
Generating Synthetic Decentralized Social Graphs with Local
Differential Privacy

Zhan Qin1,2, Ting Yu2, Yin Yang3, Issa Khalil2, Xiaokui Xiao4, Kui Ren1∗
 1

Dept of Computer Science and Engineering
 SUNY at Buffalo

 USA
 3

College of Science and Engineering
 Hamad Bin Khalifa University
 Qatar

2
Qatar Computing Research Institute

Hamad Bin Khalifa University

Qatar

4
School of Computer Science and Engineering

Nanyang Technological University
Singapore

ABSTRACT
A large amount of valuable information resides in decentralized

social graphs, where no entity has access to the complete graph

structure. Instead, each user maintains locally a limited view of

the graph. For example, in a phone network, each user keeps a

contact list locally in her phone, and does not have access to other

users’ contacts. The contact lists of all users form an implicit social

graph that could be very useful to study the interaction patterns

among different populations. However, due to privacy concerns,

one could not simply collect the unfettered local views from users

and reconstruct a decentralized social network.

In this paper, we investigate techniques to ensure local differen-

tial privacy of individuals while collecting structural information

and generating representative synthetic social graphs. We show

that existing local differential privacy and synthetic graph gener-

ation techniques are insufficient for preserving important graph

properties, due to excessive noise injection, inability to retain im-

portant graph structure, or both. Motivated by this, we propose

LDPGen, a novel multi-phase technique that incrementally clus-

ters users based on their connections to different partitions of the

whole population. Every time a user reports information, LDPGen

carefully injects noise to ensure local differential privacy. We derive

optimal parameters in this process to cluster structurally-similar

users together. Once a good clustering of users is obtained, LDP-

Gen adapts existing social graph generation models to construct a

synthetic social graph.

We conduct comprehensive experiments over four real datasets

to evaluate the quality of the obtained synthetic graphs, using a

∗
Majority of this work was conducted while the first author was doing internship at

Qatar Computing Research Institute.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134086

variety of metrics, including (i) important graph structural mea-

sures; (ii) quality of community discovery; and (iii) applicability in

social recommendation. Our experiments show that the proposed

technique produces high-quality synthetic graphs that well rep-

resent the original decentralized social graphs, and significantly

outperform those from baseline approaches.

KEYWORDS
decentralized social networks; synthetic graph generation; local

differential privacy; community discovery

1 INTRODUCTION
With the advances of graph analytics, much valuable knowledge

can be obtained by mining a social graph, which contains infor-

mation about the relationships and interactions of people. Such

information, however, can be sensitive and private, e.g., not every-

one is comfortable to release her contact list to strangers. For online

social networks where the whole social graph is available to a single

party, there exist solutions that publish graph data [23, 42, 45] or

analysis results [24, 32, 36, 46] under certain privacy guarantees

such as differential privacy [11]. The problem is far more challeng-

ing if the graph is decentralized, meaning that no party has access

to the whole graph. This happens for many sensitive social graphs

in the physical world. For instance, consider distributed social net-

works, e.g., Synereo [27]. Clearly, for such a graph (i) everyone

has a local view (e.g., those with direct relationship with oneself),

and (ii) it is infeasible to collect the whole graph unfettered as a

single dataset. In fact, even for less sensitive relationships such as

face-to-face interactions and phone contacts, collecting a decen-

tralized social graph is difficult as people tend to resist revealing

private relationships. Additionally, a social graph (e.g., a phone

call network or email communications) is effectively decentralized

when the party that possesses the whole graph (the telephone/email

service providers) does not cooperate with the researchers trying to

analyze the data. In these situations, existing solutions for privacy-

preserving graph publication and analysis do not apply, since the

data cannot be collected in the first place.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

425

https://doi.org/10.1145/3133956.3134086

Meanwhile, clearly there is valuable knowledge that can be ex-

tracted by analyzing a decentralized social graph, and such knowl-

edge might not be easily obtained by analyzing online social net-

works. For example, relationships in the physical world (e.g., friends

that we go out with) can be very different from those online (e.g.,

IDs that we chat with), and so are communities (e.g., parents associa-

tions vs. game fan clubs). To gain knowledge on decentralized social

graphs, it is essential to collect sensitive local views with strong

privacy guarantees. This study focuses on generating a synthetic

social graph from a real, decentralized one, under local differential

privacy [25] (explained in Section 2), a strong privacy standard that

has been used in notable systems such as Google Chrome [16] and

Apple iOS [2]. Such a synthetic graph enables data scientists to

draw meaning insights, while protecting the participants involved

and the data collector itself against risks of privacy violations.

One major challenge in this study is that the state-of-the-art of

local differential privacy research has been limited to collecting

simple, statistical information such as counts [25], histograms [16]

and heavy hitters [2]. In our problem, a large-scale graph needs to

be collected with detailed edge-level information. As will become

clear later, collecting data at such a fine granularity (e.g., neighbor

lists) requires heavy noise injection in order to satisfy local differen-

tial privacy, which may render the graph too distorted to be useful.

On the other hand, if we only collect graph statistics (e.g., node de-

grees) and generate a synthetic graph from only such statistics (e.g.,

using BTER [43]), the resulting synthetic graph may not preserve

important properties of the original graph, other than the statistics

from which it is generated, as shown in our experiments.

In this paper we propose LDPGen, a novel, multi-phase approach

to generating synthetic decentralized social graphs under local dif-

ferential privacy. One key idea is that LDPGen captures the struc-

ture of the original decentralized graph, by incrementally identify-

ing and refining clusters of connected nodes under local differential

privacy. To do so, LDPGen iteratively partitions nodes into groups,

collects information on node-to-group connectivity under local

differential privacy, and clusters nodes according to such informa-

tion. After obtaining such node clusters, LDPGen applies a graph

generation model that utilizes such clusters to generate a represen-

tative synthetic social graph. In addition, we describe techniques to

optimize key parameters of LDPGen to improve the utility of the

generated synthetic social graph.

To validate the effectiveness of LDPGen, we present an exten-

sive set of experiments using four real social graphs in various

domains, and three different use cases: (i) statistical analysis of the

social graph structure, (ii) community discovery [5] and (iii) social

recommendation [31]. The evaluation results show that synthetic

social graphs generated using LDPGen obtains high utility for all

use cases and datasets, whereas baseline solutions fail to obtain

competitive utility in most settings except for the few that they are

specifically optimized for.

Our main contributions are summarized as follows:

• We formulate the problem of synthetic data generation of de-

centralized social graphs under local differential privacy. To

our knowledge, this is the first effort in the literature to define

and tackle this problem.

• We describe straw-man approaches that rely on existing local

differential privacy and synthetic graph generation techniques,

and analyze in detail their limitations.

• We propose LDPGen, a novel and effective multi-phase ap-

proach to synthetic decentralized social graph generation, and

describe methods for optimizing key parameters.

• We conduct a comprehensive experimental study using several

real datasets and use cases, and the results demonstrate that

LDPGen is capable of generating high-utility synthetic graphs.

In the following, Section 2 provides background on local differen-

tial privacy. Section 3 defines the problem of synthetic decentralized

social graph generation under local differential privacy, and dis-

cusses two straw-man solutions. Section 4 presents the proposed

solution, LDPGen, and proves that it satisfies local differential pri-

vacy. Section 5 contains an extensive set of experiments, Section 6

reviews related work, and Section 7 concludes with future direc-

tions.

2 LOCAL DIFFERNETIAL PRIVACY
The concept of local different privacy (LDP) [25] was recently pro-

posed as a strong privacymeasure such that sensitive information of

individuals is kept private even from data collectors. Different from

the setting of the classical differential privacy model [10], where

privacy is guaranteed in the data analysis and publishing process,

local differential privacy focuses on the data collection process.

Specifically, under local differential privacy, each data contributor

locally perturbs her own data using a randomized mechanism, and

then sends the noisy version of her data to a data collector. In the

following, we first provide a brief review of differential privacy,

and then introduce local differential privacy in the context of social

networks.

We say a randomized mechanism M satisfies ϵ-differential pri-
vacy, if and only if for any two neighboring databasesD andD ′

that

differ in exactly one record, and any possible s ∈ ranдe(M), we
have

Pr [M(D)=s]
Pr [M(D′)=s] ≤ eϵ . Differential privacy ensures that from any

output s of the mechanism M, an attacker cannot infer with high

confidence whether the input database is D or D ′
. The strength of

privacy protection is controlled by the system parameter ϵ , which
is often referred to as the privacy budget. Clearly, the smaller ϵ is,
the closer are the distributions ofM(D) andM(D ′), and thus the

higher privacy is offered by M.

Differential privacy was originally designed for a centralized
setting, in which a trusted data curator processes a database with

the exact data records of multiple users, and publishes perturbed

statistics or other data analysis results from the database using

a randomized mechanism. In the local differential privacy setting,
which is the focus of this paper, the data curator is not trusted;

instead, each user perturbs her data locally with a differentially

private mechanism. In this setting, the input database D would only

contain the data of a single user. What constitutes a neighboring

database D ′
of D depends on the type of the user’s data and the

goal of privacy protection. For example, a user’s data could be the

homepage of her browser [16]. Since the user would not want the

data collector to infer with high confidence her actual homepage, no

matter what that homepage is, the neighboring database would then

be any other arbitrary website. In this context, for mechanismM to

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

426

satisfy local differential privacy, it needs to ensure that, for any two

websitesw andw ′
and for any s ∈ ranдe(M), Pr [M(w)=s]

Pr [M(w ′)=s] ≤ eϵ .

