
S3ORAM: A Computation-Efficient and Constant Client
Bandwidth Blowup ORAM with Shamir Secret Sharing

Thang Hoang

EECS, Oregon State University

Corvallis, Oregon

hoangmin@oregonstate.edu

Ceyhun D. Ozkaptan

EECS, Oregon State University

Corvallis, Oregon

ozkaptac@oregonstate.edu

Attila A. Yavuz

EECS, Oregon State University

Corvallis, Oregon

attila.yavuz@oregonstate.edu

Jorge Guajardo

Robert Bosch RTC

Pittsburgh, PA

Jorge.GuajardoMerchan@us.bosch.com

Tam Nguyen

EECS, Oregon Sate University

Corvallis, Oregon

nguyeta4@oregonstate.edu

ABSTRACT
Oblivious Random Access Machine (ORAM) enables a client to

access her data without leaking her access patterns. Existing client-

efficient ORAMs either achieve O(logN) client-server communi-

cation blowup without heavy computation, or O(1) blowup but

with expensive homomorphic encryptions. It has been shown that

O(logN) bandwidth blowup might not be practical for certain ap-

plications, while schemes with O(1) communication blowup incur

even more delay due to costly homomorphic operations.

In this paper, we propose a new distributed ORAM scheme re-

ferred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves
O(1) client-server bandwidth blowup and O(1) blocks of client stor-

age without relying on costly partial homomorphic encryptions.

S
3
ORAM harnesses Shamir Secret Sharing, tree-based ORAM struc-

ture and a secure multi-party multiplication protocol to eliminate

costly homomorphic operations and, therefore, achieves O(1) client-

server bandwidth blowup with a high computational efficiency. We

conducted comprehensive experiments to assess the performance

of S
3
ORAM and its counterparts on actual cloud environments,

and showed that S
3
ORAM achieves three orders of magnitude lower

end-to-end delay compared to alternatives with O(1) client commu-

nication blowup (Onion-ORAM), while it is one order of magnitude
faster than Path-ORAM for a network with a moderate bandwidth

quality. We have released the implementation of S
3
ORAM for fur-

ther improvement and adaptation.

1 INTRODUCTION
Oblivious Random Access Memory (ORAM) [21] allows Alice to

access her data outsourced to a cloud without leaking to the server

which data blocks have been accessed. Despite recent progress, it

has been shown that existing ORAM designs are costly due to their

high communication and/or computation overhead [1, 6, 22, 29, 30].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134090

The objective of this paper is to create an efficient ORAM scheme
that simultaneously achieves (i) a low client communication overhead
(i.e., O(1) client bandwidth blowup), (2) low computational overhead
by avoiding costly partial homomorphic encryptions, and (iii) low
client storage (i.e., O(1) block storage).

1.1 Research Gap and Problem Statement
ORAMwith O(logN) bandwidth blowup. Stefanov et al. in [40]

proposed Path-ORAM scheme that achieves the optimal lower

bound of Ω(logN) communication blowup under O(1) blocks of

client storage [7, 42]. However, Path-ORAM has been shown to

be costly for certain applications [6, 30, 36] due to the transmis-

sion cost of O(logN) blocks per access request. The client com-

munication blowup can be reduced by introducing computation

at the server side [3, 12]. Ring-ORAM [33] improved the commu-

nication efficiency of Path-ORAM by approximately 2.5 times by

allowing the server to perform XOR operations. However, it still

requires O(logN) communication blowup. Other ORAM schemes

(e.g., [11, 26]) used single-server PIR (e.g., [41]) to reduce the com-

munication overhead. However, they still require O(logN) band-
width blowup, and also incur significant computation cost due to

single-server PIR techniques (e.g., [41]).

ORAM with O(1) bandwidth blowup. Recent ORAM schemes

(e.g., Onion-ORAM [12], Bucket-ORAM [14], and [3]) rely on fully

or partial Homomorphic Encryption (HE) (e.g., [31]) to achieve O(1)

bandwidth blowup with O(1) blocks of client storage. However,

these ORAMs introduce an extremely high end-to-end delay due

to heavy computations incurred by HE operations. For instance,

it has been shown in [1, 28] that HE operations take much longer

execution time than the use of ORAMs with O(logN) communica-

tion blowup (e.g., Path-ORAM [40]). Therefore, distributed ORAM

schemes have been proposed to achieve a better computation per-

formance trade-off.

Distributed ORAM without Costly HE Operations. Stefanov
et al. proposed an ORAM scheme [37] that leverages two non-

colluding computation-capable servers to achieveO(1) client-server

bandwidth blowup with O(logN) server-server communication

blowup. However, it requires O(
√
N) blocks of client storage due to

its underlying ORAM primitive (i.e., Partition-ORAM [39]), which

is extremely costly for memory-limited clients.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

491

https://doi.org/10.1145/3133956.3134090

Table 1: Asymptotic and Experimental Performance Comparison of S3ORAM and its Counterparts.

Scheme Bandwidth Blowup† Server
Computation

Client
Block Storage‡

End-to-end
Delay (s) # of serversClient-server Server-server

Path-ORAM [40] O(logN) - - O(λ) 20.3 1

Ring-ORAM [33] O(logN) - XOR O(λ) 13.2 1

Onion-ORAM [12] O(1) - Additively HE [10] O(1) 10
4

1

S
3
ORAM O(1) O(logN)

Secure addition and

multiplication of SSS values

O(1) 2.5 3

This table presents the performance result of selected ORAM schemes with 40GB database containing 128-KB blocks and the network setting that offers a download and upload

throughput of approximately 27 and 6 Mbps, respectively. We refer the reader to Section 5 for the details of our experiments. λ denotes the security parameter.

†Bandwidth blowup is defined as the ratio between the communication introduced by ORAM and the base case where the access pattern is not hidden.

‡ Client block storage is defined as the number of data blocks that need to be temporarily stored at the client. This is equivalent to the stash component used in [33, 40].

Some ORAM schemes (e.g., [1, 27]) attempted to use multi-server

PIR (e.g., [9]) to decrease the communication overhead under O(1)

blocks of client storage without using costly homomorphic en-

cryption. Abraham et al. in [1] showed an asymptotically tight

sub-logarithmic communication blowup bound of Ω(logcD N) for
composing ORAM with PIR, where c,D are the numbers of blocks

stored by the client and performed by PIR operations, respectively.

Therefore, although the CHf-ORAM scheme in [27] claimed to

achieve O(1) bandwidth blowup with O(1) blocks of client storage,

it has been shown to violate this bound with two concrete attacks

in [1]. To the best of our knowledge, there is no secure distributed

ORAM scheme that can achieve an O(1) client-server bandwidth

blowup with O(1) blocks of client storage overhead.

1.2 Our Contribution
Wedeveloped a new distributed ORAM that we refer to as Shamir Se-
cret Shared ORAM (S3ORAM). Below, we first present our main idea

followed by desirable properties and contributions of our scheme.

Main idea.Although Onion-ORAM [12] is considered a theoretical

construction due to its costly partial HE operations, it offers an

elegant eviction strategy, which is useful to achieve O(1) client

bandwidth blowup with O(1) blocks of client storage. Our main

idea is to harness the “homomorphic” properties of Shamir Secret

Sharing (SSS) along with a secure multi-party multiplication proto-

col to perform eviction operations in the line of Onion-ORAM, but

in a significantly more efficient and practical manner. By doing this,

S
3
ORAM inherits all desirable properties of Onion-ORAM without

the costly homomorphic operations and, thus, requiring only a

lightweight computation and suitability for larger block sizes. Table

1 outlines a high-level comparison of S
3
ORAM and its counterparts.

Desirable properties and contributions. We summarize the

desirable properties of S
3
ORAM and our contributions as follows:

• Low client-server communication: S3ORAM achieves O(1) client

bandwidth blowup, compared with O(logN) of Path-ORAM [40]

and Ring-ORAM [33] (with a fixed number of servers). Moreover,

S
3
ORAM features smaller block sizes (i.e., Ω(logN)) than those

of other ORAM schemes with O(1) communication blowup,

which require fully or partial HE operations (e.g., Ω(log
5 N) in

Onion-ORAM [12], Ω(log
6 N) in Bucket-ORAM [14]).

• Low server computation: In S3ORAM, servers only perform light-

weight modular additions and multiplications, which are much

more efficient than partial HE (e.g., [10]) operations. In particular,

we show in Section 5 that, the server computation of S
3
ORAM

is three orders of magnitude faster than that of Onion-ORAM.

• Low client computation: In S
3
ORAM, the client only performs

lightweight computations for retrieval and eviction operations.

Thus, it is more efficient than Onion-ORAM which requires a

number of partial HE operations. For example, S
3
ORAM requires

only a few milliseconds compared to minutes of Onion-ORAM

to generate encrypted select queries (see Section 5). Moreover,

since blocks in S
3
ORAM are single encrypted, the decryption is

less costly and, therefore, faster than other ORAMs (e.g., [12, 37])

whose blocks are onion-encrypted.

• Low end-to-end delay: S3ORAM is approximately three orders

of magnitude faster than Onion-ORAM, while it is one order of

magnitude faster than Path-ORAM in networks with moderate
bandwidth (e.g., < 240 Mbps).

• Compact client storage: S3ORAM features O(1) blocks of client

storage, compared to O(λ) in Path-ORAM and Ring-ORAM, re-

spectively, and O(
√
N) of Stefanov et al. in [39].

• High security: S3ORAM relies on Shamir Secret Sharing and a se-

cure multi-party multiplication protocol, and therefore, it offers

information-theoretic security.

• Full-fledged implementation and experiments: We implemented

S
3
ORAM and evaluated its performance in an actual cloud envi-

ronment (i.e., Amazon EC2). The detailed experiments in Section

5 showed that S
3
ORAM is efficient in practice, and it can even be

deployed on mobile devices with limited computation capacity

and network connection. We also release the source code of

S
3
ORAM for public use and wide adaptation

1
.

S
3
ORAM does not rely on the direct composition of PIR and ORAM,

and it requires servers to communicate with each other to execute

a secure multi-party multiplication protocol with the communica-

tion blowup of O(logN). Therefore, S3ORAM does not violate the

asymptotic communication bound of Abraham et al. [1]. Note that

a high bandwidth is available for inter-cloud communications via

dedicated connections [23]. Hence, the inter-cloud communication

1
Available at https://github.com/thanghoang/S3ORAM

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

492

https://github.com/thanghoang/S3ORAM

of S
3
ORAM has a minimal impact on the end-to-end client-server

delay as detailed in Section 5.

