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ABSTRACT

As modern attacks become more stealthy and persistent, detecting
or preventing them at their early stages becomes virtually impos-
sible. Instead, an attack investigation or provenance system aims
to continuously monitor and log interesting system events with
minimal overhead. Later, if the system observes any anomalous
behavior, it analyzes the log to identify who initiated the attack and
which resources were affected by the attack and then assess and
recover from any damage incurred. However, because of a funda-
mental tradeoff between log granularity and system performance,
existing systems typically record system-call events without de-
tailed program-level activities (e.g., memory operation) required
for accurately reconstructing attack causality or demand that ev-
ery monitored program be instrumented to provide program-level
information.

To address this issue, we propose RAIN, a Refinable Attack
INvestigation system based on a record-replay technology that
records system-call events during runtime and performs instruction-
level dynamic information flow tracking (DIFT) during on-demand
process replay. Instead of replaying every process with DIFT, RAIN
conducts system-call-level reachability analysis to filter out un-
related processes and to minimize the number of processes to be
replayed, making inter-process DIFT feasible. Evaluation results
show that RAIN effectively prunes out unrelated processes and
determines attack causality with negligible false positive rates. In
addition, the runtime overhead of RAIN is similar to existing system-
call level provenance systems and its analysis overhead is much
smaller than full-system DIFT.
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1 INTRODUCTION

Since modern, advanced attacks are sophisticated and stealthy, col-
lecting and analyzing attack provenance data has become essential
for intrusion detection and forensic investigation. For example,
many attack investigation or provenance systems monitor and log
interesting system events continuously to identify which process in-
teracted with an unknown remote host and which process accessed
or modified sensitive files. If the systems find such a suspicious pro-
cess, they will analyze its previous behaviors to determine whether
it was attacked and which resources were affected by it.

Attack investigation systems, however, entail a practical limi-
tation because of their two most important but conflicting goals—
collecting a detailed log and minimizing runtime overhead. To
ensure an accurate attack investigation, an instruction-level log
would ideally record the execution of all of the CPU instructions
of all programs. Nevertheless, such systems [49, 50, 54] also incur
tremendous runtime overhead (4x—20x), so they are impractical
in real computing environments. Therefore, as many attacks even-
tually need to use system calls to access sensitive resources and
devices, other practical systems [12, 24, 33, 34] mainly focus on
system-call information, the collection of which incurs low runtime
overhead (below 10%).

Although system-call-based investigation systems are practical,
they suffer from dependency ambiguity and explosion [33] because
it is difficult to reconstruct accurate attack causality with only
system-call information. For example, when a process reads from
a number of sensitive files and sends some (encrypted) data to
a remote host, knowing which sensitive files the process sends
(or it might not send any sensitive data) without instruction- or
memory-level data-flow tracking that system-call-level log cannot
provide becomes a challenge. To overcome this limitation, several
systems [12, 23, 33, 34] instrument monitored programs to obtain
interesting program-level information by modifying their source
code or rewriting their binary code. Nevertheless, this approach
is not scalable; that is, it must instrument each program again
whenever it is updated. More importantly, it cannot cover dynamic
code execution (e.g., code injection, self-modifying code, and return-
oriented programming), which is frequently used by exploits.

This paper proposes RAIN, a practical Refinable Attack INvesti-
gation system, that selectively provides an instruction-level detailed
log while minimizing runtime overhead. RAIN satisfies these con-
flicting goals using a system-call-level record-and-replay technology
and on-demand dynamic information flow tracking (DIFT). RAIN
continuously monitors and logs system-call events and additional
data for later replay while constructing a logical provenance graph.
When it detects any anomalous event in the graph, it performs
replay-based DIFT from the event to prune out any unwanted
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dependency. Performing DIFT for every process in the graph, how-
ever, is infeasible because the overhead of DIFT is too high (usually
around 10x-20x and at best, 2.7x, using decoupling techniques
[27, 37]). Instead, RAIN performs system call-level reachability anal-
ysis to extract a subgraph tightly related to the anomaly and then
conducts DIFT only for processes belonging to the subgraph.

We evaluated RAIN using the red team exercises produced by
the DARPA Transparent Computing program [2] and a recent real
attack (StrongPity). These cases include normal background traffic
with complex programs such as the Firefox web browser. Evaluation
results show that RAIN is able to capture fine-grained causalities
that accurately uncover the behaviors and effects of attacks, and in
most cases the false positive rate is negligible. The runtime overhead
is as low as 3.22% on SPEC CPU 2006, unlike previous instruction-
level investigation approaches [49, 50, 54] whose runtime overhead
is 4x—20x. Further, RAIN effectively reduces the number of processes
to be replayed with DIFT and filters out, on average, more than 90%
of processes. This is a considerable improvement in performance
over the previous approach, which has to replay the entire system
and conduct DIFT against all processes.

Motivating Example. To illustrate the constraint of existing
provenance systems and the contribution of our work, we refer
to a recent attack called StrongPity [13]. The attack infected over
1,000 systems in Italy and several other European countries in late
2016. The purpose of StrongPity was to steal and tamper with the
victims’ data by means of compromised data transfer or archiving
tools. Take, for example, Alice, a finance manager who maintains
and manages contracts and bidding files. Alice usually uses a popu-
lar ftp extension called FireFTP in her Firefox browser to transfer
files to other hosts, such as a machine hosting the shared folder
for her team. In the first step of the attack, the extension in Alice’s
Firefox is upgraded to one that contains a backdoor, resulting from
the distribution site of FireFTP, which has been compromised. A
malicious extension accesses Alice’s file system, collects data from
certain files, and sends the data to an attacker’s controlled site. In
addition, the extension modifies certain incoming files before they
are saved which also pollutes files that rely on the modified ones.
As we mentioned earlier, conventional system call-level tracing
and auditing cause false positives in damage assessments when
the source of the program (Firefox and FireFTP extension) is
compromised and source instrumentation (if any) becomes untrust-
worthy. For example, the system call traces in Figure 1 indicate
data leakage by connecting any read system call from sensitive
files to the send system call directed to the malicious site. Many
of these flows may be spurious if the user-space browser does not
actually propagate the data from the file to the remote host (i.e., not
all of the files being read are actually leaked). Similarly, many of
the processes and files indirectly affected by interactions with the
tampered file may not actually be affected at all. One needs to track
the user-space data flow to precisely identify these dependencies.
With RaIN, after discovering that a host is controlled by an
attacker, an investigator performs an upstream analysis originating
from the host. With data pruning and selective DIFT, RAIN returns
a provenance subgraph that contains the exact data leakages to the
host. Although the malicious extension reads a number of files, it
leaks only a small portion of them. By providing accurate analysis,
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Figure 1: Example of causality inaccuracy (i.e., dependency explo-
sion) in system-call-level provenance data.

RAIN saves the company from the fear of a large scale data leakage.
We will revisit this example and elaborate on the details of the
analysis in the following sections.

We summarize our contributions as follows:

e A refinable attack investigation system. We propose
a new attack investigation system that efficiently records
system-wide events in terms of system calls during runtime
and refines the log with DIFT during replay to recover fine-
grained causality. RAIN satisfies two conflicting yet impor-
tant requirements: low runtime overhead and fine-grained
causality information (at the CPU instruction level), both
essential in the forensic analysis of attacks.

e On-demand inter-process DIFT. Instead of applying DIFT
to whole-system events [49, 50, 54] which introduces tremen-
dous overhead or which is likely infeasible, we introduce
graph-based reachability analysis to filter out unrelated pro-
cesses and selectively perform DIFT which makes inter-
process DIFT feasible for attack investigation.

e Accurate and comprehensive attack investigation. We
improve the accuracy of object-object, object-process, process-
process causalities (§5.2) and significantly reduce the false
positive rates generated by previous systems.