In the context of social graphs, depending on the privacy re-

quirement, a privacy mechanism can be designed to satisfy either

edge differential privacy [4] or node differential privacy [26]. The

former ensures that a randomized mechanism does not reveal the

inclusion or removal of a particular edge of an individual, while the

latter hides the inclusion or removal of a node together with all its

adjacent edges. For local differential privacy, we have the following

formal definitions. LetU = {u1, . . . ,un } be the set of all users in a

social network. A user u’s neighbor list can be represented as an

n-dimensional bit vector (b1, . . . ,bn), i.e., bi = 1, i = 1, . . . ,n, if
and only if there is an edge (u, ui) in the social graph; otherwise

bi = 0.

Definition 2.1 (Node local differential privacy.). A randomized

mechanism M satisfies ϵ-node local differential privacy (ϵ-node
LDP) if and only if for any two neighbor lists γ and γ ′ and any

s ∈ ranдe(M), we have Pr [M(γ)=s]
Pr [M(γ ′)=s] ≤ eϵ .

Definition 2.2 (Edge local differential privacy.). A randomized

mechanism M satisfies ϵ-edge local differential privacy (ϵ-edge
LDP) if and only if for any two neighbor lists γ and γ ′, such that

γ and γ ′ only differ in one bit, and any s ∈ ranдe(M), we have
Pr [M(γ)=s]
Pr [M(γ ′)=s] ≤ eϵ .

Local differential privacy is also composable: given t mechanisms

Mi , i = 1, . . . , t , each of which satisfies ϵi -edge (or node) local

differential privacy, the sequence ofMi (v) satisfies
(∑t

i=1
)
ϵt -edge

(node) local differential privacy.

Node LDP is clearly a much stronger privacy guarantee than

edge LDP (in fact node LDP implies edge LDP). For example, as we

will see later, under edge LDP a user could still reveal her degree

with reasonable accuracy, which would be almost impossible under

node LDP, evenwith a fairly large privacy budget. Depending on the

application and the nature of a social graph, one privacy model may

be more appropriate than the other. For instance, when collecting

the contact list of a user, edge LDP could be sufficient, as a user

usually does not mind sharing the number of her contacts. What

she wants to protect is who exactly are in her contacts. For some

other social graphs (e.g., the sexual relationship graph), even a

user’s degree could be highly sensitive, and thus node LDP should

be adopted. We note that the strong privacy guarantee of node

LDP comes with a hefty price in terms of utility. Even in the global

privacy setting, node differential privacy is hard to achieve without

significant negative impacts on the utility of social graph data [26].

It would be even more challenging to do so in the local privacy

setting. In this paper, we focus on achieving edge LDP and designing

techniques to facilitate social graph analysis.

3 PROBLEM DESCRIPTION AND
STRAW-MAN APPROACHES

Consider a decentralized social networkG with usersU = {u1, . . . ,un }.
Without loss of generality, we assume G is a directed graph; for

an undirected graph, we simply view edge undirected edge as two

directed edges. Each user u maintains locally a neighbor list, which,

as mentioned before, could be modeled as an n-dimensional bi-

nary vector. Our problem is to design techniques such that (i) an

untrusted data curator is able to collect information from each in-

dividual user while satisfying edge local differential privacy; and

(ii) from the collected data the data curator is able to construct a

representative synthetic graph of G. The representativeness of the
synthetic graph could be reflected from different angles, which we

discuss in detail in section 5.Note that this work focuses on the

weaker edge-LDP definition since the problem is already highly

challenging under edge-LDP. Node differential privacy is vastly

more difficult, even in the centralized setting, and it might not lead

to a meaningful utility in our target applications such as community

discovery. Thus, we leave node LDP as our future work.

In the following, we discuss two simple solutions based on adap-

tations of existing local differential privacy and synthetic social

graph generation techniques.

3.1 Randomized Neighbor List Approach
A common methodology for enforcing local differential privacy is

randomized response [13]. Our first straw-man approach, namely

randomized neighbor list (RNL), directly applies randomized re-

sponse to collect neighbor lists from users. Specifically, in RNL,

given a privacy budget ϵ , each user flips each bit in her neighbor

list with probability p = 1

1+eϵ , and sends the perturbed neighbor

list to the data curator. The latter then combine the noisy neighbor

lists from all users together to form a synthetic social graph.

Theorem 3.1. The randomized neighbor list approach satisfies
ϵ-edge local differential privacy.

Proof. Denote the randomized neighbor list mechanism as M,

and denote Pr [x → y] the probability that x ∈ {0, 1} becomes

y ∈ {0, 1} after a random bit flipping. Let q = 1 − p = eϵ
1+eϵ . Since

ϵ > 0, we have q > p.
Let γ = (b1, . . . ,bn) and γ ′ = (b ′

1
, . . . ,b ′n) be two neighbor lists

that differ in only one bit.Without loss of generality, assumeb1 , b
′
1
.

Given any output s = (s1, . . . , sn) from M, we have

Pr [M(v)=s]
Pr[M(v ′)=s] =

Pr [γ1→s1]...Pr [γn→sn]
Pr [γ ′

1
→s1]...Pr [γ ′

n→sn] =
Pr [γ1→s1]
Pr [γ ′

1
→s1] <

q
p = eϵ

□

Although RNL achieves our privacy goal, the resulting synthetic

graph it generates does not represent well the original decentralized

social graph. One obvious problem is that it tends to return a much

denser graph than the original one. In general, a real social graph

tends to be sparse: even hub users with numerous connections have

degrees much smaller compared to the whole population of the

social network. Hence, a real neighbor lists generally has much

more 0s than 1s. After random bit flipping, however, even with

a relatively large privacy budget, the number of 1s would signifi-

cantly increase, leading to a significantly denser synthetic graph.

In particular, if the density of original graph is r , after applying
the randomized neighbor list approach, the expected density of the

obtained synthetic graph becomes (1 − p)r + (1 − r)p. Consider the
Enron email graph (detailed in section 5), whose original density

is 0.01%. Even with a fairly small bit flipping probability p = 0.01,

the expected density of the graph after neighbor list randomization

would become 2%, an increase of 200 times.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

427

3.2 Degree-based Graph Generation Approach
In the social computing literature, there have been many existing

synthetic social graph generation algorithms, such as Erdos-Renyi

[14], Chung-Lu [1] and BTER [43]. Usually, such an algorithm takes

as input some graph statistical information such as node degrees,

and generates a synthetic graph based on a social graph model. In

other words, the algorithm brings in prior knowledge about social
graphs in the form of a graph model, and adapts such knowledge

to the high-level structural properties of the input graph. The idea

of degree-based graph generation (DGG) is to apply such a social

graph generation module to our problem.

Note that not all synthetic social graph generation algorithms

can be applied to our problem. The reason is that in our setting,

each user only has a limited local view of the graph in the form of a

neighbor list. On the other hand, some graph generation algorithms

requires global information of the entire graph, e.g., the submatrix

of the adjacency matrix in Kronecker Graph model [28]; thus, such

algorithms cannot be used in DGG. Our implementation of DGG is

based on an adapted version of BTER [43], described below.

Using DGG, each user calculates her node degree, perturbs the

degree under ϵ-edge differential privacy (e.g., using the Laplace

mechanism [10]), and sends the resulting noisy degree to the data

curator. The latter collects such perturbed degrees from all users,

and runs the BTER algorithm to generate a synthetic graph. Specif-

ically, BTER first forms node clusters based on their degrees. In

particular, nodes with similar degrees are clustered together. The

size of a cluster is also determined by the degrees of nodes in it:

the larger the node degrees, the larger the cluster size. After that,

for each cluster, BTER generates random intra-cluster edges whose

number depends on both the node degrees in the cluster and a

connectivity parameter, which is set to a default value in DGG

due to the lack of global graph statistics. Finally, BTER generates

inter-cluster edges, based on the remaining degrees of each node

and the size of each cluster.

DGG clearly satisfies our privacy requirement, since each user

only sends her perturbed degree to the curator, which is randomized

under ϵ-edge local differential privacy. Meanwhile, for reasonably

large values of ϵ , the perturbed degree is expected to be close to

its true value, since the noise injected with the Laplace mechanism

has a variance of
1

ϵ 2 [11]. Hence, the synthetic graph generated

with DGG accurately captures node degrees. However, since DGG

collects exclusively node degrees, it loses all other information of

the underlying graph. For instance, two users who have similar

degrees but are far apart in the original graph could be placed in the

same cluster in the synthetic graph. Furthermore, DGG often fails

to capture other aspects of graph structure besides node degrees,

as we show in our experiments in Section 5.

3.3 Observations
We observe that the two straw-man approaches RNL and DGG

described above represent two extremes of data collection: RNL

collects fine-grained information (i.e., neighbor lists), and pays the

price of heavy perturbations required to satisfy local differential

privacy. DGG, on the other hand, collects only coarse-grained sta-

tistics (i.e., node degrees) accurately since they only require a small

amount of noise to satisfy local differential privacy, but it also loses

important details of the underlying graph. Another interesting

observation is that DGG brings in prior knowledge about social

graphs, whereas RNL does not.

The above observation suggests the need to strike a balance

between noise added to satisfy differential privacy, and information

loss due to collecting information at a coarser granularity. One

tricky issue is that this balance itself is data dependent, and, thus,

may reveal private information. The proposed approach LDPGen,

described next, iteratively finds such a balance under edge local

privacy constraints. Furthermore, similar to DGG, it utilizes prior

knowledge of social graphs to enhance the synthetic graph.

