting way,

only revealing the information absolutely necessary to complete

a transaction. The growing legal demands for better protection of

personal data and more generally the increasingly stronger security

requirements make PABCs a primary ingredient for building secure

and privacy-preserving IT systems.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134025

An (attribute-based) anonymous credential is a set of attributes
certified to a user by an issuer. Every time a user presents her cre-

dential, she creates a fresh token which is a zero-knowledge proof

of possession of a credential. When creating a token, the user can

select which attributes she wants to disclose from the credential or

choose to include only predicates on the attributes. Verification of

a token requires knowledge of the issuer public key only. Despite

their strong privacy features, anonymous credentials do reveal the

identity of the issuer, which, depending on the use case, still leaks

information about the user such as the user’s location, organiza-

tion, or business unit. In practice, credentials are typically issued

in a hierarchical manner and thus the chain of issuers will reveal

even more information. For instance, consider governmental issued

certificates such as drivers licenses, which are typically issued by a

local authority whose issuing keys are then certified by a regional

authority, etc. So there is a hierarchy of at least two levels if not

more. Thus, when a user presents her drivers license to prove her

age, the local issuer’s public key will reveal her place of residence,

which, together with other attributes such as the user’s age, might

help to identify the user. As another example consider a (permis-

sioned) blockchain. Such a system is run by multiple organizations

that issue certificates (possibly containing attributes) to parties that

are allowed to submit transactions. By the nature of blockchain,

transactions are public or at least viewable by many blockchain

members. Recorded transactions are often very sensitive, in par-

ticular when they pertain to financial or medical data and thus

require protection, including the identity of the transaction origi-

nator. Again, issuing credential in a permissioned blockchain is a

hierarchical process, typically consisting of two levels, a (possibly

distributed) root authority, the first level consisting of CAs by the

different organizations running the blockchain, and the second

level being users who are allowed to submit transactions.

Delegatable anonymous credentials (DAC), formally introduced

by Belenkiy et al. [3], can solve this problem. They allow the owner

of a credential to delegate her credential to another user, who, in

turn, can delegate it further as well as present it to a verifier for

authentication purposes. Thereby, only the identity (or rather the

public key) of the initial delegator (root issuer) is revealed for verifi-

cation. A few DAC constructions have been proposed [3, 17, 20, 26],

but none is suitable for practical use for the following reasons:

• While being efficient in a complexity theoretic sense, they are

not practical because they use generic zero-knowledge proofs

or Groth-Sahai proofs with many expensive pairing operations

and a large credential size.

• The provided constructions are described mostly in a black-

box fashion (to hide the complexity of their concrete instantia-

tions), often leaving out the details that would be necessary for

their implementation. Therefore, a substantial additional effort

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

683

https://doi.org/10.1145/3133956.3134025

would be required to translate these schemes to a software

specification or perform a concrete efficiency analysis.

• The existing DAC security models do not consider attributes,

which, however, are necessary in many practical applications.

Also, extending the proposed schemes to include attributes

on different delegation levels is not straightforward and will

definitely not improve their efficiency.

• Finally, the existing schemes either do not provide an ideal

functionality for DAC ([20]) or are proven secure in standalone

models ([3, 17, 26]) that guarantee security only if a protocol is

run in isolation, which is not the case for a real environment.

In other words, no security guarantees are provided if they are

used to build a system, i.e., the security of the overall system

would have to be proved from scratch. This usually results in

complex monolithic security proofs that are prone to mistakes

and hard to verify.

The main reason why the existing schemes are sufficiently ef-

ficient, is that they hide the identities of the delegator and dele-

gatee during credential delegation. Thus privacy is ensured for

both delegation and presentation of credentials. While this is a

superior privacy guarantee, we think that privacy is not neces-

sary for delegation. Indeed, in real-world scenarios a delegator and

a delegatee would typically know each other when an attribute-

based credential is delegated, especially in the most common case

of a hierarchal issuance. Therefore, we think that ensuring privacy

only for presentation is a natural way to model delegatable cre-

dentials. Furthermore, revealing the full credential chain including

the public keys and attribute values to the delegatee would allow

us to avoid using expensive cryptographic building blocks such

as generic zero-knowledge proofs, re-randomizable proofs, and

malleable signatures.

1.1 Our Contribution

Let us look at delegatable credentials with a different privacy as-

sumtions for delegation in mind and see how such system would

work.

The root delegator (we call it issuer) generates a signing and a

corresponding verification key and publishes the latter.

User A, to whom a credential gets issued on the first level (we

call it a Level-1 credential), generates a fresh credential secret and a

public key and sends the public key to the issuer. The issuer signs

this public key together with the set of attributes and sends the

generated signature to user A.
User A can then delegate her credential further to another user,

say B, by signing B’s freshly generated credential public key and

(possibly another) set of attributes with the credential secret key of

user A. A sends her signature together with her original credential

and A’s attributes to user B. User B’s credential, therefore, consists
of two signatures with the corresponding attribute sets, credential

public keys of user A and user B, and B’s credential secret key.
User B, using his credential secret key, can delegate his credential

further as described above or use it to sign a message by generating

a presentation token. The token is essentially a non-interactive

zero-knowledge (NIZK) proof of possession of the signatures and

the corresponding public keys from the delegation chain that does

not reveal their values. The signed attributes can also be only selec-

tively revealed using NIZK. Verification of the token requires only

the public key of the issuer and, thus, hides the identities of both

users A and B and (selectively) their attributes. Since all attributes,

signatures, and public keys are revealed to the delegatee during

delegation, we can use the most efficient zero-knowledge proofs

(Schnorr proofs) that would make a protocol practical.

Contribution Summary. In this paper, we propose the first practi-
cal delegatable anonymous credential system with attributes that

is well-suited for real-world applications.

More concretely, we first provide a (surprisingly simple) ideal

functionality ℱdac for delegatable credentials with attributes. At-

tributes can be different on any level of delegation. Each attribute at

any level can be selectively revealed when generating presentation

token. Tokens can be used to sign arbitrary messages. Privacy is

guaranteed only during presentation, during delegation the delega-

tee knows the full credential chain delegated to her.

Second, we propose a generic DAC construction from signature

schemes and zero-knowledge proofs and prove it secure in the

universal composability (UC) framework introduced by Canetti [14].

Our construction can be used as a secure building block to build a

higher-level system as a hybrid protocol, enabling a modular design

and simpler security analysis.

Third, we describe a very efficient instantiation of our DAC

scheme based on a recent structure-preserving signature scheme by

Groth [29] and on Schnorr zero-knowledge proofs [34]. We further

provide a thorough efficiency analysis of this instantiation and

detailed pseudocode that can be easily translated into a computer

program. We also discus a few optimization techniques for the type

of zero-knowledge proofs we use (i.e., proofs of knowledge of group

elements under pairings). These techniques are of independent

interest.

Finally, we report on an implementation of our scheme in the con-

text of a privacy-preserving membership service for permissioned

blockchains and give concrete performance figures, demonstrating

the practicality of our construction. For instance, generating an

attribute token with four undisclosed attributes from a delegated

credential takes only 50 miliseconds, and verification requires only

40 miliseconds, on a 3.1GHz Intel I7-5557U laptop CPU.

1.2 Related Work

There is only a handful of constructions of delegatable anonymous

credentials [3, 17, 20, 26]. All of them provide privacy for both del-

egator and delegatee during credential delegation and presentation.

The first one is by Chase and Lysyanskaya [20] which uses generic

zero-knowledge proofs. The size of a credential in their scheme is

exponential in the number of delegations, which, as authors admit

themselves, makes it impractical and allows only for a constant

number of delegations. Our ideal functionality for DAC is also quite

different from the signature of knowledge functionality that they

use to build a DAC system. For example, we distinguish between

the delegation and presentation interfaces and ping the adversary

for the delegation. We also do not require the extractability for

the verification interface, which makes our scheme much more

efficient.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

684

The construction by Belenkiy et al. [3] employs Groth-Sahai

NIZK proofs and in particular their randomization property. It

allows for a polynomial number of delegations and requires a com-

mon reference string (CRS). Fuchsbauer [26] proposed a delegatable

credential system that is inspired by the construction of Belenkiy

et al. and supports non-interactive issuing and delegation of cre-

dentials. It is based on the commuting signatures and Groth-Sahai

proofs and is at least twice as efficient as the scheme by Belenkiy

et al. [3]. Our construction also requires a CRS, but still outper-

forms both schemes. For example, without attributes, the token

size increases with every level by 4 group elements (G2

1
×G2

2
) for

our scheme versus G50

1
×G40

2
for Belenkiy et al. [3] and G20

1
×G18

2

for Fuchsbauer [26]. Due to our optimization techniques, the num-

ber of expensive operations (exponentiations and pairings) is also

minimized.

Finally, Chase et al. [17, 19] propose a DAC instantiation that is

also non-interactive and scales linearly with the number of delega-

tions. Their unforgeability definition is a bit different from the one

by Belenkiy et al. [3] and implements the simulation extractability

notion. However, none of the schemes accommodate attributes in

their security definitions. As we mentioned above, it is hard to

derive the exact efficiency figures from the “black-box”-type con-

struction of [17], which is built from malleable signatures, which,

in turn, are built from the malleable proofs. The efficiency of their

scheme depends on the concrete instantiation of malleable proofs:

either Groth-Sahai proofs [16], which would be in the same spirit

as [26], or non-interactive arguments of knowledge (SNARKs) and

homomorphic encryption [18], which, as the authors claim them-

selves, is less efficient.

Hierarchical group signatures, as introduced by Trolin and Wik-

ström [35] and improved by Fuchsbauer and Pointcheval [27], are

an extension of group signatures that allow for a tree of group

managers. Users that received a credential from any of the man-

agers can anonymously sign on behalf of the group, as is the case

with delegatable credentials. However, in contrast to delegatable

credentials, parties can serve either as manager or as user, but not

both simultaneously. Additionally, hierarchical group signatures

differ from delegatable credentials in the fact that signatures can

be deanonymized by group managers.

2 PRELIMINARIES

This section introduces the notation and recalls well-known build-

ing blocks used in our delegatable credential scheme, such as signa-

ture schemes and zero-knowledge proofs. In addition, it defines a

new primitive we call sibling signatures, that allow for two different

signing algorithms sharing a single key pair. Finally, we give a brief

overview of the universal composability framework.

2.1 Notation

Let k ∈ N denote the security parameter and a ∈ {0, 1}∗ denote an
input. Two binary distribution ensemblesX = {X (k,a)}k ∈N,a∈{0,1}∗
and Y = {Y (k,a)}k ∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y) if for
any c,d ∈ N there exists k0 ∈ N such that for all k > k0 and all

a ∈ ∪κ≤kd {0, 1}
κ
, |Pr [X (k,a) = 1] − Pr [Y (k,a) = 1] | < k−c .

2.2 Bilinear Groups

Let 𝒢 be a bilinear group generator that takes as an input a security

parameter 1
κ
and outputs the descriptions of multiplicative groups

Λ = (q,G1,G2,Gt, e,д1,д2) where G1, G2, and Gt are groups of

prime order q, e is an efficient, non-degenerating bilinear map

e : G1×G2→Gt, and д1 and д2 are generators of the groupsG1 and

G2, respectively. We denote Λ∗ = (q,G1,G2,Gt, e) as Λ without

group generators.

2.3 Zero-Knowledge Proofs

Feige, Fiat, and Shamir [24] were the first to formalize the proof of

knowledge, while the concept of zero-knowledge was introduced

by Goldwasser et al. [28]. When referring to the interactive proofs,

one usually uses the notation introduced by Camenisch and Stadler

[12] and formally defined by Camenisch, Kiayias, and Yung [9]. For

instance, PK{(a,b, c) : Y = дa
1
Hb ∧ Ỹ = д̃1

aH̃c } denotes a “zero-
knowledge Proof of Knowledge of integers a, b, c such that Y = дa

1
Hb

and Ỹ = д̃1
aH̃c holds,” where y,д,h, Ỹ , д̃1, and H̃ are elements of

some groups G = ⟨д1⟩ = ⟨H ⟩ and G̃ = ⟨д̃1⟩ = ⟨H̃ ⟩. The convention
is that the letters in the parenthesis (a,b, c) denote quantities of
which knowledge is being proven, while all other values are known

to the verifier. SPK{. . .}(m) denotes a signature proof of knowledge
on m, which is a non-interactive transformation of such proofs

using the Fiat-Shamir heuristic [25].

