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ABSTRACT

Scaling the transaction throughput of decentralized blockchain
ledgers such as Bitcoin and Ethereum has been an ongoing chal-
lenge. Two-party duplex payment channels have been designed
and used as building blocks to construct linked payment networks,
which allow atomic and trust-free payments between parties with-
out exhausting the resources of the blockchain.

Once a payment channel, however, is depleted (e.g., because
transactions were mostly unidirectional) the channel would need
to be closed and re-funded to allow for new transactions. Users are
envisioned to entertain multiple payment channels with dierent
entities, and as such, instead of refunding a channel (which incurs
costly on-chain transactions), a user should be able to leverage his
existing channels to rebalance a poorly funded channel.

To the best of our knowledge, we present the rst solution that
allows an arbitrary set of users in a payment channel network to
securely rebalance their channels, according to the preferences
of the channel owners. Except in the case of disputes (similar to
conventional payment channels), our solution does not require on-
chain transactions and therefore increases the scalability of existing
blockchains. In our security analysis, we show that an honest par-
ticipant cannot lose any of its funds while rebalancing. We nally
provide a proof of concept implementation and evaluation for the
Ethereum network.
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1 INTRODUCTION

Permissionless blockchains such as Bitcoin and Ethereum, where
any participant can choose to join and leave at any moment, have
allowed to replace a trusted third party with a network of mutually
mistrusting peers. Besides the transfer of monetary value, Ethereum
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supports the execution of smart contracts, Turing complete code
which is executed in consensus among all peers of the network.

One of the main costs of the decentralization of permissionless
blockchains is their performance. In its current state, Bitcoin for
example only supports up to 7 transactions per second — clearly
insucient to grow to a mainstream payment system. Because
the simple re-parameterization of permissionless blockchains has
shown to not solve the scalability performance beyond 100 transac-
tions per second [1], and alternative consensus mechanisms typ-
ically introduce dierent trust assumptions [2–5], second layer
payment channels [6–9] have been introduced.

Payment channels aim to establish direct peer-to-peer payment
channels that allow two parties to privately maintain and update a
two-party ledger. The benet is that their individual transactions
are not required to be written to the blockchain, while keeping a
guarantee of being able to claim their rightful funds in the global
blockchain ledger at any given time. Payment channels have a few
limitations, but should improve the transaction throughput of a
decentralized ledger to the network bandwidth of the two peers
participating in a payment channel.

Payment networks [6, 8] allow to perform payments between
parties that are not immediately connected by a payment channel.
These linked payments utilize a chain of payment channels as in-
termediate links between two parties that wish to transact with
each other o-chain, without having to open a new payment chan-
nel or conduct an on-chain transaction. Several contributions aim
to improve the performance characteristics of payment networks.
Sprites [7], for example, aims to address the worst-case completion
time of an o-chain linked-transaction. Flare [9] proposes routing
strategies that aim to optimize the amount of time taken on average
to nd a payment route.

One fundamental aw of existing payment channels however
remains the inability to refund a payment channel without per-
forming transactions on the blockchain. Once a payment channel is
depleted, the channel needs to be closed and re-funded, requiring at
least two expensive on-chain transactions. Before refunding a chan-
nel, users might rst opt to choose more expensive channel routes,
which will increase the transaction costs over payment channels
(each hop in a payment network receives a relay fee).

This work. In this work, we propose to the best of our knowledge
the rst rebalancing scheme for o-chain payment networks. Our
solution enables a set of members in a payment network to shift
balances between their payment channels safely. Rather than to en-
act previously mandatory on-chain channel closing and re-opening,
our solution allows participants to safely Revive a channel by real-
locating o-chain the funds they have assigned to their payment
channels. Rebalancing is naturally limited by certain restrictions on
how much can be reallocated, because we do not shift the deposits
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made within a payment channel but rather the credits that partic-
ipants are entitled to. In our security analysis, we show that an
honest participant is guaranteed not to lose any of its funds while
rebalancing.

The main contributions of our work are as follows:
• To the best of our knowledge, Revive is the rst rebalancing
scheme for payment channels, that allows a user to utilize
any other of his channels for rebalancing a particular chan-
nel.

• If all participants of the rebalancing are responsive (i.e. hon-
est), rebalancing with Revive is free. Revive thus increases
the transaction scalability of permissionless blockchains by
reducing the frequency at which on-chain channel refunding
is necessary. Simultaneously, Revive reduces the costs of
payment channels because it de-incentivises routing pay-
ments through costly payment routes when rebalancing of
lower-priced channels and routes is feasible.

• Revive is payment channel agnostic, i.e., it can be applied
to dierent underlying payment networks. We expect most
payment channels that operate using smart contracts to be
viable candidates, such as Raiden [8].

• We provide an implementation and evaluation of Revive
for the Ethereum network, using the Sprites[7] payment
channel.

By our estimates, Revive oers users the opportunity to decrease
the costs of performing a rebalancing of their payment channels
when compared to naively executing transactions that aim to di-
rectly achieve a similar goal on the blockchain. We highlight the
possible savings our protocol can provide within the context of the
Ethereum blockchain in Figure 1 (we report the total costs). At best,
our protocol provides free rebalancing, and at worst, the dispute
penalty is incurred, which is still lower than the fees associated
with withdrawing from and refunding every involved channel us-
ing two on-chain transactions. The details behind the reasoning of
our estimates can be found in Section 5.2.1.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide the necessary background on permissionless
blockchains and payment channel networks. In Section 3we present
the Revive protocol, while we analyze its security in Section 4. We
discuss Revive’s usability in Section 5. Our implementation and
evaluation is presented in Section 6. We overview related work in
the area and contrast it to our solution in Section 7. We conclude
the paper in Section 8.

2 BACKGROUND

In this section, we provide the necessary background on permis-
sionless blockchains such as Bitcoin and Ethereum, and discuss
existing payment channel networks.

2.1 Decentralized Ledgers

With the inception of Bitcoin [10] in the year 2008 by a pseudonym
Satoshi Nakamoto, for the rst time in history, the era of decentral-
ized banking began. Bitcoin allows mutually mistrusting peers to
trade, without relying on a traditional trusted third party, such as
a bank. Inspired by Bitcoin, other blockchains such as Ethereum
surfaced. Similar to Bitcoin, Ethereum is a decentralized database
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represented as a chain of blocks (i.e., records), where each block
points to its predecessor in the chain. Ethereum, however extended
Bitcoin’s transaction language to a Turing complete programming
language to ease the development of so-called smart contracts (cf.
Appendix 9.1 for more details).

The blockchain’s main intention is to provide an electronic pay-
ment solution that solves the double-spending problem. In the
physical world, it is not trivial to copy a monetary bill, while it is
trivial to copy an electronic “coin”. The blockchain allows to verify
whether a coin has already been spent by a peer, and as such al-
lows to solve the double-spending problem. Therefore, a blockchain
(such as Bitcoin or Ethereum) is an append-only ledger that records
the history of all transactions exchanged among the peers.

The majority of the existing blockchains rely on a so-called Proof
ofWork (PoW) [11, 12], which is a computationally expensive puzzle
that is solved by miners to nd a block. Each block is cryptograph-
ically linked to the previous block in the blockchain, eectively
forming a chain of blocks. Nakamoto showed that as long as the
majority of the blockchain miners are honest, an attacker is very
unlikely to alter the blockchain history. Note that besides the ability
to trade monetary value, the Bitcoin system also enables to provide
an electronic solution to trade other commodities, such as physical
products or domain names.

2.1.1 Scalability. The main costs of decentralized blockchains
is the problem that every peer needs to be aware of all transaction
of all other peers to not be vulnerable to double-spending. Bitcoin
currently only supports up to 7 transactions per second [13] and
scaling proposal can be roughly divided into two categories: (i)
improving the underlying consensus algorithm to support more
transactions [2–5] or (ii) developing o-chain solutions [6–9] which
rarely requires the scarce resources of the blockchain.
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The simple re-parameterization of key blockchain parameters
(such as the block interval or the block size), has been shown to not
allow a transaction load beyond 100 transactions per second [1].
Alternative consensus algorithms and constructions moreover cur-
rently rely on additional trust assumptions. In this work, we there-
fore focus on o-chain solutions, which allow to alleviate the burden
of the underlying blockchain.

