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ABSTRACT
We design and implement a Distributed Oblivious Random Access
Memory (DORAM) data structure that is optimized for use in two-
party secure computation protocols. We improve upon the access
time of previous constructions by a factor of up to ten, their memory
overhead by a factor of one hundred or more, and their initialization
time by a factor of thousands. We are able to instantiate ORAMs
that hold 234 bytes, and perform operations on them in seconds,
which was not previously feasible with any implemented scheme.

Unlike prior ORAM constructions based on hierarchical hash-
ing [19], permutation [19], or trees [39], our Distributed ORAM is
derived from the new Function Secret Sharing scheme introduced
by Boyle, Gilboa and Ishai [11, 12]. This significantly reduces the
amount of secure computation required to implement an ORAM
access, albeit at the cost of O (n) efficient local memory operations.

We implement our construction and find that, despite its poor
O (n) asymptotic complexity, it still outperforms the fastest previ-
ously known constructions, Circuit ORAM [42] and Square-root
ORAM [55], for datasets that are 32 KiB or larger, and outperforms
prior work on applications such as stable matching [16] or binary
search [23] by factors of two to ten.

1 INTRODUCTION
In spite of the substantial improvements to the efficiency of two-
party secure computation protocols, they still encounter major
obstacles when evaluating many types of functions. In particular,
functions that make data-dependent accesses to memory remain
difficult cases. A data-dependent memory access is an access to
an element within an array, at an index i that is computed from
some secret input. A secure computation protocol must guarantee
that no information about its inputs is leaked to either party, even
via intermediate computations, and thus it must be able to execute
such memory accesses without leaking any bits of i .

Data-dependent memory accesses are common even in text-
book algorithms; they are required by, for example, binary search,
most graph algorithms, sparse matrix methods, greedy algorithms,
and dynamic programming algorithms. More generally, they are
required by any program that is written in the RAM model of com-
putation. Any attempt to evaluate such an algorithm in a secure
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context upon a large dataset certainly requires an efficient data-
dependent memory access mechanism.

The simplest solution to this problem is the linear scan technique,
which hides the index of an accessed element by touching every ele-
ment in the memory and using multiplexers to ensure that only the
desired element is actually read or written. This effectively ensures
data-obliviousness, but it requires an expensive secure computa-
tion involving O (n) gates for each individual memory access. With
accesses incurring overhead linear in the size of the entire memory,
scanning is impractical for all but the smallest amounts of data.

Another solution is Oblivious Random Access Memory (ORAM).
Intuitively, ORAM is a technique to transform a memory access
to a secret index i into a sequence of memory accesses that can
be revealed to an adversary, the indices of which appear indepen-
dent of i . ORAM was first proposed by Goldreich and Ostrovsky
in their seminal paper [19], which studied the general context of
client-server memory outsourcing. In this setting, a client wishes
to perform a computation on a database of size n, which is held
by some untrusted server, but does not want the server to learn
the semantic pattern of accesses to the database. Goldreich and
Ostrovsky proposed two schemes to solve this problem, the second
of which requires that the client perform O (polylogn) accesses to
the database for every access in the client’s original program. In
the subsequent two decades, ORAM techniques have been widely
studied [7, 13, 14, 18, 20–22, 29, 33–35, 38, 40, 45–47] with the goals
of reducing the communication overhead between the client and
server, reducing the amount of memory required of the client, and
reducing the server’s overall memory overhead. State of the art
approaches to ORAM design limit the overhead in all of these mea-
sures to O (logc n) where c ≤ 3.

ORAM can be applied to the domain of secure computation by
implementing ORAM client operations as secure functions, while
the mutually-untrusting computation parties share the role of the
ORAM server. This arrangement was proposed by Ostrovsky and
Shoup [34], who used it to show that secure computations need
not take time linear in the size of their input. It was later taken
up by Gordon et al. [23]. Subsequently, the development of secure-
computation-specific ORAMs began.

Wang et al. [43] observed that memory and communication over-
head, themetrics for which ORAMhad traditionally been optimized,
were inappropriate for the context of secure computation. They
proposed that circuit complexity is a more relevant measure, and de-
scribed a heuristic ORAM based on this idea. Subsequently, Wang et
al. [42] proposed Circuit ORAM, which offers asymptotically strong
parameters for a data-structure with small circuit complexity.

Zahur et al. [55] observed that by relaxing asymptotic bounds,
it is possible to produce a scheme that has a smaller concrete cir-
cuit size. They described a modification of the original Goldreich-
Ostrovsky Square-root ORAM that is asymptotically inferior to
Circuit ORAM, but outperforms it for data sizes up to 4 MiB.
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Although they represent a dramatic improvement over initial
efforts, the ORAM constructions of Gordon et al., Zahur et al., and
Wang et al. suffer drawbacks. For instance, they are all recursively
structured. That is, accessing the top level ORAM data structure
for n elements requires recursively accessing another ORAM data
structure of size n/8 elements, and so on, each layer adding a com-
munication round. As a result, each semantic access requires ac-
cessing O (logn) different ORAM layers, incurring O (logn) rounds
of communication and latency.

These constructions also have high concrete memory overhead,
due in part to their recursive nature and to the fact that they store
wire labels for each bit of their memory, each wire label being at
least 80 times larger than the data it represents. All prior research
efforts of which we are aware report on concrete experiments that
involve at most 220 elements. In our own experiments, we confirm
that the constructions they describe cannot handle more elements
in a reasonable amount of time and space.1

The last, and possibly most significant problem is initialization.
In many cases, an ORAMmust be filled with some initial data before
it can be used. Circuit ORAM requires an individual write into each
element, a process that is extremely expensive: we observed it to
require more than 3000 seconds for a moderately-sized memory of
215 elements.2 Zahur et al.’s Square-root ORAM is asymptotically
similar, but uses a permutation network [41] instead of individual
writes to achieve a constant-factor improvement of roughly 100.
Nevertheless, even for moderately-sized memories, initialization is
a significant cost.

These bottlenecks limit the use of secure computation proto-
cols mostly to data-independent algorithms (e.g. AES [36], edit
distance [44], or linear regression [32]) or RAM programs that ex-
ploit specific algorithmic properties to restrict their access patterns
(e.g. BFS [6], Dijkstra’s algorithm [27], or stable matching [16]).

1.1 Contributions
We propose a new data structure that addresses the drawbacks
discussed previously, and we demonstrate the first concrete secure
computation memory implementation that is capable of hosting
data at the scale of many gigabytes. Our scheme has faster access
times than all prior constructions for memories that are larger
than 32 KiB, and, as it does not have any recursive components,
each access requires only three rounds in principle. Unlike prior
ORAMs, our data structure supports read and write operations in-
dependently, and can perform read operations substantially faster.
Instead of storing wire labels, we store either XOR-shares or en-
cryptions of the data, and thereby reduce the memory overhead to
a small constant. Additionally, we have a linear-time method to fill
our structure with initial data that requires no secure computation.
As a result, an instance with 220 4-byte elements can be initialized
in 400 milliseconds, roughly 1000 times faster than the best prior
initialization technique from Zahur et al.’s Square-root ORAM [55].
We show that our advantages hold not only in microbenchmarks,
1Wang et al. [42] report on an instance of Circuit ORAM storing 230 4-byte elements
using an older implementation of Circuit ORAM that stores its data as XOR-shares
instead of wire labels, but they do not report concrete performance figures for that
size. In this paper we evaluate the faster implementation reported by Zahur et al. [55];
with this implementation, an instance of Circuit ORAM larger than 64 MiB exhausts
the 122 GiB of memory in each of our two test machines.
2See Figure 8d

but also in previously-published application contexts such as binary
search and stable matching.

