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ABSTRACT
Voice biometrics is drawing increasing attention as it is a promising
alternative to legacy passwords for mobile authentication. Recently,
a growing body of work shows that voice biometrics is vulnerable
to spoofing through replay attacks, where an adversary tries to
spoof voice authentication systems by using a pre-recorded voice
sample collected from a genuine user. In this work, we propose
VoiceGesture, a liveness detection system for replay attack detec-
tion on smartphones. It detects a live user by leveraging both the
unique articulatory gesture of the user when speaking a passphrase
and the mobile audio hardware advances. Specifically, our system
re-uses the smartphone as a Doppler radar, which transmits a high
frequency acoustic sound from the built-in speaker and listens to
the reflections at the microphone when a user speaks a passphrase.
The signal reflections due to user’s articulatory gesture result in
Doppler shifts, which are then analyzed for live user detection.
VoiceGesture is practical as it requires neither cumbersome opera-
tions nor additional hardware but a speaker and a microphone that
are commonly available on smartphones. Our experimental evalua-
tion with 21 participants and different types of phones shows that
it achieves over 99% detection accuracy at around 1% Equal Error
Rate (EER). Results also show that it is robust to different phone
placements and is able to work with different sampling frequencies.

CCS CONCEPTS
• Security and privacy→ Biometrics;Mobile and wireless security;

KEYWORDS
Voice authentication; Liveness detection; Articulatory gesture

1 INTRODUCTION
Biometrics has gained increasing attention and significance as it is
a promising alternative to legacy passwords for user authentication.
Among various biometric modalities (such as fingerprint, iris and
facial), voice has wide applicability as it is the primary mode of com-
munication, enabling biometric samples to be acquired remotely
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through existing landline, cellular and VoIP communication chan-
nels without additional hardware. Unlike other biometrics, voice
biometrics has the advantage of natural integration with passwords
or face authentication in mobile devices for multi-factor authen-
tication. Over recent years, voice authentication has matured to
become a low-cost and reliable method for authenticating users in
a wide range of applications such as access control, forensics and
law enforcement [54].

Particularly, with the advances of mobile technologies, voice
authentication is becoming increasingly popular in a growing range
of mobile applications. For instance, voice biometrics has been
integrated with smartphone operating systems and mobile apps
for secure access and login. Examples include Google’s "Trusted
Voice" for Android devices [10], Lenove’s voice unlock feature for its
smartphones [1], and Tencent’s "Voiceprint" feature in WeChat for
voice based app login [7]. Moreover, voice authentication has also
been progressively deployed in e-commerce and mobile banking.
For example, Saypay, a biometric authentication solutions provider,
provides voice authentication services for online transactions in
e-commerce [4]. And a considerable number of financial institutes,
such as HSBC, USAA, National Australia, Citi and U.S. Bank, have
started testing or are deploying voice recognition mobile apps and
ATMs to allow customers to bank without requiring passwords or
card swipes [3]. Voice authentication thus has increasingly gained
interest in mass-market adoption, as also evidenced by the predicted
market share of $184.9 billion in 2021 [12].

Recently, a growing body of research has demonstrated the vul-
nerability of voice authentication systems to spoofing through
replay attacks [21, 24, 49, 51], where an adversary tries to spoof
the authentication system by using a pre-recorded voice sample
collected from a genuine user [48]. The replay attacks are easy to
carry out, requiring neither sophisticated equipments nor specific
expertise. They are also increasingly practical due to the wide avail-
ability of low-cost, high-quality recording and playback devices.
The popularity of social media further makes it relatively easy for
an adversary to obtain voice samples from the intended target user.
Importantly, such low-cost and low-effort attacks have been shown
to be highly effective in spoofing the voice authentication systems.
For instance, simply replaying a pre-recorded voice command of a
user could unlock her/his mobile devices that have voice-unlock
feature (e.g., Android devices) [10]. An extensive study in 2017
shows that replay attacks increase the equal error rate (EER) of
state-of-art voice authentication systems from 1.76% to surprisingly
30.71% [24]. Replay attacks thus pose serious threats to the voice
authentication systems and have drawn much attention recently.

To defend against replay attacks, liveness detection system is
required to distinguish between the legitimate voice samples of
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live users and the replayed ones. Traditional methods mainly rely
on the acoustic characteristics of an input utterance. Such meth-
ods, however, are only effective when the input utterance contains
significant additive or convolution noises, for example, when the
voice samples are collected surreptitiously [40]. They fail when the
recordings took in benign acoustic environments with high-quality
recorders as such recordings are close to indistinguishable from the
genuine ones [43]. An adversary could also obtain a copy of genuine
voice recording and directly supply to the authentication system,
bypassing the local microphone. Such high quality recordings and
playbacks make it extremely hard, if not possible, for detecting re-
play attacks with only the acoustic characteristics. For instance, the
replay attack detection 2017 challenge shows that current acoustic
characteristics based detection methods only achieve EER of 24.65%
on average [24]. The acoustic characterization based approaches
therefore have very limited effectiveness in practice.

Current voice authentication service providers, such as Voice-
Vault [9] and Nuance [5], mainly rely on the challenge-response
based approaches for liveness detection. In particular, the user is
prompted to repeat a closed set of sentences in addition to the user
enrolled passphrase [15]. Such a method however increases the op-
eration overhead of the user and is cumbersome due to an explicit
user cooperation is required besides the standard authentication
process. More recently, Chen et al. [17] develop a smartphone based
liveness detection system by measuring the magnetic field emit-
ted from loudspeakers. It however requires the user to speak the
passphrase while moving the smartphone with predefined trajec-
tory around the sound source. Moreover, Zhang et al. [55] propose
a smarthphone based solution, which measures the time-difference-
of-arrival (TDoA) changes of a sequence of phoneme sounds to the
two microphones of the phone when a user speaks a passphrase for
liveness detection. However, it requires a user to hold the phone at a
specific position. While effective, the above-mentioned approaches
introduce cumbersome operations as they require either additional
steps during authentication or holding or moving the phone in
some redefined manners.

In this paper, we introduce VoiceGesture, a smartphone based
liveness detection system that achieves the best of both worlds -
i.e., it is highly effective in detecting live users, but does not require
the users to perform any cumbersome operations. In particular, our
system achieves around 1% EER and works when the users hold
the phones with their habitual ways of speaking on the phones, i.e.,
have the phone held either to user’s ear or in front of the mouth.

Our system leverages a user’s articulatory gestures when speak-
ing a passphrase for liveness detection. Human speech production
relies on the precise, highly coordinated movements of multiple ar-
ticulators (e.g., the lips, jaw and tongue) to produce each phoneme
sound. It is known as articulatory gesture, which involves multidi-
mensional movements of multiple articulators [29]. Unlike human,
loudspeaker produces sound relying on solely the diaphragm that
moves in one dimension (i.e., forward and backward). Thus, by
sensing the articulatory motions when speaking a passphrase, a
human speaker can be distinguished from a loudspeaker. Moreover,
there exist minute differences in articulatory gesture among people
due to individual diversity in the human vocal tract (e.g., shape and
size) and the habitual way of pronouncing phoneme sounds [36].
Such minute differences could be further leveraged to detect an

adversary who tries to mimic the articulatory gesture of a genuine
user.