2.2 Payment Channels

Payment channels allow to establish direct peer-to-peer payment
channels between two parties. Those two parties can privately
maintain and update a two-party ledger, such that their individual
transactions are not required to be written to the blockchain. At the
same time, the payment channel guarantees that the participants
can only spend their rightful amounts and that the payment channel
state can be written to the global blockchain ledger at any time.

Because payment channels avoid transacting on the blockchain,
they can in practice signicantly improve the transaction through-
put. The transaction rate is eectively only limited by the network
bandwidth between the participating peers. Another advantage of
payment channels is that they do not require the direct service
of the blockchain miners, and therefore can perform transactions
with lower transaction fees and consequently allow to economically
perform micropayments.

For a channel to be established between two entities, initial
deposits representing the total amounts that can be transacted
in this channel have to be put on the blockchain in escrow. The
security lies in the assurance that in case of a dispute of payment
or a need to withdraw deposits, the latest state of the ledger that
the parties have agreed upon can be submitted to the blockchain
and each party can claim its rightful balance.

2.2.1 Payment Networks. Instead of having to open payment
channels between every pair of individuals that wish to make o-
chain payments to each other, a linked-payment which utilizes a
network of payment channels to nd an indirect path from the
sender to the receiver can be used. Such payment networks are
envisioned to improve the usability and practicality of payment
channels.

Finding routes over a payment network can be considered similar
to Internet packet routing. Certain specic routing restrictions
apply. Intermediate nodes that route the linked payment need to
have a sucient balance in the payment channel that will act as the
outgoing edge for the payment. A routed payment moreover either
atomically succeeds or fails. The individual payments along each
channel need to all be bound together, such that they all succeed or
fail, and no one loses any money. Because intermediate nodes are
typically not involved in the payment between the sender and the
receiver, they need to be incentivised to forward a payment. Current
designs allow for intermediate hops to collect fees for forwarding a
payment.

2.3 Existing Payment Network Designs

In the following section, we discuss dierent existing designs for
payment networks.

2.3.1 Duplex Micropayment Channels. Decker et al. [14] rst
proposed duplex payment channel networks which rely on the
timelock functionality of modern Bitcoin transactions (timelocked
transactions could for example only be included in the blockchain
10 days in the future). For Bitcoin in particular, the Script opcode
OP_CHECKSEQUENCEVERIFY as dened in the Bitcoin Improve-
ment Proposals BIP 68 [15] and BIP 112 [16] helps designing such
channels. Duplex Micropayment Channels support routed pay-
ments that can be conrmed without any conrmation delay.

2.3.2 Lightning. Similar to duplex micropayment channels, the
Bitcoin Lightning Network [6] allows to perform o-chain pay-
ments between Bitcoin participants. Instead of timelocks, Lightning,
however, relies on the punishment to promote honest behaviour.
If an entity broadcasts a malicious transaction, an honest partici-
pant is able to claim all funds of the concerned channel. Lightning
is envisioned to support routing of payments among its payment
channels.

2.3.3 Raiden. The Raiden Network [8] is a work in progress
that aims to implement the same concepts proposed in the Light-
ning Network design, but on the Ethereum blockchain using smart
contracts. Transaction costs are estimated to be 7 orders of magni-
tude lower using Raiden than natively on the Ethereum blockchain,
which would pave the way for ecient micropayments.

Because the Ethereum blockchain supports the creation of cus-
tom exchangeable tokens, the Raiden protocol aims to deliver the
ability to make o-chain transactions with any token that follows
the standard token API [17].

2.3.4 Sprites. Sprites [7] are payment channels designed for
Ethereum. Their design is also inspired by Lightning and Raiden,
but they aim to minimize the worst-case collateral costs of indirect
o-chain payments. Collateral cost is calculated as the amount of
time funds are frozen, or held in escrow, instead of being utilized
or invested, multiplied by the amount of money that is suspended
from use.

When performing a linked payment, the amount of money that is
to be transacted has to be frozen across the entire chain of payment
channels involved, until the transaction completes or terminates.
This requirement is present in Lightning, Raiden and Sprites. The
achieved worst case time however, that a linked payment needs
to complete or cancel in Sprites is not proportional to the length
of the chain of intermediaries used to execute the payment, but is
instead constant, unlike in Lightning and Sprites.

Because the total funds held in escrow during a linked payment
using Sprites is proportional to the length of the transaction chain,
and the upper bound on the amount of time is constant, the worst
case collateral cost per payment that is only linearly, rather than
quadratically1, proportional to the length of the chain used. The use
of the Turing complete smart contracts model oered by Ethereum
to implement the payment channel concept, rather than the direct
migration of an architecture meant for Bitcoin’s limited UTXO2

model over to Ethereum, is what enables Sprites to provide its cost
optimization.

1as in Lightning and Raiden
2Unspent Transaction Output
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3 LEDGER REBALANCING SCHEME

Over time, the extensive reuse of the same payment route may lead
to an unfavorably skewed network structure in which payment
routing becomes costly and inecient. Our proposed rebalancing
scheme aims to oer a safe way to mitigate some of the possible
skewness that may arise in a payment network.

3.1 Motivation

A

BC

0

100

0100

0

100

Figure 2: Simple skewed network. Each two parties share

their own bi-directional payment channel. A’s balances are

0 and 100 in its channels with B and C, respectively. B’s bal-

ances are 100 and 0 with A and C respectively. C’s balances

are 100 and 0 with B and A, respectively.

Bi-directional payment channels can become highly skewed, and
thus reduced to uni-directional channels, when used frequently to
make transactions in one direction within the context of a payment
routing network. Even though intermediate nodes that participate
in the routing of a payment maintain their total balances, they
are required to transfer the transacted amount from one payment
channel to another. As an example, a skewed network which could
benet from a rebalance of its ledgers is presented in Figure 2. In this
simple case, even though A and B are connected by a direct payment
channel, its balance is skewed in the direction of B. Therefore, if
A wishes to make a transfer to B, the longer route comprised of
A-C-B will have to be taken. This simple case can be generalized by
considering the direct payment channel between A and B as some
path that is shorter than the longer path from A through C to B.

If the intermediate nodes in a linked payment charge fees for
routing the payment, then the skewness of the channels leads to
an increased transaction cost because of the usage of longer paths
in routing. Moreover, in all aforementioned payment channel de-
signs, the intermediate payment channels involved in a payment
routing must freeze the transaction amount as collateral in order to
guarantee the safe execution of the linked payment. In such a case,
having to take longer paths because of skewness puts an increased
collateral cost on payment routing. In some situations, it could be
considered benecial for a payment channel that charges fees to
oer negative routing fees in one direction as to promote that direc-
tion’s use and cause the channel to be slowly rebalanced [18]. Such
a sacricial strategy would become unnecessary in case Revive is
eciently adopted.

3.2 System Model

Our rebalancing scheme is designed within the context of a de-
centralized blockchain that allows the trusted execution of smart

contracts capable of supporting an o-chain payment network that
contains a set of reasonably connected payment routers.

3.2.1 Blockchain. In our scheme, the blockchain is considered
as an integrity protected and immutable root of trust that comprises
a decentralized database containing a global view of accounts, their
balances and transactions, and extra associated data. Each account
in the ledger is controlled by its own private key, that only the
owner of the account should know. A transaction from any ac-
count cannot be authorized without possession of its respective
private key. Authorized modications to the ledger are considered
to be globally available after a block is generated, on average every
predetermined block time T.

3.2.2 Smart Contracts. In addition to primitive ledger transac-
tions that transfer balance from one account to another, our scheme
also requires a smart contract execution environment, such as found
in Ethereum [17]. Recall that Ethereum’s smart contracts are al-
lowed to hold a balance in the ledger, and control it according to
their code. We assume that once a smart contract is published, it
cannot be modied, nor can a result outside the bounds of its correct
execution be accepted on the global ledger.

3.2.3 O-chain Payment Network. Our work is meant to be
adapted to pre-existing o-chain payment network solutions to
extend them with a safe rebalancing approach. In our view of the
system, we require the existence of an o-chain payment solution
that allows a pair of peers to keep track of their own two-way
ledgers o-chain. This o-chain ledger is assumed to be pegged to
an on-chain smart contract that requires an initial funding from the
two peers. The contract is assumed to only allow peers to withdraw
balances that they have both agreed on using their signatures. Of
course, the sum of the two o-chain balances may not exceed the
total deposit in the on-chain contract at any given time.