In contrast to most prior secure computation ORAM research, we
consider the Distributed ORAM model [31], and derive our scheme
from two-server Private Information Retrieval (PIR) techniques. In
PIR, a client wishes to retrieve an element Ai at index i in database
A, copies of which are held by two servers. The client issues a query
q1 (i ) to server 1 and query q2 (i ) to server 2, and the servers respond
with short messagesm1 andm2 respectively, which the client can
use to reconstruct Ai . PIR schemes must satisfy two properties: the
total communication between client and servers must be sub-linear
in n, and the query qp (i ) in isolation must reveal no information
about i .

Gilboa and Ishai [17] and Boyle, Gilboa, and Ishai [11] recently
presented a surprisingly efficient PIR construction that is based on
the notion of a function secret sharing (FSS) scheme for a distributed
point function (DPF). Their construction offers properties new to
PIR which make it well-suited for use in an ORAM for secure
computation. In particular, it produces a query message of size
O (logn), as opposed to the size of O (n

1/3) required by many PIR
schemes [50], and it requires only a cryptographic pseudo-random
generator, whereas other PIR schemes with logarithmic query size
require public key cryptography. We discuss the specifics of this
primitive in Section 2. In our construction, the parties to the secure
computation, Alice and Bob, also act as the two servers in the PIR
scheme, and secure computation performs the role of the client.
Owing to the efficiency of FSS, our ORAM requires a very small
secure computation in comparison to prior ORAM designs (up to
one hundred times smaller for the memory sizes that we explore).

The second novel property offered by Boyle et al.’s PIR scheme is
support for “PIR-writing”, which we use to implement ORAM write
operations, in combination with a standard stash data structure that
retains updated elements until they can be reintegrated into the
ORAM’s main memory. The secure computation needed to imple-
ment the stash has an amortized computation and communication
complexity of O (

√
n) per access; however, as demonstrated by Za-

hur et al. [55], even schemes with a complexity of O (
√
n log 3n)

can outperform poly-logarithmic schemes in practice. Our stash
reintegration procedure is related to our initialization procedure,
and similarly requires linear time with no secure computation.

The theoretical disadvantage of our PIR-derived ORAM stems
from the fact that the servers in a PIR scheme (i.e., Alice and Bob, in
our case) must performO (n) local computation. This is an unavoid-
able property of any PIR system. However, unlike the O (n) secure
computation required by a traditional linear scan, this computation
is simple, highly parallelizable, and enjoys widespread hardware-
acceleration support. In practice, secure computation protocols are
typically bottlenecked by network or single-core CPU performance
and utilize a very small portion of the total computational power
and memory bandwidth available with modern hardware; thus,
the approach of replacing secure computation with asymptotically-
worse local computation can yield significant performance improve-
ments. Despite the poor theoretical complexity of our scheme, we
show via a concrete implementation that it outperforms all prior
ORAMs, even for large datasets.
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Due to the heavy influence of the FSS scheme and the fact that the
computation parties make local linear scans of the memory for each
operation, we call our ORAM construction Function-secret-sharing
Linear ORAM, or Floram.

As with most prior ORAM research, our implementation is in
the honest-but-curious adversarial setting. We conjecture that our
scheme can be hardenedmore easily than others due to its simplicity,
but we leave that question for future work.

Organization. The remainder of the paper is organized as follows:
In Section 2, we review definitions of techniques we use, including
ORAM and the recently developed technique of Function Secret
Sharing. In Section 3 we construct simple single-function ORAMs
based upon FSS, and analyze their properties, and in Section 4 we
combine and extend these constructions to yield a fully functional
ORAM. In Section 5 we present a technique for outsourcing the
FSS computation that yields a significant practical speed increase
over a naïve implementation. Finally, in Section 6, we describe an
implementation of our scheme and evaluate its performance. In the
full version of this document [25] we give formal definitions and
security proofs.

2 BACKGROUND
Secure Multi-party Computation. The field of Secure Multi-Party

Computation (MPC) studies mechanisms by which a group of indi-
viduals, each individual i having some secret input xi , can evaluate
a function y = f (x1,x2, . . .) jointly, in such a way that no party i
learns anything other than what is revealed by the output y and
their private input xi . Specifically, party i must neither learn any
x j for all j , i , nor any intermediate value derived from x j during
the evaluation of f . A special case of MPC is Two-Party Computa-
tion (2PC), in which only two parties, Alice and Bob, participate.
Though many variations of MPC have been developed in its thirty-
plus year history, and it is likely possible to adapt our work to suit
a significant subset of them, this paper focuses on Yao’s Garbled
Circuits [51, 52].

Yao’s Garbled Circuits conforms to the honest-but-curious or
semi-honest security model, in which Alice and Bob are trusted to
follow the protocol instructions, but are curious adversaries who
may attempt to learn each others’ secrets by analyzing protocol
transcripts. Outside observers may also analyze protocol transcripts,
but must learn nothing in so doing. Selective security for Yao’s
Garbled Circuits in this model has been proven by Lindell and
Pinkas [30], and adaptive security by Jafargholi and Wichs [26].
We provide a standard security definition in the full version of this
document [25].

Oblivious RAM. ORAM [19] is a data structure that provides the
familiar semantics of random access memory, but translates the
logical access instructions it receives into sequences of physical
accesses in such a way that no adversary can recover the logical
accesses by observing the physical access patterns. An ORAMmust
support the functions Read(i ) and Write(i,v ), which perform se-
mantic reads and writes to locations specified by a private index i .
An ORAMmay also support functions Apply( f , i,v ), which applies
some function privately to a single location, and Init(V ), which fills
the ORAM with data from the array V .

As traditionally defined, an ORAM must satisfy the security
property that, for any two sequences of logical accesses of the
same length, transcripts of the physical accesses produced must
be indistinguishable. We concern ourselves with a variant, Dis-
tributed Oblivious RAM (DORAM) [31], which considers the context
wherein the underlying memory is split among multiple parties,
and which satisfies a slightly weaker security property: for any
two sequences of logical accesses of the same length, transcripts
of the physical accesses performed by any single party must be
indistinguishable. Intuitively, no party may learn anything about
the semantic memory by observing their own share of the physical
memory. We provide formal definitions for DORAM in the full
version of this document [25].

ORAMs are traditionally considered to have some manner of
secure CPU that transforms semantic memory accesses into physi-
cal ones. In the setting of MPC, the CPU is typically implemented
as a multiparty protocol. Thus, in some sense, all ORAMs become
DORAMs when applied to MPC: the constructions as wholes can
be only as secure as the MPC protocols that implement their CPUs,
and no protocol can be secure when all participants are corrupt.
For simplicity, we refer to our scheme as an ORAM, except where
the distinction is important.

Function Secret Sharing. Secret Sharing [37] allows a dealer to
divide a secret value intom shares, one for each ofm parties, such
that none of the parties can individually gain any insight into the
secret value, yet allm shares, as a group, contain enough informa-
tion to reconstruct it. Recently, Gilboa and Ishai [17] observed that
it is possible to secret-share a point function using shares with sizes
sublinear in the size of the function’s domain; they call this concept
a Distributed Point Function (DPF). Boyle et al. [11, 12] subsequently
improved upon this work and described how to construct a two-
server PIR scheme using a DPF. We begin by formally defining a
Function Secret Sharing Scheme for two parties.