Our system exploits themobile audio hardware advances to sense
and extract user-specific features of articulatory gesture when a
user speaks a passphrase to a smartphone. Although the increas-
ingly high definition audio capabilities supported by smartphones
are targeted at audiophiles, such advanced capabilities can also be
leveraged to sense the motions of the articulators during speech pro-
duction. In particular, current popular smartphones (e.g., Galaxy
S5, S6, and iPhone 5 and 6) are capable to record and playback
acoustic sounds at a very high frequency of 20kHz. Such a high
frequency has significant implication as it is inaudible to human
ear and is easily separable from human voice. Moreover, current
audio chips are able to playback and record at 192kHz sampling fre-
quency, which is also supported by smartphone OSs (e.g., Android
6.0 released in 2015) [2, 34]. The high sampling frequency enables
us to extract fine-grained frequency domain features to capture
both the articulator motions as well as the minute differences of
articulator gesture among people.

Our system thus re-uses the smartphone as a Doppler radar,
which transmits a high frequency acoustic tone at 20kHz from the
built-in speaker and listens to the reflections at the microphone
during the process of the voice authentication. The movements of
a user’s articulators when speaking a passphrase/utterance lead to
the Doppler frequency shifts at around 20kHz, which are recorded
together with the user’s voice sample. Our system then separates
the voice sample for conventional voice authentication and ex-
tracts user-specific features in the frequency shifts for liveness
detection. More specifically, in the user enrollment process, the
user-specific frequency shift features are extracted based on the
spoken passphrase and then stored in the liveness detection system.
During online authentication process, the extracted features of a
user input utterance are compared against the ones in the system.
If it produces a similarity score higher than a predefined threshold,
a live user is declared. To evaluate the performance of our system,
we conduct experiments with 21 participants and three different
types of phones under various experimental settings. Experimental
results show that our system is highly effective in detecting live
users and works with users’ habitual ways of talking on the phone.
The contributions of our work are summarized as follows.

• We show that the mobile audio hardware advances can be
leveraged to sense the articulatory gesture of a user when
she speaks a passphrase. We also show that it is feasible to
capture the minute differences in articulatory gesture among
different people when speaking the same phoneme sounds.

• Wedevelop VoiceGesture, a liveness detection system that ex-
tracts user-specific features in the doppler shifts that resulted
from the articulatory gesture when speaking a passphrase
for live user detection. VoiceGesture is practical as it requires
neither cumbersome operations nor additional hardware but
a speaker and microphone that are commonly available on
smartphones.

• Our extensive experimental results show that VoiceGesture
achieves over 99% detection accuracy at around 1% EER.
Results also show that VoiceGesture is able to work with
different phone models and sampling frequencies.

Session A2:  Human Authentication CCS’17, October 30-November 3, 2017, Dallas, TX, USA

58



Voice Data

Speaker Model
Database

Classifier
(Accept or Reject)

Voice 
Feature

Reference
Decision

Microphone Feature Extractor

Figure 1: A typical text-dependent authentication system.

The remainder of the paper expands on the above contributions.
We begin with system and attack model, and a brief introduction
to the articulatory gesture sensing.

2 PRELIMINARIES
2.1 System and Attack Model
Voice authentication is the process of verifying the claimed iden-
tity of a user by extracting the acoustic features that reflect both
behavioral and physiological characteristics of a user [48]. In this
work, we primarily focus on the text-dependent system, in which
a user-chosen or system prompted passphrase is used for user au-
thentication. As a text-dependent system offers high authentication
accuracy with shorter utterances, it is generally more suitable for
user authentication than text-independent system [49]. A typical
text-dependent voice authentication system is shown in Figure 1.
Nevertheless, our liveness detection system could be extended to a
text-independent system [55].

We consider replay attacks in our work as they are easy to im-
plement by using the wide availability of low-cost and high-quality
digital recording and playback devices. To acquire a victim’s voice
samples, an adversary can either place a recording device surrep-
titiously in close proximity to the victim or utilize the victim’s
publicly exposed speeches. An adversary can also extract and con-
catenate the voice segments to match the victim’s passphrase to
launch replay attacks. In particular, we consider two types of replay
attacks: playback attack andmimicry attack. In a playback attack, an
adversary uses a loudspeaker to replay a pre-recorded passphrase of
an intended target user. Given that attackers may know the defend-
ing strategy of the liveness detection system, they could conduct
more sophisticated mimicry attacks, in which an adversary tries
to mimic the articulatory gesture of a genuine user. To perform a
mimicry attack, the adversary can use a far-field speaker to replay
a pre-recorded passphrase and simultaneously mimic the victim’s
articulatory gesture corresponding to the replaying passphrase. In
mimicry attacks, we also consider that the attacker can observe how
a genuine user pronounces the passphrase, for example by taking a
video of the genuine user, and then practice before conducting the
attack.

2.2 Articulatory Gesture
Human speech production requires precise and highly coordinated
movements of multiple articulators [29]. Specifically, articulatory
gesture is used to describe the connection between the lexical units
with the articulator dynamic when producing speech sounds. For
English speech production, the coordination among multiple artic-
ulators produces gestures like lip protrusion, lip closure, tongue tip
and tongue body constriction, and jaw angle. For example, three
articulators including upper lip, lower lip and jaw are involved

upper 
lip 

lower 
lip 

tongue tip 

tongue body 
center 

glottis 

velum 

jaw 

Phonemes Articulators Motion Variables p, b, m upper lip lower lip jaw lip vertical movement lip vertical movement jaw angle t, d, n, s, z, sh, zh tongue tip tongue body jaw radial and angular radial and angular jaw angle k, g,  vowels tongue body jaw radial and angular jaw angle m, n, velum velum movement p, t, k, s, sh glottal glottal movement uw, uh, ow  lip protrusion horizontal movement 
Figure 2: Articulators, phonemes and the corresponding ar-
ticulatory gestures.

Figure 3: An illustration of sensing the articulatory gesture
when a user speaks a passphrase on the phone.

when a speaker conducts the gesture of lip closure, which could
lead to the phoneme sounds of [p], [b] and [m].

Figure 2 illustrates various articulators and their locations as
well as the phonemes and the corresponding articulatory gestures.
Each phoneme sound production usually involves multidimensional
movements of multiple articulators. For instance, the pronunciation
of the phoneme [p] requires upper and lower lips horizontal move-
ments and jaw angle change. Moreover, although some phonemes
share the same type of articulator gesture, the movement speed and
intensity could be different. For example, both [d] and [z] require
the tongue tip constriction, however they differ in terms of the
exact tongue tip radial and angular position.