On the other hand, in many practical scenarios, it may not be

possible to guarantee a reliable high-bandwidth communication

link between the client and the servers. This is particularly true

in the case of home networks and mobile devices with wireless

network connectivity (e.g., Wi-Fi, LTE). Therefore, following re-

cent work, one of the main goals of this work is to minimize the

client communication overhead while at the same time requiring

a low computational overhead at the client and the server sides.

In Section 5, we demonstrate the advantages of S
3
ORAM over its

counterparts with O(logN) and O(1) communication blowup for

such moderate bandwidth network settings. It turns out, that the

advantages of S
3
ORAM over its counterparts with O(1) bandwidth

blowup such as Onion-ORAM are significant due to its computa-

tional efficiency. This efficiency is obtained, however, at the cost of

requiring multiple servers (at least three) in the distributed setting.

2 PRELIMINARIES AND BUILDING BLOCKS
Notation. x

$

← S denotes that x is randomly and uniformly se-

lected from set S. |S| denotes the cardinality of set S. |x | denotes

the size of variable x . For any integer l , (x1, . . . ,xl)
$

← S denotes

(x1

$

← S, . . . ,xl
$

← S). We denote a finite field as Fp , where p is a

prime. Given u and v as vectors with the same length, u · v denotes

the inner product of u and v. Given an n-dimensional vector u and

a matrix I of size n×m, v = u · I denotes the matrix product of u and

I resulting in anm-dimensional vector v. I[i, ∗] denotes accessing
data of row i of matrix I.

2.1 Model of Computation
Following the literature in distributed secure computation (e.g.,

[5, 19]), we assume a synchronous network which consists of a

client and ℓ ≥ 2t + 1 semi-honest servers S = {S1, . . . ,Sℓ}. It is

also assumed that the channels between all the players are pairwise-

secure, i.e., no player can tamper, read, or modify the contents of the

communication channel of other players. We assume that all parties

behave in an “honest-but-curious” manner in which parties always

send messages as expected but try to learn as much as possible

from the shared information received or observed. Notice that in

this paper, we do not allow parties to provide malicious inputs, i.e.,

parties are not allowed to behave in a Byzantine manner.

A protocol is t-private [5] (see [19] for similar definitions in the

context of distributed PIR) if any set of at most t parties cannot com-

pute after an execution of a protocol more than they could compute

individually from their set of private inputs and outputs. Alterna-

tively, the parties have not “learned” anything. Our protocols in

general, offer information-theoretic guarantees, unless something

is said explicitly to the contrary. This implies that our solutions

are secure against computationally unbounded adversaries. As it is

standard, we require that all computations by the servers and client

be polynomial time and efficient. Finally notice that in this paper,

not only is the interaction between the servers and client performed

in such a way that information-theoretic security is guaranteed but

also the database being accessed is shared among the servers in a

way that no coalition of up to t servers can find anything about the

database contents (also in an information-theoretic manner).

2.2 Shamir Secret Sharing
We recall (t , ℓ)-threshold Shamir’s Secret Sharing scheme [34]which

comprises two algorithms SSS.Create and SSS.Recover as presented
in Algorithm 1. To share a secret α ∈ Fp among ℓ parties, a dealer

generates a random polynomial f where f (0) = α and evaluates

f (xi) for party Pi for 1 ≤ i ≤ ℓ, where xi ∈ Fp \ {0} is a determin-

istic non-zero element of Fp that uniquely identifies party Pi and

it is considered public information (SSS.Create algorithm). f (xi) is
referred to as the share of party Pi , and it is denoted by JαKi . To
reconstruct the secret α , the shares of at least t + 1 parties have to

be combined via Lagrange interpolation (SSS.Recover algorithm).

Algorithm 1 Shamir Secret Sharing (SSS) scheme [34]

(JαK1, . . . , JαKℓ) ← SSS.Create(α , t): Create t-private shares of α

1: (a1, . . . ,at)
$

← Fp
2: for i = 1, . . . , ℓ do
3: JαKi ← α +

∑t
j=1

aj · x
j
i

4: return (JαK1, . . . , JαKℓ)

α ← SSS.Recover(A, t): Recover the value α from ≥ t + 1 shares

1: Randomly pick t + 1 ≤ ℓ shares {JαKx1
, . . . , JαKxt+1

} in A

2: д(x) ← LagrangeInterpolation
(
{(xi , JαKxi)}

t+1

i=1

)
3: α ← д(0)
4: return α

We extend the notion of secret share for a value into the share

for a vector in the natural way as follows: Given a vector v =
(v1, . . . ,vn), JvKi = (Jv1Ki , . . . , JvnKi) indicates the share of v for

party Pi , which is a vector whose elements are the shares of the

elements in v. Similarly, given a matrix I, JIK denotes the share of I,
which is also a matrix with each cell JI[i, j]K being the share of the

cell I[i, j]. In some cases, to ease readability, we drop the subscript

i , when the party is understood from the context.

Shamir [34] showed that SSS is information-theoretic secure and

t-private in the sense that no set of t or less shares reveals any
information about the secret. More precisely, ∀m,m′ ∈ Fp , ∀I ⊆
{1, . . . , ℓ} s.t. |I | ≤ t and for any set A = {a1, . . . ,a |I |} where

ai ∈ Fp , the probability distributions of

{
si ∈I : (s1, . . . , sℓ) ←

SSS.Create(m, t)
}
and

{
s ′i ∈I : (s ′

1
, . . . , s ′

ℓ
) ← SSS.Create(m′, t)

}
are identical and uniform:

Pr({si ∈I } = A) = Pr({s ′i ∈I } = A).

Ben-Or et al. [5] showed that SSS can be used to obtain t-private
protocols. Lemma 2.1 summarizes the homomorphic properties of

SSS and it was first described in [5].

Lemma 2.1 (SSS homomorphic properties [5]). Let JαK(t)i be
the Shamir share of value α ∈ Fp with privacy level t for Pi . SSS
offers additively and multiplicatively homomorphic properties:
• Addition of two shares

Jα1K
(t)
i + Jα2K

(t)
i = Jα1 + α2K

(t)
i . (1)

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

493

• Multiplication w.r.t a scalar c ∈ Fp

c · JαK(t)i = Jc · αK(t)i . (2)

• Partial share multiplication

Jα1K
(t)
i · Jα2K

(t)
i = Jα1 · α2K

(2t)
i . (3)

The two-share partial multiplication (3) in Lemma 2.1 results

in a share of α1 · α2 which is t-private and represented by a 2t-
degree polynomial. It was first observed in [5] that the resulting

polynomial is not uniformly distributed. In order to achieve the

uniform distribution and computation consistency over Jα1 · α2K, it
is required to reduce the degree of the polynomial representation

of Jα1 · α2K from 2t to t and re-share the polynomial. This multi-

plication operation with degree reduction can be achieved via a

secure multiplication protocol shown in the following section
2
.

2.3 Secure Multi-party Multiplication
Gennaro et al. [17] presents a Secure Multiplication Protocol (SMP)

for two Shamir secret-shared values among multiple parties. Given

α1,α2 ∈ Fp shared by (t , ℓ)-threshold SSS as Jα1K
(t)
i and Jα2K

(t)
i for

1 ≤ i ≤ ℓ respectively, 2t + 1 parties Pi among ℓ parties would like

to compute the multiplication of α1,α2 without revealing the value

of α1 and α2. The protocol requires a Vandermonde matrix V{xi }
of size (2t + 1) × (2t + 1) having the structure as follows:

V{x1, ...,x2t+1 } =

x0

1
x1

1
. . . x2t

1

x0

2
x1

2
. . . x2t

2

...
...

. . .
...

x0

2t+1
x1

2t+1
. . . x2t

2t+1

, (4)

where xi ∈ Fp are unique identifiers of participating Pi . We refer

to V−1
as the inverse of Vandermonde matrix. Each Pi locally

multiplies Jα1K
(t)
i and Jα2K

(t)
i resulting in Jα1 · α2K

(2t)
i , and creates

shares of Jα1 · α2K
(2t)
i by a new random polynomial of degree t

for 2t + 1 parties and distributes them to other 2t parties. Finally,
each party locally performs the inner product between the received

shares and V−1

{xi }
[1, ∗] to obtain a new share of α1 ·α2 which is now

represented by a polynomial of degree t as Jα1 · α2K
(t)
i . Protocol 1

presents this multiplication protocol.

Protocol 1 SMP Protocol [17]

Input: Pi owns Jα1K
(t)
i , Jα2K

(t)
i and wants to compute Jα1 · α2K

(t)
i

Output: Each Pi obtains JβK(t)i , where β = α1 · α2

1: for each Pi ∈ {P1, . . . ,P2t+1} do
2: JβK(2t)i ← Jα1K

(t)
i · Jα2K

(t)
i

3: (JβK(t)j)
ℓ
j=1
← SSS.Create(JβK(2t)i , t)

4: Distribute JβK(t)j to all Pj ∈ {P1, . . . ,P2t+1} \ Pi

5: for each Pi ∈ {P1, . . . ,P2t+1} do

6: JβK(t)i ←
2t+1∑
j=1

V−1[1, j] · JβK(t)j

2
Benor et al. [5] proposed a secure multiplication protocol, however the protocol of

Gennaro et al. [17] is more efficient and thus, is the subject of Section 2.3.

Lemma 2.2 (SMP protocol Privacy [17]). The SMP protocol in
[17] (denoted as ⋆ operator) offers homomorphic property for full
multiplication between two SSS-shares whose result is t-private as:

Jα1 · α2K
(t)
i = Jα1K

(t)
i ⋆ Jα2K

(t)
i (5)

2.4 Multi-server Private Information Retrieval
Private Information Retrieval (PIR) enables retrieval of a data item

from an (unencrypted) public database without revealing which

item being fetched. We follow the presentation of [4, 19] as follows.

Definition 2.3 (multi-server PIR [4, 9, 19]). Let b = (b1, . . . ,bn) be
a database consisting of n items being stored in ℓ servers. A multi-

server PIR protocol consists of three algorithms: PIR.CreateQuery,
PIR.Retrieve and PIR.Reconstruct. Given an item bi in b to be re-

trieved, the client creates queries (e1, . . . , eℓ) ← PIR.CreateQuery(i)
and distributes ej to serverSj . Each server responds with an answer
aj ← PIR.Retrieve(ej , b). Upon receiving ℓ answers, the client com-

putes the value of item bi by invoking the reconstruction algorithm

b ← PIR.Reconstruct(a1, . . . ,aℓ).