We can create similar proofs proving knowledge of group ele-

ments instead of exponents, e.g. SPK{a ∈ G1 : y = e(a,b)} by using

e(·,b) instead of b(·): Take r
$

← G1, t ← e(r ,b), c ← H(. . .) ∈ Zq ,
and s ← r · ac . Verification computes t̂ = e(s,b) · y−c and checks

that the Fiat-Shamir hash [25] equals c . With the same mechanism

we can prove knowledge of elements in G2.

We use NIZK{w : s(w)} to denote a generic non-interactive

zero-knowledge proof proving knowledge of witnessw such that

statement s(w) is true. Sometimes we need a witness to be online

extractable by a simulator, which we denote by drawing a box

around the witness: NIZK{ w : s(w)}.

2.4 Signature Schemes

A digital signature scheme Sig is a set of PPT algorithms Sig =
(Setup,Gen, Sign,Verify):

Sig.Setup(1κ)
$

→ sp : The setup algorithm takes as input a security

parameter and outputs public system parameters that also

specify a message space ℳ.

Sig.Gen(sp)
$

→ (sk, vk) : The key generation algorithm takes as

input system parameters and outputs a verification key vk
and a corresponding secret key sk.

Sig.Sign(sk,m)
$

→ σ : The signing algorithm takes as input a

private key sk and amessagem ∈ℳ and outputs a signature

σ .
Sig.Verify(vk,m,σ) → 1/0 : The verification algorithm takes as in-

put a public verification key vk, a messagem and a signature

σ and outputs 1 for acceptance or 0 for rejection according

to the input.

Our generic construction is built from the structure-preserving

[1] signature schemes. A signature scheme Sig over a bilinear

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

685

group Λ generated by 𝒢(1κ), that outputs system parameters Λ =
(q,G1,G2,Gt, e,д1,д2), is said to be structure preserving if:

(1) the verification key vk consists of the group parameters and

group elements in G1 and G2;

(2) the messages and the signatures consist of group elements in

G1 and G2, and

(3) the verification algorithm evaluates membership G1 and G2

and pairing product equations of the form∏
i

∏
j
e(дi ,hj)

ai j = 1Gt
,

wherea11,a12, . . . ∈ Zq are constants,д1,h1, . . . ∈ {G1,G2}
∗

are group elements appearing in the group parameters, veri-

fication key, messages, and signatures.

2.4.1 Structure-Preserving Signature scheme by Groth (Asiacrypt
2015). We recall the structure-preserving signature scheme byGroth

[29], which we use in our instantiation and refer to as Groth. We

note that the original scheme supports signing blocks of messages

in a form of “matrix”, whereas we provide a simplified description

for “vectors” of messages only, since we use this version of the

signature scheme in our construction. Let a message be a vector

of group elements of length n: ®m = (m1, . . . ,mn). We denote as

Groth1 signs messages inG1 with a public key inG2, whileGroth2
signs messages in G2 with a public key in G1. We describe the

Groth2 scheme below. Groth1 follows immediately.

Groth2.Setup: Let Λ∗ = (q,G1,G2,Gt, e) and yi
$

← G2 for i =
1, . . . ,n. Output parameters sp = (Λ∗, {yi }i=1, ...,n).

Groth2.Gen(sp): Choose randomv
$

← Zq and setV
$

← дv
1
. Output

public verification key vk = V and secret key sk = v .
Groth2.Sign(sk ; ®m): To sign message ®m ∈ Gn

2
choose a random

r
$

← Z∗q and set

R ← дr
1

S ← (y1 · д
v
2
)
1

r Ti ← (y
v
i ·mi)

1

r .

Output signature σ = (R, S,T1, . . . ,Tn).
Groth2.Verify(vk,σ , ®m) On input message ®m ∈ Gn

2
and signature

σ = (R, S,T1, . . . ,Tn) ∈ G1 ×Gn+1
2

, output 1 iff

e(R, S) = e(д1,y1)e(V ,д2) ∧
n∧
i=1

e(R,Ti) = e(V ,yi)e(д1,mi)

Groth2.Rand(σ) To randomize signature σ = (R, S,T1, . . . ,Tn),

pick r ′
$

← Zq and set

R′ ← Rr
′

S ′ ← S
1

r ′ T ′i ← T
1

r ′
i .

Output randomized signature σ ′ = (R′, S ′,T ′
1
, . . . ,T ′n).

2.5 Sibling Signatures

We introduce a new type of signatures that we call sibling signatures.
It allows a signer with one key pair to use two different signing

algorithms, each with a dedicated verification algorithm. In our

generic construction, this will allow a user to hold a single key pair

that it can use for both presentation and delegation of a credential.

A sibling signature scheme consists of algorithms Setup, Gen,
Sign1, Sign2, Verify1, Verify2.

Sib.Setup(1κ)
$

→ sp : The setup algorithm takes as input a security

parameter and outputs public system parameters that also

specify two message spaces ℳ1 and ℳ2.

Sib.Gen(sp)
$

→ (sk, vk) : The key generation algorithm takes as

input system parameters and outputs a verification key vk
and a corresponding secret key sk.

Sib.Sign1(sk,m)
$

→ σ : The signing algorithm takes as input a pri-

vate key sk and a messagem ∈ℳ1 and outputs a signature

σ .

Sib.Sign2(sk,m)
$

→ σ : The signing algorithm takes as input a pri-

vate key sk and a messagem ∈ℳ2 and outputs a signature

σ .
Sib.Verify1(vk,m,σ) → 1/0 : The verification algorithm takes

as input a public verification key vk, a message m and a

signature σ and outputs 1 for acceptance or 0 for rejection

according to the input.

Sib.Verify2(vk,m,σ) → 1/0 : The verification algorithm takes

as input a public verification key vk, a message m and a

signature σ and outputs 1 for acceptance or 0 for rejection

according to the input.

We require sibling signatures to be complete and unforgeable.

Definition 2.1 (Completeness). A sibling signature scheme is com-

plete if for b ∈ {0, 1} and for allm ∈ℳb we have

Pr

[
Sib.Verifyb(vk,m,σ) = 1|sp

$

← Sib.Setup(1κ),

(sk, vk)
$

← Sib.Gen(sp),σ
$

← Sib.Signb(sk,m)
]
= 1.

Definition 2.2 (Unforgeability). No adversary with oracle access

to Sign1 and Sign2 can create a signature that correctly verifies

with Verifyb, if no Signb query was made for messagem. For every

such b ∈ {1, 2} we call it unforgeability-b. More precisely, a sibling

signature scheme is unforgeable-b if the probability

Pr

[
Sib.Verifyb(vk,m,σ) = 1 ∧m < QSignb |

sp
$

← Sib.Setup(1κ), (sk, vk)
$

← Sib.Gen(sp),

(σ ,m)
$

← 𝒜𝒪Sib.Sign1(sk, ·),𝒪Sib.Sign2(sk, ·)
(sp, vk)

]
is negligible in κ for every PPT adversary 𝒜 and b ∈ {1, 2}, where

oracle 𝒪Sib.Signb(sk, ·) on input m stores m in QSignb and returns

Sib.Signb(sk,m). A sibling signature scheme is unforgeable if it is

both unforgeable-1 and unforgeable-2.

2.5.1 Constructing Sibling Signatures. Note that one can trivially
construct a sibling signature scheme from two standard signature

schemes by setting the verification key vk as (vk1, vk2) and the

signing key as sk = (sk1, sk2), and simply using one signature

scheme as Sign1 and Verify1 and the other as Sign2 and Verify2.
However, this generalization also allows for instantiations that

securely share key material between the two algorithms.

We now show that one can combine Groth1 signatures with

Schnorr-signatures to form a sibling signature scheme we call

SibGS1. SibGS1 uses only a single key pair. It uses the Setup and

Gen algorithms of Groth1. Algorithm Sign1 is instantiated with

Groth1.Sign, and Sign2 creates a Schnorr signature. Let SibGS2
denote the analogously defined Groth-Schnorr sibling signature

where we use Groth2 instead of Groth1.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

686

Lemma 2.3. SibGSb is a secure sibling signature scheme in the
random oracle and generic group model.

Proof. Completeness of SibGSb directly follows from the com-

pleteness of Grothb and Schnorr signatures. We can reduce the

unforgeability-1 and unforgeability-2 of SibGSb to the unforgeabil-

ity of Grothb, which is proven to be unforgeable in the generic

group model. The reduction algorithm ℬ receives the Grothb verifi-
cation key vk from the challenger and has access to signing oracle

𝒪Grothb.Sign(sk, ·)
that creates signatures valid under vk.ℬ simulates

the random oracle honestly and must answer 𝒜’s signing queries

by simulating oracles 𝒪Sib.Sign1(sk, ·)
and 𝒪Sib.Sign2(sk, ·)

. When 𝒜
queries 𝒪Sib.Sign1(sk, ·)

onm, ℬ queries σ ← 𝒪Grothb.Sign(sk,m)
and

returns σ . When 𝒜 queries 𝒪Sib.Sign2(sk, ·)
on m, ℬ simulates a

Schnorr signature without knowledge of sk by programming the

random oracle.

Finally, 𝒜 outputs a forgery. Let us first consider the unforge-

ability-1 game, meaning that 𝒜 outputs forgery σ ∗ on messagem∗,

such that σ ∗ is a valid Grothb signature onm∗ and 𝒪Sib.Sign1(sk, ·)

was not queried on m∗. This means that ℬ did not query

𝒪Grothb.Sign(sk, ·)
onm∗, soℬ can break the unforgeability ofGrothb

by submitting forgery (σ ∗,m∗).
Next, consider the unforgeability-2 game. Forgery σ ∗ is a Schnorr

signature onm∗ and 𝒜 did not query 𝒪Sib.Sign1(sk, ·)
onm∗. This

means that the Schnorr signature is not a simulated signature and

we use the forking lemma [4] to extract sk. Now, ℬ picks a new

message m̂∗ for which it did not query 𝒪Grothb.Sign(sk, ·)
, and uses

sk to create signature σ̂ ∗ on m̂∗. It submits (σ̂ ∗,m̂∗) as its forgery
to win the Grothb unforgeability game. �

2.6 Universal Composability

Wedefine the security of delegatable credentials as an ideal function-

ality in the Universal Composability (UC) framework [14], which

follows the simulation-based security paradigm [8, 14, 30, 31, 33].

In UC, an environment ℰ gives input to the protocol participants

and receives their outputs. In the real world, honest parties execute

the protocol over a network controlled by an adversary𝒜, who also

controls the corrupt parties while communicating freely with envi-

ronment ℰ . In the ideal world, honest parties are “dummy parties”

who forward their inputs to the ideal functionality ℱ. The ideal

functionality internally performs the desired task and generates

outputs for honest parties.

Informally, a protocolΠ securely realizes an ideal functionalityℱ
if the real world is as secure as the ideal world. For every adversary

𝒜 attacking the real world, there exists a simulator 𝒮 that performs

an equivalent attack on the ideal world. As ℱ performs the task at

hand in an ideal fashion (ℱ is secure by construction) there are no

meaningful attacks on the ideal world, it follows that there are no

meaningful attacks on the real world. More precisely, Π securely

realizesℱ if for every PPT adversary𝒜 there exists a PPT simulator

𝒮 such that no PPT environment ℰ can distinguish the real world

(with Π and 𝒜) from the ideal world (with ℱ and 𝒮).
The UC framework comes with a composability theorem, which

gives composability guarantees for protocols proven secure in this

framework. Specifically, it proves that security is preserved while

running many instances of the same protocol in paralel, and when

using the protocol as a building block for more advanced protocols.

We consider only static corruptions in this paper.

We now formally define the ideal functionalities that we use in

our protocol.

Ideal Functionality ℱcrs. For the CRS functionality we use the

2005 version of UC [13]. Functionality ℱcrs is parametrized by a

distribution 𝒟, from which the CRS is sampled.

