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ABSTRACT
We consider the automatic verification of information flow security
policies of web-based workflows, such as conference submission
systems like EasyChair. Our workflow description language allows
for loops, non-deterministic choice, and an unbounded number of
participating agents. The information flow policies are specified in
a temporal logic for hyperproperties. We show that the verification
problem can be reduced to the satisfiability of a formula of first-
order linear-time temporal logic, and provide decidability results
for relevant classes of workflows and specifications. We report
on experimental results obtained with an implementation of our
approach on a series of benchmarks.

1 INTRODUCTION
Web-based workflow systems often have critical information flow
policies. For example, in a conference management system like
EasyChair, the information about a certain paper must be kept se-
cret from all program committee (PC) members who have declared
a conflict of interest for the paper until the acceptance notifications
are released by the PC chair.

Verification techniques for workflows (cf. [4, 16, 21]) typically
build on classic notions of secrecy such as non-interference [17].
The particular challenge with verifying web-based workflow sys-
tems is that here is no fixed set of agents participating in the work-
flow. Clearly, we would not like to reason about the correctness of
a conference management system for every concrete installation
for a particular conference, a particular program committee and a
particular set of submissions and reports. Instead, we would like to
prove a given system once for all — for any possible instantiation
and any number of PC members, submitted papers and reports.

We present such a verification approach based on the temporal
logic HyperLTL [9]. HyperLTL is a general specification language
for temporal hyperproperties, which include common information
flow policies like non-interference, and time- and data-dependent
declassification. HyperLTL can also express assumptions on the
behavior of the agents such as causality, i.e. that an agent can only
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reveal information that was received by the agent at a previous point
in time. This is important in order to analyze chains of information
flows, where a piece of information is transmitted via two or more
communications, i.e. where agent A learns about a secret known
to agent B, even though B never communicates with A directly;
instead, B talks to a third agent C, and, subsequently, C talks to A.

HyperLTL-based workflow verification has been considered be-
fore, but only for the restricted case of loop-free workflows [16].
Such workflows consist of a fixed finite sequence of steps. Although
an arbitrary number of agents may participate in each step, the
workflow thus only allows a fixed number of interactions between
the agents. This is not realistic: to accurately model, for example,
the repeated commenting on papers and reviews during the discus-
sion phase of a conference management system, one needs a loop
in the workflow.

We present an automatic verification technique for workflows
with loops. The general outline of our approach is as follows: We
specify the operational semantics of the workflow language in
many-sorted first-order linear-time temporal logic (FOLTL). The
desired information-flow policy and the assumptions on the agents
are expressed in first-order HyperLTL (HyperFOLTL). Combining
the two specifications, the existence of a violation of the policy
reduces to the satisfiability of a HyperFOLTL formula.

We identify an expressive fragment ofmany-sortedHyperFOLTL,
for which satisfiability is decidable. The fragment subsumes the
previously known decidable fragments of FOLTL [22] and of Hy-
perLTL [15]. It also generalizes the Bernays-Schönfinkel fragment
of first-order logic [1]. Of particular practical value is that our logic
is many-sorted, i.e. we distinguish different groups of agents such
as authors and program committee members. This allows us to
place different assumptions on different groups; it also improves
the performance of our decision procedure, because the different
sorts are kept separate.

We identify a natural class of workflows, which we call non-
omitting workflows, where the encoding of the verification prob-
lem is in the decidable fragment of HyperFOLTL. We thus obtain a
decision procedure for non-omitting workflows. This decidability
result in fact turns out to be optimal in the sense that for workflows
outside the class, non-interference becomes undecidable. The de-
cidable fragment is also sufficiently expressive to specify common
information-flow policies like non-interference. In terms of agent
assumptions, we show that the fragment is sufficiently expressive to
handle strong assumptions like stubbornness, meaning that an agent
does not reveal any information, for arbitrary sets of agents, and
weaker assumptions, like causality, for a fixed finite set of agents.
This means that we can decide whether a given number of agents

Session C4:  From Verification to ABE CCS’17, October 30-November 3, 2017, Dallas, TX, USA

633

https://doi.org/10.1145/3133956.3134080


can conspire to cause a leak, assuming that all other agents do not
reveal any information. Again, our decidability result is optimal
in the sense that the verification problem for unbounded sets of
causal agents turns out to be undecidable: it is impossible to decide
whether an unbounded number of agents can conspire to reveal a
secret.

We report on experimental results based on an implementation
of our approach in the tool NIWO. For example, NIWO has found
an attack on a simple conference management system, where two
program committee members conspire to leak a secret.

2 PRELIMINARIES
Given a sequence σ̄ , we let σn denote its n-th element, and σ̄ [n,∞]
denote its subsequence from n to ∞, i.e. σ̄ [n,∞] := σnσn+1 . . .,
assuming σ̄ is infinite. We sometimes abuse notation and use set
notation over sequences. For instance, |σ̄ | denotes the length of σ̄ .

2.1 First-Order LTL (FOLTL)
A signature Σ = (S,C,R, ar ) consists of a non-empty and finite set
of sorts, finite and disjoint sets C and R of constant and relation
(or predicate) symbols, and arity function ar : C ∪ R → S∗, with
|ar (c ) | = 1 for any c ∈ C, where S∗ denotes the set of finite se-
quences of sorts. For each sort s , we letVs be a countably infinite
set of variables. We letV :=

⋃
s ∈S Vs .

FOLTL formulas over the signature Σ = (S,C,R, ar ) are given
by the grammar

φ ::= t = t ′ | R (t1, . . . , tk ) | ¬φ | φ ∨ φ | ∃x : s .φ | Xφ | φ Uφ

where t , t ′, and the ti s range over V ∪ C, R ranges over R, s
ranges over S , and x ranges overVs . The symbols X and U denote
the usual Next and Until LTL operators. As syntactic sugar, we
use standard Boolean connectives such as ∧,→,↔, the universal
quantifier ∀x , and the derived temporal operators F (Eventually)
with Fφ := trueUφ, G (Globally) with Gφ := ¬ F¬φ, W (Weak
Until) with φWψ := (φ Uψ ) ∨ Gφ, and R (Release) with φ Rψ :=
¬(¬φ U¬ψ ), where true := (c = c ) for some c ∈ C.

We only consider well-sorted formulas. We omit their definition,
which is as expected; for instance, equality is only allowed over
terms of the same sort. We may drop the sort in ∀x : s .φ when it is
irrelevant or clear from the context and simply write ∀x .φ.

We will sometimes consider that formulas are in negation normal
form, which is obtained by pushing negation inside until it appears
only in front of atomic formulas. When considering this form, the
operators ∧, ∀, and R are seen as primitives, instead of derived ones.
A formula is in prenex normal form if it is written as a sequence of
quantifiers followed by a quantifier-free part.

To omit parentheses, we assume that Boolean connectives bind
stronger than temporal connectives, and unary connectives bind
stronger than binary ones, except for the quantifiers, which bind
weaker than Boolean ones and stronger than temporal ones.

The set of free variables of a formula φ, that is, those that are
not in the scope of some quantifier in φ, is denoted by fv (φ). A
formula without free variables is called closed or ground. For a term
t ∈ V ∪ C, we let fv (t ) := {t } if t ∈ V and fv (t ) := ∅ otherwise.

A structure S over the signature Σ = (S,C,R, ar ) consists of a
S-indexed family of (finite or infinite) universesUs , ∅ and interpre-
tations RS ∈ Us1 × . . .Usk , for each R ∈ C ∪ R of sort (s1, . . . , sk ).
We let U :=

⋃
s ∈S Us . A temporal structure over Σ is a sequence

S̄ = (S0,S1, . . . ) of structures over Σ such that all structures Si ,
with i ≥ 0, have the same universe family, denoted (Us )s ∈S , and
rigid constant interpretations, i.e. cSi = cS0 , for all c ∈ C and i > 0.

Given a structure, a valuation is a mapping ν : V → U with x
and ν (x ) of the same sort for any x ∈ V . For a valuation ν and
tuples x̄ = (x1, . . . ,xn ) and d̄ = (d1, . . . ,dn ), where xi ∈ Vs and
di ∈ Us for some sort s , for each i , we write ν[x̄ 7→ d̄] for the
valuation that maps each xi to di and leaves the other variables’
valuation unaltered. By ν (x̄ ) we denote the tuple (ν (x1), . . . ,ν (xn )).
We extend this notation by applying a valuation ν also to constant
symbols c ∈ C, with ν (c ) = cS .