4 LDPGEN
Section 4.1 overviews the general framework of the proposed solu-

tion LDPGen, which involves three phases. Sections 4.2-4.4 instanti-

ate these three phases, respectively. Section 4.5 proves that LDPGen

satisfies our privacy requirement. Section 4.7 provides additional

discussions on the algorithmic design of LDPGen.

4.1 General Framework
LDPGen is based on the following idea. Suppose that we have a

way to partition all users in the social graph into k disjoint groups

ξ = {U1, . . . ,Uk }. Then for each user u we could define a degree

vector δu = (δu
1
, . . . ,δuk), where δ

u
i (i = 1, . . . ,n) is the number of

u’s neighbors inUi . For instance, consider that all users are divided
into two disjoint groups U1 and U2. Suppose that a user u has 5

(resp. 7) connections with nodes in U1 (resp.U2). Then, the degree

vector for u is (5, 7). Clearly, if the neighbor lists of two users are

similar, so would be their degree vectors. Thus, a data curator could

collect each user’s degree vector using a local differentially private

mechanism, and use these vectors to generate a synthetic graph.

In fact, both straw-man approaches RNL and DGG described

in Section 3 can be viewed as extreme cases of the above general

framework. In particular, RNL lies at one extreme when each par-

tition contains exactly one user (i.e., when k = n, where k and n
are the number of partitions and users in the graph, respectively).

Meanwhile, DGG lies at the opposite extreme, when the entire

graph is considered as a single partition (i.e., k = 1), and the degree

vector for each node degenerates into a single node degree. As ex-

plained in Section 3, neither approach is ideal: RNL incurs excessive

noise whereas DGG incurs excessive information loss. LDPGen

follows the same general framework, and strike a good balance

between noise and information loss by choosing an appropriate

user partitioning scheme.

Themain challenge for choosing an appropriate user partitioning

scheme, however, is that the best user partitioning scheme depends

on the dataset: intuitively, similar users should be grouped together.

This leads to a circular dependency: (i) to collect data, wemust know

the value of k and the partitioning scheme; (ii) to decide on the best

value of k , we must first collect data. LDPGen addresses this issue

with a multi-phase design. In particular, in LDPGen the data curator

collects data from the users in multiple rounds; each round refines

the user partitioning scheme, and then collects data fromusers again

with higher accuracy to be used in the next round, e.g., by using a

larger portion of the privacy budget. Through this process, users

who are structurally close would be gradually grouped together.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

428

7

1 2 5

6

43

98

10

12

11

Phase	I:	initial	random	partition	(k0=2)

1 2 5

6

43

98

10

12

11

Phase	I:	optimize	group	number	(k1=3)	and	
refine	partition

1 2 5

6

43

98

10

12

11

Phase	II:	further	refine	partition	
with	optimized	group	number	

7 7

1 2 5

6

4
3

9

8

10

12

11

Phase	III:	generate	synthetic	graph	
based	on	refined	user	partition	

Figure 1: Illustrative example of LDPGen

Once a good grouping is obtained, LDPGen then applies a social

graph generation model to produce a synthetic social network.

Figure 1 illustrates an example of LDPGen, in which the users are

partitioned into three groups, with colors black, white and gray,

respectively. Initially, the grouping is rather random, and there are

only two groups whereas three user clusters can be observed in

the graph. Later on, the grouping is refined, in the sense that (i)

the users are partitioned into 3 groups instead of 2 and (ii) similar

nodes are gradually moved to the same cluster.

Specifically, our design of LDPGen is composed of three phases:

initial grouping, grouping refinement and graph generation. The
first two phases involve data collection from users. We allocate

privacy budgets ϵ1 and ϵ2 respectively for each phase, such that ϵ1+
ϵ2 = ϵ . Due to the sequential composition property of differential

privacy [11], these two phases together satisfy ϵ-edge LDP. The
choice of ϵ1 and ϵ2 is discussed later in Section 4.7. The graph

generation phase is a post processing of the output of an edge-LDP

mechanism, and thus does not consume any privacy budget.

Phase I: initial grouping. At this stage, the data curator does not
have any information about the graph structure. Thus, it randomly

partitions users into k0 equal-size groups (where k0 is a system

parameter, discussed further in Section 4.7), and communicates this

grouping scheme ξ0 to all users. Efficient communications between

the data curator and the users are further discussed in Section 4.7.

After that, each user forms her degree vector based on ξ0, adds noise
according to the allocated privacy budget ϵ1 for Phase I, and sends

the noisy degree vector to the data curator. Once the data curator

receives the noisy degree vectors from all users, it computes a new

grouping scheme ξ1 with k1 partitions, using (i) an estimated degree

distribution of all users, obtained from the collected degree vectors,

and (ii) the privacy budget ϵ2 allocated to Phase II. Note that unlike
the initial grouping, the new partitions may be of different sizes.

This new partition ξ1 is communicated back to users.

Phase II: grouping refinement. In this phase, users now report

again noisy degree vectors based on ξ1 and the allocated privacy

budget ϵ2 for Phase II. The data curator conducts another round of

user grouping, and partition users into k1 clusters based on their

second-round noisy degree vectors. Note that Phase II could be

repeated multiple times, each incrementally refines the grouping

based on the degree vectors collected in the previous rounds. This

issue is discussed further in Section 4.7.

Phase III: graph generation. In this step, the data curator adapts

the BTER model to generate a synthetic social graph. Unlike in

DGG where users are clustered based solely on their degrees, in

LDPGen the data curator starts with the user partitions obtained in

Phase II, and generates edges using the collected degree vectors.

In the example of Figure 1, LDPGen starts with a random partition-

ing of users into k0 = 2 groups in Phase I (leftmost). Then, the data

curator collects degree vectors from the users, and refine the user

grouping according (second left). After that, in Phase II, the user

grouping is refined again with another round of data collection. Fi-

nally, in Phase III (rightmost), a synthetic graph is generated based

on the user grouping and degree vectors. Next, we present in detail

the design of each phase.

4.2 Design of Phase I
As mentioned above, the data curator first randomly partitions all

users into k0 equal-sized groups. We call this partition ξ0. Each user

u then computes her degree vector δu = (δu
1
, . . . ,δuk0

) based on

ξ0. To ensure edge LDP, u adds to each δui , i = 1, . . . ,k0 a random

noise drawn from the Laplace distribution Lap(0, 1ϵ1), where ϵ1 is
the privacy budget allocated to Phase I. Let the resulting noisy de-

gree vector be (˜δu
1
, . . . , ˜δuk0

), which is shared with the data curator.

Intuitively, since these k0 groups are non-overlapping, adding or
removing one edge from a user would change the value of exactly

one δui by 1 in her degree vector. By the parallel composition prop-

erty of DP [11], sharing (˜δu
1
, . . . , ˜δuk0

) still satisfies ϵ1-edge LDP. We

provide a formal proof of this privacy guarantee in Section 4.5.

From the noisy degree vector, the data curator derives an unbi-

ased degree estimator η̂ for u:

η̂u =
��� ˜δu ��� = k∑

i=1

˜δui (1)

The main task in Phase I is to come up with a good user grouping

for the next phase. To do so, we need to determine (1) an appropri-

ate number k1 of groups; (2) how to partition users into k1 groups.
To solve the first problem, we need to define a target function, the

optimization of which would lead to the preservation of a graph’s

structural information. Recall that one of the most important in-

formation of a social network is its community structure. It is thus

desirable to ensure that nodes with similar (dissimilar) neighbor

lists are still likely to have similar (dissimilar) degree vectors after

the partition. There are many ways to measure the similarity of

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

429

two vectors. In our design, we choose L1 distance as the similarity

function.

For ease of analysis, consider two users u and v with the same

degree (i.e., ηu = ηv), and let du,v , ˆdu,v , and ˜du,v denote the L1

distances between their neighbor lists, degree vectors, and noisy

degree vectors, respectively (and d , ˆd , and ˜d for simplified notations

when the context is clear). To ensure the similarity (dissimilarity) of

two users to be preserved after the partition and noise perturbation,

the expected L1 distance between noisy degree vectors
˜d and the

expected L1 distance between neighbor lists d should be close.

Therefore, we define the objective function as E[|
˜d−d |
d], i.e., the

expectation of the relative error between the
˜d and d .

In the remaining part of this subsection, we present an analysis

that connects the number of groups k1 with the objective function,

followed by a deduction of an approximated optimal k1 value that
minimizes the objective function.

Objective Function Analysis. Before showing our analysis on
the objective function, we elaborate a property of degree vectors:

it is easy to see that if two different neighbors of u and v were

partitioned into the same user group, their contributions to the

L1 distance of degree vectors would be canceled by each other.

Hence, the L1 distance between degree vectors is always smaller

than the L1 distance of the original neighbor lists, i.e.,
ˆd ≤ d , thus

| ˆd − d | = d − ˆd . Based on this property, we have:

E


��� ˜d − d

���
d

 = E


��� ˜d − ˆd + ˆd − d

���
d

 (2)

≤ 1

d

(
E
[��� ˜d − ˆd

���] + E [��� ˆd − d
���]) (3)

=
1

d

(
E
[��� ˜d − ˆd

���] + d − E
[
ˆd
])

(4)

Deduction from Eq. 2 to 3 is based on the triangle inequality.

By Eq. 4, the objective function is bounded from above by Eq.4.

In the following, we will first analyze the relationship between

k1 and E
[��� ˜d − ˆd

���] , i.e., which represents the error introduced by

Laplace noise perturbation.