Functionality ℱcrs

(1) When receiving input (CRS, sid) from party 𝒫 , first verify

that sid = ({𝒫}, sid ′) where {𝒫} is a set of identities, and
that 𝒫 ∈ {𝒫}; else ignore the input. Next, if there is no
value r recorded then choose and record r

$

← 𝒟. Finally,

send a public delayed output (CRS, sid, r) to 𝒫 .

Ideal Functionality ℱca. We use the ideal certification authority

functionality ℱca as defined in [15].

Functionality ℱca

(1) Upon receiving the first message (REGISTER, sid,v) from
party 𝒫 , send (REGISTERED, sid,v) to the adversary 𝒜;

upon receiving OK from 𝒜, and if sid = 𝒫 and this is the

first request from 𝒫 , then record the pair (𝒫,v).
(2) Upon receiving a message (RETRIEVE, sid) from party

𝒫 ′, send (RETRIEVE, sid,𝒫 ′) to 𝒜, and wait for an OK
from 𝒜. Then, if there is a recorded pair (sid,v) output
(RETRIEVE, sid,v) to 𝒫 ′. Else output (RETRIEVE, sid,⊥)
to 𝒫 ′.

Ideal Functionality ℱsmt. We use the secure message transmis-

sion functionality as defined in the 2005 version of UC [13]. Func-

tionality ℱ l
smt is parameterized by a leakage function l : {0, 1}∗ →

{0, 1}∗ that leaks information about the transmitted message, for

example a message length.

Functionality ℱsmt

(1) On input (SEND, sid,m) from a party 𝒫 , abort if sid ,
(𝒮,ℛ, sid ′), send (SEND, sid, l(m)) to the adversary, gen-

erate a private delayed output (SENT, sid,m) to ℛ and

halt.

3 DEFINITION OF DELEGATABLE

CREDENTIALS

We now define delegatable credentials in the form of an ideal func-

tionality ℱdac. For simplicity we consider the functionality with a

single root delegator (issuer), but using multiple instances of ℱdac
allows for many issuers. ℱdac allows for multiple levels delegation.

A Level-1 credential is issued directly by the issuer. Any further

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

687

(1) Setup. On input (SETUP, sid, ⟨ni ⟩i) from ℐ .
• Verify that sid = (ℐ, sid ′).
• Output (SETUP, sid, ⟨ni ⟩i) to 𝒜 and wait for response

(SETUP, sid,Present,Ver, ⟨Ai ⟩i) from 𝒜.

• Store algorithms Present and Ver and credential pa-

rameters ⟨Ai ⟩i , ⟨ni ⟩i , initialize ℒde ← ∅ ; ℒat ← ∅.

• Output (SETUPDONE, sid) to ℐ .
(2) Delegate.On input (DELEGATE, sid, ssid, ®a1, . . . , ®aL ,𝒫j)

from some party 𝒫i , with ®aL ∈ AnL
L .

• If L = 1, check sid = (𝒫i , sid ′) and add an entry

⟨𝒫j , ®a1⟩ to ℒde.

• If L > 1, check that an entry ⟨𝒫i , ®a1, . . . , ®aL−1⟩ exists
in ℒde.

• Output (ALLOWDEL, sid, ssid,𝒫i ,𝒫j ,L) to 𝒜 and

wait for input (ALLOWDEL, sid, ssid) from 𝒜.

• Add an entry ⟨𝒫j , ®a1, . . . , ®aL⟩ to ℒde.

• Output (DELEGATE, sid, ssid, ®a1, . . . , ®aL ,𝒫i) to 𝒫j .

(3) Present. On input (PRESENT, sid,m, ®a1, . . . , ®aL) from
some party 𝒫i , with ®ai ∈ (Ai ∪ ⊥)

ni
for i = 1, . . . ,L.

• Check that an entry ⟨𝒫i , ®a
′
1
, . . . , ®a′L⟩ exists inℒde such

that ®ai ≼ ®ai
′
for i = 1, . . . ,L.

• Set at ← Present(m, ®a1, . . . , ®aL) and abort if

Ver(at,m, ®a1, . . . , ®aL) = 0.

• Store ⟨m, ®a1, . . . , ®aL⟩ in ℒat.

• Output (TOKEN, sid, at) to 𝒫i .

(4) Verify. On input (VERIFY, sid, at,m, ®a1, . . . , ®aL) from
some party 𝒫i .

• If there is no record ⟨m, ®a1, . . . , ®aL⟩ in ℒat, ℐ is honest,

and for i = 1, . . . ,L, there is no corrupt 𝒫j such that

⟨𝒫j , ®a
′
1
, . . . , ®a′i ⟩ ∈ ℒde with ®aj ≼ ®a

′
j for j = 1, . . . , i ,

set f ← 0.

• Else, set f ← Ver(at,m, ®a1, . . . , ®aL).
• Output (VERIFIED, sid, f) to 𝒫i .

Figure 1: Ideal functionality for delegatable credentials with attributes ℱdac

delegations are done between users: the owner of a Level-(L − 1)
credential can delegate it further, giving the receiver a Level L cre-

dential. ℱdac supports attributes on every level; attributes can be

selectively disclosed during credential presentation. A presentation

of a delegated credential creates a so-called attribute token, which
can be verified with respect to the identity of the issuer, hiding the

identity of the delegators.

ℱdac interacts with the issuer ℐ and parties𝒫i who can delegate,

present, and verify the credentials through the following four in-

terfaces: SETUP,DELEGATE,PRESENT,VERIFY, that we describe
here. The formal definition is presented in Fig. 1, where we use

two conventions that ease the notation. First, the SETUP interface

can only be called once, and all other interfaces ignore all input

until a SETUP message has been completed. Second, whenever

ℱdac performs a check, it means that if the check fails, it aborts by

outputting ⊥ to the caller.

Setup. The SETUPmessage is sent by the issuer ℐ , whose identity
is fixed in the session identifier sid: ℱdac first checks that sid =
(ℐ, sid ′), which guarantees that each issuer can initialize its own

instance of the functionality. The issuer defines the number of

attributes for every delegation level i by specifying ⟨ni ⟩i . This can
be done efficiently by describing a function f (i). We fix the number

of attributes on the same delegation level since different number of

attributes used by different delegators on the same level may leak

information about the delegators. ℐ does not need to specify the

maximum number of the delegation levels.

ℱdac then asks the adversary for algorithms and credential pa-

rameters. The adversary provides algorithms Present,Ver for pre-
senting and verifying attribute tokens, respectively, and specifies

the attribute spaces ⟨Ai ⟩i for different credential levels.ℱdac stores

Present,Ver, ⟨Ai ⟩i , ⟨ni ⟩i and initializes two empty sets: ℒde for

delegation and ℒat for presentation bookkeeping.

Delegate. The DELEGATE message is sent by a user 𝒫i with a

Level-(L − 1) credential to delegate it to a user 𝒫j , giving 𝒫j a

Level-L credential. 𝒫i specifies a list of attribute vectors for all the

previous levels in the delegation chain ®a1, . . . , ®aL−1 and the vector

of attributes ®aL to certify in a freshly delegated Level-L credential.

All attribute vectors should satisfy the corresponding attribute

space and length requirements. We use subsession identifiers in this

interface since multiple delegation sessions might be interleaved

due to the communication with the adversary. If this delegation

gives 𝒫j a Level-1 credential, then ℱdac verifies that party 𝒫i is

the issuer by checking the sid and adds an entry ⟨𝒫j , ®a1⟩ to ℒde.

If this is not the first level delegation (L > 1), ℱdac checks if 𝒫i
indeed has a Level-(L − 1) credential with the specified attributes

®a1, . . . , ®aL−1 by looking it up in ℒde. ℱdac then asks the adversary

if the delegation should proceed and, after receiving a response

from𝒜, adds the corresponding delegation record to ℒde and sends

the output that includes the full attribute chain to 𝒫j , notifying it

of the successful delegation.

Note that in contrast to previous work on delegatable credentials,

we model no privacy in delegation. That is, 𝒫i and 𝒫j will learn

the identity of eachother during delegation. While this is a weaker

privacy definition than previous definitions, we think privacy for

delegation is not neccesary. in real-world scenarios, the delegator

and delegatee will typically know eachother when a credential with

attributes is delegated.

Present. The PRESENT message is sent by a user 𝒫i to create

an attribute token. A token selectively reveals attributes from the

delegated credential and also signs a messagem, which can be an

arbitrary string. 𝒫i inputs attribute vectors by specifying only the

values of the disclosed attributes and using special symbol ⊥ to

indicate the hidden attributes. ℱdac checks if a delegation entry

exists in ℒde such that the corresponding disclosed attributes were

indeed delegated to 𝒫i . For this, it uses the following relation for

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

688

attribute vectors: We say that for two vectors ®a = (a1, . . . ,an) ; ®b =

(b1, . . . ,bn) : ®a ≼ ®b if ai = bi or ai = ⊥ for i = 1, . . . ,n.
If this is the case it runs the Present algorithm to generate the

attribute token. The Present algorithm does not take the identity

of the user and the non-disclosed attributes as input - the attribute

token is computed independently of these values. This ensures the

user’s privacy and hiding the non-disclosed attributes on all levels

of the delegated credential chain. Next, it checks that the computed

attribute token is valid using the Ver algorithm, which ensures

completeness. It outputs the token value to user 𝒫i .

Verify. The VERIFY message is sent by a user 𝒫i to verify an at-

tribute token. Messagem and the disclosed attribute values are also

provided as input for verification. ℱdac performs the unforgeability

check: if the message together with the corresponding disclosed

attribute values were not signed by calling the PRESENT interface

(there is no corresponding bookkeeping record), the issuer is hon-

est, and on any delegation level there is no corrupted party with

the matching attributes, then ℱdac outputs a negative verification

result; otherwise, ℱdac runs the verification algorithm and outputs

the result to 𝒫i .

Our ideal functionalityℱdac can be easily extended to also accept

as input and output commitments to attribute values, following the

recent work by Camenisch et al. [7], which would allow extending

our delegatable credential scheme with existing revocation schemes

for anonymous credentials in a hybrid protocol.

4 A GENERIC CONSTRUCTION FOR

DELEGATABLE CREDENTIALS

In this section, we provide a generic construction for delegatable

anonymous credentials with attributes. We first explain the intu-

ition behind our construction, then present a construction based on

sibling signatures defined in Section 2.5 and non-interactive zero-

knowledge proofs. Then we prove that our generic construction

securely realizes ℱdac. We provide an efficient instantiation of our

generic construction in the next section.

4.1 Construction Overview

Recall that our definition of delegatable credentials allows for multi-

ple levels of delegation. There is a root delegator (also called issuer)

that issues Level-1 credentials to users. Users can delegate their

Level-L credential, resulting in a Level-(L + 1) credential. We now

explain on a high level how a user obtains a Level-1 credential and

then that credential is delegated. It is then easy to see how a Level-L
credential is delegated (this is also depicted in Fig. 2).

The issuer first generates a signing key isk and corresponding

verification key ipk and publishes ipk, after which it can issue a

Level-1 credential to a user. The user, to get Level-1 credential

issued, generates a fresh secret and a public key (csk1, cpk1) for this
credential and sends public key cpk

1
to the root delegator. The root

delegator signs this public key together with a set of attributes ®a1
and sends the signature σ1 back to the user. A Level-1 credential

cred1 consists of the signature σ1, attributes ®a1, and credential keys
(cpk

1
, csk1).

The user can delegate cred1 further to another user by issu-

ing a Level-2 credential. The receiver generates a fresh key pair

(csk2, cpk2) for the Level-2 credential. The delegation is done by

signing public key cpk
2
and a set of attributes ®a2 (chosen by the

delegator) with the Level-1 credential secret key csk1. The resulting
signature σ2 is sent back together with the attributes ®a2 and the orig-
inal signature σ1, and the corresponding attributes ®a1. The Level-
2 credential consists of both signatures σ1,σ2, attributes ®a1, ®a2,
and keys cpk

1
, cpk

2
, csk2. Note that the Level-2 credential is a

chain of two so-called credential links. The first link, consisting of

(σ1, ®a1, cpk1) proves that the delegator has a Level-1 credential con-
taining attributes ®a1. The second link, (σ2, ®a2, cpk2), proves that this
delegator issued attributes ®a2 to the owner of cpk

2
. The key csk2

allows the user to prove he is the owner of this Level-2 credential.