Let S̄ be a temporal structure over the signature Σ, with S̄ =
(S0,S1, . . . ), φ a formula over Σ, and ν a valuation. We define the
relation S̄,ν |= φ inductively as follows:

S̄,ν |= t = t ′ iff ν (t ) = ν (t ′)

S̄,ν |= R (t̄ ) iff ν (t̄ ) ∈ RS0

S̄,ν |= ¬ψ iff S̄,ν ̸ |= ψ
S̄,ν |= ψ ∨ψ ′ iff S̄,ν |= ψ or S̄,ν |= ψ ′
S̄,ν |= ∃x .ψ iff S̄,ν[x 7→ d] |= ψ , for some d ∈ U
S̄,ν |= Xψ iff S̄[1,∞],ν |= ψ
S̄,ν |= ψ Uψ ′ iff for some j ≥ 0, S̄[j,∞],ν |= ψ ′, and

S̄[k,∞],ν |= ψ , for all k with 0 ≤ k < j

A FOLTL formula φ is said to be satisfiable iff there exists a
temporal structure S̄ and a valuation ν s.t. S̄,ν |= φ. It is said to
be finitely satisfiable iff there exists a temporal structure S̄ over a
finite universe U and a valuation ν s.t. S̄,ν |= φ.

We note that unsorted FOLTL can be seen as sorted FOLTL with
just one sort.

2.2 FOLTL Decidability
Since FOLTL subsumes First-Order Logic (FOL), FOLTL is also
undecidable. In this paper, we consider formulas of a Bernays-
Schönfinkel-like fragment1 of FOLTL, which we name ∃∗FOLTL.
To define this fragment we will consider the projection of a sorted
FOLTL formula on a sort s , defined as the FOLTL formula obtained
by removing all quantifications and terms of a sort different from s .
We refer to [1, Definition 17] for the formal definition of the pro-
jection, and here we only illustrate it with an example. Given the
formula ∃x :A.∀y:B. ∃z:A.¬(x = z) ∧ P (x ,y) ∧ GQ (y, z), its pro-
jection on the sorts A and B are the formulas ∃x . ∃z.¬(x = z) ∧
P2 (x ) ∧ GQ1 (z) and ∀y. P1 (y) ∧ GQ2 (y), respectively.

The ∃∗FOLTL fragment of sorted FOLTL consists of those closed
formulas φ in negation normal form such that, for each sort s , the
projection of φ on s is a formula of the form

∃x1, . . . ,xk .φ
′
s

1The Bernays-Schönfinkel-Ramsey fragment, also called “effectively propositional”,
is one of the first identified decidable fragments of FOL [8]. It consists of those FOL
formulas in prenex normal form having the ∃∗∀∗ quantifier prefix.
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with k ≥ 0 and φ ′s a FOLTL formula containing no existential
quantifiers. This definition extends the definition of the Bernays-
Schönfinkel-like fragments in [1, 27] from FOL to FOLTL,2 and
of the Bernays-Schönfinkel-like fragment in [22] from unsorted
FOLTL to sorted FOLTL. Note that the previous sample formula is
in ∃∗FOLTL.

We can try to put an arbitrary FOLTL formula in the mentioned
form by using the standard transformations that put a FOL formula
into prenex normal form, as well as the following equivalences to
move existential quantifiers outside of temporal operators:

φ U∃x .ψ ≡ ∃x . (φ Uψ ) and (∃x .ψ ) Rφ ≡ ∃x . (ψ Rφ),

assuming that x does not occur free in φ. Note that in particular
we have that F∃x .φ ≡ ∃x . Fφ. However, the previous equivalences
cannot be generalized. For instance, existential quantifiers cannot,
in general, be moved over theG operator. Intuitively,G∃x .φ means
that “for all time points t , there exists an x such that φ holds at t”.
Thus, in contrast to FOL, not all FOLTL formulas can be put in
prenex normal form.

Theorem 2.1 (∃∗FOLTL Decidability).
(1) Checking satisfiability of a formula in ∃∗FOLTL is equivalent

to checking finite satisfiability of the same formula.
(2) ∃∗FOLTL is decidable.

Proof. This proof follows the reasoning for decidability of the
Bernays-Schönfinkel-Ramsey fragment of FOL, see e.g. [8].

Consider a closed formula φ in ∃∗FOLTL. The formula φ has
the form Q1x1: s1 . . .Qkxk : sk .ψ , where k ≥ 0, Q1, . . . ,Qk is a
sequence of quantifiers, and ψ is an FOLTL formula in negation
normal form containing no existential quantifiers. We group the
sequence Q1, . . . ,Qk of quantifiers into maximal subsequences of
the form ∃∗∀∗. We letn be the number of such subsequences, and let
ψi be obtained from φ be removing the first i groups of quantifiers,
for 0 ≤ i ≤ n. Note that φ0 = φ and φn = ψ .

We iteratively transform the formula φ0 into the formulas ψ1
to ψn . We also build the sets Di

s of constant symbols of sort s ,
for each sort s and each i with 1 ≤ i ≤ n. Consider step i , with
1 ≤ i ≤ n. For each sort s , we pick a set Cis of constant symbols
whose cardinality is given by the number of existential quantifiers
over the sort s in the i-th subsequence, and such that Cis ∩C

j
s = ∅

for any 0 < j < i . We let Di
s = Cis ∪ Di−1

s , where D0
s is a single-

ton containing some constant of sort s . For each sort s , and each
variable x of sort s bound by an existential quantifier from the i-th
group, we remove the existential quantifier and we instantiate x
in ψi by a corresponding constant from Cis . In this way, all exis-
tentially quantified variables inψi are instantiated. Next, starting
from the top-most universal quantifier inψi , we iteratively replace
every subformula of the form ∀y: s . α by the finite conjunction over
elements of Di

s , namely,
∧
d ∈Di

s
α[y 7→ d]. Letψi+1 be the formula

obtained in this manner. Finally, we replace all subformulas of the
form ∀y: s . α inψn (recall thatψ may have universal quantifiers) by
the finite conjunction over elements of Dn

s , as above. Letψ ′ be the
formula obtained in this manner. It is easy to see that φ is satisfiable
iffψ ′ is satisfiable. Furthermore, it is also clear thatψ ′ is satisfiable

2The decidable FOL fragments in [1, 27] are larger than the projection of the ∃∗FOLTL
fragment to sorted FOL, as they also consider function symbols.

iff it is finitely satisfiable, as we can pickUs = Dn
s as the (Herbrand)

universes. Note that by construction the universeUs is non-empty
even when there is no existential quantifier over the sort s; in this
case Cis = ∅, for all i with 1 ≤ i ≤ n. This ends the proof of the first
statement of the theorem.

For the second statement of the theorem, note thatψ ′ contains
neither quantifiers, nor variables, and thus its atoms are ground. We
transformψ ′ into an LTL formula by taking the disjunction over all
combinations of equivalence relations over Dn

s (for each sort s) of
the formulas obtained by replacing each predicate R (d1, . . . ,dℓ ) in
ψ ′ with the atomic propositions R (d ′1, ...,d ′ℓ ) , where d

′
i is the repre-

sentative of the equivalence class to which di belongs. Furthermore,
equalities a = b are replaced by true if a and b are in the same
equivalence class and by false otherwise. Clearly, the thus obtained
formula is equi-satisfiable withψ ′. We can now conclude by noting
that LTL satisfiability is decidable, see e.g. [29]. □

We also note that there are very few decidability results con-
cerning FOLTL. Besides the ∃∗FOLTL fragment, the only other
decidable fragment we are aware of is the monodic fragment [18],
which requires that temporal subformulas have at most one free
variable. As will become clear in the next section, this restriction
is too strong for our purposes: we cannot encode workflows by
FOLTL formulas in this fragment.

3 WORKFLOWS
In this section, we will define a language of workflows. Our defini-
tion of workflows extends the definition of workflows in [16] with
loops and nondeterministic choice.

Workflows are used to model the interactions of multiple agents
with a system. Agent interactions are recorded by relations. Updates
of these relations are organized into blocks. These describe opera-
tions that a subset of the agents can choose to execute to change
the relation contents. The most basic construct in the description
of workflows is a parameterized guarded update operation to some
relation. Such an update is meant to simultaneously be executed
for all tuples satisfying the given guard. Some of these updates may
also be optional, i.e. may also be omitted for some of the tuples that
satisfy the guard.

Example 3.1. The workflow in Fig. 1 models the paper reviewing
and review updating of EasyChair. In this workflow, all PCmembers
are agents. In a first step, they can declare that they have a conflict
of interest with some of the papers. Then, papers are assigned to
reviewers as long as they have not declared a conflict with the
respective papers. Reviewers are then required to write an initial
review of their assigned papers. Afterwards, the discussion phase
starts. Here, all reviewers of a paper are shown all the reviews other
people wrote for the same paper. They can then alter their review
based on the information they have seen. This discussion phase
continues for multiple turns until the PC chair ends the phase.