2.3 Sensing the Articulatory Gesture
To sense the articulatory gesture, we leverage the phenomenon of
Doppler effect, which is the change in the observed wave frequency
as the receiver and the transmitter move relative to each other. A
common example of Doppler effect is the change in the pitch of
an ambulance’s siren as it approaches and departs from a listener.
Figure 3 shows one example of sensing the particularity gesture
when a user speaks a passphrase by holding the phone to his left
ear. The build-in speaker of the phone emits a high frequency tone,
which is reflected bymultiple articulators of the user. The reflections
are then recorded by the built-in microphone of the same phone. In
our context, the articulators reflecting the signals from the speaker
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can be thought of as virtual transmitters that generate the reflected
sound waves. As the articulators move towards the microphone,
the crests and troughs of the reflected sound waves arrive at the
microphone at a faster rate. Conversely, if the articulators move
away from the microphone, the crests and troughs arrive at a slower
rate. In particular, an articulator moving at a speed of v with an
angle of α from the microphone results in a Doppler shift [35] (i.e.,
frequency change ∆f ) of:

∆f ∝
v cos(α)

c
f0, (1)

where f0 is the frequency of the transmitted sound wave and c is
the speed of sound in the medium.

We observe from Equation (1) that a higher frequency of the
emitted sound (i.e., f0) results in a larger Doppler shift for the
same articulator movements. We thus choose to emit a high fre-
quency sound at 20kHz, which is close to the limit of the built-in
speaker/microphone of current popular smartphones. Such a high
frequency signal maximizes the Doppler shifts caused by the artic-
ulatory gesture and is also inaudible to human ear.

Moreover, the observed Doppler shift depends on the the moving
direction of the articulator (i.e., α ). An articulator moving away
from the microphone results in negative Doppler shift, while an
articulator moving towards the microphone leads to a positive
Doppler shift. As each phoneme pronunciation involves multidi-
mensional movements of multiple articulators, the resulted Doppler
shifts at the microphone are a superposition of sinusoids at differ-
ent shifts. For instance, the phoneme sound [o] requires the lip
closure gesture, which involves upper lip and jaw moving towards
the microphone and lower lip and tongue moving away from the
microphone. We thus could observe a set of Doppler shifts includ-
ing both positive and negative shifts that can be used to distinguish
different articulatory gestures.

In addition, a faster speed (i.e.,v) results in a larger Doppler shift.
The magnitude of the Doppler shift thus can be further utilized
to distinguish different gestures or people that produce the same
phoneme sound with various speeds. Furthermore, the reflections
from the articulators that closer to themicrophone result in stronger
energy due to the signal attenuation in the medium. For example,
the lip movement usually results in a higher energy in its Doppler
shift than that of the tongue tip. The energy distribution of the
Doppler shifts thus provide another dimension of information for
differentiating articulatory gestures.

2.4 Loudspeaker
Unlike the human, loudspeaker relies on solely the diaphragm that
moves in one dimension to produce sound wave [11]. As shown
in Figure 4, the diaphragm is moving forward and backward to
increase and decrease the air pressure in front of it, thus creating
sound waves. The diaphragm is usually driven by the voice coil1,
which converts electrical signals to magnetic energy. By increasing
and decreasing the amount of electrical current, the voice coil pro-
duces a magnetic field of varying strength, which interacts with the
internal permanent magnet. The permanent magnet thus attracts
or repels both the voice coil and the attached diaphragm to move
1Although the diaphragm is driven by stators for electrostatic loudspeaker, it still relies
on the movements of diaphragm for sound production.

Permanent Magnet

Diaphragm

Voice Coil

Forward

Backward

Figure 4: An illustration of a loudspeaker.

froward or backward. The specific movements of the diaphragm are
controlled by the frequency and intensity of the input audio signal.
For instance, the input sound that possesses a high pitch results in
fast movement of the diaphragm, while when a user turning up the
volume, the diaphragm pushes harder to produce a higher pressure
in the air.

A loudspeaker could be distinguished from a live speaker based
on the movement of articulators. First, they differ in terms of the
movement complexity and the number of the articulators. In addi-
tion, the movement of human articulator does not always produce
sound, whereas the movement of diaphragm certainly results in
sound wave. Figure 5 shows the Doppler shifts sensed by the probe
sound at 20kHz for a loudspeaker replay and a live user, respec-
tively. The frequency distribution inside each pair of vertical bars
in the figure corresponds to the Dopplor shifts resulted from one
phoneme sound. We could observe that the Doppler shifts of the
loudspeaker look relatively clean due to much simpler diaphragm
movements. The Doppler shifts caused by the complex movements
of multiple articulators of a live user spread out over a much larger
volume of space. For instance, to pronounce the phoneme [ai], a
human speaker first opens his mouth on vertical direction and then
gradually changes to horizontal direction. This procedure involves
massive movements that result in a diverse of Doppler shifts than
that of a loudspeaker.

2.5 Individual Diversity of Articulator Gesture
There exist minute differences in articulatory gesture among people
when producing the same phoneme due to the individual diversity
in the human vocal tract and the habitual way of pronunciation.
For example, research shows that different people adopt different
movement trajectories of articulators to produce the same utter-
ance [32]. Also, the physiological features of vocal tract vary among
people, such as the size and shape of lips and tongue [41]. Moreover,
there is a diverse articulatory strategies for sound production. For
instance, some speakers’ jaw movement is closely connected with
tongue body gesture, while others are not [22].

To assess whether we are able to capture the minute differences
in users’ articulatory gestures with current smartphone, we use the
articulator movement speed among people as one example [31]. Fig-
ure 6 shows the statistics of the movement speeds of both upper lip
and jaw for five people when producing the same phoneme sound.
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Figure 6: Velocity diversity in upper lip and jaw ges-
tures [27].

We observe a diverse range of movement speed. The averaged dif-
ference of the speed is 0.04m/s for upper lip and 0.06m/s for jaw,
respectively. Given the duration of producing a phoneme sound is
around 250ms [47], we could achieve 1Hz resolution under 192kHz
sampling frequency when analyzing the Doppler shifts of each indi-
vidual phoneme. With the probe sound at 20kHz, 1Hz Doppler shift
corresponds to an articulator speed of 0.017m/s, which provides
much higher sensitivity than that of the speed difference in both
upper lip and jaw movements (i.e., 0.04m/s and 0.06m/s). We thus
could be able to differentiate different people even if they are pro-
nouncing the same phoneme sound with 20kHz prob sound wave
at 192kHz sampling frequency. Of course, the differences in articu-
latory gesture are expected to be much smaller under the mimicry
attacks, where an adversary mimics the articulatory gesture of
a genuine user. Nevertheless, each articulatory gesture involves
movements of multiple articulators, which provide more informa-
tion to detect the attacks. In addition, each passphrase consists of

3. The voice is separated for authentication and  Doppler shifts are extracted for feature extraction. 4.   Both the frequency-based and energy-based  features are extracted for liveness detection. 2.   The microphones records both the frequency shifts at around 20kHz and the voice sample.  1. The built-in speaker emits  20KHz tone  and microphone listens the reflections.  20.2K 19.8K 20K 0.2 0.15 0.1 0.05 20K Doppler Shifts [lai] [k] [s] [p] [wi:] [dei] 0 8K Audible Voice 
Figure 7: Illustration of the articulatory gesture based live-
ness detection on smartphone.

a sequence of phoneme sounds, which dramatically increase the
possibility to distinguish between a genuine user and an attacker.

