
Global-Scale Secure Multiparty Computation
Xiao Wang

University of Maryland

wangxiao@cs.umd.edu

Samuel Ranellucci

University of Maryland

George Mason University

samuel@umd.edu

Jonathan Katz

University of Maryland

jkatz@cs.umd.edu

ABSTRACT
We propose a new, constant-round protocol for multi-party compu-

tation of boolean circuits that is secure against an arbitrary number

of malicious corruptions. At a high level, we extend and general-

ize recent work of Wang et al. in the two-party setting. Namely,

we design an efficient preprocessing phase that allows the parties

to generate authenticated information; we then show how to use

this information to distributively construct a single “authenticated”
garbled circuit that is evaluated by one party.

Our resulting protocol improves upon the state-of-the-art both

asymptotically and concretely. We validate these claims via several

experiments demonstrating both the efficiency and scalability of

our protocol:

• Efficiency: For three-party computation over a LAN, our

protocol requires only 95 ms to evaluate AES. This is roughly

a 700× improvement over the best prior work, and only 2.5×

slower than the best known result in the two-party setting.

In general, for n-party computation our protocol improves

upon prior work (which was never implemented) by a fac-

tor of more than 230n, e.g., an improvement of 3 orders of

magnitude for 5-party computation.

• Scalability: We successfully executed our protocol with a

large number of parties located all over the world, comput-

ing (for example) AES with 128 parties across 5 continents

in under 3 minutes. Our work represents the largest-scale

demonstration of secure computation to date.

CCS CONCEPTS
• Theory of computation → Cryptographic protocols;

KEYWORDS
Multi-party Computation; Secure Computation; Garbled Circuit

1 INTRODUCTION
Secure multi-party computation (MPC) allows a set of parties to

jointly perform a distributed computation while ensuring correct-

ness, privacy of the parties’ inputs, and more. MPC protocols can

be classified in various ways depending on the native computations

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133979

Paper Comm./Comp. Complexity Rounds

[12] O
(
|C|B3n

)
O (d)

[20] O
(
|C|B2n

)
O (d)

[31] + [28] O
(
|C|κn2

)
O (1)

[25] (concurrent) O
(
|C|B2n

)
O (1)

This paper O (|C|Bn) O (1)

Table 1: Asymptotic complexity (per party) for n-party MPC
protocols for boolean circuits, secure against an arbitrary
number of malicious corruptions. Here, κ (resp., ρ) is the com-

putational (resp., statistical) security parameter, |C | is the circuit
size, d is the depth of the circuit, and B = O (ρ/ log |C |).

they support and the class of adversarial behavior they tolerate.

With regard to the first of these, protocols are typically designed

to compute either boolean circuits or arithmetic circuits over a

large field. Although these models are equivalent in terms of their

expressive power, for many natural computational tasks (e.g., com-

parisons, divisions, bit-wise operations, etc.) an arithmetic circuits

can be much larger than the corresponding boolean circuit, as well

as more cumbersome to design.

With regard to security, some protocols tolerate only semi-honest

adversaries that are assumed to follow the prescribed protocol but

then try to learn additional information from the transcript of the

execution. In contrast, the stronger malicious model does not make

any assumptions about the behavior of the corrupted parties. Finally,

some protocols assume an honest majority (i.e., are secure only as

long as strictly fewer than 1/2 of the parties are corrupted), while

others are secure for any number of corruptions (i.e., even if only

of the parties is honest).

In this workwe focus onMPC protocols tolerating any number of

malicious corruptions. Previous implementations of MPC protocols

in this model rely on some variant of the secret-sharing paradigm

introduced by Goldreich, Micali, and Wigderson [23]. At a high

level, this technique requires the parties to maintain the invariant

of holding a linear secret sharing of the values on the circuit wires,

along with some sort of authentication information on those shares.

Linear gates in the circuit (e.g., XOR, ADD) can be processed locally,

while non-linear operations (e.g., AND, MULT) are handled by

having the parties interact with each other to maintain the desired

invariant. The most notable example of a protocol in this framework

is perhaps SPDZ [18, 19, 28], which supports arithmetic circuits;

protocols for boolean circuits have also been designed [20, 30].

Although this approach can lead to protocols with reasonable

efficiency when run over a LAN, it suffers the inherent drawback

of leading to round complexity linear in the depth of the circuit

being evaluated. This can have a significant impact on the overall

efficiency when the parties running the protocol are geographically

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

39

https://doi.org/10.1145/3133956.3133979

Setting Setup Indep. Depen. Online Total

3PC-LAN 36 47 12 2 95

128PC-LAN 390 2727 11670 1870 16657

14PC-Worldwide 8711 9412 1947 250 20320

128PC-Worldwide 88056 30796 22659 2316 143827

Table 2: Selected performance results for our protocol. All
results are in milliseconds, based on a statistical security of 2

−40
.

We consider the following settings (see Section 6 for more details.):

(a) 3PC-LAN: three-party computation over a LAN;

(b) 128PC-LAN: 128-party computation over a LAN;

(c) 14PC-Worldwide: 14-party computation over a WAN, with

parties located in 14 different cities across five continents;

(d) 128PC-Worldwide: 128-party computation over a WAN, with

parties located in 8 different cities across five continents (each city

with 16 parties).

separated or when the number of parties is high, and the commu-

nication latency dominates the cost of the execution. For example,

the communication latency between parties located in the U.S. and

Europe is around 75 ms even with the dedicated network provided

by Amazon EC2. If such parties are evaluating, say, SHA-256 (which

has a circuit depth of about 4,000), then a linear-round protocol

requires 300, 000 ms just for the back-and-forth interaction between

those parties, not even counting the time required for performing

local cryptographic operations or transmitting any data.

Constant-round protocols tolerating any number of malicious

corruptions have also been designed. The basic approach here, first

proposed by Beaver, Micali, and Rogaway [3], is to have the par-

ties run a linear-round secure-computation protocol to compute

a garbled circuit [38] for the function f of interest; the parties

can then evaluate that garbled circuit using a constant number

of additional rounds. Since the circuit for computing the garbling

of f has depth independent of f , the overall number of rounds

is constant. Although several recent papers have explored this

approach [14, 31, 32], these investigations have remained largely

theoretical since the overall cost of even the best protocol using this

approach is asymptotically worse than the nonconstant-round pro-

tocols mentioned above; see Table 1. In fact, prior implementations

of constant-round MPC consider only the semi-honest setting [5, 6].

1.1 Our Contributions
In this paper, we take a significant step towards practical MPC

tolerating an unbounded number of malicious corruptions. To this

end, we propose a new, constant-round protocol for multi-party

computation of boolean circuits secure in this setting. Our protocol

extends and generalizes the recent work of Wang et al. [37] in

the two-party setting. Specifically, we first design an optimized,

multi-party version of their TinyOT protocol so as to enable n
parties to generate certain authenticated information as part of a

preprocessing phase. Next, generalizing their main protocol, we

show how to use this information to distributively construct a single
“authenticated” garbled circuit that is evaluated by a single party.

An overview of our entire protocol appears in Section 3, with details

in the remainder of the paper.

Our protocol improves upon the state-of-the-art both asymptoti-

cally (cf. Table 1) and concretely (see Section 6.4), and in particular it

allows us to give the first implementation of a constant-round MPC

protocol with malicious security. Our experiments demonstrate

that our protocol is both efficient and scalable:

• Efficiency: For three-party computation over a LAN, our

protocol requires only 95 ms to securely evaluate AES. This

is roughly a 700× improvement over the best prior work, and

only 2.5× slower than the best known result in the two-party
setting [37]. In general, forn-party computation our protocol

improves upon the best prior work [31, 32] (which was not

implemented) by a factor of more than 200n.
• Scalability: We successfully executed our protocol with

many parties located all over the world, computing (for ex-

ample) AES with 128 parties across 5 continents in under

3 minutes. To the best of our knowledge, our work repre-

sents the largest-scale demonstration of secure computation

to date, even considering weaker adversarial models.

Selected performance results for our protocol are reported in Table 2.

Following [34], we divide execution into different phases:

• Setup. Here, the parties generate information that can be

used for computation of multiple, possibly different func-

tions. For example, base-OT can be performed in this phase.

• Function-independent preprocessing. Here, the parties
begin execution of the protocol for a particular computation.

At this point, the parties only need to know an upper bound

on the size of the circuit that will be computed.

• Function-dependent preprocessing.Here the parties know
the function being computed, but need not know their inputs.

• Online phase. The parties evaluate the function on their

inputs.

1.2 Related Work

Implementations of MPC protocols. The first implementations

of generic MPC assumed a semi-honest adversary corrupting a mi-

nority of the parties. Early work in this area includes FairplayMP [5]

for boolean circuits, and VIFF [15] and SEPIA [11] for arithmetic cir-

cuits. Implementations of protocols handling an arbitrary number

of corrupted parties, but still in the semi-honest setting, were shown

by Choi et al. [13] and Ben-Efraim et al. [6], the latter running in a

constant number of rounds.

There are fewer implementations of MPC protocols handling

malicious attackers. Jakobsen et al. [26] developed the first such

system. SPDZ and its subsequent improvements [18, 19, 28, 29]

greatly improved the efficiency. As noted earlier, all existing im-

plementations of MPC tolerating malicious attackers have round

complexity linear in the depth of the circuit.

Another line of work has specifically targeted three-party com-

putation. Implementations here include Sharemind [8, 9], the sugar-

beet auction run by Bogetoft et al. [10], and the recent work of

Araki et al. [2]; these each tolerate only semi-honest behavior. Mo-

hassel et al. [33] and Furukawa et al. [21] tolerate a malicious at-

tacker corrupting only one party.

Constant-round MPC. Techniques for building constant-round

MPC protocols have been studied in various settings. As noted

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

40

above, FairplayMP [5] and Ben-Efraim et al. [6] implemented this

approach in the semi-honest setting. Other researchers have pro-

posed approaches without providing an implementation, possibly

because an implementation would be too complex or because the

concrete efficiency of the resulting protocol would be uncompet-

itive with nonconstant-round protocols. As examples, Damgård

and Ishai [16] proposed a protocol making black-box use of the

underlying cryptographic primitives, and Choi et al. [14] looked

at the three-party setting with malicious corruption of two parties.

Lindell et al. [31, 32] considered optimizations of the BMR approach

in the malicious setting. We compare the efficiency of our protocol

with relevant prior work in Section 6.4.

Concurrent work. Independent of our work, Hazay et al. [25]

proposed and implemented a constant-round MPC protocol with

malicious security against any number of corruptions. The complex-

ities of the online the function-dependent preprocessing phases of

their protocol are similar to ours, though the underlying technique

is very different. On the other hand, our function-independent

processing phase is more efficient than theirs both asymptotically

and concretely, and appears to be 3 × −5× faster in practice. See

Section 6.4 for a more detailed comparison.

2 NOTATION AND PRELIMINARIES
We use κ and ρ to denote the computational and statistical security

parameters, respectively. We use = to denote equality and := to

denote assignment.

A circuit is viewed as a list of gates of the form (α , β ,γ ,T), where
this represents a gate with input wires α and β , output wire γ , and
gate type T ∈ {⊕,∧}. Parties are denoted by P1, . . . , Pn . We use Ii
to denote the set of input-wire indices for Pi ,W to denote the set

of output-wire indices for all AND gates, and O to denote the set of

output-wire indices of the circuit. (We assume all parties learn the

output.)M is used to denote the set of all corrupted parties, with

H = [n] \M denoting the set of all honest parties.

Our protocol operates by having the parties distributively con-

struct a garbled circuit that is evaluated by one of the parties; we

let P1 be the circuit evaluator.

Authenticated bits. Information-theoretic message authentica-

tion codes (IT-MACs) for authenticating bits were first used for effi-

cient secure computation by Nielsen et al. [35] in the two-party set-

ting. The idea can be extended to the multiparty setting as follows.

Each player Pi holds a global MAC key ∆i ∈ {0, 1}
κ
. When Pi holds

a bit x authenticated by Pj , this means that Pj is given a random key

Kj [x] ∈ {0, 1}κ and Pi is given the MAC tag Mj [x] := Kj [x] ⊕ x∆j .

We let [x]
i
denote an authenticated bit where the value of x is

known to Pi , and is authenticated to all other parties. In more de-

tail, [x]
i
means that (x , {Mk [x]}k,i) is given to Pi , and Kj [x] is

given to Pj for j , i .

Note that [x]
i
is XOR-homomorphic: given two authenticated

bits [x]
i , [y]

i
known to the same party Pi , it is possible to locally

compute the authenticated bit [z]
i
with z = x ⊕ y as follows:

• Pi computes z := x ⊕ y, and
{
Mj [z] := Mj [x] ⊕Mj [y]

}
j,i

;

• Pj (for j , i) computes Kj [z] := Kj [x] ⊕ Kj [y].

Parties can also locally negate [x]
i
, resulting in [z]

i
with z = x̄ :

• Pi computes z := x ⊕ 1 and

{
Mj [z] := Mj [x]

}
j,i

;

• Pj (for j , i) computes Kj [z] := Kj [x] ⊕ ∆j .

We let F n
aBit denote an ideal functionality that distributes authen-

ticated bits to the parties.(For details, see Figure 4 in Section 5.1).

We also discuss an efficient instantiation of this functionality in

Section 5.1.