LaplaceNoise PerturbationAnalysis. By the triangle inequal-
ity, we have

E
[��� ˜d − ˆd

���] = E


������ k1∑
i=1

��� ˜δui − ˜δvi

��� − k1∑
i=1

��� ˆδui − ˆδvi

���������
 (5)

≤ E


k1∑
i=1

��� ˜δui − ˜δvi − ˆδui +
ˆδvi

��� (6)

≤ E


������ k1∑
i=1

(
˜δui − ˆδui

)������
 + E


������ k1∑
i=1

(
˜δvi − ˆδvi

)������
 (7)

=

k1∑
i=1

(
E
[��� ˜δui − ˆδui

���] + E [��� ˜δvi − ˆδvi

���]) (8)

Observe that
˜δui follows a Laplace distribution Lap(ˆδui ,

1

ϵ2). Ac-
cordingly, its mean absolute deviation is:

E
[��� ˜δui − ˆδui

���] = 1/ϵ2 (9)

Therefore, the right hand side of Eq. 8 equals
2k1
ϵ2 . To sum up, given

the privacy budget ϵ2 for the corresponding noise injection pro-

cedure, the expected error introduced to the degree vector (or the

sum of Laplace noise variables) is:

E
[��� ˜d − ˆd

���] ≤ k1 · 2λ =
2k1
ϵ2

(10)

Degree Vector Transformation Analysis. Next, we analyze
E
[���d − ˆd

���] , namely, the error introduced by transforming the neigh-

bor list to degree vector. Observe that the common neighbors of u
and v do not have any impact on the L1 distances between their

degree vectors. Therefore, we will only focus on the different neigh-

bors of u and v in our analysis of E
[���d − ˆd

���] . It can be verified that

the number of such neighbors should equal d .
Suppose that all users are divided into k1 groups randomly. Let

θd denote the number of ways to partition d users. We have

θd =

k1∑
i=1

S(d, i), (11)

where S(n,k) is the Stirling number of the second kind (or the

Stirling partition number).

Let θ
ˆd=t denote the number of partitions where

ˆd = t . It is easy
to see that the L1 distance between the two degree vectors equals

t with a probability

θ ˆd=t
θd

, and the expectation of the L1 distance

between degree vectors is:

E[ˆd] =
d∑
t=0

t ·
θ
ˆd=t
θd

(12)

We now focus on the derivation of θ
ˆd=t . Let’s first consider two

different neighbors that are connected to u and v . If these two

neighbors are allocated into a same user group, their contribution

to the degree vectors’ L-1 distance would be 0, i.e., they “cancel out”

each other. Given d and t as the L-1 distance between neighbor lists

and degree vectors, the number of “cancelling” neighbor pairs is

d−t
2
, and the number of ways to select

d−t
2

neighbors from each

user for the further pairing is

(d/2
t/2

)2
. Furthermore, by enumerating

all possible combinations, we can derive that the number of ways to

pair these cancelling neighbors from two users is ·d−t
2

!, and there

are k
d−t
2

1
ways to allocate them among k1 groups.

Meanwhile, if two different neighbors were allocated to differ-

ent groups, their contribution to the L1 distance would be 2, and

there are t/2 such node pairs. Similar to the derivation procedures

above, given the L1 distance d between neighbor lists as and the

L1 distance t between degree vectors, there are
t
2
! ways to select

the corresponding “non-cancelling” pairs. In addition, for any dis-

tance t that is generated by k1-partitions, there are
(k1
2

)t/2
ways to

allocate these pairs among k1 groups.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

430

Combining the above analysis, we have the number of partitions

that lead to degree vector distance t as:

θ
ˆd=t =

(
d − t

2

!

)
·
(t
2

!

)
· k

d−t
2

1
·
(
d/2
t/2

)
2

·
(
k1
2

)t/2
(13)

Substitute Eq. 11 and 13 into Eq. 12, we can derive that the

expected L1 distance between their degree vectors is:

E[d − ˆd] = d −
d∑
t=0

t
(d−t

2
!)(t

2
!)k

d−t
2

1

(d/2
t/2

)2 (k1
2

)t/2∑k1
i=1 S(d, i)

(14)

OptimalGroupNumberDeduction: Finally, we put the above
results together to derive an approximation of the optimal value of

the group number k1.
First, we substitute Eq. 10 and 14 into Eq. 4 and obtain:

=
1

d

©­­«
√
2k1
ϵ2
+ d −

∑d
t=0 t(

d−t
2

!)(t
2
!)k

d−t
2

1

(d/2
t/2

)2 (k1
2

)t/2∑k1
i=1 S(d, i)

ª®®¬ (15)

The last item in the Eq. 15 has no closed form. Fortunately, by

limiting dx,y and k1 to a range (e.g., between 0 and 50, which is

suitable for most social networks), we get a good approximated

closed form as follows:

− 2(k2
1
+ 1)2 − 2k1(d + 1) + (d − 1)(k2

1
+ 1) + 2 − d (16)

By substituting Eq. 16 into Eq. 15, we can get a closed form target

function:

Eq.(2) ≈ −2k4
1
+ (d − 5)k2

1
+ (2

ϵ2
− 2 − 2

d
)k1 + d − 2 (17)

Eq. 17 is minimized when

k1(d) = (d + d2 − 2(1 +
√
5)d + 1

ϵ2
) (18)

Moreover, for nodes with the same degree η, we estimate their

underlying L1 distance d heuristically using as:

d =
1

2

η. (19)

Given the degree histogram H = {pη } of graph G, where pη is

the percentage of nodes with degree η, we can derive a general

approximation of the k1 value for G as:

k1 ≈ ⌈
ηmax∑
η=1

pη · k1(
1

2

η)⌉, (20)

where ηmax is the maximum node degree in H. Note that our

analysis can be adapted to the cases when the above two parameters

are larger than 50, though the formula will include many additional

terms. We omitted the discussions of these cases for the readability

of the paper.

After deriving an appropriate k1, the data curator could simply

partition all users randomly into k1 equal-size groups. However, we
observe that if two users have similar noisy degree vectors reported

in Phase I, they are more likely to be structurally similar as well.

Thus, if we group nodes based on their noisy degree vectors instead

of randomly, it could help further identify structurally close nodes

in Phase II. Specifically, in our design the data curator runs the

standard k-mean algorithm to cluster users into k1 groups, based

on the noisy degree vectors of all users. The resulting clustering

forms the partition ξ1 for the next phase.

4.3 Design of Phase II
Given the user grouping ξ1 from Phase I, each user reports again a

new noisy degree vector to the data curator, using privacy budget

ϵ2. The task of the data curator in Phase II is to refine the clustering

of users. Intuitively, since the partition ξ1 is of an optimal size and is

more likely to group users with similar structures together (through

k-mean clustering), the noisy degree vectors reported in this phase

would help further reveal the structure of a decentralized social

network. This is done by performing another round of k-mean

clustering, based on the newly reported noisy degree vectors from

all users at the beginning of Phase II. Note that the number of target

clusters is still k1, i.e., the near-optimal value derived in the first

phase. We call the resulting new partition ξ2.

4.4 Design of Phase III
To generate synthetic graphs based on the user clusters in ξ2, the
data curator needs a way to estimate the intra-cluster edges inside

each cluster and the inter-cluster edges between different clus-

ters. This could be done by asking users to report their noisy de-

gree vectors given ξ2. However, as mentioned before, this would

cause the privacy budget to further split among each phase. In-

stead, our design uses the noisy degree vector of a user for partition

ξ1 from Phase II to estimate a degree vector for ξ2. Specifically,

let
˜δu = (˜δu

1
, . . . , ˜δuk1

) be a user u’s the noisy degree vector for

ξ1 = {U 1

1
, . . . ,U 1

k1
}. Given ξ2 = {U 2

1
, . . . ,U 2

k1
}, we estimate u’s

degree to a group U 2

i in ξ2 as:

k1∑
j=1

|U 1

j ∩U 2

i |
|U 1

j |
· ˜δj

Essentially, for each group U 1

j , we check what portion of it also ap-

pears inU 2

i , and we estimate u’s noisy degree toU 1

j proportionally

to that toU 2

i .

Based on the estimated degree vector of each user, we gener-

ate edges between nodes in the synthetic graph. Denote δui as

u’s estimated degree toU 2

i . Similar to the well-known Chung-Lu

model [1], we compute the probability to connect two nodes u and

v that belong to group U 2

i andU 2

j respectively as follows:

δuj ·∑v ∈G
δvj
|U 2

j |∑
u ∈U 2

i
δuj +

∑
v ∈G δvj

,

where the denominator is the total number of edges between groups

i and j by aggregating all the elements in the nodes’ corresponding

degree vectors in two groups.

4.5 Privacy Analysis
Here we show that LDPGen satisfies ϵ-edge local differential pri-
vacy. Let (δ1, . . . ,δk) be u’s degree vector for a given partition ξ .
Recall that the noisy degree vector reported to the data curator is

(˜δ1, . . . , ˜δk), where ˜δi = δi + N for i = 1, . . . ,k , and N is a random

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

431

variable following the Laplacian distribution Lap(0, 1e). Denote this
mechanism as M.

Theorem 4.1. The above noisy degree vector mechanismM satis-
fies ϵ-edge local differential privacy.

Proof. Given two neighbor listsγu andγv , letδ
u = (δu

1
, . . . ,δuk)

and δv = (δv
1
, . . . ,δvk) be their corresponding degree vectors for a

partition ξ . Ifγu andγv differ at exactly one bit, since ξ is a partition,
it is easy to see that δu and δv differ at exact one element. Without

loss of generality, assume δu
1
, δv

1
. Further, we have |δu

1
− δv

1
| = 1.