Note, that the Level-1 credential secret key csk1 is not sent together
with the signature and the credential link, so that it is impossible

for a user who owns the Level-2 credential to present or delegate

the Level-1 credential.

The Level-2 credential can be delegated further in the analogous

way by generating a signature on attributes and a public key and

sending them together with lower-level credential links. A Level-L
credential is therefore a chain of the L credential links, where every

link adds a number of attributes ®ai , and a secret key cskL that allows

the owner to present the credential or to delegate it further.

A credential of any level can be presented by its owner by gener-

ating a NIZK proof proving a possession of all credential links back

to the issuer and selectively disclosing attributes from the corre-

sponding signatures. This proof, that we call an attribute token, can
be verified with the public key of only the issuer. The public keys of

all the credential links remain hidden in the zero-knowledge proof

and, therefore, the identities of all the intermediate delegators are

not revealed by the attribute token.

4.2 Generic Construction

Our generic construction Πdac is based on secure sibling signature

schemes, where Sign1 signs vectors of messages. We allow different

Issuer
ipk, isk

~a1

0

1

2

L− 1

L

cpk1, csk1

σ1 = Signisk(cpk1,~a1)

Level

~a2

cpk2, csk2

σ2 = Signcsk1(cpk2,~a2)

cpkL, cskL

cpkL−1, cskL−1

~aL

credL = (〈σi,~ai, cpki〉Li=1, cskL)

σL = SigncskL−1(cpkL,~aL)

...
...

...

Figure 2: Our Generic Construction: Delegation

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

689

sibling signature schemes to be used at different delegation levels.

Let Sibi denote the scheme used by the owners of Level-i credentials.
Aswe sign public keys of another signature scheme and the attribute

values, the different signature schemes must be compatible with

each other: The public key space of Sibi+1 must be included in the

message space ℳ1 of Sibi . It follows that the attribute space Ai is

the message space of Sibi−1.
The required system parameters for the signature schemes are

taken from ℱcrs. We implicitly assume that every protocol par-

ticipant queries ℱca to retrieve the issuer public key and ℱcrs to

retrieve the system parameters, and that the system parameters

are passed as an implicit input to every algorithm of the signature

schemes.

Setup. In the setup phase, the issuer ℐ creates his key pair and

registers this with the CA functionality ℱca.

(1) ℐ , upon receiving input (SETUP, sid, ⟨ni ⟩i):
• Check that sid = ℐ, sid ′ for some sid ′.
• Run (ipk, isk) ← Sib0.Gen(1κ) and compute proof πisk ←

NIZK{ isk : (ipk, isk) ∈ Sib0.Gen(1κ)}. Register public key
(ipk,πisk) with ℱca. Let cpk0 ← ipk.
• Output (SETUPDONE, sid).

Delegate. Any user 𝒫i with a Level-L − 1 credential can delegate

this credential to another user 𝒫j , giving 𝒫j a Level-L credential.

Delegator 𝒫i can choose the attributes he adds in this delegation.

Note that only the issuer ℐ can issue a Level-1 credential, so we

distinguish two cases: issuance (delegation of a Level-1 credential)

and delegation of credential of level L > 1.

(2) 𝒫i on input (DELEGATE, sid, ssid, ®a1, . . . , ®aL ,𝒫j) with ®aL ∈
AnL
L :

• If L = 1, 𝒫i only proceeds if he is the issuer ℐ with sid =
(ℐ, sid ′). If L > 1, 𝒫i checks that he possesses a credential

chain that signs ®a1, . . . , ®aL−1. That is, he looks up a record

cred = (⟨σi , ®ai , cpki ⟩
L−1
i=1 , cskL−1) in ℒcred.

• Send (sid, ssid, ®a1, . . . , ®aL) to 𝒫j over ℱsmt.

• 𝒫j , upon receiving (sid, ssid, ®a1, . . . , ®aL) to𝒫j overℱsmt from

𝒫i , generate a fresh credential specific key pair (cpkL , cskL) ←
SibL .Gen(1κ).
• Send cpkL to 𝒫i over ℱsmt.

• 𝒫i , upon receiving cpkL from 𝒫j over ℱsmt, computes σL ←

SibL−1.Sign1(cskL−1; cpkL , ®aL) and sends ⟨σi , cpki ⟩
L
i=1 to 𝒫j

over ℱsmt.

• 𝒫j , upon receiving ⟨σi , cpki ⟩
L
i=1 from 𝒫i over ℱsmt, verifies

Sibi−1.Verify1(cpki−1,σi , cpki , ®ai) for i = 1, . . . ,L. It stores

cred ← (⟨σi , ®ai , cpki ⟩
L
i=1, cskL) inℒcred. Output (DELEGATE,

sid, ssid, ®a1, . . . , ®aL ,𝒫i).

Present. A user can present a credential she owns, while also

signing a message m. The disclosed attributes are described by

®a1, . . . , ®aL . Let ®ai = ai,1, . . . ,ai,n ∈ (A ∪ ⊥)n . If ai, j ∈ A, the user
shows it possesses this attribute. If ai, j = ⊥, the user does not show
the attribute. Let D be the set of indices of disclosed attributes, i.e.,

the set of pairs (i, j) where ai, j , ⊥.

(3) 𝒫i , upon receiving input (PRESENT, sid,m, ®a1, . . . , ®aL) with
®ai ∈ (Ai ∪ ⊥)

ni
for i = 1, . . . ,L:

• Look up a credential cred = (⟨σi , ®a′i , cpki ⟩
L
i=1, cskL) in ℒcred,

such that ®ai ≼ ®ai
′
for i = 1, . . . ,L. Abort if no such credential

was found.

• Create an attribute token by proving knowledge of the cre-

dential:

at ← NIZK
{
(σ1, . . . ,σL , cpk1, . . . , cpkL , ⟨a

′
i, j ⟩i<D , tag) :

L∧
i=1

1 = Sibi−1.Verify1(cpki−1,σi , cpki ,a
′
i,1, . . . ,a

′
i,ni)

∧ 1 = Sib.Verify2(cpkL , tag,m)
}

• Output (TOKEN, sid, at).

Verify. A user can verify an attribute token by verifying the zero

knowledge proof.

(4) 𝒫i , upon receiving input (VERIFY, sid, at,m, ®a1, . . . , ®aL):
• Verify the zero-knowledge proof at with respect to m and

®a1, . . . , ®aL . Set f ← 1 if valid and f ← 0 otherwise.

• Output (VERIFIED, sid, f).

4.3 Security of Πdac

We now prove the security of our generic construction.

Theorem 4.1. Our delegatable credentials protocol Πdac securely
realizesℱdac (as defined in Section 3), in the (ℱsmt,ℱca,ℱcrs)-hybrid
model, provided that

• Sibi is a secure sibling signature scheme (as defined in Sec-
tion 2.5),
• NIZK is a simulation-sound zero-knowledge proof of knowl-
edge.

To prove Theorem 4.1, we have to show that there exists a simu-

lator 𝒮 as a function of𝒜 such that no environment can distinguish

Πdac and𝒜 fromℱdac and 𝒮 . The full proof is given in Appendix A,

we present a proof sketch below.

Proof sketch. We sketch a satisfying simulator 𝒮 and argue

that with this simulator the real and ideal worlds are indistinguish-

able.

Setup. In the setup, ℱdac lets 𝒮 define algorithms Present and
Ver, and ℱdac will later use Present to generate attribute tokens. If

the issuer is honest, 𝒮 simiulates the issuer in the real world and

knows its secret key isk. If ℐ is corrupt, 𝒮 can extract isk from πisk ,
which is a part of the issuer public key, using the CRS trapdoor

(decryption key). It defines Present to first issue a credential of

the desired level and containing the requested attributes using isk,
and to then prove knowledge of the credential as in the real world

algorithm. It defines Ver as the real world verification algorithm.

Delegate. If both the delegator and delegatee are honest, 𝒮 has

to simulate the real world protocol without knowing the attribute

values. In Πdac, delegation takes place over secure channel ℱsmt.

This allows 𝒮 to simulate with dummy attribute values. If the

delegator or delegatee is corrupt, 𝒮 learns all attribute values and

has all the information it needs to simulate the real world protocol.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

690

Present. Credential presentation is non-interactive, meaning that

there is no network communication to simulate for 𝒮 . We do have

to argue that the output of the real world is indistinguishable from

the output in the ideal world. ℱdac first checks whether the user

has the required credential for this presentation and aborts if this

is not the case. In the real world, an honest signer also aborts if he

does not possess the required credential for a presentation. Then,

ℱdac computes the attribute token using Present, and only outputs

it if it verifies with Ver. This will always be the case for the Present
and Ver that 𝒮 defined: by completeness of the sibling signatures,

it will create valid signatures, and by completeness of the NIZK,
the resulting attribute token will be valid. This shows that the ℱdac
outputs an attribute token if and only if an honest signer would

output an attribute token.

The attribute tokens that ℱdac computed with Present differ
from the ones computed in the real world: a real world party reuses

one credential every time it signs, whereas Present creates a fresh
credential for every presentation. By witness indistinguishability

of NIZK, this is indistinguishable.

Verify. Verify again is non-interactive, so 𝒮 does not have to

simulate anything, but the outputs from the real and ideal world

should be indistinguishable. 𝒮 defined Ver as the real world verifica-
tion algorithm, so both worlds use the same verification algorithm.

There is one difference: ℱdac prevents forgeries. This difference is

indistinguishable under the unforgeability of the sibling signature

schemes and the soundness of NIZK proof system. �

5 A CONCRETE INSTANTIATION USING

PAIRINGS

We propose an efficient instantiation of our generic construction

based on the Groth-Schnorr sibling signatures SibGS that we intro-

duced in Sec. 2.5.

In the generic construction, we have a sibling signature scheme

Sibi for each delegation level i , where Sibi must sign the public

key of Sibi+1. Groth signature scheme uses bilinear group Λ =
(q,G1,G2,Gt, e,д1,д2). Recall that Groth1 signs messages in G1

with a public key in G2, while Groth2 signs messages in G2 with

a public key in G1. Therefore, we set Sib2n to SibGS1 and Sib2n+1
to SibGS2. This means that we have attribute sets

1 A2n = G1 and

A2n+1 = G2.

In addition to the bilinear group, SibGS1 requires parameters

y1,1, . . . ,y1,n+1 ∈ G1, where n is the maximum number of at-

tributes signed at an odd level (n = maxi=1,3, ...(ni)), and SibGS2
requires y2,1, . . . ,y2,n+1 ∈ G2, for n the maximum number of at-

tributes signed at an even level (n = maxi=2,4, ...(ni)).ℱcrs provides

both the bilinear groups Λ and the yi, j values.
We consider Level-0 to be an even level and, therefore, the issuer

key pair is (ipk = дisk
2
, isk). The issuer must prove knowledge of

its secret key isk in πisk such that isk is online extractable. This

extractability is required for the UC-security proof to work.

This can be achieved by verifiably encrypting the secret key to

a public key encryption key in the CRS using the techniques of

1
Alternatively, one could define a single attribute set A for all levels and use in-

jective functions f1 : A→G1 and f2 : A→G2 , such as setting A = Zq and

f1(a) = дa
1
, f2(a) = дa

2
), but for ease of presentation we omit this step and work

directly with attributes in G1 and G2 .

Camenisch and Shoup [11]. In the security proof, the simulator

controls the CRS and hence knows the decryption key, and can

therefore extract isk without rewinding.

If we only care about standalone security (rather than universal

composability) and do not require the online extraction property, it

is sufficient to prove πisk ← SPK{isk : ipk = дisk
2
} from which the

secret key can be extracted in the proof using rewinding.