3.2.4 Payment Network Topology. The payment channel con-
nectivity between the participants of a rebalancing is a core element
to the ecacy of applying Revive. For a rebalancing to take place
among a set of channel owners, each channel owner is expected
to make a set of outgoing payments which are compensated by
another set of incoming payments, through the same payment chan-
nels that connect the channel owners participating in a rebalancing.
This means that, when modeling the participants as nodes and the
payment channels among them as edges, any such graph that con-
tains no cycles3 is not rebalanceable. On the other hand, the more
possible cycles present in the graph, the more potential rebalancing
transactions there are to be found.

An example is presented in Figure 3, whereby the network pre-
sented in Figure 3a contains no cycles and thus no rebalancing can
take place, and the network presented in Figure 3b contains a few
cycles that can be utilized. Moreover, all cycles can be utilized in
parallel if the balances in the intersecting channels are sucient.
In Figure 3b, the channel between A and E appears in two such
cycles, and the assumption when utilizing both cycles to enact a re-
balancing is that E carries sucient balance with A in that channel
to compensate for the funds A gives to B and C.

3A sequence of vertices starting and ending at the same vertex.
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(b) A example network con-

taining cycles. Rebalancing

payments can take paths such

as: (A, B, D, E, A) and (C, E, B,

D, E, A, C).

Figure 3: Example payment channel network topologies

demonstrating when a rebalancing is possible.

3.2.5 Communication Network. For the purpose of the rebal-
ancing scheme we assume an underlying communication network,
where all the participants can communicate directly o-chain (e.g.
via a TCP connection). Given that the participants had previously
established o-chain payment channels, prior to needing to rebal-
ance them, we assume that the line of communication that was
used for channel establishment can be reused by our protocol.

3.2.6 Adaptability. The algorithm for calculating a set of rebal-
ancing transactions is independent from the enforcement mech-
anism of the transaction set. Therefore, to adapt Revive to any
blockchain satisfying our system model, one only needs to adapt
the rebalancing protocol to support the target smart contract frame-
work. For example, implementing the smart contracts provided in
our paper for Ethereum (cf. Section 9.2) in the Rootstock [19] smart
contract platform for Bitcoin, would provide the same on-chain
enforcement mechanism required to settle disputes and atomically
execute a transaction set. The o-chain peer to peer communica-
tions can then be directly made compliant.

3.3 Rebalancing Protocol

The protocol steps in Figure 4 outline how the rebalancing group
is expected to proceed in order to atomically execute a set of trans-
actions.

3.3.1 Leader Election. Before the protocol can commence, a
leader needs to be elected to act as a point of synchronization for
the protocol, and upon receiving enough information about channel
balances, calculate a set of rebalancing transactions according to
the specications we discuss later. This leader does not need to
be a stakeholder in any of the payment channels that are to be
rebalanced, therefore, it may even be a third party chosen by the
participants.

For our purposes, we adopt a leadership rotation strategywhereby
all participants are identied by their public addresses in the global
ledger, which we assume to be unique and numeric. We refer to
the set of participants as P and denote the public identier of a
participant p ∈ P as ID(p). Moreover, we assume that rebalancing
rounds happen, among a xed set of participants, in series. We refer
to the point in time at which the participants formed a network
that rebalances itself as Ts .

Leader Blockchain Participant

Signal Rebalancing

Rebalancing Init Req.

Participation Conrmation

Channel Freeze Request

Frozen Channels Conrmation
Rebalance Objectives

Full Rebalancing Transaction Set

Signed Commitment

Full Signed Commitment Set

Dispute

Figure 4: Protocol Sequence Diagram. Solid lines with lled

arrows require a response for the leader to proceed with

the participant in the protocol. Dashed lines with arrow

heads are the participant’s responses. Solid lines with arrow

heads do not require a response, and are not required for the

sender or recipient to proceed.

At Ts , the rst leader is chosen as the participant p with the
smallest identier ID(p) such that ∀q , p ∈ P : ID(p) < ID(q). After
the completion of each round, or after a predened amount of time
passes since the termination of the last round, the next leader is
chosen as the participant with the smallest identier greater than
that of the previous leader. More formally, the successor s of a
leader p, is the smallest such s ∈ P so that ID(s) > ID(p). If no such
successor s exists, then leadership is passed back to the rst ever
elected leader, which has the smallest identier in the participant
set.

In other cases, it might be preferable to allow only a subset of
participants, perhaps even only one, to attain leadership due to, for
example, their increased reliability or performance. Revive can be
adapted to any leader election strategy as the remaining protocol
steps are decoupled from how the leader was chosen.

3.3.2 Triggering. At rst, the currently elected leader waits for
rebalancing initiation requests from participants in the sub-network.
When enough requests are received (past an arbitrarily dened
threshold), the leader sends an initiation request to all participants
asking for conrmation of their participation in this round of re-
balancing. This triggering phase is customizable and serves to set
a threshold past which a rebalancing is considered to be worth
executing. This allows the protocol to scale its utility according
to the size and requirements of the participants in a rebalancing
group.

3.3.3 Participation. In response to the initialization request, the
participants reply with a participation conrmation which allows
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the leader to construct a list of who will be partaking in rebalancing
this round. This list is later on used to enable the safe execution
of the rebalancing. After receiving the conrmations, the leader
announces to the involved participants which nodes are conrmed
in the current round, and asks them to freeze the relevant payment
channels they wish to rebalance.

3.3.4 Transaction Set Generation. Participants are then expected
to respond with which channels they have frozen, along with their
respective balances and objectives for the challenge. Mutual agree-
ment by both owners of a payment channel on the freezing and
the balances should be expected. Moreover, the participants may
submit rebalancing objectives, which specify whether they wish
to gain or lose credit in each channel. Mutual agreement by both
peers on the direction of rebalance in a channel should also be
expected here. For example, if A wishes to gain credit in its chan-
nel with B, then B must be willing to lose credit in its channel
with A. The leader then proceeds to calculate a set of transactions
that should conserve everyone’s total balances, and abide by the
participants’ preferences for each channel. The generation is done
through solving a linear program described below that produces a
set of rebalancing transactions.

3.3.5 Consensus. The transaction set, along with a list of par-
ticipating members, is then sent in the form of a commitment to all
nodes for verication and signing. The commitment is composed
of the merkle-tree root [20] of all rebalancing transactions, and
a hash of all the participants’ public addresses (identities), both
hashed together. When participants receive this commitment from
the leader, they verify the proper construction of the hashes, and
that the rebalancing transactions are correctly generated. Each par-
ticipant then responds to the leader with its own signature on the
commitment. Once all signatures are obtained by the leader, they
are multicast to the involved participants. They can then consider
the payment channels unfrozen, because the complete consensus
on the transaction set can safely be considered as a binding state
update for each payment channel.

3.3.6 Dispute. If the complete signature collection is withheld
from some participant, it can issue an on-chain subsidized availabil-
ity challenge for it. The response to that answer will be comprised
of the complete rebalancing round data, which includes the set of
participants, their signatures and the merkle root of the transaction
set. If this challenge is not answered in some predened amount of
time, the rebalancing round is considered annulled, and participants
can safely assume that the latest state prior to the rebalancing is
valid. We discuss this issue in more detail in the security analysis
presented in Section 4.

3.4 Rebalancing Objectives

Participants can specify how they would like to shift the balances of
their payment channels in a rebalancing instance, or an averaging
method can be employed to automatically determine an equilibrium
seeking set of objectives.

3.4.1 Notation. We denote the maximum balance shift that a
node u is willing to sustain in its payment channel with a node v
by ∆u,v , while δu,v denotes the balance that node u is going to

gain in its payment channel with v as a result of the rebalancing
transactions set.

3.4.2 Linear Programming Model. In our work, we model the
rebalancing problem as a linear program. Several solving strategies
for linear programs have been proposed and proven in various
literature. We forgo a detailed examination of these methods and
instead point the interested reader to sources such as [21], and the
short discussion on linear programming in Section 7.

