
Bolt: Anonymous Payment Channels
for Decentralized Currencies

Matthew Green

Johns Hopkins University

Baltimore, Maryland

mgreen@cs.jhu.edu

Ian Miers

Johns Hopkins University

Baltimore, Maryland

imiers@cs.jhu.edu

ABSTRACT
Bitcoin owes its success to the fact that transactions are transpar-

ently recorded in the blockchain, a global public ledger that removes

the need for trusted parties. Unfortunately, recording every transac-

tion in the blockchain causes privacy, latency, and scalability issues.

Building on recent proposals for “micropayment channels” — two

party associations that use the ledger only for dispute resolution

— we introduce techniques for constructing anonymous payment

channels. Our proposals allow for secure, instantaneous and private

payments that substantially reduce the storage burden on the pay-

ment network. Specifically, we introduce three channel proposals,

including a technique that allows payments via untrusted inter-

mediaries. We build a concrete implementation of our scheme and

show that it can be deployed via a soft fork to existing anonymous

currencies such as ZCash.

1 INTRODUCTION
Bitcoin has become increasingly popular as a decentralized elec-

tronic currency. In Bitcoin, each transaction is recorded in the

blockchain, a public transaction ledger maintained by a set of de-

centralized peers. While this design has proven successful at low

transaction volumes, the reliance on a globally-shared ledger has

caused serious scaling issues. Since in Bitcoin 1MB blocks are added

to the blockchain every ten minutes on average, the Bitcoin trans-

action rate is limited to fewer than ten new transactions per second

across the entire Bitcoin user base [1].
1
Several proposals to increase

blockchain bandwidth are being debated in the Bitcoin community

today, but none are likely to produce a transaction rate that com-

petes with centralized services such as payment card networks.

A promising approach to addressing the scaling problem is to

move the bulk of Bitcoin transactions off chain, while preserving
the system’s decentralized structure and strong integrity guaran-

tees. The leading proposal for off-chain payments is to use payment
channels, exemplified by the Lightning Network [45] and DuplexMi-

cropayment Channels [30]. Rather than posting individual payment

transactions to the blockchain, channels employ the blockchain to

first establish a shared deposit between two parties. The parties

1
As of early May 2017, this has resulted in a backlog of nearly 165,000 transactions [15].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4946-8/17/10.

https://doi.org/10.1145/3133956.3134093

interact directly to make payments — adjusting the respective own-

ership shares of the deposit — and communicate with the blockchain

only to agree on the final split of escrowed funds. In cases where no

direct payment channel exists between two parties, these propos-

als also allow participants to route transactions via intermediate

peers [45]. The main benefit of the payment channel paradigm is

that it dramatically reduces the transaction volume arriving at the

blockchain, without adding new trusted and centralized parties.

While payment channels offer a solution to the scaling problem,

they inherit many of the well-known privacy weaknesses of Bit-

coin [40, 46]. Although payments are conducted off chain, any party

may learn the pseudonymous identities and initial (resp. final) chan-

nel balances of the participants. More critically, payment channels

provide few privacy protections against transaction counterparties.

By establishing a channel to pay for e.g., Tor bandwidth or web

content, a user implicitly links each payment on a given channel

to all of her other payments on this channel. This is particularly

problematic in the likely event that payments are routed via a com-

mon intermediate peer — such as a currency exchange — since the

intermediary must now be trusted to keep private your full pay-

ment history. Some proposals, such as the Lightning Network, have

proposed to work around this problem by routing the payment via

multiple intermediary nodes; however (as we discuss in §6) this

approach substantially increases the complexity of establishing

payment channels, and reveals payment information in the event

that even a subset of the intermediaries collude.

Several academic works have recently proposed solutions that

address the privacy problems of Bitcoin-type currencies [29, 41, 42,

47]. Some of the resulting systems been publicly deployed, notably

ZCash [3] (an implementation of the Zerocash protocol [47]) and

Monero [2]. Unfortunately, the privacy mechanisms contained in

these systems apply to the privacy of transactions on the blockchain,
and do not address the setting of payment channels. Indeed privacy

for payment channels seems fundamentally challenging due to

channels’ pairwise structure. Even when a channel is funded with

anonymous currency, repeated payments within the same channel

are inherently linkable. This is concerning, given that one of the

main proposed applications of channels is for web micropayments —
which are often described as a more private alternative to tracking

and online behavioral advertising.

We stress that concerns about privacy are not theoretical. Several

commercial ventures [11, 23, 32] have been founded around the task

of analyzing and tracing blockchain transactions. It is reasonable to

expect that surveillance will be applied to payment channel systems

if they become widely deployed.

Our Contribution. In this paper we propose Blind Off-chain Light-
weight Transactions, or Bolt. Bolt consists of a set of techniques for

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

473

https://doi.org/10.1145/3133956.3134093

constructing privacy-preserving payment channels for a decentral-

ized currency. These techniques ensure that multiple payments on

a single channel are unlinkable to each other and — if channels are

funded with anonymized capital
2
— anonymous.

Our constructions enhance earlier work in privacy-preserving

decentralized payments [29, 41, 47] while addressing the problem

of providing fast and private off-chain transactions. Unlike earlier

proposals [37], which simply obfuscate participant identities from

intermediaries, our proposals create anonymous direct channels

even when a merchant does not know the identity of the paying

party. Of more practical interest, we prototype one of our construc-

tions and show that we can deploy Bolt as a soft fork of a Bitcoin

like cryptocurrency. We provide constructions for three types of

channels:

Unidirectional payment channels allow a customer to

pay a merchant fixed value coins repeatedly without link-

ing the payments together. While our approach builds on

the compact e-cash paradigm introduced by Camenisch et
al. [17], it requires a novel mechanism to achieve succinct
channel closure, ensuring blockchain space usage is constant,

regardless of the transaction volume.

Bidirectional Channels allow two parties to exchange

arbitrary valued payments in either direction, without link-

ing the payments. The challenge here is preventing a mali-

cious counterparty from using obsolete information to claim

an earlier balance, while maintaining the scheme’s unlinka-

bility. While multiple payments on the same channel are un-

linkable, to avoid linking an aborted payment to the payer’s

identity, our construction requires that the underlying pay-

ment channel be funded anonymously.

Indirect channels Finally, we extend our bidirectional

payment channel construction to enable third party pay-
ments, where an untrusted intermediary acts as a “bridge”

allowing two otherwise unconnected parties to exchange

value. Critically, the intermediary learns neither the identity
of the parties nor the amount transacted.

1.1 Background on Payment Channels
A payment channel is a relationship established between two partic-

ipants in a privacy-preserving decentralized ledger-based currency

network. While payments may flow in either direction on an es-

tablished channel, the parties themselves are not symmetric: for

a payment channel to work, at least one party must initiate the

connection. For simplicity of exposition, we will refer to the initi-

ating party as a customer, and the responding party as a merchant.
We assume that the payment network includes a means to validate

published transactions and to resolve disputes according to pub-

lic rules. In principle these requirements can be satisfied by the

scripting systems of consensus networks such as Monero or ZCash,

using only minimal script extensions (which we discuss in §5.) We

stress that our proposals in this work focus on the privacy of pay-

ment channels, and thus we assume the privacy of the underlying

funding network.

2
This requires either that the underlying cryptocurrency, is itself anonymous, e.g.

as in ZCash [3], or that there exists some way of anonymizing or mixing that adds

sufficient anonymity to non-anonymous cryptocurrency.

When two parties wish to open a channel, the parties first agree

on the respective balance shares of the channel, which we represent

by non-negative integers Bmerch
0

and Bcust
0

. The parties establish

the channel by posting a payment to the network. Provided that

these transactions are correctly structured, the network places the

submitted funds in “escrow” until a subsequent closure transaction

is received. The customer now conducts payments by interacting

off-chain with the merchant. For some positive or negative integer

payment amount ϵi , the i
th

payment can be viewed as a request

to update Bcusti := Bcusti−1 − ϵi and Bmerch
i := Bmerch

i−1 + ϵi , with the

sole restriction that Bmerch
i ≥ 0 and Bcusti ≥ 0. At any point, one or

both parties may request to close the channel by posting a channel

closure message to the ledger. If the closure messages indicate

that the parties disagree about the current state of the channel,

the ledger executes a dispute resolution algorithm to determine

the final channel balances. After a delay sufficient to ensure each

party has had an opportunity to contribute its closure message, the

parties may recover their final shares of the channel balance using

an on-chain payment transaction.

Any payment channel must meet two specific requirements,

which we refer to as universal arbitration and succinctness:

(1) Universal arbitration. In the event that two parties dis-

agree about the state of a shared channel, the payment net-

work can reliably arbitrate the dispute without requiring any

private information.

(2) Succinctness. To make payments scalable, all information

posted to the ledger must be compact — i.e., the size of this
data should not grow linearly with the balance of the channel,

the number of transactions or the amounts exchanged.

The latter property is an essential requirement for the setting of

payment channels, since it rules out degenerate solutions that result

in a posted transaction for every offline payment, or that post the

full off-chain payment interaction to the ledger.

1.2 Customers, Merchants, and the Limits of
Anonymity for Payment Channels

Informally our constructions for payment channels provide the

following privacy guarantee:

Upon receiving a payment from some customer,
the merchant learns no information beyond the
fact that a valid payment (of some known positive
or negative value) has occurred on a channel that
is open with them. The network learns only that
a channel of some balance has been opened or
closed.

Note, however, that the privacy protections against a channel par-

ticipant are slightly weaker than those against third parties. This is

an inherent limitation of the payment channel setting. Moreover,

these limitations change depending on if a payment is made over a

single direct channel or an indirect channel consisting of a series

channels between the customer, one or more intermediaries, and a

merchant. We explain these limitations further here.

Direct channels. The direct channel setting has three limitations.

First, the privacy provided for direct channels is asymmetric: only

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

474

the party initiating the payment is anonymous and unlinkable be-

tween payments, while the target of the payment is pseudonymous.

This holds because at least one party must know which payment

channel is being used.

Second, when receiving a payment on a channel, the recipient

knows the payment came from someone with whom they have an

open channel. This is also fundamental to the nature of channels,

since they must be established with a counter-party before being

used.

This final requirement suggests that recipients should use well-

known channel parameters to group all channels, and thus max-

imize the anonymity set of its customers. If a recipient provides

unique channel parameters to each potential payer (i.e., behaves
as though it was a different party to each payer), than the payer

receives no privacy — as the set of channels open under that set of

parameters has an anonymity set of a single person.

This setting maps well to a situations where the payment target

is known, e.g.,where a single merchant or website accepts payments

from many anonymous customers. Thus for the remainder of the

paper we term this well-known target party themerchant, and refer
to the paying party as the customer. We keep this terminology even

when in settings where payment amounts are negative (resulting

in a reverse payment), since one party must still be well known

and this terminology maps to the case where, e.g., a merchant is

refunding a customer for a previous purchase. We stress that to

anyone not a party to the payment channel, privacy is absolute.

Indirect channels For indirect channels which involve one or

more intermediate channels, the privacy guarantees may, surpris-

ingly, be stronger than the direct case. First, this configuration facil-

itates a larger anonymity set, since it encompasses any party who

has a channel open with the entry intermediary (for the initiator) as

well as anyone who has a channel open with the exit intermediary

(for the target). Additionally, when channels contain a single inter-

mediary, they can be configured such that the merchant remains

anonymous to the customer. Specifically, although the underlying

pair-wise channels still offer asymmetric privacy (i.e., one party
is well-known), we can arrange the indirect channels so that the

customer and merchant are both holding the private end of their

channel and instead the intermediary is the only well-known party.

