
Deterministic, Stash-Free Write-Only ORAM
Daniel S. Roche

United States Naval Academy

Annapolis, Maryland, U.S.A.

roche@usna.edu

Adam Aviv

United States Naval Academy

Annapolis, Maryland, U.S.A.

aviv@usna.edu

Seung Geol Choi

United States Naval Academy

Annapolis, Maryland, U.S.A.

choi@usna.edu

Travis Mayberry

United States Naval Academy

Annapolis, Maryland, U.S.A.

mayberry@usna.edu

ABSTRACT
Write-Only Oblivious RAM (WoORAM) protocols provide privacy

by encrypting the contents of data and also hiding the pattern of

write operations over that data. WoORAMs provide better privacy

than plain encryption and better performance than more general

ORAM schemes (which hide both writing and reading access pat-

terns), and the write-oblivious setting has been applied to important

applications of cloud storage synchronization and encrypted hidden

volumes. In this paper, we introduce an entirely new technique for

Write-Only ORAM, called DetWoORAM. Unlike previous solutions,

DetWoORAM uses a deterministic, sequential writing pattern with-

out the need for any “stashing” of blocks in local state when writes

fail. Our protocol, while conceptually simple, provides substantial

improvement over prior solutions, both asymptotically and exper-

imentally. In particular, under typical settings the DetWoORAM

writes only 2 blocks (sequentially) to backend memory for each

block written to the device, which is optimal. We have implemented

our solution using the BUSE (block device in user-space) module

and tested DetWoORAM against both an encryption only baseline

of dm-crypt and prior, randomized WoORAM solutions, measuring

only a 3x-14x slowdown compared to an encryption-only baseline

and around 6x-19x speedup compared to prior work.

1 INTRODUCTION
ORAM. Even when data is fully encrypted, the sequence of which

operations have been performed may be easily observed. This access

pattern leakage is prevented by using Oblivious RAMs (or ORAMs),

which are protocols that allow a client to access files in storage

without revealing the sequence of operations over that data. ORAM

solutions that have been proposed provide strong privacy by guaran-

teeing that anyone who observes the entire communication channel

between client and backend storage cannot distinguish any series of

accesses from random. Due to this strong privacy guarantee, ORAM

has been used as a powerful tool in various application settings

such as secure cloud storage (e.g., [16, 27, 28]), secure multi-party

computation (e.g., [10, 14, 15, 32, 34]), and secure processors (e.g.,

[8, 13, 19]).

This paper is authored by an employee(s) of the United States Government and is in

the public domain. Non-exclusive copying or redistribution is allowed, provided that

the article citation is given and the authors and agency are clearly identified as its

source.

CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.

2017. ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134051

Unfortunately, in order to achieve this obliviousness, ORAM

schemes often require a substantial amount of shuffling during

every access, requiring more encrypted data to be transferred than

just the data being written/read. Even Path ORAM [29], one of the

most efficient ORAM constructions, has an Ω(logN) multiplicative

overhead in terms of communication complexity compared to non-

private storage.

WoORAM. Write-only ORAM (WoORAM) [4, 12] introduces a

relaxed security notion as compared to ORAMs, where only the

write pattern needs to be oblivious. That is, we assume a setting in

which the adversary is able to see the entire history of which blocks

have been written to the backend, or to view arbitrary snapshots of

the storage, but the adversary cannot see which blocks are being

read.

Every ORAM trivially satisfies the properties of WoORAM, but

entirely different (and possibly more efficient) WoORAM solutions

are available because a WoORAM is by definition secure even if reads
are not oblivious. WoORAM schemes can be used in application

settings where adversaries are unable to gather information about

physical reads. In such settings, the weaker security guarantee of

WoORAM still suffice to hide the access patterns from the adversary

of limited power.

Deniable storage [4] is one such application. In this setting, a user

has a single encrypted volume and may optionally have a second,

hidden volume, the existence of which the user wishes to be able

to plausibly deny. For example, a laptop or mobile device owner

may be forced to divulge their device decryption password at a

border crossing or elsewhere. The adversary may also be able to

view multiple snapshots of the disk, either at different times or

through physical forensic information remaining on the storage

medium. Even given every past state of storage, an adversary should

not be able to guess whether the user has a second hidden volume

or not. In this context, it is reasonable to assume that the adversary

won’t get any information about block reads that have taken place

in the disk, since read operations do not usually leave traces on the

disk. Based on this observation, a hidden volume encryption (HiVE)

for deniable storage was constructed based on WoORAM [4].

We proposed another example application in [2] for synchroniza-

tion based cloud storage and backup services. Here, the user holds the

entire contents of data locally, and uses a service such as DropBox

to synchronize with other devices or store backups. The service

provider or an eavesdropper on the network only observes what the

user writes to the synchronization folder, but does not see any read

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

507

https://doi.org/10.1145/3133956.3134051

operations as these are done locally without the need for network

communication. We showed in [2] showed that WoORAMs can

provide efficient protection in this scenario, as well as protection

against timing and file size distribution attacks.

In both cases, what makes WoORAMs attractive is that they

can achieve security much, much more efficiently than the full

read/write oblivious ORAMs such as Path-ORAM. For example,

consider storing N size-B data blocks in a non-recursive setting in

which the client has enough memory to contain the entire posi-

tion map of size O(N logN), Blass et al. [4] provided a WoORAM

construction (hereafter, HiVE-WoORAM) with optimal asymptotic

communication overhead of O(B) and negligible stash overflow

probability. As a comparison, fully-functional read/write ORAM

schemes — again, even without the position map — have an over-

head of Ω(B logN).

Towards better efficiency with realistic client memory. Al-
though HiVE-WoORAM has a better asymptotic communication

complexity than Path-ORAM in the non-recursive setting (i.e., with

client memory of size O(N logN)), the situation is different when

the size of the unsynchronized client memory is smaller (i.e., poly-

logarithmic in N). This could be because the client really has less

memory, or because the state needs to be synchronized frequently

(as in a multi-user setting). In this case, the client cannot maintain

the entire position map in memory, and so the position map storage

needs to be outsourced to the server as another WoORAM. This en-

coding typically occurs via a recursive process, storing the position

map in recursively smaller WoORAMS, until the final WoORAM

is small enough to fit within client memory. Therefore, in the uni-

form block setting where every storage block has the same size,

both HiVE-WoORAM and Path-ORAM have the same overhead

O(B log
2 N) with poly-logarithmic client memory size.

1

Hence, we ask the following question:

Can we achieve WoORAM with better asymptotic commu-

nication complexity in the setting of polylogarithmic client

memory and uniform blocks?

1.1 A Deterministic Approach to WoORAMs
In answering the question above, observe that the security require-

ment of WoORAMs are much weaker than that of ORAMs. Namely,

only the write operations need to be oblivious, and the read opera-

tions can occur using different protocols than that of writing. This

opens the door to a radically different approach toward constructing

a WoORAM scheme.

Traditional approaches. Traditionally, in ORAM schemes as well

as WoORAM, to write data d , the oblivious algorithm selects k
blocks in some random process storage in order to write. In Pa-

th-ORAM, those k blocks form a path in a tree, while in HiVE-

WoORAM, they are uniformly sampled from a flat storage array

of blocks. All k blocks are re-encrypted, and the new block d is

inserted if any existing blocks are empty.

1
The multiplicative overhead O (log2 N) can be reduced to additive overhead of

O (log3 N) if the size of the block can be non-uniform [4, 29]. However, through-

out the paper we will consider the uniform block setting, since the two use cases we

consider above assume uniform block sizes. We note that our construction still has

better additive overhead ofO (log2 N) even in the non-uniform block setting.

One of the challenges with this approach is that there is the

possibility for a write to fail if none of the random k blocks are

empty and thus d cannot be inserted. Instead d is placed into a

stash in reserved client memory until it may be successfully written

to the ORAM (or WoORAM) when two or more of the k blocks

are empty. Fortunately, the probability of this event is bounded,

and thus the size of the stash can also be bounded with negligible

stash overflow probability. The schemes will, with overwhelming

probability, work for small client memory.

Mainobservations. After careful inspection of the security proofs,
we discovered that random slots are mainly used to hide read ac-

cesses, not write accesses! That is, the challenge for ORAMs is that

successive reads of the same data must occur in a randomly indistin-

guishable manner. For example, without the technique of choosing

random slots, two logical reads on the same address may result in

reading the same physical address twice, in which case the read

accesses are not oblivious. In the WoORAM setting, however, the

scheme may still be secure even if reads are not oblivious, since the

security requirement doesn’t care about physical reads! Based on

this observation, we ask:

Can we construct a deterministic WoORAM scheme using a

radically different framework?

1.2 Our Work: DetWoORAM
We answer both of the above questions affirmatively. In what fol-

lows, we describe the main features and contributions of DetWo-

ORAM.

Deterministic, sequential physical accesses. DetWoORAM de-

parts from the traditional approach in constructing a WoORAM

scheme in that the write pattern is deterministic and sequential.

Roughly speaking, if some logicalwrite results in writing the two

physical blocks i and j, the next logicalwrite will result in writing

in physical blocks (i + 1) mod N and (j + 1) mod M , whereM is a

parameter in the system.

No stash. The deterministic nature of the physical writes also

implies that a stash is no longer needed. A write will always succeed

and always occurs in a free block. Therefore, we were able to remove

the notion of stash completely in our scheme. To elaborate this point,

we give a very simple toy construction that captures these aspects in

Section 3.1. Due to the deterministic access pattern and the absence

of stash, security analysis of our scheme is extremely simple.