3 SYSTEM DESIGN
In this section we introduce our system design and its core compo-
nents and algorithms.

3.1 Approach Overview
The key idea underlying our liveness detection system is to lever-
age the mobile audio hardware advances to sense the articulatory
gesture of a sequence of phoneme sounds when a user speaks
passphrases to a smartphone. As illustrated in Figure 7, the built-
in speaker at the bottom of the phone starts to emit an inaudible
acoustic tone at 20kHz once the authentication system is triggered.
When a user speaks a passphrase, the built-in microphone records
user’s voice as well as the inaudible acoustic tone and its reflections.
Speaking a passphrase involves multidimensional movements of
multiple articulators, which result in Doppler frequency shifts in
the reflected signals. In particular, the articulators moving toward
(away from) the microphone lead to positive (negative) Doppler
shifts. While the articulators that closer to the microphone result
in stronger energy in the Doppler shifts, the articulators move
at faster speeds lead to large Doppler shifts. Once finish record-
ing, the voice sample of the user (which is usually located below
10kHz) is separated for conventional voice authentication, leaving
the high frequency band at around 20kHz for extracting features
in the Doppler shifts. The system extracts features based on both
frequency shift distribution and energy distribution in the observed
Doppler shifts. The extracted features are then compared against
the ones obtained when user enrolled in the system for live user
detection.

A live user is declared if the similarity score exceeds a predefined
threshold. Under playback attacks, the extracted features of Doppler
shifts are different from the ones obtained from a live user due to the
fundamental difference between the human speech production sys-
tem and the loudspeaker sound production system. Under mimicry
attacks, the extracted features can capture the minute differences
through a sequence of phoneme sounds due to individual diversity
of human vocal tract and the habitual way of pronunciation. Also, it

Session A2:  Human Authentication CCS’17, October 30-November 3, 2017, Dallas, TX, USA

61



is possible for an attacker to place a recording device (e.g., a smart-
phone emitting and recording at 20kHz) surreptitiously in close
proximity to a legitimate user to record the Doppler shifts when
the user speaks a passphrase. As the Doppler shift pattern is tied to
the phone placement, the recorded Doppler shifts by the attacker
are different from the ones sensed by the legitimate device (e.g.,
user’s smartphone) as long as the attacker has a phone placement
different from the one that the legitimate user used for enrollment.

Our system works when the users hold the phones with their
nature habits as opposed to the prior smartphone based solutions
that require users to hold or move the phone in some predefined
manners. Comparing to the commercially used challenge-response
based solutions, our system does not require any cumbersome
operations besides the conversional authentication process. Once it
integrated with voice authentication system, the liveness detection
is totally transparent to the users.

Our system however does require the built-in speaker and micro-
phone to playback and record sound wave at a high frequency. The
audio hardware on current popular smartphones (e.g., Galaxy S5,
S6, and iPhone 5 and 6) has frequency response well above 20kHz.
As mobile devices are increasingly supporting high definition audio
capabilities, we envision the low-end phones could also reliably
record and playback sound wave at high frequencies in the very
near future. Moreover, certain data protection methods should be
deployed to prevent an attacker from obtaining the plain-text of
the extracted features. For example, the feature extraction could
be done locally at smartphone and only the encrypted features are
transmitted for liveness detection.

3.2 System Flow
Realizing our system requires five major components:Doppler Shifts
Extraction, Feature Extraction,Wavelet-based Denoising, Similarity
Comparison, andDetection. As shown in Figure 8, the acoustic signal
captured by the phone’s microphone first passes through Doppler
shifts Extraction process, which extracts the Doppler shifts for each
phoneme sound in the spoken utterance. We rely on the audible
voice sample of the user for separating each phoneme and the cor-
responding Doppler shifts. In particular, we apply Hidden Markov
Modeling (HMM) based forced alignment to recognize and separate
each phoneme in the voice sample. Then, we map the segmentation
to the inaudible frequency range at around 20KHz frequency to
extract the Doppler shifts of each individual phoneme.

Next, the Feature Extraction component is used to extract both
energy-band and frequency-band features from the Doppler shifts.
Specifically, our system first partitions the Doppler shifts into sev-
eral sub-bands based on both energy and frequency levels. It then ex-
tracts both the frequency-based and energy-based contours within
each sub-band. These extracted frequency-based and energy-based
contours capture the movements of multiple articulators in terms
of relative positions and relative velocities.

Then we utilize wavelet-based denoising technique to further
remove the mixed noises by decomposing each contour into approx-
imation and detailed coefficients. A dynamic threshold is applied
to the detailed coefficients to remove the noisy components while
retaining sufficient details. After that, we reconstruct the features

Voice 
Sample

Doppler Shift 
Extraction

Feature
Extraction

Similarity
Comparison Decision

Live User
or

Attack

User Enrolled
Profile

Wavelet-based
Denoising

Figure 8: The flow of our liveness detection system.

by combining approximation coefficients and denoised detailed
coefficients.

At last, our system matches the frequency-based and energy-
based features with the ones stored in the liveness detection system
by using cross correlation coefficient. It yields a similarity score,
which is compared against a predefined threshold. If the score is
higher than the threshold, a live user is detected, otherwise an
attack is declared.

3.3 Doppler Shifts Extraction
Once finish recording, our system first separates the voice sample
of the user (i.e., below 10kHz) for conventional voice authentication.
Then, we rely on the audible voice sample to separate each indi-
vidual phoneme and the corresponding Doppler shifts at around
20kHz. Specifically, we convert the recorded signal from the time
domain to frequency domain by performing Short-Time Fourier
Transform (STFT) with a window size as 250ms. Figure 9 shows
one example of the spectrogram of the recorded signal when a user
speaks "like sweep day". We can find that the audio voice sample is
less than 10kHz and the Doppler shifts are usually within 200Hz at
around 20kHz. Such a large gap ensures the voice sample will not
be affected by the high frequency of 20kHz and its Doppler shifts.
Given the spectrogram of the recorded signal, we aim to extract
the Doppler shifts for each individual phoneme while removing the
pauses due to transaction between phoneme sounds and also the
transaction between words (i.e., the shaded bars in the figure).

To perform phoneme segmentation, we utilize the fact that each
phoneme consists of numerous distinctive overtone pitches, also
known as formants [30]. By inspecting the sound spectrogram,
we are able to identify different phonemes by recognizing those
formants. In particular, the first two formants with the lowest fre-
quencies are referred to as F1 and F2, which contains the most
information can be used to distinguish the vowels. Thus, by an-
alyzing the F1 and F2 in the sound spectrogram, we are able to
segment different vowels within given voice sample. Unlike vowels,
each consonant is displayed as a mixture of various frequencies
randomly. Consequently, only using formants to perform precise
segmentation of consonants is very challenging. We thus utilize
HMM (Hidden Markrov Mddels) based forced alignment to solve
this problem. This method [25] distinguishes different consonants
by comparing the input voice sample spectrogram with existing
spectrograms and finding the best alignment.

Specifically, we first utilize automatic speech recognition (ASR)
to identify each word in the voice sample. We adopt state-of-art
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[lai] [k] [s] [p] [wi:] [dei] 20.2K 20K K K K 19.8K K … Time (s) 
Figure 9: An illustration of Doppler shifts extraction based
on phoneme sounds.