Note that the above representation assumes that Pi uses a single
global MAC key ∆i . In cases where other keys are used, we explic-

itly add a subscript to the representation, i.e., we use Ki [x]Gi and

Mi [x]Gi = Ki [x]Gi ⊕ xGi to denote the key and MAC tag in this

case.

Authenticated shares. In the above construction, x is known to

one party. To generate an authenticated shared bit x , where x is not

known to any party, we generate XOR-shares for x (i.e., shares {x i }
with

⊕
i x

i = x) and then distribute the authenticated bits {[x i]i }.
We let ⟨x⟩ denote the collection of these authenticated shares for x ;

that is, ⟨x⟩means that each party Pi holds
(
x i , {Mj [x

i
],Ki [x j]}j,i

)
.

We let FaShare denote an ideal functionality that distributes au-

thenticated shared bits to the parties (Details see Figure 6 in Sec-

tion 5.2). We discuss an efficient instantiation of this functionality

in Section 5.2.

Definition of security.We use the standard notion of (standalone)

security against an unbounded number of malicious parties. As our

protocol is described, only PA receives output; however, it would

not be difficult to modify the protocol (using standard techniques)

to support arbitrary outputs for different parties. In that case our

protocol would achieve the notion of secure computation with

designated abort [22, 24].

3 OVERVIEW OF OUR MAIN PROTOCOL
Our main protocol is designed in the FPre-hybrid model (see Fig-

ure 1). At a high level, FPre generates authenticated shares on

random bits x ,y, z such that z = x ∧ y. (We refer to these as AND
triples.) Our main protocol then uses those authenticated shares to

distributively construct a single, “authenticated” garbled circuit that

is evaluated by one of the parties. In the remainder of this section,

we describe our main protocol; further details are in Section 4. In

Section 5 we then discuss how to efficiently realize FPre.

3.1 Two-Party Authenticated Garbling
Wang et al. [37] recently proposed a maliciously secure protocol for

two-party computation using a two-party version of FPre. Before

explaining how we extend it to the multiparty setting, we briefly

describe their protocol partially based on their presentation.

Their protocol is based on a standard garbled circuit, where each

wire α is associated with a random “mask” λα ∈ {0, 1} known to

PA. If the actual wire value when the circuit is evaluated is x , then
the masked value observed by the circuit evaluator (namely, PB)
will be x̂ = x ⊕ λα . Each wire α is also associated with two labels

Lα,0 and Lα,1 := Lα,0 ⊕ ∆ known to PA. PB also learns Lα, x̂ for

that wire. Let H be a hash function modeled as a random oracle.

The garbled table for an AND gate (α , β,γ ,∧) is given by:

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

41

Functionality FPre
Honest parties:

1. Upon receiving init from all parties, sample {∆i ∈ {0, 1}κ }i∈[n]
and send ∆i to Pi .

2. Upon receiving random from all Pi , sample a random bit r and a random authenticated share ⟨r ⟩ = {(r i , {Mj [r i], Ki [r j]}j,i) }i∈[n]
. For each

i ∈ [n], the box sends (r i , {Mj [r i], Ki [r j]}j,i) to Pi .
3. Upon receiving

(
AND, (r i , {Mj [r i], Ki [r j]}j,i), (s i , {Mj [s i], Ki [s j]}j,i

)
from Pi for all i ∈ [n], the box checks that all MACs are valid,

computes t :=
(⊕

i∈[n]
r i

)
∧

(⊕
i∈[n]

s i
)
and picks a random authenticated share ⟨t ⟩ = {(t i , {Mj [t i], Ki [t j]}j,i) }i∈[n]

. For each i ∈ [n],

the box sends (t i , {Mj [t i], Ki [t j]}j,i) to Pi .

Corrupted parties: Corrupted parties can choose randomness used to compute the value they receive from the functionality.

Global key queries: The adversary at any point can send some (p, ∆′) and will be told if ∆′ = ∆p .

Figure 1: The multi-party preprocessing functionality.

x̂ ŷ truth table garbled table

0 0 ẑ00 = (λα ∧ λβ) ⊕ λγ H (Lα ,0, Lβ ,0, γ , 00) ⊕ (ẑ00, Lγ , ẑ
00
)

0 1 ẑ01 = (λα ∧ λβ) ⊕ λγ H (Lα ,0, Lβ ,1, γ , 01) ⊕ (ẑ01, Lγ , ẑ
01
)

1 0 ẑ10 = (λα ∧ λβ) ⊕ λγ H (Lα ,1, Lβ ,0, γ , 10) ⊕ (ẑ10, Lγ , ẑ
10
)

1 1 ẑ11 = (λα ∧ λβ) ⊕ λγ H (Lα ,1, Lβ ,1, γ , 11) ⊕ (ẑ11, Lγ , ẑ
11
)

PB, holding (x̂ , Lα, x̂) and (ŷ, Lβ,ŷ), evaluates it by picking the (x̂ , ŷ)-
th row and decrypting using the garbled labels it holds, thus ob-

taining (ẑ, Lγ , ẑ). This is not secure because a malicious party can

perform a selective failure attack to learn, e.g., x̂ . However, Wang et

al. observe that it can be prevented if two parties hold secret shares
of the garbled table: e.g., for the first row, PA knows (r00, LAγ , ẑ00

),

while PB knows (s00 = ẑ00 ⊕ r00, LBγ , ẑ00

), where Lγ ,z = LAγ ,z ⊕ LBγ ,z .
Once PA sends its shares of all the garbled gates, PB can XOR those

shares with its own and then evaluate the garbled circuit as before.

Informally, it ensures privacy against a malicious PA since the

results of any changes PA makes to the garbled circuit are indepen-
dent of PB’s inputs. However, PA can still affect correctness by, e.g.,
flipping the masked value in a row. This is solved using information-

theoretic MACs on PA’s share of masked bits. The shares of the

garbled table now take the form as shown in the table below.

x̂ ŷ PA ’s share of garbled table PB ’s share of garbled table

0 0 H (Lα ,0, Lβ ,0, γ , 00) ⊕ (r00, M[r00], LAγ , ẑ
00

) (s00 = ẑ00 ⊕ r00, K[r00], LBγ , ẑ
00

)

0 1 H (Lα ,0, Lβ ,1, γ , 01) ⊕ (r01, M[r01], LAγ , ẑ
01

) (s01 = ẑ01 ⊕ r01, K[r01], LBγ , ẑ
01

)

1 0 H (Lα ,1, Lβ ,0, γ , 10) ⊕ (r10, M[r10], LAγ , ẑ
10

) (s10 = ẑ10 ⊕ r10, K[r10], LBγ , ẑ
10

)

1 1 H (Lα ,1, Lβ ,1, γ , 11) ⊕ (r11, M[r11], LAγ , ẑ
11

) (s11 = ẑ11 ⊕ r11, K[r11], LBγ , ẑ
11

)

PB will verify the MAC on PA’s share of each masked bit that it

learns. This limits PA to only being able to cause PB to abort, which

will occur independently of PB’s actual input.
Finally they observe that if setting ∆ = ∆A then Lγ , ẑ00

can be

efficiently secret-shared:

Lγ , ẑ00
= Lγ ,0 ⊕ ẑ00∆A

= Lγ ,0 ⊕ r00∆A ⊕ s00∆A

=
(
Lγ ,0 ⊕ r00∆A ⊕ K[s00]

)︸ ︷︷ ︸
LAγ , ẑ

00

⊕ (K[s00] ⊕ s00∆A)︸ ︷︷ ︸
LB

γ , ẑ
00

.

Recall that PA knows Lγ ,0, r00 and ∆A. Their key insight is that if s00

is an authenticated bit known to PB, then PA can locally compute

the share LAγ , ẑ00

:= Lγ ,0 ⊕ r00∆A ⊕ K[s00] from the information it

has, and then the other share LBγ , ẑ00

:= K[s00] ⊕ s00∆A is just the

MAC on s00 that PB already holds. Table 3 shows the garbled table

based on this observation.

3.2 Extension to the Multiparty Setting
It is not trivial to extend the above protocol to the multiparty setting.

The main challenge is that even when n − 1 parties are corrupted,

we still need to make sure that the adversary cannot learn any

information about the honest party’s inputs.

Attempted ideas. One idea, adopted by Choi et al. [14] in the

three-party setting, is to let n − 1 parties jointly compute a garbled

circuit that the remaining party will evaluate. However, if the n − 1

garblers are corrupt, there is no guarantee about the correctness of

the garbled circuit they generate. For that reason, Choi et al. had to

use cut-and-choose to check correctness of a random subset of ρ
garbled circuits, which imposes a huge overhead.

To avoid this additional cut-and-choose, we would like all par-

ties to be involved in the garbled-circuit generation, as in the BMR

protocol [3]. However, state-of-the-art protocols based on BMR that

are maliciously secure against corruption of n − 1 parties require ei-

ther O (n) somewhat homomorphic encryptions [32] or O (n) SPDZ
multiplication subprotocols [31] per AND gate both of which are

relatively inefficient. We aim instead to use “simpler” TinyOT-like

functionalities as we explain next.

Multiparty TinyOT: BDOZ-style vs. SPDZ-style. We observe

that in the existing literature, there are mainly two flavors on how

authenticated shared are constructed.

• BDOZ-style [7]: For a secret bit x , each party holds a share

of x . For each ordered pair of parties (Pi , Pj), Pi authenticates

its own share (namely x i) to Pj .
• SPDZ-style [19]: Each party holds a share of a global MAC

key. For a secret bit x , each party holds a share of x and a

share of the MAC on x .

Note that these protocols are constructed for arithmetic circuits,

but these representations also apply to binary circuits. Existing

papers prefer SPDZ-style shares to BDOZ-style shares, because

SPDZ-style shares are smaller and thus more efficient to operate on.

Indeed, existing papers that investigated protocols for multi-party

TinyOT are all based on SPDZ-style shares [12, 20, 30].

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

42

x ⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H (Lα ,0, Lβ ,0, γ , 00) ⊕ (r00, M[r00], Lγ ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = ẑ00 ⊕ r00, K[r00], M[s00])
0 1 H (Lα ,0, Lβ ,1, γ , 01) ⊕ (r01, M[r01], Lγ ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = ẑ01 ⊕ r01, K[r01], M[s01])
1 0 H (Lα ,1, Lβ ,0, γ , 10) ⊕ (r10, M[r10], Lγ ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = ẑ10 ⊕ r10, K[r10], M[s10])
1 1 H (Lα ,1, Lβ ,1, γ , 11) ⊕ (r11, M[r11], Lγ ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = ẑ11 ⊕ r11, K[r11], M[s11])

Table 3: Final construction of an authenticated garbled table for an AND gate.

Our key observation is that such SPDZ-style AND triple, al-

though efficient for interactive MPC protocols, are not suitable for

our use to construct constant-round MPC protocols. In particular,

in the SPDZ-style shares, each parties knows ∆i as a share of the
global key ∆ =

⊕
i ∆i . For each bit x , they holds shares of x∆.

Since ∆ is not known to any party, it is not directly related to any

garbled circuit. On the contrary, in the BDOZ-style protocols, each

party holds (x i , {Mj [x
i
],Ki [x j]}j,i), as we have already described

in Section 2. In this case, they essentially hold shares of x∆i for all
i ∈ [n], because:

x∆i =
*.
,

⊕
j

x j+/
-
∆i = x i∆i ⊕

*.
,

⊕
j,i

x j∆i
+/
-

= x i∆i ⊕
*.
,

⊕
j,i

Mi [x
j
] ⊕ Ki [x j]

+/
-

=
*.
,
x i∆i ⊕

⊕
j,i

Ki [x j]
+/
-
⊕

⊕
j,i

Mi [x
j
]

Here, Pi knows the first value, while each Pj with j , i knows

Mi [x
j
]. In other word, a BDOZ-style share of a bit x can be used to

construct shares of x∆i for each i . This can further be used to con-

struct shares of garbled labels, if we use the same ∆i for authenticated
shares and the global difference used in free-XOR. Indeed, looking
ahead to the main protocol in Figure 2 step 4 (d), the content of the

garbled circuit can be viewed as some authentication information

plus shares of the garbled output labels for each garbler.

High level picture of the protocol. Given the above discussion,

we can now picture the high level idea of our protocol. Our idea,

from a high level view, is to let n − 1 parties be garblers, each

maintaining a set of garbled labels, and to let the remaining party

be the evaluator. Each garbler knows its own set of garbled labels.

However, for each gate and for each garbler, the permuted garbled
output labels are secretly shared to all parties, and thus no party

knows how these labels are permuted. For each garbler Pi and a

garbler row, Pi has shares of permuted garbled output labels for all

garblers. In the garbled table, Pi encrypts all these shares using its

own set of garbled input labels. Further, shares of the mask value

are authenticated similarly. The evaluator decrypts the same row of

garbled tables from all garblers in order to recompute the garbled

output labels for each garbler. Intuitively, this ensures that for any

set of n − 1 parties, they cannot garble or evaluate any gate.

4 THE MAIN SCHEME
Since we have discussed the main intuition of our protocol, we will

proceed to the details directly. The proof of the main protocol can

be found in Section A.1. In Figure 2 and Figure 3, we present the

complete MPC protocol in the FPre-hybrid model. The protocol can

be divided into five phases:

1. Circuit Pre-scan. (Step 1-3) In this phase, each party ob-

tains their own private global MAC keys (∆i) from FPre, and
generate authenticated shares on wire masks for all wires.