The rest of paper is organized as follows: §2 describes our threat
model. §3 provides an overview and describes the architecture of
RAIN. §4 describes system logging and record-replay techniques,
and §5 explains the provenance graph. §6 presents the reachability
analysis and the process of identifying triggers. §7 describes how
RaIN performs selective DIFT, and §8 summarizes its implementa-
tion and presents the results of evaluation. §9 discusses limitations
and future work, §10 summarizes related work, and §11 concludes.

2 THREAT MODEL AND ASSUMPTIONS

Our threat model is similar to those proposed in previous system
provenance studies [12, 34, 40]—an OS and monitoring system are
a trusted computing base (TCB). We take, for instance, an attacker
who tries to attack the applications and resources of a system pro-
tected by RaiN and whose main goal is to exfiltrate sensitive data
kept in the system or manipulate it to propagate misinformation.
To achieve this goal the attacker may install malware on the system,
exploit a running process, or inject a backdoor.

To realize a practical, refinable attack investigation system we
assume the following: First, we assume that all of the attacks against
the system begin after RAIN is deployed—that is, RAIN begins record-
ing all of the attacks from their inception. Hardware trojans and OS
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Figure 2: Overview of RaIN architecture.

backdoors are out of scope of this paper. Second, we assume that
although an attacker could compromise the OS or RaIN itself, the
attacker has no way of manipulating the previous provenance data
containing attack attempts on the OS or RaIn. That is, although
we can see the attacker attempting to compromise the OS or RAIN,
any data recorded after a successful attack may not be reliable.
In the future, RAIN could ensure data integrity by using previous
secure provenance logging techniques [11, 55] and managing the
provenance data in a remote analysis server. Also, by using state-
of-the-art integrity-checking mechanisms [25, 32, 38, 43, 47], RAIN
could determine when such an incident has occurred. Another as-
sumption that we make is that an attacker uses only explicit attack
channels, not side and covert channels which are beyond the scope
of this paper. Although RAIN does not yet have a solution stopping
these attacks, we believe a record-and-replay approach has the
potential to detect attacks as shown in [14, 53].

Note that although some instruction-level attack investigation
systems [50, 54] are capable of detecting attacks against an OS,
they are too slow to be used in a real computing environment and
are mainly applied for in-depth malware analysis, running a small
number of samples in a controlled environment. Thus, we only
assume integrity-checking mechanisms in this paper.

3 OVERVIEW

This section presents an overview of RAIN, a record-and-replay-
based system that efficiently logs the whole-system events during
runtime and conducts DIFT during replay to accurately determine
fine-grained causal relationships between processes and objects
(e.g., files and network endpoints) created during the execution of
user-level processes.

Figure 2 represents the architecture of RAIN, which consists of
two main components: the target host and the analysis host. In
the target host, RAIN’s kernel module logs all system calls that
user-level processes have requested, including the return values
and parameters that RAIN will use to generate a provenance graph.
RAIN also records the execution of user-level processes by using
kernel modules and an instrumented libc library to replay the
processes later on. It collects all necessary information to reproduce
the complete architectural state of user-level processes (i.e., all non-
deterministic values including random numbers). The target host
then sends the system call and record logs to the analysis host (§4).
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In the analysis host, the provenance graph builder consumes the
received system call log to construct a coarse-grained whole-system
provenance graph that contains many security-insensitive causality
events (§5). To refine the coarse-grained provenance graph, Rain
first detects triggering points representing suspicious events in the
graph (e.g., accessing a sensitive file). Next, it initiates a reachability
analysis (i.e., upstream, downstream, and point-to-point analyses)
from the triggering points to create security-sensitive provenance
subgraphs (SPS), which consist of basic units that replay with DIFT
(§6). While selectively performing DIFT, the replay engine of RaIN
replays each SPS to construct fine-grained causality subgraphs (§7).
Lastly, with the fine-grained causality subgraphs, RAIN refines the
original whole-system provenance graph to detect the true behavior
and damages of any sophisticated attack that we were not able to
observe in the original provenance graph.

4 REPLAY-ABLE SYSTEM LOGGING
4.1 System Logging

The system logging component resides inside the kernel of the
operating system as a kernel module. We hook the system call
table to intercept the arguments and return values of causality-
related system calls. The component logs the semantics of system
calls between kernel objects and events such as open, read, write
file operations and connect, recv, send network operations. We
also include essential semantics such as the file path and the file
descriptor in the open syscall.

To uniquely identify the object, we log the related kernel seman-
tics of processes and files, which include inode, major, minor, gen
for files, and pid, tgid for processes. We also refer to kernel data
structures if necessary (e.g., to get the string of a file’s path from
the file system structure, dentry) which enables us to reduce the
log size for constructing the provenance graph to focus on unique
processes and objects. We use the relayfs ring buffer to efficiently
transfer the system call logs from the kernel to the user space. The
logs are packed, compressed, and transmitted off of the target host
to a security-assured analysis host.

4.2 Enabling Replay-Ability
Compared to previous system logging schemes [4, 12, 31, 34], RAIN

not only logs semantics for building the coarse-grained provenance
graph, but also the non-determinism that enables faithful replay.
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For this purpose, we reuse Arnold, the open-source framework of a
process-level record replay technique [19]. As an advantage, Arnold
supports the independent replay of processes so we do not have to
replay the entire system’s execution (e.g., [20, 50]) for analysis. RAIN
extends Arnold so that it supports system-wide recording, which
accounts for every process execution in user-space. As a result,
RAIN can replay any part of the system’s execution on-demand for
selective DIFT without losing completeness.

To replay the execution faithfully, Arnold records the return
value of system calls, IPC communications such as signal and sys-
tem V queues, and caches the data for every file or network I/O
system call. For multi-threading applications, the pthread library
in libc is hooked to record and enforce the order of the thread
switch. To handle shared memory, Arnold replays involved pro-
cesses cooperatively to regenerate shared data, and to improve the
replay reliability. It also records and replays random numbers as
well as RDTSC by using prctl (PR_SET_TSC,PR_TSC_SIGSEGV)
from [5].

RAIN aims to detect and analyze attacks that may have previously
gone undetected, so instead of being confined to a predefined list of
known programs, Arnold’s process level record-replay technique
has been extended from a single process to system-wide executions.
Although RAIN does not replay all of the recorded executions for
refining attack provenance owing to the reachability analysis (§6)
and selective DIFT (§7), this system-wide feature is critical as it
enables us to refine any demanded part of execution. We achieve
this by hooking the execve syscall inside of the kernel so that when
a program is loaded via execve, we force it to become a recording
process by creating the recording contexts. Throughout the analysis
RAIN can replay each demanded execution independently to resolve
the associated fine-grained causality.

4.3 Storage Footprint

The storage use of RAIN comes from system logging and recording.
We serialize the logging data using the Apache Avro [1] binary
format, which incurs around 500MB-2GB per day for desktop use
in our experiments. On the side of recording, the file, network I/O
cache constitutes most of the storage cost. To optimize storage use,
Arnold [19] applies compression, caches the data using “Copy-on-
RAW”, and manages the data pieces in a B-tree. In our experiment,
the record logs of system-wide executions (excluding the OS) on
a desktop produce around 2GB of storage per day. Therefore, the
storage cost is 2.5-4GB per day (or less than 1.5TB per year). With
the market price for a 2TB hard drive or cloud storage being around
50 US dollars, we believe that our storage cost is both reasonable
and affordable. Note that instead of selectively storing data [34],
we choose to store all of the raw data first and then generate the
provenance graph selectively, following a set of pruning algorithms
(§6). Our storage footprint reflects the size of raw data.

5 PROVENANCE GRAPH

We construct a graph structure called Provenance Graph which
contains the whole-system execution during the entire period of
monitoring. RAIN uses this graph as the basic model to represent
system objects, events, and their causal relationships. We begin by
processing the syscall logs. When first constructed from system

380

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Causality Granuality

Coarse level
Coarse + Fine level
Coarse + Fine level
Fine level

Process-Object
Object-Process
Process-Process
Object-Object

Table 1: Granularity of analysis.

logging, the graph is coarse-grained. It is then pruned and refined
incrementally according to analysis requests. We use nodes to rep-
resent system objects and edges to represent causality between
system objects.