5.1 A Concrete Proof for the Attribute Tokens

What remains to show is how to efficiently instantiate the zero-

knowledge proof that constitutes the attribute tokens. Since we

instantiate Sib2i with SibGS1 and Sib2i+1 with SibGS2, we can

rewrite the proof we need to instantiate as follows.

at ← NIZK
{
(σ1, . . . ,σL , cpk1, . . . , cpkL , ⟨a

′
i, j ⟩i<D , tag) :

L∧
i=1,3, ...

1 = SibGS1.Verify1(cpki−1,σi , cpki ,a
′
i,1, . . . ,a

′
i,ni)

L∧
i=2,4, ...

1 = SibGS2.Verify1(cpki−1,σi , cpki ,a
′
i,1, . . . ,a

′
i,ni)

∧ 1 = SibGSb.Verify2(cpkL , tag,m)
}

The proof has three parts: First, it proves all the odd-level creden-

tial links by proving that σi is valid using SibGS1.Verify1. Second,
it proves the even-level credential links by proving that σi verifies
with SibGS2.Verify1. Finally, it proves that the user signed message

m with SibGSb.Verify2, where b depends on whether L is even or

odd.

The abstract zero-knowledge proof can be efficiently instanti-

ated with a generalized Schnorr zero-knowledge proof. Let σi =
(ri , si , ti,1, . . . , ti,ni+1). First, we use the fact that Groth is random-

izable and randomize each signature to (r ′i , s
′
i , t
′
i,1, . . . , t

′
i,ni+1). As

r ′i is now uniform in the group, we can reveal the value rather than

proving knowledge of it. Next, we use a Schnorr-type proof depicted

in Fig. 3 to prove knowledge of the s and t values of the signatures,
the undisclosed attributes, the credential public keys, and the cre-

dential secret key. The concrete zero-knowledge proof contains the

same parts as described for the abstract zero-knowledge proof. The

third part, proving knowledge of tag, is somewhat hidden. Recall

that we instantiate SibGSb.Verify2 with Schnorr signatures, which

means the signature is a proof of knowledge of cskL . This can effi-

ciently be combined with other two parts of the proof: instead of

proving knowledge of cpkL , we prove knowledge of cskL .

5.2 Optimizing Attribute Token Computation

There is a lot of room for optimization when computing zero-

knowledge proofs such as the one depicted in Fig. 3. We describe

how to efficiently compute this specific proof, but many of these

optimizations will be applicable to other zero-knowledge proofs in

pairing-based settings.

Computing attribute tokens. The pairing operation is the most

expensive operation in bilinear groups, so for the efficiency of the

scheme it is beneficial to minimize the amount of pairings computed.

We can use some optimizations in computing the zero-knowledge

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

691

SPK
{
(⟨s ′i , t

′
i, j ⟩i=1, ...,L, j=1, ...,ni , ⟨ai, j ⟩i<D , ⟨cpki ⟩i=1, ...,L−1, cskL) :

L∧
i=1,3, ...

(
e(y1,1,д2)

[
e(д1, ipk)

]
i=1 = e(s ′i , r

′
i)

[
e(д−1

1
, cpki−1)

]
i,1 ∧

1Gt

[
e(y1,1, ipk)

]
i=1 = e(t ′i,1, r

′
i)

[
e(cpki ,д

−1
2
)
]
i,L

[
e(д1,д

−1
2
)
cski]

i=L
[
e(y −1

1,1 , cpki−1)
]
i,1 ∧∧

j :(i, j)∈D

e(ai, j ,д2)
[
e(y1, j+1, ipk)

]
i=1 = e(t ′i, j+1, r

′
i)

[
e(y −1

1, j+1, cpki−1)
]
i,1 ∧

∧
j :(i, j)<D

1Gt

[
e(y1, j+1, ipk)

]
i=1 = e(t ′i, j+1, r

′
i)e(ai, j ,д

−1
2
)
[
e(y −1

1, j+1, cpki−1)
]
i,1

)
∧

L∧
i=2,4, ...

(
e(д1,y2,1) = e(r ′i , s

′
i)e(cpki−1,д

−1
2
) ∧ 1Gt

= e(r ′i , t
′
i,1)e(cpki−1,y

−1
2,1)

[
e(д−1

1
, cpki)

]
i,L

[
e(д−1

1
,д2)

cski]
i=L ∧∧

j :(i, j)∈D

e(д1,ai, j) = e(r ′i , t
′
i, j+1)e(cpki−1,y

−1
2, j+1) ∧

∧
j :(i, j)<D

1Gt
= e(r ′i , t

′
i, j+1)e(cpki−1,y

−1
2, j+1)e(д

−1
1
,ai, j)

)}
(sp, r ′

1
, . . . , r ′L ,m).

Figure 3: Efficient instantiation of the NIZK used to generate attribute tokens (witness underlined for clarity).

proof that remove the need to compute any pairings. As a small

example, suppose we prove SPK{x : z = e(x ,b)}. The standard way

to compute this is taking rx
$

← G1, computing com ← e(rx ,b),
c ← H(com, . . .), and resx ← rx · x

c
. We can compute the same

values without computing the pairing by precomputing e(д,b),

taking ρ
$

← Zq and setting com← e(д1,b)
ρ
and res← д

ρ
1
xc .

To prove knowledge of a Groth signature, we must prove z =
e(x , r ′), where r ′ is the randomized r -value of the Groth signature.

If we try to apply the previous trick, we set ρx
$

← Zq , comx ←

e(д1, r
′)ρx . However, now we cannot precompute e(д1, r

′) since r ′

is randomized before every proof. We can solve this by remember-

ing the randomness used to randomize the Groth signature. Let

r ′ = r ρσ , we can compute comx ← e(д1, r)
ρσ ·ρx

by precomputing

e(д1, r). The full pseudocode for computing the proofs using these

optimizations is given in Fig. 4.

Verifying attribute tokens. In verification, computing pairings is

unavoidable, but there are still tricks to keep verification efficient.

The pairing function is typically instantiated with the tate pairing,

which consists of two parts: Miller’s algorithm t̂(·) and the final

exponentiation fexp(·) [23]. Both parts account for roughly half the

time required to compute a pairing
2
. When computing the product

of multiple pairings, we can compute the Miller loop for every

pairing and then compute the final exponentiation only once for

the whole product. This means that computing the product of three

pairings is roughly equally expensive as computing two individual

pairings.

Fig. 5 shows how to verify attribute tokens efficiently using this

observation. When we write e(a,b) in the pseudocode, it means we

can precompute the value.

2
We verified this by running bench_pair.c of the AMCL library (github.com/miracl/

amcl) using the BN254 curve.

5.3 Efficiency Analysis of Our Instantiation

We now analyze the efficiency of our construction. Namely, we

calculate the number of pairing operations and (multi-) exponen-

tiations in different groups that is required to compute and verify

attribute tokens. We also compute the size of credentials and at-

tribute tokens with respect to a delegation level and number of

attributes. We provide concrete timings for our prototype imple-

mentation in C that generates and verifies Level-2 attribute tokens

in Section 6.3.

Let di and ui denote the amount of disclosed and undisclosed

attributes at delegation level i , respectively, and we define ni =
di + ui .

Computational efficiency. Let us count the operations required

to compute and verify attribute tokens. For operations we use the

following notation. We use X {Gj
1
}, X {Gj

2
}, and X {Gj

t
} to denote

X j-multi-exponentiations in the respective group; j = 1 means

a simple exponentiation. We denote as Ek a k-pairing product

that we can compute with k-Miller loops and a single shared final

exponentiation.

Setup. During the setup, the issuer chooses its root issuer key isk
and computes ipk ← дisk

2
, costing 1{G2}.

Delegation. Delegation of a credential includes generating a key

and a signature on the public key and a set of attributes:

• for even i the cost is 1{G1} + (ni + 2){G2} + (ni + 1){G2

2
},

• for odd i the cost is 1{G2} + (ni + 2){G1} + (ni + 1){G2

1
}.

Signature verification for Level-i costs ni · E
3
plus E2 or E3,

depending on if the pairing with the public key was pre-computed

or not.

Computing attribute tokens (Presentation). Randomizing σi
costs (ni + 2) · {G1}+ 1{G2} for odd i and 1{G1}+ (ni + 2){G2} for

even i . Computing the com-values for Level-1 costs (1 + di){Gt} +

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

692

github.com/miracl/amcl
github.com/miracl/amcl

1: input: ⟨ri , si , ⟨ti, j ⟩
n1+1
j=1 ⟩

L
i=1, cskL , ⟨cpki ⟩

L
i=1, ⟨ai, j ⟩i=1, ...,L, j=1, ...,ni ,D, sp,m

2: for i = 1, . . . ,L do ◃ Randomize σi

3: ρσi
$

← Zq , r ′
1
← r

ρσi
i , s ′i ← s

1

ρσi
i

4: for j = 1, . . .ni + 1 do

5: t ′i, j ← t
1

ρσi
i, j

6: end for

7: end for

8: ⟨ρsi , ⟨ρti, j ⟩
ni+1
j=1 , ⟨ρai, j ⟩

ni
j=1⟩

L
i=1, ⟨ρcpki ⟩

L−1
i=1 , ρcskL

$

← Zq
9: for i = 1, 3, . . . ,L do ◃ Compute com-values for odd-level σi
10: comi,1 ← e(д1, ri)

ρσi ·ρsi
[
· e(д−1

1
,д2)

ρcpki−1
]
i,1

11: comi,2 ← e(д1, ri)
ρσi ·ρti,1 · e(д1,д

−1
2
)
ρcpki

[
· e(y1,1,д2)

ρcpki−1
]
i,1

12: for j = 1, . . . ,ni do
13: if (i, j) ∈ D then ◃ Attribute ai, j is disclosed

14: comi, j+2 ← e(д1, ri)
ρσi ·ρti, j+1

[
· e(y1, j+1,д2)

ρcpki−1
]
i,1

15: else ◃ Attribute ai, j is hidden

16: comi, j+2 ← e(д1, ri)
ρσi ·ρti, j+1 · e(д1,д

−1
2
)
ρai, j

[
· e(y1, j+1,д2)

ρcpki−1
]
i,1

17: end if

18: end for

19: end for

20: for i = 2, 4, . . . ,L do ◃ Compute com-values for even-level σi
21: comi,1 ← e(ri ,д2)

ρσi ·ρsi e(д1,д
−1
2
)
ρcpki−1

22: comi,2 ← e(ri ,д2)
ρσi ·ρti,1 e(д1,y

−1
2,1)

ρcpki−1 e(д−1
1
,д2)

ρcpki

23: for j = 1, . . . ,ni do
24: if (i, j) ∈ D then ◃ Attribute ai, j is disclosed

25: comi, j+2 ← e(д1,y
−1
2, j+1)

ρcpki−1 · e(ri ,д2)
ρσi ·ρti, j+1

26: else ◃ Attribute ai, j is hidden

27: comi, j+2 ← e(д1,y
−1
2, j+1)

ρcpki−1 · e(ri ,д2)
ρσi ·ρti, j+1 · e(д−1

1
,д2)

ρai, j

28: end if

29: end for

30: end for

31: c ← H(sp, ipk, ⟨r ′i , ⟨comi, j ⟩
ni+2
j=1 ⟩

L
i=1, ⟨ai, j ⟩(i, j)∈D ,m) ◃ Fiat-Shamir hash

32: for i = 1, 3, . . . ,L do ◃ Compute res-values for odd-level σi
33: ressi = д

ρsi
1

sci ,
[
rescpki = д

ρcpki
1

cpkci
]
i,L ,

[
rescski = ρcpki + c · cski

]
i=L

34: for j = 1, . . . ,ni + 1 do

35: resti, j = д
ρti, j
1

tci, j
36: end for

37: for j = 1, . . . ,ni with (i, j) < D do

38: resai, j = д
ρai, j
1

aci, j
39: end for

40: end for

41: for i = 2, 4, . . . ,L do ◃ Compute res-values for even-level σi
42: ressi = д