3.1 Workflow Language
Workflows are defined over signatures Σ = (S,C,R, ar ), with R =
Rwf ⊎ Rhigh. Symbols in Rwf denote workflow relations, which are
updatable. Symbols in Rhigh denote non-updatable relations that
contain high input (i.e. input containing potentially confidential
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% PC members may declare conflicts
(b1) forall x :A,p: P may. true → Conf += (x ,p)

% PC members are assigned to papers
(b2) forall x :A,p: P may.¬Conf(x ,p) → Assign += (x ,p)

% PC members write reviews for papers
(b3) forall x :A,p: P , r :R.

Assign(x ,p) ∧ Oracle(x ,p, r ) → Review += (x ,p, r )
% PC members discuss about the papers
loop (*) {

% PC members read all other reviews
(b4) forall x :A,y:A,p: P , r :R.

Assign(x ,p) ∧ Review(y,p, r ) → Read += (x ,y,p, r )
% PC members can rethink their reviews

(b5) forall x :A,p: P , r :R may.
Assign(x ,p) ∧ Oracle(x ,p, r ) → Review += (x ,p, r ) }

Figure 1: EasyChair-like workflow.

w ::= block | block w
| loop (*) {w } | choose w or w

block ::= forall x1: s1, . . . ,xk : sk . stmts
| forall x1: s1, . . . ,xk : sk .may stmts

stmts ::= stmt | stmt; stmts
stmt ::= θ → R += (u1, . . . ,un )

| θ → R −= (u1, . . . ,un )

Figure 2: Definition of Workflows

data) to the workflow. For instance, in Example 3.1 we have Rwf =
{Conf,Assign, Review, Read} and Rhigh = {Oracle}.

Workflowsw over a signature Σ = (S,C,R, ar ) are defined by the
grammar given in Figure 2, where s1, . . . , sk with k ≥ 0 range over
sorts in S , xi ranges over variables inVsi for each i ,u1, . . . ,un with
n ≥ 0 range over terms inV ∪ C, R ranges over predicate symbols
inR , andθ ranges over first-order formulas over the signature Σ. For
a statement θ → R±=ū, we require that R ∈ Rwf , |ū | = |ar (R) |, and
fv (θ ) ∪ fv (ū) ⊆ x̄ , where x̄ is the sequence of variables appearing
in the forall construct of the block that contains the statement. We
only consider well-sorted workflows.

3.2 Semantics
We will now give the semantics of workflows directly using FOLTL.

Formalization of the control flow. Given a workfloww , we
consider its control flow graph (CFG), defined as expected. We add
a node nend to the CFG with only a single, looping, outgoing edge,
encoding a fictitious new last block that can be reached after the
original last block of the workflow. This new node is used to encode
a finite (terminated) execution of the workflow by an infinite trace,
where the last workflow state is stuttered. Any infinite path through
the graph represents thus an execution of the workflow.

All edges are labelled with blocks. Note that for each block there
is a unique edge that is labeled with that block. Edges not cor-
responding to a workflow block are labeled with a distinguished
label id, which is assumed to represent an empty block without

n0 n1 n2 n3

n4

nend
b1 b2 b3

b4b5

id

id

Figure 3: CFG of the workflow in Example 3.1.

variables and statements. As an illustration of the CFGs we consider,
Fig. 3 depicts the CFG of the workflow in Example 3.1.

Let (V ,E) be the CFG of workflow w . We abuse notation, and
we use the proposition (i.e. nullary predicate) n to express whether
the workflow is in node n ∈ V . We denote by Rcfg the set of these
predicate symbols. The transition relation of the workflow is then
expressed by the formula:

cfg(w ) := G
( ∧
n∈V

n → X (
∨

n′∈succ(n)

n′)
)

where succ(n) is the set of the successors of the node n in the CFG.
Furthermore, the workflow can never be in two states at once:

sanity(w ) := G
( ∧
n,n′∈V ,n,n′

¬(n ∧ n′)
)

Workflow loops can but need not terminate, and thus the same
holds for workflow executions. A terminating behavior could be
imposed by requiring that the node nend is eventually reached,
using the formula Fnend . We do not impose this requirement.

Initial state. Every workflow executes sequentially, thus start-
ing at node n0 of the workflows CFG, where n0 is the entry point in
the CFG. There all relations in Rwf are empty. Formally, this initial
condition is expressed by the following formula:

init(w ) :=
(
n0 ∧

∧
n∈V \{n0 }

¬n
)
∧

∧
R∈Rwf

∀ȳ. ¬R (ȳ)

Block execution. The basic step of our workflow language,
which determines the transition from the current time point to
the next time point, is the execution of one block. As in [16], we
formalize this execution by characterizing with an FOLTL formula
the interpretation of a predicate at the next time point based on the
interpretation of the relations at the current time point.

For every block b and every relation symbol R ∈ Rwf , we con-
struct a formulaΦb,R (ȳ) so thatR (ȳ) holds after execution of blockb
iff Φb,R (ȳ) holds before the execution of b, with |ȳ | = |ar (R) |. The
semantics of a block is then represented by the following formula:

execw (b) := (n ∧ Xn′) →
∧

R∈Rwf

(
∀ȳ.(XR (ȳ)) ↔ Φb,R (ȳ)

)
where (n,n′) ∈ E is the edge in the CFG with label b.

For defining the formulas Φb,R , we consider first amay block b,
of the form forall x̄ : s̄ may stmts. We assume, for simplicity, that
each R ∈ Rwf is updated at most once in a block (i.e. it occurs at
most once in a statement of block b on the right-hand side of→).
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For each R ∈ Rwf , we let Φb,R (ȳ) :=




R (ȳ) if R not updated
R (ȳ) ∨ ∃x̄ : s̄ . θ ∧ Choicei (x̄ ) ∧ (ȳ = ū) if ū added to R
R (ȳ) ∧ ¬

(
∃x̄ : s̄ . θ ∧ Choicei (x̄ ) ∧ (ȳ = ū)

)
if ū deleted from R

where block b’s statement that updates R has the form θ → R ±= ū,
i is the index of the block b in the linearisation of the workflow,
and it is assumed that x̄ ∩ ȳ = ∅. The definition of Φb,R when b is a
non-may block is similar, except that the Choicei (x̄ ) conjuncts are
omitted.

If the same relation is modified multiple times in a block, the
updates take place sequentially. This is expressed by building the for-
mulas Φb,R inductively, similarly as above: Φb,R up to statement j
is obtained by replacing R (ȳ) with Φb,R up to statement j − 1. We
omit the precise formalization.

We denote by Rlow the Choicei predicate symbols used in the
Φb,R formulas. These symbols denote relations that contain low
input (i.e. non-confidential input) to the workflow. For instance, in
Example 3.1 we have Rlow = {Choice1,Choice2,Choice5}.

The semantics of the workflow execution is then captured by
the following formula:

exec(w ) := G
∧

b ∈blocks(w )

execw (b).

where blocks(w ) is the set ofw’s blocks.

Example 3.2. The execution semantics of the block (b2) of the
workflow from Example 3.1 is given by the following formula:

(n1 ∧ Xn2) →(
∀y1,y2. XAssign(y1,y2) ↔ Assign(y1,y2) ∨

(∃x ,p. Choice1 (x ,p) ∧ ¬Conf(x ,p) ∧ y1 = x ∧ y2 = p)
)
∧(

∀y1,y2. XConf(y1,y2) ↔ Conf(y1,y2)
)
∧ . . .

The first conjunct of the above consequent can be rewritten into
the logically equivalent formula

∀x ,p. XAssign(x ,p) ↔ Assign(x ,p) ∨ Choice1 (x ,p) ∧ ¬Conf(x ,p)

by substituting x andp byy1 andy2 respectively, and then renaming
y1 and y2 back to x and p. We note that this formula matches well
the syntax of the block (b2). The mentioned simplification cannot
be performed in general, but only for a class of workflows, see
Section 3.3.

We note that a forall x̄ may block with statements of the form
θi → Ri ±= ūi , can be seen as an abbreviation of a non-may block
with statements of the form Choice(x̄ ) ∧ θi → Ri ±= ūi , for some
predicate symbolChoice < Rwf . Note also that for an atomOracle(t̄ )
occurring in some guard θi , the arity of Oracle need not be |x̄ |. We
use the abbreviated may form to emphasize the subtle differences
between the two kinds of non-workflow relations.

Summary. The complete specification wf(w ) of the workflow is
a conjunction of the several parts described previously — the control
flow graph, the initial state, and the semantics of the transitions
between time points.

wf(w ) := cfg(w ) ∧ sanity(w ) ∧ init(w ) ∧ exec(w )

Note that the formula wf(w ) is expressed over the signature Σ′

obtained from Σ by extending it with relation symbols n ∈ Rcfg
and Choicei ∈ Rlow .