5.1 Nodes

Nodes in the provenance graph can be classified into two categories:
processes and objects. Processes represent user-level processes.
Objects represent files and network endpoints. All nodes contain a
timestamp that represents the time that the entity (represented by
the node) was generated by the operating system. Each process node
contains pid, tid, and process name. Each File node contains the
full path name of the file and inode, major, minor, and gen which
uniquely identify a file. Nodes representing network endpoints
contain the IP address and port of the network entity. Note that the
tracking scope of RAIN does not extend beyond the target host. In
other words, we treat the remote host as a black box and do not
track its internal logic or state. This limitation can be addressed
if we apply RAIN on the remote host and causally relate the two
hosts, but we will explore this issue in future work.

5.2 Causality Edges

Edges represent causal relationships between nodes in the prove-
nance graph. We define four types of edges: process-object causal-
ity, object-object causality, object-process causality, and process-
process causality. Among these causalities, we observe that only
the process-object causality can be tracked reliably by syscall-level
logging. The remaining causalities require either full or partial
fine-grained user-space tracking. We summarize these granularity
requirements in Table 1.

Process-Object Causality. Process-object causality, which de-
notes the causal relationship between a process and an object, is
established when a user-level program accesses a file or network
object. As the operating system provides these I/O services to user-
space, this causality can be captured by syscall logging (i.e., file or
network I/0) without false negatives. For example, the data can be
loaded from a file to the memory of process via a read syscall or
written to a file from the process via a write syscall. In the case of
a read syscall, the process has a directional edge to a file; and the
case of a write syscall, a file node has an edge to a process. Similar
causalities exist between processes and network endpoints. In the
case of a mmap syscall, the direction of causality is determined by
the syscall arguments such as PROT and FLAG.

Object-Process Causality. Object-process causality is established
when the object affects the execution of a process or its control
flow. Usually the process has an edge from an executable file if
that file is loaded and executed by the process. RAIN captures this
causality by monitoring the execve syscall. The use of libraries is
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typically tracked by open, mmap, or dlopen syscalls. However, this
causality may not be true by just analyzing syscalls. For example,
the developer may include libraries but not use them. To affirm
causality between processes and libraries, we need to further track
the control flow to see if its value (address) exists within a library’s
address space such as that described in [41]. Particularly for so-
phisticated attacks, an accurate object-process causality is crucial
for detecting control-flow hijacking and identifying the sources of
exploit payloads that could be used to access library functions. We
accurately determine this type of causality during the DIFT phase.

Object-Object Causality. Object-object causality occurs in the
case of data flow between two objects. The data flow inside of a pro-
cess starts from an inbound object (e.g., via read syscall) and ends
at an outbound object (e.g., via write syscall). One can infer this
type of causality by simply pairing inbound and outbound objects.
However, simply monitoring file or network I/O syscalls (e.g., our
motivating example in §1) or statically analyzing on the program
is inaccurate because we need to track the data propagation in the
user-level execution. As the dynamic taint analysis is prohibitively
expensive, RAIN tracks the Object-object causalities during replay
§7).

Process-Process Causality. Process-process causality is based on
the relationships between two processes. Processes can be causally
related if one is cloned by the other via the clone syscall, or they
could be related because of inter-process communications (IPC).
Some IPCs (e.g., pipe, message queues, and semaphores) can be
observed from syscalls. However, causality cannot be accurately
determined in the case of shared memory. Even though a mmap or
shmget syscall indicates the establishment of an IPC channel, it
does not necessarily mean data was actually exchanged between
processes. To track such causality, RAIN relies on DIFT to monitor
data propagation among memory operations.

5.3 Graph Construction

We construct the provenance graph by linking nodes and edges
according to the above causality definitions. Our construction is
based on uniquely identifiable objects. Since pid and inode are
recycled if a process is terminated or file is deleted respectively,
we use path as a unique identifier of processes and files (as nodes)
since the collision of these objects with the same name is low in
practice. After being processed from system call logs, each entry
of a node or an edge is compressed and stored in a binary format.
When requested for analysis, those within in the time frame are
converted and imported into a graph database. In particular, we
used Neo4j [6].

Semantic-Preserving Aggregation. Naturally, edges from I/O
events such as read and write constitute a large portion of the
graph. However, many are called successively indicating a single
“large” read or write syscall execution. Therefore, we aggregate
these successive calls for conciseness as inspired by [52]. For ex-
ample, we merge two read syscalls as long as no other file system
call occurs between them (e.g., a “write” to the same file). Note that
we collapse these successive syscalls in an “indexing” style so that
we do not remove the unique semantics of each individual edge.
Thus, the selective DIFT still has the flexibility to perform taint
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tracking between desired I/O syscalls. The aggregation alleviates
the traversing and storage costs of edges by 10%—-50%.

6 COARSE-LEVEL PRUNING

After constructing the coarse-grained provenance graph, we prune
it to generate a security-sensitive provenance subgraph (i.e., SPS) in
two steps: a triggering analysis and a reachability analysis that uses
the results of the triggering analysis. The SPS will be used as the
target for selective DIFT, in which fine-grained causalities will be
resolved.

6.1 Triggering Pinpoint

In the initial provenance analysis, we apply a set of methods to
scan the logs and identify suspicious (i.e., security-sensitive) pro-
cesses, events, and objects. The triggering analysis relies on three
approaches: external signals, security policies, and customized com-
parisons. We perform the analysis offline by examining the prove-
nance graph. This process can be done earlier when system call
logs are available as with conventional intrusion detection systems
[7-9].

External Signals. External signals are notifications from partners
or third parties (e.g., an anti-virus company). For example, an ana-
lyst may receive advice from an anti-virus vendor to specifically
check for the existence of certain executable files. All events per-
formed by these executables can be labeled as triggering points. In
our motivating example, the victim receives a notice that the distri-
bution site of the FTP extension was compromised. This triggers an
analysis of all behaviors of the browser starting from the malicious
extension update.

Security Policy. Security policy checking also serves as a trigger-
ing pinpoint method. Based on administrative security policies, we
create a set of policies that define concerning events used as trigger-
ing points for analysis. These policies include processes interacting
with sensitive files or a sequence of events that deviates from the
typical pattern of system calls. For example, it is a violation that a
process reads from certain sensitive files and then sends read data
to an unknown remote host. Recent research has shown that the
detection of attacks based on system-call sequence analysis can be
improved with machine-learning techniques [35].

Customized Comparisons. We sometimes need to compare the
states of objects at different times or locations to identify suspicious
points. Take the data-tampering case in our motivating example. In
order to identify files that have been tampered with, we compare
the files (e.g., by comparing their hash digests) that have been down-
loaded via the browser extension to the original version of these
files. If they differ, the tampered files are used as triggering points.
This type of comparison typically requires application-specific se-
mantics which are useful but not the focus of this work. For exam-
ple, Gyrus [26] compares user interface (UI) inputs and network
outbound traffic to determine user intention discrepancies.

6.2 Reachability Analysis

Starting from the identified triggers, we perform a reachability
analysis to become aware of the potential original source(s) and
impacts. This analysis prunes out unrelated executions and enables
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A: Attacker site

B: /tmp/report.doc

C: /tmp/errors.zip

D: /contracts/ctctl.csv
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P3: /bin/Gzip
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Figure 3: Coarse-level pruning and fine-level refinement on the mo-
tivating example. The gray shaded node indicates that process P2 is
pruned from the SPS because of the negative interference between
files B and D. The red-shaded nodes represent files on the causality
path from origin F to attacker site A via file C.

our DIFT to focus on resolving fine-grained causality in the attack-
related executions. Although our DIFT is performed offline, the high
cost of DIFT is not eliminated but migrated which is also pointed
out by [27]. Hence we argue that it is still impractical to perform
full taint tracking, even if it is performed offline. With reachability
analysis, we set boundaries on the DIFT, avoiding tainting “dead”
branches or regions of the graph.