We discuss this arrangement in §4.3.

The advantages of intermediaries do not fully generalize to

chains containing more than a single intermediary. Specifically,

we show that channels with a single intermediary can be config-

ured to hide the payment amount from the intermediary. However,

channels which involve more than one intermediary cannot hide

the value of a payment from all intermediaries. Regardless of cryp-

tographic underpinnings, at least one endpoint
3
of each channel

must know the channel balance or else the channel cannot be closed.

As a result, in any chain of channels with multiple intermediaries,

at least one channel will have an intermediary party on both end-

points, and one of these parties will inevitably learn the value of

the payments. This is not a limitation of our techniques but simply

a consequence of the nature of payment channels.

3
It is possible that neither endpoint knows the balance in full and instead must coop-

erate to learn it. This does not alter the problem.

1.3 Overview of our constructions
In this work we investigate two separate paradigms for constructing

anonymous payment channels. Our first construction builds on the

electronic cash, or e-cash, paradigm first introduced by Chaum [25]

and extended in many subsequent works, e.g., [13, 17, 26]. This
unidirectional construction allows for succinct payments of fixed-

value tokens from a customer to a merchant, while preserving the

anonymity and functionality of a traditional payment channel. Our

second construction extends these ideas to allow for variable-valued

payments that traverse the channel in either direction (i.e., each
payment may have positive or negative value), at the cost of a

more complex abort condition. Finally, we show how to extend our

second construction to support path payments where users pay

anonymously via a single untrusted intermediate party or a chain

of intermediaries.

We now present the intuition behind our constructions.

Unidirectional payment channels frome-cash.An e-cash scheme

is a specialized protocol in which a trusted party known as a bank
issues one-time tokens (called coins) that customers can redeem

exactly one time. “Offline” e-cash protocols seem like a natural can-

didate for implementing a one-way payment channel. For purposes

of exposition, let us first consider a “strawman” proposal based on

some ideal offline e-cash scheme that allows for the detection of

doubly-spent coins. In this proposal, the merchant plays the role of

the bank. After confirming that the customer has funded a channel,

it issues a “wallet” of anonymous coins to the customer, who then

spends them back to the merchant. To close the channel, the cus-

tomer spends the remaining coins to herself and posts the evidence

to the payment network. The merchant can dispute the customer’s

statement by providing evidence of a doubly-spent coin.

This strawman protocol suffers from several weaknesses. Most

obviously, it is not succinct, since closure requires the customer to

post all of her unspent coins. Secondly, there is an issue of timing:

the merchant cannot issue a wallet to the customer until the cus-

tomer’s funds have been escrowed by the network, a process that

can take from minutes to hours. At the same time, the customer

must be assured that she can recover her funds in the event that

the merchant fails to issue her a wallet, or aborts during wallet

activation. Finally, to avoid customer “framing” attacks (in which

a merchant issues coins to itself and then accuses the customer of

double-spending) we require an e-cash scheme with a specific prop-

erty called exculpability: namely, it is possible for any third party (in

our case the payment network) to distinguish “true” double spends

— made by a cheating customer — from false double-spends created

by the merchant.

Intuition behind our unidirectional construction. To address the first

concern, we begin with a compact e-cash scheme [17]. Introduced

by Camenisch et al, this is a form of e-cash in which B separate

coins can be generated from a constant-sized wallet stored at the

customer (here B is polynomial in the wallet size). While compact

e-cash reduces the wallet storage cost, it does not immediately give

rise to a succinct closure mechanism for our channels. The key

innovation in our construction is a new mechanism that reduces

channel closure to a single fixed-size message — at the cost of

some increased (off-chain) interaction between the merchant and

customer.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

475

redeem
for -5

-5

+5

�Customer
escrows
funds on
blockchain

C
u
s
t
o
m
e
r

m
e
r
c
h
a
n
t

� Merchant
signs new
wallet. Used in
next payment

-5

+5

New
IOU

BLOCK
CHAIN

 ��

100

0

channel establishment

� Merchant
provides token
for closing
channel on new
balance

REVOKED

�Customer�
revokes previous
wallet +refund
token

redeem
for

Payment for $5.00 (does not touch blockchain) channel closure

redeem
for 95

��

�

� Merchant
issues signed
wallet for
escrowed
funds

��Customer
proves new
unsigned wallet
pays merchant
$5 more than
existing signed
IOU

�Customer
posts
refund
token

� Blockchain
splits escrowed
funds

Figure 1: High level description of bidirectional channel protocol. The customer is the anonymous party. The merchant is a
known identity. Only channel establishment and closure touch the blockchain.

To create a payment channel in our construction, the customer

first commits to a set of secrets used to formulate the wallet. These

are embedded within a succinct wallet commitment that the cus-
tomer transmits to the payment network along with the customer’s

escrow funds (and an ephemeral public signature verification key

pkc). The customer and merchant now engage in an interactive

channel establishment protocol that operates as follows. The cus-

tomer first generates B coin spend transactions, and attaches to

each a non-interactive zero knowledge proof that each coin is tied

to the wallet commitment. She then individually encrypts each of

the resulting transactions using a symmetric encryption scheme

such that each ciphertext Ci embeds a single spend transaction,

along with the decryption key for ciphertext Ci+1. After individu-
ally signing each of the resulting ciphertexts using her secret key,

the customer transmits the signed results to the merchant for safe-

keeping. A critical aspect of this scheme is that from the merchant’s

perspective these ciphertexts are opaque: the customer does not

need to prove to the merchant that any ciphertext is well-formed.

When the customer wishes to close an active channel with re-

maining balance N (for 0 < N ≤ B), she computes j = (B − N) + 1
and posts a signed message (channel ID, j,kj) to the network, with
kj being the decryption key for the jth ciphertext. The merchant

can use this tuple to decrypt each of the ciphertexts Cj , . . . ,CN
and thus detect further spending on the channel. If the customer

cheats by revealing an invalid decryption key, or if any ciphertext

decrypts to an invalid coin, or if the resulting transactions indicate

that she has double-spent any coin, the merchant can post indis-

putable evidence of this cheating to the network — which, to punish

the customer, will grant the full channel balance to the merchant.

Bidirectional payment channels. A restriction on the previous

construction is that it is unidirectional: all payments must flow from

the customer to the merchant. While this is sufficient for many use-

ful applications — such as micropayments for web browsing — some

applications of payment channels require payments to flow from

the merchant to the customer. As we further discuss below, a no-

table example of such an application is third party payments, where
two parties send funds via an intermediary, who must increase the

value of one channel while decreasing the other.

For these applications, we propose a second construction that

combines techniques from existing (non-anonymous) payment

channels with blind signatures and efficient zero-knowledge proofs.

As in the existing payment channel systems [30, 45], the customer

and merchant first on agree on an initial channel state, with the

customer holding Bcust
0

escrowed funds, and the merchant provides

a signature on this balance. When the customer wishes to pay the

merchant an arbitrary positive or negative amount ϵ , she conducts
an interactive protocol to (1) prove knowledge of the previous

signature on the current balance Bcusti−1 , and (2) demonstrate that

she possesses sufficient balance to complete the payment. She then

(3) blindly extracts a new signed refund token from the merchant

containing the updated balance Bcusti = Bcusti−1 − ϵ . At any point, the

customer may post her most recent refund token to the blockchain

to redeem her available funds. See figure 1.

The main challenge in this approach is to prevent a dishonest

customer from retaining and using earlier versions of her refund

token on channel closure. To prevent this, during each payment, the

customer interacts with the merchant to present a revocation token
for the previous state. As long as the customer behaves honestly,

this revocation token can never be linked to the channel or to any

previous transactions. However, if the customer misbehaves by

posting an obsolete refund token, the merchant can instantly detect

this condition and present the revocation token to the network as

proof of the customer’s malfeasance – in which case, the network

awards the balance of the channel to the merchant. Unlike the e-

cash approach, this proposal suffers from the possibility that one of

the parties will abort the protocol early; we address this by using

the network to enforce fairness.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

476

From direct to third-party payments. As the concluding ele-

ment of our work, we show how a bidirectional payment channel

can be used to construct third-party payments, in which a first party

A pays a second party B via a common, untrusted intermediary

I to which both parties have previously established a channel. In

practice, this capability eliminates the need for parties to maintain

channels with all of their peers. The key advantage of our proposal

is that the intermediary I cannot link transactions to individual

users, nor — surprisingly — can they learn the amount being paid

in a given transaction. Similarly, even if I is compromised, it cannot

claim any transactions passing through it. This technique makes

anonymous payment channels usable in practice, provided there

exists a highly-available (untrusted) intermediary to route the con-

nections. We provide the full details of our construction and how

to extend it to support multiple intermediaries in §4.3.

Aborts. Our unidirectional protocol provides privacy guarantees

that are similar to the underlying e-cash protocol, with the obvious

(and necessary) limitation that final channel balances are revealed

on closure. Payments between a customer and merchant are non-

interactive and completely anonymous. The bidirectional payment

construction, on the other hand, provides a slightly weaker guar-

antee: by aborting during protocol execution, the merchant can

place the customer in a state where she is unable to conduct future

transactions. This does not prevent the customer from resorting

to the network to close the channel, but it does raise concerns for

anonymity in two ways:

(1) The merchant can arbitrarily reduce the anonymity set by

(even temporarily) evicting other users through induced

aborts.

(2) The merchant may link a user to a repeating sequence of

transactions by aborting the user in the middle of the se-

quence.

For many traditional commerce settings, the consequences of such

aborts may be minimal: no matter the payment mechanism, the

merchant can fail to deliver the promised goods and the customer

will almost certainly abort. For other settings, such as micropay-

ments, these possibilities should be considered. In such settings

customers should scan the network for premature closures and

abort the channel if the number of open channels with a merchant

falls below their minimal anonymity set.

1.4 Comparison to related work
In concurrent work, Heilman et al. proposed an elegant mixing

system called Tumblebit [36]. Tumblebit is compatible with clas-

sical Bitcoin and operates in two modes. The first allows users to

anonymize (aka mix or “launder”) their own coins. The second

mode allows for payment channels between distinct users. Over-

coming the limited choice of cryptographic primitives to get Bitcoin

compatibility is a serious achievement, but for Tumblebit it comes

at the cost of far more limited features, performance, and privacy

in comparison to Bolt’s payment channels.

Most significantly, in a payment from Alice to Bob, “Bob and the

Tumbler can collude to learn the true identity of Alice” [36] since

Alice identifies herself to the Tumbler when making a payment

because she must pay the Tumbler with traceable Bitcoins.
4
In

contrast both our schemes provide provable privacy for Alice even

in the face of corrupted and colluding parties. Second, Tumblebit

does not hide payment values.

On the functionality side: Tumblebit payments are of a single

fixed value and payment channels are unidirectional. In contrast

we provide for bidirectional payment channels with variable valued

payments. Tumblebit payments are also not succinct: a channel

allowing n payment needs either O (n) state on the blockchain or

O (n2) invocations of their protocol.
On the performance side: at 387ms per channel payment, Tum-

blebit is 5 times slower than our prototype implementation of Bolt’s

bidirectional channels. We stress that this is not due to a design flaw

in Tumblebit: working within the confines of Bitcoin compatibility

is extremely challenging and comes at a high cost.

