
DUPLO: Unifying Cut-and-Choose for Garbled Circuits∗

Vladimir Kolesnikov

Bell Labs

vladimir.kolesnikov@nokia-bell-labs.

com

Jesper Buus Nielsen

Aarhus University

jbn@cs.au.dk

Mike Rosulek

Oregon State University

rosulekm@eecs.oregonstate.edu

Ni Trieu

Oregon State University

trieun@eecs.oregonstate.edu

Roberto Trifiletti

Aarhus University

roberto@cs.au.dk

ABSTRACT
Cut-and-choose (C&C) is the standard approach to making Yao’s

garbled circuit two-party computation (2PC) protocol secure against

malicious adversaries. Traditional cut-and-choose operates at the

level of entire circuits, whereas the LEGO paradigm (Nielsen & Or-

landi, TCC 2009) achieves asymptotic improvements by performing

cut-and-choose at the level of individual gates. In this work we

propose a unified approach called DUPLO that spans the entire con-

tinuum between these two extremes. The cut-and-choose step in

our protocol operates on the level of arbitrary circuit “components,”

which can range in size from a single gate to the entire circuit itself.

With this entire continuum of parameter values at our disposal,

we find that the best way to scale 2PC to computations of realistic

size is to use C&C components of intermediate size, and not at

the extremes. On computations requiring several millions of gates

or more, our more general approach to C&C gives between 4-7x

improvement over existing approaches.

In addition to our technical contributions of modifying and op-

timizing previous protocol techniques to work with general C&C

components, we also provide an extension of the recent Frigate cir-

cuit compiler (Mood et al, EuroS&P 2016) to effectively express any

C-style program in terms of components which can be processed

efficiently using our protocol.

CCS CONCEPTS
• Theory of computation→Cryptographic protocols; • Secu-
rity and privacy → Cryptography; • General and reference
→ Performance;

∗
The first author was supported by Office of Naval Research (ONR) contract number

N00014-14-C-0113. The second author has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement #731583

(SODA). Third and fourth author partially supported by NSF awards #1149647 and

#1617197. The fifth author has received funding from the European research Council

(ERC) under the European Unions’s Horizon 2020 research and innovation programme

under grant #669255 (MPCPRO).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/http://dx.doi.org/10.1145//3133956.3133991

KEYWORDS
Garbled Circuits, Cut-and-Choose, 2PC, UC-secure, Malicious ad-

versary, Implementation, Cryptographic Protocol

1 INTRODUCTION
Garbled Circuits (GC) are currently the most common technique

for practical two-party secure computation (2PC). GC has advan-

tages of high performance, low round complexity, low latency, and,

importantly, relative engineering simplicity. Both the core garbling

technique itself and its application in higher level protocols have

been the subject of significant improvement. In the semi-honest

model, there have been relatively few asymptotic/qualitative im-

provements since the original protocols of Yao [59] and Goldreich

et al. [18]. The more challenging task of providing security in the

presence of malicious parties has seen more striking improvements,

such as reducing the number of garbled circuits needed for cut-

and-choose [32–34, 51], exploring trade-offs between online and

offline computation phases [24, 36], and exploring slight weaken-

ings of security [3, 27, 28, 40]. These improvements have brought

the malicious security setting to a polished state of affairs, and even

small-factor performance improvements are rare.

Cut-and-choose. The focus of this work is to unify two leading

approaches for malicious security in GC-based protocols, by view-

ing them as extreme points on a single continuum. We will find that

optimal performance — often significantly better than the state-

of-the-art — is generally found somewhere in the middle of the

continuum. We start with reviewing the idea of cut-and-choose

(C&C) and the two existing approaches which we generalize.

Whole-circuit C&C. Recall, Yao’s basic GC protocol is not se-

cure against a cheating GC generator, who can submit a maliciously

garbled circuit. Today, C&C is the standard tool in achieving mali-

cious security in secure computation. At the high level, it proceeds

in two phases.