The reachability analysis extends the triggering points to un-
cover possible upstream origins, downstream impacts, and causality
paths between two points. Even though at this stage the graph in-
cludes only partial causalities (§5.2), computing the SPS on top of
it and pinpointing the part that desires further DIFT is sufficient
for capturing the the remaining causalities. With the SPS we can
efficiently perform DIFT with a clear scope rather than the whole
graph. We present the analysis interface in Algorithm 1 and the
graph traversing algorithms in Algorithm 2.

6.2.1 Upstream and Downstream Pruning. Upstream pruning
reversely scans the provenance graph from the triggering point
and prunes out unrelated nodes and edges. The analysis follows
the information flow and time sequence to extend the subgraph
such that Subject — (write/send) — Object — (read/recv) —
Subject. For example, in Figure 3, from the attacker’s site (node “A”),
we scan the send or write events to A; after finding Firefox (node
“P1”), we further scan read or recv events that P1 performs earlier.
For the shared memory case in process-process causality, we also
scan for the syscall events that establish the IPC (e.g., shmget and
mmap) and extend the SPS to that process. For downstream pruning
we check forward events resulting from the suspicious processes
and other files that are affected afterwards. Pruning also follows
the information flow and extracts the downstream SPS. Pruning
is either naturally bounded (meaning no more related causality is
found) or bounded by the network interface.

6.2.2  Point-to-Point Pruning. Point-to-point analysis indicates
whether and how two points are causally related in the graph. This
analysis works on top of upstream and downstream pruning. Given
two points, we first perform downstream pruning from the earlier
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Algorithm 1 Coarse Level Pruning Interface

function UpSTRMPRU(TPoint)
GTraverse(TPoint,UP)

function DowNSTRMPRU(TPoint)
GTraverse(TPoint, DOWN)

function PTP(TPoint_1,TPoint_2)
GTraverse(TPoint_1,DOWN)
GTraverse(TPoint_2,UP)
Mnodes « FindMnodes(up_nodes,down_nodes)
RecoverPaths(Mnodes)

Algorithm 2 Information Flow Based Graph Pruning

Require: up_nodes, down_nodes
function REGIST_INTERFERENCE(ne,na)
if ne € {read,recv} then
if ne.timestamp < na.timestamp then
add_interference(ne,nd)

else if ne € {write,send} then
if ne.timestamp > na.timestamp then
add_interference(ne,nd)

function GTRAVERSE(TPoint,Direction)
ngb_nodes « read_graph(TPoint.uid)
for node € ngb_nodes do
if Direction = UP then
if TPoint.type = Process then
if node ¢ {read,recv} then
continue
else if TPoint.type € {File,Host} then
if node ¢ {write,send} then
continue
up_nodes(node) « TPoint
regist_interference(node, TPoint)
GTraverse(node,UP)
else if Direction = DOWN then
if TPoint.type = Process then
if node ¢ {write,send} then
continue
else if TPoint.type € {File,Host} then
if node ¢ {read,recv} then
continue
down_nodes(node) < TPoint
regist_interference(TPoint,node)
GTraverse(node, DOWN)

point until the later point timestamp. Second, from the later point
we perform upstream pruning until the timestamp of the early
point. Then we inspect the two resulting subgraphs to identify the
intersection set, called meeting nodes (FindMnodes() in Algorithm
2). Along with pruning, each point maintains the tags of its parent
and ancestor nodes. Finally, we use the tags of meeting nodes to
construct the full paths (i.e., SPS) (RecoverPaths() in Algorithm 2).
The remaining causalities along the paths will be captured by the
selective DIFT.
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6.2.3 Data Interference in Memory Space. We further look into
the system call sequence of each process execution. We observe that
for object-to-object causality, the inbound object can be causally
related to the outbound object only if their existence ranges overlap
in the process memory space. We call these overlaps “interferences,”
which fortunately can be identified in the system call sequence. By
examining interference situations, we skip performing DIFT in the
case of non-interference. For example, in Figure 3, the outbound
“report.doc” file (node B) has no interference with the inbound
“contractl.csv” file (node D) because the read takes place after the
write. Therefore, the interference analysis rules out the necessity
of doing DIFT for the “TextEditor” process (node P2). Meanwhile,
the “Gzip” program (node P3) is an positive interference example,
as both of the two upstream files (“contract2.pdf” (node E) and
“loss.pdf” (node F)) once shared memory space with the outbound
“errors.zip” file (node C).

It is this interference situation in the memory space that leads
to possible data propagation (exchange between objects), which
we later identify using DIFT. By identifying the exact interference
situation of each process execution, we become aware of the part
of the execution that requires fine-grained refinement as well as a
source and a sink. In the DIFT, we fast-forward the replay to the
start of interference (e.g., a read syscall), and then early-terminate
at the sink. Each entry of interference includes the process, the first
syscall that reads the inbound file, the last syscall that writes to
the outbound file, the inbound file, and the outbound file. To keep
track of ordering, the timestamps of inbound and outbound syscalls
are logged. As it is most effective when interference occurs at a
late execution time or when it is short, we can skip most of DIFT.
In §7 we show how to classify associated files with interference
into groups so that one pass of DIFT is able to resolve all of the
causalities in the group.

7 SELECTIVE CAUSALITY REFINING

To further refine the graph and obtain fine-grained level causalities,
we perform selective data tracking on top of the SPS. We re-compute
(i-e., replay) user-space executions while performing taint analy-
sis to determine causality in the interference cases (§6.2.3). Our
approach entails tainting the bytes loaded to the memory space
and tracking the propagation of the tainted bytes at the level of
instruction execution. DIFT (or “taint analysis”) has been imple-
mented in previous work [18, 27, 29, 37]. We port open-source taint
engines to develop our own taint engine that supports object-object,
object-process, and process-process causalities (§7.1.2).

Because taint analysis is costly, we find that even offline analysis
becomes impractical if we naively perform taint tracking on every
process group. Therefore, we aim to minimize the cost of analysis by
performing directional taint tracking in each group, orchestrating
process groups for information flow-based tainting for upstream
and downstream analyses, and reusing the taint results to avoid
duplicate tainting. RAIN is able to track fine-grained causality along
the upstream and downstream paths in the SPS according to the
causality results in every branch. For each process group we locate
the exact target of taint tracking according to the data interference
of the presence of objects in the memory space (§6). We present
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how we conduct taint in every process group in §7.1 and how we
orchestrate tracking across process groups in §7.2.

7.1 Directional Intra-process Tainting

According to the tainting targets determined in the SPS, RAIN per-
forms DIFT starting from the source of interference (§6.2.3) and
ending at the sink in every replay of the process execution. In our
current prototype we determine causality to occur as long as any
byte of the inbound object is propagated to the outbound object.

7.1.1 Interference Aggregation. Instead of running taint tracking
on every pair of interferences, we aggregate them so they can be
resolved in a single pass of taint tracking. This spares duplicate
taints from propagating in the same execution trace. Aggregation
takes place in the same process group. Suppose n interferences in
the process group are related to the analysis request. We aggregate
them by starting from the earliest interference and ending at the
latest one. Then we run the taint tracking one time instead of n
times. For example, in Figure 3, inside the P3 process, we aggregate
the interference of files E and C via read and write, and files F
and C via mmap, write because they belong to the same process
P3 in the SPS. Thus we can resolve the causalities within them in
one pass of tainting. When the tainting is performed it starts from
the read syscall until the write syscall with the tagging of both E
and F files as sources.