Optimal communication complexity of physicalwrites. Each
logical read or write operation from the client’s end results in some

physical reads and/or writes to backend memory. In the uniform

block setting, we assume there is a block size B, presumably dic-

tated by the underlying medium, and that all reads and writes must

occur in multiples of B. The communication complexity is then

the total number of bytes transferred for a given operation, which

necessarily is a multiple of B.
DetWoORAM has better asymptotic communication complexity

than previous constructions (see Table 1). In particular, DetWo-

ORAM improves the complexity of write operations compared to

HiVE-WoORAM by a factor of logN . Note that, even though read

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

508

Logical Read Logical Write Unsynchronized Security

Physical Read Physical Write Physical Read Physical Write Client Memory

Path-ORAM [29] O(B log
2 N) O(B log

2 N) O(B log
2 N) O(B log

2 N) ω(B logN) RW

HiVE-WoORAM [4] O(B logN) 0 O(B log
2 N) O(B logN) ω(B logN) W-only

DetWoORAM O(B logN) 0 O(B logN) 2B O(B) W-only

B denotes the block size (in bits), and N denotes the number of logical blocks. We assume B = Ω(log2 N).
Table 1: Communication complexity and client memory size for various ORAMs in the uniform block setting

operations are assumed to be hidden from an observer, the asymp-

totic cost of reads is still very significant for practical performance.

We stress that to the best of our knowledge, DetWoORAM is the

first WoORAM construction whose physical write cost is 2B for a

single logical write. In other words, the physical-write overhead

is a single block (additive!), which is exactly optimal in the uniform

block setting with small client storage.

Optimization techniques: ODS and packing. We applied two

optimization techniques to further reduce the communication com-

plexity and improve practical performance.

First, we created a newwrite-only oblivious data structure (ODS),

in the form of a Trie, to function as the position map. As with pre-

vious tree-based ODS schemes [24, 33], our ODS scheme avoids

recursive position map lookups by employing a pointer-based tech-

nique. That is, the pointer to a child node in a Trie node directly

points to a physical location instead of a logical location, and there-

fore it is no longer necessary to translate a logical address to a

physical address within the Trie itself. We note that the ODS idea

has previously been applied to WoORAM by [5], although their

overall scheme turns out the be insecure (see Section 6).

With the simpler position map stored as a Trie and the deter-

ministic write-access pattern in DetWoORAM, we can manipulate

the parameters to optimize the procedure with DetWoORAM. In

particular, we will show how to pack write-updates of the posi-

tion map Trie into block size chunks. With additional interleaving

techniques, we will show that we can achieve a minimal communi-

cation complexity of 2B, one block for the data and one block for

position map and other updates. The details of these techniques are

described in Section 3.3 and 3.4.

Stateless WoORAM. WoORAM is usually considered in a single-

client model, but it is sometimes useful to have multiple clients

accessing the same WoORAM. In a multi-client setting, even if

the client has a large amount of local memory available, our im-

provements in local storage of eliminating stash and optimizing

the position map are significant.

Because our scheme has no stash, we can convert our scheme

to a stateless WoORAM with no overhead except for storing the

encryption key and a few counter variables. On the other hand,

previous schemes such as Path-ORAM and HiVE-WoORAM must

maintain the stash of size ω(B logN), which in the stateless setting

must be transferred in its entirety on each write operation in order

to maintain obliviousness.

Less randomness and storage for IVs. The deterministic and

sequential access pattern fits nicely with encryption of each block

using counter mode. Suppose the previous writes so far have cycled

the physical storage i times, and physical block j is about to be

encrypted. Then, the block can be encrypted with the counter

i∥j∥0ℓ , where ℓ depends on how many times one needs to apply

a block cipher to encrypt the entire block. That is, we can get

indistinguishable symmetric encryption by storing just a single IV.

We stress that the above optimization cannot be applied to pre-

vious schemes due to the randomized procedure. For example, Hi-

VE-WoORAM chooses instead random IVs to encrypt each block.

These IVs must be stored separately on the server adding to the

communication cost overhead.

Additionally, we remark that the implementation [4] of HiVE-

WoORAMused RC4 as a PRG to choose random IVs for performance

reasons, but the insecurity of RC4 lead to an attack on the imple-

mentation [21].

Implementation and experiments. We have implemented Det-

WoORAM using C++ and BUSE (block device in user space). We

tested our implementation using Bonnie++ and fio on both a spinning-

platter hard drive and a solid state drive, comparing the implementa-

tion to a baseline that performs encryption only (no obliviousness)

as well as to an implementation of HiVE-WoORAM. We found

that DetWoORAM incurs only a 3x-14x slowdown compared to an

encryption-only baseline and around 6x-19x speedup compared to

HiVE-WoORAM.

Insecurity of other proposed WoORAM improvement. Data-
Lair [5] is another WoORAM scheme that has been proposed re-

cently with the goal of improving the practical performance com-

pared to HiVE-WoORAM. As our secondary contribution, we an-

alyzed this WoORAM protocol, which achieves faster writes by

tracking empty blocks within the WoORAM. We show in Section 6

that, unfortunately, the construction does not satisfy write-only

obliviousness.

2 BACKGROUND
2.1 Write-only ORAM
ORAM. AnOblivious RAM (ORAM) allows a client to store andma-

nipulate an array of N blocks on an untrusted, honest-but-curious

server without revealing the data or access patterns to the server.

Specifically, the (logical) array of N blocks is indirectly stored into

a specialized backend data structure on the server, and an ORAM

scheme provides an access protocol that implements each logical

access with a sequence of physical accesses to the backend struc-

ture. An ORAM scheme is secure if for any two sequences of logical

accesses of the same length, the physical accesses produced by the

access protocol are computationally indistinguishable.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

509

More formally, let ®y = (y1,y2, . . .) denote a sequence of opera-
tions, where eachyi is a read(ai) or awrite(ai ,di); here, ai ∈ [0,N)
denotes the logical address of the block being read or written, and

di denotes a block of data being written. For an ORAM scheme

Π, let PhysicalAccΠ(®y) denote the physical access pattern that its

access protocol produces for the logical access sequence ®y. We say

the scheme Π is secure if for any two sequences of operations ®x and

®y of the same length, it holds

PhysicalAccΠ(®x) ≈c PhysicalAccΠ(®y),

where ≈c denotes computational indistinguishability (with respect

to the security parameter λ).
Since the seminal work by Goldreich and Ostrovsky [9], many

ORAM schemes have been proposed and studied in the literature;

see Section 7 for more related work.

WoORAM. Blass et al. [4] considered a relaxed security notion

of write-only ORAM (WoORAM), where only the write physical
accesses are required to be indistinguishable. In particular, we say

an ORAM scheme Π is write-only oblivious if for any two sequences

of logical accesses ®x and ®y containing the same number of write
operations, it holds

WOnly(PhysicalAccΠ(®x)) ≈c WOnly(PhysicalAccΠ(®y)),

whereWOnly denotes a function that filters out the read physical

accesses but passes the write physical accesses.

They also gave an WoORAM construction which is much more

efficient than full ORAM constructions. We will briefly describe

their construction below.

2.2 HiVE-WoORAM
Setting. In [4], to storeN logical blocks, the server needs a physical

array D of M ≥ 2N elements, where each element is a pair (a,d),
where a is the logical address and d is the actual data. Obviously, all

the data in the backend storage D is encrypted with an IND-CPA

encryption scheme; throughout the paper, we will implicitly assume

that the backend data is encrypted with an IND-CPA encryption

scheme, even if we don’t use any encryption notations.

The client maintains a buffer, called stash, that temporarily holds

the blocks yet to be written to D. We assume for now that the client

also maintains the position map pos in its memory; the map pos
translates a logical address into the corresponding physical address.

This protocol depends crucially on parameter k , the number of

physical writes per logical write. This is selected to ensure a very

low probability of filling up the stash; according to [4], for k = 3,

the probability of having more than 50 items in the stash at any

given time is bounded by 2
−64

.

Write algorithm. The access protocol for write(a,d) works as
follows.

(1) Insert (a,d) into stash
(2) Choose k physical addresses r1, . . . , rk uniformly at random

from [0,M).
(3) For i ∈ {1, . . . ,k} do:
(a) Determine whether D[ri] is free by checking whether

pos[D[ri].a] , ri .

(b) If D[ri] is free and stash is nonempty, remove an element

(α ,δ) from stash, set D[ri] ← δ , D[ri].a ← α , and update

the position map pos[α] ← ri .
(c) Otherwise, rewrite D[ri] under a new random IV.

Communication complexity. LetM = O(N). Without consider-

ing the position map, their access protocol for write has fantastic

communication complexity ofO(k(logN+B)), where B is the size of

a data block. In particular, with k = 3 and assuming B = Ω(logN),
the communication complexity isO(B). However, the size of the po-
sition map is Ω(N · logN), which is usually too large for the client

to store in memory. This issue can be addressed by recursively

storing the map in smaller and smaller ORAMs. Taking these recur-

sion steps into account, the eventual communication complexity

becomes O(B log
2 N).

3 DETERMINISTIC WOORAM DESIGN
In this section, we describe the algorithm for DetWoORAM con-

struction. We begin by first describing a “toy construction” that

has some of the key properties as the final algorithm, such as not

employing a stash while using a deterministic write pattern. From

this toy construction, we make a series of improvements that lead to

our actual DetWoORAM construction with sequential write pattern

and 2B communication cost per write.

3.1 A Toy Deterministic WoORAM
Construction

The toy deterministic WoORAM construction is inspired by the

square-rootORAM solution of Goldreich and Ostrovsky [9], adapted

to the write-only oblivious setting. For now, we set aside the issue

of the position map, which one could consider being stored by

the user locally and separately from the primary procedure. Later,

we will describe a method for storing the position map within an

adjacent, smaller WoORAM.

Toy Construction. Physical storage consists of an array D of 2N
data blocks of B bits each. D is divided into two areas, a main area

and a holding area (see Figure 1), where each area contains N blocks.