ρsi
2

sci ,
[
rescpki = д

ρcpki
2

cpkci
]
i,L ,

[
rescski = ρcpki + c · cski

]
i=L

43: for j = 1, . . . ,ni + 1 do

44: resti, j = д
ρti, j
2

tci, j
45: end for

46: for j = 1, . . . ,ni with (i, j) < D do

47: resai, j = д
ρai, j
2

aci, j
48: end for

49: end for

50: output: c, ⟨r ′i , ressi , ⟨resti, j ⟩
ni+1
j=1 ⟩

L
i=1, ⟨resai, j ⟩(i, j)<D , ⟨rescpki ⟩

L−1
i=1 , rescskL

Figure 4: Pseudocode for efficiently computing attribute tokens.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

693

1: input: c, ⟨r ′i , ressi , ⟨resti, j ⟩
ni+1
j=1 ⟩

L
i=1, ⟨resai, j ⟩(i, j)<D , ⟨rescpki ⟩

L−1
i=1 , rescskL ,

2: ⟨ai, j ⟩(i, j ∈D),D, sp,m
3: for i = 1, 3, . . . ,L do ◃ Recompute com-values for odd-level σi
4: comi,1 ← fexp(t̂(ressi , r

′
i)

[
· t̂(д−1

1
, rescpki−1)

]
i,1) · (e(y1,1,д2)

[
· e(д1, ipk)

]
i=1)
−c

5: comi,2 ← fexp(t̂(resti,1 , r
′
i)

[
· t̂(y1,1, rescpki−1)

]
i,1

[
· t̂(rescpki ,д

−1
2
)
]
i,L)

[
· e(д1,д

−1
2
)rescski

]
i=L

[
· e(y1,1, ipk)−c

]
i=1

6: for j = 1, . . . ,ni do
7: if (i, j) ∈ D then ◃ Attribute ai, j is disclosed

8: comi, j+2 ← fexp(t̂(resti, j+1 , r
′
i)

[
· t̂(y1, j+1, rescpki−1)

]
i,1) · (e(ai, j ,д2)

[
e(y1, j+1, ipk)

]
i=1)
−c

9: else ◃ Attribute ai, j is hidden

10: comi, j+2 ← fexp(t̂(resti, j+1 , r
′
i) · t̂(resai, j ,д

−1
2
)
[
· t̂(y1, j+1, rescpki−1)

]
i,1)

[
· e(y1, j+1, ipk)−c

]
i=1

11: end if

12: end for

13: end for

14: for i = 2, 4, . . . ,L do ◃ Compute com-values for even-level σi
15: comi,1 ← fexp(t̂(r ′i , ressi) · t̂(rescpki−1 ,д

−1
2
)) · e(д1,y2,1)

−c

16: comi,2 ← fexp(t̂(r ′i , resti,1) · t̂(rescpki−1 ,y
−1
2,1)

[
· t̂(д−1

1
, rescpki)

]
i,L)

[
· e(д−1

1
,д2)

rescski
]
i=L

17: for j = 1, . . . ,ni do
18: if (i, j) ∈ D then ◃ Attribute ai, j is disclosed

19: comi, j+2 ← fexp(t̂(rescpki−1 ,y
−1
2, j+1) · t̂(r

′
i , resti, j+1)) · e(д1,ai, j)

−c

20: else ◃ Attribute ai, j is hidden

21: comi, j+2 ← fexp(t̂(rescpki−1 ,y
−1
2, j+1) · t̂(r

′
i , resti, j+1) · t̂(д

−1
1
, resai, j))

22: end if

23: end for

24: end for

25: c ′ ← H(sp, ipk, ⟨r ′i , ⟨comi, j ⟩
ni+2
j=1 ⟩

L
i=1, ⟨ai, j ⟩(i, j)∈D ,m) ◃ Fiat-Shamir hash

26: output: c = c ′

Figure 5: Pseudocode for efficiently verifying attribute tokens.

(1+ui){G2

t
}. The com-values for Level-i for i > 1 cost (1+di){G2

t
}+

(1+ui){G3

t
}. Computing the res-values for odd i costs (2+ni){G2

1
},

and for even i it costs (2 + ni){G2

2
}, except the last level, where

1{G2

1
} or 1{G2

2
} can be saved when L is even or odd, respectively.

If we consider a practical example, where we show Level-2 cre-

dentials with attributes only on Level-1 (meaning that n2 = 0),

computing the attribute token costs very roughly 3n1 +13 exponen-
tiations, and more precisely: (3+n1){G1}+ (2+n1){G2

1
}+3{G2}+

1{G2

2
} + (1 + d1){Gt} + (2 + u1){G2

t
} + 1{G3

t
}.

Verifying attribute tokens.Verifying the first credential link costs
(1 + d1)E + (1 +u1)E

2 + (2 + n1){Gt} and one final exponentiation.

Every next level adds (1+di)E
2 + (1+ui)E

3 + (1+di){Gt}, except

the last level, which costs (2 + di)E
2 + uiE

3 + (2 + di){Gt}.

For the same practical example with two levels, to verify a Level-

2 attribute token will cost very roughly n1 + 4 pairings and n1 + 4
exponentiations, and more precisely: (1 + d1)E + (3 + u1)E

2 + (4 +

n1){Gt}.

We summarize the above efficiency analysis in Table 1. We also

estimate timings from running some benschmarks for the C version

of Apache Milagro Cryptographic Library (AMCL)
3
with a 254-bit

Barreto-Naehrig curve [2] on a 3.1GHz Intel I7-5557U laptop CPU.

We compared our timings calculated according to Table 1 with

3
github.com/miracl/amcl

the real implementation for two levels with different amount of at-

tributes (see Table 2 for comparison). The figures from Table 2 show

that our estimates are quite accurate and even a bit conservative.

Size of attribute tokens To count the size of an attribute token

we use the following notation. We use X [G1] and X [G2] to denote

X group elements from the respective group. The attribute token

proves knowledge of every credential link, so the token grows in

the credential level.

First, we look at credential links without attributes. For every

level a credential link adds 4 group elements: 3[G1] + 1[G2] for an

odd and 1[G1] + 3[G2] for an even level, respectively. Addition-

ally, a token has 2 elements from Zq . This means that for even

L, an attribute token generated from a Level-L credential without

attributes takes (2L)[G1] + (2L − 1)[G2] + 2Zq .
Every attribute added to an odd level credential link adds one

group element, if it is disclosed, and two elements, if this attribute

remains hidden. For the odd levels these are the elements from

[G1] and for even levels - from [G2]. This means that for even

L, an attribute token generated from a Level-L credential takes

(2L+
∑L−1
i=1,3, ...(ni+ui))[G1]+(2L−1+

∑L
i=2,4, ...(ni+ui))[G2]+2Zp .

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

694

github.com/miracl/amcl

Algorithm Operations Total time estimate (ms)

SETUP 1{G2} 1.21

DELEGATE

For each odd Level-i: 1{G2} + (ni + 2){G1} + (ni + 1){G2

1
} 2.96 + 1.21ni

For each even Level-i: 1{G1} + (ni + 2){G2} + (ni + 1){G2

2
} 5.27 + 3.52ni

PRESENT

∑L
i=1,3, ..

(
1{G2} + (ni + 2){G1} + (1 + di){G2

t
} + (1 + ui){G3

t
}+ ∑L

i=1,3, ..
(
13.63 + 3.89di + 6.11ui + 1.21ni

)
+

(2 + ni){G2

1
}
)∑L

i=2,4, ..
(
1{G1} + (ni + 2){G2} + (1 + di){G2

t
} + (1 + ui){G3

t
}+ ∑L

i=2,4, ..
(
17.58 + 3.89di + 6.11ui + 3.52ni

)
(2 + ni){G2

2
}
)

VERIFY

(1 + d1)E + (3 + u1 + dL)E
2 + uLE

3 + (4 + n1 + dL){Gt}+ 21.65 + 2.36d1 + 3.91u1 + 1.89n1 + 5.80dL + 5.48uL+∑(L−1)
i=2,3, ..

(
(1 + di)E

2 + (1 + ui)E
3 + (1 + di){Gt}

) ∑(L−1)
i=2,3, ..

(
11.28 + 5.80di + 5.48ui

)
Table 1: Performance evaluation and timing estimations, where di and ui denote the amount of disclosed and undisclosed

attributes at delegation level i, respectively, and ni = di + ui ; X {Gj
1
}, X {Gj

2
}, and X {Gj

t
} denote X j-multi-exponentiations in

the respective group; j = 1 means a simple exponentiation. Ek denote a k-pairing product that we can compute with k-Miller

loops and a single shared final exponentiation; k = 1means a single pairing. Benchmarks are (all in ms): 1{G1} = 0.54; 1{G2

1
} =

0.67; 1{G2} = 1.21; 1{G2

2
} = 2.31; 1{Gt} = 1.89; 1{G2

t
} = 3.89; 1{G3

t
} = 6.11; 1E = 2.36; 1E2 = 3.91; 1E3 = 5.48.

6 APPLICATION TO PERMISSIONED

BLOCKCHAINS

In this section, we describe a practical application of delegatable cre-

dentials with attributes to a membership service for a permissioned

blockchain. We also report on the implementation of this scheme,

demonstrating the practicality of our construction for real-world

applications.

Blockchain is a distributed immutable ledger widely used in

cryptocurrencies and beyond for different kinds of transactions.

Blockchain is the basis for Bitcoin [32], which greatly helped to pop-

ularize distributed cryptographic protocols. Bitcoin is an example

of a permissionless blockchain, i.e., anyone can submit transactions

and anyone with the sufficient computational power can join in

maintaining the ledger. However, for some applications including,

in particular, many enterprise scenarios, only designated parties

should be allowed to submit transactions or be able to modify the

state of the blockchain. Thus, mechanisms for identity verification

and for moderation of who can add and modify the blockchain

entries need to be in place. Furthermore, it is often necessary that

all transactions can be audited.

These requirements are addressed by permissioned blockchains,

sometimes also called private blockchains. To this end, a permis-

sioned blockchain entails a so-called membership service that issues
credentials to the members of the chain and provides mechanisms

to enable transaction signing, authentication, access control, revo-

cation of credentials, and auditing of the transactions. However,

all transactions being traceable can violate the privacy and secu-

rity requirements. Therefore, anonymous credentials are a perfect

fit to implement a privacy-preserving membership service. Below

we describe how to implement a membership service with ordi-

nary anonymous credentials and then show how to extend it to

incorporate delegateable credentials.

6.1 Privacy-Preserving Membership Service

The membership service realized with an anonymous credential

scheme works as follows.

Setup. The Certificate Authority (CA) is set up by generating

the signing key pair and making the public key available to the

blockchain participants.

Certificate Issuance. A blockchain participant generates a secret

key and creates a request for a membership certificate. The CA

issues a membership certificate as an anonymous credential. The

certificate also contains the attributes associated with the partici-

pant. These can then be used to implement (attribute-based) access

control for transactions. The certificate is stored together with the

corresponding credential secret key by the participant.

Signing Transactions. When a blockchain member needs to sign

a transaction, it generates a fresh unlinkable presentation token

that: 1) signs the transaction content; 2) proves a possession of

a valid membership credential issued by the CA; 3) discloses the

attributes that are required by the access control policy for the

transaction.

To enable certificate revocation and auditing, the token can also

prove in zero-knowledge: 4) that the certificate was not revoked

with respect to the revocation information published by the mem-

bership service (or a designated revocation authority); 5) provide a

ciphertext that contains the credential identifier encrypted under

the auditor’s public encryption key (so that only the auditor can

decrypt it) and a ZK proof that the same credential identifier is

contained in the membership certificate, without disclosing the

identifier itself.

Implementing a membership service like this preserves trans-

action privacy and unlinkability and enables transaction auditing

and membership revocation. However, when many different orga-

nizations run blockchain and many users from these organizations

participate in transactions, it is hardly practical to deploy a single

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

695

membership service (the CA) because of the issuance workload

and also because it introduces a single point of trust and failure.

While introducing a two or more level hierarchy of CAs could be a

solution, this approach would have a serious impact on the privacy

and confidentiality of the system, as argued earlier. In the next

section we, therefore, describe how to use delegatable credentials

for this task to preserve privacy and unlinkability of transactions.