7.1.2  Replay and Taint Propagation. To allow taint tracking to
work independently from a replayed execution, we adopt the analy-
sis compensation technique from [10], which is able to differentiate
the executions of Intel Pin from that of the program. First, no syscall
made by Pin will be mixed by the recorded syscalls because the
replayer is aware of their occurrences (i.e., it can differentiate be-
tween the two). Second, for memory space separation, the record
log is scanned for any memory allocations. They will be allocated
first so the replayed execution will not be affected by Pin.

Our DIFT engine is a set of Pin tools that reuses the open-source
libdft [29], Dytan [18], and dtracker [49] projects for tracking
object-object causality. The taint tags propagate on both data and
control flow dependencies. Data dependency is tracked by monitor-
ing the read/write memory operations at the instruction level be-
tween memories and registers, and control flow dependency comes
from indirect branch dependency and incurs a higher overhead.
We also implement tools that track object-process, process-process
causalities. For cases in which object-process causality cannot be
captured by the execve syscall, we taint track the data propagations
and their impact on the control flow. We determine this causality
when the return address or the eip register is tainted by the data
of an input object (similar to [41]), which unveils typical memory
corruption exploits that hijack the control flow. For the shared
memory case in the process-process causality, we monitor shared
memory-related syscalls (e.g., shmget and mmap) to map the shared
memory among processes so that we are able to track the memory
operation of a data transfer from a private memory space of one
process (e.g., stack and heap) to the shared memory space, and then
to the other processes. Additionally, we track the data propagation
from an inbound object in one process to an outbound object in
another process via shared memory.
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7.2 Orchestrating Taintings Across Processes

In this section, we present how we perform taint tracking across
processes according to the SPS. We regard taint tracking inside
the process as a block function. To efficiently accomplish DIFT, we
apply optimization techniques that minimize the tainting workloads.
Specifically we introduce two methods of handling tainting in the
upstream and downstream directions. Finally, we present how we
refine causality paths for a point-to-point analysis by verifying the
coarse-grained paths one-by-one and reusing the previous results
cumulatively.

7.2.1 Downstream Refinement. Downstream refinement is ca-
pable of accurately identifying the impact of an attack, which is
critical in both forensic analysis and intrusion recovery. Compared
to conventional intrusion recovery approaches (e.g., Retro [31] and
Dare [30]), RaIN produces accurate causality between involved files
so the recovery can be performed only in files with true causality
which eliminates false positives; otherwise innocent processes will
be “re-executed”

Recall that when generating the SPS, RaIN also produces a pool
of interference entries (§6.2.3) in which potential causalities exist.
Starting from a designated point (e.g., a file), we identify the process
and interference related to this point and then resolve the fine-
grained causality. In the case of object-object causality, we run DIFT
on the associated process and determine the outbound object(s)
with true causality. From that object, we repeat the procedure to
determine further causally related downstream objects bounded by
the SPSs.

Take, for example, the data-tampering case in the motivating
attack. The SPS reports that the tampered spreadsheet file “agree-
ment.csv” has been later read by the auto-budget script which
produces the budget and production plan files. More interestingly,
the budget file is then used by the document editor which generates
a season report. The triggering point in this case is the tampered
spreadsheet file. Further interference entries with the file as inbound
object will be pinpointed and taint tracking will be performed. We
consider this interference situation an entry. Then we conduct
taint analysis on the first (closest hop) process to identify the true
outbound object and move further downstream making the found
outbound object inbound object. As a result, we are able to repeat-
edly identify the exact downstream causalities and insert them into
the provenance graph.

7.2.2  Upstream Refinement. Upstream refinement also begins at
the triggering point, but proceeds in the reverse order of the execu-
tion time. The SPS appears in an acyclic-directed graph shape with
the latest point being the triggering point (e.g., the file leaked by
the compromised FTP extension). To identify the leaked file and its
provenance, we locate the associated process in the SPS. The taint
tracking on the replay of the process execution determines the real
causal parents so the next rounds of taint tracking are performed
only at these parent files. Taint tracking continues recursively until
it hits a boundary advised by the SPS. At each branch where mul-
tiple inbound objects exist, refinement continues only on the true
inbound object(s) and ensures that they are outbound objects for
the next round of tainting.
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In Figure 3, from the attacker’s site, we begin running upstream
refinement performing tainting at P1 (i.e., the Firefox session). We
find that although the “report.doc” file (node B) and the “errors.zip”
file (node C) are both inbound, only file C is causally related to the
attacker’s controlled host (node A). We drop file B and continue re-
finement on the branch from file C. Again we find that “Gzip” (node
P3) has input files “contract2.pdf” (node E) and “loss.csv” (node F),
but only file F exhibits causality with file C, so we continue along
the F branch. As a result, we eliminate the unnecessary workload
of tainting dead branches that do not reach the triggering point.

Extending Causality Across Processes. As an optional feature,
we keep track of the causality across processes (e.g., in Figure 3,
file F to site A). We maintain a shadow tagging file for each file that
is accessed by more than one process. This tagging file keeps track
of the source tag of every byte in the file so that RAIN can track
the causality between two separate files in different processes. For
example, in Figure 3, the shadow tagging file of file C is generated
when tainting is performed on P3. The tagging file contains the
bytes with causality between files E and F. When we replay and
taint track P1, we refer to the tagging of file C and acknowledge
that the leaked data includes both files C and F because part of
the contents of C originated from file F. Accompanied by upstream
refinement, RAIN constitutes the result of this Point-to-Upstream
analysis that file C has been leaked to the attacker while certain
leaked contents of C originate from F. In our current prototype,
this feature is optional and on-demand as it incurs higher tainting
overhead. Note that tracking the data with tags from previous
objects requires full-length tainting from the inbound to outbound
objects.

7.2.3  Point-to-Point Refinement. Recall that causality may have
been included within the SPS (§6.2.2). With the help of the SPS,
heavy DIFT is applied to verify the data flow on the path where the
fine-grained causalities (e.g., object-object) occur. This filters out
many unrelated branches that would have incurred high analysis
overhead.

Based on the processes on each path in the SPS, we replay and
perform taint tracking on the process groups in the path to verify
true causality. From the start to end points along the path, each
process group is replayed and taint tracking performed on the
specific interference between the inbound and outbound system
calls. The inbound object is tagged and the running of the process
propagates the tags and monitors whether it hits the outbound
object. If it does, verification continues. Otherwise, it terminates
and returns a negative result. The verification runs until an end
point. If all interferences along the path are positive, we refer to
the path as “causality positive.” At the end, the refinement returns
all the causality-positive paths.

The verification procedure is optimized by reusing the taint
results for each group. In the implementation, we store the causality
between specific inbound and outbound files in a database. In the
remaining verifications, we start by searching the database for
existing causality facts. Then we reuse them if possible without
performing the same taint tracking again. Because we reuse the
results, taint verification takes less time as we verify more paths.
Particularly for the point-to-point case, the taint tracking in every
process group is optionally run in parallel to accelerate the analysis
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Host Module LoC
Kernel Module 2,200 C (Diff)
Target host Trace Logistics 1,100 C
Provenance Graph 6,800 C++
o Trigger/Prune 1,100 Python
Analysis host Selective Refinement 900 Python
DIFT Pin tools 3,500 C/C++ (Diff)

Table 2: Implementation complexity.

if more computing resources are available. As every process group
is independently recorded and independently replay-able, we tag
every process group with a symbolic tag and will resolve the tag
propagation with real tags. The use of more resources with less
time consumption represents the cost of this optimization. In this
case, refinement time decreases to the level of the longest DIFT.

8 IMPLEMENTATION AND EVALUATION

We implemented a prototype of RAIN in Linux. In the kernel module
of the target host, we implemented the system logging logic with
comprehensive semantics to build the provenance graph and to
support whole-system recording. On the analysis host, we imple-
mented the construction of the provenance graph and trigger/prune
methods as well as DIFT that support object-object, object-process,
and process-process causalities on top of [18, 29, 49]. The complex-
ity of implementation is summarized in Table 2. We plan to release
the source code of RAIN.