Definition 2.1 (Point Function). A point function is a function
fα,β : [1,n]→ G such that

fα,β (x ) =



β if x = α

0 otherwise

Definition 2.2 (Function Secret Sharing Scheme for Point Func-
tions [11, 17]). A two-party function secret sharing scheme is a
pair of Probabilistic Polynomial Time algorithms (Gen, Eval) of the
following form

(1) Gen(1λ , (α , β )) is a key generation algorithm, which on in-
put 1λ (a security parameter), and a description of a point
function function fα,β , outputs a tuple of keys (kFSS

a ,k
FSS
b ).

(2) Eval(kFSS
p ,x ) is an evaluation algorithm, which on input kFSS

p
(party key share for party p ∈ {a,b}), and evaluation point
x ∈ [1,n], outputs a group element yxp ∈ G and a bit txp ∈
{0, 1} such that yxp = fp (x ) (party p’s share of f (x )) and txp
is a share of 0 if f (x ) = 0, or a share of 1 otherwise.

Definition 2.3 (Security for an FSS Scheme for Point Functions). A
two-party FSS for point functions is secure if
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(1) (Correctness) For all point functions fα,β , and for every
x ∈ [1,n] in the domain of fα,β

(kFSS
a ,k

FSS
b ) ← Gen(1λ , (α , β )) =⇒

Pr
[
Eval(kFSS

a ,x ) − Eval(k
FSS
b ,x ) = f (x )

]
= 1

(2) (Privacy) For every corrupted party p (either a or b), and ev-
ery sequence of point function descriptions f1, f2, . . ., there
exists a simulator Sim such that:{

(kFSS
a ,k

FSS
b ) ← Gen(1λ , fλ ) : kFSS

p

}
λ∈N

c
≡

{
Sim(p, 1λ )

}
λ∈N

In other words, the simulator can produce a share (without know-
ing the function) that is indistinguishable from the real share for
the function. Thus, the function share leaks nothing about fα,β
other than its domain and the group that contains its range.

We summarize the FSS construction of a distributed point func-
tion fα,β from Boyle et al. [11, 12] in Figure 1. The Gen(1λ , (α , β ))
method produces shares kFSS

a , kFSS
b of the point function fα,β . These

shares consist of one private seed each (sa , ta and sb , tb respec-
tively), and the rest of the information in the share is the same for
both parties. The FSS scheme follows a tree-based PRF construc-
tion, wherein each node of the tree is associated with a seed, and
a pseudo-random generator (PRG) is used to double the seed into
two seeds, one for the left child, and one for the right. At each level
j of the tree, Alice and Bob will have exactly the same seed for all
nodes except for the node along the path from the root to the leaf
α . At this node, Alice and Bob have different seeds, s j,α ja and s j,α jb
respectively, and thus the expansion of their seeds result in different
seeds for the children of this node at level j + 1, s j+1,0a , s j+1,1a and
s j+1,0b , s j+1,1b . The scheme provides a correction word σ j and two ad-
vice bits, τ j,0 and τ j,1, for each level. σ j is conditionally applied to
both child seeds of a node according to t j = Lsb(s j,α jp ) ⊕ t j−1 · τ j,α j .
This modifies the child seeds such that afterward, Alice and Bob
share the same seed for all nodes except for the node along the path
to leaf α . That is, of the two children of each node along the path
to leaf α , for which Alice and Bob’s seeds differ, one is “deactivated”
(i.e. Alice and Bob’s seeds at that position are made identical), and
the other is not. This correction is performed in such a way that
neither party can determine which branch has been deactivated.

A Private Information Retrieval (PIR) system is a mechanism
by which a client may retrieve an item from a database replicated
among some number of servers, without revealing to any server
which item was retrieved. Though similar to ORAMs, PIR systems
are notably distinct: they typically do not concern themselves with
writing or with hiding the contents of the memory from the servers,
they do not require any initialization or allow reorganization of
the database, and they do not incur memory overheads for the
client or servers. On the other hand, PIR schemes take for granted
that servers must perform O (n) work for each access, whereas
ORAM literature has hitherto focused on providing sublinear-in-n
computation complexity.When combined withmemory encryption,
a PIR scheme may be thought of as an Oblivious Read-only Memory
(OROM), and we show how to construct such a primitive from FSS
in Section 3.

1 function Gen(1λ, α = αm . . . α2α1, β ):
2 s′0a , s

′0
b

$← {0, 1}λ // pick random seeds
3 t 0a, t

0
b ← a random xor−share of 1

4 for j ∈ [1,m]:
5

{(
s j,0p

���
��� s

j,1
p

)}
p∈{a,b }

←
{
Prg
(
s′j−1p

)}
p∈{a,b }

6 σ j ← s
j,αj
a ⊕ s

j,αj
b // xor off-path children

7 τ j,0 ← Lsb
(
s j,0a
)
⊕ Lsb

(
s j,0b

)
⊕ α j ⊕ 1

8 τ j,1 ← Lsb
(
s j,1a
)
⊕ Lsb

(
s j,1b

)
⊕ α j

9
{
s′jp

}
p∈{a,b }

←

{
s
j,αj
p ⊕ t j−1p · σ j

}
p∈{a,b }

10
{
t jp
}
p∈{a,b }

←
{
Lsb
(
s
αj
p

)
⊕ t j−1p · τ j,αj

}
p∈{a,b }

11 γ ← sma ⊕ s
m
b ⊕ β

12 kFSS
a ←

(
s′0a , t

0
a, {σ

j , τ j,0, τ j,1 }j∈[1,m], γ
)

13 kFSS
b ←

(
s′0b , t

0
b, {σ

j , τ j,0, τ j,1 }j∈[1,m], γ
)

14 return kFSS
a , kFSS

b

15

16 function Eval(kFSS
p , x = xm . . . x2x1)

17 // Parse key kFSS
p as (s0p, t 0p, {σ j , τ j,0, τ j,1 }j∈[1,m], γ )

18 for j ∈ [1,m]:
19

(
s j,0���

��� s
j,1
)
← Prg

(
s′j−1

)
20 s′j ← s j,xj ⊕ t j−1 · σ j

21 t j ← Lsb
(
s j,xj

)
⊕ t j−1 · τ j,xj

22 y ← s′m ⊕ tm · γ

23 return y, tm

Figure 1: Pseudocode for the Function Secret Sharing scheme. Our
design follows Boyle et al. [11, 12].

3 SINGLE-FUNCTION MEMORY
We begin by explaining how to construct write-only and read-
only random access memories from the FSS scheme described in
Section 2. The constructions presented here may be independently
useful in scenarios wherein simultaneous read andwrite capabilities
are not needed; we combine them into a full ORAM in Section 4.

Oblivious Write-Only Memory. We first construct an Oblivious
Write-Only Memory (OWOM), based on the folkloric technique of
PIR-writing. Both parties hold a local XOR-share of each memory
location; in order to write to a location i (this index being given
as private data within the MPC protocol), the secure computation
must determine the difference,v∆, between the value already stored
there and the value to be written. It must then use the FSS scheme
to construct a distributed point function that evaluates to 0 every-
where except location i , whereat the DPF evaluates tov∆. Alice and
Bob individually evaluate their shares of the DPF, and add these
shares into the memory-shares that they hold. Because they are
adding shares of zero at all locations other than i , those values
remain unchanged. At index i , they add shares of the difference be-
tween the old and new values to shares of the old value, producing
shares of the value that was to be written.
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Alice BobSecure Computation
i,v∆

(k
a
FSS,k

b
FSS)        Gen(1λ,i,v∆)

W '
a
x        W

a
x⊕y

a
x

(y
a
x,t

a
x)        

 
Eval(k

a
FSS,x)

W '
b
x        W

b
x⊕y

b
x

(y
b
x,t

b
x)        

 
Eval(k

b
FSS,x)

k
a
FSS k

b
FSS

W
a
1

W
a
2

W
a
3

W
a
n

...