2. Circuit Garbling. In this phase, each party compute shares

of garbled tables for each garbler (Step 4 (a) - 4 (c)). Garblers

then compute the distributed garbled circuits based on these

shares (Step 4 (d)).

3. Circuit Input Processing. For each input wire that corre-

sponds to Pi ’s input, all other parties reveal their share of
the wire mask to Pi . Party[i] then broadcasts the masked

input values. All garblers, upon receiving this masked input

value, send the corresponding key to the evaluator.

4. Circuit Evaluation. The evaluator evaluate the circuit fol-
lowing the topological order. In detail, the garbled wire labels

from each garbler is used to obtain a set of shares of the wire

labels for the output of the gate. The wire labels can then be

constructed from the shares.

5. CircuitOutput Processing.Now the evaluator holdsmasked

output. All garblers reveal their shares of the output wire

masks for the circuit to let evaluator unmask the value.

5 EFFICIENTLY REALIZING FPRE
In this section, we describe an efficient instantiation of FPre, which

is amulti-party version of TinyOT protocol. All previous related pro-

tocols [12, 20, 30] for multi-party TinyOT rely on cut-and-choose to

ensure correctness and another bucketing to ensure privacy, result-

ing in a communication/computation complexity at least Ω(B2n2)
per AND triple, where bucket size B = ρ/ log |C | (See Table 1 for
more detail). Furthermore, these protocols output SPDZ-style shares

that are not compatible with our main protocol. Our new protocol

introduced in this section works with BDOZ-style shares; further-

more the complexity per AND triple is O (Bn2) with a very small

constant. The new protocol features a new distributed AND triple

checking protocol that checks the correctness of an AND triplewith-
out cut-and-choose. The adversary is still able to perform selective

failure attacks on a triple with probability of being caught at least

one-half. Such leakage can be easily eliminated using bucketing.

In the following, we will build our protocol from the bottom

up. In Section 5.1 and Section 5.2, we discuss the multi-party au-

thenticated bits and authenticated shares that we also introduced

in Section 2; in Section 5.4, we discuss an AND triple generation

protocol that allows an adversary to perform selective failure at-

tacks; the final protocol that eliminates such an attack follows the

bucketing protocols used in previous works [35, 37], and is detailed

in Section 5.5.

Note that similar to the prior work [37], our protocol also relies

on two-party FaBit functionality, which has a random global key for

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

43

Protocol Πmpc

Inputs: In the function-independent phase, parties know |C | and |I |; in the function-dependent phase, parties get a circuit representing function

f : {0, 1} |I1 | × ... × {0, 1} |In | → {0, 1} |O| ; in the input-processing phase, Pi holds xi ∈ {0, 1} |Ii | .

Function-independent phase:
1. Pi sends init to FPre, which sends ∆i to Pi .

2. For each wire w ∈ I ∪ W, i ∈ [n], Pi sends random to FPre, which sends

(
r iw ,

{
Mj [r iw], Ki [r

j
w]

}
j,i

)
to Pi , where

⊕
i∈[n]

r iw = λw . For

each i , 1, Pi also picks a random κ-bit string Liw,0.

Function-dependent phase:

3. For each gate G = (α, β, γ , ⊕), each i ∈ [n], Pi computes

(
r iγ ,

{
Mj [r iγ], Ki [r

j
γ]

}
j,i

)
:=

(
r iα ⊕ r

i
β ,

{
Mj [r iα] ⊕Mj [r iβ], Ki [r

j
α] ⊕ Ki [r

j
β]

}
j,i

)
.

For each i , 1, Pi also computes Liγ ,0 := Liα ,0 ⊕ Liβ ,0.
4. For each gate G = (α, β, γ , ∧):

(a) For each i ∈ [n], Pi sends
(
and,

(
r iα ,

{
Mj [r iα], Ki [r

j
α]

}
j,i

)
,

(
r iβ ,

{
Mj [r iβ], Ki [r

j
β]

}
j,i

))
to FPre, which sends

(
r iσ ,

{
Mj [r iσ], Ki [r

j
σ]

}
j,i

)
to Pi , where

⊕
i∈[n]

r iσ =
(⊕

i∈[n]
r iα

)
∧

(⊕
i∈[n]

r iβ

)
.

(b) For each i , 1, Pi computes the following locally.(
r iγ ,0,

{
Mj [r iγ ,0], Ki [r

j
γ ,0]

}
j,i

)
:=

(
r iσ ⊕ r

i
γ ,

{
Mj [r iσ] ⊕Mj [r iγ], Ki [r

j
σ] ⊕ Ki [r

j
γ]

}
j,i

)
(
r iγ ,1,

{
Mj [r iγ ,1], Ki [r

j
γ ,1]

}
j,i

)
:=

(
r iγ ,0 ⊕ r

i
α ,

{
Mj [r iγ ,0] ⊕Mj [r iα], Ki [r

j
γ ,0] ⊕ Ki [r

j
α]

}
j,i

)
(
r iγ ,2,

{
Mj [r iγ ,2], Ki [r

j
γ ,2]

}
j,i

)
:=

(
r iγ ,0 ⊕ r

i
β ,

{
Mj [r iγ ,0] ⊕Mj [r iβ], Ki [r

j
γ ,0] ⊕ Ki [r

j
β]

}
j,i

)
(
r iγ ,3,

{
Mj [r iγ ,3], Ki [r

j
γ ,3]

}
j,i

)
:=

(
r iγ ,1 ⊕ r

i
β ,

{
M1[r iγ ,1] ⊕M1[r iβ], Ki [r 1

γ ,1] ⊕ Ki [r 1

β] ⊕ ∆i

}
⋃ {

Mj [r iγ ,1] ⊕Mj [r iβ], Ki [r
j
γ ,1] ⊕ Ki [r

j
β]

}
j,i,1

)
(c) P1 computes the following locally.(
r 1

γ ,0,
{
Mj [r 1

γ ,0], K1[r jγ ,0]

}
j,i

)
:=

(
r 1

σ ⊕ r
1

γ ,
{
Mj [r 1

σ] ⊕Mj [r 1

γ], K1[r jσ] ⊕ K1[r jγ]

}
j,i

)
(
r 1

γ ,1,
{
Mj [r 1

γ ,1], K1[r jγ ,1]

}
j,i

)
:=

(
r 1

γ ,0 ⊕ r
1

α ,
{
Mj [r 1

γ ,0] ⊕Mj [r 1

α], K1[r jγ ,0] ⊕ K1[r jα]

}
j,i

)
(
r 1

γ ,2,
{
Mj [r 1

γ ,2], K1[r jγ ,2]

}
j,i

)
:=

(
r 1

γ ,0 ⊕ r
1

β ,
{
Mj [r 1

γ ,0] ⊕Mj [r 1

β], K1[r jγ ,0] ⊕ K1[r jβ]

}
j,i

)
(
r 1

γ ,3,
{
Mj [r 1

γ ,3], K1[r jγ ,3]

}
j,i

)
:=

(
r 1

γ ,1 ⊕ r
1

β ⊕ 1,
{
Mj [r 1

γ ,1] ⊕Mj [r 1

β], K1[r jγ ,1] ⊕ K1[r jβ]

}
j,i

)
(d) For each i , 1, Pi computes Liα ,1 := Liα ,0 ⊕ ∆i and Liβ ,1 := Liβ ,0 ⊕ ∆i , and sends the following to P1.

G i
γ ,0 := H

(
Liα ,0, L

i
β ,0, γ , 0

)
⊕

(
r iγ ,0,

{
Mj [r iγ ,0]

}
j,i

, Liγ ,0 ⊕
(⊕

j,i Ki [r
j
γ ,0]

)
⊕ r iγ ,0∆i

)
G i
γ ,1 := H

(
Liα ,0, L

i
β ,1, γ , 1

)
⊕

(
r iγ ,1,

{
Mj [r iγ ,1]

}
j,i

, Liγ ,0 ⊕
(⊕

j,i Ki [r
j
γ ,1]

)
⊕ r iγ ,1∆i

)
G i
γ ,2 := H

(
Liα ,1, L

i
β ,0, γ , 2

)
⊕

(
r iγ ,2,

{
Mj [r iγ ,2]

}
j,i

, Liγ ,0 ⊕
(⊕

j,i Ki [r
j
γ ,2]

)
⊕ r iγ ,2∆i

)
G i
γ ,3 := H

(
Liα ,1, L

i
β ,1, γ , 3

)
⊕

(
r iγ ,3,

{
Mj [r iγ ,3]

}
j,i

, Liγ ,0 ⊕
(⊕

j,i Ki [r
j
γ ,3]

)
⊕ r iγ ,3∆i

)
Figure 2: Our main protocol. Here ρ is set to κ for clarity, but this is not necessary.

each party preserved across all executions and allows an adversary

to make “global-key queries” to honest parties’ global keys. Both

these features are preserved in all our ideal functionalities, but we

suppress explicit mention of them in our descriptions. Global-key

queries have little effect on security, since the probability that the

attacker can correctly guess the honest party’s value of ∆ using

polynomially many queries is negligible.

5.1 Multi-Party Authenticated Bit
The first step of our protocol is to generate multi-party authen-

ticated bit. The functionality F n
aBit, also discussed in Section 2, is

shown in Figure 4. Notice that if we set n = 2, then F 2

aBit is the

original two-party authenticated bit functionality [35]. One naive

solution to realize F n
aBit is to let Pi run the two-party authenti-

cated bit protocol with every other party using the same bit x . This
solution is not secure, since a malicious Pi can potentially use in-

consistent values when running F 2

aBit with other parties. In our

protocol, we use this general idea and we also perform additional

checks to ensure that Pi uses consistent values. The check is similar

to the recent malicious OT extension protocol by Keller et al. [27],

where parties perform checks based on random linear combination:

a malicious Pi who uses inconsistent values is able to pass ρ checks

with probability at most 2
−ρ

. Note that these checks also reveal

some linear relationship of x ’s. To eliminate this leakage, a small

number of random authenticated bits are computed and checked

together. They are later discarded to break the linear relationships.

The protocol is described in Figure 5 with proof in Section A.2.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

44

Protocol Πmpc, continued

Input Processing:

5. For each i , 1, w ∈ Ii , for each j , i , Pj sends (r
j
w , Mi [r

j
w]) to Pi , who checks that (r jw , Mi [r

j
w], Ki [r

j
w]) is valid, and computes x iw ⊕ λw :=

x iw ⊕
(⊕

i∈[n]
r iw

)
. Pi broadcasts the value x iw ⊕ λw . For each j , 1, Pj sends L

j
x i ⊕λw

to P1.

6. For each w ∈ I1, i , 1, Pi sends (r iw , M1[r iw]) to P1, who checks that (r iw , M1[r iw], K1[r iw]) are valid, and computes x 1

w ⊕ λw := x 1

w ⊕(⊕
i∈[n]

r iw
)
. P1 sends x 1

w ⊕ λw to Pi , who sends Li
w,x 1

w ⊕λw
to P1.

Circuit Evaluation:

7. P1 evaluates the circuit following the topological order. For each gate G = (α, β, γ , T), P1 holds

(
zα ⊕ λα ,

{
Liα ,zα ⊕λα

}
i,1

)
and(

zβ ⊕ λβ ,
{
Liβ ,zβ ⊕λβ

}
i,1

)
, where zα , zβ are the underlying values of the wire.

(a) If T = ⊕, P1 computes zγ ⊕ λγ := (zα ⊕ λα) ⊕ (zβ ⊕ λβ) and
{
Liγ ,zγ ⊕λγ := Liα ,zα ⊕λα ⊕ Liβ ,zβ ⊕λβ

}
i,1

(b) If T = ∧, P1 computes ℓ := 2(zα ⊕ λα) + (zβ ⊕ λβ). For i , 1, P1 computes(
r iγ , ℓ,

{
Mj [r iγ , ℓ]

}
j,i

, Liγ
)

:= G i
γ , ℓ ⊕ H

(
Liα ,zα ⊕λα , L

i
β ,zβ ⊕λβ

, γ , ℓ
)
.

P1 checks that

{(
r iγ , ℓ, M1[r iγ , ℓ], K1[r iγ , ℓ]

)}
i,1

are valid and aborts if fails. P1 computes zγ ⊕ λγ :=
⊕

i∈[n]
r iγ , ℓ , and{

Liγ ,zγ ⊕λγ := Liγ ⊕
(⊕

j,i Mi [r
j
γ , ℓ]

)}
i,1

Output Processing:
8. For each w ∈ O, i , 1, Pi sends (r iw , M1[r iw]) to P1, who checks that (r iw , M1[r iw], K1[r iw]) is valid. P1 computes zw := (λw ⊕ zw) ⊕(⊕

i∈[n]
r iw

)
.

Figure 3: Our main protocol, continued. Here ρ is set to κ for clarity, but this is not necessary.

Functionality F n
aBit

Honest Parties: The box receives (input, i, ℓ) from all parties and

picks random bit-string x ∈ {0, 1}ℓ . For each j ∈ [ℓ], k , i , the box
picks random Kk [x j], and computes {Mk [x j] := Kk [x j] ⊕x j∆k }k,i ,
and sends them to parties. That is, for each j ∈ [ℓ], it sends

{Mk [x j]}k,i to Pi and sends Kk [x j] to Pk for each k , i .
Corrupted parties: Corrupted parties can choose their output from

the protocol.