Security of the protocol is defined in terms of correctness and
privacy. A multi-server PIR protocol is correct if the client computes

the correct value of b from any ℓ answers via PIR.Reconstruct
algorithm with probability 1. The concept of t-privacy for protocols
is applied naturally to the PIR setting and follows directly from the

t-privacy of SSS and the fact that among the servers they only have

access to t shares of the query vector [19].

2.5 Multi-server ORAM Security
We now define the security of multi-server ORAM in the semi-

honest setting proposed in [1] as a straightforward extension of

the definition in [1] to the multi-server setting.

Definition 2.4 (Multi-server ORAM with server computation). Let
x =

(
(op

1
, id1, data1), . . . , (opq , idq , dataq)

)
be a data request se-

quence of length q, where opj ∈ {Read,Write}, idj is the identifier
to be read/written and dataj is the data identified by idj to be

read/written. LetORAMj (x) represent the ORAM client’s sequence

of interactions with the server Si given a data request sequence x.
Correctness. A multi-server ORAM is correct if for any access

sequence x,
{
ORAM1(x), . . . ,ORAMℓ(x)

}
returns data consistent

with x except with a negligible probability.

t-security. A multi-server ORAM is t-secure if ∀I ⊆ {1, . . . , ℓ}
such that |I | ≤ t , for any two data access sequences x, y with |x| =
|y|, their corresponding transcripts

{
ORAMi ∈I (x)

}
and

{
ORAMi ∈I (y)

}
observed by a coalition of up to t servers {Si ∈I } are statistically/
computationally indistinguishable.

3 THE PROPOSED S3ORAM SCHEME
S
3
ORAM follows the typical procedure of tree-based ORAMs [35].

Specifically, given a block to be accessed, the client first retrieves it

from the outsourced ORAM structure via a secure retrieval oper-

ation. The retrieved block is then assigned to a random path, and

written back to the root bucket. Finally, an eviction operation is

performed in order to percolate data blocks to lower levels in the

ORAM structure. The intuition behind S3ORAM access protocol is
as follows: (1) to integrate SSS with a multi-server PIR protocol

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

494

Table 2: Notations.

Symbol Description
T, T[i] S

3
ORAM tree structure and the bucket indexing i .

B,b, c Block size, block and block chunk, resp.

N ,m Number of blocks and number of chunks in a block.

H Height of the S
3
ORAM tree T.

A Eviction frequency.

Z Bucket size.

pm Position map.

(pID, pIdx) ← pm[id] Precise location (path ID & path index) of a block id.
I ← P(pID) (Ordered) indexes of buckets residing in path pID.
i ← P(pID,h) Index of the bucket on path pID at level-h.

ne , nr Current number of eviction and retrieval operations, resp.

to perform a private retrieval operation with some homomorphic

properties; and (2) to leverage these homomorphic properties of SSS

and a SMP protocol to perform block permutation and to preserve

t-privacy level of ORAM structure in the eviction phase, without

relying on costly partial HE operations. In Table 2, we outline the

notation used in the S
3
ORAM scheme and throughout the rest of

the paper.

3.1 S3ORAM Data Structure
The S

3
ORAM structure is a balanced binary tree denoted as T with

a height of H . T can store up to N ≤ A · 2H−1
data blocks bi , where

constant A is the eviction frequency. A node in T is a bucket with
Z slots, which can store up to Z real blocks. We index buckets in

T according to the top-to-bottom, left-to-right order. Hence, leaf

buckets are indexed in [2H , 2H+1) as exemplified in Figure 1. T[i]
and T[i, j] denote an access operation to the bucket with index

i , and to the slot j (1 ≤ j ≤ Z) of the i-th bucket, respectively.

S
3
ORAM has a position map pm := (id, ⟨pID, pIdx⟩) to store the

position of real blocks in T, where 2
H ≤ pID < 2

H+1
denotes the

path assigned for the block id, and 1 ≤ pIdx ≤ Z · (H + 1) denotes

the block’s index in the path pID. We present the construction

of S
3
ORAM data structure in Algorithm 3. Given a database DB

organized into N B-bit blocks and an ORAM tree T as the input, the

Algorithm 3 (JTK1, . . . , JTKℓ) ← S3ORAM.Setup(DB, T)

1: Organize DB into blocks (b1, . . . ,bN) with IDs (id1, . . . , idN)
2: T[i, j] ← {0}B for 1 ≤ i < 2

H+1, 1 ≤ j ≤ Z
3: ne ← 0, nr ← 0

4: for i = 1 . . . ,N do

5: zi
$

← [2H , . . . , 2H+1)

6: Select (xi ,yi) s.t. xi ∈ P(zi) and T[xi ,yi] is empty

7: T[xi ,yi] ← bi
8: pm[idi] ← (zi , ⌊log

2
xi ⌋ · Z + yi)

9: for i = 1, . . . , 2H+1 − 1 do
10: for j = 1, . . . ,Z do
11: (c

(1)

i, j , . . . , c
(m)
i, j) ← T[i, j], where c(k)i, j ∈ Fp

12: for k = 1, . . . ,m do
13: (Jc(k)i, j K1, . . . , Jc

(k)
i, j Kℓ) ← SSS.Create(c(k)i, j , t)

14: JT[i, j]Kl ← (Jc
(1)

i, j Kl , . . . , Jc
(m)
i, j Kl), for all 1 ≤ l ≤ ℓ

15: return (JTK1, . . . , JTKℓ) ▷ Send JTKi to Si , for 1 ≤ i ≤ ℓ

Z

H

denoted as JT[1, 1]K

J0K

J0K

Jb3K

J0K

J0K

Jb16K

J0K

J0K

J0K

J0K

J0K

Jb8K

Jb12K

J0K

Jb4K

J0K

J0K

J0K

J0K

Jb10K

J0K

J0K

J0K

Jb11K

J0K

J0K

Jb1K

J0K
1

J0K

J0K

Jb9K

J0K

Jb13K

J0K

J0K

J0K

Jb7K

J0K

J0K

J0K

J0K

J0K

Jb5K

J0K

J0K

Jb6K

J0K

J0K

J0K

J0K

J0K

J0K

J0K

J0K

J0K

J0K

J0K

Jb2K

J0K

J0K

2 3

4 5 6 7

8 10 12 149 11 13 15

2

Bucket index

Figure 1: S3ORAM tree structure.

S3ORAM.Setup creates the shares of T as the output for ℓ servers

as follows. First, the client initializes every slot in each bucket of

T with a 0’s string of length B (step 2). The client organizes all

data blocks into T, wherein each bi is independently assigned to a

random leaf bucket of T. Notice that B can be larger than ⌈log
2
p⌉

and therefore, it might not be suitable for arithmetic computation

over Fp . To address this, the client splits the data in each slot of T
into equal-sized chunks c j ∈ Fp (step 11)

3
. Finally, the client creates

shares of T via SSS.Create for each chunk in each slot in T (step

13). The distributed S
3
ORAM structure consists of ℓ shares of T as

{JTK1, . . . , JTKℓ}. Figure 1 outlines the structure of S3ORAM.

3.2 S3ORAM Access Protocol

Protocol 2 b ← S3ORAM.Access(op, id,b∗)

1: b ← S3ORAM.Retrieve(id)

2: pm[id].pID
$

← [2H , . . . , 2H+1)

3: if op = write then
4: b ← b∗

5: pm[id].pIdx← nr + 1

6: (c1, . . . , cm) ← b
7: for j = 1 . . . ,m do
8: (Jc j K1, . . . , Jc j Kℓ) ← SSS.Create(c j , t)

9: for i = 1 . . . , ℓ do
10: Write (Jc1Ki , . . . , JcmKi) to slot JT[1,nr + 1]Ki in server Si

11: nr ← nr + 1 mod A
12: if nr = 0 then
13: Execute S3ORAM.SSS-SMP-TripletEviction protocol

14: ne ← ne + 1 mod 2
H

15: return b

The S
3
ORAM access protocol consists of two subroutines in-

cluding S3ORAM.Retrieve and S3ORAM.SSS-SMP-TripletEviction
3
We assume implicitly that we choose an appropriate prime p such that every string

c j when interpreted as an element of Fp is less than p .

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

495

as shown in Protocol 2. We first describe a SSS-based select scheme

that is used in the S3ORAM.Retrieve subroutine. We then describe

our new eviction strategy based on Triplet Eviction [12]. S
3
ORAM

eviction is performed after everyA successive accesses as in [12, 33].

• SSS-based Select Scheme: Our objective in this select scheme is to

privately retrieve a block of interest residing in the queried path

from the S
3
ORAM structure. Recall that in single-server HE-based

ORAM schemes (e.g., [3, 12]), the select query is encrypted with

costly additive/fully HE. In our case, we “encrypt” S
3
ORAM struc-

ture with SSS that offers highly efficient additive and multiplica-

tive homomorphic properties. We observe that multi-server PIR

scheme in [4, 19] relies on SSS to create select queries and, there-

fore, it can serve as a suitable private retrieval tool to be used

for S
3
ORAM structure. We describe SSS-based select scheme in

Algorithm 5, and further outline it as follows:

Algorithm 5 SSS-based Select Scheme

(JeK1, . . . , JeKℓ) ← PIR.CreateQuery(j): Create select queries
1: Let e := (e1, . . . , en), where ej ← 1, ei ← 0 for 1 ≤ i , j ≤ n
2: for i = 1, . . . ,n do
3: (Jei K

(t)
1
, . . . , Jei K

(t)
ℓ
) ← SSS.Create(ei , t)

4: JeK(t)i := (Je1K
(t)
i , . . . , JenK(t)i), for 1 ≤ i ≤ ℓ

5: return (JeK(t)
1
, . . . , JeK(t)

ℓ
)

JbK(2t)i ← PIR.Retrieve(JeK(t)i , JbK(t)i): Retrieve the queried block

1: JbK(2t)i ← JeK(t)i · JbK(t)i
2: return JbK(2t)i

b ← PIR.Reconstruct(JbK(2t)
1
, . . . , JbK(2t)

ℓ
): Reconstruct the block

1: b ← SSS.Recover(JbK(2t)
1
, . . . , JbK(2t)

ℓ
, 2t)

2: return b

Assume that each server Si stores a share of the database b con-

tainingn items denoted as JbKi , which can be interpreted as a vector
with each i-th component being the share of the i-th item in b. Let
j be the index of the item in b to be privately retrieved. The client

creates an n-dimensional select vector with all zero coordinates

except the j-th coordinate being set to 1 and then, secret-shares it

with SSS (PIR.CreateQuery algorithm). The client then distributes

these shares to their corresponding servers, each answering with

the result of the inner product between the received share vector

and its share of b (PIR.Retrieve algorithm). Finally, the client in-

vokes SSS.Recover function over ℓ answers to recover the desired

item (PIR.Reconstruct algorithm). Note that b in this context is SSS-

secret shared, instead of being unencrypted as in [4, 19]. Therefore,

our PIR.Reconstruct algorithm requires at least 2t +1 shares instead
of t + 1 to recover the item correctly.