6.2 Hierarchical Membership Service from

Delegatable Credentials with Attributes

A membership service implemented with a two-level DAC is as

follows. The root CAwill be the issuer providing Level-1 credentials

with the suitably chosen attributes to the local CAs. The local CAs

issue Level-2 credentials to the blockchain members, certifying the

attributes of every member. Blockchain members can use Level-2

credentials to unlinkably sign transactions, selectively disclosing

Level-2 attributes (and possibly Level-1 attributes, if required by

the application). Signatures on transactions can thus be verified

with the root CA’s public key only, without leaking any informa-

tion about the local CAs. With this approach, the issuance and

identity management workload is distributed among the different

organization running the system without compromising privacy.

The number of delegation levels can be increased to support differ-

ent hierarchies based on the organizational structure and will still

preserve the privacy of all intermediate CAs.

Enhancing Trust in the Root CA by Distribution. To avoid a single
point of trust and failure at the root CA, the first level issuance

procedures (issuance of Level-1 credentials) can be realized as a

multiparty computation. Due the algebraic properties of the Groth

signature scheme [29] that we use, such multiparty computation

can be efficiently implemented using known techniques [5, 22]. Es-

sentially, the parties will have to generate a random share, compute

its inverse and then three distributed exponentiations. Also, issuing

root credentials is probably the least frequent operation and less

critical for the system’s performance compared to the delegations

at other levels. Thus the loss of efficiency due to the distribution of

the root issuance will hardly have an effect in real deployments.

6.3 Implementation and Performance Analysis

We have implemented a prototype of our concrete instantiation

for delegatable credentials in the C programming language, using

the Apache Milagro Cryptographic Library (AMCL) with a 254-bit

Barreto-Naehrig curve [2]. This prototype generates and verifies

Level-2 attribute tokens. The prototype shows the practicality of

our construction: generating an attribute token without attributes

takes only 27 ms, and verification requires only 20 ms, on a 3.1GHz

Intel I7-5557U laptop CPU. Table 2 shows performance figures when

presenting tokens with attributes. Adding undisclosed attributes in

the first credential link (that is, increasing n1) adds roughly 6 ms to

the token generation time per attribute, while adding undisclosed

attributes in the second link (thus increasing n2) adds 11 ms. For

verification, every added undisclosed attribute increases verification

time by 5 ms. Table 2 also shows that our estimated timings in

Table 1 are accurate: the estimated values are close to the measured

timings and our estimates are even a bit conservative. We plan

n1 n2 PRESENT VERIFY EST. PRES. EST. VERIFY

0 0 26.9 ms 20.2 ms 31.21 ms 21.65 ms

1 0 32.7 ms 25.4 ms 38.53 ms 27.45 ms

2 0 38.1 ms 30.9 ms 45.85 ms 33.25 ms

3 0 44.0 ms 36.1 ms 53.17 ms 39.05 ms

4 0 49.5 ms 41.4 ms 60.49 ms 44.85 ms

0 1 38.6 ms 24.8 ms 40.84 ms 27.13 ms

0 2 49.4 ms 29.2 ms 50.47 ms 32.61 ms

0 3 61.5 ms 34.1 ms 60.10 ms 38.09 ms

0 4 72.6 ms 38.7 ms 69.73 ms 43.57 ms

1 1 43.7 ms 30.1 ms 48.16 ms 32.93 ms

2 1 49.3 ms 35.4 ms 55.48 ms 38.73 ms

Table 2: Performance measurements of presenting and veri-

fying Level-2 credentials, and our estimated timings follow-

ing the computation of Table 1. No attributes are disclosed.

to release our prototype implementation as open source software.

Currently it is available upon request.

7 CONCLUSION

The first practical delegatable credential system with attributes pre-

sented in this paper addresses the basic privacy and security needs

of a public key infrastructure and, in particular, the requirements of

a membership service of a permissioned blockchain. However, there

are a number of additional functionalities that could be considered,

such as key life cycle management, revocation, and support for

auditable tokens. We expect that the solutions for these extensions

known for the ordinary anonymous credentials to be applicable

here as well. Of course, any of these extensions would require to

modify our ideal functionality ℱdac, as would the extension of a

distributed issuance of Level-1 credentials. One way to do it is to

extend our ideal functionality ℱdac to accept as input and also out-

put commitments to attribute values, following the recent work by

Camenisch et al. [7]. This would allow for a modular construction of

a delegatable credential scheme with the extensions just discussed.

We consider all of this future work.

8 ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their helpful com-

ments. This work was supported by the European Commission

through the Seventh Framework Programme, under grant agree-

ments #321310 for the ERC grant PERCY.

REFERENCES

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2010. Structure-Preserving Signatures and Commitments to Group

Elements. In CRYPTO 2010 (LNCS), Tal Rabin (Ed.), Vol. 6223. Springer, Heidelberg,
209–236.

[2] Paulo S. L. M. Barreto andMichael Naehrig. 2006. Pairing-Friendly Elliptic Curves

of Prime Order. In SAC 2005 (LNCS), Bart Preneel and Stafford Tavares (Eds.),

Vol. 3897. Springer, Heidelberg, 319–331.

[3] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-

mous Credentials. In CRYPTO 2009 (LNCS), Shai Halevi (Ed.), Vol. 5677. Springer,
Heidelberg, 108–125.

[4] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key

model and a general forking lemma. In ACM CCS 06, Ari Juels, Rebecca N. Wright,

and Sabrina De Capitani di Vimercati (Eds.). ACM Press, 390–399.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

696

[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system

for secure multi-party computation. In ACM CCS 08, Peng Ning, Paul F. Syverson,
and Somesh Jha (Eds.). ACM Press, 257–266.

[6] Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, Anja Lehmann, Gre-

gory Neven, Christian Paquin, and Franz-Stefan Preiss. 2014. Concepts and

languages for privacy-preserving attribute-based authentication. J. Inf. Sec. Appl.
19, 1 (2014), 25–44.

[7] Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. 2016. UC Commit-

ments for Modular Protocol Design and Applications to Revocation and At-

tribute Tokens. In CRYPTO 2016, Part III (LNCS), Matthew Robshaw and Jonathan

Katz (Eds.), Vol. 9816. Springer, Heidelberg, 208–239. https://doi.org/10.1007/

978-3-662-53015-3_8

[8] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel

Rausch. 2016. Universal Composition with Responsive Environments. In

ASIACRYPT 2016, Part II (LNCS), Jung Hee Cheon and Tsuyoshi Takagi

(Eds.), Vol. 10032. Springer, Heidelberg, 807–840. https://doi.org/10.1007/

978-3-662-53890-6_27

[9] Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of

Generalized Schnorr Proofs. In EUROCRYPT 2009 (LNCS), Antoine Joux (Ed.),

Vol. 5479. Springer, Heidelberg, 425–442.

[10] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS), Matthew Franklin (Ed.),

Vol. 3152. Springer, Heidelberg, 56–72.

[11] Jan Camenisch and Victor Shoup. 2003. Practical Verifiable Encryption and

Decryption of Discrete Logarithms. In CRYPTO 2003 (LNCS), Dan Boneh (Ed.),

Vol. 2729. Springer, Heidelberg, 126–144.

[12] Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes for

Large Groups (Extended Abstract). In CRYPTO’97 (LNCS), Burton S. Kaliski Jr.

(Ed.), Vol. 1294. Springer, Heidelberg, 410–424.

[13] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067. (2000).

http://eprint.iacr.org/2000/067.

[14] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

[15] Ran Canetti. 2004. Universally Composable Signature, Certification, and Au-

thentication. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society, 219.

https://doi.org/10.1109/CSFW.2004.24

[16] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2012. Malleable Proof Systems and Applications. In EUROCRYPT 2012 (LNCS),
David Pointcheval and Thomas Johansson (Eds.), Vol. 7237. Springer, Heidelberg,

281–300.

[17] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2013. Malleable Signatures: Complex Unary Transformations and Delegatable

Anonymous Credentials. Cryptology ePrint Archive, Report 2013/179. (2013).

http://eprint.iacr.org/2013/179.

[18] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2013. Succinct Malleable NIZKs and an Application to Compact Shuffles. In

TCC 2013 (LNCS), Amit Sahai (Ed.), Vol. 7785. Springer, Heidelberg, 100–119.

https://doi.org/10.1007/978-3-642-36594-2_6

[19] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. 2014. Malleable Signatures: New Definitions and Delegatable Anony-

mous Credentials. In IEEE 27th Computer Security Foundations Symposium,
CSF 2014, Vienna, Austria, 19-22 July, 2014. IEEE Computer Society, 199–213.

https://doi.org/10.1109/CSF.2014.22

[20] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In

CRYPTO 2006 (LNCS), Cynthia Dwork (Ed.), Vol. 4117. Springer, Heidelberg,

78–96.

[21] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO’82,
David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Plenum Press, New

York, USA, 199–203.

[22] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-

tionally Secure Protocols (Extended Abstract). In 20th ACM STOC. ACM Press,

11–19.

[23] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. 2007. Implementing

Cryptographic Pairings over Barreto-Naehrig Curves (Invited Talk). In PAIRING
2007 (LNCS), Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi

Okamoto (Eds.), Vol. 4575. Springer, Heidelberg, 197–207.

[24] Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-Knowledge Proofs of Identity.

Journal of Cryptology 1, 2 (1988), 77–94.

[25] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS), AndrewM. Odlyzko

(Ed.), Vol. 263. Springer, Heidelberg, 186–194.

[26] Georg Fuchsbauer. 2011. Commuting Signatures and Verifiable Encryption.

In EUROCRYPT 2011 (LNCS), Kenneth G. Paterson (Ed.), Vol. 6632. Springer,

Heidelberg, 224–245.

[27] Georg Fuchsbauer and David Pointcheval. 2009. Formal to Practical Security.

Springer-Verlag, Berlin, Heidelberg, Chapter Anonymous Consecutive Delegation

of Signing Rights: Unifying Group and Proxy Signatures, 95–115. https://doi.

org/10.1007/978-3-642-02002-5_6

[28] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th ACM STOC.
ACM Press, 291–304.

[29] Jens Groth. 2015. Efficient Fully Structure-Preserving Signatures for Large

Messages. In ASIACRYPT 2015, Part I (LNCS), Tetsu Iwata and Jung Hee

Cheon (Eds.), Vol. 9452. Springer, Heidelberg, 239–259. https://doi.org/10.1007/

978-3-662-48797-6_11

[30] Dennis Hofheinz and Victor Shoup. 2015. GNUC: ANewUniversal Composability

Framework. Journal of Cryptology 28, 3 (July 2015), 423–508. https://doi.org/10.

1007/s00145-013-9160-y

[31] Ralf Kuesters and Max Tuengerthal. 2013. The IITM Model: a Simple and Ex-

pressive Model for Universal Composability. Cryptology ePrint Archive, Report

2013/025. (2013). http://eprint.iacr.org/2013/025.

[32] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[33] Birgit Pfitzmann and Michael Waidner. 2000. Composition and Integrity Preser-

vation of Secure Reactive Systems. In ACM CCS 00, S. Jajodia and P. Samarati

(Eds.). ACM Press, 245–254.

[34] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS), Gilles Brassard (Ed.), Vol. 435. Springer, Heidelberg,
239–252.

[35] Mårten Trolin and Douglas Wikström. 2005. Hierarchical Group Signatures. In

ICALP 2005 (LNCS), Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia

Palamidessi, and Moti Yung (Eds.), Vol. 3580. Springer, Heidelberg, 446–458.

A SECURITY PROOF

We now prove Theorem 4.1. We have to prove that our scheme

realizes ℱdac, which means proving that for every adversary 𝒜,

there exists a simulator 𝒮 such that for every environment ℰ we

have EXECΠ,𝒜,ℰ ≈ IDEALℱ,𝒮,ℰ .
To show that no environment ℰ can distinguish the real world,

in which it is working with Πdac and adversary 𝒜, from the ideal

world, in which it usesℱdac with simulator 𝒮 , we use a sequence of
games. We start with the real world protocol execution. In the next

game we construct one entity 𝒞 that runs the real world protocol for

all honest parties. Then we split 𝒞 into two pieces, a functionalityℱ
and a simulator 𝒮 , where ℱ receives all inputs from honest parties

and sends the outputs to honest parties. We start with a dummy

functionality, and gradually change ℱ and update 𝒮 accordingly,

to end up with the full ℱdac and a satisfying simulator. First we

define all intermediate functionalities and simulators, and then we

prove that they are all indistinguishable from each other.