Finally, like Tumblebit, our unidirectional protocol provides full

protections from aborts. Our bidirectional protocol does not and

requires an underlying anonymous currency for safety (see §1.3).

Variable payments seem to require multiple rounds of interaction,

thus risking aborts terminating in invalid intermediate states.

1.5 Outline of this paper
The remainder of this paper proceeds as follows. In §2 we present

definitions for anonymous payment channels. In §3 we present the

building blocks of our scheme. In §4 we describe the protocols for

our payment channel constructions, and in §5 we present concrete

instantiations of these protocols. Finally, in §6 we discuss the related

work.

2 DEFINITIONS
Notation: Let λ be a security parameter. We write P (A (a),B (b))
→ (c,d) to indicate a protocol P run between parties A and B,

where a is A’s input, c is A’s output, b is B’s input and d is B’s

output. We will define ν (·) as a negligible function. We will use

valmax to denote the maximum balance of a payment channel, and

denote by the set of integers {ϵmin, . . . , ϵmax} the range of valid

payment amounts.

2.1 Anonymous Payment Channels
An Anonymous Payment Channel (APC) is a construct established

between two parties that interact via a payment network. In this sec-

tion we first describe the properties of an anonymous payment chan-
nel scheme, which is a collection of algorithms and protocols used

to establish these channels. We then explain how these schemes

can be used to construct channels in a payment network. We now

provide a formal definition of an APC scheme.

Definition 2.1 (APC scheme). An anonymous payment channel
scheme consists of a tuple of possibly probabilistic algorithms (KeyGen,
InitC , InitM ,Refund,Refute,Resolve) and two interactive protocols
(Establish,Pay). These are defined in Figure 2. For completeness we
also define an optional function Setup(1λ) to be run by a trusted
party for generating the parameters pp, e.g., a Common Reference

4
This is likely fundamental. See Section 7.c of [36] for further discussion. Although

Heilman et al. provide some mitigations for these attacks, as they acknowledge the

Tumbler and Bob can still correlate Alice’s interactions. Thus they cannot offer Alice

provable privacy from Bob.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

477

String. In some instantiations the CRS is not required. In this case, we
set pp := 1

λ .5

Using Anonymous Payment Channels. An anonymous pay-

ment channel scheme must be used in combination with a payment

network capable of conditionally escrowing funds and binding these

escrow transactions funds to some data. Such payment networks

can be constructed using blockchain-based systems, although they

can be built from other technology as well. In this work we assume

only the existence of a payment network with these capabilities,

and leave the details of the payment network’s implementation (e.g.,
modeling a blockchain) as a separate problem. We now describe

how these algorithms and protocols are used to establish a channel

on a payment network.

To instantiate an anonymous payment channel, the merchantM

first generates a long-lived keypair (pkM , skM) ← KeyGen(pp)
that will identify it to all customers. Themerchant initializes its state

S← ∅. A customer C generates an ephemeral keypair (pkC , skC)
for use on a single channel. The customer and merchant agree on

their respective initial channel balances Bcust
0
,Bmerch

0
. They now

perform the following steps:

(1) Each party executes the InitC algorithm on the agreed ini-

tial channel balances, in order to derive the channel tokens

TC , TM .

(2) The two parties transmit these tokens to the payment net-

work along with a transaction to escrow the appropriate

funds.

(3) Once the funds have been verifiably escrowed, the two par-

ties run the Establish protocol to activate the payment chan-

nel. If the parties disagree about the initial channel balances,

this protocol returns⊥ and the parties may close the channel.

(4) If channel establishment succeeds, the customer initiates the

Pay protocol as many times as desired, until one or both

parties close the channel.

(5) If the customer wishes to close the channel, she runs Refund
and transmits rcC along with the channel identifier to the

payment network.
6

(6) The merchant runs Refute on the customer’s closure token

to obtain the merchant closure token rcM .

At the conclusion of this process, the network runs the Resolve
algorithm to determine the final channel balance and allows each

party to collect the determined share of the escrowed funds.

2.2 Correctness and Security
We now described the correctness and security of an anonymous

payment channel scheme. Here we provide intuition, and present

formal definitions in Appendix B.

Correctness. Informally, anAPC scheme is correct if for all correctly-

generated parameters pp and opening balances Bcust
0
,Bmerch

0
∈

{0, . . . , valmax}, every correct (and honest) interaction following

the paradigm described above always produces a correct outcome.

Namely, each valid execution of the Pay protocol produces success,

5
Looking forward to our recommended instantiations in §5, we propose to use a CRS

based on public randomness.

6
Here we assume that channel closure is initiated by the customer. In cases where the

merchant wishes to initiate channel closure, it may transmit a special message to the

network requesting that the customer close the channel.

and the final outcome of Refute correctly reflects the final channel

balance.

Security. The security of an Anonymous Payment Channel scheme

is defined in terms of two games, which we refer to as payment
anonymity and balance. We now provide an informal description

of each property, and refer the reader to Appendix B for the formal

definitions.

Payment anonymity. Intuitively, we require that the merchant, even

in collaboration with a set of malicious customers, learns nothing

about a customer’s spending pattern beyond the information that

is available outside of the protocol. In our anonymity definition,

which extends a definition of Camenisch et al. [17], the merchant

interacts with either (1) a series of oracles implementing the real

world protocols for customers C1, . . . ,CN , or (2) with a simulator

S that performs the customer’s part of the Pay protocol. In the

latter experiment, we assume a simulator that has access to side

information not normally available to participants in the real pro-

tocol, e.g., a simulation trapdoor or control of a random oracle. We

require that the simulator has the ability to simulate any customer

without access to the customer’s wallet, and without knowing the

identity of the customer being simulated. Our definition holds if

no adversary can determine whether she is in world (1) or (2). We

stress that this definition implies anonymity because the simulator

has no information about which party it is simulating.

Balance. The balance property consists of two separate games, one

for the merchant and one for the customer. In both cases, assuming

honest execution of the Resolve protocol, this property ensures

that no colluding set of adversarial counterparties can extract more

value from a channel than justified by (1) the party’s initial channel
funding, combined with (2) the set of legitimate payments made

to (or by) the adversary. Because the merchant and customer have

different interfaces, we define this property in terms of two slightly

different games. In each game, the adversarial customer (resp. mer-

chant) is given access to oracles that play the role of the merchant

(resp. customer), and allows the parties to establish an arbitrary

number of channels with chosen initial balances. The adversary

may then initiate (resp. cause the other party to initiate) the Pay
protocol repeatedly on adversarially-chosen payment amounts ϵ .
Finally, the adversary can initiate channel closure with the counter-

party to obtain channel closure messages rcC , rcM . The adversary

wins if the output of the Resolve protocol is inconsistent with the

total value funded and paid.

3 TECHNICAL PRELIMINARIES
In this section we recall some basic building blocks that we will use

in our constructions.

Commitment schemes. LetΠcommit = (CSetup,Commit,Decommit)
be a commitment scheme where CSetup generates public param-

eters; on input parameters, a message M , and random coins r ,
Commit outputs a commitment C; and Decommit on input pa-

rameters and a tuple (C,m, r) outputs 1 if C is a valid commitment

to the message, or 0 otherwise. In our instantiations, we recommend

using the Pedersen commitment scheme [44] based on the discrete

logarithm assumption in a cyclic group.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

478

Key generation and channel initialization algorithms:

KeyGen(pp). This algorithm generates a keypair (pk, sk) for use by each customer or merchant.
InitP (pp, Bcust

0
, Bmerch

0
, pk, sk). For P ∈ {C,M} this algorithm is run by each party prior to opening a channel. On input the initial channel balances, public parameters

and the party’s keypair, the InitC algorithm outputs the party’s channel token TP and a corresponding secret cskP .
Two-party protocols run between a customer C and a merchantM:

Establish({C (pp, TM, cskC) }, {M ((pp, TC, cskM) }. On input public parameters and each of the initial channel tokens, the Establish protocol activates a channel
between two parties who have previously escrowed funds. If successful, the merchant receives established and the customer receives a walletw . Either party may receive
the distinguished failure symbol ⊥.
Pay({C (pp, ϵ, wold) }, {M (pp, ϵ, Sold) }). On input parameters, a payment amount ϵ , and a walletwold from a customer, and the merchant’s current state Sold (initially
∅) from the merchant: the customer receives a payment success bit RC and new walletwnew if the interaction succeeded. The merchant receives a payment success bit RM
and an updated state Snew if the interaction succeeded.

Channel closure and dispute algorithms, run by the customer and merchant respectively:

Refund(pp, TM, cskC, w). On input a walletw , outputs a customer channel closure message rcC .
Refute(pp, TC, S, rcC). On input the merchant’s current state Sold and a customer channel closure message, outputs a merchant channel closure message rcM and an
updated merchant state Snew .

Dispute resolution algorithm, run by the network:

Resolve(pp, TC, TM, rcC, rcM). On input the customer and merchant’s channel tokens TC, TM , along with closure messages rcC , rcM (where either message may be
null), this algorithm outputs the final channel balance Bmerch

final , Bcust
final .

Figure 2: Definition of an Anonymous Payment Channel scheme.

Symmetric encryption schemes. Our constructions require an
efficient symmetric encryption scheme as well as a one-time sym-

metric encryption scheme.We define a symmetric encryption scheme

Πsymenc = (SymKeyGen, SymEnc, SymDec) where SymKeyGen
outputs an ℓ-bit key. We also make use of a one-time encryption

scheme Πotenc = (OTKeyGen,OTEnc,OTDec). In practice, the en-

cryption scheme can be implemented by encoding the plaintext as

an element in a cyclic group G and multiplying by a random group

element. In either case, our constructions require that the schemes

provide IND-CPA security.

Pseudorandom Functions. Our unidirectional construction re-

quires a pseudorandom function (PRF) F that supports efficient

proofs of knowledge. For our purposes it is sufficient that the PRF be

secure for a poly-size input space. In addition to the standard pseu-

dorandomness property, ourprotocols require that the PRF should

also possess a property we refer to as strong pre-image resistance.
This property holds that, given access to an oracle implementing

the function Fs (·) for a random seed s , no adversary can find an

input point x and a pair (s ′,x ′) in the domain of the function such

that Fs (x) = Fs ′ (x
′) except with negligible probability. We propose

to instantiate F using the Dodis-Yampolskiy PRF [31], the public

parameters are a group G of prime order q with generator д. The
seed is a random value s ∈ Zq and the function is computed as

fs (x) = д1/(s+x) for x in a polynomially-sized set. We show in

the full version of this paper [33] that the Dodis-Yampolskiy PRF

satisfies the strong pre-image resistance property.

Signatures with Efficient Protocols. Our schemes make use of

a signature scheme Πsig = (SigKeygen, Sign,Verify) with efficient

protocols, as proposed by Camenisch and Lysyanskaya [18]. These

schemes feature: (1) a protocol for a user to obtain a signature on

the value(s) in a commitment without the signer learning anything

about the message(s), and (2) a protocol for (non-interactively)

proving knowledge of a signature. Several instantiations of these

signatures have been proposed in the literature, including con-

structions based on the Strong RSA assumption [18] and various

assumptions in bilinear groups [8, 19]. For security, we assume that

all signatures satisfy the property of existential unforgeability under
chosen message attack (EU-CMA).