The generation of a set of rebalancing transactions can be for-
mulated as a linear program. In this model, participants may only
specify for each channel a maximum amount they are willing to
either gain or lose, but not both. If both peers of a payment channel
agree on its direction of transfer, one variable denoting the positive
direction of transfer is added to the linear program.

Linear Program: Maximize: Σu,vδu,v Subject to:
(1) ∀u,v : ∆u,v > 0 ∧ ∆v,u < 0 ⇔ 0 ≤ δu,v ≤ min(∆u,v ,−∆v,u )
(2) ∀u : Σvδv,u = Σvδu,v

The objective of the linear program is to maximize the amount
of funds moved between channels while the constraints serve to
maintain the sanity and fairness of the generated transaction set.
The rst constraint denition introduces linear constraints on the
program as long as the two parties connected by the payment
channel agree on the direction of balance change that they are
willing to have in the channel. If A wishes to dispose of balance in
the AB channel, and B wishes to gain balance in the same channel,
then the δa,b variable is given an appropriate upper bound. The
second constraint enforces the conservation of balance, such that
the set of resulting transactions is a zero sum rebalance, whereby no
party gains or loses any money by executing the set of transactions
relevant to its payment channels.

It is assumed that ∆u,v ≤ balu,v for all inputs ∆u,v such that no
payment channel is used past its total funding. It is also important
that for any pair of (a,b), if δa,b is dened in the program, then
δb,a is not, as that breaks the semantics of the constraints and the
objective function.

3.4.3 Channel Averaging Strategy. In an automated settingwhere
manual entry of rebalancing objectives is impractical, a strategy
for automatically determining a set of objectives for each channel
is required. To simplify the process of adopting our model in such a
setting, we suggest the use of a straightforward strategy: averaging.
More formally, in this strategy, each two peers of a payment channel
that is going to be rebalanced submit their rebalancing objectives
as follows: ∀u,v : ∆u,v = 1

2 (balu + balv ) − balu . This strategy
can be followed using the linear model previously specied, since
both peers would automatically agree on the direction of balance
shift that seeks equilibrium. We conjecture that this strategy, due to
its nature, would improve the ecacy of a payment network after
rebalancing in the average case. In cases where a channel imbalance
in one direction is a favored outcome, then this strategy would lead
to sub-optimal rebalances.

3.4.4 Numerical Precision. In all of the aforementioned solu-
tions, the numerical accuracy of the program solving methods is a
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crucial detail to keep in mind. We do not employ integer program-
ing methods for performance reasons, and allow fractional results
to occur. Therefore, the resulting balance transfers from the linear
program solution may very likely have a decimal precision beyond
that of the underlying global ledger. For this reason we resolve to
simply rounding down the resulting transactions from our rebalanc-
ing schemes and assume that all losses incurred as a consequence
are negligible. We justify this by examining the current smallest
units that are exchangeable using Bitcoin and Ethereum, and their
respective prices in US dollars as of the writing of this paper.

Until the writing of this paper, the maximum trading price of 1
Bitcoin is on the order of 1,000 U.S. dollars, while the smallest ex-
changeable unit, a satoshi, is equal to 10−8 Bitcoin. As for Ethereum,
the maximum trading price as of yet is on the order of 100 U.S. dol-
lars, while the smallest unit, wei, is equal to 10−18 Ether. This puts
the maximum possible loss incurred in each rebalancing transac-
tion at a marginal fraction of a cent. If the trading values of these
currencies at some point increase at least a million fold, then any
non-integer solution would lead to some losses. However, we con-
jecture that if such an event occurs, then the global ledgers of these
currencies will have to be extended to allow higher precision trans-
actions, as to always be viable for micropayments and a realistic
representation of monetary value.

3.5 Optimality

According to the rebalancing objectives dened in Section 3.4, we
dened the objective functions of the mathematical programming
models to represent the total amount of funds shifted between pay-
ment channels, or, rebalanced. When using Revive to improve the
routing of future payments within a network, the optimal solution
under such a denition would therefore be one that eliminates
the most skewness in the network where possible. For o-chain
payment networks comprised of at least a few hundred payment
routing nodes, it would be rather dicult to coordinate a successful
global rebalancing where all network members are participants in
a single Revive rebalancing instance. Therefore, it would be more
feasible to run multiple ’local’ rebalances that ameliorate skew-
ness in smaller sub-networks within the network in parallel. More
importantly, we conjecture that through running these multiple
smaller instances, a globally optimal rebalancing can be approxi-
mated. We mainly base our argument on the expected outcome of
running Revive in multiple local instances on networks similar to
the hypothetical network in topology in Figure 5.

While a local, sub-optimal solution may fail to rebalance as many
payment channels as eectively as a global optimal solution would,
the combination of multiple local Revive solutions to global net-
work would still lead to a more balanced global set of ledgers. Unless
a very high degree of global coordination can be achieved, users
of Revive would have to make this trade-o in optimality. More-
over, even after a global run, some payment channels may remain
skewed, because they could have signicantly larger deposits in
them than their peers’ other payment channels, and thus there
aren’t enough funds to route to them.

(a) Example global network be-

fore local groups execute re-

balances. There are ve rebal-

ancing groups in this gure:

four in the corners, and one in

the center.

(b) The same hypothetical net-

work after the rebalancing

groups conclude their local

protocol runs.

Figure 5: Example eect of separate Revive instances on

a global network. Nodes in the graphs represent payment

routers. Dashed edges represent terminal payment channels

(e.g. to non-routing consumers). Green undirected edges rep-

resent balanced payment channels. Red directed edges rep-

resent skewed payment channels that allow payments in

the edge direction. Shaded regions represent Revive sub-

networks.

3.6 Atomic Enforceability

For safety and eciency purposes, we designed our protocol to use
the underlying blockchain network primarily as a recourse. A valid
rebalancing that results from the full execution of this protocol
must be enforceable in the private payment channels involved, and
thus also in the global decentralized ledger when need be. Likewise,
an invalid rebalancing, should not be enforceable.

Payment channels are generally designed to support on-chain
deposits and withdrawals of committed funds. Prior to nalizing
withdrawals, the latest agreed upon balances of each channel peer
must be broadcast on-chain in order to conrm that the amount
to be withdrawn is correctly requested. Usually the state updates
are modeled as a mutually signed commitment that reects how
much balance each peer of the payment channel has. In case the
last agreed upon balances for the payment channel resulted from
our rebalancing protocol, then the payment channel design must be
extensible as to allow it to accept a valid rebalancing as yet another
valid state update, even though its commitment structure would be
dierent.

In Revive (ref. Figure 4), the commitment sent back by partici-
pants encompasses the following two main elements: the full set of
participants in this round, and the full set of rebalancing transac-
tions that the leader has produced. Therefore, when a participant
commits to a rebalancing round, it essentially authorizes that when
the signatures of all the conrmed participants, in this round, are
provided, for this round, then all of the payments included in the
rebalancing transaction set are enforceable. This is done in order
to mandate that all of the transactions in the rebalancing round are
atomic, as in they will all proceed together or abort.
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In retrospect, participants in a rebalancing agree to reduce some
of the balances they are owed in some of their payment channels
contingent on those losses being recovered as balance gains in other
channels. Therefore, every participant must obtain a guarantee that
all of their outgoing transactions are matched by some incoming
transactions, and that if outgoing funds are enforceable, then in-
coming funds must also be enforceable to compensate. We designed
our commitment scheme to account for these global enforceability
reasons.

Moreover, broadcasting the data associated with a rebalancing
on-chain to trigger a state update would always be more expensive
than submitting a succinct, mutually signed balance commitment.
We suggest an additional collaborative pre-broadcast step to allevi-
ate this cost. After delivery of the full rebalancing signature set to
both peers, they can simply mutually sign the transactions relevant
to their mutual payment channels and send their respective signa-
tures to each other. While this step is purely optional and does not
aect enforceability, it does allow peers to cut extra costs associated
with performing on-chain withdrawals from a payment channel
immediately following a rebalancing operation.

We demonstrate this concept by extending the Sprites [7] pay-
ment channel to accept a valid rebalancing, in addition to its regular
two-party state update, as a valid balance commitment in our proof
of concept implementation discussed in Section 6.