C&C phase. The GC generator generates a number of garbled

circuits and sends them to GC evaluator, who chooses a subset

of them (say, half) at random to be opened (with the help of the

generator) and verifies their correctness.

Evaluation phase. If all opened circuits were constructed correctly,
the players proceed to securely evaluate the unopened circuits, and

take the majority (or other protocol-prescribed) output.

A statistical analysis shows that the probability of the GC gener-

ator violating security (by making the evaluator accept an incorrect

output) is exponentially small in the number of circuits n.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

3

https://doi.org/http://dx.doi.org/10.1145//3133956.3133991

Significant progress has been made [7, 23, 24, 32, 36] in reducing

the concrete value of n needed to achieve a given failure probabil-

ity. Specifically, if the evaluation phase of the protocol requires a

majority of unopened circuits to be correct (as in [51]), then ∼ 3s
circuits are required in total for statistical security 2

−s
. If the eval-

uation phase merely requires at least one unopened circuit to be

correct (e.g., [7, 32]), then only s circuits are required for the same

security. This multiplicative overhead in garbling material due to

replication, the replication factor, in the above protocols is 3s and
s , respectively. In the amortized setting where parties perform N
independent evaluations of the same circuit, all evaluations can

share a common C&C phase where only a small fraction of circuits

needs to be opened. Here, the (amortized) replication factor per

evaluation isO (1) +O (s/ logN) for statistical security 2
−s

[24, 36].

As an example, for N = 1024 and s = 40 the amortized replication

factor is around 5.

LEGO. The LEGO paradigm (Large Efficient Garbled-circuit Op-

timization), introduced by Nielsen & Orlandi [44], works somewhat

differently. First, the generator produces many independent garbled
gates (e.g., NAND gates). Similarly to the whole-circuit C&C, the

evaluator chooses a random subset of these gates to be opened

and checked. Now, the evaluator randomly assigns the unopened

gates into buckets. The garbled gates in each bucket are carefully

combined in a certain way, so that, as long as a majority of gates in

each bucket are correct, the bucket as a whole behaves like a correct
logical garbled NAND gate. These buckets are then assembled into

the final garbled circuit, which is finally evaluated.

The extra step in the LEGO paradigm of randomly assigning

unopened gates into buckets improves the protocol’s asymptotic

replication factor. More precisely, if the evaluated function has N
gates, then the LEGO protocol has replication factor 2+O (s/ logN)
for security 2

−s
(compared to s or 3s for conventional whole-circuit

C&C). The main disadvantage of the LEGO approach is that there is

a nontrivial cost to connect independently generated gates together

(“soldering,” in LEGO terminology). Since soldering needs to be

performed for each wire of the Boolean circuit, LEGO’s asymptotic

advantages overtake whole-circuit C&C in performance only for

circuits of large size. In Section 3 we give more details about the

LEGO paradigm.

1.1 DUPLO: building garbled circuits from big
pieces

We introduce DUPLO (DUPLO Unifying Procedure for LEGO), a
new approach for malicious-secure two-party computation.

As discussed above, the two standard approaches for malicious-

secure 2PC perform C&C at the level of entire circuits (whether in

the single-execution setting or in the multi-execution setting [37,

49]), or at the level of individual gates (LEGO). DUPLO is a single

unifying approach that spans the entire continuum between these
extremes. The DUPLO approach performs C&C at the level of arbi-

trary garbled subcircuits (which we refer to as components). After
the C&C phase has completed, the parties can use the resulting gar-

bled components in any number of 2PC executions, of any (possibly

different) circuits that can be built from these components.

What is the value in generalizing C&C in this way? In short, the

DUPLO approach unlocks a new degree of freedom in optimizing

practical secure computation. To understand its role, we first re-

view in more detail the costs associated with the C&C techniques

(including LEGO).