S3ORAM Retrieval: We present S
3
ORAM retrieval protocol in

Subroutine 1, which employs three functions of the aforementioned

SSS-based select scheme. Given a block to be read, the client first

determines its location in the S
3
ORAM structure via the position

map pm and then, retrieves it using SSS-based select protocol. In

Subroutine 1 b ← S3ORAM.Retrieve(id)
Client:
1: (s, j) ← pm[id]
2: (JeK(t)

1
, . . . , JeK(t)

ℓ
) ← PIR.CreateQuery(j)

3: Send (s, JeK(t)i) to server Si , for 1 ≤ i ≤ ℓ

Server: each Si ∈ {S1, . . . ,Sℓ} receiving (s, JeK(t)i) do
4: I ← P(s)
5: for j = 1, . . . ,m do
6: Let Jcj K

(t)
i contain j-th chunk ofZ slots in JT[i ′]K(t)i ,∀i ′ ∈ I

7: Jc j K
(2t)
i ← PIR.Retrieve(JeK(t)i , Jcj K

(t)
i)

8: Send (Jc1K
(2t)
i , . . . , JcmK(2t)i) to client

Client: On receive ({Jc1K
(2t)
i }

ℓ
i=1
, . . . , {JcmK(2t)i }

ℓ
i=1
)

9: for j = 1, . . . ,m do
10: c j ← PIR.Reconstruct(Jc j K

(2t)
1
, . . . , Jc j K

(2t)
ℓ
)

11: b ← (c1, . . . , cm)
12: return b

this case, we interpret all slots in the retrieval path as the database

input b in PIR.Retrieve algorithm. Hence, the size of b and the

length of the query vector is n = Z · (H + 1). Note that there

are m separate chunks in each slot, the servers need to invoke

PIR.Retrieve algorithm m times with the same select query but

over different bj , where each bj contains the j-th chunk of all

slots in the retrieval path. Finally, the client obtains the desired

block by recovering all chunks upon receiving their shares with

PIR.Reconstruct algorithm (steps 9–11).

After the block is retrieved, the client creates its new SSS-shares

(steps 7–8, Protocol 2), and then writes the share to an empty slot

in the root bucket of the corresponding server (step 10). After

A successive retrievals, the background eviction is performed as

described below.

SSS-SMP-based Triplet Eviction: For each eviction operation,

the client selects a deterministic eviction path according to the

reverse lexicographical order as proposed in [18]. Given a binary

ORAM tree of height H , where edges in each level are indexed by

either 0 (left) or 1 (right), the collection of edges of the eviction

path at the ne -th eviction operation is determined as:

v = DigitReverse
2
(ne mod 2

H), (6)

where DigitReverse
2
(a) denotes the order-reversal of base-2 digits

of the integer a.
The S

3
ORAM eviction strategy is inspired on the “Triplet Evic-

tion” strategy of Onion-ORAM [12]. Specifically, it percolates real

data blocks in the eviction path to lower levels as much as possible,

in which each real block b from each bucket Ti can be moved to

one of Ti ’s children such that b still resides in its own path. This

strategy incurs significant cost in Onion-ORAM due to the fol-

lowing reasons: (i) Onion-ORAM relies on additively HE so that

after each pushdown operation, a layer of encryption is added to

blocks, which increases the cost of select query creation and block

decryption in the retrieval phase. (ii) It requires multiple rounds

of client-server communication to (ii-1) get the precise location of

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

496

(4) SMP Protocol (3): Data in source bucket are copied to (non-leaf) sibling bucket

Server 1

(2): Data in source bucket are pushed down via matrix product

Server 2 Server 3

Triplet Eviction

Source bucket

Destination bucket

Sibling bucket

Eviction path

Triplet Eviction

(3)(2)

Triplet Eviction

Client

(1) Send permutation matrices

(3)(2) (3)(2)

{JIhK(t)2 }H
h=1{JIhK(t)1 }H

h=1 {JIhK(t)3 }H
h=1, JI0HK1 , JI0HK2 , JI0HK3

Figure 2: The SSS-SMP-based Triplet Eviction.

Subroutine 3 S3ORAM.SSS-SMP-TripletEviction
Client:
1: v ← DigitReverse

2
(ne mod 2

H)

2: Let ®u = (u1, . . . ,uH) be the ordered indexes of source buckets on the path indicated by v , starting from the root

3: for h = 1, . . . ,H − 1 do
4: Let Ih be a 2Z × Z matrix, set Ih [∗, ∗] ← 0. Let ûh be the index of destination bucket of T[uh]
5: for each real block with id in T[ûh] do
6: Ih [j − Z · (h − 1), j − Z · h] ← 1 where j ← pm[id].pIdx

7: for each real block with id′ in T[uh] do
8: (s ′, j ′) ← pm[id′]
9: if P(s ′,h) = ûh then
10: Ih [j ′ − Z · (h − 1), j ′′] ← 1, pm[id′].pIdx← Z · h + j ′′ , where j ′′ is the index of an empty slot selected in T[ûh]
11: else
12: pm[id′].pIdx← j ′ + Z

13: Execute steps (3)–(10) with h = H producing IH for source-to-destination permutation at leaf level

14: Execute steps (3)–(10) with h = H , ûh = index of sibling bucket of T[uh] producing I′H for source-to-sibling permutation at leaf level

15: JIh [i, j]K
(t)
1
, . . . , JIh [i, j]K

(t)
ℓ
← SSS.Create(Ih [i, j], t) for 1 ≤ h ≤ H , 1 ≤ i ≤ 2Z , 1 ≤ j ≤ Z

16: JI′H [i, j]K
(t)
1
, . . . , JI′H [i, j]K

(t)
ℓ
← SSS.Create(I′H [i, j], t) for 1 ≤ i ≤ 2Z , 1 ≤ j ≤ Z

17: Send

(
v, {JIhK(t)i }

H
h=1
, JI′H K(t)i

)
to Si , for 1 ≤ i ≤ ℓ

Server: each Si ∈ {S1, . . . ,Sℓ} receiving (v, {JIhK(t)i }
H
h=1
, JI′H K(t)i) do

18: Let ®u = (u1, . . . ,uH) be the ordered indexes of source buckets on the path indicated by v , starting from the root

19: JT[ũh]Ki ← JT[uh]Ki for 1 ≤ h < H ▷ Replace sibling bucket with source bucket at non-leaf levels

20: for h = 1, . . . ,H do
21: Let ûh be the index of destination bucket of T[uh]
22: for j = 1, . . . ,m do
23: Jc′h, j K

(2t)
i ← Jch, j K

(t)
i · JIhK(t)i , where Jch, j K

(t)
i contains j-th chunks from Z slots of JT[uh]K

(t)
i and JT[ûh]K

(t)
i

24: Execute SMP protocol to reduce Jc′h, j K
(2t)
i to Jc′h, j K

(t)
i , and update j-th chunks in JT[uh]K

(t)
i and JT[ûh]K

(t)
i with Jc′h, j K

(t)
i

25: Execute steps (20)–(24) with h = H , JIhK(t)i = JI′H K(t)i , ûh = index of sibling bucket of T[uh]

the real blocks for select query creation (since this info is stored in

the bucket’s metadata) and, (ii-2) bound the number of encryption

layers at the leaf buckets. Notice that the latter also requires the

client to perform a number of costly homomorphic encryptions

and decryptions.

• Our New Triplet Eviction Strategy: In this paper, we propose

a Triplet Eviction strategy that only requires single-round client-
server communication and lightweight client computation and avoids
accumulating multi-layer of encryption to the ORAM structure. The
main idea is to leverage SSS and SMP protocol to perform block

permutation and maintain the consistency of privacy level. We

present this strategy as follows:

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

497

Remark that since the precise location of real blocks is locally

stored in the position map, the client is not required to interact with

the server(s) to read themetadata. For each level in the eviction path,

we obliviously move blocks from source bucketTi to its childrenT2i ,

T2i+1. We follow the terminology used in [12] to denote the buckets

involved in each Triplet Eviction operation: if one child of the source

bucket resides in the eviction path, it is called destination bucket

and the other is called sibling bucket (see Figure 2 for clarification).

Eviction is performed according to the following rules:

• Source to destination: Let JuK be a 2Z -dimensional share vector

formed by concatenating all data in the source bucket and the

destination bucket. The client creates a permutation matrix I ∈
{0, 1}2Z×Z such that the matrix product of JuK and I will result in
a Z -dimensional vector JvK, in which data at position i in JuK is
moved to position j in JvK. That is, I is a matrix, where I[i, j] ← 1 if

the block at position i in JuK is expected to move to position j in JvK.
As a result, I[i + Z , i] ← 1 if the block currently at position i in JvK
stays at the same location. To hide the location information of real

blocks after permutation, the client “encrypts” every single element

of I with SSS resulting in a share matrix JIK ∈ F2Z×Z
p . Note that the

matrix product between these two shares results in a share vector

with each element being represented by a degree-2t polynomial.

To maintain the consistency of the S
3
ORAM structure, servers will

together execute the SMP Protocol presented in Section 2 to reduce

the degree of polynomial of each component in JvK from 2t to t .
• Source to sibling: We can apply the same trick as in the source-

to-destination operation above to push real blocks down to sibling

buckets. However, since non-leaf sibling buckets are guaranteed

to be empty by previous evictions featuring a negligible bucket

overflow probability (see Lemma 4.1), this process can be further

optimized as discussed in [12] as follows. For evictions not involved

with leaf buckets, the client simply requests servers to copy all data

from the source buckets to sibling buckets and then, update the

path index of real blocks in the position map accordingly. For leaf

level, it is required to use the matrix permutation as described above

since leaf buckets are not empty. This optimization can halve the

bandwidth cost of client-server and server-server communication.