For any given workfloww over a signature Σ, its semantics JwK
consists of all temporal structures S̄ over Σ′ that satisfy wf(w ). A
workfloww satisfies a closed FOLTL formula φ, denotedw |= φ, iff
S̄,ν |= φ for any S̄ ∈ JwK, and any valuation ν . We have:

Theorem 3.3. Given a workfloww , a FOLTL formula φw can be
built in polynomial time so that for every FOLTL formula φ, it holds
thatw |= φ iff φw → φ is valid.

In fact, as such φw we may choose the formula wf(w ).

3.3 Non-omitting Workflows
We call a workflow non-omitting iff for each of its blocks

forall x̄ : s̄ [may]
θ1 → R1 ±= ū1;
. . .

θn → Rn ±= ūn

we have fv (ūi ) = x̄ and θi is quantifier-free, for each i ∈ {1, . . . ,n}.
For a non-omitting workfloww , we can replace all existentially

quantified variables inside the Φb,R formulas by their respective
values, and remove the existential quantifiers. Thus, for any block b,
as all guards of b are quantifier-free, Φb,R becomes quantifier-free,
for all R ∈ Rwf . It follows that the formula wf(w ) can be brought
into the ∃∗FOLTL fragment. Note that the thus simplified wf(w )
formula contains no existential quantifiers. Furthermore, all its
universal quantifiers are either not under a temporal operator (in the
case of the init(w ) subformula) or under the G temporal operator
(in the case of the exec(w ) subformula). Therefore the simplified
wf(w ) formula can be put in prenex normal form having a quantifier
prefix consisting of only universal quantifiers. As a side remark,
this means that ¬wf(w ) can also be brought into ∃∗FOLTL.

Theorem 3.4. It is decidable for a non-omitting workfloww and
a formula φ in ∃∗FOLTL whether or notw |= ¬φ holds.

This means that if the set of all bad behaviors can be expressed
by a formula φ in ∃∗FOLTL, then absence of bad behaviors can be
checked for non-omitting workflows. The theorem follows from
Theorems 3.3 and 2.1. Indeed, it is sufficient to check whether
wf(w ) ∧ φ is unsatisfiable. This can be done, since both conjuncts
can be brought into ∃∗FOLTL, and thus the conjunction itself too.

The following theorem shows that the decidability result from
Theorem 3.4 cannot be lifted to arbitrary workflows.

Theorem 3.5. It is undecidable for a workfloww and a formula φ
in ∃∗FOLTL whether or notw |= ¬φ holds.

Proof. We prove the theorem by reducing the periodic tiling
problem to our workflow setting. The tiling problem was first men-
tioned in [31] and has first been shown undecidable by Berger in [6].
Its closely related variant, the periodic tiling problems has also been
proven undecidable by multiple authors — for an overview see [20].
We now briefly recall the definition of the problem.

Given a set of k tile types T = {Ti | 0 ≤ i < k } as well as
horizontal and vertical compatibility relations x-comp ⊆ T × T
and y-comp ⊆ T × T , a tiling is a function f (x ,y) : N × N → T
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such that whenever two tiles are adjacent, they have to respect the
compatibility relations:

∀x ,y. x-comp( f (x ,y), f (x + 1,y)),
∀x ,y. y-comp( f (x ,y), f (x ,y + 1)).

A tiling is periodic if there exist horizontal and vertical periods px
and py , such that

∀x ,y. f (x ,y) = f (x + px ,y),

∀x ,y. f (x ,y) = f (x ,y + py ).

The periodic tiling problem is to find out for a given set of tile types
and its compatibility relations, if there exists a periodic tiling.3

We will now proceed to show how to encode this problem in our
workflow setting. We note that to find a periodic tiling, it is enough
to find the periods px , py , and the values f (x ,y) for 0 ≤ x < px
and 0 ≤ y < py , such that they are also compatible at borders:

∀y. x-comp( f (px ,y), f (0,y)),
∀x . y-comp( f (x ,py ), f (x , 0)).

We thus see a periodic tiling as a table with rows referring to points
on the y-axis and columns referring to points on the x-axis.

We build next a workflow w and a formula φ such that w |= φ
iff there is a periodic tiling for (T ,x-comp,y-comp). We use the
following signature:

Σ =
(
{A}, {afirst ,alast }, {Q,Adj, Reach,T

′
0 , . . . ,T

′
k−1}, ar

)
Intuitively, time points refer to the rows of the tiling, while agents
refer to its columns. We explain next the role of the constant and
relation symbols. The k unary relations T ′i , with 0 ≤ i < k , are
used to encode the tiling function as follows: if T ′i (aj ) holds at
time point t , for some particular agent aj , then the tiling function is
f (t , j ) = Ti . How the agentaj is determined is explained later. There
are two constant agents afirst and alast which are used to name the
first and last row of the tiling. The nullary relation Q encodes the
last column of the tiling. The predicate Adj(a,a′) expresses that
the row named by a′ is directly below the row named by a. Only
Reach is a workflow relation; thus, initially (i.e. at time point 0) it
is empty. There is a single sort, the agent sort A.

We let w be the following workflow. It is used to compute all
reachable parts of the adjacency relation Adj starting from the
initial agent afirst :

forall. true → Reach += (afirst )

loop (*)

forall a,a′. Reach(a) ∧ Adj(a,a′) → Reach += (a′)

To encode the rest of the tiling requirements, we use a con-
junction of ∃∗FOLTL formulas, where i, j implicitly range over the
elements in {0, . . . ,k − 1}:

3The original formulation used just a single period p in both directions. We use
independent periods to have less complicated constructions. We note that given a
periodic tiling t with periods px and py it is easy to construct a periodic tiling t ′
with p′x = p′y = (px ∗ py ). The original problem also did not consider compatibility
relations, but edges of the same color. Again this makes our constructions easier and
is easily transformed into a solution of the original setting.

All agents always have exactly one tile assigned at each point in
time (Eqs. (1) and (2)).

G∀a.
∨
i
T ′i (a) (1)

G∀a.
∧
i,j

T ′i (a) → ¬T
′
j (a) (2)

A time point will be reached state where Q holds (Eq. (3)) and it
will only hold once (Eq. (4)).

X FQ (3)

G (Q → XG¬Q ) (4)
Two adjacent time points need to be assigned x-compatible tiles
(Eq. (5)). Also, the right border of the tiling should be x-compatible
to the left, i.e. the time point where Q holds should be compatible
to the starting time point (Eq. (6)).

∀a. G (
∨

i, j : x -comp(Ti ,Tj )
T ′i (a) ∧ XT ′j (a)) (5)

∀a.
∨

i, j : x -comp(Ti ,Tj )
T ′j (a) ∧ F

(
Q ∧T ′i (a)

)
(6)

Two adjacent agents need to be assigned y-compatible tiles (Eq. (7)).
The last agent should be reachable from the first via Adj relations.
We cannot express this fact in pure ∃∗FOLTL, so we will use the
relation Reach computed by the workflow (Eq. (8)). The last agent
should also be y-compatible to the first (Eq. (9)).

G∀a,a′. (FAdj(a,a′)) →
∨

i, j :y-comp(Ti ,Tj )
T ′i (a) ∧T

′
j (a
′) (7)

F Reach(alast ) (8)

G (
∨

i, j :y-comp(Ti ,Tj )
T ′i (alast ) ∧T

′
j (afirst )) (9)

Let φ be the conjunction of Eqs. (1) to (9). Note that φ can be
brought in∃∗FOLTL.We show next thatw |= φ iff there is a periodic
tiling for (T ,x-comp,y-comp).

Let S̄ ∈ JwK such that S̄ |= φ. We construct a tiling as follows. As
S̄ satisfies the formula (8) and the formulas encoding the first and
second blocks of the workflow, it follows that there is a sequence
(t0, . . . , tn ) of time points with n > 0 and t0 = 0, and a sequence
(a0, . . . ,an ) of elements of the universe such that a0 = afirst , an =
alast , Reach(ai ) holds at time point ti , for all i with 0 ≤ i ≤ n,
and Adj(ai ,ai+1) holds at time point ti , for all i with 0 ≤ i < n.
Then, we set px to the time point where Q holds and py to n. For
0 ≤ t < px and 0 ≤ j < py , let f (t , j ) be Ti iff T ′i (aj ) holds at time
point t . It is easy to see that f satisfies the compatibility relations
and that any given tiling can be transformed into a model of φ. □

4 HYPERPROPERTIES
In this section, we show how to formalize and verify security prop-
erties of workflows. We focus on non-interference properties [17],
which are hyperproperties [10]. To specify such properties we use
the first-order extension of HyperLTL [9] presented in [16]. Hyper-
LTL can relate multiple traces and it is thus well suited to express
not only trace properties, but also hyperproperties. The first-order
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extension is needed in the presence of an unbounded number of
agents. Furthermore it allows for more fine-grained policies.