The key invariants of this construction, which will continue even

with our complete non-toy construction later, are:

• Every block in the main area is stored at its actual address;

therefore the main area does not need any position map.

• Every block in the holding area is overwritten only after it

has been copied to the main area.

main area holding area

N blocks N blocks

Figure 1: Physical data array D for the toy construction.

Each block of the storage area has an address a, and a user

interacts with the system by writing data to an address within the

main area, that is a ∈ [0,N), and reading data back by referring to

the address. In the main area, a block is always stored at its address,

but in the holding area, blocks are appended as they are written,

irrespective of their address.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

510

In order to track where to write the next block in the holding area,

we keep a counter i of the number of write operations performed

so far. Additionally, as the holding area is not ordered, there needs

to be a position map that associates addresses a ∈ [0,N) to the

location in [0, 2N) of the freshest data associated with that address,

either at the address within the main area or a more recent write to

the holding area. The position map construction will be described

later as a write-only oblivious data structure stored with in an

adjacent, smaller WoORAM. For now, we abstract position map as

a straightforward key-value store with operations getpos(a) → a′

and setpos(a,a′)
With parameter N , counter i , and the WoORAM storage array

D, where |D | = 2N , we can now define the primary operations of

the toy WoORAM as in Algorithm 1. Note that the read operation,

which for now is trivial and which may seem irrelevant for a write-

only ORAM, is crucial to the practical performance. As we progress

to more sophisticatedWoORAM schemes, both the read andwrite

operations will necessarily become more intricate.

Algorithm 1 Operations in Toy Deterministic WoORAM

//Perform the i-th write, storing data d at address a
function writei (a, d)

D[N + (i mod N)] := enc(d) //Write to holding area

setpos(a, N + (i mod N)) //Update position map

i := i + 1 //increment counter

//Refresh the main area

if i mod N = 0 then
for a ∈ [0, N) do

D[a] := enc(dec(D[getpos(a)]))
setpos(a, a) //Update the position map

end for
end if

end function

//Read and return data at address a
function read(a)

return dec(D[getpos(a)]) //Return freshest version of the data

end function

Properties of toy construction. Already, our toy construction

has some of the important of the properties of our final construction.

As explained below, it provides write obliviousness, it is determin-

istic, and it does not require a stash.

To see why the toy construction is write-oblivious, first consider

that each write occurs sequentially in the holding area and has

no correspondence to the actual address of the data. Writing to

the holding area does not reveal the address of the data. Second,

once the holding area has been filled completely with the freshest

data, after N operations, all the main area blocks are refreshed

with data from the holding area, or re-encrypted if no fresher data

is found in the holding area. Since all the main area blocks are

written during a refresh, it is impossible to determine which of the

addresses occurred in the holding area. In both cases, for a write to

the holding area and during a refresh, the block writes are oblivious.

The toy construction also has a deterministic write pattern: the

i-th write always touches the holding area block at index N +

(i mod N). As compared to previous ORAMandWoORAM schemes,

in which writing (or access) requires randomly selecting a set (or

path) of blocks to overwrite with the expectation that at least one

of the blocks has the requisite space to store the written data, our

construction does not require any random selection and operates

in a completely deterministic manner.

Further, as each write is guaranteed to succeed—we always write

sequentially to the holding area—there is no need for a stash. To

the best of our knowledge, all other WoORAM schemes require a

stash to handle failed write attempts. In some sense, one can think

of the stash in these systems as providing state information about

the current incomplete writes, and to have a stateless system the

full size of stash would need to be transferred on every step (even

if there is nothing in it). By contrast, our construction has constant

state cost (ignoring the position map for now), which consists

simply of the counter i and the encryption key. Our construction

continues to have constant unsynchronized client state even when

we consider the de-amortized case with position map below.

3.2 De-amortizing the toy construction
We can advance upon the toy construction above by further gen-

eralizing the storage procedure via de-amortization of the refresh

procedure as well as allowing the main and holding area to be of

different sizes. The key idea of de-amortization is that instead of

refreshing the main area once the holding area has been fully writ-

ten, we can perform a few writes to the main area for each write to

the holding area, so that it is fully refreshed at the same rate.

In this generalized setting, physical storage consists of a main

area of size N as before, and a holding area of sizeM , whereM is

arbitrary, so that |D | = N +M .

main area holding area

N blocks M blocks

Figure 2: Back end data arrayD with unequalmain and hold-
ing areas.

The key to the de-amortized write procedure is that there needs

to be a commensurate number of refreshes to the main area for each

write to the holding area. After any consecutive M writes to the

holding area, the entire main area (of size N) needs to be refreshed,

just like what would happen in the amortized toy construction.

When N = M , this is simply accomplished by performing one

refresh for each write. When the sizes are unequal, we need to

perform on average N /M refreshes per write to achieve the same

goal. For example, consider the case where N = 2M , where the

main area is twice as large as the holding area, then N /M = 2, and

thus we perform two refreshes for every write. After M writes to

the holding area, the entire main area will have been refreshed.

It is also possible to have ratios whereM > N , such asM = 2N
where the main area is half the size of the holding area, and in

fact, this setting and M = N · ⌈log(N)⌉ are both critical settings

for performance. WhenM > N this implies that we need to do less

than one refresh per write, on average. Specifically for N /M = 1/2,
we perform a refresh on every other write to the holding area.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

511

Algorithm 2 has the properties of performing on average N /M
refreshes per write, while the read operation is the same as before.

Algorithm 2De-amortized write operation with unequal size main

and holding areas.

//Perform the i-th write, storing data d at address a
function write(a, d)

D[N + (i mod M)] := enc(d) //Write to holding area

setpos(a, N + (i mod M)) //Update position map

//Refresh N /M main area blocks per-write

s := ⌊i · N /M ⌋ mod N
e := ⌊(i + 1) · N /M ⌋ mod N
for a′ ∈ [s, e) do

D[a′] := enc(dec(D[getpos(a′)]))
setpos(a′, a′)

end for
i := i + 1 //increment counter

end function

It is straightforward to see that the unequal size, de-amortized

solution has the same key properties as the toy construction: it is

write-oblivious, deterministic, and does not require a stash. It is

clearly deterministic because just as before, writes and refreshes

occur sequentially in the holding area and main area, respectively,

and this also assures write-obliviousness for the same reasons dis-

cussed before. It still does not require a stash because every write

will succeed, as the refresh pattern guarantees that the next write

to the holding area will always overwrite a block that has already

had the chance to be refreshed to the main area.

The only non-obvious fact may be the correctness of the scheme.

In particular, is it possible for some write to the holding area to

overwrite some other block which has not yet been refreshed to

the main area? The following lemma justifies that such a situation

cannot happen.

Lemma 3.1. Consider Algorithm 2. For any time i and address a,
there exists a time i ′ when address a is refreshed to the main area

satisfying

i ≤ i ′ < i +M .

Proof. Address a is refreshed tomain area whenever the current

time i ′ is in the range [s, e) in the for loop; namely, when⌊
i ′N
M

⌋
mod M ≤ a <

⌊
(i ′ + 1)N

M

⌋
mod M .

This happens as soon as

i ′ mod M ≥
⌊
Ma

N

⌋
mod M .

Because this is an inequality moduloM on both sides, there exists

some i ′ ∈ {i, i + 1, . . . , i +M − 1} which satisfies it. ■

The consequence of this lemma is that, for any time i , the data
which is placed in the holding area at address N + (i mod M) will
be refreshed to the main area before time i +M , which is the next

time holding address N + (i mod M) will be overwritten. Therefore
no data is overwritten before it is refreshed to the main area, and

no stash is needed.

3.3 Incorporating the Position Map
In this section, we consider methods for implementing a position

map for DetWoORAM, and crucially, modifying the procedure so

that only a single position map update per write is needed.

We first describe how to modify our algorithm so that we can

store the position map recursively within successively smaller Det-

WoORAMs, and then show how to further improve by using a Trie-

based write-only oblivious data structure (WoODS) stored within an

adjacent DetWoORAM to the main, data-storing one.

Recursively stored positionmap. One possibility for storing the
position map is to pack as many positions as possible into a single

block, and then store an adjacent, smaller WoORAM containing

these position map blocks only. Then that WoORAM’s position

map is stored in a smaller one, and so on, until the size is a constant

and can be stored in memory or refreshed on each write. If at least

two positions can be packed into each block, the number of levels

in such a recursive position map is O(logB N).
If we consider each of the recursive WoORAMs using the same

write procedure as described in Algorithm 2, a problem quickly

emerges. A write requires multiple updates to the position map due

to the de-amortized procedure: one update to store the location

within the holding area of the newly written data, and some number

of updates to store the refreshed main areas. In a recursive setting,

as these position map updates must occur for every recursive level

of the position map, we can get exponential blow up. One write to

the main WoORAM requires O((1 +M/N)R) writes at the smallest

WoORAM, where R ∈ O(logB N) is the number of recursive levels.

In HiVE-WoORAM, this issue is solved using additional state

information of “metadata blocks”, each containing the actual index

of the block as well as the IV used to encrypt that block. These

metadata blocks are stored alongside the primary physical blocks

for the WoORAM. Crucially, by storing the actual index associated

with each block in memory, it is no longer necessary to update the

positionmapmultiple times for eachwrite.While something similar

would work for our system, we solve this problem more efficiently,

avoiding the need for separate storage of metadata blocks entirely.

The difference here is not asymptotic, but helps in practice by

essentially eliminating an extra metadata block read/write on ev-

ery step. It also allows us to take better advantage of the uniform

block setting, where even reading or writing a few bytes in a block

requires transferring O(B) bytes of data. This technique is crucial
to our obtaining optimal 2B physical writes per logical write, as we

show in the next section.