Generally, we can see that our eviction approach requires only

one client-server communication and guarantees that all data after

eviction are consistently “encrypted” by degree-t polynomials. Fig-

ure 2 illustrates this new SSS-based Triplet Eviction strategy. We

present the algorithmic description of this strategy in Subroutine 3.

3.3 Asymptotic Cost Analysis
In this section, we study the cost of S

3
ORAM pertaining to block

size and number of blocks, where the security level and other system

parameters (e.g., prime field, bucket size) are fixed.

• Communication: The size of each select query being sent to

ℓ servers in S
3
ORAM retrieval is (Z · (H + 1) · ⌈log

2
p⌉) bits. The

client sends H + 1 permutation matrices in the S
3
ORAM eviction

to ℓ servers, each being of size 2Z 2 · ⌈log
2
p⌉ bits. Each S

3
ORAM

access incurs one block of size B to be transferred between client

and server. Since H ≥ logN /A + 1 and ℓ, A, Z ,p are constants, the

overall client-server communication complexity is O(B + logN). In
the eviction, each server distributes the shares of H buckets with

size of Z · B bits to each other in H communication rounds. Hence,

the inter-server communication overhead is O(B · logN).
Achieving O(1) client-server bandwidth blowup: The client band-

width blowup is defined as the ratio between the number of client-

server communication introduced by ORAM and the base case with-

out ORAM being used. The communication complexity of S
3
ORAM

shows that the size of select vector and permutation matrix is inde-

pendent of block size. Note that in Onion-ORAM, the select vector

size is also independent of the block size. Therefore, O(1) client

bandwidth blowup can be achieved in S
3
ORAM and Onion-ORAM

by selecting a suitable block size. That is, by selecting the block

size B to be Ω(logN), S3ORAM achieves O(1) client bandwidth

blowup. In Onion-ORAM, it requires selecting a (larger) block size

of O(log
5 N) to absorb the size of select queries.

• Computation: Each server computes the inner product between

the Z · (H + 1)-dimensional select vector and the block vector

containing Z · (H + 1) blocks of size B. For eviction, each server

computes H times the matrix product between a vector containing

2 ·Z blocks of size B and a permutation matrix of size 2Z ×Z . After
that, each server computes the share and performs degree reduction

in the SMP protocol on Z · H blocks of size B. In total, the server

computation complexity is O(B · logN).
The client invokes SSS.Create algorithm Z · (H + 1) times and

2Z 2 · H times to create a select query and H permutation matrices,

respectively. The client invokes SSS.Recover and SSS.Create algo-
rithms to reconstruct and re-share a block of size B, respectively.
Thus, the overall client computation complexity is O(B + logN).

• Storage: S3ORAM tree structure is of height H which has 2
H · Z

slots and can store up to N ≤ A · 2H−1
real blocks. Since Z and A

are constants, the server storage cost is O(B · N). Notice that the
share of the value has the same size as the value (i.e., no ciphertext

expansion as in Onion-ORAM), the server storage of S
3
ORAM is

constant and does not increase after a sequence of access operations.

Similar to Onion-ORAM, the block storage in S
3
ORAM is O(1)

since the client immediately writes retrieved block back to the root

bucket. The client locally stores the position map whose cost is

O(N (logN + log logN)).

Achieving O(1) client storage via Recursion: For theoretical in-
terest, S

3
ORAM can achieve (in total) O(1) client storage by storing

the position map in smaller ORAMs using the recursion technique

described in [39] and bucket metadata structure in [12]. Specifically,

for each S
3
ORAM bucket, we create a metadata that stores the cur-

rent index (pIdx) and the assigned path (pID) of blocks residing in

it. For each S
3
ORAM access, the metadata of buckets along the re-

trieval/eviction path will be read first to get the precise location and

the assigned path of blocks of interest. This information will be used

to create the select query and permutation matrices. Next, we con-

struct a series of S
3
ORAM structures S

3
ORAM0, . . . , S

3
ORAMX ,

whereX = O(logN), S3ORAM0 stores data blocks and S
3
ORAMi+1

stores the position map of S
3
ORAMi . Note that in this recursion,

the position map only stores the blocks’ assigned path since their

precise location is already maintained in bucket metadata. We refer

the reader to [12, 39] for the detailed descriptions.

In S
3
ORAM0, the bucket metadata is of size O(logN). Each

S
3
ORAM0 retrieval/eviction accesses the metadata from O(logN)

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

498

buckets resulting in O(log
2 N) client-server bandwidth overhead.

Therefore, to achieve O(1) client bandwidth blowup, the block

size of S
3
ORAM0 needs to be Ω2(logN). Since the block size of

S
3
ORAMi+1 is smaller than that of S

3
ORAMi , applying recursion

technique to S
3
ORAM does not increase the bandwidth, computa-

tion or server storage overhead in the asymptotic point of view.

However, it incurs O(logN) communication rounds and requires

O(logN) factor larger block size, whichmight significantly increase

the end-to-end delay in reality. Thus, it is recommended to maintain

the position map locally, given that its size is small enough, to gain

performance advantages in practice.

4 SECURITY
The S

3
ORAM eviction follows the Triplet Eviction proposed in

Onion-ORAM [12]. Therefore, they have the same failure probabil-

ity. We refer the reader to [12] for the details of the proof.

Lemma 4.1 (Bucket Overflow Probability). If Z ≥ A and
N ≤ A · 2H − 1, the probability that a bucket overflows after an

eviction operation is bounded by e−
(2Z−A)2

6A , where Z = A = Θ(λ).

Proof. We refer the reader to [12]. □

The correctness of S
3
ORAM is shown in Theorem 4.2.

Theorem 4.2 (S
3
ORAM Correctness). S3ORAM is correct ac-

cording to Definition 2.4.

Proof. See Appendix. □

The security of S
3
ORAM is given in Theorem 4.3.

Theorem 4.3 (S
3
ORAM Security). S3ORAM is unconditionally

t-secure according to Definition 2.4.

Proof. See Appendix. □

Malicious setting: We do not consider malicious servers in this

paper. However, since the S
3
ORAM relies on SSS as its main build-

ing block, it is possible to extend the scheme to tolerate malicious

inputs. This requires more servers and additional rounds of inter-

action during the eviction phase due to the more involved secu-

rity requirements (e.g., verifiable secret sharing [16]) in order to

distribute correct shares and detect malicious behaviors. We will

investigate the cost for malicious setting in the full version.

5 EXPERIMENTAL EVALUATION
We first describe our implementation details and configuration. We

then give our evaluation metrics and methodology, followed by a

detailed comparison of S
3
ORAM and its counterparts on an actual

cloud environment with various network and system settings. Note

that in this evaluation, we evaluate ORAM schemes under their

non-recursive form, where the position map is stored at the client

since its size is practically small to be stored locally.

5.1 Implementation Details and Configuration
Software setting. We implemented S

3
ORAM in C++ with two ex-

ternal libraries: (i) Shoup’s NTL library v9.10.0
4
for pseudo-random

4
Available at http://www.shoup.net/ntl/download.html

number generation and modular computations since it offers low-

level (e.g., assembly) optimizations for modular multiplication and

inner product; (ii) ZeroMQ library
5
for socket programming. Our

implementation supports parallelization to take full advantage of

multi-core CPUs at the server. We used libtomcrypt6 with AES-

CTR to implement IND-CPA encryption for S
3
ORAM counterparts.

Hardware setting.We conducted our experiments on two types

of client devices: (i) A 2015 Macbook Pro laptop as the client, which

was equipped with Intel Core i5-5287U CPU @ 2.90GHz and 16 GB

RAM. (ii) A Google Nexus 6P smartphone, which ran Android 7.0

Nougat and was equipped with Qualcomm Snapdragon 810 CPU

@ 2 GHz and 3 GB RAM. At the server side, we used Amazon EC2

with c4.4xlarge type to deploy three server instances. Each server
was running Ubuntu 16.04 and equipped with 16 vCPUs Intel Xeon

E5-2666 v3 @2.9 GHz, 30 GB RAM and 512 GB SSD.

Network setting. We located three servers to be geographically

close to the clients as well as to each other, which results in the net-

work latency between them to be approximately 15ms. Serverswere

connected to each other via dedicated networks whose throughput

for both download and upload is approximately 250 Mbps.

The laptop client was connected to a home Internet service via

Wi-Fi, which offers download and upload throughputs of 29 Mbps

and 5 Mbps to the servers, respectively. For mobile client, we used

LTE network to communicate with server(s), which has a network

latency of 25 ms, and the download and upload throughputs of

approximately 27 Mbps and 9 Mbps, respectively.

Database size. We evaluated the performance of all compared

schemes with a randomly generated database and block size ranging

from 0.5 GB to 40 GB, and from 64 KB to 768 KB, respectively.

5.2 Evaluation Metrics and Methodology
EvaluationMetrics.We compared S

3
ORAMwith its counterparts

based on: (1) Building time for ORAM structure (executed once at

the beginning); (2) End-to-end delay for different database and block

sizes; The cost breakdown of end-to-end delay to assess the impacts

of (3) client computation overhead, (4) server computation overhead,

(5) client-server communication, (6) server-server communication,

(7) disk access time, (8) network bandwidth quality, (9) client and

server storage overhead.

We selected Path-ORAM [40] and Onion-ORAM [12] as the main

counterparts of S
3
ORAM , since the former achieves the optimal

lower bound of Ω(logN) communication blowup without server

computation, while the latter achieves O(1) communication blowup

with O(1) client storage with server computation. We also chose

Ring-ORAM [33] as it is an efficient ORAM scheme with server

computation. We did not consider alternatives that (i) failed to

achieve O(1) client communication blowup but incurred more delay

(e.g., [11, 26]), (ii) were shown to be insecure (e.g., [27, 29]), or

(iii) incur significantly more cost than ORAMs considered in our

experiments (e.g., [3]) (see Section 6 for related work). We also

did not explicitly compare the performance of S
3
ORAM against

the distributed ORAM by Stefanov et al. [37] because of the major

difference in terms of client block storage between the two schemes

5
Available at http://zeromq.org

6
Available at https://github.com/libtom/libtomcrypt

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

499

http://www.shoup.net/ntl/download.html
http://zeromq.org
https://github.com/libtom/libtomcrypt

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(a) Block size = 128 KB

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)
D
e
l
a
y
(
s
e
c
o
n
d
) Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(b) Block size = 256 KB

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(c) Block size = 512 KB

Figure 3: End-to-end delay of S3ORAM and its counterparts on a laptop with home network.