Given an arbitrary vector s = (s1, . . . , sk) ∈ ranдe(M), we have:

Pr [M(γu) = s]
Pr [M(γv) = s]

=
Pr [˜δu

1
= s1] . . . Pr [˜δuk = sk]

Pr [˜δv
1
= s1] . . . Pr [˜δvk = sk]

=
Pr [˜δu

1
= s1]

Pr [˜δv
1
= s1]

Since |δu
1
− δv

1
| = 1, according to the PDF of Lap(0, 1ϵ), we have

Pr [˜δu
1
=s1]

Pr [˜δv
1
=s1]

≤ eϵ . □

In LDPGen, a user adds noise to her degree vector following

Lap(0, 1ϵ1) and Lap(0,
1

ϵ2) in Phase I and Phase II respectively. Due

to the composability property of edge local differential privacy,

since ϵ1 + ϵ2 = ϵ , the overall process of LDPGen satisfies ϵ-edge
local differential privacy.

4.6 Complexity Analysis
Regarding the communication complexity, both straw man ap-

proaches need only a single round of communication between

the users and the data curator. The first straw man approach RNL

has the highest costs on the user end, i.e., O(n), since each user

needs to transmit a potentially large neighbor list to the curator.

The second straw man approach DGG has much lower costs, i.e.,

O(1), since each user only need to report his/her degree to the data

curator. The proposed approach LDPGen involves two rounds of

communications between users and the data curator: In the first

phase, each user needs to send a degree vector with size k0 to the

data curator; In the second phase, the data curator first broadcasts

the user partition to each user, which is O(n), and then each user

sends a degree vector with size k1 to the data curator. Obviously,

LDPGen inevitably incurs higher costs than the straw man meth-

ods that only require single round communication, and the high

accuracy of LDPGen compensates for such cost.

Regarding the computation complexity, both straw man ap-

proaches and the proposed LDPGen approach have low compu-

tational overhead on user end, which is also an important design

objective of such survey applications. Meanwhile, on the data cura-

tor side, since the probability of each edge between nodes needs to

be considered by the data curator once, both straw man methods

have a computation overhead of O(n2) on generating the synthetic

graph, while the LDPGen approach has a cost ofO(n2 +n(k0 +k1)),
which is just slightly higher than straw man methods.

4.7 Discussions
Recall that Phase II of LDPGen refines the partition from Phase I

by re-clustering users based on their newly reported noisy degree

vectors. Technically, we could continue this process and have more

rounds of grouping refinement instead of stopping at the second

phase. However, the more rounds we have, the less privacy budget

each round could use, which means much more noise needs to

be added to degree vectors. This could in fact reduce rather than

improve the quality of groupings. In Figure 10 from Section 5, we

experimentally show the impact of multiple rounds of partition

refinements on the utility of the generated synthetic graph.

Another issue is the allocation of privacy budget in the first two

phases. In our implementation, we choose to evenly split ϵ , i.e.,
ϵ1 = ϵ2, based on the intuition that in both phases users report the

same type of information, and tend to have equal influence on the

final user clustering.

In Phase I, before collecting any information from users, the data

curator partitions all the users into k0 equal-size groups randomly.

Recall that a user’s noisy degree vector based on this random parti-

tion serves two purposes. First, the data curator uses it to estimate

the user’s degree (recall equation 1). Second, it is also used as the

feature vector later to cluster all users. To get the best degree estima-

tion, k0 should be set to 1. However, that means the later clustering

is essential only based on degrees, which is undesirable as discussed

before (section 3.2). In our implementation, we set k0 = 2 to strike

an intuitive balance.

In our discussion so far, we implicitly assume that the data cu-

rator is aware of all the users in the decentralized social network.

Whether this assumption holds depends on the specifics of the

network. For example, if the social network is about the communi-

cations between different IPs, then the domain of all IPs is publicly

known. The data curator could also first inquiry their social net-

work IDs when users opt in for a study, when such IDs are not

sensitive (e.g., their email addresses for the contact-list network).

When users’ social network IDs could not be revealed directly, they

could instead use the hashes of their IDs to communicate with the

data curator. By doing so, an unknown user ID space is mapped to

a well-defined hash space. Our scheme could then be applied over

this hash space. In addition, the curator could broadcast the user

group partitions using compression techniques such as Bloom filter

to reduce communication cost.

5 EXPERIMENTAL EVALUATION
We have implemented LDPGen and run a comprehensive set of

experiments to study its effectiveness. In particular, our experi-

ments compare LDPGen with the two straw-man approaches RNL

and DGG described in Section 2. Meanwhile, the experiments also

investigate the effect of number of groups k1 in Phase 1 (described

in Section 4.2), and whether LDPGen obtains an appropriate value

for this parameter. For each experiment, we report the average

results over 10 executions. The experiments involve four real social

graphs that have been used as benchmark datasets for community

detection and recommendation tasks. They are:

• Facebook [30] is an undirected social graph consisting of 4, 039

nodes (i.e., users) and 88, 234 edges (connections on Facebook),

collected from survey participants using a Facebook app.

• Enron [29] is an undirected email graph consisting of 36, 692

nodes (i.e., email accounts in Enron) connected by 183, 831

edges (emails).

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

432

• Last.fm [3] contains both a social graph and a preference graph.
The social graph consists of 1, 892 user nodes and 12, 717 undi-

rected edges that represent friend relationships. The preference

graph contains the same set of user nodes, as well as 17, 632

item nodes, each of which corresponds to a song. Each edge

in the preference graph connects a user and a song, with a

weight that corresponds to the number of times that the user

has listened to the song. In total, there are 92, 198 such directed

user-to-song edges.

• Flixster [21] also contains a social graph and a preference graph,

similar to Last.fm. After some pre-processing (explained below),

the social graph contains 137, 372 user nodes connected by

1, 269, 076 undirected edges, and the preference graph contains

the same set of users, 48, 756 item nodes, and over 7 million

directed user-to-item edges. Here, each item node represents

a movie, and each user-to-item edge corresponds to a movie

rating by the corresponding user, associated with a weight, i.e,

the rating in the range of [0, 5].

The experiments mostly use centralized social graphs since we

need ground truth to validate the effectiveness of LDPGen. Among

these datasets, Enron contains email communications which are

usually modeled as decentralized data, as typically no server has

all the email communications between all the users.

The utility of a synthetic social network depends on for what it

is used in different applications. In our experiments, we validate

the effectiveness of LDPGen using three use cases, as follows.

• Social graph statistics. As the simplest use case, we use datasets

Facebook and Enron to investigate how well the synthetic social

graphs generated under local differential privacy preserve im-

portant statistics (detailed in Section 5.1) of the original graph

structure.

• Community discovery. In the second use case, we perform

community discovery on the original and generated synthetic

graphs, and compare the results, using datasets Facebook and
Enron. In particular, our implementation uses the Louvain

method [5] for community discovery, which outputs a list of

user clusters. We then compare the user clusters obtained from

the real and synthetic graphs on two common metrics ARI and

AMI, explained in Section 5.1.

• Social recommendation. In the third use case, we use Last.fm and

Flixster datasets to study how the generated synthetic graphs

can be effectively used in a social recommendation application.

Specifically, we assume that the social graph is private, and the

preference graph is publicly available (e.g., when a user rates a

movie, the rating is publicly visible). Then, for each user, we

recommend a list of top-k items based on item preferences of

her friends. The evaluation compares the recommended item

lists computed from the real and synthetic graphs. The detailed

reasoning behind the social recommendation algorithm can be

found in [31].

In the following Section 5.1 describes the evaluation metrics;

Section 5.2 presents the main evaluation results; and Section 5.3

discusses parameter selection in LDPGen, particularly whether

LDPGen is able to select an appropriate value for the number of

groups k1 in Phase I.

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e
Er

ro
r o

f M
od

ul
ar

ity

Facebook Dataset

DGG
LDPGen
RNL

(a) Facebook

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
Er

ro
r o

f M
od

ul
ar

ity

Enron Email Dataset

DGG
LDPGen
RNL

(b) Enron
Figure 2: Effect of ϵ on modularity

5.1 Evaluation Metrics
As explained above, the experiments focus on three aspects of

utility: preservation of graph statistics, accuracy in community

discovery, and effectiveness in a recommendation system. First, in

terms of graph statistics, we evaluate LDPGen and its competitors

in terms of graph modularity [19], clustering coefficient [48] and
assortativity coefficient [18]. Each of the three reflects the structure

of the graph, and has numerous applications in practice [7]. We

omit their detailed definitions for brevity.

Regarding community detection, the utility metric focuses on

the similarity of the communities obtained from the generated

synthetic graph and those from the original graph. For this purpose,

we follow the standard metrics Adjusted Random Index (ARI) [40]

and Adjusted Mutual Information (AMI) [44], as follows.

Definition 5.1 (ARI and AMI). Given a set of N elements G =
{n1, ...,nn } and two partitioning schemes of G, X = {x1, ...,xr }
(which partitions G into r subsets) and Y = {y1, ...,ys } (which

partitions of G into s subsets), the overlap between X and Y can be

summarized in a contingency table where each entry ni j denotes
the number of objects in common between xi and yj : ni j = |Xi ∩
Yj |,∀1 ≤ i ≤ r , 1 ≤ j ≤ s . Let ai (resp. bj) be the sum of the i-th
row (resp. j-th column) in the contingency table, i.e., ai =

∑
j ni j

and bj =
∑
i ni j. Define ARI and AMI as follows:

ARI (X ,Y) =
∑
i j
(ni j
2

)
− [∑i

(ai
2

) ∑
j
(bj
2

)
]/
(n
2

)
1

2
[∑i

(ai
2

)
+
∑
j
(bj
2

)
] − [∑i

(ai
2

) ∑
j
(bj
2

)
]/
(n
2

) (21)

AMI (X ,Y) =
R∑
i=1

C∑
j=1

min(ai ,bj)∑
ni j=(ai+bj−N)+

ni j

N
log

(
N · ni j
aibj

)
×

ai !bj !(N − ai)!(N − bj)!
N !ni j !(ai − ni j)!(bj − ni j)!(N − ai − bj + ni j)!