4 SECURITY ANALYSIS

Our protocol is designed to prevent any honest participant from
losing any funds despite some strong adversarial assumptions. We
will proceed to formally analyze the security guarantees of our pro-
tocol. The global blockchain ledger acts as a recourse for dispute
resolution, and there are costs associated with initiating and resolv-
ing these on-chain disputes. For example, a fee is paid per kilobyte
of data broadcast on the Bitcoin blockchain [10], while gas is paid
to activate smart contracts and enact transactions in Ethereum [22].
In our security analysis, we consider these expenses as external to
the funds committed to in a rebalancing by participants. However,
we also designed our protocol to minimize these expenses through
requiring the least amount of information possible be needed on-
chain in case of dispute.

4.1 Threat Model

We assume an irrational adversary that would be willing to lose
some, or all, of their own committed funds in order to cause hon-
est parties to lose theirs, temporarily or otherwise. This irrational
adversary may be in control of the leader role, some of the partici-
pants, or even all but one honest party that is the target of an attack.
An adversary in our model may cause parties under its control to
sign and authorize any set of messages using their identities, or
front-run any user input, but may not violate the integrity of the
keys honest protocol participants use. In addition, we assume an
adversary can cause denial of service attacks that abort the protocol
at any given point. In the following discussion, we dene malicious
behavior as that which would cause a participant committed to
performing a set of transactions in a rebalancing to lose control
of some or all of their committed funds, either permanently or
temporarily.

4.2 Guarantees for Honest Parties

Under the previous adversarial assumptions, a diligent honest par-
ticipant in our protocol is able to protect itself from losing any
of its committed funds, but will not be able to ensure that it is
always treated fairly in the protocol or that the rebalancing always
succeeds.

4.2.1 Balance Conservation. When the leader is done calculating
a set of transactions that need to take place between participants in
order to rebalance their payment channels, it then sends this set to
each participant to commit to. The information present in this set
of transactions is sucient for each honest party to decide whether
the transaction set it is committing to will cause it to lose or gain
any funds, because a diligent honest party should verify that all the
transaction amounts related to its payment channels in the set sum
up to a net total of zero4. The most up to date state of a payment
channel, where one is not a peer, cannot be truly veried unless
broadcast onto a network. Each honest party can therefore only
be responsible for verifying the balance conservation properties
of transactions related to its payment channels. This conservation
check is sucient to protect honest parties from committing to any
rebalancing round that may cause them to lose funds. In case a set
of transactions fails this check, then the honest party should not
provide its signature. This eectively halts the rebalancing round
as the full signed commitment set will never be producible by the
adversary.

4.2.2 Objective Satisfiability. The protocol as we described it so
far provides no guarantees towards fairness in rebalancing funds
while equally satisfying the objectives set by all participants. A
malicious leader may choose to omit, or restrict, the rebalancing
objectives of some parties in order to produce a rebalancing set that
is more favorable to the objectives of others, all while not violating
the conservation of balance for any party. Unfairness may even arise
from no malicious intent, but from the optimization path chosen by
the linear program solver. One approach might involve having the
leader publicly commit to a randomness seed prior to requesting
channel balance information. The leader then sends all initially
received channel balances alongside the generated rebalancing
transactions to each participant. Any participant interested would
re-solve the linear program using the same seed of randomness
in order to verify that the agreed upon objective function was
indeed the one optimized for. Additionally, the transaction structure
used in the payment channel must bind each new state to the
previous one, so that the resulting rebalancing transactions are
only enforceable if the correct balances were initially revealed. This
additional verication would of course come at the cost of the
eciency and privacy of the protocol, but that may be a critical
trade-o an implementation of our protocol is inclined to make.

4.2.3 Delayed Propagation Immunity. The adversary, whether
in control of the leader, a subset of participants or just in control
of the network, may opt to withhold, in one way or the other, the
full signed commitment set from honest participants who wish
to enforce the rebalancing transactions after having given their
signed commitment. Without the proper protection, this could lead

4Up to the discussed numerical accuracy.
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to a dangerous situation whereby an enforceable state update to
a payment channel is in the hands of the adversary and not the
channel’s honest owners. Eectively, this may lead an adversary
that is in control of some of the direct peers of an honest participant,
in addition to the leader, to steal committed funds.

Assuming that the adversary is in control of some of the direct
peers of an honest participant, and that the channels between the
honest participant and the adversary’s participants are involved
in the rebalancing, then the attack would proceed as follows: The
adversary would nalize the channels that have pending rebalanc-
ing transactions in favor of the honest participant and close them
without honoring those transactions. Then the adversary would
nalize the channels that have rebalancing transactions in favor of
the honest participant’s peers, but use the full commitment set to
force the honoring of the pending transactions outgoing from the
honest participant. In this case, the honest party loses the funds
committed to the outgoing transactions in a rebalancing while not
being able to claim the incoming funds. One possibility would be to
put an expiry date on the rebalancing, after which none of its trans-
actions could be enforceable via an on-chain broadcast. However,
this poses a problem to atomic enforceability, as some honest peers
may have nalized their transactions before expiry, while other still
haven’t, due to network delays or otherwise. Another suggestion
could be requiring that honest parties collaborate if any of them has
received the full set. However, this is still not a formidable solution,
as it is not eective when the adversary withholds the full set from
all honest parties.

Solution. Our proposed solution is to allow any participant to
be able to issue an on-chain availability challenge towards the full
signed commitment set. This challenge would carry an eective
deadline by which the full signature set must be announced (by
anyone) on-chain, or the rebalancing will be annulled and all of its
transactions unenforceable in the global ledger. One notable detail
to take care of is that the grace period of channel nalization, as
discussed in [7], must be longer than the grace period extended
by the availability challenge deadline as to eectively prevent the
aforementioned attacks. This solution imposes an added worst-case
cost for running the protocol that increases proportionally to the
number of participants involved in a single rebalancing. We discuss
this issue further and provide some insights on how to possibly use
Revive in a reasonable manner as to minimize incurring worst-case
costs in Section 5.

4.2.4 Ungraceful Abortion. If, from the view of an honest party,
the protocol terminates at any point prior to the party’s submission
of its signature on the rebalancing commitment, then it is safe
to assume that all the involved transactions are not enforceable.
However, termination of the protocol, for any reason, past the
submission of the party’s signature, and prior to its reception of
the full signature set, is equivalent to the adversary withholding
the signature set from the participant. In this case, as previously
discussed in Section 4.2.3, the participant will need to issue the
on-chain availability challenge.

4.3 Privacy

In order for the leader to eectively calculate the appropriate re-
balancing transactions for the round, it must have knowledge of
the latest balances of each involved payment channel. We consider
this to be a privacy leaking component of the protocol equivalent
to a public broadcast of the latest state of each involved payment
channel.

In our adversarial setting, we hold no guarantees of what infor-
mation may or may not be leaked by an adversary in control of the
leader or any participant. Moreover, we note that the information
carried in the structure of the transactions that are to be executed is
highly dependant on the design of the underlying payment channel.
For example, in our implementation using Sprites [7], the leader is
made aware of the last state of each participating payment channel,
and then each participant is made aware of the next state of each
payment channel after rebalancing.

On the other hand, in a payment channel design whereby the
generated transaction set would not contain total balance infor-
mation but rather balance changes, then only a malicious leader
could cause a privacy leak. Malicious participants in this case would
only learn changes in balances, but not what the starting or ending
balances for each channel are, unless they are peers in them.

5 USABILITY

In this section we discuss the conditions under which Revivewould
be suitable for use, its limitations and when it is advisable to employ.

5.1 Context

Employing o-chain solutions such as payment channels or other
protocols (such as Revive) implies a certain degree of trust be-
tween the involved parties. It is imperative, however, that trust
be minimized wherever possible in a system design, and instead
its trustworthiness increased. In Revive, when a party A agrees
to participate in a rebalancing whereby another party, B, is par-
ticipating, then A is eectively trusting that B will be available to
not cause the protocol to abort prematurely. Moreover, if B is the
acting leader in the round, then A is also trusting that B will not
deny sending the full set of signatures to A. These two expectations
come at an operational risk. In the rst case, A is only risking the
collateral it has frozen for the protocol to proceed. If B causes the
protocol to prematurely abort, then that collateral was frozen in
vain when it could have been used elsewhere. In the second case, A
is also risking being required to pay a fee for issuing an on-chain
availability challenge for the signature set because of B’s lack of
cooperation.