4.1 HyperFOLTL
For presenting the syntax and semantics of the logic, we follow [16].

Syntax. Let Σ = (S,C,R, ar ) be a signature, and let Π be a set
of trace variables disjoint from the set V of first-order variables.
Let RΠ = {Rπ | R ∈ R,π ∈ Π} and Σ′ = (S,C,RΠ, ar ′) be the
signature with ar ′(Rπ ) = ar (R), for any R ∈ R and π ∈ Π.

HyperFOLTL extends FOLTL as follows. HyperFOLTL formulas
over Σ and Π are then generated by the following grammar:

ψ ::= ∃π . ψ | ¬ψ | φ

where π ∈ Π is a trace variable and φ is a FOLTL formula over Σ′.
Universal trace quantification is defined as ∀π .ψ := ¬∃π .¬ψ . Hy-
perFOLTL formulas thus start with a prefix of trace quantifiers
consisting of at least one quantifier and then continue with a subfor-
mula that contains only first-order quantifiers, no trace quantifiers.
As for FOLTL, a formula without free first-order and trace variables
is called closed.

Semantics. The semantics of a HyperFOLTL formulaψ is given
with respect to a set T of temporal structures, a valuation α :
V → U of the first-order variables, and a valuation β : Π → T of
the trace variables. The satisfaction of a HyperFOLTL formula ψ ,
denoted by T ,α , β |= ψ , is then defined as follows:

T ,α , β |= ∃π . ψ iff T ,α , β[π 7→ t] |= ψ , for some t ∈ T ,
T ,α , β |= ¬ψ iff T ,α , β ̸ |= ψ ,
T ,α , β |= φ iff S̄,α |= φ,

whereψ is an HyperFOLTL formula, φ is an FOLTL formula, and
the temporal structure S̄ is such that for all R ∈ R, i ∈ N, and,
π ∈ Π, the interpretation RSiπ is Rβ (π ) (i ) if π in the domain of β ,
and ∅ otherwise.

A HyperFOLTL formulaψ is satisfiable iff there exists a set T of
temporal structures and valuations α and β s.t. T ,α , β |= ψ .

Example 4.1. Observational determinism [33] of programs can
be formalized by the following HyperFOLTL formula

∀π ,π ′. (G∀x . Iπ (x ) ↔ Iπ ′ (x )) → (G∀y.Oπ (y) ↔ Oπ ′ (y)),

where I (x ) denotes that x is a low input to the program, whileO (y)
denotes that y is a low output. The inputs and outputs are classified
as low or high with respect to the clearance level of some particular
user. The formula states that, on any two program executions, if the
low inputs are always the same, then the low outputs are also always
the same. That is, from a low user point of view, the observable
behavior of the program is only determined by its inputs.

We will adapt this non-interference notion to the workflow set-
ting in Section 4.2.We refer to [9] for the formalization in HyperLTL
of other hyperproperties.

Decidability. We will consider the fragment of HyperFOLTL,
named ∃∗π∀∗π∃∗FOLTL, that consists of all formulas of the form
∃π1, . . . πk .∀π

′
1 . . . π

′
ℓ
.φ with k ≥ 0, ℓ ≥ 0, and φ an FOLTL for-

mula in ∃∗FOLTL.
We first remark that by seeing trace variables as first-order vari-

ables of a new sort T — the trace sort, HyperFOLTL formulas can

be faithfully encoded by FOLTL formulas. By this we mean that,
for any closed HyperFOLTL formula ψ , there is a closed FOLTL
formula φ such that we can translate models ofψ into models of φ
and vice-versa. The formula φ is obtained by replacing trace quan-
tificationQπ to first-order quantificationQπ :T , forQ ∈ {∃,∀}, and
predicates Rπ (ū) with predicates R′(π , ū). Note that ψ and φ are
formulas over slightly different signatures. The translation between
models is straightforward. For instance, if S̄ is a temporal structure
that satisfies φ, then the corresponding set T of temporal struc-
tures that satisfies ψ consists of temporal structures obtained by
projecting a predicate’s interpretation on the predicate’s non-trace
arguments, for each of the values of the trace universe UT of S̄, i.e.
T = {S̄t | t ∈ UT } and RSt,i = {ā | (t , ā) ∈ R′S̄i }, for each R ∈ R,
t ∈ UT , and i ∈ N.

As a consequence of the previous discussion, and as a corollary
of Theorem 2.1, we obtain the following results.

Theorem 4.2. The following statements hold.

(1) Every HyperFOLTL formula can be translated into an equi-
satisfiable FOLTL formula.

(2) Satisfiability of formulas in ∃∗π∀
∗
π∃
∗FOLTL is decidable.

Workflow satisfaction. A workflow w satisfies a closed for-
mula HyperFOLTL ψ , denoted w |= ψ , iff JwK,α , β |= ψ for the
empty assignments α and β .

Theorem 4.3. Letw be a workflow andψ aHyperFOLTL formula.
Then the following statements hold.

(1) An FOLTL formulaψ ′ can be constructed in polynomial time
so thatw |= ¬ψ iffψ ′ is unsatisfiable.

(2) If w is non-omitting and ψ is in ∃∗π∀
∗
π∃
∗FOLTL, then it is

decidable whether or notw |= ¬ψ holds.

Proof. Assume ψ has the form Q1π1 . . .Qkπk .φ, where the
trace quantifiers are partitioned into a set E of existential quantifiers
and a set A of universal quantifiers. Then w |= ¬ψ is equivalent
with the validity of the following HyperFOLTL formula

Q̄1π1 . . . Q̄kπk .
( ∧
Q̄i ∈E

wf(w )πi

)
∧

(( ∧
Q̄i ∈A

wf(w )πi

)
→ ¬φ

)
,

where wf(w )π is wf(w ) with each predicate symbol R replaced by
the predicate symbol Rπ , and Q̄ is ∃ ifQ is ∀ and vice-versa. The for-
mulaψ ′ is then the FOLTL encoding of the following HyperFOLTL
formula

Q1π1 . . .Qkπk .
( ∧
Qi ∈A

wf(w )πi

)
→

(( ∧
Qi ∈E

wf(w )πi

)
∧ φ

)
.

From Theorem 4.2, to prove the second statement, it is sufficient
to show that the previous HyperFOLTL formula, which we callψ1,
can be brought in the ∃∗π∀∗π∃∗FOLTL. By assumption, we have that
the trace quantifier prefix ofψ1 is of the form ∃∗π∀∗π and that φ is
in the ∃∗FOLTL fragment. Also, sincew is non-omitting, then both
wf(w ) and ¬wf(w ) can be brought in the ∃∗FOLTL fragment, as
remarked in Section 3.3. Thus all conjuncts in the following FOLTL
formula can be brought in the ∃∗FOLTL fragment( ∧

Qi ∈A
¬wf(w )πi

)
∨

(( ∧
Qi ∈E

wf(w )πi

)
∧ φ

)

Session C4:  From Verification to ABE CCS’17, October 30-November 3, 2017, Dallas, TX, USA

639



This means that the formula itself can be put into ∃∗FOLTL and
thusψ1 can be brought into ∃∗π∀∗π∃∗FOLTL. □

4.2 Non-interference in workflows
As we have defined it, the workflow keeps track of the state of
all relations of all agents. However, security policies are meant to
allow access to classified information to just some of the users of
the system while denying it to others. For this, we need to specify
how an agent interacts with the workflow and reason about his
knowledge and possible interactions with the system.

In the running example, members of the PC can use a conference
management system to specify conflicts, read the reviews that
other members have provided, provide their own reviews, etc. As
an example property, we will formalize that no member of the PC
gains any information about papers that he declared a conflict of
interest with.

Following [16], we present a variant of non-interference suitable
for these properties on workflows by adapting the notion of ob-
servational determinism from Example 4.1 to explicitly take into
account the knowledge and behavior of participating agents.

Non-interference in general is a strong specification of the valid
information flows in a system. It uses a classification of all inputs
and outputs to a system into “high” security and “low” security
inputs [17]. In our setting, these notions of input and output are
specific to an agent and his interactions with the workflow. input
to model a’s interactions with the workflow. We call a workflow
non-interferent, iff for any agent a, his observations do not depend
on the inputs which are “high” for a in any way.

AgentModel. It has been observed in [16], that non-interference
in workflows can only reasonably be argued about, if meaningful
assumptions on the behavior of agents are provided.