CMUSphinx [38] to perform such task automatically. After identify-
ing existing words in the voice sample, we then perform consonant
segmentation and labeling utilizing MAUS [26]. First, based on
standard pronunciation model (i.e., SAMPA phonetic alphabet), the
identified words will be transformed into expected pronunciation.
Next, by combining the canonical pronunciation with millions of
possible accents of users, a probabilistic graph will be generated. It
contains all possible phoneme combinations and the corresponding
probabilities. The system then adopts Hidden Markrov Mddel to
perform path search in the graph space and find the combination of
phonetic units with the highest probability. The results of the search
are the segmented and labeled phonemes for each word. Finally,
our system matches the time stamp of each phoneme segmentation
to 20KHz frequency range to extract corresponding Doppler shifts.

One example is shown in Figure 9, which illustrates six seg-
mented phoneme sounds (i.e., [lai], [k], [s], [wi :], [p], [dei]) and the
corresponding Doppler shifts at around 20kHz. We observe that
the phonemes like [lai] and [dei] display more intensive Doppler
shifts than these of the phonemes like [k] and [p]. This is because
when pronouncing [lai], larger movements from multiple artic-
ulators including lips, jaw and tongues are required. In contrast,
when pronouncing [p], only small movements from lips and jaw
are involved.

3.4 Feature Extraction
After we obtain the Doppler shifts of all the phonemes, we first
normalize them as the same length as those stored in the user profile.
Such a normalization is used to mitigate the effect of different
speech speed of the user when performing voice authentication.
Then, we resplice the normalized Doppler shifts of each phoneme
together. To eliminate the interferences due to other movements
such as nearby moving objects or body movements, we further
utilize a Butterworth filter with cut off frequencies of 19.8KHz and
20.2KHz to remove these out of band noises.

Energy band 1 Energy band 2Energy band 3 Energy band 4Energy band 5 Energy band 6
Figure 10: An example of energy sub-band and energy-based
frequency contours.

Next, we extract two types of features from the Doppler shifts:
energy-band frequency feature and frequency-band energy feature.
The first type of feature quantifies the relative movement speeds
among multiple articulations. By dividing energy level of all the
frequency shifts into several different bands, we are able to sepa-
rate different parts of articulators based on their distances to the
microphone. A higher energy of the captured Doppler shifts, a
closer movement occurred with respect to the microphone. Before
energy band partition, we first normalize the energy level of each
segmented phoneme into the same scale (i.e., from 0 to 1). Such a
normalization is used to mitigate the energy shift caused by incon-
sistency of a user when speaking an utterance to the smartphone.

We partition the energy into three levels based on the energy
distribution, resulting in 6 sub-bands as each energy level includes
both positive and negative Doppler shifts, as shown in the top graph
of the Figure 10. Specifically, Sub-band 5 and 6 with power level in
between 0.95 to 0.99 represent the strongest Doppler shift signals
captured by microphone. Those Doppler shift signals are reflected
by the articulators that are closest to the microphone, such as the
upper and lower lips. Sub-band 3 and 4 include the power level
ranging from 0.7 to 0.9. They represent the Doppler shifts caused by
the articulator motions that have further distances comparing with
that of the first category, for example, the jaw movement. And sub-
band 1 and 2 with energy level smaller than 0.7 but larger than 0.4
consist of motions dominated by articulator components with the
farthest distance to the microphone, such as the tongue movement.
Given each sub-band, we use the centroid frequency as the feature
and combine all the centroid frequencies of each phoneme together,
resulting in one frequency contour for each band.

The bottom part of Figure 10 demonstrates two energy-band
frequency contours (i.e., band 1 and 2) extracted from the sentence
"Oscar didn’t like sweep day" spoken by a live user. Those two bands
represent articulators (e.g., the tongue) with longer distance to the
microphone. From Figure 10, we observe at a STFT bin number of
80, the frequency shift is lower than surrounding area, indicating a
less movement velocity of an articulator which corresponds to the
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Figure 11: An example of frequency sub-band and
frequency-based energy contours.

pronunciation of phoneme [k]. Meanwhile, the largest frequency
shift in the band can be observed at a STFT bin number of 110, which
corresponds to the phonemes [wi:], indicating intensive motion of
an articulator captured during the pronunciation.

The second type of feature is the frequency-band energy feature,
which quantifies the relative movement positions among multiple
articulations across phonemes. As a faster movement velocity re-
sults in a larger magnitude of Doppler shift, we thus can compare
the energy levels of different articulator movements that have the
same movement velocity. In particular, we divide the frequency
shifts into 5 major sub-bands in both positive and negative direc-
tions, as shown in upper part of the Figure 11. We starts with
sub-band 3, which covers frequency shift from -50Hz to 50Hz. The
corresponding movements are more likely dominated by articula-
tors with lower movement velocity. Next, sub-band 2 and 4 include
frequency shift from 50Hz to 100Hz and -100Hz to -50Hz, respec-
tively. The last two sub-band 1 and 5 include the frequency shift
from 100Hz to 200Hz and -200Hz to -100Hz, respectively. They
cover the components with the highest movement speed. Similar
to the frequency contour, we calculate the average energy level at
each frequency sub-band, and then splice the resulted energy level
together to form an energy contour.

The lower part of Figure 11 demonstrates three frequency-band
energy contours at the band 2, 3 and 5. We observe that the fre-
quency band 3 contour has higher energy level comparing with
the other two bands. It is because while speaking an utterance,
the lower facial region of a user also move slightly. Although with
very slow speed, the large size of the lower facial region leads to
much more or stronger signal reflections, resulting in much higher
energy than that of each individual articulator. The frequency band
5 contour demonstrates the lowest energy level among three bands
and implies the motion is more likely to be caused by the articulator
further from the microphone, such as the tongue. And in fact, the
tongue is the most flexible part of the articulator and the tongue’s
motion could be reliably recorded with an open mouth during the
pronunciation process.

Original Feature

Low Pass

High Pass

L[1]

H[1]

L[3]

H[3]

Apply ThresholdingDecompose

Reconstruct

Feature after denoising

Figure 12: An example of wavelet-based denoising.

3.5 Wavelet-based Denoising
The purpose of wavelet based denoising is to further remove the
noisy component mixed in the extracted features. Those compo-
nents could be caused by hardware imperfection or surrounding
environment interferences and noises. Our system thus utilizes
wavelet denoising technique that is based on Discrete Wavelet
Transform (DWT) to further analyze the signal in both time and
frequency domain [39]. It decomposes input signal into two com-
ponents: approximation coefficients and detailed coefficients. The
approximation coefficients depict the trend of input signal, repre-
senting large scale features. Meanwhile, the detailed coefficients
retain the small scale characteristics, which mixed with both fine
details of the signal and noisy components. Our goal is to extract
the fine details while removing the mixed noises. To achieve this,
we apply a dynamic threshold to the detailed coefficients to remove
the noise components.

Figure 12 shows the process of wavelet-based denoising com-
ponent. Our system first decomposes the each extracted contour
into approximation and detailed coefficients by going through low
pass and high pass filters. We run this step recursively for 3 levels.
After obtaining multiple levels of detailed coefficients, a dynamic
threshold is applied to each level of detail coefficients to filter out
the mixed noises (i.e., the readings with small values). Then, we
combine the original approximation coefficients with the filtered de-
tail coefficients. After that, we use the inverse DWT to reconstruct
the denoised contour. The reconstructed features could facilitate
accurate liveness detection, especially for those Doppler shifts with
similar articulatory gestures.