For these reasons, we suggest that Revive be employed in a
context where the reliability of the involved peers is reputable in
order to avoid needlessly tying collateral or incurring added costs
repeatedly. We expect that payment routers that will face the prob-
lems Revive aims to solve will be looking to establish relationships
among each other that promote a functioning, reliable payment
network. In the worst case, we have insured that no theft of commit-
ted funds is possible, but malfunctioning or malicious parties can
still cause a denial, or degradation, of the service oered through
Revive. We highly recommend utilizing Revive in a reputation
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based context whereby participants are accountable for their previ-
ous reliability when running the protocol, and may be favored or
dismissed in future rebalancing instances based on their attained
reputation.

5.2 Scaling and Associated Costs

The design of Revive centers around enabling a trust-free exchange
of funds that rehabilitates a payment network and ensures that
it is able to route payments eciently. However, this trust-free
design backed by a blockchain requires that in cases of dispute,
enough non-repudiable information is available to decide a fair
outcome. A running instance of Revive produces the minimal
information needed to safely enable rebalancing, while ensuring
that fund commitments are honored. As an instance grows in size,
due to the participation of more users or the involvement of more
payment channels, thenmore information is produced, whichmight
make on-chain enforcement expensive or even impossible. For this
reasonwe oer advice on reasonably scaling up instances of Revive,
while not exceeding the limitations that a backing blockchain might
have, using Ethereum as a practical example.

5.2.1 Scaling Users. As more participants are involved in a re-
balancing round, more signatures will need to be collected on the
hash of the instance. In Ethereum, the cost of verifying a user’s
signature on-chain in a smart contract is 3,000 gas units [22]. There
are other costs associated with submitting data to a smart contract
and processing it. In our implementation, discussed in Section 6,
the cost of an on-chain dispute increases by approximately 9,000
gas units per involved participant. However, it is noteworthy to
mention that in case Ethereum adopts the Schnorr [23] signature
scheme (see Section 7), this per user cost would drop by at least
4,400 gas5 down to 4,600 (cf. Figure 1). Recall the plot presented in
Figure 1, which estimates the operational costs of naive on-chain
rebalancing versus those of Revive.

Naive Transactions. The worst case naive rebalancing would be
if every user either withdraws or deposits into one of the involved
payment channels. This would incur an Ethereum transaction cost
of 21,000 gas [22] twice per channel, once by each peer. In the best
case for naive rebalancing, each channel is only either deposited
to, or withdrawn from, by one of its peers; therefore, the on-chain
transaction cost is incurred only once per channel.

Revive rebalancing. In a awless Revive instance, where no
disputes take place and everything is settled o-chain, there are
exactly zero gas costs incurred, regardless of the number of chan-
nels involved. As for the Revive cost ranges, in the worst case, the
rebalancing instance represents a ring network of users connected
by payment channels, similar to that in Figure 2. Therefore, each ad-
ditional payment channel adds a user to the instance, requiring an
additional 9,000 gas units in disputes as discussed. In the best case
of dispute, only two participants maintain all of the involved chan-
nels, which implies that only two signatures will ever be needed in
case of dispute.

5We base this estimate on the amount of data that would be spared from submission
to the smart contract. We cannot estimate any further possible savings and we have
no guarantee of how the implementation of this scheme might change other costs.

Ethereum has a mechanism which limits the amount of gas that
can be exhausted per block [17], the gas limit. Even if someone is
willing to spend a considerable amount of ether to pay for the gas
costs of verifying a large rebalancing instance, there still would be
an upper bound that if reached, may render a rebalancing unveri-
able on-chain, and thus unenforceable in practice. In theory, on
Ethereum, Revive could be executed with roughly 300 participants
and still produce veriable instances. At a gas cost of 25 Gwei, such
a rebalancing instance would cost approximately 0.075 Ether to
verify. However, even when veriability is not impossible, we very
much advise against running the protocol at such a scale, unless a
very high guarantee of reliability is available among participants.

Our recommendation is to calculate the estimated on-chain cost
of verication prior to participating in a rebalancing, so that the
risk of added running costs is known well ahead. Depending on
the used blockchain, and the context of use, the costs and risks will
vary, and should be estimated on a per use-case basis.

5.2.2 Scaling Payment Channels. Two peers may have more
than one payment channel with each other. If we keep the number
of participants in a rebalancing constant, we can add more payment
channels to the rebalancing with an added cost per dispute that
increases logarithmically in the number of involved channels. This
is due to the use of merkle trees when constructing the rebalancing
commitment. In case of dispute, the information required to be
evaluated on-chain is comprised of participant signatures, and a
merkle tree based proof of membership of a transaction in the
transaction set. The merkle tree of transaction sets would grow
in height logarithmically [20] as more transactions are added, and
thus the proof of membership would grow marginally longer. Per
Ethereum’s implementation we estimate that the state update cost
would grow by approximately 4,400 gas units per one level of height
increase in the transaction set merkle tree.

5.2.3 Linear Program Scalability. Linear Program Solvers are
highly ecient in practice. Even though some of their underlying
algorithms may have exponential complexity in the worst-case,
they were shown to converge in expected polynomial time of the
number of variables [24]. However, as ecient as these solvers
are in practice, there is no absolutely guaranteed time by which
they will terminate. As the problem size grows, the expected time
towards reaching a solution increases. For this reason, users of
Revive must be mindful of the underlying limitations, since the
linear programming model is the core of nding a satisfying set of
rebalancing transactions. Even when implemented over an under-
lying blockchain, or similar system, which has perfectly reliable
participants and inexpensive on-chain dispute resolution, scaling
the rebalancing instance to a signicantly large number of payment
channels, more than tens of thousands, may come at the cost of a
very long time expenditure until the leader can generate a rebal-
ancing, at least on an average desktop computer. For this reason
we suggest that the linear program instances be concerned with
no more than a thousand payment channels, if not a few hundred,
if such a demand were to arise and if the underlying blockchain
would economically permit it (recall how dispute costs scale). If it is
indeed found necessary to scale beyond that, then the participants
should be split across several rebalancing instances, as at that scale
the dierences in optimality between global and local rebalances,
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as explained in 3.5, should be trivially inconsequential compared
to the performance costs.

Besides our linear programming solution, other rebalancing ob-
jectives with more complex considerations could be explored. How-
ever, if the constraints become too complex, a non-linear solver
might be required, which could render the process inecient, or less
scalable. We leave the exploration of further rebalancing objectives
for future work.

6 PROOF OF CONCEPT IMPLEMENTATION

To complement our protocol specication, we provide a working
proof of concept, implemented in Python. The POC contains scripts
that create a test blockchain network and some participants using
the pyethereum library, on top of which our protocol is simulated.
We also demonstrate how the mathematical model solutions can be
translated into rebalancing transactions compatible with a modied
version of the Sprites payment channel. The full source code can
be found in [25].

6.1 Modied Sprites Payment Channel

The rst component of our implementation is a modied version
of the Sprites [7] payment channel. Our modications include two
new features that are required for our protocol to proceed, and one
additional security x. In this section, we refer to the two source
les written in the Solidity smart contract language, suxed by
’.sol’.

6.1.1 Rebalance Challenge Contract. The contract dened in
’challenge.sol’ (cf. Appendix 9.2) provides three main functionalities.
The rst of which is the ability to issue a subsidized availability
challenge against a rebalancing instance. The issuer of the challenge
must deposit an amount of funds that is proportional to the size
of the rebalancing instance in order to pay for another party to
respond to the challenge. While this is an optional design choice,
we determined the subsidization of the challenge to be the best
course of action since it prohibits a malicious participant from
issuing fake challenges with the intention of forcing one of the
other nodes to pay to respond to it. Instead, now only in the case of
a malicious leader would someone need to issue a challenge if the
full signature set is not made available. The second feature is the
ability to permanently settle the availability and correctness of a
rebalancing instance. This allows the instance to be used to update
the on-chain state of any involved payment channel, closes any
open challenges against it, and prohibits any future challenges from
being issued. The third feature is a simple check that allows any
other smart contract, such as a payment channel contract, to verify
whether a rebalancing instance has been veried for availability
and correctness.