(O(1) vs. O(
√
N)). Given a very large outsourced database, the

storage requirement by [37] might not be suitable for resource-

limited devices such as mobile phone. Moreover, if O(
√
N) block

storage is acceptable, then the lower bound in [1] might imply

a better ORAM strategy than S
3
ORAM that leverages PIR-only

technique to achieve O(1) client bandwidth blowup.

Evaluation Methodology. Our methodology is as follows.

• S3ORAM: We fully implemented S
3
ORAM and measured the

delay of each operation (see cost breakdown part below). We

selected the bucket size and the eviction frequency as Z = A =
333 to achieve a negligible bucket overflow probability of 2

−80
.

The cost for each S
3
ORAM access was measured as the retrieval

delay with the write-to-root delay (step 10, Protocol 2) plus the

amortized cost of eviction.

• Path-ORAM : We measured the delay of Path-ORAM as the time

to (1) download/upload O(logN) blocks, and (2) IND-CPA en-

cryption/decryption at the client. We selected the bucket size as

5 to guarantee a negligible stash overflow probability of 2
−80

.

• Ring-ORAM : We measured the delay of Ring-ORAM as the time

to (1) retrieve O(1) block, (2) perform XOR and IND-CPA en-

cryption/decryption at the client, (3) perform XOR operations at

the server side. The amortized cost of each Ring-ORAM access

is calculated by including the amortized cost of eviction and

early shuffles based on the equation (H + 1)(2Z + S)/A · (1 +
PoissCDF(S,A)) given in Section 5 of [33]. We selected Ring-

ORAM parameters Z = 16, S = 25 and A = 20 as stated in [33]

for a negligible stash overflow probability of 2
−80

.

• Onion-ORAM: We measured the delay of Onion-ORAM as the

time to (1) perform homomorphic computations at the client and

server, (2) transfer O(1) blocks and select queries. We selected

the size of RSA modulus to be 1024 bits for AHE according to

[2]. Similar to S
3
ORAM, we selected the bucket size and the

eviction frequency of Onion-ORAM as Z = A = 333. The cost

for each Onion-ORAM access was also included with the amor-

tized cost of eviction operation. Since Onion-ORAM is extremely

computationally costly, measuring its delay even on a medium

database takes insurmountable amount of time. Therefore, we

had to measure its delay on a very small database (i.e., 1 MB)

first, and then estimate the delay for larger database sizes.

5.3 Experimental Results
• Building Time of ORAM Structure (executed only once during offline
phase): We first provide the total building time for constructing

the distributed S
3
ORAM tree structures. Since S

3
ORAM relies on

highly efficient SSS operations (e.g., basic arithmetics with modu-

lar addition/multiplication), it only took around 1 hour to create

shares of a large database (i.e., 40 GB) for three servers with the

laptop as the client device. This cost is comparable with IND-CPA

encryption being used in traditional ORAM schemes. For instance,

it took approximately 50-60 minutes to encrypt counterpart ORAM

schemes with AES-CTR encryption.

• End-to-end Delay: Figure 3 presents the end-to-end delay of

S
3
ORAM and its counterparts. S

3
ORAM outperformed its counter-

parts for increasing database and block sizes. As shown in Figure

3b, S
3
ORAM took around 4.5 seconds to access a 256-KB block,

which is approximately 8.3× and 5.4× faster than Path-ORAM and

Ring-ORAM, respectively, while being three orders of magnitude

faster than Onion-ORAM (40 GB DB).

Figure 3 shows that choosing larger block sizes had a minimal

impact on the delay of S
3
ORAM compared to its counterpart. For

instance, S
3
ORAM took around 2.4 and 7.3 seconds to access a 128-

KB block and a 512-KB block, respectively, which corresponds to a

linear growth but with a small slope (40 GB DB). Figure 4 further

illustrates the influence of block size on the delay of S
3
ORAM and

its counterparts. Although the cost of each ORAM scheme grows

linearly with respect to the block size, the slope of S
3
ORAM is sig-

nificantly smaller than that of its counterparts. Given any block size

in the range from 4 KB to 768 KB, S
3
ORAM is always approximately

5× and 8× faster than Ring-ORAM and Path-ORAM, respectively.

This gives an advantage to S
3
ORAM over its counterparts for ap-

plications with a large block size such as image or video storage

services.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

500

4 64 128 256 512 768

0

20

40

60

80

100

120

Block size (KB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

S
3
ORAM

*We excluded Onion-ORAM since its plot is far beyond the limit of y-axis.

Figure 4: End-to-end for varying block sizes for a 40GB DB.

Detailed cost breakdown of S3ORAM. We now dissect the end-

to-end delay of S
3
ORAM to investigate which factors contributed

themost to the total delay. Figure 5 shows the detailed delay analysis

of S
3
ORAM with three different block sizes on a laptop as a client

device with three servers.

• Server Computation: The server computation only occupied a

small amount (5–8%) of the total delay.

• Client-server Communication and Disk I/O Access: The client-
server communication and server disk I/O access contributed more

than 90% of the total delay. Notice that most of the client-server com-

munication time was spent for retrieving/writing blocks over three

servers. The transmission of select vector and permutation matrix

only cost approximately 6–7% of the total client-server communica-

tion overhead with 512 KB block size. Due to the cache miss issue

and the infrastructure of selected Amazon EC2 server instances

(i.e., c4.4xlarge type), disk I/O access caused a significant delay,

especially for large database sizes. Specifically, the maximum RAM

of each server was limited to 30GB while each S
3
ORAM retrieval

incurs a random disk I/O access of around 1-2 GB of data due to

the large bucket size (i.e., Z = 333). As a result, after some random

retrieval operations, the cache miss may appear more frequently.

Moreover, S
3
ORAM data structure was stored in a networked stor-

age unit called “Elastic Block Storage” (EBS), which was connected

to Amazon EC2 computing unit with a maximum throughput of

160 MB per second. The disk I/O access was also limited by this

throughput, and therefore, it is much slower than a local storage

setting, in which the read/write throughput of 400–500 MB/s can be

achieved. Hence, we expect that the latency of S
3
ORAM can be fur-

ther optimized (at least twice) by minimizing the disk I/O access via

special server instances offering either local storage (e.g., internal

dedicated SSD) or higher throughput (e.g., st1 volume type).

• Server-server Communication: The overhead of server-server

communication is minimal, since servers are connected with a high-

bandwidth network (i.e., 250 Mbps). Moreover, the eviction was

only performed after A = 333 successive retrievals and, therefore,

the overhead of server-server communication was amortized.

• Client Computation: The client computation (e.g., block re-

covery, the creation of shares for blocks, the select vectors and

permutation matrices) is negligible and, therefore, is difficult to

observe in Figure 5.

Detailed cost breakdown of counterpart schemes.
• Path-ORAM: Most of the delays in Path-ORAM was due to

O(logN) client-server communication blowup, which accounted

for 97% of overall delay. The client computation was negligible (cost

less than 2%) due to IND-CPA encryption/decryption. Since the

Path-ORAM bucket size is also much smaller than S
3
ORAM and

Onion-ORAM (i.e., 5 vs. 333) which incurs less data to be read and

to be written. Therefore, the disk I/O access time of Path-ORAM

only took 1% of the overall delay.

• Ring-ORAM: Similar to Path-ORAM, the most significant delay

of Ring-ORAM was due to the amortized communication cost of

early reshuffle and eviction operations, which accounted for 96% of

total delay presented in Figure 3. Client and server computations

were negligible due to IND-CPA encryption and XOR operations

accelerated by multi-threading, respectively. The disk I/O access

was also negligible since the server only read 1 block per bucket.

Thus, all operations except the communication only contributed

less than 4% to the total delay.

• Onion-ORAM: Due to AHE, the computation cost dominated all

other costs in Onion-ORAM scheme. Specifically, we estimated that

given a database of size 0.5 GB containing 256-KB blocks, the server

computation with multi-core processing might take approximately

3 hours, which accounted for 99% of the overall delay. Meanwhile,

the client took around 38 seconds to generate a select query. Al-

though the disk I/O access time of Onion-ORAM is similar to that

of S
3
ORAM (due to the same bucket size setting), it contributed the

least. Transmission also took a small amount of time since Onion-

ORAM offers O(1) bandwidth blowup.

Experiments with a Mobile Client Device. Figure 6 presents

end-to-end delays of S
3
ORAM and its counterparts on a mobile

client device with LTE network. The server computation of Onion-

ORAM still dominated all others as in previous settings. In addition,

Onion-ORAM also requires the client to perform costly computa-

tions to generate encrypted select queries, which took a fewminutes

with a mobile client device. Note that the client computations just

took around 50 milliseconds in S
3
ORAM as shown in Figure 7. The

performance of Path-ORAM and Ring-ORAM in the LTE network

was relatively better than that of the home network since the LTE

network offered a slightly higher upload throughput. S
3
ORAMwas

also slightly better but not affected much by the limited client com-

putation. That is, although the client computation on the mobile

device contributed a slightly larger delay than that on the laptop,

this portion still occupied less than 5% of the total cost.

Comparison of S3ORAMwith Path-ORAM and Ring-ORAM
for varying network bandwidths. S3ORAM outperformed its

counterparts in both home and mobile network settings. How-

ever, assume that the user has high bandwidth network connection.

In this case, S
3
ORAM might not be the best choice in terms of

end-to-end delay. Hence, we ran another experiment to show that,

O(logN)-communication ORAMs are better than computational

ORAMs after a certain threshold of network bandwidth. Specifically,

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

501

0 1 2 3

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client computation

Server computation

(a) Block size = 128 KB

0 1 2 3 4 5

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client-server communication (query & matrix)

Client-server communication (block)

(b) Block size = 256 KB

0 2 4 6 8

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Disk I/O access

Server-server communication

(c) Block size = 512 KB

Figure 5: Detailed cost breakdown of S3ORAM on a laptop with home network.

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
) Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(a) Block size = 128 KB

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(b) Block size = 256 KB

0 20 40

10
0

10
1

10
2

10
3

10
4

10
5

Database size (GB)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

Onion-ORAM

S
3
ORAM

(c) Block size = 512 KB

Figure 6: End-to-end delay of S3ORAM and its counterparts on a mobile client device with LTE network.