Figure 4: Functionality for multi-party authenticated bit.

5.2 Multi-Party Authenticated Shares
In this section, we aim to construct a protocol that allows multiple

parties to obtain authenticated shares of a secret bit, as shown in

Figure 6. One straightforward idea is to call F n
aBit n times, where in

the i-th execution, they compute [x i]i for some random x i known
only to Pi . However, the adversary is still able to perform an attack:

a malicious Pi can potentially use different global MAC keys (∆i) in
different executions of F n

aBit. The result is that [x j]j is authenticated

with a global MAC key ∆i , while some other [xk]
k
is authenticated

with a different global MAC key ∆′i . This attack does not happen in

the two-party setting, because each party is authenticated to only

one party.

Our key idea is based on the observation that the two-party

authenticated bit protocol already ensured that, when Pi and Pj
compute multiple authenticated bits, Pi uses the same ∆i across
different authenticated bits. Therefore, in the above insecure at-

tempt, if one authenticated share has consistent global MAC keys,

Protocol ΠnaBit

Protocol:
1. Set ℓ′ := ℓ + 2ρ . Pi picks random bit-string x ∈ {0, 1}ℓ

′
.

2. For each k , i , Pi and Pk runs F 2

aBit, where Pi
sends {x j }j∈[ℓ′] to F 2

aBit. From the functionality, Pi gets

{Mk [x j]}j∈[ℓ′], Pk gets {Kk [x j]}j∈[ℓ′].

3. For j ∈ [2ρ], all parties perform the following:

(a) All parties sample a random ℓ′-bit strings r .
(b) Pi computes Xj =

⊕ℓ′

m=1
rmxm , and broadcast Xj , and

computes

{
Mk [Xj] =

⊕ℓ′

m=1
rmMk [xm]

}
k,i

.

(c) Pk computes Kk [Xj] =
⊕ℓ′

m=1
rmKk [xm].

(d) Pi sendsMk [Xj] to Pk who check the validity.

4. All parties return the first ℓ objects.

Figure 5: The protocol Πn
aBit instantiating F

n
aBit.

then all authenticated shares have consistent global MAC keys, and

vice versa. In our secure construction, we first let all parties com-

pute ℓ + ρ number of multi-party authenticated shares as described

above, which may not be secure. Then we partially open the last ρ
tuples to check the consistency of global MAC keys. A malicious

party who uses inconsistent ∆i ’s will get caught with probability

one-half for each partially opened shares.

In more detail, each player Pi will take the role of a prover once
to prove that he uses a consistent ∆i and the remaining players

will take the role of verifier for the given prover. The basic idea is

that if the prover used a consistent ∆i , then these authenticated

bits across different parties are XOR homomorphic. Taking a three-

party setting as an example. Say P1 has K1[x], K2[y] with global

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

45

Functionality FaShare

Honest Parties: The box receives (input, ℓ) from all parties and picks

random bit-strings x ∈ {0, 1}ℓ and random authenticated shares

{⟨x j ⟩}j∈[ℓ]
, and sends them to parties.

In detail, the box picks random bit strings {x i }i∈[n]
, each of length

ℓ bits. For each i ∈ [n], j ∈ [ℓ], The box picks random multi-party

authenticated bits [x ij]
i
and sends them to parties. That is, for each

j ∈ [ℓ], it sends (x ij , {Mk [x ij], Ki [xkj]}k,i) to Pi .

Corrupted parties: Corrupted parties can choose their output from

the protocol.

Figure 6: Functionality for multi-party authenticated share.

Protocol ΠaShare

Protocol:
1. Set ℓ′ := ℓ + ρ . For each i ∈ [n], Pi picks random bit-string

x i ∈ {0, 1}ℓ
′
.

2. For each i ∈ [n], all parties computemulti-party authenticated

bits by sending (i, ℓ′) to F n
aBit, which sends {[x ij]

i }j∈[ℓ′] to

parties.

3. For r ∈ [ρ], all parties perform the following:

(a) For each i ∈ [n], Pi parses {[xk
ℓ+r]

k }k∈[n]
as

(x i
ℓ+r , {Mk [x i

ℓ+r], Ki [xkℓ+r]}k,i). Each Pi computes

commitments (c0

i , d
0

i) ← Com(
⊕

k,i Ki [x
k
ℓ+r]),

(c1

i , d
1

i) ← Com(
⊕

k,i Ki [x
k
ℓ+r] ⊕ ∆i), and

(cMi , dMi) ← Com(x i
ℓ+r , {Mk [x i

ℓ+r]}k,i), and broadcast

(cmi , c0

i , c
1

i).
(b) For each i ∈ [n], after receiving all commitments, Pi broad-

casts dMi .

(c) For each i ∈ [n], Pi computes bi :=
⊕

k,i x
k
ℓ+r , and

broadcast db
i

i .

(d) For each i ∈ [n], Pi performs the following to check the

consistency of ∆’s: For each j , i , Pi computes K j ←

Open(cb j , db j) and check if it equals to

⊕
k,j Mj [xkℓ+r].

If any check fails, the party aborts.

4. All parties return the first ℓ objects.

Figure 7: The protocol ΠaShare instantiating FaShare.

keys ∆x
1
and ∆

y
1
which are potentially different; P2 has (x ,M1[x]);

P3 has (y,M1[y]). In our checking protocol, we let P1 commit to

values K1[x]⊕K1[y] and K1[x]⊕K1[y]⊕∆1. For an adversary who

uses inconsistent global keys, it needs to choose two values out of

the following four values to commit.

x = 0 y = 0 K1[x] ⊕ K2[y]

x = 0 y = 1 K1[x] ⊕ K2[y] ⊕ ∆
y
1

x = 1 y = 0 K1[x] ⊕ K2[y] ⊕ ∆x
1

x = 1 y = 1 K1[x] ⊕ K2[y] ⊕ ∆x
1
⊕ ∆

y
1

Later in the protocol, the adversary is asked to open the MAC for

x ⊕ y. If inconsistent global keys are used, this value can be any

of the four values each with one-fourth probability, therefore, the

adversary can win with probability at most 2/4 = 1/2. The details

of the protocol are shown in Figure 7 with proof in Section A.3.

Functionality FHaAND

Honest Parties:
1. The box picks random ⟨x ⟩ and sends it to all parties.

2. Upon receiving (i, {yij }j,i) from all Pi , the box picks random

bits {v i }i∈[n]
such that

⊕
i v

i
:=

⊕
i
⊕

j,i x
iy ji . The box

sends v i to Pi .

Corrupted parties: Corrupted parties can choose their output from

the protocol.

Figure 8: The Half Authenticated AND Functionality

Protocol ΠHaAND

Protocol:
1. All parties call FaShare to obtain ⟨x ⟩.
2. For each i, j ∈ [n], such that i , j ,
(a) Pi picks a random bit s j , and computes H0 :=

Lsb(H (Ki [x j])) ⊕s j ,H1 = Lsb(H (Ki [x j] ⊕∆i)) ⊕s j ⊕yij .
(b) Pi sends (H0, H1) to Pj , who computes t i := Hx j ⊕

Lsb(H (Mi [x j])).
3. For each i ∈ [n], Pi obtains v i :=

⊕
k,i (t

k ⊕ sk).

Figure 9: Protocol ΠHaAND instantiating FHaAND.

5.3 Half-Authenticated AND Triple
Before introducing the protocol for leaky authenticated AND triples,

there is yet another tool that we need. As described in Figure 8, the

functionality FHaAND is introduced to compute cross terms in AND

triples. It takes unauthenticated and potentially inconsistenty’s and
outputs authenticated share ⟨x⟩ as well as unauthenticated shares

of cross product terms. Details about the protocol is in Figure 9

with proof included in Section A.3.

5.4 Multi-Party Leaky Authenticated AND
Triple

Now we are ready to discuss the protocol for leaky authenticated

AND triples. It can be divided into following steps:

1. Call FaShare to obtain some random ⟨y⟩ and ⟨r ⟩.
2. Call FHaAND with y to obtain a random ⟨x⟩ and compute

shares {zi }, such that (
⊕

i x
i) ∧ (

⊕
i y

i) =
⊕

i z
i
.

3. Reveal d = z ⊕ r and computes ⟨z⟩ := ⟨r ⟩ ⊕ d .
4. Perform additional check to ensure the correctness of the

AND relationship.

In the above steps, the adversary is able to cheat by using incon-

sistent values of y and z between step 1 and 2. However, this only

allows the adversary to perform selective failure attack on x i ’s. For
example, the AND relationship checked is

*
,

⊕
i

x i+
-
∧ *

,

⊕
i

yi+
-
= *

,

⊕
i

zi+
-
.

The adversary can guess that the value of

⊕
x i = 0 and flip y j for

some j ∈ M. If the guess is correct, than the check will go through

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

46

Functionality FLaAND
Honest parties: For each i ∈ [n], the box picks random ⟨x ⟩, ⟨y⟩, ⟨z⟩
such that (

⊕
x i) ∧ (

⊕
yi) =

⊕
zi .

Corrupted parties:
1. Corrupted parties can choose all their randomness.

2. An adversary can send (Q, {Ri }i∈[n]
), which are κ-bit strings,

to the box and perform a linear combination test. The box

checks

Q ⊕
⊕
i

x iRi = 0

If the check is incorrect, the box outputs fail and terminates,

otherwise the box proceeds as normal.

3. An adversary can also send (q, {ri }i∈[n]
), which are all bits,

to the box and perform a linear combination test. The box

checks

q ⊕
⊕
i

x i ri = 0

If the check is incorrect, the box outputs fail and terminates,

otherwise the box proceeds as normal.

Figure 10: Functionality FLaAND for leaky AND triple.

and the protocol will proceed as normal. However, if the guess is

wrong, then the checking will abort and the adversary is caught.

One main challenge is what leakage we should aim for in this

functionality. We would like to limit the leakage to be possible only

on x i ’s, otherwise we would need more bucketing for each possible

leakage, as also noted by Nielsen et al. [35]. On the other hand, the

adversary can do more attacks than the one mentioned above: it is

also possible to, for example, learn

⊕
i ∈S x

i
for some set S ⊂ [n].

We find that the best way to abstract such attack is to allow the

adversary to perform a linear check on the value of x i ’s. As shown
in Figure 10, the adversary is allowed to send a list of coefficients

and check if the inner product between the coefficients and x values

is zero or not.

Our checking phase differs substantially from existing works. We

design an efficient checking protocol, that ensures the correctness

of the triple (if no party aborts) which allows malicious parties to

learn k bits of some specific information with probability at most

2
−k

. In the two-party protocol, one party constructs “checking

tables” and lets the other party to evaluate/check. In the multi-party

protocol here, we instead let all parties distributively construct the

“checking tables”. Interestingly, distributively constructing these

checks is inspired by the main protocol where parties distributively

construct garbled tables. As noted before, this protocol is vulnerable

to selective failure attacks. The full description of this protocol is

presented in Figure 11.

In the following, we will show the correctness and unforgeabil-

ity of the protocol, which are crucial to the security proof of the

protocol.

5.4.1 Correctness of the protocol. We want to show that the

protocol will compute a correct triple and will not abort if all parties

are honest. Notice that the value we are checking can be written as:

Protocol ΠLaAND

Triple computation.
1. For each i ∈ [n] each party calls FaShare and obtains random

authenticated shares {⟨y⟩, ⟨r ⟩}. All parties also calls FHaAND
to obtain random authenticated share ⟨x ⟩.

2. For each i ∈ [n], Pi sends (i, {yi }j,i) to FHaAND and gets

back some v i .
3. For each i ∈ [n], Pi computes zi := x iyi ⊕v i and e i := zi ⊕

r i . Pi broadcasts e i to all other parties. All parties computes

[zi]i := [r i]i ⊕ e i .
Triple checking.

4. For each i ∈ [n], Pi computes: Φi := yi∆i ⊕(⊕
k,i Ki [y

k
] ⊕Mk [yi]

)
.

5. For every pair of i, j ∈ [n], such that i , j , Pi com-

putes Ki [x j]Φi := H (Ki [x j]) and Ui, j := H (Ki [x j] ⊕
∆i) ⊕ Ki [x j]Φi ⊕ Φi , and sends Ui, j to Pj . Pj computes

Mi [x j]Φi := x jUi, j ⊕ H (Mi [x j]).
6. For i ∈ [n], Pi computes

Hi := x iΦi ⊕
(⊕

k,i Ki [x
k

]Φi ⊕Mk [x i]Φk
)
⊕ zi∆i ⊕(⊕

k,i Ki [z
k

] ⊕Mk [zi]
)
.

All parties simultaneously broadcast Hi by first broadcast-

ing the commitment of Hi and send the decommitment after

receiving commitments from all parties.

7. Each party check if

⊕
i Hi = 0 and abort if not true.

Figure 11: The protocol ΠLaAND.