6.1.2 Rebalance State Update. Because the two parties respon-
sible for a payment channel may not cooperatively sign the new
state resulting from a valid rebalancing, the payment channel needs
to be augmented so that it can accept a valid rebalancing, with full
signatures, as a state update. In ’channel.sol’ (cf. Appendix 9.2), we
added a new functionality to the Sprites payment channel contract
that allows a payment channel state to be updated on-chain after it
has been veried in the rebalancing contract. After validation of

the rebalancing instance, providing the signature of the counter-
party in a payment channel on that instance, and the rebalancing
transaction particular to the payment channel being updated, our
modied contract accepts the new balances as the latest state.

6.1.3 State Security Fix. One nal modication we made was
the addition of the payment channel contract address to the state of
the payment channel. The Sprites channel was constructed to accept
an update state sent by one party if that party could provide the
signature of the counter-party on that state. However, the state only
contained a round number and balance information, but nothing
that ties the state to one particular instance of a payment channel.
Therefore, if a party were involved in multiple payment channels,
their signature on the state of one of those channels could be used
to update another channel as long as the on-chain deposits were
not overdrawn by the update.

6.2 Simulation Cases

We present simulations of two dierent scenarios of mishaps that
may occur in practice, and how to respond to them within the
specication of the protocol while protecting user funds from being
stolen.

Setup. The simulations are initialized to reect the example pre-
sented in Figure 2, where three participants can use Revive to
rebalance their payment channels, such that the end goal of each
participant is two channels with 50 credits in their favor, rather
than one with 100 and the other with 0.

6.2.1 On-chain Update. In this case, referred to as test ’simu-
lation_scenario_1’, the protocol produces a valid rebalancing that
is signed by everyone, and the signature set is made available to
all participants for enforcement. However, none of the participants
choose to collaboratively sign the individual transactions within the
rebalancing that are relevant to their payment channels. Therefore,
they all resort to publishing and validating the rebalancing instance
on-chain, and then using it to enforce a state update on their re-
spective payment channel. This case was designed to highlight
the eect o-chain collaborative updates have on cutting expected
running costs of the protocol.

6.2.2 Availability Challenge. In ’simulation_scenario_2’, the full
signature set is made unavailable for one of the participants. While
a more mature implementation should include a means by which
any participant can reach out to any other in order to request the
full signature set if they have it, we simply highlight here that
even in case one participant was isolated, they can still insure their
funds. The isolated participant proceeds to issue the availability
challenge using the on-chain contract after having submitted their
signature on the rebalancing instance and not getting a response.
The main point that is highlighted here is that all honest parties are
incentivized to answer the challenge, because it is subsidized, and
in case the challenge expires the enforcement of their rebalancing
transactions are voided if they have not yet locked in the transac-
tions. We postulate that as long as there remains one honest party
with one payment channel with incoming funds not collaboratively
nalized, then it is in their best interest to answer the posted chal-
lenge in order to secure their funds. This example also stresses that
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no two honest parties should collaboratively nalize a rebalancing
transaction on their payment channel unless both have knowledge
of the full signature set.

A simulation of our model’s eects over pre-existing transac-
tion data from other sources would have further demonstrated its
practicality. Unfortunately, we are limited in how much we can
predict about the internal routing structures that would surface
in real routing networks due to a lack of data from their relative
novelty. Validating the simulation would therefore present a major
obstacle.

6.3 Model Solution Interpretation

In order to demonstrate how solutions to the mathematical models
we have provided can be translated into practical transactions, in
our case for the Sprites payment channel, we present an explanation
of the denitions found in the ’linprog.py’ python le. The deni-
tion of ’linear_program_solution_to_transactions’ is sucient to
translate the set of payment channel balance changes to a bundle of
equivalent directional transactions. The conversion is quite straight-
forward. If δu,v is positive then, as previously mentioned, funds
should be transferred from u to v. In case of our sprites adaptation,
we need to decrease the credits value of u, and increase that of v, in
order to portray a transfer from u to v. The converse takes place if
δv,u is negative.

7 RELATEDWORK

In this section we survey related work.

Blockchain Satoshi Nakamoto presented with the invention of
Bitcoin in the year 2008 [10], the rst open and decentralized
blockchain. Many alternative follow up blockchains have emerged
since then, for example Ethereum [17] which allows to express a
richer transaction language through smart contracts. Other propos-
als, such as zcash [26] and Monero [27] have built up on Bitcoin
to enhance the transaction privacy. Bonneau et al. [28] provide an
excellent holistic overview of cryptocurrencies and related work in
the eld. With the emergence of smart contracts and more expres-
sive transaction languages, it was shown that smart contracts have
severe security vulnerabilities [29]. Luu et al. [30] provide a sym-
bolic execution tool for current Ethereum smart contract developers
to verify their code. Schnorr signatures[23] have been recently sug-
gested as a possible addition to Bitcoin[31]. This scheme allows
the aggregation of multiple signatures into one which is veriable
against an aggregate of the relevant public keys in a single step.

O-Chain Payment Networks: Several o-chain payment solu-
tions have been proposed and can be divided into two categories.
The rst category relies on blockchain based time locks (e.g. by
Decker et al. [14]). The channel starts with a commitment transac-
tion which for example lasts for 10 days. The subsequent commit-
ment transaction will then last 9 days, and can thus be spent before
the rst transaction. The second category of payment channels re-
lies on punishment, i.e. if one party misbehaves, the other party can
claim all funds of the channel. One instance of this payment chan-
nel is the Lightning Network[6]. The Lightning Network relies on
Bitcoin, while the Raiden Network[8] is currently in development

for the Ethereum blockchain. Existing payment channels are still
in early development and therefore allow for several improvement
proposals. Sprites [7], inspired by Lightning and Raiden aims to
minimize the worst-case collateral costs of indirect o-chain pay-
ments. Flare [9] is another proposal to optimize the search process
of nding a payment route. Bolt [32] provides dierent construc-
tions that allow for privacy preserving o-chain payment channels.
BitcoinJ, a lightweight Bitcoin client implementation, also supports
micropayment channels [33].

Linear programming: Essentially, a mathematical programming
model aims to represent a practical problem using numerical vari-
ables and parameters. While parameters are numbers that are
known, or set, by the decision maker, the values of variables are
to be determined in the process of solving the program. In a linear
program, a mathematical model may have linear (in)equality con-
straints that bound the possible values of the program variables.
Moreover, there can also be a linear objective function which should
be optimized for [34].

Linear Program Example: A simple linear program example is
the following. Maximize: F (x ,y) = 2x − 3y Subject to:

(1) 120 ≤ x ≤ 210
(2) 70 ≤ y ≤ 190
(3) 250 ≤ x + y

Solution: Max F (x ,y) = 210 at (x ,y) = (210, 70)
Linear programming has been a cornerstone of mathematical op-

timization problems since the introduction of the Simplex method
by Dantzig in 1947 [34]. Even though its theoretical worse-case
performance is exponential in the problem size, it has been found
to be greatly ecient in practice, and has been widely adopted in
numerous industrial elds [24]. Interest developed into why an
algorithm with very expensive worst-case performance costs was
very successful and ecient in practice. The work presented in [24]
analyzes the expected performance of the Simplex method in what
is dubbed a smoothed analysis framework, and provides insight
as to why the algorithm is quite successful despite its worst-case
complexity. Further works aimed to develop linear program solv-
ing methods that have better worst-case guarantees than those of
Simplex. In 1978 Khachivan presented the rst polynomial time
algorithm for solving linear programs [35], which achieved a worst
case convergence time polynomial in the number of bits needed to
represent the linear program. Despite its lower theoretical complex-
ity compared to Simplex, the Ellipsoid method performed worse
in practice [24]. In the early 1980s, the interior point method was
introduced by Karmakar [36]. It is also guaranteed to converge in
time polynomial in the linear problem size, but its practical perfor-
mance has been on par with, and sometimes superior to, that of the
simplex method [24].

8 CONCLUSION

Decentralized blockchain ledgers that rely on miners to process
transactions incentivize those miners with a reward for their con-
tributions towards advancing the state of the global ledger. With
the advent of o-chain payment networks, transaction processing
will mostly be concerned with enacting changes to multiple private
o-chain ledgers instead. We have designed the Revive protocol
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to maintain the equilibrium of the balances that intermediaries in
a payment network keep among each other. Under ideal circum-
stances, this maintenance would come at no cost to the participants.
This decreases undesirably long routing in case some of the pay-
ment channels in the network start attaining skewed balances.