In order to specify such assumptions, we make the convention
that in any relation recording an agent’s knowledge or interaction,
this agent appears in the first argument of the relation. Formally,
we classify all sorts into agent sorts and data sorts. Moreover, we
require that the arity (s1, s2, . . . ) of every relation R ∈ Rwf ∪
Rlow ∪Rhigh is non-nullary and is such that s1 is an agent sort. This
restriction, while not strictly necessary, allows us to present the
results in this section in a much cleaner way.

An agent provides observable input to the workflow system by
choosing to execute (or to not execute) may-blocks for specific
data. Such input is low input, formalized through the predicates
Choice ∈ Rlow . The property that at a given time point, all low
inputs for a given agent a are equal on traces π ,π ′ is formalized as:

same_low_inputsπ ,π ′ (a) :=∧
Choice∈Rlow

(
∀x̄ .Choiceπ (a, x̄ ) ↔ Choiceπ ′ (a, x̄ )

)
,

where, for eachChoice predicate, the sequence x̄ has the same length
as its arityminus 1. Input provided by the environment is considered
high input. It is formalized through predicates Oracle ∈ Rhigh.

An agent can observe all tuples in which it is mentioned in the
first argument. The property that, at a time point, all observations
of a given agent a are the same on two given traces π and π ′ is

formalized by the following formula:

same_observationsπ ,π ′ (a) :=
∧

R∈Rwf

(∀x̄ .Rπ (a, x̄ ) ↔ Rπ ′ (a, x̄ ))

Agent Behavior. The behavior of the workflow as seen by one
of the agents, depends on the actions of all other agents. If agents
have the power to behave arbitrarily, there will be spurious coun-
terexample traces to confidentiality where an agent chooses to
let his actions depend on confidential data — which he could not
even access. Here, we consider two meaningful agent models which
restrict the behavior of agents across different executions.

The simpler agent model considers stubborn agents. An agent is
called stubborn if, even when told information that is confidential
to another agent, he will not choose his actions depending on this
information. Thus, anyone observing the behavior of a stubborn
agent will not be able to conclude anything about confidential data.
Technically, this amounts to saying that his choices are indepen-
dent of the chosen trace. For a pair of traces π ,π ′, the behavior
of a stubborn agent is therefore specified in HyperFOLTL by the
following formula:

stubbornπ ,π ′ (a) := G same_low_inputsπ ,π ′ (a)

Amore intricate model of agent behavior considers causal agents.
An agent is called causal if his actions may depend on his obser-
vations. As a result, a causal agent can subtly change his behavior
depending on the data that he gained access to. As an example, a
causal agent could indicate the acceptance of a paper to someone
else either by explicitly telling it to someone or by commenting to
another paper or refraining from it. For a pair of traces π ,π ′, this
behavior is specified in HyperFOLTL by the following formula.

causalπ ,π ′ (a) :=
same_low_inputsπ ,π ′ (a)W¬same_observationsπ ,π ′ (a)

We remark that the causal agentmodel subsumes the stubborn agent
model and is less constraining on the behavior of the individual
agents, which leads to more intricate information flow violations.

We remark that the formula∀a.causal (π ,π ′,a) is not expressible
in ∃∗FOLTL, as it has an ∀∃ quantifier structure. In case, however,
that we consider a fixed upper bound on the number of causal
agents, the corresponding formula is in the ∃∗FOLTL fragment. For
instance for at most two agents, we can use the following formula:

∃a1,a2. causalπ ,π ′ (a1) ∧ causalπ ,π ′ (a2)

Considering an upper bound on the number of causal agents is
a realistic setting, as it allows to verify the system for attacks by
coalitions up to a given size.

Declassification. In general, all external input data to the work-
flow, i.e. all relations inRhigh are considered as high input. However,
it often needs be possible that an agent can learn something about
the high input data, depending on the scenario. This is also appar-
ent in the conference management example. There, it is necessary
for a reviewer to be able to read at least some reviews, namely, the
reviews for papers he himself is assigned to — although reading
these might be illegitimate for others.

To model declassification, we assume a formula φOracle for each
relation Oracle in Rhigh. This formula encodes a declassification
condition that describes which Oracle tuples represent declassified
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Table 1: A counterexample to non-interference.

block relation π π ′

(b1) Conf (a1,p1)
(b2) Assign (a1,p2), (a2,p2), (a2,p1)

(b3) Review
(a2,p1, r21)
(a2,p2, r22) (a2,p2, r22)

(b4) Read
(a1,a2,p2, r22) (a1,a2,p2, r22)
(a2,a2,p2, r22) (a2,a2,p2, r22)
(a2,a2,p1, r21)

(b5) Review (a2,p2, r21)

(b4) Read
(a1,a2,p2, r21)
(a2,a2,p2, r21)

information, for any given agent. Initial high inputs for a therefore
should only be equal on traces π ,π ′ if they are declassified for
agent a. Technically, this property is formalized by:

same_declassified_high_inputsπ ,π ′ (a) :=

G
∧

Oracle∈Rhigh

∀ȳ.

(
(φOracle,π (a, ȳ) ∨ φOracle,π ′ (a, ȳ))

→ (Oracleπ (ȳ) ↔ Oracleπ ′ (ȳ))

)
By the notation φOracle (a, ȳ) we mean that the free variables of the
formula φOracle are among the variables a and those in ȳ. For our
running example, we use φOracle (a,x ,p, r ) := ¬Conf(a,p).

Control Flow. The structure of the control flow graph and the
current position of theworkflow (i.e. the state of all relations inRcfg)
are considered as low input. This serves the intuition that the non-
determinism in the workflow is resolved by some external control.
For instance, the PC chair of the conference management system
may terminate the submission loop. This assumption is formalized
by the following formula:

same_pathsπ ,π ′ := G
∧

n∈Rcfg

nπ ↔ nπ ′

Putting it all together. Assume that there are at most k ≥ 0
causal agents with all other agents being stubborn. Non-interference
with Declassification is then expressed in HyperFOLTL by the fol-
lowing formula:

∀π ,π ′.
(
∃a1, . . . ,ak .

( k∧
i=1

causalπ ,π ′ (ai )
)
∧

(
∀a. (

k∧
i=1

a , ai ) → stubbornπ ,π ′ (a)
))

∧ same_pathsπ ,π ′
→ ∀a. noninterferentπ ,π ′ (a)

where noninterferentπ ,π ′ (a) :=((
G same_low_inputsπ ,π ′ (a)

)
∧

same_declassified_high_inputsπ ,π ′ (a)
)

→ G same_observationsπ ,π ′ (a).

Example 4.4. Coming back to the workflow in Example 3.1, we
check if the non-interference property holds.

When all agents are stubborn, we find that non-interference is
satisfied for the given workflow. This result indicates that there
is no way for any agent to learn confidential information without
having a conspirator helping him.

The result is different when there is at least one causal agent.
In this case we find the following counterexample: Assume two
PC members a1 and a2 where a1 is stubborn and a2 is causal. The
non-interference property is stated for a1. There are two papers
p1 and p2. First, a1 declares a conflict with p1, so in the rest of the
workflow he should not be able to observe a difference between two
executions of the workflow, regardless of which reviews p1 receives.
Both agents get assigned to p2. In addition, a2 gets assigned to p1
and writes a review for it. At this point, a2 can observe at least one
review for p1, so he can deviate his behavior on the two executions.
The next step is the discussion phase. In the first step, a2 reads
all reviews of p1. In the next step, a2 adjusts his reviews of p2 to
mirror the reviews of p1. Then, in the next iteration, a1 will read the
differing reviews of p2 and learn about the result of p1, the paper
he initially declared a conflict with.

Table 1 formalizes the counterexample. It shows the tuples that
are added to the updated relation after the execution of each block.
Note that the workflow updates only one relation per block and
there are no removals. The reviews for p2 cannot differ (in the
two traces) directly after the execution of the block (b3) since the
declassification condition states that tuples in Oracle can only differ
when they are of the form (x ,p1, r ). However, as a2 can observe
his own reviews for p1, his choices can start to differ after (b3) is
executed; concretely, they will differ when block (b5) is executed.
In the last two rows, any value for r (except r22) would result in a
counter-example; we use r21 to suggest that a2 could simply replace
its review for p2 with the review for p1. This attack represents
someone copy-pasting his review for the wrong paper into one of
his reviews.

We note that for the given specification of the workflow, such
an attack is unavoidable in “real life”, as it can be performed also
outside the workflow system. Concretely, a2 can directly communi-
cate the reviews for p1 to a1 through any communication channel,
for instance by email. To combat this attack, the example should
be changed to having disjunct reviewing groups — whenever a
reviewer r is assigned to a paper p, no one else that has a conflict
with the other assigned papers of r can be assigned to p.