Non-Interactive Zero-Knowledge Proofs. We use several stan-

dard results for non-interactively proving statements about commit-

ted values, such as (1) a proof of knowledge of a committed value,

and (2) a proof that a committed value is in a range. When referring

to the proofs above, we will use the notation of Camenisch and

Stadler [22]. For instance, PoK {(x , r) : y = дxhr ∧ (1 ≤ x ≤ n)} de-
notes a zero-knowledge proof of knowledge of integers x and r such
that y = дxhr holds and 1 ≤ x ≤ n. All values not in enclosed in

()’s are assumed to be known to the verifier. Our protocols require a

proof system that provides simulation extractability, which implies

that there exists an efficient proof extractor that (under specific

circumstances, such as the use of a simulation CRS) can extract the

witness used by an adversary to construct a proof, even when the

adversary is also supplied with simulated proofs. In practice we can

conduct these proofs non-interactively using a variety of efficient

proof techniques [8, 12, 14, 16, 20, 27, 34, 35, 48].

4 PROTOCOLS
In this section we present our main contribution, which consists

of three protocols for implementing anonymous payment chan-

nels. Our first protocol in §4.1 is a unidirectional payment channel

based on e-cash techniques. Our second construction in §4.2 al-

lows for bidirectional payments, with a more complex protocol

for handling aborts. Finally, in §4.3 we propose an approach for

third-party payments, in which two parties transmit payment via

an intermediary.

4.1 Unidirectional payment channels
Our first construction modifies the compact e-cash construction

of Camenisch et al. [17] to achieve efficient and succinct unidirec-
tional payment channels. We now provide a brief overview of this

construction.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

479

Compact e-cash. In a compact e-cash scheme, a customer with-

draws a fixed-size wallet capable of generating B coins. The cus-

tomer’s wallet is based on a tuple (k, sk,B): k is an (interactively

generated) seed for a pseudorandom function F , sk is the customer’s

private key, and B is the number of coins in the wallet. Once signed

by the merchant, this wallet can be used to generate up to B coins

as follows: the ith coin consists of a tuple (s,T ,π) where s is a
“serial number” computed as s = Fk (i); T is a “double spend tag”

computed such that, if the same coin is spent twice, the double

spend tags can be combined to reveal the customer’s key pk (or sk);
and π is a non-interactive zero-knowledge proof of the following

statements:

(1) 0 < i ≤ B
(2) The prover knows sk.
(3) The prover has a signature on the wallet (k, sk,B).
(4) The pair (s,T) is correctly structured with respect to the

signed wallet.

This construction ensures that double spending is immediately

detected by a verifier, since both transactions will share the serial

number s .7 The verifier can then recover the spender’s public key by
combining the double-spend tags. At the same time, the individual

coin spends cannot be linked to each other or to the user. Camenisch

et al. [17] show how to construct the proof π efficiently using

signatures and proof techniques secure under the Strong RSA or

bilinear assumptions in the random oracle model. Subsequent work

presents efficient proofs in the standard model [8, 9].

Achieving succinct closure. Let us recall our intuition for using

compact e-cash in a unidirectional payment channel (see §1.3). In

this proposal, the merchant plays the role of the bank and issues the

customer a wallet of B coins, which she can then (anonymously)

spend back to the merchant. To close a channel, the customer simply

spends any unused coins “to herself”, thus proving to the merchant

that she retains no spending capability on the channel (since any

subsequent attempt to spend those coins would be recognized by

the merchant as a double spend). Unfortunately while compact

e-cash provides a succinct wallet, this does not immediately lead

to a succinct protocol for closing the channel — as the customer

cannot simply reveal the wallet secrets without compromising the

anonymity of previous coins spent on the channel. We require a

mechanism to succinctly reveal only a fraction of the coins in a

wallet, without revealing them all. At the same time, we wish to

avoid complex proofs (e.g., a proving cost that scales with O (B)).8

Our approach is to use the merchant to store the necessary infor-

mation to verify channel closure. This requires a number of changes

to the compact e-cash scheme of Camenisch et al. [17] (requiring
a fresh analysis of the scheme, which we provide in §4.1.1). First,

7
In the original compact e-cash construction [17], the key k was generated using an

interactive protocol between the customer and bank, such that honest behavior by

one party ensured that k was uniformly random. In our revised protocol below, k will

be chosen only by the customer. This does not enable double-spending, provided that

the PRF is deterministic and the proof system is sound.

8
Indeed, an alternative proposal is to construct the coin serial numbers using a chained

construction, where each si is computed as a one-way hash of the key used in the

previous transaction. This would allow the customer to revoke the channel by posting

a secret from one transaction. Unfortunately, proving the correctness of si using

standard zero-knowledge techniques would then require O (B) proving cost, and

moreover, does not seem easy to accomplish using the efficient zero knowledge proof

techniques we recommend in this work.

we design the customer’s InitC algorithm so that the PRF seed k
is generated solely by the customer, rather than interactively by

the customer and the bank (merchant) as in [17]. The customer

now commits to the wallet secrets, producing wCom, and embeds

this into the customer’s channel token TC := (wCom, pkc) where
pkc is a signature verification key. During the Establish protocol

to obtaining the merchant’s signature on wCom, the customer pro-

vides the merchant with a series of signed ciphertexts (C1, . . . ,CB),
each of which contains a coin spend tuple of the form (s,T ,π ′)
where π ′ is identical to the normal compact e-cash proof, but sim-

ply proves that s,T are correct with respect to wCom (which is

not yet signed by the merchant). These ciphertexts are structured

so that a key revealed for the jth ciphertext will also open each

subsequent ciphertext.

The key feature of this approach is that the merchant does not
need to know if these ciphertexts truly contain valid proofs at the time

the channel is opened. To reveal the remaining j coins in a channel,

the customer reveals a key for the jth ciphertext, which allows

the merchant to “unlock” all of the remaining coin spends and ver-

ify them with respect to the commitment wCom embedded in the

customer’s channel token. If any ciphertext fails to open, or if the

enclosed proof is not valid, the merchant can easily prove malfea-

sance by the customer and obtain the balance of the channel. This

requires only symmetric encryption and a means to “chain” sym-

metric encryption keys – both of which can easily be constructed

from standard building blocks.
9
Our schemes additionally require

a one-time encryption algorithm OTEnc where the keyspace of the
algorithm is also the range of the pseudorandom function F .

We now present the full scheme:

Setup(1λ). On input λ, optionally generate CRS parameters

for (1) a secure commitment scheme and (2) a non-interactive
zero knowledge proof system. Output these as pp.

KeyGen(pp). Compute (pk, sk) ← Πsig.SigKeygen(1λ).10

InitC (pp,Bcust0
,Bmerch

0
,pkc , skc). On input a keypair (pkc , skc),

uniformly sample two distinct PRF seeds k1,k2 and random coins

r for the commitment scheme. Compute wCom = Commit(skc ,
k1,k2,B

cust
0

; r). For i = 1 to B, sample cki ← SymKeyGen(1λ)

to form the vector c⃗k . Output TC = (wCom,pkc) and cskC =

(skc ,k1,k2, r ,B
cust
0
, c⃗k).

InitM (pp,Bcust
0
,Bmerch

0
,pkm , skm). Output TM = pkm , cskM =

(skm ,B
cust
0

).

Refund(pp, TM , cskC ,w). Parsew (generated by the Establish
and Pay protocols) to obtain c⃗k and the current coin index i .
Compute σ ← Sign(skc , refund∥cID∥i∥cki) (where cID uniquely

identifies the channel being closed) and output rcC := (cID, i, cki ,σ).

Refute(pp, TC , S, rcC). Parse the customer’s channel closure

message rcC as (cID, i, cki ,σ) and verify cID and the signature σ .
If the signature verifies, then obtain the ciphertexts Ci , . . . ,CB
stored after the Establish protocol. For j = i to B, compute

(j∥sj ∥uj ∥π
r
j ∥ckj ∥σ̂j) ← SymDec(ckj ,Cj) and verify the signa-

ture σ̂j and the proof π
r
j . If (1) the signature σ̂j or the proof π

r
j fail

9
For example, the necessary properties can be achieved using a secure commitment

scheme and any secure symmetric encryption mechanism.

10
For simplicity of exposition, we assume that pk can be derived from sk

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

480

to verify, (2) any ciphertext fails to decrypt correctly, or (3) any
of the decrypted values (sj ,uj) match a valid spend containing

(sj , tj) in S where OTDec(uj , tj) = pkc : record the invalid result

into rcM along with cID and sign the result using skm so that it

can be verified by the network. Otherwise set rcM = (accept)
and sign with skm . Finally for each validCj , set S← S∪ (sj , tb ,π)
and output S as the new merchant state.

Resolve(pp, TC , TM , rcC , rcM). Parse the customer and mer-

chant closure messages and verify all signatures. If any fail to

verify, grant the balance of the channel to the opposing party. If

rcC = (N , skN ,σ) and rcM = accept then set Bcustfinal to (Bcust
0
−

N) + 1. Otherwise, evaluate the merchant closure message to

determine whether the customer misbehaved. If so, assign the

merchant the full balance of the channel.

We present the Establish and Pay protocols in Figure 3.

4.1.1 Security Analysis.

Theorem 4.1. The unidirectional channel scheme satisfies the
properties of anonymity and balance under the assumption that (1)
F is pseudorandom and provides strong pre-image resistance, (2)
the commitment scheme is secure, (3) the zero-knowledge system is
sound and zero-knowledge, (4) the signature scheme is existentially
unforgeable under chosen message attack and signature extraction
is blind, and (5) the symmetric encryption and one-time encryption
scheme are each IND-CPA secure.

A proof of Theorem 4.1 can be found in the full version of this

paper [33].

4.2 Bidirectional payment channels
The key limitation of the above construction is that it is unidirec-
tional, and only supports payments from a customer to a merchant.

Additionally, it supports only fixed-value coins. In this section we

describe a construction that enables bidirectional payment channels

which feature compact closure, compact wallets, and allow a single

run of the Pay protocol to transfer arbitrary values (constrained by

a maximum payment amount).

In this construction the customer’s wallet is structured similarly

to the previous construction: it consists of Bcust
0

, and a random wal-

let public signature keywpk . The customer first commits to these

values and sends the resulting commitment to the payment network.

The wallet is activated when the customer and merchant interact

to provide the customer with a blind signature on its contents.

The key difference from the first protocol is that, instead of

conducting the payment ϵ using a series of individual coins, each
payment has the customer (1) prove that it has a valid signed wallet
with balance Bcust ≥ ϵ of currency in it, and (2) request a blind
signature on a new wallet for the amount Bcust − ϵ (and embedding

a fresh wallet public keywpknew). Notice that in this construction

the value ϵ can be positive or negative. The customer uses a zero

knowledge proof and signatures with efficient protocols to prove

that the contents of the new requested wallet are constructed prop-

erly, that the balances of the new wallet differs from the original

balance by ϵ , and that (Bcust − ϵ) ≥ 0. At the conclusion of the

transaction, the customer reveals wpkold to assure the merchant

that this wallet cannot be spent a second time, and the old wallet

is invalidated by the customer signing a “revoked” message with

wsk the corresponding private key. Closing the channel consists

of the customer posting a valid wallet signed by the merchant to

the blockchain.
11

The challenge in this construction is to simulta-

neously invalidate the existing wallet and sign the new one. If the

merchant signs the new wallet before the old wallet is invalidated,

then the customer can retain funds in the old wallet while contin-

uing to use the new one. On the other hand, if the merchant can

invalidate the old wallet before signing the new one, the customer

has no way to close the channel if the merchant refuses to sign the

new wallet.