Positionmap pointers and one-bit diff technique. To improve

the position map and remove exponential blow-up in updating the

position map, we recognize that we have a distinct advantage in

DetWoORAM construction as compared to prior schemes in that for

main area blocks, data is always located at its address. The holding

area is the only portion of the WoORAM that needs a position map.

The position map does not need to be updated for a refresh if we could

determine the freshest block during a read.

To see this, consider a position map that simply stores a holding-

area address. When we perform a read of address a, we need to look
in two locations, both in the holding area at where the position

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

512

Algorithm 3 DetWoORAM Operations with a Pointer Based Posi-

tion Map: main area size N , holding area sizeM , data array D, and
counter i

//Read and return data for address a
function read(a)
(ah, o, q) := getpos(a)
Bm = dec(D[a])
if Bm [o] = q then return Bm
else return dec(D[ah])
end if

end function

//Perform the i-th write of data d to address a
function write(a, d)

ah := N + (i mod M) //Holding address
D[ah] := enc(d) //Write to holding area

(o, q) := diff(d, dec(D[a])) //Offset o and bit diff q
setpos(a, (ah, o, q)) //Update Position Map

//Refresh N /M main area blocks per-write

s := ⌊i · N /M ⌋ mod N
e := ⌊(i + 1) · N /M ⌋ mod N
for am ∈ [s, e) do

D[am] := enc(read(am))
//No position map update needed

end for
i := i + 1 //increment counter

end function

map says a is and in the main area at a. Given these two blocks,

which is freshest data associated with a?
We can perform a freshness check between two blocks using

the one-bit diff technique. Specifically, the position map gives a

mapping of logical address a ∈ [0,N) to a tuple (ah ,o,q), where
ah ∈ [0,M) is an address to the holding area, o ∈ [0,B) is a bit offset
within a block, and q ∈ {0, 1} is the bit value of the freshest block at
the offset o. We define the tuple (ah ,o,q) as a position map pointer.

Whenever a write occurs for logical address a to holding area

ah , the offset o is chosen so as to invalidate the old data at address

a in the main area. Specifically, we ensure that the oth bit of the

new, fresh data dec(D[ah]) is different from the oth bit of the old,

stale data dec(D[a]). (If there is no difference between these, then

the old data is not really stale and the offset o can take any valid

index, say 0.)

Given the pointer (ah ,o,q), a freshness check between two blocks
dec(D[a]) and dec(D[ah]) is performed as follows:

Check if the oth bit of dec(D[a]) is q. If so, dec(D[a]) is fresh;
otherwise dec(D[ah]) is fresh.

The key observation is that when a block is refreshed to the main

area, there is no need to update the position map with a new pointer,

since the read operation always starts by checking if the block in

the main area is fresh. If the main area block is fresh, then there

is no need to even look up the holding area position (which may

have been rewritten with some newer block for a different logical

address). See Algorithm 3 for details of how this is accomplished.

Figure 3: DetWoORAM Diagram with Trie Position Map

Trie WoODS for Position Map. A more efficient solution for

storing the position map, as compared to the recursively stored

position map, is to use an oblivious data structure (ODS) in the

form of a Trie. Recall that Trie edges are labeled, and looking up a

node with a keywordw1w2 · · ·wℓ is performed by starting with a

root node and following the edge labeled withw1, and then with

w2, and all the way through the edge labeled withwℓ one by one,

finally reaching the target node.

As with previous tree-based ODS schemes [24, 33], our ODS

scheme avoids recursive position map lookups by employing a

pointer-based technique. That is, the pointer to a child node in a

Trie node directly points to a physical location instead of a logical

location, and therefore it is no longer necessary to translate a logical

address to a physical address within the Trie itself.

Applying an ODS in a write-only setting (a WoODS or write-

only oblivious data structure) is similar to an idea proposed by

Chakraborti et. al [5]. A major difference in our construction is that

we do not store the data structure within the primaryWoORAM.We

also allow changing the branching factor of the Trie independently

of the block size, so we can tune the secondary WoORAM and

flexibly control the number of physical blockwrites for every logical

write, including position map information stored within the Trie.

As the WoODS Trie is stored in an adjacent DetWoORAM con-

struction, we differentiate between the twoWoORAMs by referring

to the data WoORAM as the WoORAM storing data blocks and the

position WoORAM as the WoORAM storing the nodes of the Trie.

The Trie itself acts as the position map, and will map addresses in

the data WoORAMs main area to position map pointers referencing

the data WoORAMs holding area. The main idea is that given an

address a, one can walk the Trie to find a leaf node storing a’s posi-
tion map pointer. The position WoORAM will be strictly smaller

than the data WoORAM, but will be implemented using the same

DetWoORAM framework (i.e., using the notions of main area, the

holding area, and the counter).

Details of the procedure for the position WoORAM is outlined in

Algorithm 4. Observe that the functions for the position WoORAM

call the READ and WRITE functions from Algorithm 3, but with

modified versions of the subroutines for accessing and updating

the position map, as the Trie is its own position map.

As noted, the Trie is stored in an adjacent WoORAM that has a

main area and a holding area. The key difference is that the Trie

nodes are addressed with the position WoORAM’s main area using

heap indexing. For example, with a branching factor of b = 4, the

root node of the Trie has address 0, its children are at address 1, 2,

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

513

Algorithm 4 Trie WoODS with Np nodes and branching factor b.
read andwrite calls are the routines in Algorithm 3 (with modified

subroutines as specified) applied to position WoORAM instantiated

with Np main blocks andMp holding blocks.

//a ∈ [0, Np + N) is a position WoORAM or data WoORAM address

function path-indices(a)
if a = 0 then return [] //Base case: empty path to root node

else return [path-indices(⌊(a − 1)/b ⌋), (a − 1) mod b]
end if

end function

//Retrieve Trie nodes along a path
function path-nodes(a0, a1, . . . , aℓ−1)

B0 := root node //Root node is kept in local state

a := 0

for i = 0, . . . , ℓ − 1 do
ptr := Bi [ai] //The pointer to the ai th child, i.e., ptr = (ap, o, q)
a := (ai + 1) + b · a
Bi+1 := read(a) in Alg. 3 with its subroutine changed as:

▷ getpos(a) returns ptr
end for
return (B0, . . . , Bℓ)

end function

//a is an address; src is either DATA or TRIE
function getpos-trie(a, src)

if src = DATA then a0, a1, . . . , aℓ := path-indices(Np + a)
else a0, a1, . . . , aℓ := path-indices(a)
end if
(B0, . . . , Bℓ) := path-nodes(a0, a1, · · · aℓ−1)
return Bℓ [aℓ]

end function

//a is a data WoORAM index; ptr is a pointer

function setpos(a, ptr)
a0, a1, . . . , aℓ := path-indices(Np + a)
(B0, . . . , Bℓ) := path-nodes(a0, a1 · · · aℓ−1)
Bℓ [aℓ] := ptr //Change the leaf first
for j = ℓ, . . . , 1 do //from leaf to root

Call write(aj−1, Bj) in Alg. 3 with its subroutines changed as:

▷ setpos(aj−1, ptr ′) assigns ptr ′ to Bj−1[aj−1]
▷ getpos(a) returns getpos-trie(a, TRIE)

end for
if ℓ ,

⌈
logb (Np)

⌉
then write a dummy Trie node end if

Root node := B0

end function

3, and 4, and their children are at addresses (5, 6, 7, 8), (9, 10, 11,

12), and so on. By using heap indexing, the structure of the Trie

reveals the position of its nodes, becoming its own position map.

In particular, this indexing avoids the need to store edge labels

explicitly; they can instead be stored implicitly according to the

heap indexing formulas.

It is still possible for a node of the Trie to have been recently

updated and thus the freshest node information to be resident in

the holding area of the position WoORAM. As such, each internal

node of the Trie stores b position map pointers to the position

WoORAM’s holding area, one for each of its child nodes. A leaf

node in the Trie then stores b position map pointers to the data

WoORAM’s holding area. The root node of the Trie can be stored

as part of the local state, since it is constantly rewritten and read

on every operation. A visual of the Trie is provided in Figure 3.

Reading from the Trie to retrieve a position map pointer for the

data WoORAM is a straightforward process. One only needs to

traverse from the root node to a leaf, following a path dictated by

the address a called via getpos-trie(a, DATA). On each step down

the tree, the current Trie node stores the position map pointer of

the child node; the corresponding sequence of nodes are retrieved

via the path-nodes helper function. The position map pointers for

the data WoORAM can be found at the correct index in the leaf

node along the fetched path.

Updating a pointer in the Trie (by calling setpos(a,ptr)) is a
bit more involved. An update of the position map for the data

WoORAM requires updating a leaf node in the Trie within the

position WoORAM. Writing that leaf node will change its pointer,

which requires updating the parent node, whose pointer will then

also change, and so on up to the root of the Trie. That is, each write

to the main WoORAM requires rewriting an entire path of Trie nodes

within the position WoORAM.

Recall that in DetWoORAM, each write operation not only writes

one block to the holding area, but also performs some refreshes in

the main area. The challenge is, for each refresh, determining where

in the holding area fresher data might be. For the data WoORAM,

this is achieved simply by performing a lookup in the position map.

But for the positionWoORAM, there is no position map! Instead, we

use the Trie itself to look up the pointer for fresher data in a position

WoORAM refresh operation, by calling getpos-trie(a, TRIE). This
is possible again because of the heap indexing; from the index of the

Trie node that is being refreshed, we can determine all the indices

of the nodes along the path to that one, and then perform lookups

for the nodes in that path to find the position WoORAM holding

area location of the node being refreshed.