W
b
1

W
b
2

W
b
3

W
b
n

...

Figure 2: Diagram of Oblivious Write-only Memory. To perform a
write, the secure computation generates shares of a DPF, kFSS

a and
kFSS
b , which are distributed to Alice and Bob. Alice and Bob each eval-

uate the DPF at every value x ∈ [1, n] and XOR the result into their
respective corresponding shares of the OWOMmemory.

More precisely, we represent the value at memory location i
asW i , and party p’s share asW i

p , whereW i =W i
a ⊕W

i
b . To write

value W ′i into the memory, the secure computation calculates
v∆ =W i ⊕W ′i and then (kFSS

a ,k
FSS
b ) ← Gen(1λ , (i,v∆ )), delivering

kFSS
a to Alice andkFSS

b to Bob, who use these keys to derive (yxp , txp ) ←
Eval(kFSS

p ,x ) for all x ∈ [1,n]. For the purpose of writing, the parties
will ignore txp and use themain DPF outputyxp , which they XOR into
the underlying memory to perform the write,W ′xp ←W x

p ⊕ y
x
p .

Because write operations are performed by cumulatively XOR-
ing adjustment values with eachW i , it is necessary to write the
difference between the old and new values, rather than writing
the new value directly. In absence of any mechanism for reading
(or otherwise determining which values are currently stored), this
limits our OWOM to use only in write-only, write-once situations.
However, it will become a building block for a full ORAM in the
next section. We depict this scheme in Figure 2.

Oblivious Read-Only Memory. We implement read-only memory
in a manner similar to classic PIR constructions. Alice and Bob,
in their roles as the PIR servers, each hold identical copies of the
memory, masked by the output of a pseudo-random function (PRF)
using a key kPRF that is known to the secure computation, but not to
Alice or Bob individually. To read an elementRi from thememory at
a private index i (again, this index is given as private data within the
protocol), Alice and Bob engage in a secure computation protocol
to calculate (kFSS

a ,k
FSS
b ) ← Gen(1λ , (i, β )). Each party receives a kFSS

p
and uses it to calculate (yxp , t

x
p ) ← Eval(kFSS

p ,x ) for all x ∈ [1,n].
Although the DPFyxp may have an arbitrary range β , for the purpose
of reading, it is necessary that they hold a DPF of magnitude 1.
Thus, the parties will use the final advice bits, txp , which essentially
represent the same DPF normalized to {0, 1}. Both parties compute
vp =

⊕
x t

x
p · R

x . According to the properties of our FSS scheme,
since txa = txb for all x , i , it follows that va ⊕ vb = Ri . Finally,
Alice and Bob use a secure computation to evaluate PrfkPRF (i ) ⊕ Ri ,
effectively importing the semantic value of interest into the secure
computation. We depict this scheme in Figure 3.
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Figure 3: Diagram of Oblivious Read-Only Memory. To perform a
read, the secure computation generates shares of a DPF, kFSS

a and
kFSS
b , which are distributed to Alice and Bob. Alice and Bob each

evaluate a normalized version of the DPF at every value x ∈ [1, n],
calculate the dot product of the normalized DPF with their respec-
tive copies of the OROMmemory, and feed the result back into the
secure computation to compute the value v at location i .

Though this scheme permits an unlimited number of reads, it
cannot be written. Each party stores a PRF-masked copy (i.e. an
encryption) of the data rather than a secret share: were any sin-
gle memory location to be changed by a write, the access pattern
would be revealed; on the other hand, if all memory locations were
changed during a write, the semantic values of those not being
updated must be destroyed.

Complexity Analysis. For both schemes, the secure FSS compo-
nent (which forms the bulk of the secure computation) is identical.
The computation of Gen(1λ , (α , β )) requires 4 log2 (n) evaluations
of the PRG function, along with some basic boolean operations. It
must be seeded with random data of length O (λ), and it produces
an output of sizeO (λ logn) where λ is the security parameter. This
output can be revealed to the computation parties all at once, or
incrementally, in logn chunks of λ bits, one for each layer of the FSS
scheme. In the former case, the secure component incurs a memory
complexity of O (λ logn) and O (1) communication rounds. In the
latter case, the secure component incurs a memory complexity of
O (λ), and no additional rounds, as the secure computation does
not need to wait for replies. In either case, the communication and
computation complexities are O (λ logn).

Subsequently, a local computation is required to construct the
DPF, (yxp , txp ) ← Eval(kFSS

p ,x ) for all x ∈ [1,n]. If all n FSS evalua-
tions are combined into a single operation, then the FSS tree can
be constructed in its entirety only once, requiring O (n) PRG calls.
In the case of a write, each of the n elements in the output DPF’s
domain must be XORed into the corresponding memory location; in
the case of a read, the dot product of the DPF and the memory must
be taken instead. In either case, this incurs O (n) memory accesses.
All of the operations performed by the local FSS evaluation and the
application of the output DPF are highly parallelizable. We make
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Figure 4: Diagram of the Floram Refresh method. In addition to the
operations illustrated here, the secure computation must clear the
stash.

extensive use of this fact in our concrete implementation, and in
Section 6 we show experimentally that the local component does
not become a significant burden until the amount of data stored is
on the order of hundreds of megabytes.

4 READING ANDWRITING
We now combine the OWOM and OROM from Section 3 into an
ORAM construction. We need a few building blocks in order to
make this combination possible, and conjecture that these building
blocks are sufficient for the combination of any PIR and PIR-writing
schemes into an ORAM, assuming that the schemes themselves
are suitable (that is, their access patterns and underlying memory
formats are secure).

At a high level, the construction works as follows: we initialize
both an OROM and an OWOM with the same data, and create a
linear-scan stash that stores elements while they are waiting to
be returned to the main memory. Read operations are performed
by inspecting both the stash and the OROM, and returning the
most recent data.Write operations are performed by first reading
the current value at the specified index, using it to calculate the
difference necessary to correctly update the OWOM, and finally
writing the new value into both the OWOM and the stash. When
the stash fills, we perform a refresh operation to convert the OWOM
memory into OROM memory, and then clear the stash. The cost
of this refresh can be amortized over the refresh period of the
construction. Because we use this stash-and-refresh technique, our
amortized secure computation complexity becomes O (

√
n).

Refresh Procedure. To refresh our ORAM construction, we need
to convert the underlyingmemory of anOWOM into the underlying
memory of an OROM. The former stores its data as XOR-shares,
while the latter uses a masked copy of the data as the underlying

format. We can avoid incurring any secure computation overhead
at all if, instead of masking the OROM memory only once, using a
key known only to the secure computation, we mask it first with a
key known only to Alice, and then with a key known only to Bob.
To convert the OWOM into an OROM, Alice and Bob mask their
local OWOMmemory shares using two PRFs with individual secret
keys, kPRF

a and kPRF
b .

W ′p ←
{
W ′xp ← PrfkPRF

p
(x ) ⊕W x

p

}
x ∈[1,n]

They each transmit their masked OWOM memory share to the
other party, and both parties calculate

R′ ←
{
R′x ←W ′xa ⊕W

′x
b

}
x ∈[1,n]

Finally, each party feeds their key kPRF
p into the secure computation,

so that the OROM memory can be unmasked via v ← PrfkPRF
a (x ) ⊕

PrfkPRF
b

(x ) ⊕ Rx . This refresh procedure is illustrated in Figure 4.
Unlike previous Square-root ORAM constructions [19, 55], our
refresh procedure does not require access to the stash. Instead,
we simply clear it. Our stash serves only the purpose of allowing
updated elements to be accessed multiple times between refreshes.