To solve this, we separate the wallet — used in interactive pay-

ments — from the value that is posted to perform channel closure

and use a two phase protocol to obtain each of these values. Instead

of revealing the most recent walletw , C closes the channel using a

refund token rt which specifies Bcust, the current wallet’s public key,
and a signature by the merchant. In phase one of Pay, the customer

first obtains a signature on the refund token blindly from M. In the

second phase, the customer invalidates the old wallet, and then the

merchant signs the new wallet. If the merchant refuses to sign the

new wallet, the customer can safely close the channel using rt .
We now describe the revised scheme. The protocols Establish

and Pay are presented in Figure 4. The Setup and InitM algorithms

are identical to the previous construction.

• KeyGen(pp). Compute (pk, sk) ← Πsig.SigKeygen(1λ).
• InitC (pp, cID,Bcust0

,Bmerch
0

,pkc , skc). The customer gener-

ates the wallet commitment by sampling random coins r ,
computing an ephemeral keypair (wpk,wsk) ← KeyGen(pp)
and producing a commitmentwCom = Commit(cID,wpk,Bcust

0
; r).

It outputs the token TC = (pkc ,wCom) and retains the se-

crets cskC = (wCom, skc , cID,wpk,wsk, r ,Bcust
0

).

• InitM (pp,Bcust
0
,Bmerch

0
,pkm , skm). Output TM = pkm , cskM =

(skm ,B
cust
0

).
• Refund(pp, TM , cskC ,w). If the customer has not yet in-

voked thePay protocol, it setsm := (refundUnsigned, (cID,wpk,
B), r). Otherwise setm := (refundToken, (cID,wpk,B), rtw).
Compute σ = Sign(skc ,m). Output rcC = (m,σ).
• Refute(pp, TC , S, rcC). If a merchant sees a channel closure

message, it first parses TC to obtain pkc . It parses rcC as

(m,σ) and verifies the signature σ using pkc . If this signa-
ture verifies, it parses m to obtain (cID,wpk,B) and veri-

fies that cID matches the channel. Finally, if it has previ-

ously stored (wpk,σr ev) in its state S then it outputs rcM =
((revoked,σr ev),σ) where σ is a valid signature on the mes-

sage (revoked,σr ev) under skm . Otherwise it adds the new

keywpk to its state S.
• Resolve(pp, TC , TM , rcC , rcM).
Verify that both rcC , rcM are correctly signed by the cus-

tomer and merchant keys pkc and pkm respectively. Verify

that both tokens contain the same cID and this matches the

channel identifier from TC , TM . If either of the tokens fails

this test, replace it with ⊥. Let Btotal = Bcust
0
+Bmerch

0
. If rcC

is ⊥, simply output all funds to the merchant.

11
In the special case where the customer has not obtained a signature on the wallet

from the merchant (e.g., because the merchant never accepted the channel opening), it

can simply post an opening of the wallet commitment.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

481

Customer(pp, TM, cskC) Establish Merchant(pp, TC, cskM)

(1) Parse cskC as (pkc , skc , k1, k2, r, B). Sample sk0 ∈ {0, 1}ℓ .
(2) Generate a proof π1 that

PK {(skc , k1, k2, r) : wCom = Commit(skc , k1, k2; r)

∧ (pkc , skc) ∈ KeyGen(1λ) }(3) For j = 1 to B :
(a) Compute sj ← Fk

1
(j), uj ← Fk

2
(j), π rj where

π rj = PK {(skc , k1, k2, r) : s = Fk
1
(j) ∧ u = Fk

2
(j)

∧ wCom = Commit(skc , k1, k2; r)

∧ (pkc , skc) ∈ KeyGen(1λ) }
(b) Compute an internal signature σ̂j = Sign(skc , spend∥j ∥sj ∥uj ∥π rj ∥ckj+1).
(c) ComputeCj = SymEnc(ckj , j ∥sj ∥uj ∥π rj ∥σ̂j ∥ckj+1) and an external signature σj = Sign(skc , coin∥j ∥Cj).

wCom, π
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(C
1
,σ

1
, . . .,CB ,σB)

σw
←−−−−−−−−−−−−−−−−−−−−−→

Verify the signature on TC , and check that Bcust
0
= B . Verify π1 and for i = 1 to B , verify the signature σj on Cj . If any

check fails, abort and output ⊥. Otherwise, interact with the customer to provide a blind signature σw on the contents of

wCom.

Returnw = (sk0, skc , k1, k2, r, B, σw , 1). Return established.

Customer(pp, ϵ, wold) Pay Merchant(pp, ϵ, Sold)

(1) Parsewold as (sk0, skc , k1, k2, r, B, σw , i). Abort if i ≥ B .
(2) Compute s ← Fk

1
(i), t ← OTEnc(Fk

2
(i), pkc), and a proof:

π = PK {(pkc , skc , k1, k2, r, i, σw) : s = Fk
1
(i) ∧ 0 < i ≤ B

∧ t = OTEnc(Fk
2
(i), pkc)

∧ Verify(pkm, (k1, k2, skc), σw)

∧ (pkc , skc) ∈ KeyGen(pp) }

(s, t, π)
−−−−−−−−−−−−−−−−→

Verify π and that (s, ·, ·) < S. If so, set S← S ∪ (s, t, π) and set RM ← 1 , else set RM ← ⊥.

Returnwnew := (sk0, skc , k1, k2, r, B, σw , i + 1). Return RM .

Figure 3: Establishment and Payment protocols for the Unidirectional Payment Channel scheme.

(1) Parse TC to obtain (pkc ,wCom).

(2) Parsem as (type, (cID,wpk,B), Token).

(3) Parsem as (revoked,wpk,σr ev). Check that Verify(wpk,
(revoke∥cID∥wpk)σ) = 1. If any check fails, terminate

and output Bcustfinal = Btotal and B
merch
final = 0.

(4) Perform the following checks:

(a) Check the refund’s validity: If type is refundUnsigned,
check thatwCom = Commit(cID,wpk,B, Token). If the
merchant’s token contains σr ev
Otherwise type is refundToken, so check that Token is a
valid refund token on (cID,wpk,B). If either check fails,
terminate and output Bcustfinal = 0 and Bmerch

final = Btotal.

(b) Check the refutation’s validity: and check Verify(wpk,
revoke∥wpk,σr ev) = 1. If so, terminate and output

Bcustfinal = 0 andBmerch
final = Btotal. Otherwise returnB

cust
final =

B and Bmerch
final = Btotal − B (i.e. pay the claimed B to C

and the remainder toM).

4.2.1 Security Analysis. In §1.3 we noted a main limitation of

the bidirectional protocol, namely the possibility that a malicious

merchant may abort the protocol. As discussed in that section, this

provides only limited advantage to an adversary. Within the context

of our security proof we address this in a simpler way, by simply

preventing the adversarial merchant from aborting during the Pay
protocol.

Theorem 4.2. The bidirectional channel scheme satisfies the prop-
erties of anonymity and balance under the restriction that the adver-
sary does not abort during the Pay protocol, and the assumption that
(1) the commitment scheme is secure, (2) the zero-knowledge system
is simulation extractable and zero-knowledge, (3) the blind signature
scheme is existentially unforgeable under chosen message attack, and
(4) the one time signature scheme is existentially unforgeable under
one time chosen message attack.

We sketch a proof of Theorem 4.2 in the full version of this pa-

per [33].

4.3 Bidirectional Third Party Payments
One of the main applications of the bidirectional construction above

is to enable third party payments. In these payments, a first party A
makes a payment of some positive value to a second party B via

some intermediary I with whom both A and B have open channels.

In this case, we assume that both A and B act as the customer for

channel establishment, and I plays the role of the merchant. Our

goal is that I does not learn the identities of the participants, or the

amount being transferred (outside of side information she can learn

from her channel state), nor should she trusted to safeguard the

participants’ funds. This construction stands in contrast to existing

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

482

Customer(pp, TM, cskC) Establish Merchant(pp, TC, cskM)

(1) Parse cskC to obtain (cID, wCom, wpk, wsk, r, Bcust
0

).
(2) Generate a proof π1 of the following statement:

π1 = PK {(wpk, wsk, r) : wCom = Commit(cID, wpk, Bcust
0

; r)

∧ (wpk, wsk) ∈ KeyGen(pp) }

π1
−−−−−−−−−−−−−−−−−−−−−→

σw
←−−−−−−−−−−−−−−−−−−−−−→

Parse TC to obtain Bcust
0

, wCom. Verify that the proof π1 is valid. If not, output ⊥, If the proof is valid: interact with the

customer to provide a blind signature σw under skm on the contents of wCom.

Returnw := (Bcust
0

, wpk, wsk, r, σw). Return established.

Customer(pp, ϵ, wold) Pay Merchant(pp, ϵ, Sold)

(1) Parsewold as (cID, B, wpk, wsk, r, σw).
(2) Sample (wpk ′, wsk ′) ← KeyGen(pp) and sample random coins r ′.
(3) Generate wCom′ ← Commit(cID, wpk ′, B − ϵ ; r ′) and formulate the proof:

π2 = PK {(wpk ′, B, r ′, σw) : wCom′ = Commit(cID, wpk ′, B − ϵ ; r ′)

∧ Verify(pkm, (wpk, B), σw) = 1

∧ 0 ≤ (B − ϵ) ≤ valmax }

ϵ, wCom′, wpk, π2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r tw′
←−−−−−−−−−−−−−−−−−−−−−→

Verify π2 , ensure that (wpk, ·) < S and ϵmin ≤ ϵ ≤ ϵmax . If these conditions do not hold, abort and output⊥. Otherwise set

Snew := Sold ∪ {(wpk, ⊥) }. If ϵ < 0, RM ← 1 otherwise RM ← ⊥. Interact with the customer to provide a partially blind

signature r tw′ under skm on the message (refund∥wpk ′ ∥B − ϵ), wherewpk ′ and B − ϵ are the contents of wCom′.

Compute Verify(pkm, r tw′, refund∥wpk ′ ∥B − ϵ). If verification fails, or if this message does not arrive, abort and output

r tw′ . Else compute σr ev = Sign(wsk, revoke∥cID∥wpk).
σrev

−−−−−−−−−−−−−−−−−−−−−−−−→

σw′
←−−−−−−−−−−−−−−−−−−−−−→

Ensure Verify(wpk, revoke∥wpk, σr ev) = 1. If so, set Snew := Sold ∪ {(wpk, σr ev) } and RM ← 1. Generate a blind

signature σw′ on the contents of wCom′ using skm . If this completes, set RM ← 2

returnwnew := (B − ϵ, wpk ′, wsk ′, r ′, σw′) return Snew, RM

Figure 4: Establishment and Payment protocols for the Bidirectional Payment Channel scheme

non-anonymous payment channel schemes [30, 45] where given

the chain A → I → B, the intermediary always learns both the

amount and the participants.

The challenge in chaining payment channels is to make the

payments atomic. That is, the payer A only wants to pay the inter-

mediary I once I has paid the recipient B. But of course this places
the intermediary at risk if A fails to complete the payment. Simi-

larly, the payer risks losing her funds to a dishonest intermediary.

There is no purely cryptographic solution to this problem, since

it’s in essence fair exchange — a problem that has been studied

extensively in multi-party protocols. However, there are known

techniques for using blockchains to mediate aborts [5, 10]. This is

our approach as well.

Recall from §4.2 that the Pay protocol occurs in two phases. The

first portion is an exchange of refund tokens that can be used to

reclaim escrowed funds. The second phase generates an anonymous

wallet for subsequent payments. For a chained transaction from

A→ I→ B to be secure, we need only ensure that the first phase

of both legs completes or fails atomically.