Trie WoODS parameters and analysis. We start by calculating

Np , which is the number of Trie nodes as well as the size of the

position WoORAM main area. This needs to be large enough so

that there is room for N pointers in the leaf nodes, where N is the

number of logical addresses in the data WoORAM. With branching

factor b, the number of Trie nodes is given by

Np =

⌊
N − 2
b − 1

⌋
∈ O(Nb−1). (3.1)

To derive (3.1) above, consider that each Trie node holds b point-

ers, either to children in the Trie or to addresses in the data Wo-

ORAM. We do not count the root node in Np because it changes

on each write in is stored in the O(1) client local memory. The

total number of pointers or addresses stored is therefore Np + N .

This leads to the inequality (Np + 1)b ≥ Np + N , which implies

Np =
⌈
N−b
b−1

⌉
. The form of (3.1) is a simple rewriting of this floor

into a ceiling based on the fact that, for any two integers x ,y,
⌈x/y⌉ = ⌊(x + y − 1)/y⌋ .

The height of the Trie is then equal to the height of a b-ary tree

with Np + 1 nodes, which is O(logb N). This is the number of Trie

nodes that need to be written to the holding area of the position

WoORAM on each update (including a potential dummy node).

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

514

Eachwrite to the dataWoORAM requires rewritingh ∈ O(logb N)
nodes in the Trie (for a single path). Each of those writes to the

holding area of the position WoORAM needs, on average, Np/Mp
number of refreshes to the main area, where Np is the size of the

position WoORAM’s main area andMp is the size of the position

WoORAM’s holding area.

Looking up a position in the Trie requires reading O(logb N)
blocks in the position WoORAM, each of which results in up to two

physical reads due to having to check for fresher data. A refresh

operation in the position WoORAM also requires a read of the

Trie to determine if fresher data for that node exists in the holding

area. If the sizes of the main area Np and holding areaMp for the

position WoORAM are not set appropriately, this could lead to

O(log2 N) reads to perform an update. However, consider that we

can control the ratio Np/Mp . If we set Mp ≫ Np logb N then we

need to perform only O(1) refreshes per position map update, thus

requiring O(logNp) reads per update.
If N is a power of b, then the number of leaf nodes in the Trie

N /b is also a power of b, and the Trie is a complete b-ary tree of

height logb (N /b). If N is not a power of b, then the last level of

the Trie is incomplete, and leaf node heights may differ by one. In

order to preserve write obliviousness, in cases of rewriting a path

with smaller height, we add one additional dummy node write.

Finally, observe that the branching factor b can play a role in

the performance. With b = 2, the size of a Trie path is minimized,

but the height and number of nodes Np are maximal. Increasing

b will reduce the height of the Trie and the number of Trie nodes,

while increasing the total size of a single path. As we will show

next, adjusting the packing of position map by setting the branching

factor b can be done carefully to achieve write communication cost

of exactly 2B in a fully sequential write pattern.

3.4 Fully Sequential Physical Write Pattern
In this section, we describe how to achieve fully sequential writing

of physical storage and how to minimize the communication cost.

This requires interleaving the various storage elements of DetWo-

ORAM such that all the writing, regardless of which part of the

construction is being written, occurs sequentially.

To understand the challenge at hand, first consider a simple

implementation which aligns the data WoORAM (main and holding

areas) adjacent to the position WoORAM (main and holding area)

forming a single storage data array broken into size-B blocks. A

write to the data WoORAM will result in a write to the holding

area plusM/N average writes to the main area. The position map

is also updated, requiringO(logb N) nodes in the Trie to be written

to the holding area and O(1) refreshes of the position WoORAM’s

main area, provided Mp ∈ Ω(Np logb N). While all these writes

occur sequentially within their respective data/position WoORAM

main/holding areas, do not occur sequentially on the underlying

storage device as each of the various WoORAM areas are separated.

Furthermore, the writes to the position map are wasteful in that

they may update only a few nodes, constituting just a small fraction

of the block, but in the uniform access model this in fact requires

updating the entire block.

We can improve on this storage layout and achieve a minimum

in write performance requiring exactly 2 blocks to be written to

Figure 4: Interleaving of WoORAMs into a Storage Array
with 2B size sequential writes.

physical storage for each block write, where one block is the new

data, a half block worth of main area refresh, and a half block worth

of position map updates. Further, we can interleave the various

WoORAM portions such that those 2 blocks are written sequentially

on the physical device.

DataWoORAMBlock Interleaving. Every logical blockwrite to
the data WoORAM results in exactly one block write to the holding

area of data WoORAM. Recall that there are two parameters for

setting up DetWoORAM: N , the size of the main area, andM , the

size of the holding area. These two values need not be the same,

and in fact, to achieve sequential writing, we will setM = 2N . In

this case, on average
M
N =

1

2
block is refreshed to the main area for

each logical write.

With adjacent main and holding areas, this could be achieved by

performing one full block refresh on every other logical write. To

make the writing sequential, we will instead refresh half of a block

on every logical write, resulting in the following storage layout:

h0,
m0

0

□
,h1,

m1

0

□
,h2,

m0

1

□
,h3,

m1

1

□
, . . . ,hM−2,

m0

N−1
□
,hM−1,

m1

N−1
□

wherem0

j is the first half of the blockmj ,m
1

j is the back half ofmj ,

and □ represents empty space. (This empty space will be used to

store nodes for the position WoORAM, as we will show next.)

There is a slight complication to reading now, as a single main

area block is actually divided between two physical memory lo-

cations, resulting in an additional (constant) overhead for reading

operations. The benefit is that the writing is fully sequential now:

each logical write requires writing sequentially the data being up-

dated (to the holding area), and the next half block of data being

refreshed (to the main area), plus another half-block containing

position map information as we will detail next. Also observe that,

under this configuration withM = 2N , the total physical memory

requirement will be 4N blocks.

Position WoORAM Block Interleaving. As suggested above,

the remaining half-block of data□ in the above construction will be

used to store position map information. A diagram storage achiev-

ing 2 sequential physical block writes per logical write is shown in

Figure 4.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

515

Specifically, these
B
2
bits will store the Trie nodes written to

position WoORAM holding and main areas during a single logical

write operation. This is (potentially) possible because the Trie nodes

in the position WoORAM are much smaller than the blocks in the

data WoORAM. Fully sequential writing will be achieved if and

only if all of the Trie nodes written during a single step can always

fit into B/2 bits.
There are many settings of parametersM , b, andMp that may

make sequential writing possible, depending on logical and physical

memory requirements and the physical block size B. We will choose

some parameters here and demonstrate that they would work for

any conceivable value of N .

For this purpose, set the branching factor b = 2, and then recall

from (3.1) that the number of Trie nodes and the Trie height will

be Np = N − 2 and h = ⌈lg(N − 2)⌉, respectively.
Next, set the number of nodes in the position WoORAM holding

area to be

Mp = Np · h. (3.2)

This ensures that only (at most) one Trie node needs to be refreshed

to the position WoORAM main area when writing an entire path of

h Trie nodes during a single logical write operation. (The number of

Trie nodes written to the holding area for each operation is always

h.) Based on these formulae, we need to have enough space in the

B/2 bits of a half block to fit h + 1 Trie nodes.
What remains is to estimate the size of each Trie node. Each

node stores b = 2 DetWoORAM pointers, each of which contains

⌈lgM⌉ bits for the holding area position, ⌈lgB⌉ bits for the block
offset, and 1 bit for the bit diff value. The condition that h + 1 Trie
nodes fit into B/2 bits then becomes

(h + 1) · (⌈lgM⌉ + ⌈lgB⌉ + 1) ≤ B

2

(3.3)

Combining this inequality with all of the previous settings for

b, M , and Mp , and assuming a block size of 4096 bytes (so B =

4096 · 8 = 2
15
) as is the default in modern Linux kernels, we have

(⌈lg (N − 2)⌉ + 1) · (⌈lgN ⌉ + 17) ≤ 2
14.

That inequality is satisfied for values of N up to 6.6× 1035, which is

muchmore than any conceivable storage size. Further tuning of the

b andM parameters could be dome to achieve an even tighter pack-

ing and/or better read performance while maintaining 2 physical

block writes per logical write.

3.5 Encryption Modes
The deterministic and sequential access pattern fits nicely with

encryption of each block using counter mode. In particular, We

encrypt each DetWoORAM block using AES encryption based on

the number i∥064 as a counter. Recall that the client maintains

the global counter i (64-bit long). Assuming the block size B is

reasonable (shorter than 2
64 · 16 bytes), there will be no collision

of IVs, and the security of encryption is guaranteed. We stress

that we do not need space for storing IVs due to this optimization

which cannot be applied to previous schemes. For example, the

randomized procedures in schemes like HiVE-WoORAM, IVs must

be stored separately on the server, adding to the communication

cost overhead.

However, the physical blocks that store the position map Trie

are encrypted with AES in CBC mode. When we pack multiple Trie

nodes together, such as during interleaving or packing as described

previously, we can encrypt a group of Trie nodes together in one

shot using a single IV. Since Trie nodes are much smaller than B,
we can place that IV for that group of nodes at the beginning of the

block itself, thus avoiding an extra memory access on read or write.

We note that after packing the Trie nodes into blocks, the number

of blocks in the main DetWoORAM is significantly larger than that

in the Position-DetWoORAM, so that most of the data is encrypted

using counter mode.

4 ANALYSIS OF DETWOORAM
We formally state the security (obliviousness), and communica-

tion complexity of DetWoORAM. Fortunately, the simplicity of

the construction makes the proofs relatively straightforward in all

cases.

Security proof. First we state the security in terms of the defini-

tions in Section 2.1.

Theorem 4.1. DetWoORAM provides write-only obliviousness.