3.6 Similarity Comparison
To compare the similarity of each extracted contour feature with
the corresponding one in the user profile, we use the correlation
coefficient technique, which measures the degree of linear relation-
ship between two input sequences [53]. The resulted correlation
coefficient ranges from −1 to +1, where the value closer to +1 indi-
cates a higher level of similarity and a value closer to 0 implies a
lack of similarity.

In particular, given a series of n values in each energy-band fre-
quency or frequency-band energy contourA and the corresponding
pre-built user profile B, written as Ai and Bi , where i = 1, 2, ...,n.
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Phone placed in front of mouthPhone placed by ear

Figure 13: Two different phone placements diagram.

The Pearson correlation coefficient can be calcualted as:

rAB =

∑n
i=1(Ai − Ā)(Bi − B̄)

(n − 1)δAδB
, (2)

where Ā and B̄ are the sample means of A and B, δA and δB are the
sample standard deviations of A and B.

To detect a live user, we use energy-based frequency contours
(i.e., energy-based feature), frequency-band energy contours (i.e.,
frequency-based feature), and combined feature of these two (com-
bined feature), respectively. Given the correlation coefficients of all
contours, we simply compare the averaged coefficient to a prede-
fined threshold for live user detection. Although a more sophisti-
cated classification method, for example a machine learning based
classification, could be used, our primary evaluation in this work is
the validation of the system methodology.

4 PERFORMANCE EVALUATION
In this section, we present the the experimental performance of
our liveness detection system under both replay and mimic attacks.
The project has obtained IRB approval.

4.1 Experiment Methodology
Phones andPlacements.We employ three types of phones includ-
ing Galaxy S5, Galaxy Note3, and Galaxy Note5 for our evaluation.
These phones differ in terms of sizes and audio chipsets. Specifi-
cally, the lengths of S5, Note3 and Note5 are 14.1cm, 15.1cm and
15.5cm respectively, whereas the chipsets areWolfsonWM1840, 800
MSM8974 and Audience’s ADNC ES704, respectively. All the audio
chips and the speaker/microphones of these phones can record and
playback 20kHz frequency sound. The operating systems of those
phones are the Android 6.0 Marshmallow that released in 2015,
which supports audio recording and play back at 192kHz sampling
frequency. We thus evaluate our system with the sampling frequen-
cies including 48kHz, 96kHz and 192kHz. We present the results
for 192kHz sampling frequency in the evaluation unless otherwise
stated. Additionally, we consider two types of phone placements as
shown in Figure 13 that people usually used to talk on the phone:
have the phone held either to user’s ear or in front of the mouth.

Data Collection. Our experiments involves 21 participants in-
cluding 11 males and 10 females. The participants are recruited
by emails including both graduate students and undergraduate
students. These participants include both native and non-native
English speakers with ages from 21 to 35. We explicitly tell the
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participants that the purpose of the experiments is to perform voice
authentication and liveness detection. Each participant chooses
his/her own 10 different passphrases. For each passphrase, they
repeat three times to enroll in the authentication system and use
the averaged features to establish the profile of user. To perform
legitimate authentication, each participant tries 10 times for each
passphrase, which totals 2100 positive cases. The lengths of those
passphrases range from 2 to 10 words with one third are 2 to 4
words, one third are 5 to 7 words, and the rest are 8 to 10 words. In
addition, to evaluate the individual diversity among users, we ask
12 out of the 21 participants to pronounce the same passphrase. Our
experiments are conducted in classrooms, apartments, and offices
with background and ambient noises such as HVAC noises and
people chatting.

Attacks. We evaluate our system under two types of replay
attack: playback attacks and mimicry attacks. Both forms of attacks
are considered in our evaluation sections unless claimed otherwise.
The playback attacks are conducted with loudspeakers including
the standalone speakers, the built-in speakers of mobile devices,
and the earbuds. In particular, a DELL AC411 loudspeaker, the
build-in speaker of Note5 and a pair of Samsung earbud are used to
playback the participants’ voice samples in front of the smartphone
that performing voice authentication. Specifically, each form of
these speakers replays voice samples from 10 participants, and the
build-in speaker/earbud and the loudspeaker contributes 3 and 4
trials for each of the 10 passphrases respectively, amounting to
1000 replay attacks. All replay attacks are captured by an identical
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Figure 16: Replay Attacks: Accuracy and EER.

phone with the same holding position that the participants used
for authentication.

For mimicry attacks, we first record the articulatory gesture of
the participants when they speaking the passphrase by using a digi-
tal video recorder. The video recording only covers the lower facial
region for privacy concerns. Such a lower facial region including
the articulator movement of upper and lower lips, tongue and jaw.
Then other participants are invited to watch the video carefully and
repeatedly practice the pronunciation by mimicking the articula-
tory gesture in the video. In particular, they are instructed to mimic
the speed of talking, the intensity and range of each articulator
movement, the speech tempo and etc. After they claim that they
have learned how the person in the video speaks and moves the
articulators, they start to conduct the mimicry attacks in front of
the smartphone that used for voice authentication. We recruit 4 at-
tackers and each mimics 6 participants. For each victim/participant,
5 trials for each of 5 passphrases are mimicked. There are in total
600 mimicry attack attempts.

Metrics. We evaluate our system with the following metrics.
False Accept Rate (FAR) is the likelihood that the system incorrectly
declares a replay attack as a live user. True Accept Rate (TAR) is the
probability that the system detects a live user correctly. Receiver
Operating Characteristic (ROC) curve describes the relationship
between the TAR and the FARwhen varying the detection threshold.
False Reject Rate (FRR) is the probability that the system mistakenly
classifies a live user as a replay attack. Equal Error Rate records the
rate when FAR equals to FRR. Accuracy presents the possibility that
the system accepts live users and rejects attacks. It is the proportion
of the true positive and true negative cases in all the evaluated cases.
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Figure 17: Mimicry Attacks: Accuracy and EER.

4.2 Overall Performance
We first present the overall performance of our system in detecting
live users under both playback and mimicry attacks. Figure 14 de-
picts the ROC curves of our system under both types of attacks. We
observe that with 1% FAR, the detection rate is as high as 98% when
using the combined features. Such an observation suggests that our
system is highly effective in detecting live users under both replay
and mimic attacks. Moreover, we find that the energy-based fea-
ture results in better performance than that of the frequency-based
feature. For example, with 1% FAR, the frequency-based feature pro-
vide the detection rate at around 90%. Furthermore, we observe that
the participants who have smaller scale of articulatory movements
generate higher false accept rate. Additionally, Figure 15 shows the
overall accuracy under both attacks. Similarity, we observe that
combined feature has the best performance, with an accuracy at
about 99.34%, whereas the energy-based feature alone achieves
an accuracy of 96.22%. The time to perform an authentication is
about 0.5 seconds on a laptop server. The above results demonstrate
the effectiveness of our system in detecting live users. Also, the
energy-based feature and frequency-based feature can complement
each other to improve the detection performance.