We accomplish this by adding conditions to the refund tokens.

These conditions are simple statements for the network to evaluate

on examining a token during the Resolve protocol. Specifically, to

prevent the recipient B from claiming funds from I if the payer A
has not delivered a corresponding payment to I, we introduce the
following conditions into B’s refund token:

(1) B must produce a revocation message (i.e. a signature using
A’swsk) on A’s previous wallet.

(2) A has not posted a revocation token containingwsk to the

ledger.

By condition (1), once B forces a payment on I→ B, A→ I cannot
be reversed since I has the revocation token. By condition (2) if
A→ I has been already been reversed, B cannot force the payment

I→ B sincewpk is already on the ledger.

Hiding the payment amount.Our third-party payment construc-

tion also provides an additional useful feature. Since I acts only a

passive participant in the transaction and does not maintain state

for either channel, there is no need for for I to learn the amount

being paid. Provided that both A and B agree on an amount ϵ (i.e.,
both parties have sufficient funds in each of their channels), neither

party need reveal ϵ to I: I need merely be assured that the balance

of funds is conserved.

To hide the payment amount, we must modify the proof state-

ment used to construct π2 from the Pay protocol of Figure 4. Rather

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

483

A I B

commitment to a new wallet and a proof πB that the updated balance is greater by ϵ
Step 1

commitment to ϵ , A & B’s new wallet commitments, proofs πA,πB
Step 2

refund token for A, conditional refund token for B

Step 3

revocation token for A, conditional refund token for B

Step 4

revocation tokens for A & B’s old wallets

Step 5

signature for B’s new walletsignature for A’s new wallet

Step 6

Figure 5: Outline of our third-party payments protocol. In practice, A can route all messages from B to I.

than revealing ϵ to the merchant, the customer A now commits to

ϵ and uses this value as a secret input in computing the payment.

Simultaneously, in the payment protocol conducted to adjust B’s
wallet, B now proves that his wallet has been adjusted by −ϵ .

To do this, we change the proof in the pay protocol to one that

binds ϵ to a commitment but does not reveal it:

π2 = PK {(wpk ′,B, r ′,σw , ϵ, rϵ) :

wCom′ = Commit(wpk ′,B − ϵ ; r ′)

∧ Verify(pkm , (wpk,B),σw) = 1

∧ vCom = Commit(ϵ, rϵ)

∧ 0 ≤ (B − ϵ) ≤ valmax }

A can then prove to I that the two payments cancel or (if f ee is
non-zero), leave B with f ee extra funds via a proof:

πϵ = PK {(ϵA, ϵB, rϵA , rϵB) :vComϵA = Commit(ϵA; rϵA)

∧vComϵB = Commit(ϵB; rϵB)

∧ϵA < ϵmax ∧ −ϵB < ϵmax

∧ϵA + ϵB = f ee

The protocol. We now combine the process of updating both A

and B’s wallet into a single protocol flow, which we outline in

Figure 5. In detail, the steps are as follows:

(1) B commits to ϵ and conducts the first move of the variable

payment Pay protocol (Figure 4) (with the modified balance-

hiding proof described above) and sends a commitment to its

new wallet state wCom′b , proof of correctness for the wallet,
πB, and commitment randomness to A.

(2) A completes it’s own first move, generating wCom′a ,πA and

additionally computes πA attesting to the correct state of its

original wallet and new wallet commitment. It sends these

and B’s new wallet commitment and πA to I.
(3) I, after validating the proofs, issues A a refund token for its

new wallet rtw ′a and B a conditional refund token crt
σwarev
w ′b

as its new wallet. This token embeds the condition that B
must produce a revocation token for A’s old wallet and that

A must not have closed the channel already.

(4) A completes its second move in the variable payment Pay
protocol to generate σwa

r ev the revocation token for its old

wallet. It sends that and the crt
σwarev
w ′b

to B.

(5) B completes its second move to generate σ
wb
r ev the revocation

token for its old wallet. After validating that it now has a

valid refund token by verifying σwa
r ev , it sends σ

wa
r ev ,σ

wb
r ev to

I.
(6) I completes the remaining moves of the variable payment

Pay protocol with A and B individually, giving each a blind

signature on their new wallets.

Security and abort conditions. We provide a proof sketch for

balance preservation in the full version of the paper [33].

In terms of anonymity, the execution of this protocol is no dif-

ferent in terms of the information revealed than two in parallel

payments from A → I and I → B. Our payment anonymity def-

inition already allows this type of attack even for the two party

case.

The main challenge in realizing this construction is the possi-

bility that a malicious I can selectively abort the protocol during a

transaction. This does not allow I to steal funds, but it does force
A and B to transmit messages to the network in order to recover

their funds. This potentially links the payment attempt to A and

B’s channels. Unfortunately, this seems fundamentally difficult to

avoid in an interactive protocol.

We note that the anonymity threat is limited in practice by the

fact that the channels themselves can be funded with an anonymous

currency (e.g., [29, 41, 47]), so linking two separate channels does

not reveal the participant identifiers. More importantly, since the

intermediary can use this abort technique only one time during the

lifetime of a channel, there is no possibility for the merchant to link

separate payments on the same channel. Finally, an intermediary

who performs this abort technique will produce public evidence

on the network, which allows participants to avoid the malicious

intermediary.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

484

4.4 From Third Party Payments to Payment
Networks

It should be possible to extend the above protocol to allow payments

of the form A → I1 → . . . → In → B via techniques similar to

those used in non-anonymous payment channel networks [45]. As

discussed in §1.2, it is not possible to hide channel balances in such

a setting. The general approach is as follows: we use “hash locks”

to enforce that either all refund and revocation tokens are valid or

none are. Specifically, we attach to both the fund and revocation

tokens a condition that they can only be used if one party reveals

x such that y = H (x), where x is picked by A. Because if one

party releases x , all parties may close their channels, this forces the

entire sequence of payments to either go through or not. As with

Lightning, the timeouts for each channel must be carefully chosen.

We leave the exact details of this approach to future work.

4.5 Hiding Channel Balances
Each of the constructions presented above has a privacy limitation:

the balance of each payment channel is revealed when a channel

is closed. While individuals can protect their identities and initial

channel balances by using an anonymous currency mechanism

to fund channels, the information about channel balances leaks

useful information to the network. We note, however, that in the

case of non-disputed channel closure, even this information can be

hidden from the public as follows. On channel closure, the customer

posts a commitment to the final channel balance, along with a

zero-knowledge proof that she possesses a valid channel closure

token (ı.e., a signature on the channel balance in our bidirectional

construction). In systems such as Zerocash [47], the final payment

redeeming coins to the merchant and customer can be modified to

include an additional statement: the amounts paid in this transaction
are consistent with the commitment, and do not exceed the initial
funding transaction that created the channel.We leave the precise

details of such a construction to future work.

5 IMPLEMENTATION OF THE
BIDIRECTIONAL SCHEME

We now detail the integration of Bolt into a cryptocurrency and

performance and cryptographic details of a concrete instantiation.

5.1 Integration with a Currency
In this section we consider the problem of integrating the bidirec-

tional Bolt protocol into a Bitcoin like cryptocurrency in a soft fork: a
protocol change which does not break backward compatibility with

existing nodes. Recall that the bidirectional scheme requires that the

channels be funded anonymously in order to protect against aborts

linking the aborted payment to the channel opening (this does not

hold if one wishes merely to prevent multiple payments on the

same channel from being linked together). In these conditions, the

anonymity of the payment channel is no better than the anonymity

of the underlying cryptocurrency. Of the Bitcoin derived currencies,

Zerocash and ZCash [3, 47] provide a strong underlying anonymity

layer. Anonymity tools for Bitcoin, such as Coinjoin [39], may also

be sufficient in some circumstances and future improvements to

Bitcoin may increase the achievable anonymity. The mechanism

for deployment is compatible with either currency.

In Bitcoin and ZCash each transaction
12

consists of a set of

inputs and a set of outputs. Inputs reference a previous transac-

tion output and contain a ScriptSig authorizing use of the funds.

Outputs specify the amount of the output and a ScriptPubKey
specifying when the output can be spent. To evaluate a transaction

the ScriptPubKey from the previous transaction and ScriptSig
from the current transaction are combined and evaluated using a

stack-based scripting language. In the simplest case, ScriptPubKey
requires a signature under a specified public key to spend the funds

and ScriptSig contains such a signature. However, more complex

scripts are allowed including control flow such as if statements,

time locks that enforce that a given number of blocks has elapsed

since the transaction was created, and threshold signatures. As long

as the combined script evaluates to True, spending is authorized.

Our soft fork approach involves adding a single opcode, OP_BOLT
to the scripting language. This opcode has the power to (1) validate

the commitment opening and blind signature on the commitment

in a refund token, and (2) inspect the output of the transaction and

enforce restrictions on it.

Most opcodes do not inspect transaction outputs. The notable

exception to this rule are signature opcodes that may hash the

entire transaction, including both inputs and outputs, in order to

verify the signature. However, it is entirely possible to modify the

ZCash and Bitcoin codebase to enable opcodes that do have access

to transaction outputs in general.
13

Specifically, our new opcode

will enforce two constraints on the outputs of a transaction closing

the channel:

(1) Verifying that there are two outputs: one paying the mer-

chant his balance and the other paying the customer hers.

(2) Verifying that the customer’s payout is time locked such that

it can be claimed by the merchant if the refund token has

been invalidated (i.e. the customer tried to close on an old

channel state).

To accomplish this, we implement the Pay protocol so that the

revocation token is the private key corresponding to a Bitcoin

(resp. transparent ZCash) address. When a channel is closed, the

merchant’s fraction of the channel balance is paid in a transaction

that is spendable immediately. However, the customer’s funds are

not immediately spendable by the customer since we need to allow

the merchant to dispute the closure. The merchant does this by

signing a transaction with both his key and the revocation token

key. If the merchant does not do so, the customer can claim the

funds after some elapsed time. The script is given below:

OP_IF # I f merchant

OP_2 <rev−pubkey ><merchant−pubkey > OP_2

OP_CHECKMULTISIG #2 o f 2 mul t i − s i g check

OP_ELSE # I f cus tomer wa i t

<de lay > # de l ay to wa i t

12
We refer here to the “unshielded” transactions in ZCash. Shielded transactions

function differently.

13
In systems derived from Bitcoin core’s source code, this requires some modification

as the current architecture abstraction in script evaluation provides a callback to get

the transaction hash, not direct access to the transaction itself. However this is not a

protocol limitation and indeed past versions of the codebase did expose direct access.

Exposing direct access does not affect consensus rules in and of itself.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

485

Customer Merchant

primitive Establish(ms) Pay(ms) Setup(ms) Establish(ms) Pay(ms)

Bilinear CL-Sigs[19] 8.07 ± 0.13 100.13 ± 1.60 1433.51 ± 23.69 15.87 ± 0.27 82.32 ± 1.37

Algebraic MACs[24] 6.90 ± 0.17 37.61 ± 0.93 826.78 ± 19.26 11.97 ± 0.31 34.39 ± 0.88

Figure 6: Performance comparison of different implementations of BOLT bidirectional payment protocol. 1000 iterations on
a single core of a Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Customer setup is included in Establish.

OP_CSV # Timelock e n f o r c e s de l ay

OP_DROP

<customer−pubkey > # key f o r cus tomers funds

OP_CHECKSIG

OP_ENDIF

This approach greatly simplifies the implementation. Channel open-

ing consists of posting a transaction with (previously anonymized)

inputs containing the needed funds for escrow and a single output.