⊕
i

Hi

=
⊕
i

*.
,
x iΦi ⊕

*.
,

⊕
k,i

Ki [xk]Φi ⊕Mk [x i]Φk
+/
-
⊕ zi∆i ⊕

*.
,

⊕
k,i

Ki [zk] ⊕Mk [zi]
+/
-

+/
-

=
⊕
i

*.
,
x iΦi ⊕

*.
,

⊕
k,i

Ki [xk]Φi ⊕Mk [x i]Φk
+/
-

+/
-
⊕

⊕
i

*.
,
zi∆i ⊕

*.
,

⊕
k,i

Ki [zk] ⊕Mk [zi]
+/
-

+/
-

=
⊕
i

*.
,
x iΦi ⊕

*.
,

⊕
k,i

Ki [xk]Φi ⊕Mi [xk]Φk
+/
-

+/
-
⊕

⊕
i

*.
,
zi∆i ⊕

*.
,

⊕
k,i

Ki [zk] ⊕Mi [zk]
+/
-

+/
-

=
⊕
i

*.
,
x iΦi ⊕

*.
,

⊕
k,i

xkΦi
+/
-

+/
-
⊕

⊕
i

*.
,
zi∆i ⊕

*.
,

⊕
k,i

zk∆i
+/
-

+/
-

= *
,

⊕
i

x i +
-
· *

,

⊕
i

Φi +
-
⊕ *

,

⊕
i

zi +
-
· *

,

⊕
i

∆i +
-

Notice further that

⊕
i

Φi =
⊕
i

*.
,
yi∆i ⊕

*.
,

⊕
k,i

Ki [yk] ⊕Mk [yi]
+/
-

+/
-
= *

,

⊕
i

yi +
-
· *

,

⊕
i

∆i +
-

Therefore we know that

⊕
i

Hi = *
,

⊕
i

x i +
-
· *

,

⊕
i

Φi +
-
⊕ *

,

⊕
i

zi +
-
· *

,

⊕
i

∆i +
-

= *
,

⊕
i

x i +
-
· *

,

⊕
i

yi +
-
· *

,

⊕
i

∆i +
-
⊕ *

,

⊕
i

zi +
-
· *

,

⊕
i

∆i +
-

= *
,

*
,

⊕
i

x i +
-
· *

,

⊕
i

yi +
-
⊕ *

,

⊕
i

zi +
-

+
-
· *

,

⊕
i

∆i +
-

Since

⊕
i ∆i is non-zero,

⊕
i Hi = 0 if and only if the logic of this

AND is correct.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

47

5.4.2 Unforgeability. Now we want to show that any incorrect

AND triple cannot pass the check.

Lemma 5.1. Define x i ,yi from ⟨x⟩, ⟨y⟩ which are outputs from
FaShare and FHaAND; define zi := r i ⊕ ei , where ⟨r ⟩ is output from
FaShare, ei is the value broadcast from Pi . If

(⊕
i x

i
)
∧

(⊕
i y

i
)
,(⊕

zi
)
then the protocol results in an abort except with negligible

probability.

We use U ∗i, j and H∗i to denote the values that an honest party

would have computed, and define Qi, j = U
∗
i, j ⊕Ui, j , Qi = H∗i ⊕ Hi .

In the following, we will assume that the logic of the AND does

not hold while at the same time that the check passes, and we will

derive a contradiction from it.

First note that if Pi uses some Qi, j , then Pj will obtainMi [x
j
]Φi

with an additive error of x jQi, j . Note that⊕
i

H ∗i = *
,

*
,

⊕
i

x i +
-
· *

,

⊕
i

yi +
-
⊕ *

,

⊕
i

zi +
-

+
-
· *

,

⊕
i

∆i +
-
=

⊕
i

∆i

Therefore, we know that⊕
i

Hi =
⊕
i∈M

Hi ⊕
⊕
i∈H

Hi

=
⊕
i∈M

(
H ∗i ⊕ Qi

)
⊕

⊕
i∈H

*.
,
H ∗i ⊕

*.
,

⊕
k,i

xkQk,i
+/
-

+/
-

=
⊕
i

H ∗i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

*.
,

⊕
k,i

xkQk,i
+/
-

=
⊕
i

∆i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

*.
,

⊕
k,i

xkQk,i
+/
-

In order tomake

⊕
i Hi to be 0, the adversary needs to find paddings

such that ⊕
i ∈M

Qi ⊕
⊕
i ∈H

*.
,

⊕
k,i

xkQk,i
+/
-
=

⊕
i

∆i

The above happens with at most negligible probability.

Theorem 5.2. Assuming an adversary corrupting up to n − 1 par-
ties, the protocol in Figure 11, where H is modeled as a random oracle,
securely instantiates FLaAND functionality in the (FaShare,FHaAND)-
hybrid model.

Note that since no party has private input, the simulation proof

is straightforward given the lemmas above. We provide full details

of the proof in Section A.5.

5.5 Multi-Party Authenticated AND Triple
Once we have a protocol for leaky authenticated AND triple, it is

straightforward to obtain a non-leaky authenticated AND triple,

using the combine protocol in [37]. We show the details of the

protocol in Figure 13.

6 EVALUATION
6.1 Implementation Details
We implemented our protocol in the EMP-toolkit [36] framework

and will be made publicly available as a part of it. To fully explore

performance characteristics of our protocol, we evaluate our imple-

mentation in three different settings:

Functionality FaAND
Honest parties: For each i ∈ [n], the box picks random ⟨x ⟩, ⟨y⟩, ⟨z⟩
such that (

⊕
x i) ∧ (

⊕
yi) =

⊕
zi .

Corrupted parties: Corrupted parties get to choose all of their ran-

domness.

Figure 12: Functionality FaAND for generating AND triples

Protocol ΠaAND

Protocol:
1. Pi call FLaAND ℓ′ = ℓB times and obtains

{⟨x j ⟩, ⟨yj ⟩, ⟨zj ⟩}j∈[ℓ′].

2. All parties randomly partition all objects into ℓ buckets, each

with B objects.

3. For each bucket, parties combine B leaky ANDs into one

non-leaky AND. To combine two leaky ANDs, namely

(⟨x1⟩, ⟨y1⟩, ⟨z1⟩) and (⟨x2⟩, ⟨y2⟩, ⟨z2⟩) :
(a) Parties reveal d := y1 ⊕ y2 with its MACs checked.

(b) Each party Pi sets ⟨x ⟩ := ⟨x1⟩ ⊕ ⟨x2⟩, ⟨y⟩ := ⟨y1⟩, ⟨z⟩ :=

⟨z1⟩ ⊕ ⟨z2⟩ ⊕ d⟨x2⟩.

Parties iterate all B leaky objects, by taking the resulted object

and combine with the next element.

Figure 13: Protocol ΠaAND instantiating FaAND.

Figure 14: Amazon EC2 regions used in the WAN experi-
ment. Details see Table 9.

Circuit n1 n2 n3 |C|

AES 128 128 128 6800

SHA-128 256 256 160 37300

SHA-256 256 256 256 90825

Table 4: Circuits used in our evaluation.

• LAN setting. Machines are located in the same Amazon

EC2 region. Experiments are performed for up to 14 parties.

• WANsetting. EachMachine is located in a different Amazon

EC2 region (locations shown in Figure 14). For a k-party
computation experiment, a prefix subset of the machines in

Table 9 are selected. For example, parties in 3PC experiments

are located in North Virginia, Ohio, and North California

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

48

(a) LAN setting. (b) WAN setting.

Figure 15: Running time breakdown for evaluating AES. In the LAN setting, all parties are located in the same region; In the WAN

setting, all parties are located in different regions worldwide, for example, 2PC: within US-east; 5PC: within North America; 8PC: within
North America and Europe; 12PC: within North America, Europe and Asia; 13PC: further adds Sydney; 14PC: all parties in Figure 14.

respectively. Experiments are run for up to 14 parties, which

is the number of different Amazon EC2 regions available.

• Crowd setting. In the LAN case, we evaluate up to 128

parties all located in the same Amazon EC2 region. In the

global-scale case, we choose 8 different cities across 5 con-

tinents and open up to 16 parties in each city (totally 128

parties).

All machines are of type c4.8xlarge, with 36 cores and 60 GB

RAM. Network bandwidth within the same region is about 10Gbps.

The bandwidth across different regions depends on the location

of the machines. All experiments are based on ρ = 40,κ = 128.

We extend justGarble [4] to support garbling of longer tables in

a straightforward manner. In the implementation, we used the

“broadcast with abort” protocol by Goldwasser and Lindell [24] and

achieves the notion of secure computation with abort. We observe

small variance when running in the LAN setting and slightly higher

variance in the WAN setting. All numbers reported in LAN setting

are on average of 10 runs, ones in WAN setting are on average of

20 runs, and ones in the Crowd setting are on average of 5 runs due

to the lengthy experiments.

6.2 Performance on Basic Circuits
We evaluate commonly used benchmark circuits on our protocol, in-

cluding AES, SHA-1, and SHA-256. Information about these circuits

can be found in Table 4.

We plot in Figure 15 the results for AES in different network

setting and performance breakdown as described above. Detailed

timings and more results for all three circuits can be found in Ta-

ble 10 in the Appendix. First, the performance of three-party com-

putation is extremely efficient: it takes 95 ms to evaluate a circuit

for AES, with 2 ms online time. We also find that in the LAN setting,

the slowdown from 2PC to 3PC is roughly 1.5×; the slowdown in

the WAN setting is larger. This is caused by the network latency:

the first two parties are both located in the U.S. east coast, while

the third party is located in the U.S. west coast with much higher

latency.

We also find that the cost of the one-time setup is almost inde-

pendent of number of parties for small number of parties. This is

mainly due to the parallelization in the implementation that allows

all base-OT to run at the same time.

World-wide MPC experiment. We would like to emphasize that

in the case of WAN setting with 14 parties, it is a “world-wide” MPC

experiment over 5 continents. To the best of our knowledge, we are

the first to conduct MPC over such large range even considering

semi-honest MPC protocols.

We also notice a big “jump” in running time from 8 parties to

9 parties in the WAN setting. We believe this is because of the

network condition: for experiments up to 8 parties, it is within

the US/Europe area; the ninth party is located in asia, where the

communication to US/Europe is much slower. More details see

Figure 15b.

6.3 Evaluation in a Global Setting
In this section, we focus on the performance of our protocol with a

large number of parties. We summarize our results in Figure 5. We

notice that our protocol scales very well with increasing number

of parties. Even in a setting with 128 parties located in the same

LAN, where up to 127 of them can be corrupted, it takes less than

17 seconds end-to-end running time to compute AES. Note that the

performance of a 64-party computation on AES is comparable to

the performance of what used to be the state-of-the-art malicious

2-party computation three years ago [1], and we believe further

optimizations and improvements based on our work will flourish

too.

When comparing the running time of 128 parties to the one

of 8 parties, we find that the cost of function-dependent phase

increases much faster than the cost of function-independent phase.

This is because our function-independent phase is symmetric and

all communication loads are evenly distributed among all parties;

while in the function-dependent phase, n − 1 garblers send the

garbled circuit to the evaluator, and the bandwidth of the evaluator

becomes the bottleneck. Therefore in the case where there are a lot

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

49

LAN setting WAN setting

n Setup Indep. Depen. Online Total Setup Indep. Depen. Online Total

8 49.4 122.2 35.7 7.8 215.1 16736.0 30647.4 5905.2 783.3 54071.9

16 78.8 227.8 121.1 29.4 457.0 18708.1 21699.6 12243.5 598.8 53250.0

32 129.9 627.0 446.2 112.3 1315.5 35838.8 19038.4 8242.3 716.6 63836.1

64 212.9 1182.2 2630.1 476.5 4501.7 71913.8 25280.7 29416.6 1564.0 128175.2

128 383.0 2727.4 11669.6 1870.2 16650.2 88055.9 30795.9 22659.1 2316.2 143827.0

Table 5: Detailed experiment results for the crowd setting. Timings are measured in terms of milliseconds. In the LAN setting, all

parties are located in the same region. In the Worldwide setting. 8PC is performed with each party located in a different region; 16PC is

performed with 2 parties located in each region; others can be interpreted similarly.

of parties, when we double the number of parties, the running time

of the function-dependent phase almost doubles.

We also run the same experiment in the worldwide range. We

choose 8most separate regions out of 14 and open up to 16machines

in each region (thus totally 128 machines). The performance is also

shown in Table 5: it takes slightly more than a minute for 64 parties

to compute AES and about 2.5 minutes for 128 parties located all

around the world. We also observe that setup takes much more

time; we believe it is due to the high latency.

6.4 Comparison to Other Work

Malicious MPC on AES. Evaluating AES with malicious security

against n − 1 corruption was studied by Damgård et al. [17]. They

reported 240 ms online time for 3 parties and 340 ms online time

for 10 parties. The offline time for 3 and 10 parties are around

4200 seconds and 15000 seconds respectively. Our protocol takes

95 ms total time to evaluate AES for 3 parties with online time as

small as 2 ms; and 268 ms total time with online time 12 ms. The

improvement for online phase ranges from 28× to 120×; and the

improvement for total time ranges from 44000× to 56000×. This is

a huge improvement even considering hardware differences.

BMR-style protocols. Lindell et al. [31, 32] studied how to use

SPDZ and SHE to construct a BMR-style protocol. Since their proto-

col is not implemented, we compare the communication complexity.