4.3 Verification
As hinted in Section 4.1, given a non-omitting workfloww and an
∃∗π∀

∗
π∃
∗FOLTL formulaψ denoting a set of bad behaviors, our ap-

proach for checking whether w |= ¬ψ consists in checking the
(un)satisfiability of the formula ψ ′ given in the proof of Theo-
rem 4.3(1).

As an instance of this approach, we obtain that Non-interference
with Declassification can be checked on non-omitting workflows.

Theorem 4.5. For any non-omitting workflow, it is decidable to
check whether it satisfies Non-interference with Declassification for a
finite number of causal agents and an unbounded number of stubborn
agents, as long as for each formula φ expressing a declassification
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condition, the negation normal form of ¬φ contains no existential
quantifier.

It is easy to check that the negation of non-interference can be
brought into ∃∗π∀∗π∃∗FOLTL. Then, asw is non-omitting, the result
follows directly from by Theorem 4.3(2).

In [16], the authors show that for workflows without loops, it is
possible to check non-interference even when all agents behave in
a causal way. This is no longer the case for workflows with loops:

Theorem 4.6. The problem of checking for a given non-omitting
workfloww wether it satisfies Non-interference with Declassification
for an unbounded number of causal agents is undecidable, even if for
all formulas φ expressing a declassification condition, the negation
normal form of ¬φ contains no existential quantifier.

Proof. As in the proof for Theorem 3.5, we present a reduction
from the periodic tiling problem. We will consider a workflow w
over signature Σ with

Σ =
(
{A}, {afirst }, {Q,O,Obs,Adj,T

′
0 , . . . ,T

′
k−1}, ar

)
where A, afirst , Q , and T ′0 , . . . ,T

′
k−1 are as in proof for Theorem 3.5,

and they fulfill the same purposes. The Adj symbols denote again
a vertical adjacency relation, but here it is not filled with input
data, but rather computed stepwise by the workflow. The relation
denoted by O and Obs contain an initial secret that differs on both
traces and spreads along the adjacency relation Adj. The symbols
Q,T ′0 , . . . ,T

′
k−1 denote again high-input relations containing input

data with a declassification of true (i.e. they are always equal in
both traces).

We consider the following workflow:

forall . Oracle(afirst ) → Obs += (afirst )

loop (*)
% Information flow from a to b
forall a,b may. true → Adj += (b,a)

% Clear Adj
forall a,b . Adj −= (a,b)

We add the rest of the tiling requirements to the declassification
condition of O , so that there only is an information flow violation
in case that all formulas hold.

As we again use time as the x-axis, we reuse Eqs. (1) to (6). We
also use alast as one representative agent of the bottom-most row,
so we reuse Eq. (9) to specify that alast is compatible to afirst . This
time alast is not part of the signature, but we will call the outermost
agent of the non-interference condition alast , so all declassification
conditions can use the variable.
Two adjacent agents need to be assigned y-comp tiles (Eq. (10)).

∀a,b . (FAdj(b,a)) → G
∨

y-comp(i, j )
T ′i (a) ∧T

′
j (b) (10)

The last agent should be reachable from the first via Adj relations.
This is expressed by specifying thatalast can observe different tuples
on traces π ,π ′ (the non-interference property.). Letψ be the con-
junction of equations Eqs. (1) to (6) and (10). Let the declassification
conditions be:

φOracle = ¬ψ , φQ = true, φT ′i = true

We then verify the non-interference property

∀π ,π ′,alast .∀a , alast . causalπ ,π ′ (a)
→ noninterferent (π ,π ′,alast )

(11)

There exists a satisfying model for the negation of the property
in Eq. (11) onw iff there is a periodic tiling for (T ,x-comp,y-comp).
If alast observes different low outputs (tuples in Adj), either he
is the same agent as afirst and y-compatible to himself or there
exists a chain of causal agents spreading the tuples along Adj to
alast . Since afirst is the only one able to read Oracle, every possible
differences can only originate in Obs. Thus, there is a chain of y-
compatible causal agents ai starting with afirst that reaches alast .
We can construct the tiling from any satisfying model in exactly
the same way as in the proof of Theorem 3.5. □

5 EXPERIMENTAL EVALUATION
We have implemented our approach into the tool NIWO.4 Our tool
takes as input the specification of a workflow together with declas-
sification conditions and the number of causal agents. From that, it
generates a sorted FOLTL formula whose satisfiability is equivalent
to the existence of a violation of the non-interference property. For
non-omitting workflows, this formula is further compiled into an
equi-satisfiable LTL formula to be checked by some of-the-shelf
LTL satisfiability solver. Currently, we use Aalta [23] for that pur-
pose. The NIWO tool is, to our knowledge, the first implementation
of an automated verification approach for workflows.

5.1 Size of the formulas
We consider the structure and size of the formulas whose unsatisfi-
ability is checked in order to establish whether non-interference
holds for a given workflow. Such a formula is a conjunction with
four conjuncts. One conjunct is a universally quantified formula
that describes the semantics of the workflow (see Section 4.3). The
next conjunct represents the agent model and it is an existentially
quantified formula with the number of quantifiers matching the
given upper bound on the number of causal agents. The third con-
junct represent the assumption on the control flow and it is a propo-
sitional formula. The last conjunct describes the existence of a
counterexample to the non-interference property and it is an ex-
istentially quantified formula. When considering only stubborn
agents, for a workflow with observable relations of maximum arity
ns per sort s , the formula to be checked for unsatisfiability uses∑
s ns existential quantifiers. Every existentially quantified variable

adds one Skolem constant to the smallest universe (for its sort)
that can be considered. As described in the proof of Theorem 2.1
universal quantification over a sort is translated into a conjunction
over all Skolem constants of that sort.5 Thus, the resulting encoding
of the universally quantified conjunct is exponential in the number
of existentially quantified variables of each sort. For every causal
agent considered,

∑
s ns additional existential quantifiers are added

to the formula. Since every causal agent adds multiple existential
quantifiers, the resulting LTL formula can be orders of magnitude
larger when considering multiple causal agents of the same sort.

4The source code together with all examples can be found on the authors’ website.
5Note that, nevertheless, sorts may greatly reduce the number of conjuncts in compar-
ison to the unsorted case.
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5.2 Experiments
We evaluated NIWO on realistic example workflows, among these
the example from the introduction, as well as synthetic examples
to evaluate scalability issues.

We used several realistic examples. Notebook is an event-based
model of a notebook-like data structure where several people can
write messages, but everyone can only read his own data. It is
proven safe by our implementation, even in the presence of causal
agents. Conference is the example conference management from
Example 3.1, where our implementation finds the counterexample
described in Section 4.3. Conference-acceptance is a slight varia-
tion that forgoes reviews and replaces it by an acceptance relation.
Since it is very similar to the initial conference example, we use it
to showcase the impact of small changes to the workflow to the ver-
ification problem. Conference-linear is the motivating example used
in [16]. It is a simpler version of the Conference example, which
does not use loops, and exhibits a very similar attack. University
is an example from a university environment where a professor
writes down secret grading information for students. It takes at
least 2 conspiring agents for a student to learn something about
grades of other students.

Additionally, we used synthetic examples to illustrate the scal-
ability of the approach in several dimensions. The Fixed-Arity-X
examples show the behavior when increasing the number of rela-
tions. These cases contain X relations that are successive copies of
each other starting from some secret input. The Fixed-Arity-X-safe
examples are similar, but are devoid of counterexamples. The Sorted-
Increasing-Arity-X and Increasing-Arity-X examples show the im-
pact of using sorts. They contain X relations of arities 1, . . . ,X ,
respectively. For every relation of arity n, a tuple containing the
first n − 1 variables has to be present in the relation with arity n − 1.
For the Increasing-Arity cases, all variables refer to the same sort,
whereas in the Sorted-Increasing-Arity variant, every relation of
arity n uses n different sorts. causal-X and Sorted-causal-X cases
showcase the scalability with the number of causal agents that are
part of the attack. These cases are set up in a way that a successful
attack needs to consist of at least X causal agents.

5.3 Results
The results of the experiments are shown in Table 2. The first
column describes the number of causal agents that are considered.
All other participating agents are considered as stubborn as per
Section 4.

The size of the workflow is the number of blocks the workflow
consists of, not counting choice and loop constructs. The result is
safe iff the LTL formula was proven unsatisfiable by Aalta and
unsafe otherwise. The next column gives the sizes of the considered
universes. For example, to show that Conference is safe with respect
to one causal agent, it is enough to consider universes containing
4 reviewers, 2 papers and 2 reviews (one per paper), respectively.
The universes’ sizes are given as a tuple, for instance (4, 2, 2). The
size of both the FOLTL and LTL formulas is the number of nodes
in the formulas abstract syntax tree. The last column is the time (in
seconds) that it takes Aalta to check the satisfiability of the LTL
formula (averaged over 10 runs). All experiments were carried out
on a desktop machine using an Intel i7-3820 clocked at 3.60 GHz

with 15.7 GiB of RAM and running Debian with a timeout of 20
minutes.