This outputs ScriptPubKey contains the new opcode OP_BOLT and
the channel parameters as one argument. To close the channel, the

customer posts the appropriate transaction spending that output

with a ScriptSig that contains what is required to satisfy OP_BOLT:
the refund token and two outputs. One output for the merchant’s

share of the channel which is spendable immediately and one with

the customer’s spendable under the above time locked script. Fi-

nally, each party can post the appropriate transaction claiming their

output. The merchant can dispute the channel closure and claim

the funds immediately with OP_FALSE <sig revocation-pubkey>
<sig merchant-pubkey>. On the other hand, the customer must

wait and then claim with OP_TRUE <sig customer-pubkey>.

Simplified resolution. At the cost of an extra round trip in the Pay

protocol, we can eliminate the need to validate “blind” signatures in

the resolution phase, instead opting to verify a simple commitment

opening and a standard (e.g. ECDSA) signature on that commitment.

We do this by having the refund token consist of a standard signa-

ture on the wallet commitment. Because it is a standard signature,

refund token issuance can be linked to usage. This is not a problem

if the token is used to handle an abort in the same protocol run as

its issuance—our security model assumes the attacker can link a

single transaction to channel open/closure. However, it cannot be

safely used after that, i.e. in the first step of the next pay protocol,

because the unblinded signature will link the current execution of

the protocol to the previous one. To solve this, at the start of every

run of the pay protocol, we request a fresh refund token on the

current wallet before revealing anything. Because the contents of

the refund token commitment are deterministically and provably

generated from the existing wallet, issuing multiple of them has

no other effect. However, it eliminates the need to ever use the old

refund token. The only consequence is an additional round trip as

we must wait for the refreshed refund token before we can publish.

5.2 Implementation
We provide two constructions of Bolt, one using signatures with effi-

cient protocols [19] and the other using using Algebraic MACs [24].

We defer further discussion of primitive selection and usage to

Appendix A and move directly to presenting performance numbers

in Figure 6.

6 RELATEDWORK

Anonymity and scaling for Bitcoin. A number of works have

proposed additional privacy protections for Bitcoin. Zerocoin, Zero-

cash and similar works [41, 47] provide strong anonymity through

the use of complex zero knowledge proofs. A separate line of works

seek to increase anonymity by Bitcoin by mixing transactions

(e.g. CoinJoin [39], CoinShuffle, CoinSwap). Like Bitcoin, each of

these constructions require that all transactions are stored on the

blockchain. Finally, recent work has proposed probabilistic pay-
ments as an alternative payment mechanism [43].

Privacy in payment channels As discussed in detail in the intro-

duction, Heilman et al. [37] construct off-chain payments with 3
rd

party privacy.

Lightning anonymity limitations. The Lightning Network [45]

does not provide payment anonymity between pairs of channel

participants – i.e., a merchant can see the channel identity of every

customer that initiates a payment. However, the protocol includes

some limited anonymity protections for path payments. These op-
erate on a principle similar to an onion routing network, by using

multiple non-colluding intermediaries to obscure the origin and

destination of a path. Unfortunately this proposal suffers from col-

lusion problems: given the chain A→ I1 → I2 → I3 → B, only I1
and I3 must collude to recover the identities of A and B, since all
transactions on the path share the same Hash Timelock Contract ID.

Moreover, this security mechanism assumes there exist a network

with sufficient path diversity for these protections to be viable.

7 ACKNOWLEDGMENTS
This research was supported in part by the National Science Founda-

tion under awards CNS-1010928,CNS-1228443, and EFMA-1441209;

The Office of Naval Research under contract N00014-14-1-0333; and

the Mozilla Foundation.

REFERENCES
[1] 2017. Bitcoin Wiki: Maximum transaction rate. https://en.bitcoin.it/wiki/

Maximum_transaction_rate. (2017).

[2] 2017. The Monero Currency. Available at https://getmonero.org/. (2017).

[3] 2017. The ZCash Currency. Available at https://z.cash/. (2017).

[4] Joseph A Akinyele, Christina Garman, Ian Miers, Matthew W Pagano, Michael

Rushanan, Matthew Green, and Aviel D Rubin. 2013. Charm: a framework for

rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2

(2013), 111–128.

[5] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Secure multiparty computations on Bitcoin. In Security and
Privacy (SP), 2014 IEEE Symposium on.

[6] D. F. Aranha and C. P. L. Gouvêa. 2017. RELIC is an Efficient LIbrary for Cryp-

tography. https://github.com/relic-toolkit/relic. (2017).

[7] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous credentials light. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 1087–1098.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

486

https://en.bitcoin.it/wiki/Maximum_transaction_rate
https://en.bitcoin.it/wiki/Maximum_transaction_rate
https://getmonero.org/
https://z.cash/
https://github.com/relic-toolkit/relic

[8] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2008.

P-signatures and Noninteractive Anonymous Credentials. In TCC 2008. http:

//dx.doi.org/10.1007/978-3-540-78524-8_20

[9] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2009.

Compact E-Cash and Simulatable VRFs Revisited. In Pairing-Based Cryptography
’09.

[10] Iddo Bentov and Ranjit Kumaresan. 2014. How to use Bitcoin to design fair

protocols. In Advances in Cryptology–CRYPTO 2014.
[11] Block Chain Analysis. 2014. Block Chain Analysis. http://www.

block-chain-analysis.com/. (2014).

[12] Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an interval.

In Advances in Cryptology EUROCRYPT 2000.
[13] Stefan Brands. 1993. Untraceable off-line cash in wallet with observers. In

Advances in Cryptology CRYPTO 93.
[14] Stefan Brands. 1997. Rapid Demonstration of Linear Relations Connected by

Boolean Operators. In EUROCRYPT ’97.
[15] JP Buntinx. 2017. Bitcoin Network Backlog Grows To Over 165,000 Un-

confirmed Transactions. Available at http://www.newsbtc.com/2017/05/12/

bitcoin-network-backlog-grows-165000-unconfirmed-transactions/. (2017).

[16] Jan Camenisch, Rafik Chaabouni, et al. 2008. Efficient protocols for set member-

ship and range proofs. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 234–252.

[17] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact

e-cash. In Advances in Cryptology–EUROCRYPT 2005.
[18] Jan Camenisch and Anna Lysyanskaya. 2002. A signature scheme with efficient

protocols. In Security in communication networks.
[19] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anonymous

credentials from bilinear maps. In Advances in Cryptology–CRYPTO 2004.
[20] Jan Camenisch, Gregory Neven, and Abhi Shelat. 2007. Simulatable Adaptive

Oblivious Transfer. In EUROCRYPT ’07.
[21] Jan Camenisch and Victor Shoup. 2003. Practical verifiable encryption and

decryption of discrete logarithms. In Annual International Cryptology Conference.
Springer, 126–144.

[22] Jan Camenisch and M. Stadler. 1997. Efficient Group Signature Schemes for Large

Groups. In CRYPTO ’97.
[23] Chainalysis. 2015. Chainalysis Inc. https://chainalysis.com/. (2015).

[24] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. 2014. Algebraic MACs

and keyed-verification anonymous credentials. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1205–1216.

[25] David Chaum. 1983. Blind signatures for untraceable payments. In Advances in
Cryptology.

[26] David Chaum, Amos Fiat, and Moni Naor. 1990. Untraceable electronic cash. In

Proceedings on Advances in cryptology.
[27] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO ’94.
[28] George Danezis. [n. d.]. petlib: A python library that implements a number of

Privacy Enhancing Technolgies. https://github.com/gdanezis/petlib. ([n. d.]).

[29] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. 2013.

Pinocchio Coin: Building Zerocoin from a Succinct Pairing-based Proof System. In

Proceedings of the First ACMWorkshop on Language Support for Privacy-enhancing
Technologies (PETShop ’13). https://doi.org/10.1145/2517872.2517878

[30] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable Payment

Network with Bitcoin Duplex Micropayment Channels. In Stabilization, Safety,
and Security of Distributed Systems.

[31] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In PKC ’05. 416–431.
[32] Elliptic. 2013. Elliptic Enterprises Limited. https://www.elliptic.co/. (2013).

[33] Matthew D. Green and Ian Miers. 2016. Bolt: Anonymous Payment Channels

for Decentralized Currencies. IACR Cryptology ePrint Archive 2016 (2016), 701.
http://eprint.iacr.org/2016/701

[34] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures. Springer Berlin Heidelberg, Berlin, Heidelberg,

444–459. https://doi.org/10.1007/11935230_29

[35] Jens Groth and Amit Sahai. [n. d.]. Efficient Non-interactive Proof Systems for

Bilinear Groups.

[36] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. TumbleBit: An Untrusted Bitcoin-Compatible Anony-

mous Payment Hub. Available at http://eprint.iacr.org/2016/575. In NDSS 2017.
[37] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. 2016. Blindly Signed

Contracts: Anonymous On-Blockchain and Off-Blockchain Bitcoin Transactions.

In BITCOIN ’16.
[38] Ben Lynn. 2015. PBC:The Pairing-Based Cryptography Library. https://crypto.

stanford.edu/pbc/. (2015).

[39] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. Available

at https://bitcointalk.org/index.php?topic=279249.0. (August 2013).

[40] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon

McCoy, Geoffrey M. Voelker, and Stefan Savage. 2013. A Fistful of Bitcoins:

Characterizing Payments Among Men with No Names. In Proceedings of the 2013

Conference on Internet Measurement Conference (IMC ’13). https://doi.org/10.1145/
2504730.2504747

[41] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin:

Anonymous Distributed E-Cash from Bitcoin. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (SP ’13).

[42] Andrew Miller, Malte Moeser, Kevin Lee, and Arvind Narayanan. 2017. An

Empirical Analysis of Linkability in the Monero Blockchain. Available at https:

//arxiv.org/abs/1704.04299. (2017).

[43] Rafael Pass and abhi shelat. 2015. Micropayments for Decentralized Currencies.

In ACM CCS ’15. ACM, New York, NY, USA, 207–218. https://doi.org/10.1145/

2810103.2813713

[44] Torben Pryds Pedersen. 1992. Non-interactive and information-theoretic secure

verifiable secret sharing. In CRYPTO ’92.
[45] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable

Off-Chain Instant Payments. https://lightning.network/lightning-network-paper.

pdf. (January 2016).

[46] Dorit Ron and Adi Shamir. 2013. Quantitative Analysis of the Full Bitcoin

Transaction Graph. In Financial Cryptography ’13.
[47] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from Bitcoin. In IEEE Security and Privacy.
[48] Claus-Peter Schnorr. 1991. Efficient Signature Generation for Smart Cards. Jour-

nal of Cryptology (1991).

A CHOICE OF CRYPTOGRAPHIC
PRIMITIVES

We now describe in depth our choice of cryptographic primitives:

A.1 Possible building blocks
Signatures with efficient protocols are the core building block of

anonymous credentials and are a well studied primitive with many

solutions offering various performance, security, and feature trade

offs. One of the most efficient schemes that offers a full set of fea-

tures and provable security is the bilinear variant of CL-signatures

due to Camenisch and Lysyanskaya [19]. An implementation exists

in Charm [4].

We are aware of two other candidate signature schemes with

available implementations from petLib [28] that are aimed at pro-

viding increased performance with reduced functionality. The first

is used in the construction of Lightweight Anonymous Creden-

tials [7]. Here signatures can only be shown anonymously once.