Proof. Let ®x and ®y denote two sequences of operations in Det-

WoORAM that contain the same number of write operations.

The sequence of locations of physical writes is deterministic and

does not in any way depend on the actual locations being written,

and the contents of physical writes are encrypted using an IND-CPA

symmetric cipher. Therefore ii it holds that

WOnly(PhysicalAccΠ(®x)) ≈c WOnly(PhysicalAccΠ(®y)),
because the locations in these two access patterns are identical,

and the contents in the access patterns are indistinguishable from

random. ■

Communication complexity. For the complexity analysis, as-

sume that:

• the size ratioM/N is a constant,

• the branching factor b is a constant,

• the block size B is large enough to contain a single path of

trie nodes, and

• the positionmap holding area is at leastO(logN) times larger

than the position map’s main area.

Asymptotically this means that B ∈ Ω(log2 N). From a practical

standpoint, even in the extreme case of storing a yottabyte of data

(2
80

bytes), with holding area sizeM = N , branching factor b = 2,

and 4KB blocks (i.e., B = 4096), an entire path of trie nodes is still

well below the block size at 1496 bytes.

Theorem 4.2. Under the assumptions above, the number of physi-

cal block writes per logical block write in DetWoORAM is O(1). Fur-
thermore, the number of physical block reads per logical read or write

operation is O(logN).

Proof. Let h ∈ O(logb N) for the height of the trie that stores
the position map. A single read to DetWoORAM requires at most

two block reads and one position map lookup, which requires fetch-

ing all h nodes in the Trie path to that position. Fetching a Trie

node in the position WoORAM requires accessing the parent node

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

516

as well, requiring at most 2h nodes need to be fetched. In the worst

case every node might be packed in a different block, so this is

O(1 + h) physical block reads per logical read, which is O(logb N).
A single write to DetWoORAM requires at most 1+ ⌈M/N ⌉ block

writes to holding and main areas and one update to the position

map Trie. Each main area refresh requires an additional block read

and position map lookup. BecauseM/N is a constant, this is O(1)
block writes, O(logb N) reads, and one trie update.

Updating a single node in the Trie involves first fetching the

path to that node in O(logb N) physical reads, then writing each

node on that path, updating the pointers in the parent nodes from

leaf back up to root. This requires h writes to the position map

WoORAM, which from the assumptions will require h writes to

the holding area plus O(1) refreshes in position map WoORAM’s

main area. TheseO(1) refreshes each require looking upO(logb N)
nodes in the position map WoORAM, for an additional reading cost

of up to O(logN) physical blocks.
All together we get O(logb N) physical reads per logical write,

and O(1) physical writes per logical write. ■

5 IMPLEMENTATION
We have implemented our DetWoORAM system, using the Trie-

based position map, in an open source C++ library available at

https://github.com/detworam/detworam. As we will show in this

section, comparison benchmarks validate our theoretical results on

the efficiency of DetWoORAM, showing it to be many times faster

than the previous scheme of HiVE-WoORAM, and only a few times

slower than a non-oblivious baseline.

Our library. The library relies on BUSE (Block device in USErspace,
https://github.com/acozzette/BUSE) to allow mounting a normal

filesystem as with any other device. We also use the mbed TLS

library (https://tls.mbed.org/) for encryption utilities. We also made

extensive use of C++ templates in our implementation, which al-

lows for considerable flexibility in choosing the parameters for the

DetWoORAMand automatically tuning the performance at compile-

time. For example, based on the size and number of backend storage

blocks, the exact byte sizes needed to store pointers, relative pro-

portion of data WoORAM to position map WoORAM, trie height,

and relative main/holding area sizes will all be seamlessly chosen

at compile time.

The implementation is exactly as described in the previous sec-

tion, with a default Trie branching factor of b = 64 unless otherwise

noted. The only exception is that we did not implement the full

interleaving, but rather the packing solution within the position

map WoORAM to pack trie nodes into single blocks. Two blocks

at a time (from the position map holding and position map main

areas) are held in memory while they are being filled sequentially,

and then are written back to disk once filled. In total, the result

is that rather than having a fully sequential access pattern as we

would with full interleaving, we see 4 sequential write patterns in

sub-regions of memory.

Comparisons. We carefully re-implemented the HiVE-WoORAM

(only the WoORAM part, not the hidden volume part), using the

same BUSE/mbedTLS library setup. As in their original paper and

implementation, our HiVE-WoORAM implementation uses k =

Sequential write Sequential read

MB/sec overhead MB/sec overhead

dm-crypt baseline
SSD 505.4 — 615.8 —

HDD 111.6 — 126.1 —

HiVE-WoORAM
SSD 2.6 192x 40.5 15.2x

DetWoORAM
SSD,M = 3N , b = 64 49.7 10.2x 260.0 2.37x
SSD,M = N , b = 64 34.0 14.8x 244.1 2.52x

HDD,M = 3N , b = 64 29.0 3.84x 26.1 4.83x

HDD,M = N , b = 64 25.0 4.46x 24.1 5.24x

Logical disk size 40GB and block size 4KB in all cases.

Overhead is relative to the dm-crypt baseline for that drive type.

Highlighted values indicate the best WoORAM per column.

Table 2: bonnie++ benchmarking of sequential accesses

Solid state SSD Spinning platters HDD

MB/sec overhead MB/sec overhead

dm-crypt baseline 154 — 16.4 —

HiVE-WoORAM 8.49 18x 0.051 325x

DetWoORAM 34.4 4.5x 10.2 1.6x

Logical disk size 40GB and block size 4KB in all cases.

Overhead is relative to the dm-crypt baseline for that drive type.

DetWoORAM usedM/N = 3 and b = 64 for all cases.

Highlighted values indicate the best WoORAM per column.

Table 3: fio benchmarking of random reads and writes

3 random physical writes per logical write, and makes use of a

recursive positionmap. The original implementationwas as a kernel

module for a device mapper, but unfortunately due to Linux kernel

changes this module is incompatible with recent Linux kernels. In

fact, this incompatibility was part of our motivation to use only

standards-compliant userspace C++ code for our DetWoORAM

implementation.

For a baseline comparison, we wanted to use the best existing

solution with the same general setup as ours. Our baseline uses the

linux kernel module dm-crypt, which provides an encrypted block

device with no obliviousness, connected to simple “passthrough”

device that comes with the BUSE distribution. There is no oblivi-

ousness in this option; it simply encrypts/decrypts and stores the

resulting ciphertext in the same location on disk. This provides a fair

baseline to our work, and should help to eliminate any bottlenecks

or artifacts of the BUSE layer in order to have a clear comparison

with our new DetWoORAM protocol.

Measurement using bonnie++. Table 2 shows the results of run-
ning the popular bonnie++ disk benchmarking tool our the plain

encryption as well as different WoORAM settings. All tests were

performed with a 40GB logical filesystem within a 200GB partition,

using the btrfs filesystem.

We tested using 200GB partitions on a 1TB HDD (HGST Travel-

star 7200RPM) and on a 256GB SSD (Samsung 850 Pro). We note

that both drives are standard commodity disks available for around

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

517

https://github.com/detworam/detworam
https://github.com/acozzette/BUSE
https://tls.mbed.org/

$100 USD. As expected, the SSD drive is considerably faster for

both reading and writing.

Recall that one novel feature of DetWoORAM is that it can flexi-

bly adapt to different storage ratios between logical and physical

storage. We tested both withM = N , similar to the HiVE-WoORAM,

and with more physical space of M = 3N , and observed a slight

(but statistically meaningful) performance improvement from hav-

ing more physical disk space (and therefore larger holding area in

the DetWoORAM). We also tested with different branching factors

ranging from b = 2 to b = 512, but did not notice any significant

timing differences overall, indicating that the position map plays a

smaller role in the overall performance.

Overall we can see that the DetWoORAM suffers only a 3x-10x

slowdown compared to the baseline, whereas the HiVE-WoORAM

is almost 200x slower in the case of writing and 15x slower for

reading compared to the same baseline. The results for HiVE-Wo-

ORAM are consistent with the results reported in their original

paper [4].

In fact, our DetWoORAM running on an SSD is in most cases

faster than the baseline running on a spinning disk HDD, providing

good evidence that our system is fast enough for practical use. We

believe this is largely explained by the sequential write pattern of

DetWoORAM, which also makes read operations partially sequen-

tial. For large sequential workloads, the data locality appears to

have a very significant effect on performance.

Measurement usingfio. As has been noted in previousWoORAM

works [4], performing sequential logical operations can put Wo-

ORAMs in an especially bad light, as the baseline non-oblivious stor-

age will translate the sequential read/write operations to physically

sequential addresses, thereby gaining significantly over WoORAMs

that need to obscure the logical address of each operation.

Interestingly, our DetWoORAM is a somewhat “in-between” case

here, as the write pattern is completely sequential, and the read

pattern is partially sequential: the main area of storage corresponds

exactly to physical addresses, but the holding area and position map

do not. We used a second disk performance measurement tool fio
(https://github.com/axboe/fio) in order to perform random reads

and writes, as opposed to the sequential read/write pattern of the

bonnie++ benchmarks. The results are shown in Table 3, which

shows the throughput for random reads and writes of 4KB-4MB

sized blocks in direct access to the device without any filesystem

mounted.

As expected, the performance degradation for HDD compared

to SSD in all cases was significant for the random reads and writes.

As with the bonnie++ benchmarks, but more dramatically here,

our DetWoORAM running on an SSD outperformed the baseline

running on the HDD. Even more surprisingly, on the HDD our

DetWoORAM was only 1.6x slower than the baseline. This can be

explained in part by the fact that our scheme actually turns random

writes into sequential writes, so although it performs more writes

than the baseline, they will be more compact in this experiment.