The most obvious (and often the most significant) cost is the

GC replication factor, discussed above. When evaluating a function

consisting of N components (either entire circuits, gates, or gener-

alized components explored in this work), the replication factor is

O (1) +O (s/ logN), for desired security 2
−s
. Clearly, using smaller

components improves the replication factor, since N is increased.

The replication factor converges to a lower limit of 2 [63]. As the

number of components grows, the benefit of amortization quickly

reaches its effective maximum. With practical parameters, there is

little improvement to be gained beyond a few million components.

It is when the number of components is “maxed out” that the

flexibility of DUPLO starts to have its most pronounced effect.

There will be a wide range of different component sizes that all

give roughly the same replication factor. Among these choices for

component size, it is now best to choose the largest, thereby reduc-

ing the cost of soldering, or connecting the components. This cost is

proportional to the number of input/output wires of a component

(whole-circuit C&C can be also seen this way, since we have special

processing for the inputs and outputs). When a circuit is decom-

posed into larger components, a smaller fraction of wires will cross

a boundary between components and therefore require soldering.

In other words, we expect a “sweet spot” for ideal component size,

and for computations of realistic size this sweet spot is expected

to be between the extremes of gate-level and whole-circuit compo-

nents. We confirm this analysis by the empirical performance of

our prototype implementation. We indeed find such a “sweet spot”

between the extremes of component size, as we start considering

computations with millions of gates. For these realistic problem

sizes, the DUPLO approach improves performance by 4-7x over

gate-based and circuit-based C&C. Details are given in Section 7.

Is it realistic to express computations in terms of moderately sized
components? We note that the C&C components need to garble

identical circuits, i.e. be interchangeable in GC evaluation. Indeed,

all NAND gates in LEGO and all circuits in whole-circuit C&C

are interchangeable in the sense that they are garblings of the

same functionality. One may rightly ask whether it is reasonable

to expect realistic computations to be naturally decomposable into

interchangeable and non-trivial (i.e. not a single-gate or entire-

circuit) subcircuits.

We argue that this is indeed a frequent occurrence in standard (in-

secure) computation. Standard programming language constructs

(standard-size arithmetic operations, subroutine calls, loops, etc.)

naturally generate identical subcircuits. Given the recent and grow-

ing tendency to automate circuit generation and to build 2PC com-

pilers for higher-level languages [21, 38, 39, 43, 61], it is natural

to presume that many practical circuits evaluated by 2PC will in-

corporate many identical components. Specifically, consider the

following scenarios:

• Circuits compiled from higher level languages containing

multiple calls to the same subroutine (e.g. algebraic calcula-

tions), loops, etc. For example, a boolean circuit for matrix

multiplication can be expressed in terms of subcircuits for

multiplication and addition.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

4

• Two parties know they will perform many secure computa-

tions of a CBC-MAC-based construction (e.g., CMAC) using

AES as the block cipher, where one party provides the key

and the other provides the message to be authenticated. They

can use the AES circuit (or a CBC-composition of several

AES circuits) as the main DUPLO component, and use as

many components as needed for each evaluation of CMAC.

Another example involving AES is to consider the AES round

function as the DUPLO component. As this is the same func-

tion used internally in AES-128, AES-192 and AES-256 (only

the key schedule and number of rounds differ) this prepro-

cessing becomes more independent of the final functionality.

• Two parties agree on a predetermined low-level instruc-

tion set, where for each instruction (represented as a cir-

cuit), the parties can produce a large number of prepro-

cessed garbled components without knowing a priori the
final programs/functionalities to be computed securely. This

CPU/ALU emulation setting has recently been considered

in the context of secure computation of MIPS assembly pro-

grams [54, 58]. The DUPLO approach elegantly and effi-

ciently provides a way to elevate these results to the mali-

cious setting.

In Section 7 we investigate several of these scenarios in detail,

and compare our performance to that of previous work.