Our evaluation addresses the following questions:

e How well does RAIN detect various attack scenarios (§8.1.1,
§8.1.2)?

e How accurately does RAIN prune and refine provenance
graphs (§8.1.3)?

e How much overhead associated with analysis, runtime, and
storage does RAIN have (§8.2)?

In our evaluation environment, we set up the target and analysis
host individually on two bare-metal machines both powered by
Intel Xeon(R) CPU W3565 3.2GHz; the target host has an 8GB RAM
and 512GB hard drive, and the analysis host has a 32GB RAM and
2TB SSD hard drive. They are connected by a 1GB Ethernet cable.
Both machines run Ubuntu 12.04 LTS (i386).

8.1 Security Analysis

Using various attack scenarios, including the motivating exam-
ple, we evaluate the accuracy gains and conduct a set of red team
exercises from the DARPA Transparent Computing program [2].

8.1.1 Motivating Example. We demonstrate the end-to-end pro-
cedure and efficacy of RAIN at detecting and analyzing the motivat-
ing attack example (§1). The attack exploits the FireFtp addon of
Firefox to steal a user’s data and tamper with downloaded files. At
the triggering pinpoint phase of the analysis, the security team of
the company was notified that an originally trustworthy site (e.g.,
white-listed in the firewall policy) was compromised for one week
until they confirmed and recovered from the leakage of critical con-
tract details (i.e., External Signal in §6.1). In addition, they received
complaints from the audit team about abnormal changes in the
numbers in a spreadsheet file when they compared the downloaded

385

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

(a) NetRecon

(b) ScreenGrab

(c) CameraGrab

Figure 4: Simplified provenance graph with highlighted accurate
causality path (red dotted line for object-object causality and
blue dotted line for object-process causality; the nodes on the
path are colored accordingly). Notations: (a) A/B: ethO/eth1; C:
/tmp/netrecon.log; D/E/F: internal hosts; P1: ImplantCore; P2: Ne-
tReCon; P3: Scanner. (b) A: attacker server; B/C/D: screen.png;
E: /tmp/.X11-unix/X0; P1: ImplantCore; P2: ScreenGrab. (c) A:
/dev/video; B: malicious site that contains CameraGrab payload;
C/D: pictures; E: attacker server; P1: Firefox browser; P2: Implant-
Core.

spreadsheet file to the original one stored in the archive (i.e., Cus-
tomized Comparison in §6.1). Because of the dependency between
documents, the team was also concerned about the impact on other
files. With these triggering points, the security team, to accurately
determine what was stolen and what was affected by the attack,
queried RAIN for the exact causalities around the compromised site
and suspicious files.

To find out what was leaked to the attacker’s controlled site, RAIN
performs a “Point-to-Upstream” analysis from the site to identify
the leaked data. First, RAIN extracts the SPS from the provenance
graph by pruning off unrelated nodes and edges and downsizes it to
around 20% of the original provenance graph. Then RaIN performs
refinement on some of of the process executions, including the
Firefox process which communicates with the site. After performing
selective refinement, RAIN determines that even though multiple
files were accessed, only “ctctl.csv” was leaked. The refinement
further reduces the size of the SPS to around 10%, which reveals
the few but accurate causalities originating from the malicious site
(Figure 3). RAIN also locates the set of files affected by the tampered
file as it is used by a finance program to generate reports and other
documents. The accurate results generated by RAIN ensure that
the company is aware of the scope of data leakage and the impact
of the data tampering without panicking or having to carry out
unnecessary recovery efforts.

8.1.2 TC Red Team Exercise. We use the set of attack scenarios
from the red team exercise of the Transparent Computing (TC)
program [2] to continue our evaluation. The attack first installs
an implant-core on the victim’s system via social engineering (e.g.,
email). After installation, the implant-core communicates with the
attacker’s host (e.g., the C&C server) and receives and performs
future attack tasks. We use four unit attack examples (i.e., NetRecon,
ScreenGrab, CameraGrab, and AudioGrab) to demonstrate how
RaIN works and what amount of accurate causality is generated.
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Analysis Stages Coarse Level Pruning Fine Level Refinement False Positive Rate

Items Nodes/Edges Nodes/Edges Paths Coarse% Fine% REDUC%

Attacks Analysis ProvGraph SPS Prune% Result Added% SPS Result Added%
A(O-Up) 3,024/26,749 15.4%/19.7%  342/2,621 11.3%/9.8% - - - 67.0% 0.0% 100.0%
MotivExp A(O-Dn) 19,634/135,474  1,822/13,981 9.3%/10.3% 46/336 2.5%/2.4% - - - 55.6% 0.0% 100.0%
(3h02m) A(0-0) 389/733 1.9%/0.5% 98/222  25.2%/20.2% 51 19 37.3% 69.1% 0.0% 100.0%
A(O-Up) 2,394/17,691 18.5%/20.5% 198/210 8.3%/11.9% - - - 70.3% 23.4% 66.8%
NetRecon A(P-Dn) 12,892/86,376 1,234/8,880 9.6%/10.3% 86/799 7.7%/9.0% - - - 84.7% 13.0% 84.7%
(2h38m) A(0-0) 147/287 1.1%/0.3% 34/66  23.2%/23.0% 12 4 33.3% 66.6% 0.0% 100.0%
A(P-Up) 1,348/9,189  18.4%/19.8% 156/952 8.2%/7.9% - - - 90.5% 0.0% 100.0%
ScreenGrab A(O-Dn) 7,327/46,367 895/4,877 12.2%/10.5% 72/351 8.1%/7.2% - - - 82.1% 0.0% 100.0%
(1h13m) A(0-0) 21/30  0.28%/0.07% 5/4  23.8%/13.3% 9 5 55.5% 77.4% 0.0% 100.0%
A(P-Up) 1,603/11,102  30.2%/33.2% 96/477 6.0%/4.3% - - - 32.0% 0.0% 100.0%
CameraGrab  A(O-Dn) 5,308/33,440 589/3,317 11.0%/9.9% 59/70 10.5%/2.1% - - - 29.8% 0.0% 100.0%
(39m) A(O-P) 101/268 1.9%/0.8% 24/59  24.1%/22.0% 9 7 77.7% 44.2% 0.0% 100.0%
A(O-Up) 992/6,846  20.2%/20.5% 49/232 4.9%3.4% - - - 39.7% 0.0% 100.0%
AudioGrab A(P-Dn) 4,909/33,382 415/3,394 8.5%/10.1% 31/161 7.4%/4.7% - - - 48.2% 0.0% 100.0%
(30m) A(P-P) 230/1,392 4.7%/4.2% 84/519  36.5%/37.3% 22 18 81.8% 29.3% 0.0% 100.0%

Table 3: Incremental evolvement with pruning and refining. The Nodes/Edges column of provenance graph shows the whole system executions
during this period; Nodes/Edges of SPS tells the size of pruned data in different queries; Prune% gives the portion of pruned data to the original
one; In the fine-level refinement stage, we show the number of nodes and the number of added causality edges in Nodes/Edges, along with
the Added% rate. Particularly for the “Point-to-Point” analysis, the Paths column tells the number of paths in the SPS and the numbers
after refinement. Column FP-Coarse%, FP-Fine%, and REDUCY% indicate the false positive rate with coarse-level provenance data, with Rain

refinement, and the reduction percentage.

Schemes Analysis  1st Point 2nd Point  Time (s)
A(O-Up) AttkSvr - -
MotivExp A(O-Dn)  TmpedFilel - -
A(0-0) CtctA.csv AttkSvr 305
A(O-Up)  NRlog - -
NetRecon A(P-Dn) NetScan - -
A(0-0) AttkSvr NR.log 94
A(P-Up) ScrnGrab - -
ScreenGrab A(O-Dn)  X11Svr - -
A(0-0) X11Svr AttkSvr 68
A(P-Up) ImpCore - -
CameraGrab  A(O-Dn) CmrGrab(file) - -
A(O-P) CmrGrab(file)  ImpCore 38
A(O-Up)  AttkSvr - -
AudioGrab A(P-Dn) Firefox - -
A(P-P) Firefox RptGen 418

Table 4: Analysis request details.