After incorporating various optimizations, every AND gate still

need 3n + 1 SPDZ multiplication triples. Together with the most

recent advance in SPDZ triple generation by Keller et al. [28], gener-

ating one SPDZ triple with n parties requires communication about

180(n − 1) kilobits per party. Therefore the communication cost per

AND gate per party is about 540n(n − 1) kilobits. In our protocol,

each AND gate only needs one AND triple from FPre, which, using

our new protocol in Section 5, requires communication roughly

2.28(n − 1) kilobits per party. Therefore, the improvement of our

protocol compared to the best-optimized BMR protocol based on

Lindell et al. is about 237n×with n parties. For a three-party setting,

it is an improvement of 711×; for the 128-party computation that

we perform, the improvement is as high as 30, 000×!

Ben-Efraim et al. [6] presented a protocol secure in the semi-
honest model based on BMR. Surprisingly, given the fact that our

protocol is maliciously secure, while theirs only has a semi-honest

security, our implementation has roughly the same performance

as theirs. In Table 6, we compare the running time of our protocol

with the running time of theirs based on the same hardware. We

3 8 16 32

[6]

Online 80 150 400 1500

Total 228 2000 5900 -

This work

Online 24 95 370 1632

Total 618 1945 6711 18828

Table 6: Compare with Ben-Efraim et al. [6] Timings are in

terms of milliseconds. Their protocol works in the semi-honest

setting; ours is maliciously secure. Comparison based on SHA-256,

with the same hardware configuration.

ρ 3 8 16

[25]

40 14 49 105

80 55 193 413

This work

40 4.8 16.9 36.4

80 8.6 30 64.5

Table 7: Compare bandwidth consumption with Hazay et
al. [25]. All numbers are the maximum amount of data one party

needs to send in the function-independent phase, measured in terms

of megabytes (MB). Numbers for ρ = 80 are calculated based on

the complexity of both protocols.

notice that for both online time and total time, the performance of

the two protocols are roughly the same.

Malicious 3PC protocols with honest majority. Mohassel et

al. [33] proposed an efficient protocol for malicious 3PCwith honest

majority. Their protocol requires only one garbled circuit to be sent

and therefore has a smaller communication complexity than us. We

estimate that our protocol requires about 14×more communication

than theirs. However interestingly we also find that the online time

of two protocols are roughly the same: their protocol requires 31

ms evaluation time, while ours needs 23.4 ms evaluation time. We

belive this is due to the fact that their protocol needs to check that

the garbled circuit received from two garblers are the same, while

it is not needed in our protocol.

Furukawa et al. [21] also presented a malicious 3PC protocol

with honest majority. Their protocol has a smaller communication

overhead compared to the protocol above by Mohassel et al. but

requires at least one round of communication per level of the cir-

cuit. In addition to a stronger security guarantee that we support

dishonest majority, our protocol has a better latency, especially for

deep circuit (e.g. SHA-256 has a depth of 4000), while their protocol

has a better throughput.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

50

n Setup Indep. Depen. Online Total

AES

3 57.1 KB 4.8 MB 1.3 MB 4.5 KB 6.2 MB

4 85.7 KB 7.2 MB 1.8 MB 4.5 KB 9.1 MB

5 114.2 KB 9.7 MB 2.2 MB 4.5 KB 12.0 MB

6 142.8 KB 12.1 MB 2.7 MB 4.5 KB 14.9 MB

7 171.4 KB 14.5 MB 3.1 MB 4.5 KB 17.8 MB

8 199.9 KB 16.9 MB 3.5 MB 4.5 KB 20.7 MB

16 428.4 KB 36.4 MB 7.1 MB 4.5 KB 44.0 MB

SHA-256

3 57.1 KB 63.3 MB 17.4 MB 9.0 KB 80.8 MB

4 85.7 KB 95.0 MB 23.4 MB 9.0 KB 118.5 MB

5 114.2 KB 126.6 MB 29.4 MB 9.0 KB 156.2 MB

6 142.8 KB 158.3 MB 35.4 MB 9.0 KB 193.9 MB

7 171.4 KB 190.0 MB 41.4 MB 9.0 KB 231.6 MB

8 199.9 KB 221.7 MB 47.4 MB 9.0 KB 269.3 MB

16 428.4 KB 475.1 MB 95.4 MB 9.0 KB 570.9 MB

Table 8: Communication complexity of our protocol. Band-
width are measured for evaluating AES and SHA-256. All numbers

are the maximum amount of data one party needs to send.

Compare with Hazay et al. [25].We also compare with the con-

current work by Hazay et al.. As their protocol is benchmarked

on different hardware and network configurations, we only com-

pare the bandwidth usage. We find that both protocols has similar

function-dependent cost and online cost. However, due to our im-

proved preprocessing protocol, our function-independent cost is

much smaller than theirs. In Table 7, we compare the function-

independent cost of for AES evaluation with different value of ρ.
Our protocol uses 3× to 6.5× less communication compared to

theirs. Note that the cost of function-independent phase dominates

the overall cost, therefore the speed up here also translates to the

speed up to the whole computation.

6.5 Communication Complexity
In this section, we evaluate the communication complexity of our

protocol. All numbers reported here are the maximum amount of

data sent from one party. All numbers are obtained by running

our implementation, which are slightly higher than calculated val-

ues due to implementation details. In Table 8, we summarize the

bandwith use for AES and SHA-256 for up to 16 parties.

We can see from the figure that the communication required

per party grows linearly with the number of parties. In addition,

the communication cost of the Setup phase and the Online phase

are very small. The total communication cost is dominated by the

function-independent phase.

ACKNOWLEDGMENTS
The authors would like to thank Roberto Trifiletti, Yan Huang, and

Ruiyu Zhu for their helpful comments.

Thismaterial is based onwork supported byNSF awards #1111599,

#1563722, and #1564088. Portions of this work were also supported

by DARPA and SPAWAR under contract N66001-15-C-4065. The U.S.

Government is authorized to reproduce and distribute reprints for

Governmental purposes not withstanding any copyright notation

thereon. The views, opinions, and/or findings expressed are those

of the author(s) and should not be interpreted as representing the

official views or policies of the Department of Defense or the U.S.

Government.

REFERENCES
[1] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In Eurocrypt 2014
(LNCS), Vol. 8441. 387–404.

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In ACM CCS 2016. 805–817.
[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity

of secure protocols. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing. ACM, 503–513.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient Garbling from a Fixed-Key Blockcipher. In IEEE Symposium on Security
& Privacy. 478–492.

[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system

for secure multi-party computation. In ACM CCS 2008. 257–266.
[6] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2016. Optimizing Semi-Honest

Secure Multiparty Computation for the Internet. In ACM CCS 2016. 578–590.
[7] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic Encryption andMultiparty Computation. In Eurocrypt 2011 (LNCS),
Vol. 6632. 169–188.

[8] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo

Talviste. 2016. Students and Taxes: A Privacy-Preserving Social Study Using

Secure Computation. In Privacy Enhancing Technologies Symposium (PETS).
[9] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In ESORICS 2008 (LNCS), Vol. 5283.
192–206.

[10] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. 2009. Secure

Multiparty Computation Goes Live. In FC 2009 (LNCS), Vol. 5628. 325–343.
[11] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

2010. SEPIA: Privacy-preserving aggregation of multi-domain network events

and statistics. In 19th USENIX Security Symposium, Ian Goldberg (Ed.). USENIX

Association, Washington, D.C., USA.

[12] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nord-

holt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart.

2015. High Performance Multi-Party Computation for Binary Circuits Based

on Oblivious Transfer. Cryptology ePrint Archive, Report 2015/472. (2015).

http://eprint.iacr.org/2015/472.

[13] Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan

Rubenstein. 2012. Secure Multi-Party Computation of Boolean Circuits with Ap-

plications to Privacy in On-Line Marketplaces. In CT-RSA 2012 (LNCS), Vol. 7178.
416–432.

[14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. 2014.

Efficient Three-Party Computation from Cut-and-Choose. In Crypto 2014, Part II
(LNCS), Vol. 8617. 513–530.

[15] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. 2009.

AsynchronousMultiparty Computation: Theory and Implementation. In PKC 2009
(LNCS), Vol. 5443. 160–179.

[16] Ivan Damgård and Yuval Ishai. 2005. Constant-Round Multiparty Computation

Using a Black-Box Pseudorandom Generator. In Crypto 2005 (LNCS), Vol. 3621.
378–394.

[17] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart.

2012. Implementing AES via an Actively/Covertly Secure Dishonest-Majority

MPC Protocol. In SCN 12 (LNCS), Vol. 7485. 241–263.
[18] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS 2013 (LNCS), Vol. 8134. 1–18.
[19] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In Crypto 2012
(LNCS), Vol. 7417. 643–662.

[20] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015.

A Unified Approach to MPC with Preprocessing Using OT. In ASIACRYPT 2015,
Part I (LNCS), Vol. 9452. 711–735.

[21] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and

an Honest Majority. In Eurocrypt 2017, Part II (LNCS), Vol. 10211. 225–255.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

51

http://eprint.iacr.org/2015/472

[22] Oded Goldreich. 2009. Foundations of Cryptography: Volume 2, Basic Applications.
Vol. 2. Cambridge University Press.

[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game, or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC. 218–229.

[24] Shafi Goldwasser and Yehuda Lindell. 2005. Secure Multi-Party Computation

without Agreement. Journal of Cryptology 18, 3 (July 2005), 247–287.

[25] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low Cost Constant

Round MPC Combining BMR and Oblivious Transfer. Cryptology ePrint Archive,

Report 2017/214. (2017). To appear in Asiacrypt 2017.

[26] Thomas P. Jakobsen, Marc X. Makkes, and Janus Dam Nielsen. 2010. Efficient

Implementation of the Orlandi Protocol. In ACNS 10 (LNCS), Vol. 6123. 255–272.
[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively Secure OT

Extension with Optimal Overhead. In Crypto 2015, Part I (LNCS), Vol. 9215. 724–
741.

[28] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In ACM CCS
2016. 830–842.

[29] Marcel Keller, Peter Scholl, and Nigel P. Smart. 2013. An architecture for practical

actively secure MPC with dishonest majority. In ACM CCS 2013. 549–560.
[30] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. 2014. Dishonest Majority

Multi-Party Computation for Binary Circuits. In Crypto 2014, Part II (LNCS),
Vol. 8617. 495–512.

[31] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2015. Effi-

cient Constant Round Multi-party Computation Combining BMR and SPDZ. In

Crypto 2015, Part II (LNCS), Vol. 9216. 319–338.
[32] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. 2016. More Efficient

Constant-Round Multi-party Computation from BMR and SHE. In TCC 2016-B,
Part I (LNCS), Vol. 9985. 554–581.

[33] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-

party Computation: The Garbled Circuit Approach. In ACM CCS 2015. 591–602.
[34] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant-Round

Maliciously Secure 2PC with Function-Independent Preprocessing Using LEGO.

In Network and Distributed System Security Symposium (NDSS).
[35] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.

In Crypto 2012 (LNCS), Vol. 7417. 681–700.
[36] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-Toolkit: Efficient

Multiparty Computation Toolkit. https://github.com/emp-toolkit. (2016).

[37] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling

and Efficient Maliciously Secure Two-Party Computation. In ACM CCS 2017.
[38] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In IEEE

FOCS. 162–167.

A SECURITY PROOFS
A.1 Proof of the Main Protocol

Theorem A.1. If H is modeled as a random oracle, the protocol in
Figures 2 and 3 securely realizes Fmpc in the FPre-hybrid model with
security negl(κ) against an adversary corrupting up to n − 1 parties.

Proof. We consider separately the case where P1 ∈ H and

where P1 ∈ M and P2 ∈ H . The case where P1 ∈ M and Pi ∈ H
for some i ≥ 3 is similar to the second case.

Honest P1. Let A be an adversary corrupting {Pi }i ∈M . We con-

struct a simulator S that runsA as a subroutine and plays the role

of {Pi }i ∈M in the ideal world involving an ideal functionality Fmpc
evaluating f . S is defined as follows.

1-4 S acts as honest {Pi }i ∈H and plays the functionality of FPre,

recording all outputs. If any honest party or FPre would

abort, S outputs whatever A outputs and then aborts.

5 S interacts withA acting as an honest {Pi }i ∈H , using input

{x i := 0}i ∈H . For each i ∈ M,w ∈ Ii , S receives x̂ iw and

computes x iw := x̂ iw ⊕
⊕

i ∈[n]
r iw . If any honest party would

abort, S outputs whatever A outputs and aborts.

6 S interacts with A acting as honest {Pi }i ∈H , using input

x1
:= 0.

7-8 S interacts with A acting as honest {Pi }i ∈H . If an honest

P1 would abort, S outputs whatever A outputs and aborts;

otherwise for each i ∈ M, S sends (input,x i) on behalf of

Pi to Fmpc.

At any time, S will answer A ’s global key query honestly, since S

knows the global keys of all parties.

Note that since the global keys are randomly selected from

{0, 1}κ , A cannot guess any global key with more than negligi-

ble probability. Therefore, in the following, we will assume that it

does not happen.

We now show that the joint distribution over the outputs of A

and the honest parties in the real world is indistinguishable from

the joint distribution over the outputs of S and the parties in the

ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the

role of honest {Pi }i ∈H , using the actual inputs {x i }i ∈H .

Hybrid2. Same as Hybrid1, except that in step 5, for each i ∈
M,w ∈ Ii ,S receives x̂ iw and computesx iw := x̂ iw⊕

⊕
i ∈[n]

r iw .