0 0.5 1 1.5 2

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client computation

Server computation

(a) Block size = 128 KB

0 1 2 3 4

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Client-server communication (query & matrix)

Client-server communication (block)

(b) Block size = 256 KB

0 2 4 6 8

0.5

1

2.5

5

10

20

40

Delay (s)

D
B
s
i
z
e
(
G
B
)

Disk I/O access

Server-server communication

(c) Block size = 512 KB

Figure 7: Detailed cost breakdown of S3ORAM on a mobile client device with LTE network.

we executed S
3
ORAM and its counterparts several thousand times

for increasing network bandwidth values. Figure 8 presents the

performance of ORAM schemes with a database size of 40 GB and

a block size of 128 KB with varying network throughputs. Observe

that Path-ORAM and Ring-ORAM surpassed S
3
ORAM for a net-

work throughput of approximately 240 Mbps and 110 Mbps, respec-

tively. This is because Path-ORAM and Ring-ORAM are O(logN)
bandwidth blowup ORAMs and they receive a high benefit from

increasing network speeds. However, S
3
ORAM is O(1) bandwidth

blowup ORAM and receives a less benefit from a fast network.

StorageOverhead. Since S3ORAMandOnion-ORAM featureO(1)

block storage, their client storage cost is lower than that of their

counterparts. Given a database with 512 KB blocks, Path-ORAM and

Ring-ORAM require around 32-33 MB for the stash, while S
3
ORAM

and Onion-ORAM do not require the stash. The storage cost for a

position map in non-recursive S
3
ORAM is slightly higher than its

non-recursive counterparts. For instance, with a 16 TB database of

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

502

0 50 100 150 200 250

0

5

10

15

20

25

Network throughput (Mbps)

D
e
l
a
y
(
s
e
c
o
n
d
)

Path-ORAM

Ring-ORAM

S
3
ORAM

*We exclude the Onion-ORAM since its plot is far beyond the limit of the y-axis.

Figure 8: Delay for varying network throughput.

512-KB blocks (N = 33554432), S
3
ORAM costs 119 MB while the

others (e.g., Onion-ORAM, Ring-ORAM, Path-ORAM) cost 100 MB.

In S
3
ORAM, for a database with N blocks of size B bits, the

server storage overhead is 4N · B bits for each server (recall that

S
3
ORAM needs at least three servers). The server storage for Path-

ORAM and Ring-ORAM is 10N · B bits and 6N · B bits, respectively.

The server storage for Onion-ORAM is similar to S
3
ORAM for one

server but will increase after a sequence of access operation due to

the ciphertext expansion of AHE.

6 RELATEDWORK
Single-server ORAM without computation. The first ORAM

proposed by Goldreich et al. [20] was in the context of software pro-

tection and followed by refinements (e.g., [21]). The recent ORAM

schemes mainly have been considered in the client-server model

to hide data access pattern over a remote server (e.g., [32]). Pre-

liminary ORAMs were costly in terms of both communication and

storage overhead, but recent ORAMs (e.g., [35, 39, 40, 42]) showed

significant improvements. Path-ORAM [40], which follows the tree

structure of [35], achieves O(logN) communication blowup. Vari-

ous ORAMs relying on Path-ORAM have been proposed for specific

applications such as oblivious data structure (i.e., [44]), secure com-

putation (e.g., ([42], [43]), Parallel ORAM [8]) and secure processor

[25]. However, Path-ORAM based schemes inherit its logarithmic

communication blowup [6, 30].

Single-server ORAM with computation. Ring-ORAM [33] re-

duced the communication cost of Path-ORAM by 2.5x given that

the server performs XORs. Some other alternatives (e.g., [3, 12, 14,

26, 29]) leveraged single-server PIR or fully/partial HE to further

reduce the communication cost. For instance, Onion-ORAM [12]

achieves O(1) bandwidth blowup, where the client and server in-

teractively run partial HE operations. Path-PIR scheme in [26] used

PIR scheme in [41] with Additively HE (AHE) (i.e., [31]) on top of

tree ORAM structure [35]. Bucket-ORAM in [14] used AHE on top

of the underlying ORAM structure composed of tree ORAM and

hierarchical ORAM. The scheme in [11] used PIR scheme in [41] on

top of ObliviStore [38], which is based on Partition-ORAM in [39].

The TWORAM scheme in [15] constructed a garbled circuit [45]

over the tree ORAM structure, which allows the client and server

to perform secure computation to access the block.

Multi-server (Distributed) ORAM. Distributed ORAM schemes

were proposed to eliminate highly costly fully/partial HE operations.

CHf-ORAM [27] attempted to use four non-colluding servers to

achieve O(1) bandwidth blowup under O(1) blocks of client storage.

However, CHf-ORAM [27] (as well as its predecessor in [29]) was

broken by Abraham et al. in [1] which also showed an asymptoti-

cally tight sub-logarithmic communication bound for composing

ORAMwith PIR. Abraham et al. in [1] also presented a scheme using

two non-colluding servers to perform XORs for block retrieval over

a k-ary ORAM tree structure. Stefanov et al. in [37] proposed an

ORAM that uses two non-colluding computational-capable servers

to reduce the client-server bandwidth of Partition ORAM [39]. In

a different line of research, distributed ORAM schemes were pro-

posed for secure multi-party computation (e.g., [13, 24]). In these

works, the access patterns are hidden from all parties so that such

ORAM schemes are integrated with some secure computation pro-

tocol (e.g., Yao’s garbled circuit [45]) and, therefore, their cost is

higher than classical client-server ORAM model.

7 CONCLUSION
We developed a new distributed ORAM scheme that we named

S
3
ORAM, which achieves O(1) client-server bandwidth blowup un-

derO(1) client block storage and a low end-to-end delay by avoiding

costly HE operations. S
3
ORAM harnesses Shamir Secret Sharing,

tree-based ORAM structure, a new triplet eviction strategy, and a

secure multi-party multiplication protocol in an effective manner

to achieve these objectives. We performed detailed experiments in

an actual cloud environment with a resource-limited mobile client

to assess the effectiveness of S
3
ORAM for various networking set-

tings such as high bandwidth, home and wireless (i.e., Wi-Fi, LTE)

networks. Our experiments showed that S
3
ORAM is three orders of

magnitude faster than the existing single-server ORAM with O(1)

client communication/storage blowup complexity (Onion-ORAM).

S
3
ORAM is also one order of magnitude faster than Path-ORAM on

a moderate network bandwidth quality, which is typical for various

real-life settings (e.g., home, wireless networks and inter-state cloud

deployments).

ACKNOWLEDGMENT
Wewould like to thank the anonymous reviewers for their insightful

comments and suggestions to improve the quality of this work. This

work is supported by the NSF CAREER Award CNS-1652389 and

an unrestricted gift from Robert Bosch LLC.

REFERENCES
[1] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and Ling

Ren. 2017. Asymptotically Tight Bounds for Composing ORAM with PIR. In

IACR International Workshop on Public Key Cryptography. Springer, 91–120.
[2] Anastasov Anton. 2016. Implementing Onion ORAM: A Constant Bandwidth

ORAM using AHE. https://github.com/aanastasov/onion-oram/blob/master/doc/

report.pdf. (2016).

[3] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. 2014.

Verifiable oblivious storage. In InternationalWorkshop on Public Key Cryptography.
Springer, 131–148.

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

503

https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf
https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf

[4] Amos Beimel and Yoav Stahl. 2002. Robust information-theoretic private in-

formation retrieval. In International Conference on Security in Communication
Networks. Springer, 326–341.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness Theorems for

Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract).

In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Janos
Simon (Ed.). ACM, 1–10.

[6] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

Yan Huang. 2015. Practicing oblivious access on cloud storage: the gap, the fallacy,

and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 837–849.

[7] Elette Boyle and Moni Naor. 2016. Is There an Oblivious RAM Lower Bound?. In

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science. ACM, 357–368.

[8] Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious parallel ram: Im-

proved efficiency and generic constructions. In Theory of Cryptography Confer-
ence. Springer, 205–234.

[9] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

information retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.
[10] Ivan Damgård and Mads Jurik. 2001. A generalisation, a simpli. cation and

some applications of paillier’s probabilistic public-key system. In International
Workshop on Public Key Cryptography. Springer, 119–136.

[11] Jonathan Dautrich and Chinya Ravishankar. 2015. Combining ORAM with PIR

to minimize bandwidth costs. In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy. ACM, 289–296.

[12] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi,

and Daniel Wichs. 2016. Onion oram: A constant bandwidth blowup oblivious

ram. In Theory of Cryptography Conference. Springer, 145–174.
[13] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and BoyangWei. 2015. Three-party

ORAM for secure computation. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 360–385.

[14] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-

fanov. 2015. Bucket ORAM: single online roundtrip, constant bandwidth oblivious
RAM. Technical Report. IACR Cryptology ePrint Archive, Report 2015, 1065.

[15] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2015.

TWORAM: round-optimal oblivious RAMwith applications to searchable encryption.
Technical Report. IACR Cryptology ePrint Archive, 2015: 1010.

[16] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. 2001. The round

complexity of verifiable secret sharing and secure multicast. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing. ACM, 580–589.

[17] Rosario Gennaro, Michael O Rabin, and Tal Rabin. 1998. Simplified VSS and fast-

track multiparty computations with applications to threshold cryptography. In

Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing. ACM, 101–111.

[18] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,

and Daniel Wichs. 2013. Optimizing ORAM and using it efficiently for secure

computation. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 1–18.

[19] Ian Goldberg. 2007. Improving the robustness of private information retrieval. In

2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 131–148.
[20] Oded Goldreich. 1987. Towards a theory of software protection and simulation

by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 182–194.

[21] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[22] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. 2016. Practical and secure

dynamic searchable encryption via oblivious access on distributed data structure.

In Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 302–313.

[23] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:

comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 1–14.

[24] Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure

two-party computation. In Theory of Cryptography. Springer, 377–396.
[25] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,

John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious computa-

tion in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 311–324.

[26] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private

File Retrieval by Combining ORAM and PIR.. In NDSS. Citeseer.
[27] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. [n. d.]. CHf-ORAM: A

Constant Communication ORAM without Homomorphic Encryption. ([n. d.]).

[28] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. 2015. Constant commu-
nication ORAM without encryption. Technical Report. IACR Cryptology ePrint

Archive, Report 2015/1116.

[29] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant commu-

nication ORAM with small blocksize. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 862–873.

[30] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. IACR Cryptology ePrint Archive 2015 (2015), 668.
[31] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 223–238.

[32] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances
in Cryptology–CRYPTO 2010. Springer, 502–519.