NetRecon. First, the implant-core clones a process called NetRe-
con which collects network configuration information that it saves
to a temporary file. Second, the implant-core clones another pro-
cess that scans neighboring hosts based on network configuration
information. The triggering analysis finds suspicious collecting be-
havior by spotting a downloaded file conducting a series of ioctl
requests SIOCGIFHWADDR and SIOCGIFBRDADDR. The results
of the “point-to-downstream” analysis shows that the cloned pro-
cess reads the temporary file and tries to connect other internal
hosts that are determined by the temporary file. In addition, the
point-to-point analysis between the “NetRecon.log” and neighbor-
ing hosts shows the effectiveness of RaIN involving control flow
dependency. Figure 4(a) highlights the key causality between eth®
and another neighbor host. Additionally, we perform other types
of analyses and list the incremental results in Table 3.

386

ScreenGrab. The implant-core downloads a “ScreenGrab” pro-
gram that occasionally captures the screenshot of the victim’s desk-
top and selects certain shots to send to the attacker’s server. While
the attack occurs, the user performs various background desktop
actions such as web browsing. Our triggering analysis learns that a
site is controlled by the attacker. Starting from the malicious site,
RAIN conducts an upstream analysis in order to identify a causal re-
lationship with the triggering point. It begins by extracting the SPS
from the provenance graph, and then performs a fine-grained anal-
ysis to refine the SPS to obtain an accurate causality subgraph. We
can see the executable ScreenGrab has multiple inbound traffic from
the X11 server (i.e., via Unix domain socket /tmp/.X11-unix/X0)
and outbound traffic to a file. Then the implant-core sends this file
to the attacker’s host. RAIN is able to identify exactly which file is
sent. We highlight the SPS with refined causality in Figure 4(b) in
red.

CameraGrab and AudioGrab. The victim’s Firefox browser is
exploited with a zero-day exploit and its control-flow is hijacked to
the CameraGrab and AudioGrab payloads. The exploited browser
then uses a camera and a microphone to spy on the user’s behav-
ior and saves it in images and audio files respectively. Finally, the
implant-core selects certain files and sends them to the attacker
server. During this process, the user sometimes finds that the LED
light on the camera is on despite having no intention of using the
camera. The triggering point is ioctl syscalls which communi-
cates with the device. To determine the root cause, we perform
“point-to-upstream” analysis to check for the specific object-process
causality that causes the exploitation of Firefox. The results (Fig-
ure 4(c)) indicate a causality between the CameraGrab payload and
the browser as the instruction pointer of Firefox goes to the payload.
A further check of Firefox reveals that the main page has become a
malicious site, so the browser is exploited every time it is started.
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Time (s) #Taint
Attack Analysis PruT RefiT T(P+R) Rain None Fraction%
MotivExp A(0-0) 759 2321 3,080 34 720 4.7%
NetRecon A(0-O) 140 1,320 1,460 13 138 9.4%
ScreenGrab  A(O-O) 127 253 380 5 99 5.0%
CameraGrab A(O-P) 326 757 1,083 19 141 13.4%
AudioGrab  A(P-P) 301 687 988 11 310 3.5%

Table 5: Analysis cost comparison. The PruT column lists the time
used to extract the subgraph prior to fine-grained refinement. Re-
fiT shows the time it takes to selectively refine causality using taint
analysis; T(P+R) represents the total analysis time and #Taint-RaIN
how many process groups are replayed and taint tracked with the
point-to-point refinement algorithm (§7.2.3); #Taint-None provides
the number of process groups to be replayed and tainted between
the two time points without reachability and selective DIFT algo-
rithms. The average fraction ratio is 5.8%.

8.1.3  Pruning and refinement. In general, the resulting subgraph
is substantially smaller than the global graph (> 90%) as well as
the SPS that is computed by the coarse-level analysis. More im-
portantly, because of DIFT, the analysis reveals the true causalities.
We analyzed several attack scenarios and summarize their incre-
mental pruning and refinement results in Table 3 (the specifics of
the analysis requests are listed in Table 4). In particular, we list the
false positive rates using coarse-level data with RAIN refinement
and the reduction ratio. The potential causalities (denominator) are
counted according to the “dependency explosion” [33] definition
in which each output is assumed to depend on all the earlier in-
puts. With RaIN, most false positives in the provenance graph are
eliminated (i.e., a 100% reduction), but we also encountered two
cases in which false positives remained after refinement. When
we took a closer look at the DIFT, we observed the “over-tainting”
situation that occurs during control flow-based propagation which
is a known limitation of DIFT. In general, RaIN effectively improves
the precision of attack investigation.

8.2 Performance

8.2.1 Analysis Performance. To fairly examine the time duration
and tainting workload induced by RAIN, we evaluate the cost of
analysis using bounded point-to-point queries. In Table 5, we first
show the time duration for RAIN to prune (column PruT) and refine
(RefiT) the data using the point-to-point refinement in parallel (i.e.,
the longest duration among instances of tainting).

We then evaluate the performance of the reachability analysis
and selective DIFT. We first list the number of all of the process
groups between the two points in the None column. If one at-
tempted to refine the causalities without applying the pruning (§6)
or the selective DIFT algorithms (§7), this number would repre-
sent the load. It would also reflect the user-land part of the taint
workload in full-system DIFT systems (e.g., [50, 54]). The num-
ber of tainting instances that RAIN performs for the same task is
listed in the RAIN column. We find that our algorithm is effective,
significantly reducing the tainting workload to a fraction of 5.8%
on average. Note that we focus on the factual tainting workload
the analysis must take, rather than the total time. After all, one
can parallelize the workload on multiple machines to reduce time
consumption.
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8.2.2  Runtime Performance. We evaluate the runtime perfor-
mance of RaiN with SPEC CPU2006 benchmarks listed in Figure 5.
The runtime overhead of only running system logging is repre-
sented by the green bars for various testing items. The overhead
of logging plus recording is listed in the blue bars. The geometric
mean of runtime overhead in a logging+recording mode is 3.22%.

Besides the CPU intensive benchmark, we also run I/O inten-
sive applications as RAIN hooks system calls and caches file or a
network I/O. We compare the runtime performance of four applica-
tions: copying the Linux kernel 3.5.0 archive with cp, downloading
a 450MB video mp4 file from a local area network with wget, com-
piling the eglibc-2. 15 library, and loading cnn. com in Firefox.
Figure 6 illustrates the normalized overhead breakdown in terms
of system logging and full mode (logging+recording). In these I/O
intensive cases, RAIN incurs no more than 50% overhead.

To evaluate the runtime performance of RAIN in multi-core ma-
chines, we run the SPLASH-3 [46] multi-core benchmark with a
4-core CPU and summarize the results in Figure 7. The geometric
mean of runtime overhead (logging+recording) is 5.35%, and RAIN
is able to faithfully replay all the benchmarks without divergence.

8.2.3 Storage Cost in Scenarios. We measure the storage cost of
RaIN with the scenarios used in §8.1 and a high workload case (i.e.,
compiling eglibc-2.15), the results of which are summarized in
Table 6. The compiled 1ibc is around 235MB, which is smaller than
either the system or record log. This is because RAIN not only cached
the target files that were built but also the temporary files generated
during the compiling. Even though the log size is larger than the
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Storage usage (MB)
Case Log Record Total
MotivExp 45.6 155 201
NetRecon 29 137.1 166
ScreenGrab 16.6 97.3 114
CameraGrab 15.8 89.2 105
AudioGrab 18.2 115.4 133
Libc compiliation 327 413 740

Table 6: Storage cost (MB).

resulting size of compilation, it shows RAIN’s ability to re-construct
(and analyze) a transient state of a complex program execution (we
presented the storage footprint of daily usage in §4.3).