Semi-private Access. It may be the case that some algorithms
call for both private (i.e. data-dependent) and data independent
accesses to the same memory. Ostrovsky and Shoup refer to the
latter type of accesses as semi-private [34]. To our knowledge, it
has heretofore been necessary to implement all accesses as fully
private accesses in such a scenario, or to perform costly import
and export operations upon the entire ORAM. Floram, however,
allows for a secondary, semi-private access mechanism, which has
a significantly reduced asymptotic and practical cost. Unlike all
other ORAMs of which we are aware, Floram stores each memory
element at the physical address corresponding to its semantic index.
Thus, to read the element at the publicly known semantic index
i , the two parties feed their OWOM memory sharesW i

a andW i
b

into the secure computation, which computes the valueW i inO (1)
complexity (and potentially using only free gates [28]). Semi-private
writes must additionally append to the stash.

Private Read Access. Read operations that are publicly known to
be read operations can also be performed without invoking the
full-access mechanism: neither a write to the stash nor a write to
the OWOM is required. Because no write to the stash is required,
ORAM reads do not contribute to the refresh period.

Full Private Access. A full private access accepts some arbitrary
oblivious function f and applies it to a single element within the
ORAM. f takes an ORAM element and some auxiliary input v f ,
and produces a new element and some auxiliary output yf . We use
this general-purpose mechanism to implement ORAM writes via
simple fwrite that returns v f as the output element. To perform a
full access, our scheme first retrieves the desired element from the
OROM, then scans the stash to determine whether a newer version
of the same element exists. f is then applied to it. Finally, the result
is stored using an OWOM operation and appended to the stash.
Because the OROM and OWOM access the same element, they can
share a single FSS evaluation. This process is illustrated in Figure 5.
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Figure 5: Diagram of the Floram Access method. Note that β is ran-
domly chosen on each access.

Initialization. The initialization of our ORAM can be performed
efficiently using the mechanism for refreshing that we described
earlier. That is, assuming that the parties begin with some secret
sharing of the data values with which the ORAM is to be filled,
they may initialize it by copying those shares into the OWOM’s
memory and performing a refresh. If the ORAM is hosted by a Yao’s
Garbled Circuits protocol, then the point-and-permute technique
of Beaver et al. [4] can be used to encode XOR shares of the data
within the protocol’s wire labels, effectively making the generation
of shares a free action. Furthermore, because this technique encodes
the XOR sharing of each data bit only in the final bit of a much
larger wire-label, it is actually a significant constant factor faster
to initialize our ORAM than it is to perform a single linear scan on
the same data. To our knowledge, this property is unique among
all known ORAMs.

Complexity Analysis. If we briefly set aside the stash, the com-
plexities of our scheme for full access to private indices closely
follow the complexities of the individual components described in
Section 3. That is, each access requires a single FSS Gen execution
within the secure context, incurring O (logn) communication and
secure computation, followed by the evaluation of the DPF at all
points in its domain, incurring O (n) local computation by both
parties. This is in turn followed by a memory scan for the ROM
component, adding a furtherO (n) local computation, an unmasking
within the secure computation context, which accounts for O (1)
communication and secure computation complexity, and a local

memory scan for theWOM component, which incurs a furtherO (n)
local computation. Thus, still ignoring the stash, a standard access
operation incurs O (logn) secure computation and communication
overall, as well as O (n) local computation.

The stash must be traversed on each access, and its length de-
pends upon the refresh period of the ORAM. The refresh opera-
tion requires a simple masking (i.e. encryption), transmission, and
element-wise XOR ofnmemory elements by each of the two parties,
without any secure computation. Thus the total cost of a refresh
is O (n) in terms of local computation and communication. This is
optimally amortized overO (

√
n) accesses, and thus the cost of each

access must include the cost of scanning O (
√
n) elements in the

stash. The optimal constant can be determined by the relative costs
of secure and local scans. Our concrete implementation uses a stash
of size

√
n/8. A summary of these costs, along with comparisons to

other ORAM schemes, is provided in Table 1.
The asymptotic complexity of our initialization procedure is

O (n) in terms of local computation, memory, and communication.
Like the refresh procedure on which it is based, it requires no
secure computation at all. This is optimal, at least from a complexity
standpoint. Furthermore, as we shall see in Section 6, the practical
costs of our initialization procedure are so low that it is actually
faster in practice than a simple memcpy over the same data.

Comparison to other ORAM schemes. Our ORAM scheme stands
in contrast to those that have preceded it in a number of respects, as
summarized in Table 1. Here we discuss their implications.We focus
primarily on the secure component of our scheme (which cannot
be parallelized), and explore the practical consequences of the local
component in Section 6. Although our ORAM uses a simple stash
that incurs square-root overhead, it does not use recursive position
maps or permutations required by Zahur et al.’s construction [55],
nor does it need the sorting and binary searching required by the
classic Goldreich and Ostrovsky construction [19]. Consequently,
its optimal stash size is much smaller. Moreover, our scheme can
be refreshed more efficiently than that of Zahur et al., and much
more efficiently than classic Square-root ORAM, which requires
O (n) encryptions within the secure context as well as an oblivious
sort for each refresh operation. In previous Square-root ORAM con-
structions, stash scan and amortized refresh operations accounted
for the vast majority of per-access cost; in having provided asymp-
totic improvements to both (as well as significant constant cost
improvements), we have made our new ORAM far more suitable
than its predecessors for handling large data sizes. On the other
hand, our ORAM requiresO (logn) calls to a PRG within the secure
context for each access. Because these PRG calls are expensive,
our ORAM is less suitable than that of Zahur et al. for small data
sizes. In Section 5, we describe a method for reducing the number
of secure PRG calls to O (1) at the cost of incurring O (logn) com-
munication rounds. This significantly improves our performance
for small values of n, but for very small values, the construction of
Zahur et al. remains more efficient in practice.

A comparison to Circuit ORAM (and other tree-based ORAMs) is
somewhat less straightforward. Our ORAM enjoys an initialization
procedure many orders of magnitude more efficient; however, in
terms of access complexity, Circuit ORAM remains ahead. Nonethe-
less, as we shall discuss in Section 6, reduction in constant costs
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Access Initialization

Floram Florom Square-root Circuit Floram Florom Square-root Circuit

Secure Comp. O (
√
n) O (logn) O (

√
n log3 n) O (log3 n) – – O (n log2 n) O (n log3 n)

Local Comp. O (n) O (n) O (
√
n logn) O (1) O (n) O (n) O (n logn) O (1)

Communication O (
√
n) O (logn) O (

√
n log3 n) O (log3 n) O (n) O (n) O (n log2 n) O (n log3 n)

Rounds O (1) O (1) O (logn) O (logn) O (1) O (1) O (logn) O (n logn)

Table 1: Access and Initialization Complexities. Complexities include amortized refresh operations where relevant. Florom refers an instanti-
ation of Floram with a stash size of zero (i.e. one which has recently been refreshed); due to the fact that only writes increase the stash size,
refreshes can be forced before long sequences of reads to achieve these complexities.

renders our scheme far more efficient in practice. Boyle et al. [10]
propose a parallelizationmethod for tree-basedORAMs, fromwhich
it is possible to derive an initialization procedure that uses permu-
tations in place of individual writes. With this mechanism, Circuit
ORAMs could achieve initialization performance similar to that of
Zahur et al.’s construction, at best.3 Although the local component
of our ORAM is highly parallelizable, no equivalent parallelization
scheme for our secure component is possible.