The core design of Revive can be adapted to a decentralized
ledger environment that allows the enforcement of one transaction,
or lack thereof, to aect the enforcement of another. While we have
found Ethereum, and Sprites, to be suitable environments in which
to practically demonstrate Revive, we encourage the adaptation
of the protocol to other viable candidates. Our general method for
generating a set of rebalancing transaction is based on solving a
linear program. For the purpose of shifting the payment channel
balances of Revive participants towards equilibrium, we have pro-
vided an automatic way for establishing the required rebalancing
objectives.

O-chain payment routing networks exhibit many challenges
in terms of performance and scalability. For this reason we have
provided a set of guidelines on how to safely adopt Revive in a prac-
tical manner while minimizing exposure to potential performance
penalties.
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9 APPENDIX

9.1 Blockchain Background

9.1.1 Blockchain Transactions. Bitcoin transactions are sent
from so-called addresses to other addresses. An address is a unique
identier (hash) of a public key. Only the owner of the correspon-
dent private key is eligible to sign an appropriate transaction which
allows to transfer monetary funds.

Interestingly, most currently proposed blockchains have a com-
plex process for evaluating transactions in order to allow for a
higher exibility and extensibility of the application scenarios6.

Bitcoin transactions are evaluated with a stack-based program-
ming language called Script. Mainly due to security reasons Script
only supports a limited instruction set. The limited instruction
set and the lack of an available high-level programming language
have encouraged the development of blockchain systems support-
ing more intuitive and expressible programming languages. While
there are several such systems (e.g., NXT, Clearmatics), Ethereum is
6Bitcoin transactions follow the unspent transaction output (UTXO) model, while
Ethereum transactions are not UTXO based.
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the most popular one. Ethereum, was introduced in the year 2013 by
Buterin [22], and supports a pseudo7 Turing complete coding sys-
tem. Its cryptocurrency is called ether and Ethereum supports two
kinds of addresses: (i) externally owned addresses (typically owned
by a user) and (ii) contract owned addresses. Ethereum programs
run on the Ethereum Virtual Machine (EVM) [17] and programs in
EVM code are referred to as smart contracts.

To avoid denial-of-service attacks, transactions are required to
pay a fee for their execution. In Bitcoin, each transaction can pay a
transaction fee, while in Ethereum, a transaction pays gas (also to
execute contracts).

9.1.2 Smart Contracts. Any Ethereum user is eligible to write
and publish a smart contract (or contract). Other users can then exe-
cute the smart contract that is recorded in a blockwhich is appended
to the blockchain. Note that all information in the blockchain is pub-
licly available. To execute a contract, a user submits an Ethereum
transaction containing all information required to process the con-
tract. A miner can process the user transaction and commit it by
writing this transaction to a new block (possibly along with other
transactions). A valid block needs to be appended to the latest block
of the blockchain8. A transaction is considered completed, when
it has been added in a block. For security purposes, users should
wait for several block conrmations (i.e., several additional blocks
after the block containing the transaction), before considering a
transaction to be nal.

9.2 Smart Contracts

In this section we provide the function signatures and main vari-
ables of our smart contracts.
1 pragma solidity ^0.4.10;

2

3 contract RebalanceAvailabilityContract {

4 function verifySignature(address pub, bytes32 h,

uint8 v, bytes32 r, bytes32 s) {}

5

6 function verifyAllSignatures(address[] pub,

bytes32 h, uint8[] v, bytes32[] r, bytes32[]

s) {}

7

8

9 // Challenges can be answered within 5 blocks

10 uint constant CHALLENGE_VALIDITY = 5;

11 uint constant GAS_PRICE_IN_WEI = 25000000000 wei;

12 // 2x sha3, storage value change, storage value

load, transaction, data bytes

13 uint constant GAS_PER_CHALLENGE_RESPONSE = 60 +

5000 + 200 + 21000 + 68*(32);

14 // sha3(address), ecrecover, data bytes

15 uint constant GAS_PER_PARTICIPANT = 6 + 3000 +

68*(1 + 32*2 + 20);

16

17 mapping ( bytes32 => int ) challenge;

18

19 // The issued challenge is subsidized by the

participant who raises it.

20 function submitChallenge(

21 address[] participants,

7Pseudo, because the smart contract execution is halted if insucient funds are pro-
vided for the execution, i.e. insucient gas.
8This is a simplication: miners “compete” on adding their own block to the top-most
block of the blockchain until they reach a consensus on which miner has succeeded.

22 bytes32 transactionMerkleTreeRoot) payable

{}

23

24 function answerChallenge(

25 uint8[] V,

26 bytes32[] R,

27 bytes32[] S,

28 address[] participants,

29 bytes32 transactionMerkleTreeRoot) {}

30

31 function isChallengeSuccess(bytes32 instanceHash)

returns(bool) {}

32 }

Listing 1: Smart contract defined in

challenge.sol .

1 pragma solidity ^0.4.10;

2

3 contract PaymentChannelRebalanceable {

4

5 // Blocks for grace period

6 uint constant DELTA = 10;

7

8 // Events

9 event EventInit();

10 event EventUpdate(int r);

11 event LogBytes32(bytes32 b);

12 event LogAddress(address a);

13 event LogInt(int i);

14 event LogUInt(uint ui);

15 event LogInts(int[2] i);

16 event LogUInts(uint[2] ui);

17 event LogBool(bool b);

18 event EventPending(uint T1, uint T2);

19

20 // Utility functions

21 modifier onlyplayers {}

22 function max(uint a, uint b) internal returns(uint

) {}

23 function min(uint a, uint b) internal returns(uint

) {}

24 function verifySignature(address pub, bytes32 h,

uint8 v, bytes32 r, bytes32 s) {}

25 function verifyMerkleChain(bytes32 link, bytes32[]

chain, bool[] markleChainLinkleft) {}

26

27 ///////////////////////////////

28 // State channel data

29 ///////////////////////////////

30 int bestRound = -1;

31 enum Status { OK, PENDING }

32 Status public status;

33 uint deadline;

34

35 // Constant (set in constructor)

36 address[2] public players;

37 mapping (address => uint) playermap;

38 RebalanceAvailabilityContract public rac;

39

40 /////////////////////////////////////

41 // Payment Channel - Application specific data

42 ////////////////////////////////////

43

44 // State channel states

45 int [2] public credits;

46 uint[2] public withdrawals;

47

48 // Externally affected states
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49 uint[2] public deposits; // Monotonic, only

incremented by deposit() function

50 uint[2] public withdrawn; // Monotonic, only

incremented by withdraw() function

51

52 function sha3int(int r) constant returns(bytes32)

{}

53

54 function PaymentChannelRebalanceable(

55 RebalanceAvailabilityContract _rac,

56 address[2] _players) {}

57 EventInit();

58 }

59

60 // Increment on new deposit

61 function deposit() payable onlyplayers {}

62

63 // Increment on withdrawal

64 function withdraw() onlyplayers {}

65

66 // State channel update function

67 function update(uint[3] sig, int r, int[2]

_credits, uint[2] _withdrawals)

68 onlyplayers {}

69

70 // State channel update function when latest

change was due to rebalance

71 function updateAfterRebalance(

72 uint8[] V,

73 bytes32[] R,

74 bytes32[] S,

75 address[] participants,

76 bytes32[] transactionMerkleChain,

77 bool[] markleChainLinkleft,

78 int r,

79 int[2] _credits,

80 uint[2] _withdrawals)

81 onlyplayers {}

82

83 // State channel update function when latest

change was due to rebalance

84 function updateAfterRebalanceChallenged(

85 address[] participants,

86 bytes32[] transactionMerkleChain,

87 bool[] markleChainLinkleft,

88 int r,

89 int[2] _credits,

90 uint[2] _withdrawals)

91 onlyplayers {}

92

93 // Causes a timeout for the finalize time

94 function trigger() onlyplayers {}

95

96 function finalize() {}

97 }

Listing 2: Smart

contract defined in channel.sol . Adapted from

the Sprites payment channel in [7].
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