9 LIMITATIONS AND DISCUSSION

This section presents the limitations of RaIN and directions of fu-
ture work. One limitation of RAIN is that it is a kernel-based system.
It is able to record, replay, and analyze the activities of user-level
processes but unable to monitor the kernel activities because it
trusts the kernel. If the kernel is compromised, RAIN is no longer
able to create reliable provenance data. Thus if such an incident
ever occurred, RAIN could use kernel-integrity monitoring tech-
niques [25, 32, 38, 43, 47] that detect and filter out misinformation.
In the future, we will port RAIN to a hypervisor that records and
replays kernel activities while reducing attack surfaces. This ap-
proach will allow RAIN to support commercial off-the-shelf (COTS)
OSes (e.g., Windows). In addition, the semantic information of
RAIN poses a limitation because it is less comprehensive than that
of source-code-instrumentation-based approaches [33, 34] since it
assumes no assistance from software developers (i.e., annotation).
We believe that these approaches are orthogonal: while RAIN is
successful at extracting fine-grained information from COTS pro-
grams or unknown binaries (e.g., malware), instrumentation-based
approaches are effective at collecting semantically rich information
from supportive programs. Another limitation is the over-tainting
issue that we encountered, particularly when dealing with control
flow-based propagation. This problem, which has always plagued
DIFT approaches needs to be addressed. Since RAIN relies on trig-
gering analysis to initiate a fine-grained analysis, it could either
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Prov Systems Data Granularity Runtime Overhead Requirement

PASS [39] Syscall (Workflow) — Low (<30%) None (Source)
SPADE [24] Syscall (Workflow) — Low (<10%) None (Source)
LPM [12] Syscall (Workflow)  Low (<10%) None (Source)
DTrace [3] Syscall (Workflow) — Low (<30%) None (Source)
RecProv [28] Syscall Low (20%) None

BEEP [33] Unit Low (<2%) Binary
ProTracer [34] Unit Low (<7%) Source
Panorama [54] Instruction High (20x) None
DataTracker [49]  Instruction High (4-6x) None
PROV-Tracer [50]  Instruction High (5%) None

RaIN Instruction Low (3.22%) None

Table 7: Comparison of full-system provenance systems. We com-
pare the existing systems and RAIN in terms of provenance granu-
larity, runtime overhead and requirement. “Workflow” in the brack-
ets is another mode that monitors user-land applications, but re-
quires source code instrumentation. RaIN achieves both efficient
runtime and instruction level analysis granularity while does not
require source or binary instrumentation.

miss or delay the detection of some stealthier attacks Further, faulty
triggers could simply waste the time and energy resources of RAIN.
To solve this problem, we plan to develop an anomaly-based self-
triggering mechanism that automatically initiates a fine-grained
analysis. Lastly, the storage overhead of RAIN is greater than that
of other systems such as ProTracer [34]. Unlike such systems, RaIN
records all kinds of system calls (§4.3) to support replay-able execu-
tion, so the additional storage overhead appears to be unavoidable.
We plan to explore a further reduction of storage overhead, for
example, by compression and deduplication.

10 RELATED WORK

Full-system Provenance Logging. Full-system provenance log-
ging is essential to detecting complicated attacks. For example,
Linux supports the Linux Audit system [4], which records infor-
mation about system events. PASS [39, 40] is a storage system that
automatically logs and maintains provenance data. SPADE [24] is a
cross-platform system that logs provenance data across distributed
systems, and Linux provenance modules (LPM) [12] is a generic
framework that allows developers to write Linux security module
(LSM)-like modules that define custom provenance rules. In addi-
tion, ProTracer [34] is a lightweight provenance tracking system
that supports system event logging and unit-level taint propaga-
tion, which is based on BEEP [33]. To reducing logging workload,
ProTracer “taints” in order to keep track of the units, which fun-
damentally differs from the dynamic instrumentation-based taint
tracking that we apply. However, none of the systems provides the
instruction-level fine-grained provenance data that RAIN provides
because they cannot achieve one of their main goals—minimizing
runtime overhead—should they provide instruction-level prove-
nance data. RecProv [28] relies on a user-level record and replay
technique to recover syscall-level provenance, but its replay does
not perform instruction-level instrumentation, so it provides no
finer-grained causality. DataTracker [49] performs taint tracking
and provides fine-grained causality data on individual files, but
because of the high execution overhead of taint analysis, using it
as an analysis system instead of a production system is impractical.
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PROV-Tracer [50] is built on top of PANDA [20], which can also pro-
vides instruction-level granularity. However, the QEMU emulator
it bases on is around 5x slower than a native execution. We sum-
marize the comparisons between RAIN and previous provenance
systems in Table 7.

Network Provenance Systems. Network provenance systems [11,
15, 16, 55] focus on tracking network-level provenance between

computing hosts belonging to the same distributed or enterprise

network environment. Their main goal is to find faulty (or compro-
mised) hosts that attempt to attack other hosts in the same network

by monitoring and analyzing network traffic, and to ascertain how

the faulty hosts were compromised. Since they focus on network

traffic, system-level fine-grained provenance (e.g., CPU instructions

that were executed) are beyond the scope of the work that proposed

these systems. Thus, RAIN is orthogonal to these network prove-
nance systems such that both can be simultaneously used to fully

cover intra- and inter-system provenance.

Replay-Based Decoupled Analysis. Unlike the deterministic re-
play technique that faithfully replays the previous execution (e.g.,
in [21, 42, 45, 48]), the replay-based decoupled analysis technique
enables sophisticated analysis during replay. Arnold [19] is a state-
of-the-art record-and-replay system supporting decoupled analysis
during replay. The two main advantages of Arnold over two sim-
ilar systems, Aftersight [17] and PANDA [20], are 1) its minimal
recording overhead and 2) its process-group-wise replay with Intel
Pin. These advantages stem from the implementation of Arnold
inside the Linux kernel. By contrast, Aftersight is based on both
a VMWare hypervisor (record) and QEMU (replay), and PANDA
is purely based on QEMU. The main disadvantage of Arnold is
that, unlike the other two systems, it is built inside the kernel, so it
cannot record and replay the execution of the kernel.

We choose Arnold [19] as the base system of RAIN mainly be-

cause of its efficiency. Note that RAIN’s functionalities (e.g., full-
system recording, provenance data generation, reachability analy-
sis, and refinable DIFT) are orthogonal to Arnold, so we can apply
them to other systems easily. In fact, we have PANDA-based RAIN,
which provides the same functionalities even though its recording
overhead is excessive (five times as high) mainly resulting from
QEMU.
Decoupled Taint Analysis. Dynamic taint analysis [18, 22, 29,
41, 51, 54] is a well-known technique for tracking the data flow
from a source to a sink. Taint analysis is useful for runtime security
policy enforcement [41, 51], malware analysis [54], and privacy
leakage detection [22]. However, because of its excessive perfor-
mance overhead (e.g., the overhead of one state-of-the-art imple-
mentation, libdft [29], is six times as high), it is difficult to use it
in a general computing environment. To solve this performance
problem, several studies have proposed decoupled taint analysis
techniques [27, 36, 37, 44]. The purpose of these techniques is to run
a target process with a CPU core while performing taint analysis
for a process with other idle CPU cores.

11 CONCLUSION

We presented RAIN, a practical attack investigation system with
runtime efficiency and refinable granularity (from system call to
instruction). By leveraging a record-and-replay technique, RAIN
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achieves efficiency using graph-based analysis to prune out unre-
lated executions, and it performs DIFT only on relevant executions
to identify fine-grained causality. We demonstrated RAIN’s effec-
tiveness by applying it to an evaluation dataset to perform a precise
causality analysis of sophisticated attacks.
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