Second, Algebraic MACs are used in [24], to build a limited form

of anonymous credential. Because it uses a MAC not a signature,

only the issuer can verify “signed” messages. This requires some

modification to our protocol since closure of a channel currently

requires public verification of the refund token.

A.2 Selecting the signature scheme
The scheme from Anonymous Credentials Light [7] is the fastest

for issuing and showing, with most operations taking less than

0.01ms . However, a registration phase must be completed for the

set of messages that can be signed. This must be repeated every

time the set changes and takes 100ms . Because the refund token rt
is selected at random and changes on every instance, this process

must be done on every payment. Moreover, even if this were made

far faster, the registration process reveals the message set. It may be

possible to patch Bolt to accommodate this or modify the credential

scheme to remove the restriction, but the 100ms cost is too high to

pay per payment. The remaining two schemes are more promising

with most operations taking less than 30ms each.

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

487

http://dx.doi.org/10.1007/978-3-540-78524-8_20
http://dx.doi.org/10.1007/978-3-540-78524-8_20
http://www.block-chain-analysis.com/
http://www.block-chain-analysis.com/
http://www.newsbtc.com/2017/05/12/bitcoin-network-backlog-grows-165000-unconfirmed-transactions/
http://www.newsbtc.com/2017/05/12/bitcoin-network-backlog-grows-165000-unconfirmed-transactions/
https://chainalysis.com/
https://github.com/gdanezis/petlib
https://doi.org/10.1145/2517872.2517878
https://www.elliptic.co/
http://eprint.iacr.org/2016/701
https://doi.org/10.1007/11935230_29
http://eprint.iacr.org/2016/575
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://bitcointalk.org/index.php?topic=279249.0
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://arxiv.org/abs/1704.04299
https://arxiv.org/abs/1704.04299
https://doi.org/10.1145/2810103.2813713
https://doi.org/10.1145/2810103.2813713
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

A.3 Implementation
We build two completely distinct implementations of the bidirec-

tional payment protocol. One using bilinear CL-Sigs and the other

using Algebraic MACs. Our approach mirrors the construction of a

credential scheme: we present a commitment to the wallet and a

proof that it is signed and then use Schnorr proofs [48] to prove the

balance of the new wallet commitment is correct with respect to

the old wallet. We then blindly obtain a signature on the new wallet.

For the range proof, we use a technique reminiscent of [16]: we

decompose the balance into bytes and prove we have a signature

issued on each byte. This allows us to reuse the code and primitives

from the signature scheme rather than using a separate range proof

which would introduce more cryptographic assumptions, more

code, and more dependencies.

The results are given in Table 6. The implementation based on

Algebraic MACs is approximately twice as fast as the CL-Sig ap-

proach. It should be noted, however, that there is far more room

for optimization in the CL-signature library. While both are im-

plemented in Python, the implementation of Algebraic MACs use

only elliptic curve operations via openSSL. As such, the principle

overhead is from calling native code from Python. On the other

hand, the CL-signature implementation uses symmetric bilinear

pairings with an implementation from the PBC library[38]. Use of

asymmetric pairings and a faster pairing library such as RELIC [6]

would give a marked improvement.

A.4 Adapting channel closure to avoid public
verification of credentials

Closing a disputed channel currently requires the blockchain to

verify that the refund token is signed. For our faster construction,

this is impossible since the key remains secret and the “signature”

is actually a MAC. There are two solutions to this: 1) we can, as

outlined in paragraph 5.1 opt to have the blockchain validate con-

ventional signatures at the cost of an extra round trip in pay. 2) We

can allow the merchant to prove that a purported MAC is invalid.

The MAC itself consists of u,u ′ = uHx (m)
where Hx (m) is a

keyed and deterministic hash function. Unfortunately,u is chosen at

random so theMAC is not unique and it is not sufficient to reveal the

correct MAC on the message and prove its correctness.
14

Instead,

we must prove that loдu (u
′) , loдv (v

′) (i.e. that uHx (m) , u ′) and
that the revealed MAC v,v ′) is correct. Camenisch and Shoup give

an extremely efficient proof for discrete log inequality [21] where

only one discrete log is known to the prover and none known to the

verifier. We implement this full proof of invalid MAC combining

the prove of MAC validity and discrete log inequality. It takes

approximately 14ms to generate and verify. We note that as this

proof includes the actual valid MAC on the forged refund token, it

is necessary for the blockchain to blacklist this MAC and not accept

it. However, since the refund token can never be used in payments,

we need not add extra steps to the pay protocol.

14
Counter-intuitively, despite being built on a MAC, Keyed-Verification Anonymous

Credentials include an efficient zk-proof of validity of aMAC that effectively transforms

the MAC into a (non blind) signature. Since this proof is somewhat expensive, it is

only used to verify the correctness of issued credentials.

B SECURITY DEFINITIONS
In this section we provide formal security definitions for an anony-

mous payment channel scheme.

B.1 Payment anonymity
Let A be an adversary playing the role of merchant. We consider

an experiment involving P “customers”, each interacting with the

merchant as follows. First, A is given pp, then outputs TM . Next

A issues the following queries in any order:

Initialize channel for Ci .WhenA makes this query on

input Bcust,Bmerch
, it obtains the commitment Ti

C
, generated

as (Ti
C
, cski

C
)
R
← InitC (pp,Bcust,Bmerch).

Establish channel with Ci . In this query, A executes

the Establish protocol with Ci as:

Establish({C (pp, TM , csk
i
C
)}, {A (state)}

Where state is the adversary’s state. Let us denote the cus-
tomer’s output aswi , wherewi may be ⊥.

Payment from Ci . In this query, if wi , ⊥, then A
executes the Pay protocol for an amount ϵ with Ci as:

Pay({C (pp, ϵ,wi)}, {A (state)})

Where state is the adversary’s state. We denote the cus-

tomer’s output aswi , wherewi may be ⊥.

Finalize with Ci .When A makes this query, it obtains

the closuremessage rci
C
, computed as rcC

R
← Refund(pp,wi).

We say that A is legal if A never asks to spend from a wallet

wherewi = ⊥ or wherewi is undefined, and where A never asks

Ci to spend unless the customer has sufficient balance to complete

the spend.

Let auxparams be an auxiliary trapdoor not available to the

participants of the real protocol. We require the existence of a sim-

ulator SX−Y (·) (pp,auxparams, ·) such that for all TM , no allowed

adversary A can distinguish the following two experiments with

non-negligible advantage:

Real experiment. In this experiment, all responses are

computed as described above.

Ideal experiment. In this experiment, the Commitment,

Establishment and Finalize queries are handled using the pro-

cedure described abvove. However, in the Payment query,A

does not interact with Ci but instead interacts with S
X−Y (·)

(pp,auxparams, ·).

As in [17] we note that this definition preserves anonymity

because the simulator S does not know the identity of the user i
for which he is spending the coin.

B.2 Payment Balance
A interacts with a collection of P honest customers C1, . . . ,CP and

Q honest merchantsM1, . . . ,MQ . Initialize the counters balA ←
0, claimedA ← 0. Let pp ← Setup(1λ). For each merchant i ∈
[1,Q], at the start of the game let (pkMi

, skMi) ← KeyGen(pp).
Give pp and (pkM1

, . . . , pkMQ
) toA. NowAmay issue the queries

described in Figure 7 in any order.

We say that A is legal if A never asks to spend from a wallet

wherewi = ⊥ or wherewi is undefined, and where A never asks

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

488

Initialize channel for Ci (resp. Mi) When A makes this query on input (Pi , Bcust
0

, Bmerch
0

), it obtains the commitment TCi (resp. TMi)

computed as follows:

• If the party Pi is a customer: First compute (pkCi , skCi) ← KeyGen(pp), then (TCi , csk
i
C
)

R
← InitC (pp, Bcust

0
, Bmerch

0
, pkCi , skCi). Set

balA ← balA + Bmerch
0

.

• If the party Pi is a merchant: Compute (TMi , cskMi)
R
← InitM (pp, Bcust

0
, Bmerch

0
, pkMi

, csk i
M
). Set balA ← balA + Bcust

0
.

• Return a unique channel identifier sid corresponding to the resulting channel, and store sid as well as the secrets for each party.

Establish channel with Ci (resp.Mi).When A specifies (Pi , sid, TA), and A has previously initialized a channel labeled sid with party Pi ,

recover the secret information associated with the party and channel label, then execute the Establish protocol with Ci (resp.Mi) using the

following input:

• If Pi is a customer: Establish({Ci (pp, TA, csk iC) }, {A (state) } → wi (or ⊥).

• If Pi is a merchant: Establish({A (state) }, {M (pp, TA, csk iM) } → established (or ⊥).

Where state is the adversary’s state.

Payment from Ci (resp. toMi). In this query, A specifies (Pi , sid, ϵ) where ϵ may be positive or negative. If A has previously conducted

the Establish protocol for channel sid with this party and the party’s output was not ⊥, then execute the Pay protocol with A as:

• If Pi is a customer: Pay({Ci (pp, ϵ, wi) }, {A (state) }) → wi (or ⊥). If the customer’s output is not ⊥, set balA ← balA + ϵ .
• If Pi is a merchant: Pay({A (state) }, {Mi (pp, ϵ, Si) }) → Si (or ⊥). If the merchant’s output is not ⊥, balA ← balA − ϵ .
Where state is the adversary’s state.

Finalize with Ci (resp.Mi)When A makes this query on input (Pi , sid) and optional input rcM , if it has previously established a channel

labeled sid with Pi , it obtains a closure message as:

• If Pi is a customer: if A has previously established a channel with Pi and has not previously Finalized on this party, compute rcC
R
←

Refund(pp, wi), store rcC , and return rcC to A.

• If Pi is a merchant: if A has previously established a channel with Pi and has not previously Finalized on this party, compute rcM
R
←

Refute(pp, Si , rcC).
If the adversary provided rcM and rcC is stored, compute (Bcust

final, B
merch
final) ← Resolve(pp, TC, TM, rcC, rcM) and update claimedA ← claimedA+

Bmerch (resp. cust)
final .

Figure 7: Queries for the Payment Balance game.

Ci to spend unless the customer has sufficient balance to complete

the spend. We say thatA wins the game if at the conclusion ofA’s

queries, we have claimedA > balA .

Session B5: Blockchains CCS’17, October 30-November 3, 2017, Dallas, TX, USA

489

	Abstract
	1 Introduction
	1.1 Background on Payment Channels
	1.2 Customers, Merchants, and the Limits of Anonymity for Payment Channels
	1.3 Overview of our constructions
	1.4 Comparison to related work
	1.5 Outline of this paper

	2 Definitions
	2.1 Anonymous Payment Channels
	2.2 Correctness and Security

	3 Technical Preliminaries
	4 Protocols
	4.1 Unidirectional payment channels
	4.2 Bidirectional payment channels
	4.3 Bidirectional Third Party Payments
	4.4 From Third Party Payments to Payment Networks
	4.5 Hiding Channel Balances

	5 Implementation of the Bidirectional scheme
	5.1 Integration with a Currency
	5.2 Implementation

	6 Related Work
	7 Acknowledgments
	References
	A Choice of cryptographic primitives
	A.1 Possible building blocks
	A.2 Selecting the signature scheme
	A.3 Implementation
	A.4 Adapting channel closure to avoid public verification of credentials

	B Security Definitions
	B.1 Payment anonymity
	B.2 Payment Balance