6 INSECURITY OF DATALAIR
A recent paper [5] has also proposed to improve the performance of

HiVE-WoORAM. While this paper contains some new and promis-

ing ideas, and in particular proposed the use of a B-tree ODS similar

to our Trie ODS for the position map, unfortunately it violates the

notion of write-only obliviousness.

Intuitively, the DataLair scheme identifies that a bottleneck in Hi-

VE-WoORAM is in identifying free blocks from the random blocks

chosen, and propose to modify the random block choosing scheme

in order to find free blocks more efficiently with fewer dummy

writes. Unfortunately, this improvement leaks a small amount of

information about which blocks are free or not, and thereby allows

an adversary to distinguish between whether recent writes have

been to the same address, or to different addresses. We formalize

this notion and prove the insecurity of these schemes below.

We note that, since the submission of this work, the authors of

[5] have acknowledged the vulnerability here and proposed a fix

as a preprint [6].

Overview of scheme. LetN be the number of logical blocks. Data-

Lair sets 2N to the number of physical blocks so that the number of

free physical blocks is always N . In DataLair [5, Section IV], every

ORAMWrite considers two disjoint sets of k items:

• Free set S0: A set of k blocks chosen randomly among the N
free physical blocks.

• Random set S1: A set of k blocks chosen randomly among

the entire 2N physical blocks.

To make sure that S0 and S1 are disjoint, some elements may be

removed and addional steps of sampling may be done. Based on

the two sets, the ORAM writes a data block as follows:

ORAMWrite(d): // d is a data block

(1) Insert d in stash
(2) Create two sets S0 and S1 as described above.

(3) Choose k blocks U = {u1, . . . , uk } as follows:
For i = 1 to k :
bi ← {0, 1}, and fetch (and remove) ui from Sbi .
If bi = 0 and stash is not empty:

Take out a data item from stash and write it in ui .
Otherwise, reencrypt ui .

We assume N > 2k and k ≥ 3. The actual scheme chooses a

large N and k = 3.

Insecurity of the scheme. We note that the access pattern of a

single ORAMWrite is hidden. However, that alone is not sufficient

to show write obliviousness. In particular, security breaks down

when one considers multiple ORAMWrite operations.

Observe that the above algorithm is more likely to choose a free

block than a non-free block; with probability 1/2, a chosen block

will be from S0 and thereby always free, and with probability 1/2,

a chosen block will be from S1 and thereby sometimes free. This

tendency towards choosing free blocks leaks information. To clarify

our point, consider the following two sequences of logical writes:

seq0 = (init ,w0,w0,w2), seq1 = (init ,w0,w1,w2)

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

518

https://github.com/axboe/fio

Here, wi denotes writing data to a logical address i , and init is a
sequence of operations that makes the ORAM have exactly N free

blocks.
2

LetUi = (ui,1, . . . ,ui,k) be the set of chosen blocks from the ith
ORAMWrite after the init sequence. Let dℓ be the data in logical

block ℓ.

Then, in seq0, physical block γ ∈ U1 containing d0 will be prob-
ably freed up thanks to the secondw0, and the lastw2 may be able

to choose γ as a free block. However, in seq1, the block γ cannot

be freed up byw1, since γ contains d0! So, the lastw2 can choose γ
only as a non-free block. Due to the different probablity weights in

choosing free blocks vs. non-free blocks,U1 andU3 are more likely

to overlap in seq0 than in seq1, and security breaks down.

To clarify our point, we give an attack. Given an access pattern

(U1,U2,U3), the adversary tries to tell if it is from seq0 or seq1.
Consider the following events:

• X : u1,1 < U2, Y : u1,1 ∈ U3, E: X ∧ Y

The adversary works as follows:

Output 0 if E takes place; otherwise output a random bit.

Let pb = Pr[E] from seqb . We show that p0−p1 is non-negligible,
which proves that the adversary is a good distinguisher.

Let Fi (u) denote a predicate indicating whether a physical block

u was free when the ith ORAMWrite starts. Note that whether u1,1
belongs U3 ultimately depends on F3(u1,1). In particular, for any

u1,1, we have

qy = Pr [Y | Fb
3
(u1,1)] =

1

2

· k
N
+
1

2

· k

2N − k

qn = Pr [Y | ¬Fb
3
(u1,1)] =

1

2

· k

2N − k

The following table shows how F3(u1,1) depends on the previ-

ous events. In the table, D2(u) ∈ { f ,d∗
0
, . . . ,d∗N−1,d0} denotes a

random variable indicating which logical block a physical block u
contains when the second ORAMWrite starts. If the value is f , it
means the block is free, and d∗

ℓ
is the initial data for the logical block

ℓ that the ORAM initialization procedure used. The value d0 de-
notes the data block used in the firstw0 operation in seq0 and seq1.
Let Si (ℓ) denote a predicate indicating whether a logical block ℓ is

in the stash when the ith ORAMWrite starts. In addition, FreeSeti
denotes a predicate indicating whether the ith ORAMWrite found

a physical block in the free set S0 (thereby successfully writing the

input logical block in the free physical block).

2
Their ORAM seems to be initialized with exactly N free blocks, in which case init

contains no operation. If that’s not the case, we can set the init sequence as follows:

init = (w0, . . . , wN−1, w0, . . . , w0︸ ︷︷ ︸
λ times

),

where λ is the security parameter. Note that after the init sequence, the ORAM will

have exactly N non-free physical blocks and N free physical blocks with probability

least 1 − negl(λ). So, we can safely ignore this negligible probability, and proceed our

argument assuming that the ORAM has exactly N free blocks after the init sequence.

case D2(u1,1) S2(d0)
FreeSet2
(cond. on X)

F3(u1,1)
(seq0)

F3(u1,1)
(seq1)

c1 f x x 1 1

c2 d0 0 0 0 0

c3 d0 0 1 1 0

c4 d∗≥0 x 0 0 0

c5 d∗
0

1 1 1 1

c6 d∗
1

x 1 0 0 or 1

c7 d∗≥2 x 1 0 0

For example, in case c3,

• D2(u1,1) = d0: When the second ORAMWrite begins, the

physical block u1,1 contains the logical block d0.
• S2(d0) = 0: When the second ORAMWrite begins, the stash

is empty.

• (FreeSet2 |X) = 1: The second ORAMWrite found at least

one block in the free set S0.
• For seq0, the second write isw0. From FreeSet2 = 1, a newd0
fromw0 will be written in a free block, and u1,1 containing
the old d0 is freed.
• For seq1, the second write isw1. From FreeSet2 = 1, a new

d1 fromw1 will be written in a free block, butu1,1 containing
d0 is not affected.

Note that the first ORAMWrite in both seq0 and seq1 is the same

with w0, so D2(u1,1) and S2(d0) is identically distributed for both

seq0 and seq1. Moreover, observe that the distribution ofX depends

on onlyu1,1 because the ORAMWrite samplesU2 at random. Finally,

Pr[FreeSet2] is always the same, since the number of free blocks in

the second ORAMWrite is always the same with N .

Based on the table and the above observation, we have the fol-

lowing:

p0 − p1 ≥ Pr[c3 ∧ X](qy − qn) − Pr[c6 ∧ X](qy − qn)

≥ k

2N
·
(
Pr[c3 ∧ X] − Pr[c6 ∧ X]

)
=

k

2N
· Pr[X] ·

(
Pr[c3|X] − Pr[c6|X]

)
≥ k

4N
·
(
Pr[c3|X] − Pr[c6|X]

)
Now, let’s first calculate the lower bound on Pr[c3|X]. If the first

ORAMWrite chooses at least one block from the free set and writes

d0 in u1,1, it must be D2(u1,1) = d0 and S2(d0) = 0. Therefore,

Pr[D2(u1,1) = d0, S2(d0) = 0] ≥ 1

2

· 1
k
.

Moreover, at least probability
1

2
, the second ORAMWrite will find

a block from the freeset, which implies that

Pr[c3|X] ≥ 1

4k
.

To calculate the upper bound on Pr[c6|X], observe thatD2(u1,1) =
d∗
1
implies that u1,1 contained d

∗
1
even before the first ORAMWrite

w0. Therefore, we have

Pr[c6|X] ≤ Pr[u1,1 has d∗
1
before the 1st ORAMWrite] = 1

2N
.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

519

Therefore, we have

p0 − p1 ≥ k

4N
·
(
1

4k
− 1

2N

)
=

N − 2k
4N 2

.

7 RELATEDWORK
Oblivious RAM (ORAM) and applications. ORAM protects the

access pattern so that it is infeasible to guess which operation is

occurring and on which item. Since the seminal work by Goldreich

and Ostrovsky [9], many works have focused on improving effi-

ciency and security of ORAM (for example [18, 23, 25, 29] just to

name a few; see the references therein).

ORAM plays as an important tool to achieve secure cloud stor-

age [16, 27, 28] and secure multi-party computation [10, 14, 15, 32,

34] and secure processors [8, 13, 19]. There also have been works to

hide the access pattern of protocols accessing individual data struc-

tures, e.g., maps, priority queues, stacks, and queues and graph

algorithms on the cloud server [3, 24, 30, 33]. The work of [11]

considers obliviousness in the P2P content sharing system.

Write-only obliviousness. Blass et al. [4] considers write-only
ORAM (WoORAM), and gave a WoORAM construction much more

efficient than the traditional ORAM constructions. They applied

WoORAM to deniable storage scenarios and gave aWoORAM-based

construction of hidden volume encryption (HiVE). Aviv et al. [2]

gave a construction of oblivious synchronization and backup for the

cloud environment. They observed that write-only obliviousness is

sufficient for the scenario, since the client stores a complete local

copy of his data, and therefore read accesses are naturally hidden

from the adversary.