Playback Attack.We next detail the performance under play-
back attacks. Figure 16 shows the performance in terms of accuracy
and EER under replay attacks. We observe that the combined fea-
ture results in the best performance. It has an accuracy of 99.3%
and an EER of 1.26%. In particular, with only one type of feature,
we can achieve an accuracy of 97.41% and an EER of 2.83%. These
results show that the two types of feature can complement with
each other and the combined feature is very effective in detecting
live user under playback attacks.
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Mimicry Attack. Next, we study the detailed performance un-
der mimicry attacks. Figure 17 shows both the the accuracy and EER
of our system. Again, the combined feature achieves the best accu-
racy at about 99.3% and an EER of 1.21%. Unlike the playback attack
scenario, the frequency-based feature has better performance than
that of the energy-based feature. In particular, the frequency-based
feature has an accuracy of 95.9% and an EER of 4.67%. The above
results suggest that the extracted features from the Doppler shifts
of a sequence of phoneme sounds could capture the differences of
the articulatory gesture between an attacker and a live user under
mimicry attacks. Thus, our system is effective in detecting live users
under mimicry attacks.

4.3 Impact of Phone’s Placement
Different users may have different habits to talk on the phone in
terms of how to hold the phone while speaking. We thus compare
the performance under two placements of the phone (i.e., hold the
phone to ear and hold the phone in front of the mouth) that people
usually feel comfortable to use. Figure 18 presents the performance
comparison of the accuracy, whereas Figure 19 shows the compari-
son of the EER. In high level, the results show that our system is
highly effective under both placements. In particular, when placing
the phone to the ear, we have the best accuracy as 98.61%, while
the best accuracy for placing the phone in front of the mouth is
slightly higher. This is due to the fact that placing the phone in
front of the mouth can capture the movement of the tongue better
as the microphone is directly facing the mouth. Similarly, placing
the phone to the ear has slightly worse EER, i.e., at 2.24%, whereas
it is about 1.2% for the other placement. Nevertheless, our system
works well under both placements and could accommodate differ-
ent users who have different habits to hold the phone while talking.
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This property of our system indicates our system doesn’t require
the user to hold the phone at a specific position or move the phone
in a predefined manner as opposed to the prior smartphone based
solutions.

4.4 Impact of Sampling Frequency
We next show that how well our system can work with some low-
end phones that can only playback and record at 48kHz or 96kHz
sampling frequency. Figure 20 depicts the accuracy of our system
under 48kHz, 96kHz and 192kHz sampling frequencies. We notice
that a higher sampling frequency results in a better performance.
This is because a higher sampling frequency could capture more
details of the articulatory gestures and has a better frequency reso-
lution. In particular, the combined feature achieves an accuracy of
98.72% for 96kHz sampling frequency, and 98.69% for 48kHz sam-
pling frequency. Moreover, Figure 21 shows the EER under those
three sampling frequencies. We find the 96kHz sampling frequency
has an EER of 1.63%, whereas it is 2.01% for 48kHz sampling fre-
quency. These results indicate that our system still works very well
at a lower sampling frequency. Thus, our system is compatible to
these older version smartphones.

4.5 Impact of Different Phones
Our system also supports the users to use different types of phones
for enrollment and online authentication. Specifically, we experi-
ment with three different phones including S5, Note3 and Note5.
In the experiments, the participants use one of these three phones
to enroll in the system but use the other two phones for online
voice authentication. The performance of our system is in Figure 22.
Results show that our system works well under such scenarios. In
particular, the combined feature provides an accuracy of 96.58%,
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Figure 23: Accuracy under different degree of phone dis-
placement.

96.93% and 96.98% when using S5, Note3, and Note5 as the enroll-
ment phone, respectively. Results also indicate that the performance
is comparably well no mater which phone is used for enrollment.
Although the accuracy is slightly worse than that of using the same
phone for enrollment and authentication, our system is still able to
accommodate different types of phones.

4.6 Robustness to Phone Displacement
In this study, we investigate the performance of our system when
experiencing phone displacement between the enrollment phase
and online authentication phase. The phone displacement could
happen, for example when a user place the phone slightly different
from that of the enrolled position or due to hand shakes when a
user is talking while walking. Specifically, we exam three degrees of
phone displacements, i.e., 1cm, 2cm and 3cm away from the original
spot of enrollment in four possible directions, which are Forward
from the mouth, Left to the mouth, and Down or Up against the
mouth. Figure 23 and Figure 24 depict the accuracy and EER of these
scenarios respectively. Generally, a high degree of displacement will
decrease the accuracy and increase the EER of our system. Indeed,
the average accuracy when displace the phone at 1cm is 99.25%
on average, and it is 96.91% and 94.05% on average for 2cm and
3cm displacement, respectively. As for the EER, they are are 1.89%,
5.99% and 7.38% for 1cm, 2cm, and 3cm displacements, respectively.

Furthermore, we notice that the performance is more sensitive
to Down and Up displacements. This is due to the fact that the
Up and Down displacements is more likely to change the relative
positions of multiple articulators to the microphone, thus resulting
in the worst performance. Such an observation is consistent with
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Figure 24: EER under different degree of phone displace-
ment.
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the methodology of our liveness detection system, which relies on
the multidimensional movements of multiple articulators for live
user detection. However, the displacement in practice is small (e.g.,
within 1cm) as the size of a user’s mouth is small and a user usually
intends to put the microphone close to the mouth. Additionally,
within the 1-2 seconds time duration of speaking passphrases, we
expect small movements of phone to user’s mouth, which only have
limited effect. Nevertheless, our method provides around 97% accu-
racy with 2cm phone displacements in all directions. The results in
general show that our system is robust to the phone displacement
and could tolerate a relative large phone displacement.

4.7 Impact of Passphrase Length
Next, we show how the length of each passphrase affects the per-
formance of our system. Security professionals usually suggest to
choose a passphrase with more than 5 words so as to provide a
desired security [6]. In the light of this, we classify the passphrases
into three categories according to their lengths: 2 to 4 words, 5 to 7
words, and 8 to 10 words. Figure 25 displays the accuracy of our
system with different lengths of passphrases. We could observe
that when increasing the length of the passphrase, the accuracy
slightly improved from 99.25% to 99.41%. This is expected as a
longer passphrase results in more articulatory gestures for dif-
ferentiating a live user from an attacker. Moreover, we observe
the improvement is not obvious, since we extract 11-dimensional
features from each phoneme, which suggests that 2 to 4 words
passphrases containing around 10 to 20 phonemes could provide
sufficient information for live user detection.
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5 DISCUSSION
Unconventional Loudspeaker. In our work, we have tested con-
ventional loudspeakers including the standalone speakers, the built-
in speakers of mobile devices, and the earbuds. Nevertheless, there
exists unconventional loudspeakers that do not relies on the di-
aphragm movement for sound production. For example, Piezoelec-
tric Audio Speakers have a totally different working principle com-
paring with electro dynamic speakers as there is no voice coils or
diaphragms. Each piezoelectric speaker relies on a ceramic disc that
interacts when it feels a certain voltage difference. An increase of
the signal amplitude Vpp (Voltage peak to peak) results in a larger
piezo deformation and leads to a larger sound output. Still, such
a mechanism is fundamentally different from that of the human
speech production system. It is expected that the proposed liveness
detection system works with such unconventional loudspeakers.
Another example of unconventional loudspeaker is the Electrostatic
Loudspeaker (ESL), which still relies on the diaphragm movements
for sound production. It is however, driven by two metal grids or
startors instead of voice coil. As our liveness detection system relies
on the movements of articulators for live user detection. Playing
back with such a loudspeaker can still be detected as a replay attack.