If any honest party would abort, S outputs whateverA out-

puts; otherwise for each i ∈ M,S sends (input,x i) on behalf
of Pi to Fmpc.

The views produced by the two hybrids are exactly the same.

According to Lemma A.2, P1 will learn the same output in

both hybrids with all but negligible probability.

Hybrid3. Same as Hybrid2, except that, for each i ∈ H , S com-

putes {r iw }w ∈Ii as follows: S first randomly pick {uiw }w ∈Ii ,

and then computes r iw := uiw ⊕ x
i
w .

The two Hybrids produce exactly the same view.

Hybrid4. Same as Hybrid3, except that S uses {x i = 0}i ∈H as

input in step 5 and step 6.

Note that although the distribution of {x i }i ∈H in Hybrid3
and Hybrid4 are different, the distribution of {x iw ⊕ r

i
w }

i ∈H

are exactly the same. The views produced by the two Hybrids

are therefore the same, we will show that P1 aborts with the

same probability in both Hybrids.

Observe that the only place where P1’s abort can possibly

depends on {x i }i ∈H is in step 7(b). However, this abort de-

pends on which row is selected to decrypt, that is the value

of λα ⊕ zα and λβ ⊕ zβ , which are chosen independently

random in both Hybrids.

As Hybrid4 is the ideal-world execution, this completes the proof

when P1 is honest.

Malicious P1 and honest P2. Let A be an adversary corrupting

{Pi }i ∈M . We construct a simulator S that runs A as a subroutine

and plays the role of {Pi }i ∈M in the ideal world involving an ideal

functionality Fmpc evaluating f . S is defined as follows.

1-4 S acts as honest {Pi }i ∈H and plays the functionality of FPre,

recording all outputs. If any honest party would abort, S

output whatever A outputs and aborts.

5-6 S interacts with A acting as honest {Pi }i ∈H , using input

{x i := 0}i ∈H . For each i ∈ M,w ∈ Ii , S receives x̂ iw and

computes x iw := x̂ iw ⊕
⊕

i ∈[n]
r iw . If any honest party would

abort, S output whatever A outputs and aborts.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

52

https://github.com/emp-toolkit

8 For each i ∈ M, S sends (input,x i) on behalf of Pi to Fmpc.

If Fmpc abort, S aborts, outputting whatever A outputs.

Otherwise, if S receives z as the output, S computes z′ :=

f (y1, ...,yn), where {yi := 0}i ∈H , and {yi := x i }i ∈M . For

each i ∈ H ,w ∈ O, if z′w = zw , S sends (r iw ,M1[r iw]) on
behalf of Pi toA ; otherwise, S sends (r iw ⊕ 1,M1[r iw] ⊕ ∆1).

At any time, S will answer A ’s global key query honestly, since S

knows the global keys of all parties.

Note that since the global keys are randomly selected from

{0, 1}κ , A cannot guess any global key with more than negligi-

ble probability. Therefore, in the following, we will assume it does

not happen.

We now show that the joint distribution over the outputs of A

and honest parties in the real world is indistinguishable from the

joint distribution over the outputs of S and honest parties in the

ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the

role of honest {Pi }i ∈H using the actual inputs {x i }i ∈H .

Hybrid2. Same as Hybrid1, except that in step 5 and step 6, for

each i ∈ M,w ∈ Ii , S receives x̂ iw and computes x iw :=

x̂ iw ⊕
⊕

i ∈[n]
r iw . If any honest party would abort, S outputs

whatever A outputs; otherwise for each i ∈ M, S sends

(input,x i) on behalf of Pi to Fmpc.

P1 does not have output; furthermore the view of A does

not change between the two Hybrids.

Hybrid3. Same as Hybrid2, except that in step 5 and step 6, S

uses {x i := 0}i ∈H as input and in step 8, S computes z′ as
defined. For eachw ∈ O, if z′w = zw , S sends (r iw ,M1[r iw]);
otherwise, S sends (r iw ⊕ 1,M1[r iw] ⊕ ∆1).
A has no knowledge of r iw , therefore r

i
w and r iw ⊕ 1 are

indistinguishable.

Note that since S uses different values for x between the

two Hybrids, we also need to show that the distribution of

garbled rows opened by P1 are indistinguishable for the two

Hybrids. According to the security of garbled circuits, P1 is

able to open only one garble rows in each garbled tableGγ ,i .
Therefore, given that {λw }w ∈I1∪W values are not known

to P1, masked values and garbled keys are indistinguishable

between two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

□

Lemma A.2. Consider anA corrupting parties {Pi }i ∈M such that
P1 ∈ H , and denote x iw := x̂ iw ⊕

⊕n
i=1

r iw , where x̂w is the valueA
sent, r iw are the values from FPre. With all but negligible probability ,
P1 either aborts or learns z = f (x1, ...,xn).

Proof. Define z∗w as the correct wire values computed using x
defined above and y, zw as the actually wire values P1 holds in the

evaluation.

We will first show that P1 learns {zw ⊕ λw = z∗w ⊕ λw }w ∈O by

induction on topology of the circuit.

Base step: It is obvious that {z∗w ⊕ λw = zw ⊕ λw }w ∈I1∪I2 , unless
A is able to forge an IT-MAC.

Induction step: Now we show that for a gate (α , β ,γ ,T), if P1 has

{z∗w ⊕λw = zw ⊕λw }w ∈{α,β } , then P1 also obtains z
∗
γ ⊕λγ = zγ ⊕λγ .

• T = ⊕: It is true according to the following: z∗γ ⊕ λγ =

(z∗α ⊕ λα) ⊕ (z∗β ⊕ λβ) = (zα ⊕ λα) ⊕ (zβ ⊕ λβ)zγ ⊕ λγ

• T = ∧: According to the protocol, P1 will open the garbled

row defined by i := 2(zα ⊕ λα) + (zβ ⊕ λβ). If P1 learns

zγ ⊕ λγ , z∗γ ⊕ λγ , then it means that P1 learns r
∗
γ ,i , rγ ,i .

However, this would mean that A forge a valid IT-MAC,

happening with negligible probability.

Now we know that P1 learns the correct masked output. P1 can

therefore learn the correct output f (x ,y) unless A is able to flip

{rw }w ∈O , which, again, only happens with negligible probability.

□

A.2 Multi-Party Authenticated Bits
Theorem A.3. The protocol in Figure 5 securely realizes F n

aBit with
statistical security 2

−ρ in the F 2

aBit-hybrid model.

Proof. We consider two cases.

Case 1: Pi ∈ H . Note that in this case, the only way malicious

parties can break the protocol is by learning some information

about {xi }i ∈[ℓ]
in the checking step. However, we will show that,

because we “throw out” the last 2ρ authenticated bits, the adversary

can learn nothing about x ’s.
We use sj to denote the last 2ρ bits of r in the j-th check. Accord-

ing to Lemma A.4 and the parameters we chose, the probability

that any subset of {sj }j ∈[2ρ]
is linearly independent is 1− 2

−ρ
. Now

we will show that if linear independence holds then the adversary

cannot learn anything.

For the j-checking, X =
(⊕ℓ

m=1
rmxm

)
⊕

(⊕
2ρ
m=1

smxℓ+m
)
.

Note that

⊕
2ρ
m=1

smxℓ+m from each checking are independent

random bits, where {xm }
ℓ′

m=ℓ is random. This is true because the

si ’s are linearly independent. Therefore,

⊕
2ρ
m=1

smxℓ+m acts as

one-time pad to

⊕ℓ
m=1

rmxm . Given the above, the simulation is

straightforward. Note that for all global key queries, S can answer

them honestly, since S knows the global key for both parties.

Case 2: Pi ∈ M. The simulation is straightforward if we could

show that for any A who uses inconsistent x ’s can pass all 2ρ
checks with at most negligible probability. This is what we will

proceed to show.

Suppose that A sends x1
to F 2

aBit when interacting with one

honest party, and uses a different x2
with another honest party,

where x1 , x2
. We also assume that A passes all checks. Note

that for the j-th checking, if A is not able to forge a MAC, then

the probability that the checking passes is the probability that

Xj =
⊕

m rmx1

m and that Xj =
⊕

m rmx2

m .

Pr

⊕
m

rmx1

m =
⊕
m

rmx2

m

= Pr

⊕
m

rm (x1

m ⊕ x
2

m) = 0

= Pr

⊕
m∈I

rm = 0 : I is the set of indices where x1

m , x2

m

= 1/2

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

53

Each checking is independent as long as r is selected independently.
Therefore,A can pass all checks with probability at most 2

−2ρ
. □

Lemma A.4. Let r1, ..., rℓ be random bit vectors of length k . With
probability at most 2

ℓ−k , there exists some subset I ⊂ [ℓ], such that⊕
i ∈I

ri = 0

Proof. Note that given a fixed interval I ⊂ [ℓ], the probability

that

⊕
i ∈I ri = 0 is 2

−k
. According to the union bound, the probabil-

ity that any subset I ⊂ [ℓ] has
⊕

i ∈I ri = 0 is 2
−k × 2

ℓ = 2
ℓ−k

. □

A.3 Multi-Party Authenticated Bits
Theorem A.5. The protocol in Figure 7 securely realizes FaShare

with statistical security 2
−ρ in the F n

aBit-hybrid model.

Proof. Without loss of generality, we consider the case when P1

is honest. The simulator plays the role of F n
aBit honestly, recording

all values it sends to A and values A sent to F n
aBit. S acts as

honest parties and check for each i ∈ M, if Pi sent consistent
∆i in all instructions to F n

aBit. If not, S aborts outputting whatever

A outputs.

Note that this simulator has a 2
−ρ

statistical difference to the

real world execution given Lemma A.6 □

Lemma A.6. When a malicious Pi computes MACs with Pj , denote
∆
j
i as the value Pi sent to F

n
aBit. If for some ∆j1i , ∆

j2
i , the honest

parties abort with probability at least 1 − 2
−ρ .

Proof. In the following, we will prove that malicious party

passes each single test with probability 1/2, independently. Since

malicious parties are ensured to use the same ∆ for each party,

it can either cheat for all bits or be honest for all bits. Therefore

cheating malicious parties cannot pass all checks with more than

2
−ρ

probability.

We will prove by contradiction. Suppose at least one party uses

inconsistent value and the check passes. We use K i
to denote the

value Pi opened in step 3 (d), and use {Mi
k }k,i to denote the value

committed in step 3 (c). First compute Qi
:= K i ⊕

⊕
k,i Ki [x

k
ℓ+r]

and and Qi
k = Mi

k ⊕Mk [x i
ℓ+r]. Since the check for Pi passes, we

know that the following is zero.

K i ⊕
⊕
k,i

Mk
i =

*.
,

⊕
k,i

Ki [xkℓ+r]
+/
-
⊕ Qi ⊕

*.
,

⊕
k,i

Mi [x
k
ℓ+r] ⊕ Qk

i
+/
-

=
*.
,

⊕
k,i

Ki [xkℓ+r]
+/
-
⊕ Qi

⊕
*.
,

⊕
k,i

Ki [xkℓ+r] ⊕ xkℓ+r∆
k
i

+/
-
⊕

⊕
k,i

Qk
i

=
*.
,
Qi ⊕

⊕
k,i

Qk
i

+/
-
⊕

*.
,

⊕
k,i

xkℓ+r∆
k
i

+/
-

If Pi uses ∆
k1

ℓ+r , ∆k2

ℓ+r for some k1 , k2, k1,k2 ∈ H , then the

value of

(
Qi ⊕

⊕
k,i Q

k
i

)
that makes the equation as 0 is different

depending on the value of xk1

ℓ+r and x
k2

ℓ+r . This means that Pi needs
to guess at least one of them to pass the check. □

A.4 Half-Authenticated AND Triple
Lemma A.7. If H is modeled as a random oracle, the protocol in

Figure 9 securely realizes FHaAND in the FaShare-hybrid model.

Proof. Note that for each i ∈ [n], Pi has values {s
j , t j }j,i . We

denote the value s j , t j held by Pi as s
j
i , t

j
i .

Correctness. First we will show the correctness of the protocol.

We further first show that for any i , j, s
j
i ⊕ t ij = x jyij . We will

discuss in two cases:

• x j = 0. In this case, Pj obtains t
i
j = s

j
.

• x j = 1. In this case, Pj obtains t
i
j = s

j ⊕ yij .

In any case, the above equation holds. Now the correctness of the

protocol can be seen given the following equation.⊕
i

⊕
j,i

x iy ji =
⊕
i

⊕
j,i

(s ji ⊕ t
i
j)

=
⊕
i

⊕
j,i

s ji ⊕
⊕
i

⊕
j,i

t ij

=
⊕
i

⊕
j,i

s ij ⊕
⊕
i

⊕
j,i

t ij

=
⊕
i

*.
,

⊕
j,i

s ij ⊕ t
i
j

+/
-

=
⊕
i

v i

Simulation proof.We will prove the security assuming P1 is hon-

est, that is, P1 ∈ H . The simulation is as follows:

1. S plays the role of FaShare storing all values used.

2. For each pair i , j , such that i ∈ M, S obtains (H0,H1) sent
by malicious Pi . S computes s j := H0 ⊕ Lsb(H (Ki [x j])) and
yij := H1 ⊕ Lsb(H (Ki [x j] ⊕ ∆i)) ⊕ s j . For each i ∈ M, S

sends (i, {yij }j,i) to FHaAND, which sends back {vi }i ∈M .