Finally, it is worthwhile to acknowledge the distinctions between
our scheme and the recent work of Abraham et al. [2], which also
combined ORAM with PIR. Like Floram, their scheme is properly
a Distributed ORAM, but in contrast, their scheme uses PIR to
retrieve single elements along the branches of a larger recursive
tree ORAM. Consequently, it shares more with Circuit ORAM and
Onion ORAM [15] than it does with our scheme. They optimize
for communication overhead, and their scheme achieves a commu-
nication complexity of O (logn) per access, which we can match
only when no writes are performed. Furthermore, it is likely that
PIR-server computation is significantly less burdensome in their
scheme, since their PIR requires no PRG and is evaluated over only
O (logn) elements. On the other hand, they primarily consider the
outsourcing model, and do not account for costs in an MPC context.
We find it likely4 that these would be similar to Circuit ORAM.

Security Analysis. To argue that our scheme is semi-honest se-
cure, we must present a simulator that produces a party’s view
of an ORAM operation (without receiving any information about
other parties’ private inputs) that is indistinguishable from the
same party’s view of the real ORAM operation. Simulators for ac-
cess and initialization, along with proofs of computational indistin-
guishability, are presented in the full version of this document [25].
Informally, the security of our scheme follows from the security
properties of the MPC technique chosen to host the construction
and the security of the FSS scheme, which guarantees that the nei-
ther the FSS key share nor the output leaks any information about
the associated point function, other than its domain and range. The
underlying memory itself reveals nothing about its contents due to
its mechanism of representation: each party views an OROM mem-
ory that is masked by the output of a PRF for which they key is not

3This mechanism has not yet been implemented, so we cannot currently provide
concrete data to support this claim.
4As we have no implementation of their scheme (MPC-oriented or otherwise), we
cannot perform a practical evaluation.

known, as well as an information-theoretically secure secret-share
of an OWOM memory

PRG and PRF. Among several options for the PRG, we have
chosen AES-128 [1]. Significant research effort has been put toward
optimizing the boolean-circuit representation of AES [8, 49], and
these optimizations have naturally been adapted for the context
of secure computation [24]. Specifically, we use the AES S-box
circuit of Boyar and Peralta [9], which requires less than 5000
non-free gates per block, and we accelerate local AES evaluations
using Intel’s AES-NI instruction set. In order to avoid the cost of
repeated key expansion, we assume that AES satisfies the ideal
cipher property and use the Davies-Meyer construction [48], with
independent keys for left and right expansions in the FSS tree. We
use AES in counter mode as the PRF that masks the OROM.

5 CONSTANT SECURE PRG EVALUATIONS
The costliest single component of our scheme is the repeated evalu-
ation of the PRG function within the secure computation of the FSS
Gen algorithm. In this section, we present an optimization that can
be used to achieve a significant constant-factor speed improvement
relative to a naïve implementation by outsourcing the evaluations
of the PRG in the FSS Gen algorithm to Alice and Bob. That is,
instead of Alice and Bob performing a single secure computation
which usesO (logn) PRG expansions to compute their shares of the
FSS key (line 5 in Figure 1), we instead divide Gen intom = log2 n
iterative computations that compute the FSS key one part at a time.
Surprisingly, we can divide the computation in a manner that re-
quires no PRG evaluations inside the secure computation, and that
also maintains the security properties of the original.5 Specifically,
we devise an equivalent method of computing the value σ j (line 6
in Figure 1) that does not require the PRG to be evaluated in a
secure computation. Hereafter, we refer to this as the Constant PRG
or CPRG optimization.

Thus far, our FSS notation has only identified seeds s j,α jp that
are on the path from the root to the leaf α in the FSS evaluation
tree. We now introduce notation to identify all of the nodes in the
evaluation tree. Let S j, ℓp denote the ℓth node from the left at level j
of player p’s FSS evaluation tree, where p ∈ {a,b}, j ∈ [1,m], and

5i.e., we will still be able to simulate the view of Alice or Bob given only the output of
the function. Notice that we would not be able to simulate the view if our protocol
simply asked Alice and Bob to evaluate line 5 in Figure 1.

Session C1:  Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

530



σ   
 τ 0,τ1

s, t

s'        
 
s⊕t·σ  

(s0||s1)        Prg(s')
t'         Lsb(s)⊕t·τr

s0, t' s1, t'

★

Alice BobSecure Computation

★

σ
   τ 0,τ1

★

★ ★★ ★

★ ★

★ ★★ ★

σ   , γ   
 τ 0,τ1

s, t

s'        
 
s⊕t·σ

t'        Lsb(s)⊕t·τr

  s''        
 
s'⊕t'·γ

s'',t'

✸

σ   , γ   
 τ 0,τ1   

✸ ✸ ✸ ✸ ✸ ✸ ✸ ✸

y1,t1 y2,t2 y3,t3 y4,t4 y5,t5 y6,t6 y7,t7 y8,t8

✸ ✸ ✸ ✸ ✸ ✸ ✸ ✸

y1,t1 y2,t2 y3,t3 y4,t4 y5,t5 y6,t6 y7,t7 y8,t8

z1,0        z
a
1,0⊕z

b
1,0

z1,1        z
a
1,1⊕z

b
1,1

σ  1        z1,α1

τ1,0         Lsb(z1,0)⊕α1⊕1
τ1,1         Lsb(z1,1)⊕α1

z2,0        z
a
2,0⊕z

b
2,0

z2,1        z
a
2,1⊕z

b
2,1

σ  2        z2,α2

τ 2,0         Lsb(z2,0)⊕α2⊕1
τ 2,1         Lsb(z2,1)⊕α2

z3,0        z
a
3,0⊕z

b
3,0

z3,1        z
a
3,1⊕z

b
3,1

σ  3        z3,α3

τ 3,0         Lsb(z3,0)⊕α3⊕1
τ 3,1         Lsb(z3,1)⊕α3

γ        z3,α3⊕σ  3⊕β

α,β

z
a
1,0

z
a
1,1

z
a
2,0

z
a
2,1

z
a
3,0

z
a
3,1

σ  1,τ1,0,τ1,1

σ  2,τ 2,0,τ 2,1

σ  3,γ
τ 3,0,τ 3,1

z
b
1,0

z
b
1,1

z
b
2,0

z
b
2,1

z
b
3,0

z
b
3,1

σ  1,τ1,0,τ1,1

σ  2,τ 2,0,τ 2,1

σ  3,γ
τ 3,0,τ 3,1

r

r

r

r

0 1

0 0

0 0 0 0

1 1

1 1 1 1

0 1

0 0

0 0 0 0

1 1

1 1 1 1

(s0||s1)        Prg(Rng())
t         r

s0, t s1, t

✦

r

r

✦0 ✦1

Figure 6: Diagram of the modified Gen/Eval algorithm used by the CPRG optimization. Variables and processes for which Alice and Bob’s
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for Bob. In this example, n = 8,m = 3, and α is a three-bit number with value 6.