(22)

where (ai + bj − N)+ denotes max(1,ai + bj − N).

Intuitively, ARI quantifies the frequency of agreements between

the two obtained clusterings over all element pairs, and AMI quan-

tifies the information shared by the two clusterings. Both ARI and

AMI discount the measurement between two completely random

clusterings [6, 35]. Larger values of ARI and AMI indicate that the

underlying clusterings are more similar; in our experiments that

compare the results obtained on real and synthetic graphs, higher

ARI/AMI values signify higher accuracy.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

433

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
el

at
iv

e
Er

ro
r o

f C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Facebook Dataset

DGG
LDPGen
RNL

(a) Facebook

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
Er

ro
r o

f C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Enron Email Dataset

DGG
LDPGen
RNL

(b) Enron
Figure 3: Effect of ϵ on clustering coefficient

Finally, in terms of effectiveness in social recommendation, we

measure utility as the similar of the recommended items computed

from the original and those obtained from the synthetic graph.

Specifically, the score µiu for recommending an item i to a user u is

defined as:

µiu =
∑
v

|Γ(v) ∩ Γ(u)| ·w(v, i) (23)

where v is another arbitrary user, Γ(u) denotes the set of nodes

directly connected to u in the social graph, andw(v, i) is the weight
in the preference graph connecting user u and item i .

The recommendation system then recommends to each user u
a list of k items with the highest scores with respect to u. To com-

pare two different top-k item lists, we use Normalized Discounted

Cumulative Gain (NDCG) [22] as the accuracy metric, which is a

commonly used measure for the effectiveness of recommendation

systems [34]. In particular, the NDCG score between to ranked lists

is defined as follows.

Definition 5.2 (NDCG). Given two ranked lists rankact and rankest .
Given an item vi in the ranked lists, we define its relevance score

reli as:

relvi = log
2
|d − |rankact (vi) − rankest (vi)| |

where rankact (vi) (resp. rankest (vi)) returns the rank of item vi
in the ranked list rankact (resp. rankest . Intuitively, the closer vi ’s
estimated rank is to its actual rank, the higher the relevance score.

Given the actual top k items v1, . . . ,vk , the discounted cumulative

gain (DCG) of an estimated rank list rankest is computed as:

DCGk = relv1
+

k∑
i=2

relvi
log

2
i

The discount factor log
2
(i) is to give more weight to the gain of

higher ranked items. Essentially, we care more about the correct

ranking of important items (those with high ranks). Finally, we

normalize DCG of an estimated ranking list by comparing it with

the ideal DCG (IDCG), which is DCG when the estimated ranking

list is exactly the same as the actual one (i.e., no estimation error):

NDCGk =
DCGk
IDCGk

The overall utility of the synthetic graph with respect to the

social recommendation use case is then calculated as the average

NDCG score over the set of all users in the dataset.

5.2 Utility of LDPGen
In this subsection, we study the utility of LDPGen in comparison

with the two straw-man approaches RNL and DGG. In all experi-

ments, the optimal number of groups k1 is computed by the data

curator as described in 4.2. The effects of k1, and whether LDPGen’s
choice is appropriate, are further investigated in Section 5.3.

Results on graph structure statistics. Figure 2a plots the rel-
ative errors of the proposed solution LDPGen and two straw-man

approaches RNL and DGG, as functions of the privacy budget ϵ ,
using the Facebook dataset. LDPGen demonstrates clear advantages

over RNL and DGG on all settings. In particular, unless we use a

very high value of ϵ , i.e., ϵ > 5, the relative errors of RNL and DGG

are close to 100%, meaning that their modularity results are rather

useless under these settings. LDPGen, on the other hand, achieves

low relative error (< 20%) when ϵ ≥ 2. Note that such values of ϵ
have been commonly used in the local differential privacy litera-

ture, e.g., [16, 39]. This indicates that LDPGen obtains practically

meaningful results in terms of modularity under local differential

privacy. Meanwhile, LDP also achieves dramatic performance im-

provements over RNL and DGG on extreme values of ϵ (i.e., when

ϵ approaches 0 and reaches 7, respectively). This demonstrates that

the LDPGen has inherent utility advantages over its competitors

on a broad range of ϵ values.

Figure 2b repeats the above experiment on the Enron dataset.

Again, LDPGen outperforms RNL and DGG by large margins on all

settings, and the difference is between practical accuracy (< 20%

relative error for LDPGen on all settings) and useless results (> 60%

relative error for RNL and DGG, when ϵ < 5). This confirms that the

performance advantage of LDPGen over RNL and DGG is inherent,

rather than data-dependent. Comparing the results on Facebook
and Enron, we observe that (i) all three methods obtain higher

utility on Enron than Facebook. one reason is that Enron is a much

bigger dataset than Facebook; consequently, the noise injected to

satisfy local differential privacy is more pronounced on the latter

dataset. (ii) Although the RNL performs slightly better than DGG

on Facebook, its performance on Enron is comparable to that of RNL,

which suggest that the relative performance of the two straw-man

approaches depends on the dataset.

Figures 3a and 3b evaluate the utility of LDPGen, RNL and DGG

in terms of relative error in the clustering coefficient of the gen-

erated synthetic graph, using the Facebook and Enron datasets, re-

spectively. DGG obtains the best accuracy in all settings. This is

expected, since DGG is based on the BTER algorithm (sketched in

Section 6), which is specifically optimized for returning accurate

clustering coefficients [33]. Notably, the accuracy of LDPGen is

close to that of DGG in all settings, whereas RNL leads to far lower

utility than the other two methods.

Figures 4a and 4b exhibit the utility results in terms of relative

error of the graph assortativity coefficient in the generated syn-

thetic graph. The results lead to similar observations as those for

modularity (Figures 2a and 2b), i.e., LDPGen achieves practical ac-

curacy whereas RNL and DGG lead to useless results. This indicates

that the two straw-man solutions have very low utility, except for

the statistics that they are specifically optimized for (e.g., DGG for

clustering coefficient). The performance of LDPGen, on the other

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

434

0 1 2 5 6 73 4
Privacy Budget 0

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
Er

ro
r o

f A
ss

or
ta

tiv
ity

 C
oe

ffi
ci

en
t

Facebook Dataset

DGG
LDPGen
RNL

(a) Facebook

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
Er

ro
r o

f A
ss

or
ta

tiv
ity

 C
oe

ffi
ci

en
t

Enron Email Dataset

DGG
LDPGen
RNL

(b) Enron
Figure 4: Effect of ϵ : on assotativity coefficient

0 1 2 3 4 5 6 7
Privacy Budget 0

-0.1

0

0.1

0.2

0.3

0.4

0.5

Ad
ju

st
ed

 M
ut

ua
l I

nf
or

m
at

io
n

(A
M

I)

Facebook Dataset

DGG
LDPGen
RNL

(a) Facebook

0 1 2 3 4 5 6 7
Privacy Budget 0

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ad
ju

st
ed

 R
an

do
m

 In
de

x
(A

R
I)

Enron Email Dataset

DGG
LDPGen
RNL

(b) Enron
Figure 5: Effect of ϵ on Adjusted Random Index

hand, is consistently high in all metrics, on both datasets, and under

all values of the privacy budget ϵ .
Community preservation results. In our second set of ex-

periments, we evaluate how well the synthetic graphs generated

by LDPGen, RNL and DGG preserve the community information

in the original graph, using two metrics ARI and AMI defined in

Section 5.1. Figures 5a and 5b show the evaluation results using

the ARI metric, on datasets Facebook and Enron respectively. Note
that higher values of ARI and AMI correspond to higher accuracy.
Clearly, on both datasets, the proposed approach LDPGen signifi-

cantly outperforms the straw-man methods RNL and DGG. Further,

the ARI values of LDPGen grows rapidly with the privacy budget

ϵ , whereas the ARI lines for RNL and DGG stay almost flat. These

observations indicate that LDPGen is more effective in collecting

private information under local differential privacy. Comparing the

two straw-man approaches, DGG slightly outperforms RNL on the

larger Enron dataset; yet, the ARI values of DGG remain very low

in comparison with LDPGen, in all settings.

Figures 6a and 6b exhibit community information preservation

results using the AMI metric, also defined in Section 5.1. These re-

sults lead to similar conclusions as the ARI results described above,

i.e., LDPGen beats its competitors on every setting, and the perfor-

mance gap expands with increasing values of the privacy budget ϵ .
Comparing ARI and AMI results, LDPGen performs consistently

better in terms of AMI than ARI, which suggests that LDPGen

might be more suitable for applications where high AMI values are

more important.

Utility results in recommendation systems. Next we evalu-
ate the effectiveness of LDPGen, RNL and DGG in the social recom-

mendation use case, using the NDCG metric explained in Section

5.1, which measures the similarly of recommended lists of items

0 1 2 3 4 5 6 7
Privacy Budget 0

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Ad
ju

st
ed

 M
ut

ua
l I

nf
or

m
at

io
n

(A
M

I)

Facebook Dataset

DGG
LDPGen
RNL

(a) Facebook

0 1 2 3 4 5 6 7
Privacy Budget 0

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ad
ju

st
ed

 M
ut

ua
l I

nf
or

m
at

io
n

(A
M

I)

Enron Email Dataset

DGG
LDPGen
RNL

(b) Enron
Figure 6: Effect of ϵ on Adjusted Mutual Information

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
D

C
G

 w
ith

 k
=1

0

Last.fm Dataset

DGG
LDPGen
RNL

(a) Last.fm

0 1 2 3 4 5 6 7
Privacy Budget 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
D

C
G

 w
ith

 k
=1

0

Flixter Dataset

DGG
LDPGen
RNL

(b) Flixter
Figure 7: Effect of ϵ on NDCG

using the real and synthetic data, respectively. Larger NDCG values
correspond to higher accuracy.