Deniable storage. Anderson et al. [1] proposed steganography-

based approaches, that is, hiding blocks within cover files or random

data. There are works based on his suggestion [17, 20], but they

don’t allow deniability against a snapshot adversary.

Another approach is hidden volumes. Unfortunately, existing so-

lutions such as TrueCrypt (discontinued now) [31], Mobiflage [26]

and MobiPluto [7] are secure only against a single-snapshot adver-

sary. HIVE [4] provides security even against a multiple-snapshot

adversary. DEFY [22] is the deniable log-structured file system

specifically designed for flash-based, solidstate drives; although it is

secure against a multiple-snapshot adversary, it doesn’t scale well.

8 CONCLUSION
We presented DetWoORAM, a stash-free, deterministic write-only

obliviousORAMwith sequential write patterns. This scheme achieves

asymptotic improvement in write communication costs,O(B logN),
requiring exactly 2B physical writes per logical write. We further

showed that prior schemes to improve on HiVE-WoORAM are inse-

cure. Finally, we implemented and evaluated DetWoORAM, and, for

sequential writing, it incurs only a 3-4.5x overhead on HDD and 10-

14x on SSD compared to using encryption only. It is 19x faster than

HiVE-WoORAM, the previous best, secure scheme. It is also practi-

cal; the theoretical write complexity is optimal, and DetWoORAM

with an SSD backend has similar (sometimes better) performance

compared to using encryption only on a spinning-platter HDD in a

similar price range.

ACKNOWLEDGMENTS
The authors thank the CCS program committee for their valuable

suggestions. This work is supported by the Office of Naval Re-

search under awards N0001416WX01489 and N0001416WX01645,

and by the National Science Foundation under awards 1618269 and

1319994.

REFERENCES
[1] Ross J. Anderson, Roger M. Needham, and Adi Shamir. 1998. The Steganographic

File System. In Information Hiding, Second International Workshop, Portland, Ore-

gon, USA, April 14-17, 1998, Proceedings. Springer, Berlin, Heidelberg, 73–82.

https://doi.org/10.1007/3-540-49380-8_6

[2] Adam J Aviv, Seung Geol Choi, Travis Mayberry, and Daniel S Roche. 2017.

ObliviSync: Practical Oblivious File Backup and Synchronization. In NDSS 2017

(NDSS’17). The Internet Society, San Diego, CA, USA. https://doi.org/10.14722/

ndss.2017.23188

[3] Marina Blanton, Aaron Steele, and Mehrdad Aliasgari. 2013. Data-oblivious

graph algorithms for secure computation and outsourcing. In ASIACCS 13, Kefei

Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng (Eds.). ACM Press,

Hangzhou, China, 207–218.

[4] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. 2014.

Toward Robust Hidden Volumes Using Write-Only Oblivious RAM. In ACM CCS

14, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ,

USA, 203–214.

[5] Anrin Chakraborti, Chen Chen, and Radu Sion. 2017. DataLair: Efficient Block

Storage with Plausible Deniability against Multi-Snapshot Adversaries. Pro-

ceedings on Privacy Enhancing Technologies 2017 (July 2017), 175–193. Issue

3.

[6] Anrin Chakraborti, Chen Chen, and Radu Sion. 2017. DataLair: Efficient Block

Storage with Plausible Deniability against Multi-Snapshot Adversaries. CoRR

abs/1706.10276 (2017).

[7] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. MobiPluto: File

System Friendly Deniable Storage for Mobile Devices. In Proceedings of the 31st

Annual Computer Security Applications Conference, Los Angeles, CA, USA, Decem-

ber 7-11, 2015. 381–390.

[8] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srini-

vas Devadas. 2015. Freecursive ORAM: [Nearly] Free Recursion and Integrity

Verification for Position-based Oblivious RAM. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015. 103–116.

[9] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/233551.

233553

[10] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,

Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure two-party computation

in sublinear (amortized) time. In ACM CCS 12, Ting Yu, George Danezis, and

Virgil D. Gligor (Eds.). ACM Press, Raleigh, NC, USA, 513–524.

[11] Yaoqi Jia, Tarik Moataz, Shruti Tople, and Prateek Saxena. 2016. OblivP2P:

An Oblivious Peer-to-Peer Content Sharing System. In 25th USENIX Security

Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. 945–962.

[12] Lichun Li and Anwitaman Datta. 2013. Write-Only Oblivious RAM based

Privacy-Preserved Access of Outsourced Data. Cryptology ePrint Archive, Report

2013/694. (2013). http://eprint.iacr.org/2013/694.

[13] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and

Elaine Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace

Oblivious Computation. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015. 87–101.

[14] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks. 2014.

Automating Efficient RAM-Model Secure Computation. In 2014 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 623–

638. https://doi.org/10.1109/SP.2014.46

[15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, San Jose, CA,

USA, 359–376. https://doi.org/10.1109/SP.2015.29

[16] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private

File Retrieval by Combining ORAM and PIR. In NDSS 2014. The Internet Society,

San Diego, CA, USA.

[17] Andrew D. McDonald and Markus G. Kuhn. 1999. StegFS: A Steganographic

File System for Linux. In Information Hiding, Third International Workshop, IH’99,

Dresden, Germany, September 29 - October 1, 1999, Proceedings. 462–477.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

520

https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.14722/ndss.2017.23188
https://doi.org/10.14722/ndss.2017.23188
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
http://eprint.iacr.org/2013/694
https://doi.org/10.1109/SP.2014.46
https://doi.org/10.1109/SP.2015.29

[18] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant Commu-

nication ORAM with Small Blocksize. In ACM CCS 15, Indrajit Ray, Ninghui Li,

and Christopher Kruegel: (Eds.). ACM Press, Denver, CO, USA, 862–873.

[19] Kartik Nayak, Christopher Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam,

Elaine Shi, and Vipul Goyal. 2017. Hop: Hardware makes obfuscation practical.

In 24th Annual Network and Distributed System Security Symposium, NDSS.

[20] HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. 2003. StegFS: A Steganographic

File System. In Proceedings of the 19th International Conference on Data Engineer-

ing, March 5-8, 2003, Bangalore, India. 657–667.

[21] Kenneth G. Paterson and Mario Strefler. 2015. A Practical Attack Against the Use

of RC4 in the HIVE Hidden Volume Encryption System. In ASIACCS 15, Feng Bao,

Steven Miller, Jianying Zhou, and Gail-Joon Ahn (Eds.). ACM Press, Singapore,

475–482.

[22] Timothy Peters, Mark Gondree, and Zachary N. J. Peterson. 2015. DEFY: A

Deniable, Encrypted File System for Log-Structured Storage. In NDSS 2015. The

Internet Society, San Diego, CA, USA.

[23] Ling Ren, ChristopherW. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements

to Oblivious RAM. In 24th USENIX Security Symposium, USENIX Security 15,

Washington, D.C., USA, August 12-14, 2015. 415–430.

[24] Daniel S. Roche, Adam J. Aviv, and Seung Geol Choi. 2016. A Practical Oblivious

Map Data Structure with Secure Deletion and History Independence. In 2016

IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Jose,

CA, USA, 178–197. https://doi.org/10.1109/SP.2016.19

[25] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage. In 2016

IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Jose,

CA, USA, 198–217. https://doi.org/10.1109/SP.2016.20

[26] Adam Skillen and Mohammad Mannan. 2014. Mobiflage: Deniable Storage

Encryptionfor Mobile Devices. IEEE Trans. Dependable Sec. Comput. 11, 3 (2014),

224–237.

[27] Emil Stefanov and Elaine Shi. 2013. ObliviStore: High Performance Oblivious

Cloud Storage. In 2013 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, Berkeley, CA, USA, 253–267.

[28] Emil Stefanov and Elaine Shi. 2013. ObliviStore: High Performance Oblivious

Distributed Cloud Data Store. In NDSS 2013. The Internet Society, San Diego, CA,

USA.

[29] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In ACM CCS 13, Ahmad-Reza Sadeghi, Virgil D. Gligor,

and Moti Yung (Eds.). ACM Press, Berlin, Germany, 299–310.

[30] Tomas Toft. 2011. Brief Announcement: Secure data structures based on multi-

party computation. In 30th ACM PODC, Cyril Gavoille and Pierre Fraigniaud

(Eds.). ACM, San Jose, CA, USA, 291–292.

[31] TrueCrypt. 2017. (discontinued). (2017). http://www.truecrypt.org/.

[32] XiaoWang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness

of the Goldreich-Ostrovsky Lower Bound. In ACM CCS 15, Indrajit Ray, Ninghui

Li, and Christopher Kruegel: (Eds.). ACM Press, Denver, CO, USA, 850–861.

[33] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi,

Emil Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In ACM CCS

14, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ,

USA, 215–226.

[34] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner,

David Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient

Random Access in Multi-party Computation. In 2016 IEEE Symposium on Security

and Privacy. IEEE Computer Society Press, San Jose, CA, USA, 218–234. https:

//doi.org/10.1109/SP.2016.21

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

521

https://doi.org/10.1109/SP.2016.19
https://doi.org/10.1109/SP.2016.20
https://doi.org/10.1109/SP.2016.21
https://doi.org/10.1109/SP.2016.21

	Abstract
	1 Introduction
	1.1 A Deterministic Approach to WoORAMs
	1.2 Our Work: DetWoORAM

	2 Background
	2.1 Write-only ORAM
	2.2 HiVE-WoORAM

	3 Deterministic WoORAM Design
	3.1 A Toy Deterministic WoORAM Construction
	3.2 De-amortizing the toy construction
	3.3 Incorporating the Position Map
	3.4 Fully Sequential Physical Write Pattern
	3.5 Encryption Modes

	4 Analysis of DetWoORAM
	5 Implementation
	6 Insecurity of DataLair
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