ℓ ∈ [0, 2j ). Thus, seed s
j,α j
a can also be identified as node S j,α

∗
ja

where α∗j is the integer with the binary representation α j . . . α2α1.
Next, we observe that the FSS construction guarantees that at

any level j, S j, ℓa = S
j, ℓ
b for all ℓ , α∗ (that is, for all nodes except

the one along the path to leaf α ), and S j,α
∗
ja , S

j,α ∗j
b . It follows that

all of the PRG expansions of the nodes at level j , i.e., the uncorrected
children at level j + 1, are equal except for the two children of the
node along the path to α . Finally, consider the sum of the PRG
expansions of S j, ℓp for ℓ ∈ [0, 2j ):(

z
j+1,0
p

����
����z
j+1,1
p

)
=
⊕

ℓ∈[0,2j )
Prg
(
S
j, ℓ
p

)

From the above, we have:

z
j,0
a ⊕ z

j,0
b = s

j,0
a ⊕ s

j,0
b

z
j,1
a ⊕ z

j,1
b = s

j,1
a ⊕ s

j,1
b

σ j = z
j,α j
a ⊕ z

j,α j
b

Thus, we instruct Alice and Bob to locally compute z j,0p and z j,1p
by accumulating the XOR of all left children and all right children
at each level. These two values are submitted to a secure computa-
tion, which selects the correct sum using bit α j , computes the next
advice words (σ j ,τ j,0,τ j,1) and returns them to both parties. Both
parties can then apply these values (per lines 9–10 in Figure 1) to
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1 function Gen(1λ, α = αm . . . α2α1, β ):

2 S ′0,0a , S ′0,0b
$← {0, 1}λ // pick random seeds

3 t 0,0a , t 0,0b ← a random xor−share of 1

4 for j ∈ [1,m]:

5 for p ∈ {a, b }: // local computations

6
{(
S j,2ℓp

����
����S
j,2ℓ+1
p

)}
ℓ∈[0,2j−1 )

←

{
Prg
(
S ′j−1, ℓp

)}
ℓ∈[0,2j−1 )

7 z j,0p ←

(⊕
ℓ∈[0,2j−1 ) S

j,2ℓ
p

)
8 z j,1p ←

(⊕
ℓ∈[0,2j−1 ) S

j,2ℓ+1
p

)
9 σ j ← z

j,αj
a ⊕ z

j,αj
b // xor off-path children

10 τ j,0 ← Lsb
(
z j,0a
)
⊕ Lsb

(
z j,0b
)
⊕ α j ⊕ 1

11 τ j,1 ← Lsb
(
z j,1a
)
⊕ Lsb

(
z j,1b
)
⊕ α j

12 for p ∈ {a, b }: // local computations

13
{
S ′j, ℓp

}
ℓ∈[0,2j )

←

{
S j, ℓp ⊕ t j−1, ⌊ℓ/2⌋p · σ j

}
ℓ∈[0,2j )

14
{
t j, ℓp

}
ℓ∈[0,2j )

←

{
Lsb
(
S j, ℓp

)
⊕ t j−1, ⌊ℓ/2⌋p · τ j,Lsb(ℓ)

}
ℓ∈[0,2j )

15 γ ← zm,αm
a ⊕ zm,αm

b ⊕ σm ⊕ β

16 kFSS
a ←

(
S ′0,0a , t 0,0a , {σ j , τ j,0, τ j,1 }j∈[1,m], γ

)
17 kFSS

b ←
(
S ′0,0b , t 0,0b , {σ j , τ j,0, τ j,1 }j∈[1,m], γ

)
18 return kFSS

a , kFSS
b

Figure 7: Pseudocode for the Constant PRG optimization applied to
the FSS Genmethod. This optimization is discussed in Section 5.

generate the corrected seeds for all nodes at the next level, and then
continue the process until levelm. Revised pseudocode is presented
in Figure 7. Although we model this function as returning a pair of
key values (kFSS

a ,k
FSS
b ), note that most components of each party’s

key are revealed to them over the course of the function, and fur-
thermore, that both parties will have had to perform most of the
work of evaluating Eval(kFSS

p ,x ) for all x ∈ [1,n] in order to calcu-
late (z j,0p , z

j,1
p ). Consequently, in practice, the CPRG-optimizedGen

algorithm returns only those key components that have not already
been revealed, and Alice and Bob evaluate Eval simultaneously with
the evaluation of Gen. This process is illustrated in Figure 6.

Security Analysis. Relative to the originalGen algorithm, nothing
additional is revealed to either party, i.e., the output of the CPRG-
optimized Gen is exactly the same, and the view of each party can
be easily simulated with the final key. The only difference is that
the advice strings included in the output key are revealed one by
one. In the honest-but-curious setting that we consider here, the
adversary has no additional power when receiving outputs in this
manner.

Efficiency Analysis. The CPRG optimization requires no calls to
the PRG function within the secure evaluation ofGen, and only two
calls to the PRF to unmask the value retrieved from the OROM. We
still perform O (logn) differencing and advice bit generation steps,

but these require only a handful of gates each. On the other hand,
our local stage now requires a reduction to be performed over all
of the blocks in each layer of the FSS Eval algorithm. Consequently,
this variant is significantly more efficient for small and medium
sizedmemories, where secure computation dominates total runtime,
but slightly less efficient for memories on the scale of gigabytes, as
shown by our evaluations in Section 6.

6 EVALUATION
Experimental Setup. We implemented and benchmarked Floram,

using Obliv-C [53], a C derivate that compiles and executes Yao’s
Garbled Circuits protocols [51] with many protocol-level optimiza-
tions [4, 5, 24, 28, 54]. Additionally, we made use of Obliv-C-based
Square-root and Circuit ORAM implementations that were pro-
vided by the original authors of those works and are identical to
the ones reported on previously by Zahur et al. [55].

We created two variants of our ORAM, one using the basic con-
struction described in Section 4, and the other using the CPRG
method from Section 5. Both variants have optimized scheduling,
as described in the full version of this document [25]. Our concrete
implementation uses a 128 bit block size, this being the block size of
AES-128, our chosen PRG function. For ORAMs with element sizes
smaller than 128 bits, we pack multiple elements into a single block
and linearly scan them. For ORAMS with element sizes greater than
128 bits, we perform an additional expansion and correction stage
after the last layer of the FSS in order to enlarge the blocks to the
correct length.

Our benchmarks were performed under Ubuntu 16.04 with Linux
kernel 4.4.0 64-bit, running on a pair of identical Amazon EC2
R4.4xlarge instances. All code was compiled using gcc version
5.4.0, with the -O3 flag enabled, OpenMP was used to manage multi-
threading and SIMD operations, and local AES computations were
implemented using Intel’s AES-NI instructions. Each machine had
122GB of DDR4 memory and eight physical cores partitioned from
an Intel Xeon E5-2686 v4 CPU clocked at 2.3 GHz, each core being
capable of executing two threads. We measured the bandwidth be-
tween our two instances to be roughly four gigabits per second. In
order to ensure that the secure computation would be bandwidth-
bound, as we would expect it to be in real-world conditions, we
artificially restricted the bandwidth to 500 megabits per second,
using the linux tool tc.

Multithreading. Our two Floram implementations make exten-
sive use of multithreading for their local components, but we have
not attempted to multithread their secure components, nor have
we multithreaded the other ORAMs against which we make com-
parisons. Multithreading a secure computation does not reduce
the total communication between parties, and thus in bandwidth-
bound environments provides no advantage. Neither Square-root
nor Circuit ORAM performs significant local computation, and so
they cannot benefit significantly from local parallelism.

6.1 Full ORAMMicrobenchmarks
Full Access. We performed single-access microbenchmarks for

Floram, as well as Floram with the CPRG optimization discussed
in Section 5. For the purpose of comparison, we also performed
benchmarks for the Square-root ORAM of Zahur et al. [55], Circuit
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Figure 8: Microbenchmark Results. Access figures are averages from at least 100 samples; for refreshing ORAMs, the sample count was a
multiple of the refresh period. Initialization figures are averages from 30 samples. For all benchmarks, elements were 4 bytes in size.