Figures 7a and 7b demonstrate the NDCG scores of all three

methods using the Last.fm and Flixter datasets, respectively. Once
again, LDPGen clearly outperforms RNL and DGG on all settings

and both datasets. Comparing RNL and DGG, the latter completely

fails, yielding NDCG scores no more than 0.2, meaning that the

items it recommends has few in commonwith the recommendations

computed using the exact social graph. RNL performs much better

than DGG; the reason is that in the recommendation application,

only immediate neighbors are important, and RNL directly collects

this information. Nevertheless, LDPGen still obtains superior NDCG

scores compared to RNL.

An interesting observation is that the NDCG result of LDPGen

does not increase linearly with the privacy budget ϵ ; instead, the
NDCG score remains low for small values of ϵ , increases rapidly
when 3 ≤ ϵ ≤ 6, and plateaus afterwards. The reason is that for each

user u, the recommended list of items consists of common items

rated high among its neighbors. When ϵ is low, the social graph is

very noisy; yet, there are items that are rated high by most users,

not just neighbors of u. Hence, the NDCG score mainly reflects

such items, which are not sensitive to how noisy u’s neighbor list is.
Once ϵ reaches a certain level, items that are rated high among u’s
neighbors but not globally gradually appear in the recommended

item list foru, boosting the NDCG score. Finally, when the majority

of such items are included in the recommended item list, the NDCG

score of LDPGen becomes stable; in other words, at this stage, the

recommended items computed using the synthetic and real graphs

differ mainly in details, i.e., items that are not consistently rated

high by the user’s neighbors.

Summarizing the utility evaluations, LDPGen is the clear winner,

which obtains high accuracy on all metrics and over all datasets.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

435

1 3 5 7 9 11 13 15 17 19 21
Group Number g

0

0.25

0.5

0.75

1

R
el

at
iv

e
Er

ro
r o

f M
od

ul
ar

ity

Facebook Dataset, Privacy Budget = 1

(a) Facebook

1 6 11 16 21 26 31
Group Number g

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
Er

ro
r o

f M
od

ul
ar

ity

Enron Email Dataset, Privacy Budget = 1

(b) Enron
Figure 8: Effect of number of groups k1 on modularity

RNL and DGG are only competitive for metrics that they are specifi-

cally optimized for (e.g., DGG for clustering coefficient) or when the

application uses mainly the information that they directly collects

(e.g., RNL for the recommendation application). Hence, LDPGen is

the method of choice for synthetic decentralized graph generation

in practical applications.

5.3 Parameter Study for LDPGen
Having established the superiority of LDPGen over its competi-

tors, we now investigate the impact of an appropriate value for

the parameter k1 in LDPGen, which is the number of groups in

Phase I, as described in Section 4.2. Intuitively, a smaller k1 leads
to a coarser granularity in the reported neighbor lists of each user,

and at the same time a smaller amount of random perturbations

is needed for satisfying local differential privacy. The reverse is

true for a larger value of k1. Hence, choosing an appropriate k1
is crucial for the overall performance of LDPGen. As described in

Section 4.2, LDPGen chooses a value for k1 based on the collected

degree vectors. Hence, the experiments also evaluate the quality of

LDPGen’s choice for k1.
Figure 8 presents the modularity results for LDPGen on Facebook

and Enron datasets with varying values ofk1, after fixing the privacy
budget ϵ = 1. The same figure also shows the value chosen by

LDPGen, shown in the vertical line. For both datasets, the utility of

LDPGen first increases with k1, and then decreases with k1 after
the latter reaches its optimal value, which is very close to what

LDPGen chooses. This confirms the effectiveness of the method

in Section 4.2 for choosing k1. Similarly, Figures 9 show the effect

of k1 on the utility of community discovery for LDPGen in terms

of the ARI metric, as well as the values of k1 chosen by LDPGen.

Clearly, these results are consistent with the ones for modularity.

We omit further experimental results on k1, since they all lead to

the same conclusions.

Finally, Figure 10 shows the effect of number of rounds for refin-

ing the user grouping in Phase II of LDPGen, using the ARI/AMI

metrics and the Facebook dataset. The privacy budget ϵ is fixed to 1

in these experiments. The results show that two rounds of refine-

ment work best. This because more rounds of grouping refinement

lead to diminishing benefits in terms of improving user grouping,

which do not compensate for the increased privacy budget con-

sumption. Results on other metrics and datasets lead to the same

conclusion. Hence, LDPGen always performs rounds of refinement

for user grouping, one at the end of Phase I and one in Phase II, as

described in Section 4.

1 3 5 7 15 17 19 21
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Ad
ju

st
ed

 R
an

do
m

 In
de

x
(A

R
I)

Facebook Dataset, Privacy Budget = 1

9 11 13
Number of Groups k1

(a) Facebook

1 6 11 21 26 3116
0

0.05

0.1

0.15

Ad
ju

st
ed

 R
an

do
m

 In
de

x
(A

R
I)

Enron Email Dataset, Privacy Budget = 1

Number of Groups k1

(b) Enron
Figure 9: Effect of number of groups k1 on ARI

2 3 74 5 6
0

0.05

0.1

0.15

0.2

0.25

AR
I a

nd
 A

M
I

Facebook Dataset, Privacy Budget = 1

Adjusted Random Index (ARI)
Adjusted Mutual Information (AMI)

1
Number of Partition Refinements

Figure 10: ARI and AMI vs. Number of rounds for grouping
refinements (Facebook)

6 RELATEDWORK
There is a large body of work on formal models for graph genera-

tion. The earliest model is the Erdos-Renyi (ER) model [14], which

assumes that every pair of nodes in a graph is connected by an edge

with an independent and identical probability. Chung and Lu pro-

posed the CL model [1], which is similar in spirit to the ER model

but allows each edge to exist with a different probability, so as to

ensure that the node degrees follow a given distribution. Based on

the ER and CL models, Seshadri et al. propose the Block Two-Level

Erdos-Renyi Graph Model (BTER) [43], which uses the standard

ER model to form relatively dense subgraphs (which correspond

to communities), and then utilizes the CL model to add additional

edges so as to ensure that the resulting graph follows a given edge

distribution. Subsequently, there are a few variations of the BTER

models with increased complexities for more accurate graph mod-

elling. In addition, there exist several other graph models, such as

the Kronecker graph model [28], the preferential attachment model

[38], the exponential random graph model [41].

The aforementioned graph models do not take into account

the protection of individual privacy in the generation of synthetic

graphs. To address this issue, recent work [8, 23, 24, 32, 36, 42, 45,

46, 50] has developed graph generation methods that ensure dif-

ferential privacy in the centralized setting, based on same basic

idea as follows. Given an input graph G, they first derive some

noisy statistics of G (e.g., degree distributions), in a manner that

satisfies differential privacy. After that, they feed the noisy statis-

tics into a graph model, and return the synthetic graph G∗
thus

obtained. Since G∗
depends only on the noisy statistics (which are

differentially private) instead of the input graph, G∗
also achieves

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

436

differential privacy. These methods, however, require that the data

publisher know the whole input graph G. As a consequence, they
are inapplicable in our setting, where the data publisher does not

have direct access toG and needs information from each user (i.e.,

each vertex) while ensuring local differential privacy. Note that,

our approach could also use existing models after user groups are

refined in Phase II, as long as the model does not require more than

one-hop information of users.

Local differential privacy (LDP) is a privacy framework adapted

from the traditional centralized differential privacy (DP) model to

address cases in which data is distributed among different users

and hence no collector has access to the complete dataset, or the

collector does not want to be liable for collecting the original data

from end users. Most of the existing LDP approaches, however,

are limited to cases where end users data is a tuple of numerical

or categorical values, and the collector computes simple statis-

tics such as as counts and histograms. A long line of research has

been introduced for frequency estimation under LDP including

[2, 9, 15, 17, 20, 25, 47, 49]. Specifically, the pioneer study on ran-

domized response method by Warner [47] has been followed by a

study which formalized the LDP model [25]. Duchi et al. [9] provide

a minmax-error bound on convex statistical estimation by utilizing

information theoretic converse techniques, while Hsu et al. [20]

uses random projection and concentration of measure to estimate

heavy hitters. Then, Bassily et al. [2] propose an algorithm for suc-

cinct histogram estimation with information-theoretical optimal

error. Erlingsson et al. [15] propose an extension of randomized

response for collecting the frequencies of categorical values, while

Fanti et al. [17] further extends it to handle the case when the

domain of the categorical values are unknown. After that, an inter-

esting work has been proposed by Xiong et al. [49], which offers

LDP by providing optimization over discrete memoryless channels

between the sensor observations and their compressed version.

A more recent work by Qin et al. [39] proposes a two-phase

LDP mechanism, dubbed LDPMiner, which tackles more complex

data mining tasks. Specifically, LDPMiner is shown to provide ac-

curate heavy hitters estimation over set-valued data. Private esti-

mation of frequent element from stream data has also been studied

by [12]. Nguyen et al. [37] proposes an LDP mechanism, dubbed

Harmony, as a practical, accurate and efficient system for collecting

and analyzing data from users of smart device. Harmony can handle

multi-dimensional data containing both numerical and categorical

attributes, and supports both basic statistics (e.g., mean and fre-

quency estimates), and complex machine learning tasks (e.g., linear

regression, logistic regression and SVM classification).