Game 1: This is the real world.

Game 2: We let the simulator 𝒮 receive all inputs and generate all

outputs by simulating the honest parties honestly. It also simulates

the hybrid functionalities honestly. Clearly, this is equal to the real

world.

Game 3: We now start creating a functionality ℱ that receives

inputs from honest parties and generates the outputs for honest

parties. It works together with a simulator 𝒮 . In this game, we

simply let ℱ forward all inputs to 𝒮 , who acts as before. When

𝒮 would generate an output, it first forwards it to ℱ, who then

outputs it. This game hop simply restructures Game 2, we have

Game 3 = Game 2.

Game 4: ℱ now handles the setup queries, and lets 𝒮 enter algo-

rithms that ℱ will store. ℱ checks the structure of sid, and aborts

if it does not have the expected structure. This does not change the

view of ℰ , as ℐ in the protocol performs the same check, giving

Game 4 = Game 3.

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

697

https://doi.org/10.1007/978-3-662-53015-3_8
https://doi.org/10.1007/978-3-662-53015-3_8
https://doi.org/10.1007/978-3-662-53890-6_27
https://doi.org/10.1007/978-3-662-53890-6_27
http://eprint.iacr.org/2000/067
https://doi.org/10.1109/CSFW.2004.24
http://eprint.iacr.org/2013/179
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/978-3-642-02002-5_6
https://doi.org/10.1007/978-3-642-02002-5_6
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
http://eprint.iacr.org/2013/025

Game 5: ℱ now handles the verification queries using the algo-

rithm that 𝒮 defined in Game 4. In Game 4, 𝒮 defined the Ver
algorithm as the real world verification algorithm so we have Game

5 = Game 4.

Game 6: ℱ now also handles the delegation queries. If both the del-

egator and the delegatee are honest, 𝒮 does not learn the attribute

values and must simulate the real world protocol with dummy val-

ues. As all communication is over a secure channel, this difference

is not noticable by the adversary.

If the delegatee is corrupt, 𝒮 learns the attribute values 𝒮 can

simulate the real world protocol with the correct input. If the dele-

gator is corrupt and the delegatee honest, 𝒮 has to take more care:

The corrupt delegator may have received delegated credentials from

other corrupt users, without 𝒮 and ℱ knowing. If 𝒮 would make a

delegation query with ℱ on the delegator’s behalf, ℱ would reject

as it does not possess the required attributes for this delegation,

invalidating the simulation. In this case, 𝒮 first informs ℱ of the

missing delegations, such that ℱ’s records accept the delegation,

and only then calls ℱ on the delegator’s behalf for this delegation.

As 𝒮 only lacks information to simulate when both parties are

honest, but this change is not noticable due to the use of a secure

channel, Game 6 ≈ Game 5.

Game 7: ℱ now generates the attribute tokens for honest parties,

using the Present algorithm that 𝒮 defined in Game 4. First, ℱ
checks whether the party is eligible to create such an attribute

token, and aborts otherwise. This does not change ℰ ’s view, as the
real world protocol performs an equivalent check. Second, ℱ tests

whether attribute token at generated with Present is valid w.r.t. Ver
before outputting at. 𝒮 defined Present to sign a valid witness for

the NIZK that at is, and Ver will verify the NIZK. By completeness

of all the sibling signature schemes Sib and completeness of NIZK,
at will be accepted by Ver. This shows that ℱ outputs an attribute

token if and only if the real world party would output an attribute

token.

Next, we must show that the generated attribute token is indis-

tinguishable between the real and ideal world. Both the real world

protocol and the Present algorithm compute

at ← NIZK
{
(σ1, . . . ,σL , cpk1, . . . , cpkL , ⟨a

′
i, j ⟩i<D , tag) :

L∧
i=1

1 = Sibi−1.Verify1(cpki−1,σi , cpki ,a
′
i,1, . . . ,a

′
i,ni)

∧ 1 = Sib.Verify2(cpkL , tag,m)
}

but in the real world, a party uses his own credential every time

he proves this statement, and ℱ creates a fresh credential for every

signature. Note that the credential only concerns the witness of the

zero-knowledge proof. By the witness indistinguishability of the

zero-knowledge proofs, this change is not noticable and we have

Game 7 ≈ Game 6.

Game 8: ℱ now guarantees unforgeability of attribute tokens. We

make this change gradually, where in the first intermediate game

we guarantee unforgeability of level 1 attribute tokens, then of level

2, and so forth, and we prove that each game is indistinguishable

from the previous.

If the unforgeability check for level L credentials triggers with

non-negligible probability, there must be an attribute token at that
was valid before but is rejected by the unforgeability check of ℱ.

This means that one of the two statements must hold with non-

negligible probability:

• at proves knowledge either of a public key cpkL that belongs

to an honest user with the correct attributes, but this user

never signedm (as otherwise the unforgeability check would

not trigger)

• at proves knowledge of a public key cpkL that does not

belong to an honest user.

In the first case, we can reduce to the unforgeability-2 property

of Sib: There can only be polynomially many delegations of a level

L credential to an honest user. Pick a random one and simulate

the receiving party with the public key vk as received from the

unforgeability game of Sib. When the user delegates this credential,

use the Sign1 oracle, and when presenting the credential, use the

Sign2 oracle. Finally, when ℱ sees an attribute token at that it
considers a forgery, the soundness of NIZK allows us to extract

from the zero-knowledge proof. With non-negligible probability,

cpkL = vk, and then tag is a Sib forgery.

In the second case, we can reduce to the unforgeability-1 property

of Sib: If L = 1, simulate the issuer with ipk ← vk, where vk is

taken from the Sib unforgeability game. As isk us not known to

the simulator, we simulate πisk , and define the Present algorithm
to simulate the proof such that the issuer secret key is not needed.

ℐ uses the Sign1 oracle to delegate. If a delegation was chosen,

simulate the receiver using cpki ← vk. If L > 1, there can only be

polynomially many delegations that give an honest user a credential

of level L − 1. Pick a random one and simulate the receiving party

with cpkL−1 ← vk. Use the Sign1 oracle to delegate this credential,

and the Sign2 oracle to present this credential. Finally, whenℱ sees

an attribute token at that it considers a forgery, extract from the

zero-knowledge proof. With non-negligible probability, cpkL−1 =
vk, and then σL is a Sib forgery on message cpkL .

We provide the detailed description of the simulator on Fig. 6. ℱ
of Game 8 of equal to ℱdac, conclusing our sequence of games. �

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

698

Setup

Honest ℐ

• On input (SETUP, sid, ⟨ni ⟩i) from ℱ.

– Parse sid as (ℐ, sid′) and give “ℐ” input (SETUP, sid, ⟨ni ⟩i).
– When “ℐ” outputs (SETUPDONE, sid), 𝒮 takes its public key ipk and se-

cret key isk and defines Present and Ver, and the attribute spaces ⟨Ai ⟩i .
∗ Define Present(m, ®a1, . . . , ®aL) as follows: Run (cpki , cski) ←
Sigi .Gen(1

κ) for i = 1, . . . , L. Compute σ1 ←

Sig
0
.Sign(isk; cpk

1
, ®a1) and σi ← Sigi−1 .Sign(cski−1, cpki , ®ai) for

i = 2, . . . , L. Next, compute at as in the real world protocol and

return at.
∗ Define Ver(at,m, ®a1, . . . , ®aL) as the real world verification algorithm
that verifies with respect to ipk.
∗ Define Ai as G1 for odd i and as G2 for even i .
𝒮 sends (SETUP, sid, Present, Ver, ⟨Ai ⟩i) to ℱ.

Corrupt ℐ

• 𝒮 notices this setup as it notices ℐ registering a public key with “ℱca” with

sid = (ℐ, sid′).
– If the registered key is of the form (ipk, πisk) and πisk is valid, 𝒮 extracts

isk from πisk .
– 𝒮 defines Present, Ver and ⟨Ai ⟩ as when ℐ is honest, but now depending

on the extracted key.

– 𝒮 sends (SETUP, sid) to ℱ on behalf of ℐ .
• On input (SETUP, sid) from ℱ.

– 𝒮 sends (SETUP, sid, Present, Ver, ⟨Ai ⟩i) to ℱ.

• On input (SETUPDONE, sid) from ℱ
– 𝒮 continues simulating “ℐ”.

Delegate

Honest 𝒫 , 𝒫′

• 𝒮 notices this delegation as it receives (ALLOWDEL, sid, ssid, 𝒫, 𝒫′, L)
from ℱ.

– 𝒮 picks dummy attribute values ®a1, . . . , ®aL and gives “𝒫” input

(DELEGATE, sid, ssid, ®a1, . . . , ®aL, 𝒫′).
– When “𝒫′” outputs (DELEGATE, sid, ssid, ®a1, . . . , ®aL, 𝒫), output

(ALLOWDEL, sid, ssid) to ℱ.

Honest 𝒫 , corrupt 𝒫′

• 𝒮 notices this delegation as it receives (ALLOWDEL, sid, ssid, 𝒫, 𝒫′, L)
from ℱ.

– Output (ALLOWDEL, sid, ssid) to ℱ.

• 𝒮 receives (DELEGATE, sid, ssid, ®a1, . . . , ®aL, 𝒫) as 𝒫′ is corrupt.
– 𝒮 gives “𝒫” input (DELEGATE, sid, ssid, ®a1, . . . , ®aL, 𝒫′).

Honest 𝒫′, corrupt 𝒫
• 𝒮 notices this delegation as “𝒫” outputs (DELEGATE, sid, ssid, ®a1, . . . , ®aL,
𝒫).
– If L > 1 and 𝒮 has not simulated delegating attributes ®a1, . . . , ®aL−1

to 𝒫 , and there is a corrupt party 𝒫′′ that has attributes ®a1, . . . , ®ai for
0 < i < L − 1 (note that if the root delegator ℐ is corrupt, i = 0), 𝒫′′
may have delegated ®ai , . . . , ®aL−1 to 𝒫′ without 𝒮 noticing. Therefore,

𝒮 needs to delegate attributes ®ai , . . . , ®aL−1 in the ideal world, which is

possible as𝒫′′ is corrupt:𝒮 sends (DELEGATE, sid, ssid, ®a1, . . . , ®ai , 𝒫′)
on𝒫′′’s behalf toℱ and allows the delegation, and for j = i+1, . . . , L−1,
sends (DELEGATE, sid, ssid, ®a1, . . . , ®aj , 𝒫′) on 𝒫′’s behalf to ℱ, allow-

ing every delegation. Note that𝒫′ now possesses attributes ®a1, . . . , ®aL−1
in ℱ’s records.

– Send (DELEGATE, sid, ssid, ®a1, . . . , ®aL, 𝒫′) on 𝒫 ’s behalf to ℱ.

• On input (ALLOWDEL, sid, ssid, 𝒫, 𝒫′, L) from ℱ.

– Output (ALLOWDEL, sid, ssid) to ℱ.

Corrupt 𝒫 , 𝒫 ’

Nothing to simulate.

Present

Nothing to simulate.

Verify

Nothing to simulate.

Figure 6: Description of the Simulator

Session C5: Using Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

699

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Bilinear Groups
	2.3 Zero-Knowledge Proofs
	2.4 Signature Schemes
	2.5 Sibling Signatures
	2.6 Universal Composability

	3 Definition of Delegatable Credentials
	4 A Generic Construction for Delegatable Credentials
	4.1 Construction Overview
	4.2 Generic Construction
	4.3 Security of [dac]

	5 A Concrete Instantiation using Pairings
	5.1 A Concrete Proof for the Attribute Tokens
	5.2 Optimizing Attribute Token Computation
	5.3 Efficiency Analysis of Our Instantiation

	6 Application to Permissioned Blockchains
	6.1 Privacy-Preserving Membership Service
	6.2 Hierarchical Membership Service from Delegatable Credentials with Attributes
	6.3 Implementation and Performance Analysis

	7 Conclusion
	8 Acknowledgements
	References
	A Security Proof