3. For each i ∈ M,S picks random {t ′k }k ∈H , such that

⊕
k,i s

i⊕⊕
k,i,k ∈M tki ⊕

⊕
k,i,k ∈H t ′i = vi . For each j ∈ H , S

computesHx i = Lsb(H (K[xi]⊕xi∆j)) ⊕ t
′j
, and picks a ran-

dom H
1⊕x i . S sends (H0,H1) to Pi on behalf of an honest

Pj .

First of all, the first two steps are perfect simulation. For the last

step, it is also a perfect simulation: first the one that is not opened is

random since H is a random oracle. The other value is also random,

depending on the value of s j . However, in order to make the joint

distribution of the valueA learns here and the output of an honest

P2 indistinguishable between ideal and real world protocol, tk are

tweaked such thatA will learn the same value in both Hybrids. □

A.5 Multi-Party Leaky Authenticated AND
Triple

We have described the protocol and the key ideas of the proof in

the main body. Here we will directly proceed to the proof.

Theorem A.8. If H is modeled as a random oracle, the protocol in
Figure 11 securely realizes FLaAND in the (FaShare,FHaAND)-hybrid
model.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

54

Proof. We constructor a simulator in the following. For all

global key queries, S redirect them to FaShare and redirect the

answer to A .

1. S plays the role of FaShare storing all information sent to

parties.

2-3 S obtains (i, {yij }j,i) for each Pi ∈ M.S also obtains {ei }i ∈M

A broadcasts.S first computes e∗i , which arewhat an honest
Pi would have broadcast and computeqi := ei⊕e∗i .S further

computes ri, j := yij ⊕ y
i
, where yi is the value S used when

playing the role of FaShare. S computes ri :=
⊕

j ∈M, j,i r j,i
q :=

⊕
i ∈M qi , and sends (q, {ri }n) to FLaAND. If FLaAND

terminates, S follows the protocol as honest parties and

abort in step 7.

4-5. For each i ∈ M, S receives {Ui, j }j ∈H from Pi . S picks

random {Uj,i }j ∈H and sends them to Pi playing the role of

Pj for each j ∈ H .

6-7 If FLaAND terminates in step 2, then S follows the protocol

as honest parties and abort in step 7. If the equation hold, S

will extract another selective failure attack query.

Similar to the unforgeability proof, we use U ∗i, j and H∗i to

denote the values that an honest party would have compute,

and define Qi, j = U ∗i, j ⊕ Ui, j , Qi = H∗i ⊕ Hi . This means

that is a malicious Pi uses some Qi, j , then Pj will obtain

some Mi [x
j
]Φi with an additive error of x jQi, j . S defines

Rk =
⊕

i,k,i ∈H Qk,i . S sends (
⊕

i ∈M Qi , {Ri }i ∈[n]
) to

FLaAND. If FLaAND terminates,S aborts outputting whatever

A outputs; otherwise, S obtains {Hi }i ∈M and picks random

{Hi }i ∈H such that

⊕
i Hi = 0.

Note that the first five steps are perfectly indistinguishable given

that H is a random oracle, except that A can perform a selective

failure attack. We will show that the probability of abort due to

this attack is the same between real-world protocol and ideal-world

protocol. The probability that the value A sent in step 2 and 3

cause an abort is the same as S’s query to FLaAND, noticing that

the following is true.

⊕
i

⊕
j,i

xiy
j
i ⊕

⊕
i

x iyi ⊕
⊕
i

(e i ⊕ r i)

=
⊕
i

⊕
j∈M, j,i

xiy
j
i ⊕

⊕
i

⊕
j∈H , j,i

xiy j ⊕
⊕
i

x iyi ⊕
⊕
i

zi ⊕
⊕
i∈M

qi

=
⊕
i

⊕
j∈M, j,i

xi rj,i ⊕
⊕
i

⊕
j,i

xiy j ⊕
⊕
i

zi ⊕
⊕
i∈M

qi

=
⊕
i

⊕
j∈M, j,i

xi rj,i ⊕
⊕
i∈M

qi

=
*.
,

⊕
i

xi
⊕

j∈M, j,i
rj,i

+/
-
⊕

⊕
i∈M

qi

We will focus on the last step. If in step 6, it is the case that(⊕
i x

i
) (⊕

i y
i
)
,

(⊕
i z

i
)
, then it is easy to see that the views

are indistinguishable: all parties behave the same between hybrids.

According to the unforgeability lemma, the protocol will abort with

all but negligible probability. In the following, we will further focus

on the case when the equation holds.

Note that in the idea world protocol, all Hi fromH are picked

randomly. We need to show that in the real world protocol all Hi ’s

Continent Region

North America

North Virginia Ohio

North California Oregon

Toronto

Europe

Ireland London

Frankfurt

Asia

Mumbai Tokyo

Seoul Singapore

Australia Sydney

South America São Paulo

Table 9: List of all Amazon EC2 regions used in the WAN
experiment.

is also a random share of 0. In particular, we define

F ∗i =
*.
,

⊕
k,i

Ki [xk]Φi ⊕Mk [x i]Φk
+/
-

and will first show that for any proper subset S ⊂ H ,

⊕
i ∈S Fi is

indistinguishable from random to the A . We use e to denote an

honest party such that e ∈ H , e < S . Such e always exists, since S
is a proper subset ofH .⊕

i ∈S
F ∗i =

⊕
i ∈S

⊕
k,i

(
Ki [xk]Φi ⊕Mk [x i]Φk

)
=

⊕
i ∈S

⊕
k,i

(
Ki [xk]Φi

)
⊕

⊕
i ∈S

⊕
k,i

(
Mk [x i]Φk

)
=

⊕
i ∈S

⊕
k,i

(
Ki [xk]Φi

)
⊕

⊕
k ∈S

⊕
i,k

(
Mi [x

k
]Φi

)
=

⊕
i ∈S

⊕
k,i

(
Ki [xk]Φi

)
⊕

⊕
i ∈[n]

⊕
k ∈S,k,i

(
Mi [x

k
]Φi

)
From the equation, it is clear that for i ∈ S , Ke [x i] is not in the

computation, while Me [x i] is. Since Ke [x i] is randomly picked by

Pe , we know
⊕

i ∈S F
∗
i is random. Therefore we can see that for any

proper subset S ⊂ H ,

⊕
i ∈S Hi is indistinguishable from random.

Finally we need to show that the probability of abort due to

selective failure attack is also the same. This is straightforward

given the equation used in the unforgeability proof:⊕
i

Hi =
⊕
i∈M

Hi ⊕
⊕
i∈H

Hi

=
⊕
i∈M

(
H ∗i ⊕ Qi

)
⊕

⊕
i∈H

*.
,
H ∗i ⊕

*.
,

⊕
k,i

xkQk,i
+/
-

+/
-

=
⊕
i

H ∗i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

*.
,

⊕
k,i

xkQk,i
+/
-

=
⊕
i∈M

Qi ⊕
⊕
i∈H

*.
,

⊕
k,i

xkQk,i
+/
-

=
⊕
i∈M

Qi ⊕
⊕
k

*.
,
xk

⊕
i∈H ,i,k

Qk,i
+/
-

=
⊕
i∈M

Qi ⊕
⊕
k

xkRk

□

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

55

LAN WAN

n Setup Indep. Depen. Online Total Setup Indep. Depen. Online Total

AES 33.5 37.4 7.6 1.3 79.8 43.7 286.7 32.5 12.1 375.0

2 SHA-1 33.8 148.2 25.2 5.0 212.2 43.9 587.0 101.7 15.9 748.5

SHA-256 34.3 329.3 58.7 11.8 434.1 44.3 1097.0 205.2 23.1 1369.6

AES 35.2 46.7 11.5 2.0 95.4 213.6 1455.1 183.8 66.0 1918.5

3 SHA-1 35.5 203.6 36.2 9.3 284.6 212.5 2038.4 270.7 74.7 2596.3

SHA-256 36.7 470.1 88.0 23.4 618.2 213.7 2939.7 511.0 87.8 3752.2

AES 36.5 57.7 15.7 3.2 113.1 321.2 1903.3 319.2 85.4 2629.1

4 SHA-1 36.8 265.5 50.3 13.7 366.3 322.7 2665.4 358.7 96.6 3443.4

SHA-256 37.9 632.2 123.7 31.6 825.4 328.2 3669.0 786.5 113.1 4896.8

AES 38.4 72.4 19.9 4.3 135.0 727.8 1988.6 327.6 82.7 3126.7

5 SHA-1 39.2 326.2 73.9 20.8 460.1 719.0 2828.3 442.5 106.0 4095.8

SHA-256 40.0 792.3 182.7 48.9 1063.9 728.4 3953.5 1101.1 131.2 5914.2

AES 42.8 85.3 26.1 5.4 159.6 1151.8 3432.1 511.2 87.8 5182.9

6 SHA-1 44.5 410.8 110.3 26.1 591.7 1131.1 4921.8 1159.2 118.6 7330.7

SHA-256 46.0 968.2 282.0 63.8 1360.0 1112.3 6933.2 1617.7 149.8 9813.0

AES 47.0 99.8 31.8 7.3 185.9 1459.5 3986.6 620.3 90.8 6157.2

7 SHA-1 49.7 493.1 141.8 31.2 715.8 1480.4 5690.3 936.0 115.4 8222.1

SHA-256 49.4 1176.3 397.0 74.5 1697.2 1455.3 7862.8 1765.8 155.7 11239.6

AES 50.9 114.7 38.7 8.5 212.8 1767.7 4189.7 710.6 100.4 6768.4

8 SHA-1 52.4 551.2 180.1 39.9 823.6 1791.9 5920.0 1065.8 132.7 8910.4

SHA-256 51.4 1328.0 470.7 94.5 1944.6 1807.1 8504.8 2129.4 185.0 12626.3

AES 53.4 134.7 45.2 9.7 243.0 3279.2 6237.3 1356.2 198.3 11071.0

9 SHA-1 54.4 613.6 236.7 47.2 951.9 3263.7 8843.3 2769.5 246.9 15123.4

SHA-256 54.7 1505.4 573.5 114.9 2248.5 3274.6 12712.0 4705.4 315.2 21007.2

AES 59.3 144.2 53.0 11.7 268.2 4502.8 6279.1 1388.2 200.7 12370.8

10 SHA-1 60.3 721.0 285.2 54.9 1121.4 4479.5 8962.9 2671.9 252.4 16366.7

SHA-256 60.2 1694.9 658.3 128.4 2541.8 4524.3 12465.7 6037.4 328.9 23356.3

AES 61.3 165.8 60.9 15.0 303.0 4709.8 7083.2 1534.9 205.0 13532.9

11 SHA-1 63.0 798.3 318.1 69.8 1249.2 4823.6 12112.6 3539.2 273.7 20749.1

SHA-256 62.1 1904.9 881.1 173.2 3021.3 4752.5 13432.2 5501.9 378.4 24065.0

AES 68.0 181.6 75.8 16.7 342.1 4860.2 7349.1 1718.9 232.1 14160.3

12 SHA-1 71.4 872.8 382.4 79.3 1405.9 4826.6 10596.2 3519.9 302.8 19245.5

SHA-256 69.7 2045.5 1033.9 200.5 3349.6 4814.5 16738.7 6743.5 437.9 28734.6

AES 73.5 237.2 85.6 18.4 414.7 6703.6 8531.2 1932.3 248.4 17415.5

13 SHA-1 74.0 1281.8 465.1 88.8 1909.7 6743.2 12151.9 4051.9 324.5 23271.5

SHA-256 75.5 2953.4 1277.7 216.5 4523.1 6682.9 18355.0 8879.7 490.8 34408.4

AES 76.8 258.2 102.5 20.3 457.8 8710.8 9412.2 1947.0 250.2 20320.2

14 SHA-1 77.0 1375.3 546.7 91.2 2090.2 8654.9 13512.7 4118.9 338.7 26625.2

SHA-256 79.7 3283.2 1573.0 238.8 5174.7 8714.4 18104.8 8236.1 480.2 35535.5

Table 10: Detailed numbers for experiments of basic circuits. Timings are measured in terms of milliseconds.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

56

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Notation and Preliminaries
	3 Overview of Our Main Protocol
	3.1 Two-Party Authenticated Garbling
	3.2 Extension to the Multiparty Setting

	4 The Main Scheme
	5 Efficiently Realizing [Pre]
	5.1 Multi-Party Authenticated Bit
	5.2 Multi-Party Authenticated Shares
	5.3 Half-Authenticated AND Triple
	5.4 Multi-Party Leaky Authenticated AND Triple
	5.5 Multi-Party Authenticated AND Triple

	6 Evaluation
	6.1 Implementation Details
	6.2 Performance on Basic Circuits
	6.3 Evaluation in a Global Setting
	6.4 Comparison to Other Work
	6.5 Communication Complexity

	References
	A Security Proofs
	A.1 Proof of the Main Protocol
	A.2 Multi-Party Authenticated Bits
	A.3 Multi-Party Authenticated Bits
	A.4 Half-Authenticated AND Triple
	A.5 Multi-Party Leaky Authenticated AND Triple