ORAM [42], and linear scan. For all ORAMs, we used an element
sizes of 4 bytes. For linear scan, we varied the number of ORAM
elements between 25 and 220, and for Square-root ORAM, between
25 and 222. In both cases, this is far past the range in which those
schemes are competitive. For Circuit ORAM, we performed bench-
marks with up to 224 4-byte elements, corresponding to 64 MiB
of data; beyond this the ORAM’s physical size was so large that it
could not be instantiated on our machine. We benchmarked Floram
with sizes up to 232 4-byte elements, corresponding to 16 GiB of
data; these were the largest instances that our machine could handle.
We recorded the wall-clock times for both parties, the number of
bytes transmitted, and the number of non-free Yao gates executed.
Our results are reported in Figures 8a, 8b, and 8c, respectively.

As we expected, the wall-clock time of our scheme exhibits
a piecewise behavior. Up to roughly 225 4-byte elements, secure
computation (specifically, the FSS Gen algorithm) dominates the
total access time, and thus the time grows withO (logn)—noticeably
more slowly than any other ORAM. In this region, as expected, the
CPRG optimization leads to a significant concrete performance
gain, amounting to roughly a four-fold improvement. Beyond 225
elements, local computation becomes the dominant factor, and thus
the wall-clock time grows with O (n) and the standard FSS scheme
becomes more efficient. We estimate that the break-even point with
Circuit ORAM lies at 230 elements.

Initialization. We also performed initialization benchmarks. That
is, beginning with an array of data, we evaluated each construc-
tion’s native mechanism for importing that data into a fresh ORAM
instance. As before, we varied the number of elements for linear
scan between 25 and 220, and for Square-root ORAM between 25
and 222. Circuit ORAM has the slowest initialization process by
several orders of magnitude, and so we benchmarked only up to 214
elements, after which continuing was impractical. Both variants
of Floram share the same initialization procedure, and we tested
instances up to the largest size that our machines supported: 232
4-byte elements, or 16 GiB of data in total. Results for wall-clock
time and total communication are reported in Figures 8d and 8e
respectively; gate counts are not reported, as our ORAM requires
no gates to initialize.

As we expected, our ORAM has a clear asymptotic advantage
over other schemes in terms of initialization. Moreover, at 222 el-
ements, it has a 3000-fold concrete performance advantage over
Square-root ORAM, the fastest previously known construction in
this respect. In fact, in the context of garbled circuits, our con-
struction even initializes somewhat faster than a linear scan, which
requires only a simple memcpy by each party. Thus, so long as a
single access in our scheme is faster than a single linear scan, the
efficiency break-even point between the two is exactly one access.
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This is far better than other schemes, which require Ω(logn) ac-
cesses in order to reach their break-even points. We note that the
constant component of the Floram performance curve is due to the
cost of setting up OT extensions for a second thread, and it could
be optimized away.

6.2 Applications
In order to assess the performance of our ORAM construction in
realistic scenarios, we implemented two secure applications, and
benchmarked them with each of the ORAMs considered previously.

Binary Search. In order to highlight the ways in which the novel
properties of our ORAM differentiate it from previous ORAM con-
structions, we begin with a simple binary search benchmark. The
use of ORAM for performing binary searches was first considered
by Gordon et al. [23], who reported that searching a database of
220 64-byte elements required roughly 1000 seconds.6 Our ORAM
benchmark procedure is derived from that used by Square-root
ORAM [55]: first, the data is loaded from secure computation into
an ORAM, and then a number of searches are performed (each re-
quiring log2 n semantic accesses to complete). In this context, linear
scan has a special advantage: because it touches each element in
the memory, it requires only a single semantic access to perform
a search. As a consequence of this property, ORAM has thus far
yielded little improvement over the trivial solution for the problem
of searching.

We executed instances of this benchmark upon databases of 215
and 220 16-byte elements, with 1, 25, and 210 searches being per-
formed. In addition, we benchmarked single searches of databases
of 225 elements under Floram (due to exhaustion of memory, it was
not possible to instantiate Square-root or Circuit ORAMs of this
size). We do not include in our benchmark the cost of sorting the
data, which is unnecessary for the linear scan solution. Sorting
can be performed with a Batcher Mergesort [3] inO (n log2 n), with
practical costs being lower than the that of instantiating any of the
tested ORAMs, other than Floram. Results are reported in Table 2.

Floram has the fastest access and initialization procedures at
these sizes, and so, not surprisingly, it is the fastest among the
ORAMs regardless of the number of searches performed. What is
surprising, however, is that it is significantly faster than linear scan,
even when only a single search is performed. To our knowledge, such
a thing is not possible under any other ORAM scheme, at any data
size. Our scheme achieves this due to the fact that, considering
initialization and a single access, only two full scans of XOR shares
are required, whereas in the context of Yao’s Garbled Circuits a
linear scan requires iterating over wire labels that are at least eighty
times larger than the equivalent secret-shared representation.

Stable Matching. Many previous research efforts have sought to
optimize the secure evaluation of the Gale-Shapley algorithm for
stable matching. Recently, Doerner et al. [16] developed algorithmic
improvements which yielded a significant increase in asymptotic
and concrete performance, allowing them to execute a secure stable
matching using the related Roth-Peranson algorithm on the scale of

6Though we show significant improvement upon this number, our construction is
not directly comparable to theirs, due to differences in the underlying protocol and
benchmarking hardware.

n s Linear Circuit Square-root Floram CPRG

215
1 2.80 5192.4 12.87 1.85 0.64
25 89.75 5284.2 37.24 51.28 11.97
210 2872.1 8126.8 1210.0 1625.3 383.7

220
1 89.52 – 690.99 3.79 2.20
25 2864.5 – 800.23 95.97 44.02
210 91,663. – 12,736. 3023.5 1386.2

225 1 2864.5 – – 26.75 24.79

Table 2: Binary Search Benchmark Results. We measured the wall-
clock time required for s searches through n 16-byte data elements,
including initialization. Figures are averages in seconds from 30
samples for databases of 215 elements, or 3 samples for larger
databases. Linear scan figures are estimated from results in Sec-
tion 6.1.

Square-root Floram CPRG

Wall-clock Time (Hours) 28.98 15.78
Billions of Non-free Gates 226.87 143.29

Table 3: Roth-Peranson Benchmark Results. Our wall-clock time
result for Square-root ORAM differs from that presented by Do-
erner et al. [16]; this is due to differences in benchmarking envi-
ronments used.

the stable matching performed annually by the National Resident
Matching Program (NRMP) to match graduating doctors to medical
residencies in the United States. This algorithm requires O (nr )
ORAM accesses in n, the number of doctors, and r , the number
of hospitals for which the doctors are allowed to submit rankings,
to a comparatively small ORAM of size O (m) in m, the number
of hospitals (in practice, around 5000 for NRMP-scale matchings).
Nonetheless, in terms of gates, the NRMP matching is one of the
largest secure computations ever reported. In other words, this is a
benchmark for which Floram’s initialization advantagematters very
little. The parameters of the benchmark were derived by Doerner
et al. from the 2016 NRMP Statistical Report; specifically: 35,476
residents submitting up to 15 rankings each, and 4836 hospitals
submitting up to 120 rankings each, and having at most 12 open
positions. Individual preferences were generated at random. We
collected one sample each for Square-root ORAM and Floram CPRG,
and, following Doerner et al., we did not collect any data for Circuit
ORAM or linear scan, which would not be competitive. The results
are shown in Table 3, and demonstrate a factor of 1.83 improvement
over prior work for a very small ORAM used in a real application.
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CODE AVAILABILITY
Complete reference implementations of the constructions described
in this paper along with implementations of Square-root and Circuit
ORAM sharing a common interface are available under the 3-clause
BSD license from https://gitlab.com/neucrypt/floram.
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