The implementation is able to handle all examples based on real
applications in less than 100 seconds. Even though the size of the
resulting formula is exponential in the number of agents in the
universe, Aalta was still able to check the satisfiability of formulas
consisting of thousands of LTL operators in reasonable time. As
expected of a satisfiability solver, giving a counterexample for a
formula is almost always faster than proving it unsatisfiable for
formulas of comparable complexities.

The Fixed-Arity cases show that workflows handle an increasing
number of relations with the same arity quite well. Here, adding
another relation increases the size of the formula by a small factor,
since the size of the needed universe stays the same - only the
universally quantified encoding of the control flow graph grows. In-
creasing the necessary arity of the relations increases the minimum
size of the universe - as shown by the Increasing-Arity cases. In case
that all necessary agents are of the same sort, the formula grows
exponentially, whereas it grows a lot slower in case that increasing
the arity introduces a new sort. Since in those cases the size of the
needed universe is exactly one agent per sort, the resulting LTL
formula is even smaller than the FOLTL specification. The biggest
factor in increasing the state space of the workflow, however, is the
number of necessary causal agents as shown by the two variants of
the Causal-X cases. Since every causal agent that we consider adds
another copy of all of the agents needed to verify the workflow
for only stubborn agents, adding the first causal agent doubles the
minimum amount of agents in the universe. Since the size of the
LTL formula is exponential in the number of agents, adding more
causal agents causes the size of the resulting LTL formula to grow
rapidly.

6 RELATEDWORK
The closest work to ours is [16] where a similar workflow lan-
guage is introduced. That language, however, does not provide
control-flow constructs such as loops. Accordingly, a bounded
model checking approach suffices to verify hyperproperties such
as non-interference. In presence of loops, bounded model checking
does no longer suffice for that purpose.

The workflow model that we consider is a type of a multi-agent
system. Another type of multi-agent systems is represented by busi-
ness processes. They are often described by BPMN diagrams [12]
and formalized by Petri nets. A business process is a collection
of activities, and a workflow thereof represents the flow of data
items between activities. Activities are performed by users, who
may need to synchronize on certain actions, but otherwise execute
activities asynchronously. This is contrast to our formalism, where
workflow steps are executed synchronously by a set of agents. Infor-
mation flow in business processes has been considered, e.g., in [4].
There the MASK framework for possibilistic information flow se-
curity [26], and in particular a variant of the unwinding technique
from [17], is used to prove that specifications satisfying particular
constraints are safe. Up to our understanding, the approach is not
easily amenable to automation.

There have recently been many efforts to verify concrete work-
flow systems, such as conference management systems [2, 21] or an
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Table 2: Experiment Results

Name # causal agents Workflow size Result Universe size FOLTL size LTL size Time (s)
Notebook 0 2 safe (1,1) 266 240 0.18
Notebook 1 2 safe (3,2) 309 993 2.92
Conference 0 5 safe (2,1,1) 628 1089 2.50
Conference 1 5 unsafe (4,2,2) 700 8771 91.86
Conference-acceptance 0 5 safe (2,1) 628 1089 2.47
Conference-acceptance 1 5 unsafe (4,2) 700 5187 45.63
Conference-linear 0 4 safe (2,1) 469 698 0.75
Conference-linear 1 4 unsafe (4,2,1) 541 4116 4.91
University 0 3 safe (1,1) 305 202 0.01
University 2 3 unsafe (4,3,3,2) 408 2727 1.28
Fixed-Arity-10 0 10 unsafe (2) 1928 5299 0.89
Fixed-Arity-15 0 15 unsafe (2) 3963 11114 3.09
Fixed-Arity-20 0 20 unsafe (2) 6723 19054 16.85
Fixed-Arity-10-safe 0 10 safe (2) 1924 5283 33.40
Fixed-Arity-15-safe 0 15 safe (2) 3959 11098 158.83
Fixed-Arity-20-safe 0 20 safe (2) 6719 19038 740.91
Increasing-Arity-2 0 2 safe (2) 180 335 0.08
Increasing-Arity-3 0 3 safe (3) 301 2206 6.20
Increasing-Arity-4 0 4 safe (4) 451 21894 -
Sorted-Increasing-Arity-2 0 2 safe (1,1) 180 163 0.03
Sorted-Increasing-Arity-3 0 3 safe (1,1,1) 301 270 0.09
Sorted-Increasing-Arity-5 0 5 safe (1,1,1,1,1) 630 559 0.40
Sorted-Increasing-Arity-10 0 10 safe (1,. . . ,1) 1960 1719 8.97
Causal-1 0 4 safe (2) 654 1129 8.23
Causal-1 1 4 unsafe (4) 747 2805 6.05
Causal-2 0 6 safe (2) 778 1353 26.73
Causal-2 2 6 unsafe (6) 965 6338 195.31
Sorted-Causal-2 2 3 unsafe (4,3,1) 378 1184 1.47
Sorted-Causal-3 3 4 unsafe (5,4,4,1) 598 3169 1.96
Sorted-Causal-5 5 5 unsafe (7,6,6,6,6,1) 1197 14510 17.05

eHealth system [7], or a social media platform [5]. For instance, the
CoCon conference management system [21] is implemented and
checked in the interactive theorem prover Isabelle. Its security
model uses a specialized non-interference notion (based on nond-
educibility [30]), which is motivated by the need for fine-grained
declassification conditions. In our case, this need is satisfied by the
use of FOLTL, which allows for specifying fine-grained declassifica-
tion conditions both in the “what” and in the “when” directions [28].
ConfiChair [2] is a cryptographic-based model of a cloud-based
conference management system for which the strong secrecy (also
a hyperproperty) of paper contents and reviews is automatically
checked with the ProVerif tool. In contrast to these works, which
focus on the verification of one specific system, we propose a mod-
eling language for workflow, together with a verification approach.

Another attempt to verify parametric systems via a formalization
in first-order logic is the CSDN language [3]. That language has
been proposed for describing and verifying the semantics of con-
trollers in software-defined networks (SDNs). With our workflow
language, it shares that the semantics is specified in terms of rela-
tions. A CSDN program consists of a sequence of controller rules,
each guarded by an event pattern. When the event pattern fires,

the corresponding command is executed. Commands are expressed
in a simple imperative language, which allows to query and update
relations. In contrast, the basic step of our workflow language is
the forall block, which consists of a sequence of guarded updates
to relations. This sequence is executed in parallel for each instan-
tiation of the block variables. Accordingly, the semantics in [3]
and the one in the present paper are orthogonal, and cannot easily
simulate one another. Furthermore, in contrast to [3], we are not
only interested in plain invariants, but temporal non-interference
properties expressed by HyperFOLTL.

Expressing trace properties with sorted FOLTL has been initi-
ated already in the work of Manna and Pnueli [25] and logic-based
approaches are now standard in the verification of such proper-
ties. Logic-based approaches for non-trace properties are less com-
mon and include the ones based on epistemic temporal logics [14],
SecLTL [13], and in particular HyperLTL [9], the logic whose first-
order extension we use in this paper.

7 CONCLUSION
We have provided an extension to the workflow language from [16]
with non-deterministic control-flow structures. We have encoded
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the semantics of theseworkflows aswell as complex non-interference
properties into sorted FOLTL and identified a fragment of sorted
FOLTL where satisfiability is decidable. From that, we concluded
that non-interference is decidable for non-omitting workflows and
a fixed number of causal agents. These methods are strong enough
to automatically construct attacks to the example property.

We also explored in how far our decidability result can be further
generalized. We found, however, that dropping either the restriction
on workflows or the bound on the number of causal agents results
in undecidability.

We have implemented the tool NIWO which automatically veri-
fies sorted non-interference properties for non-omitting workflows.
We evaluated our implementation on workflows inspired by a con-
ference management system. Nonetheless, we would like to see
specifications of larger workflows in order to better understand the
potentials and limitations of our methods.

A practical verification system for arbitrary workflows in our
language requires to deal with the satisfiability problem of general
(sorted) FOLTL formulas. Clearly, FOLTL is a fragment of FOL— us-
ing one unary function symbol. It remains for futurework to explore
in how far current automated theorem provers such as Spass [32]
or Z3 [11], or model-finders such as Alloy [19] or its temporal
extension Electrum [24] are able to deal with the non-interference
formulas for workflows; or what extra proving technology is re-
quired.
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