[33] Ling Ren, ChristopherW Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

van Dijk, and Srinivas Devadas. 2014. Ring ORAM: Closing the Gap Between

Small and Large Client Storage Oblivious RAM. IACR Cryptology ePrint Archive
2014 (2014), 997.

[34] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[35] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O ((logN) 3) worst-case cost. In Advances in Cryptology–ASIACRYPT
2011. Springer, 197–214.

[36] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 71. 72–75.
[37] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In 2013 ACM

SIGSAC conference on Computer & communications security. ACM, 247–258.

[38] Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious cloud

storage. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 253–267.
[39] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).
[40] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications security. ACM, 299–310.

[41] Jonathan Trostle and Andy Parrish. 2010. Efficient computationally private infor-

mation retrieval from anonymity or trapdoor groups. In International Conference
on Information Security. Springer, 114–128.

[42] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 850–861.

[43] Xiao Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi. 2014.

SCORAM: oblivious RAM for secure computation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 191–202.

[44] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov,

and Yan Huang. 2014. Oblivious data structures. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 215–226.

[45] Andrew C Yao. 1982. Protocols for secure computations. In 23rd Annual Sympo-
sium on Foundations of Computer Science, 1982. IEEE, 160–164.

APPENDIX
We present the proof of theorems presented in Section 4 as follows:

Proof of Theorem 4.2. We see that S
3
ORAM is correct iff (i)

the S3ORAM.Retrieve subroutine returns the correct value of the
retrieved block, (ii) the write-to-root operation (step 10, Protocol 2)

is consistent, and (iii) the S3ORAM.SSS-SMP-TripletEviction sub-

routine is consistent.

• Correctness of S3ORAM.Retrieve. For each data request x , let b be

the block to be retrieved and j be the location of b in its path (i.e.,

j := pm[id].pIdx where id is the identifier of b). So, the share of

select query for server Si is of form: JeK(t)i = (JeK(t)
1
, . . . , JeK(t)n),

where n = Z · (H + 1) and ei = 0 for 1 ≤ i , j ≤ n, ej = 1. Let

Jcu K = (Jcu1K, . . . , JcunK) be the vector consisting of the share of

u-th chunks taken from Z slots in every bucket residing in the read

path. For 1 ≤ u ≤ m, the answer of each server Si is of form:

JeK(t)i · Jcu K(t)i =
n∑

k=1

(
Jek K(t) · Jcu,k K(t)

)
=

n∑
k=1

Jek · cu,k K(2t) by Eq. (3)

= Jcu, j K(2t) by Eq. (1)

By SSS scheme, at least 2t + 1 shares are required to recover the

secret encrypted by a random 2t-degree polynomial. Our system

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

504

model presented in Section 2 follows this and, therefore, the client al-

ways computes the correct value of chunk ct by ct ← SSS.Recover(Jct K
(2t)
1
, . . . , Jct K

(2t)
ℓ
, 2t).

Since all chunks of b are correctly computed, b is properly retrieved

with probability 1.

•Consistency of write-to-root (step 10, Protocol 2): Lemma 4.1 implies

that the root bucket is empty after eviction. The client writes the

retrieved block to an empty slot in the root bucket according to the

subsequent order. Since Z = A, this ensures that slots containing
retrieved blocks are not overwritten before the eviction happens.

• Consistency of S3ORAM.SSS-SMP-TripletEviction: Lemma 4.1 im-

plies that sibling buckets are empty due to previous evictions and,

therefore, they can hold all data moved from source buckets without

creating inconsistency. Moving data from source buckets to destina-

tion buckets is achieved via matrix products. These computations

are correct due to homomorphic properties of two-share addition

and multiplication offered by SSS and the SMP protocol which was

proven to be correct in [17], respectively. □

Proof of Theorem 4.3. Given a request sequence x of length

q, where x j = (opj , idj , dataj) as in Definition 2.4, let S
3
ORAMi (x)

be the S
3
ORAM client’s sequence of interactions with server Si

including a sequence of retrieval, write-to-root and eviction opera-

tions. We have that write-to-root operation is deterministic and is

performed after retrieval where the previously retrieved block is

written to a publicly known slot in the root bucket (step 10, Protocol

2). The eviction is also deterministic which is performed after every

A successive accesses regardless of any data being requested (step

12). Due to the independence between retrieval, write-to-bucket and

eviction operations, we consider S
3
ORAMi (x) to contain separate

sequences of these operations observed by Si as:

S
3
ORAMi (x) =

®Ri (x) =

(
R
(x1)

i , . . . ,R
(xq)
i

)
®Wi (x̃) =

(
W
(x̃1)

i , . . . ,W
(x̃q)
i

)
®Ei (x̄) =

(
E
(x̄1)

i , . . . ,E
(x̄q/A)
i

), (7)

where ®Wi (x̃) and ®E(x̄) denote the deterministic write-to-bucket and

eviction sequences, given data access sequence x, respectively.
Assume that there is a coalition of up t servers {Si ∈I } sharing

their own transcripts with each other. Let I ⊆ {1, . . . , ℓ} such that

|I | ≤ t . The view of {Si ∈I } can be derived from Eq. (7) as:

{
S
3
ORAMi ∈I (x)

}
=

{ ®Ri ∈I (x)} =

(
{R
(x1)

i ∈I }, . . . , {R
(xq)
i ∈I }

)
{ ®Wi ∈I (x̃)} =

(
{W
(x̃1)

i ∈I }, . . . , {W
(x̃q)
i ∈I }

)
{ ®Ei ∈I (x̄)} =

(
{E
(1)

i ∈I }, . . . , {E
(q/A)
i ∈I }

) ,
We show that, for any two access sequences x and x′ of the same

length (|x| = |x′ |), the pairs

〈
{ ®Ri ∈I (x)}, { ®Wi ∈I (x̃)}, { ®Ei ∈I (x)}

〉
and

〈
{ ®Ri ∈I (x′)}, { ®Wi ∈I (x̃′)}, { ®Ei ∈I (x̄′)}

〉
are identically distributed.

• Retrieval transcripts: For each access request x j ∈ x, {Si ∈I } ob-

serves a transcript {R
(x j)
i ∈I } consisting of a retrieval path Px j (access

pattern) which is identical for all servers (step 4, Subroutine 1) and

data generated in SSS-based select scheme (steps 5–8).

The access pattern of S
3
ORAM is identical for all other tree-based

ORAM schemes. Specifically, each block in S
3
ORAM is assigned to

a leaf bucket selected randomly and independently from each other.

Once a block is accessed, its position is assigned to a new bucket leaf

selected randomly and independently. Therefore, access patterns

generated by any data request sequences of the same length are

statistically indistinguishable.

We next analyze the probability distribution of data observed

at the server side in each S
3
ORAM retrieval as follows. For each

retrieval, the client sends to servers select queries generated by

PIR.CreateQuery algorithm. Such queries are SSS shares and, there-

fore, achieve t-privacy. The inner product is also t-private due to
Lemma 2.1 with addition and partial multiplication homomorphic

properties (1) and (3). So, any data generated in S
3
ORAM retrievals

are identically distributed in the presence of t colluding servers.
By these properties, for any data request sequence x, the corre-

sponding transcripts (including access patterns) generated in the

S
3
ORAM retrieval phase are information-theoretically (statistically)

indistinguishable from random access sequence in the presence of

up to t colluding servers.
• Write-to-root transcripts: Data are written to slots in the root

bucket according to subsequent order and, therefore, the access

pattern is deterministic. Such written data are SSS-shared with

new random polynomials so that they are t-private. Therefore, any
data request sequence generates write-to-root transcripts which

are identically distributed.

• Eviction transcripts: Since eviction is deterministic which follows

publicly-known reverse lexicographical order like in Onion-ORAM

(e.g., [12]), the access patterns of {E
(j)
i ∈I } and {E

(j′)
i ∈I } are indepen-

dent to each other for any (j, j ′) ∈ {0, . . . , 2H }. We next show that

data generated in independent evictions are identically distributed.

For each eviction, the client sendsH permutation matrices which

are SSS-share and, therefore, they are all t-private and uniformly

distributed. Data in sibling buckets are t-private and uniformly

distributed since they are merely copied from source buckets de-

terministically (step 19, Subroutine 3). The matrix product compu-

tations (step 23) are also t-private according to Lemma 2.1 with

properties (1) and (3). Finally, the SMP protocol ensures that data

in destination buckets are t-private and uniformly distributed (step

24) as shown in Lemma 2.2.

Given two request sequences x, y with |x| = |y|, the correspond-
ing deterministic eviction sequences observed by {Si ∈I } are:

{ ®Ei ∈I (x̄)} =
(
{E
(x̄1)

i ∈I }, . . . , {E
(x̄q/A)
i ∈I }

)
{ ®Ei ∈I (ȳ)} =

(
{E
(ȳ1)

i ∈I }, . . . , {E
(ȳq/A)
i ∈I }

)
where (x̄ j , ȳj) ∈ {0, . . . ,H } for 1 ≤ j ≤ q/A. Since data yielded

in {E
(j̄j)
i ∈I } and {E

(x̄ j′)
i ∈I } are identically distributed for all (j, j ′) ∈

{x̄1, . . . , x̄q/A} ∪ {ȳ1, . . . , ȳq/A} as shown above, { ®Ei ∈I (x̄)} and
{ ®Ei ∈I (ȳ)} are identically distributed.

• Final indistinguishability argument: Given any data request se-

quences of the same length, S
3
ORAM generates (i) access patterns

statistically indistinguishable from random request sequence, and

(ii) identically (uniform) distributed data in the presence of up to

t colluding servers. This indicates that S3ORAM scheme achieves

(information-theoretic) t-security according to Definition 2.4.

□

Session C1: Oblivious RAM CCS’17, October 30-November 3, 2017, Dallas, TX, USA

505

	Abstract
	1 Introduction
	1.1 Research Gap and Problem Statement
	1.2 Our Contribution

	2 Preliminaries and Building Blocks
	2.1 Model of Computation
	2.2 Shamir Secret Sharing
	2.3 Secure Multi-party Multiplication
	2.4 Multi-server Private Information Retrieval
	2.5 Multi-server ORAM Security

	3 The Proposed S3ORAM Scheme
	3.1 S3ORAM Data Structure
	3.2 S3ORAM Access Protocol
	3.3 Asymptotic Cost Analysis

	4 Security
	5 Experimental Evaluation
	5.1 Implementation Details and Configuration
	5.2 Evaluation Metrics and Methodology
	5.3 Experimental Results

	6 Related Work
	7 Conclusion
	References