The common theme of all above LDP research is that it is lim-

ited to collecting simple, statistical information such as counts,

histograms, and heavy hitters. Additionally, as pointed out earlier,

quite some has been done on graph generation under the global

differential privacy framework. To the best of our knowledge, we

are the first to propose a mechanism for generating synthetic de-

centralized social graphs with local differential privacy.

7 CONCLUSION
Rich and valuable information exists in decentralized social net-

works, where graph information is only stored by individual users

in their limited local views. In this paper, we propose LDPGen, a

multi-phase technique to gradually extract information from users

and construct a representative graph of the underlying social net-

work, while guaranteeing edge local differential privacy. The ad-

vantages of LDPGen over straightforward adaption of existing LDP

and synthetic graph generation techniques are validated through

comprehensive experiments over several real datasets.

To the best of our knowledge, this work is the first effort to-

wards privacy-preserving graph analysis over decentralized social

networks with local differential privacy. Many challenging issues

remain, including incorporating stronger privacy models (e.g., node-

local differential privacy), handling graphs with edge weights and

node/edge attributes, and developing techniques for specific graph

mining tasks, e.g, triangle counting and frequent subgraph structure

mining, which we plan to address in our future work.

8 ACKNOWLEDGMENTS
Xiaokui Xiao was supported by grant MOE2015-T2-2-069 from

MOE, Singapore and by the DSAIR center at NTU, Singapore. Yin

Yang was supported by QNRF grant NPRP10-0708-170408.

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. 2000. A random graph model for

massive graphs. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing. Acm, 171–180.

[2] Raef Bassily and Adam D. Smith. 2015. Local, Private, Efficient Protocols for

Succinct Histograms. In STOC. 127–135.
[3] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.

2011. The Million Song Dataset. In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR 2011).

[4] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2012. The johnson-

lindenstrauss transform itself preserves differential privacy. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on. IEEE, 410–419.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[6] Christian Braune, Christian Borgelt, and Rudolf Kruse. 2013. Behavioral clustering

for point processes. In International Symposium on Intelligent Data Analysis.
Springer, 127–137.

[7] L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Vil-

las Boas. 2007. Characterization of complex networks: A survey of measurements.

Advances in physics 56, 1 (2007), 167–242.
[8] Wei-Yen Day, Ninghui Li, andMin Lyu. 2016. Publishing graph degree distribution

with node differential privacy. In Proceedings of the 2016 International Conference
on Management of Data. ACM, 123–138.

[9] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local privacy

and statistical minimax rates. In FOCS. 429–438.
[10] Cynthia Dwork. 2006. Differential privacy. In Automata, languages and program-

ming. 1–12.
[11] Cynthia Dwork and Jing Lei. 2009. Differential privacy and robust statistics. In

Proceedings of the forty-first annual ACM symposium on Theory of computing.
ACM, 371–380.

[12] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N Rothblum, and Sergey

Yekhanin. 2010. Pan-Private Streaming Algorithms.. In ICS. 66–80.
[13] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[14] Paul Erdös and Alfréd Rényi. 1959. On random graphs, I. Publicationes Mathe-
maticae (Debrecen) 6 (1959), 290–297.

[15] Úlfar Erlingsson et al. 2014. Rappor: Randomized aggregatable privacy-preserving

ordinal response. In CCS. 1054–1067.
[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-

domized aggregatable privacy-preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications security. ACM,

1054–1067.

[17] Giulia Fanti et al. 2016. Building a RAPPOR with the Unknown: Privacy-

Preserving Learning of Associations and Data Dictionaries. PoPETS issue 3,

2016 (2016).

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

437

[18] Neil Zhenqiang Gong, Wenchang Xu, Ling Huang, Prateek Mittal, Emil Stefanov,

Vyas Sekar, and Dawn Song. 2012. Evolution of social-attribute networks: mea-

surements, modeling, and implications using google+. In Proceedings of the 2012
ACM conference on Internet measurement conference. ACM, 131–144.

[19] Roger Guimera, Marta Sales-Pardo, and Luís A Nunes Amaral. 2004. Modularity

from fluctuations in random graphs and complex networks. Physical Review E
70, 2 (2004), 025101.

[20] Justin Hsu, Sanjeev Khanna, and Aaron Roth. 2012. Distributed private heavy

hitters. In Automata, Languages, and Programming. 461–472.
[21] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with

trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. ACM, 135–142.

[22] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[23] Zach Jorgensen, Ting Yu, and Graham Cormode. 2016. Publishing Attributed

Social Graphs with Formal Privacy Guarantees. In SIGMOD. 107–122.
[24] Vishesh Karwa and Aleksandra B Slavković. 2012. Differentially private graph-

ical degree sequences and synthetic graphs. In Privacy in Statistical Databases.
Springer, 273–285.

[25] Shiva Prasad Kasiviswanathan et al. 2011. What can we learn privately? SICOMP
40, 3 (2011), 793–826.

[26] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. 2013. Analyzing graphs with node differential privacy. In Theory of
Cryptography. Springer, 457–476.

[27] Dor Konforty, Yuval Adam, Daniel Estrada, and Lucius Gregory Meredith. 2015.

Synereo: The Decentralized and Distributed Social Network. (2015).

[28] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. 2010. Kronecker graphs: An approach tomodeling networks.

Journal of Machine Learning Research 11, Feb (2010), 985–1042.

[29] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[30] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in

ego networks. In Advances in neural information processing systems. 539–547.
[31] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.

Physica A: Statistical Mechanics and its Applications 390, 6 (2011), 1150–1170.
[32] Wentian Lu and Gerome Miklau. 2014. Exponential Random Graph Estimation

under Differential Privacy. In KDD. 921–930.
[33] R Duncan Luce and Albert D Perry. 1949. A method of matrix analysis of group

structure. Psychometrika 14, 2 (1949), 95–116.
[34] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. Intro-

duction to information retrieval. Vol. 1. Cambridge university press Cambridge.

[35] Marina Meilă. 2003. Comparing clusterings by the variation of information. In

Learning theory and kernel machines. Springer, 173–187.

[36] Darakhshan Mir and Rebecca N Wright. 2012. A differentially private estima-

tor for the stochastic kronecker graph model. In Proceedings of the 2012 Joint
EDBT/ICDT Workshops. ACM, 167–176.

[37] Thông T. Nguyên, Xiaokui Xiao, Yin Yang, Siu Cheung Hui, Hyejin Shin, and

Junbum Shin. 2016. Collecting and Analyzing Data from Smart Device Users

with Local Differential Privacy. CoRR abs/1606.05053 (2016). http://arxiv.org/abs/

1606.05053

[38] Derek de Solla Price. 1976. A general theory of bibliometric and other cumulative

advantage processes. Journal of the American society for Information science 27, 5
(1976), 292–306.

[39] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016.

Heavy Hitter Estimation over Set-Valued Data with Local Differential Privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 192–203. https://doi.org/10.1145/

2976749.2978409

[40] WilliamM Rand. 1971. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical association 66, 336 (1971), 846–850.

[41] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. An introduction

to exponential random graph (p*) models for social networks. Social networks 29,
2 (2007), 173–191.

[42] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao.

2011. Sharing graphs using differentially private graph models. In IMC. ACM,

81–98.

[43] Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. 2012. Community structure

and scale-free collections of Erdős-Rényi graphs. Physical Review E 85, 5 (2012),

056109.

[44] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic

measures for clusterings comparison: Variants, properties, normalization and

correction for chance. Journal of Machine Learning Research 11, Oct (2010),

2837–2854.

[45] Yue Wang and Xintao Wu. 2013. Preserving Differential Privacy in Degree-

Correlation Based Graph Generation. Trans. Data Privacy 6, 2 (Aug. 2013).

[46] Yue Wang, Xintao Wu, and Leting Wu. 2013. Differential Privacy Preserving

Spectral Graph Analysis. In PAKDD. 329–340.
[47] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. Journal of the ASA 60, 309 (1965), 63–69.

[48] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[49] Sijie Xiong, Anand D. Sarwate, and Narayan B. Mandayam. 2016. Randomized

requantization with local differential privacy. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China,
March 20-25, 2016. 2189–2193. https://doi.org/10.1109/ICASSP.2016.7472065

[50] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and

Xiaokui Xiao. 2015. Private Release of Graph Statistics using Ladder Functions.

In SIGMOD. 731–745.

Session B4: Privacy Policies CCS’17, October 30-November 3, 2017, Dallas, TX, USA

438

http://arxiv.org/abs/1606.05053
http://arxiv.org/abs/1606.05053
https://doi.org/10.1145/2976749.2978409
https://doi.org/10.1145/2976749.2978409
https://doi.org/10.1109/ICASSP.2016.7472065

	Abstract
	1 Introduction
	2 Local Differnetial Privacy
	3 Problem Description and Straw-man Approaches
	3.1 Randomized Neighbor List Approach
	3.2 Degree-based Graph Generation Approach
	3.3 Observations

	4 LDPGen
	4.1 General Framework
	4.2 Design of Phase I
	4.3 Design of Phase II
	4.4 Design of Phase III
	4.5 Privacy Analysis
	4.6 Complexity Analysis
	4.7 Discussions

	5 Experimental Evaluation
	5.1 Evaluation Metrics
	5.2 Utility of LDPGen
	5.3 Parameter Study for LDPGen

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