Individual Diversity. In our evaluation, we have tested our
system when an attacker mimics the articulatory gesture of a gen-
uine user by observing how the user pronouncing the passphrase.
We now show how the performance looks like when an attacker
has no prior-knowledge on how the legitimate user speaks. That is,
the attacker use his own way of pronouncing the passphrase. This
case is equipotent to compare the Doppler shifts of the articulatory
gesture between two people who speak the same passphrase with
their own habitual ways. Figure 26 shows the accuracy comparison.
We observe that we could be able to achieve much higher accuracy
at close to 100%. The result demonstrates that it is relative easier to
capture the individual diversity than that of a mimicry attack.

Limitations. Our system is evaluated with a limited number
of young and educated subjects. It will be useful to evaluate the
system with a larger number of participants with a more diverse
background to better understand the performance. Moreover, the
system is evaluated only for several months. A long-term study
could be conducted to consider the case that the individual charac-
teristics is likely to change over lifetime, such as changed mouth
cavities or a user grows a beard. Nevertheless, we believe updating
user profile periodically could potentially mitigate such a limitation.
At last, the system does require the users to hold the phones close to
their mouths to reliably capture the articulatory gesture. This limits
the applicable scenarios of the system. For instance, the system is
less applicable to the cases where the phone is not held in the user’s
hand but instead is placed somewhere in close proximity.

6 RELATEDWORK
Although the number of mobile applications that use voice biomet-
ric for authentication is rapidly growing, recent studies show that
voice biometrics is vulnerable to spoofing attacks [14, 21, 24, 44, 49].
Such attacks can be further divided into following four categories.

Replay Attack. Numerous work has pointed out existing verifi-
cation systems can not efficiently defend against replay attacks [18,
20, 46]. A recent study [24] shows the EER of voice authentication
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Figure 26: Individual diversity v.s. Mimicry attacks.

systems can increase from 1.76% to 30.71% under replay attacks.
Acoustic feature based methods for attack detection have wide
applicability, but they all have very limited effectiveness [14, 21,
45, 49, 52]. Current commercial voice authentication system like
VoiceVault andNuance, mostly rely on the challenge-response based
methods to detect replay attacks. Such methods however require ex-
plicit user cooperation in addition to standard voice authentication
process, which could be cumbersome. Recent proposed smartphone
based solutions however require the user to hold or move the phone
in some predefined manners. In particular, Chen et al. [17] propose
a smartphone based voice authentication system by measuring
the magnetic fields emitted from loudspeakers and thus differen-
tiating them from the live users. It however requires the users to
rotate the smartphone around their heads while speaking the given
passphrase. VoiceLive [55] measures the time-difference-of-arrival
(TDoA) changes to the two microphones of the smartphone to pin-
point the sound origins within a live user’s vocal track for liveness
detection. While effective, it does require the phones to be held in
front of the users’ mouths and thus force the majority of the users
(who hold the phone by their ears) to change their habitual ways of
speaking on phones. In contrast, our system is transparent to users
and covers more user cases as it works when holding the phones
either to the user’s ears or in front of their mouths. Moreover, our
system is less susceptible to environmental noises as it senses artic-
ulatory gestures by actively emitting high frequency sound waves
(which could be easily separated from noises) as oppose to passively
listen to the voices that mixed with background noises in VoiceLive.

Speech Synthesize Attack. This type of attacks assume the
attacker is capable of synthesizing the target’s voice by using speech
synthesize techniques. De Leon et al. [18] proposed a relative phase
shift feature for GMM-UBM or SVM based speaker verification
system. Experiments show this feature can lower the FAR to 2.5%.
Also, Wu et al. [51] evaluated state-of-the-art systems on defending
speech synthesis attacks. Results show an overall average EER of
less than 1.5% is achieved. Recent work done by Leow et al. [33]
utilized concatenation artifacts on the spectrogram to detect US-
based synthesized speech attacks, it obtains an EER of 15.2% for
16000Hz utterances. Furthermore, Adobe’s recent work VoCo [8]
allows the users to edit texts and synthesize corresponding speeches
of a given speaker with only 20 minutes of the voice samples of
him/her. Though hasn’t been evaluated as replay attacks, VoCo
might introduce severe potential threats to voice authentication
systems as well.
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Voice Conversion Attack. The attacker has the ability to imi-
tate victim’s voice through voice conversion or manipulation pro-
cess using existing user voice samples. Conducting voice conversion
requires expertise or specialized equipment, however involves no
human efforts. Earlier study by Kinnunen et al. [23] indicated text-
independent speaker verification systems are vulnerable against
voice conversion attacks using telephone speech. Besides, Kons
et al. [28] evaluate several common speaker verification systems,
including the I-vector, GMM-NAP, and HMM-NAP based systems,
under voice conversion attacks. Results show that they overall gain
4-fold increases in EER, and FAR of HMM-NAP system increase
from 1% to 36%. Recently, Wu et al. [50] developed an authenti-
cation system with PLDA component that defends against voice
conversion attacks with 1.71% FAR, whereas Alegre et al. utilize
PLDA and FA technologies and achieve the FAR rate of 1.6% [13].
Further, Sizov et al. [42] propose an i-vectors and PLDA based gen-
eral countermeasure to unknown types of voice conversion attacks,
it’s claimed that this method could bring EER to as low as 0.54%.

Impersonation Attack. Different from other types of attack, it
indicates an adversary would launch an attack without using any
professional devices by only relying on impersonating the target’s
voice. Comparing with other types of attacks, impersonation at-
tacks are less accessible and less risky to authentication systems.
Indeed, Wu et al. [48] suggest the impersonators may capable of
mimicking the F0 pattern and speaking rates of the victims, but
it’s barely possible for them to fake the spectral characteristics like
formants. Therefore impersonation attacks may fool human listens
but not authentication systems. Recent work shows by utilizing
state-of-the-art speaker model like i-vector models [20] and GMM-
UBM [16], the impersonation attack can be effectively mitigated.
Furthermore, even with professional mimicry artists or linguists,
those common speaker authentication systems maintain consider-
able effectiveness [19, 37].

7 CONCLUSIONS
In this paper, we developed a voice liveness detection system that
requires only a speaker and a microphone that are commonly avail-
able on smartphones. Our system, VoiceGesture, is practical as
no cumbersome operations are required besides the conversional
voice authentication process. Once it is integrated with voice au-
thentication system, the liveness detection is transparent to the
users. VoiceGesture performs liveness detection by extracting fea-
tures in the Doppler shifts that caused by the articulatory gesture
when a user speaks a passphrase. Extensive experimental evalua-
tion demonstrates the effectiveness of our system under various
conditions, such as with different phone types, placements and sam-
pling rates. Overall, VoiceGesture can achieve over 99% accuracy,
with the EER at around 1%.
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