1.2 Related work
Maliciously secure 2PC using Yao’s garbled circuit technique has

seen dramatic improvements in recent years, both algorithmic/theoretical

and implementations. Since the first implementation in [35], tremen-

dous effort has been put into improving concrete efficiency [2, 7, 13,

16, 22–25, 31–34, 36, 37, 41, 44, 46, 47, 49, 51, 52, 55–57, 63] yield-

ing current state-of-the-art prototypes able to securely evaluate an

AES-128 computation in 6ms (multi-execution) or 65ms (single-

execution). Multi-execution refers to evaluating the same function

several times (either in serial or parallel) on distinctly chosen inputs

while the more general single-execution setting treats the compu-

tation atomically. In addition, some of these protocols allow for

dividing the computation into different phases to utilize prepro-

cessing. In the most general case the computation can be split into

three consecutively dependent phases. Following the convention

of [46] we have:

Function-independent preprocessing depends only on the sta-

tistical and computational security parameters s and k . It
typically prepares a given number of gates/components that

can be used for later computation.

Function-dependent preprocessing uses the previously com-

puted raw function-independent material and stitches it to-

gether to compute the desired function f .
Online/Eval phase lastly depends on the parties inputs to the

actual computation and is typically much lighter than the

previous two phases.

Of notable interest are the protocols of [49] and [55] which

represent the current state-of-the-art protocols/prototypes for the

multi- and single-execution settings, respectively. Both protocols

also support function-dependent preprocessing. With regards to

constant-round function-independent preprocessing the works of

[46, 56, 63] are the most efficient, however at this time only the

work of [46] provides a public prototype implementation.

The idea of connecting distinct garbled circuits has also previ-

ously been studied in [42] by mapping previous output garbled

values to garbled input values in a following computation. Their

model and approach is different from ours and is mainly motivated

by enabling garbled state to be reusable for multiple computations.

Finally we point out the recent work of [20] for the semi-honest
case of secure 2PC using garbled circuits. [20] likewise considers

splitting the function of interest into sub-circuits and processes

these independently. As there is no cut-and-choose overhead in

the semi-honest setting, their approach is motivated primarily by

allowing function-independent preprocessing using the garbled

components as building blocks. Although the high-level idea is

similar to ours, we apply it in a completely different setting and

use different techniques. Further, while malicious security is often

significantly more expensive, the efficiency gap in the linking and

online phase between [20] and our protocol is surprisingly small.

In the application of computing an AES-128 (by preprocessing the

required round functions) we see that [20] sends 82 kB in the online

phase (link + evaluate) vs. 88 kB using our protocol. For the offline

step the gap is larger due to the overhead of C&C in the malicious

case. However utilizing amortization this can be reduced signifi-

cantly and in some cases be as low as 3-5x that of the semi-honest

protocols.

1.3 Our Contributions and Outline of the Work
The main contribution of the paper is putting forward and techni-

cally and experimentally supporting the idea of generalizing C&C

protocols to arbitrary subcircuits. Due to the generality of the ap-

proach and the performance benefits we demonstrate, we believe

the DUPLO approach will be the standard technique in 2PC com-

pilers. As a lower-level technical contribution, we propose several

improvements to garbling and soldering for this setting.

We implemented our solution and integrated it with the state-of-

the-art compiler framework Frigate [43]. Experimentally, we report

of a 4-7x improvement in total running time compared to [55] for

certain circuits. For the multi-execution setting we also improve

the performance of [49] by up to 5× in total running time. We

accomplish the above while at the same time retaining the desirable

preprocessing and reactive capabilities of LEGO.

2 PRELIMINARIES
Our DUPLO protocol is a protocol for 2PC that is secure in the

presence of malicious adversaries. We define security for 2PC using

the framework of Universal Composition (UC), due to Canetti [8].

This framework is demanding, as it guarantees security when such

protocols are executed concurrently, in arbitrary environments like

the Internet.

A detailed treatment of UC security is beyond the scope of this

work. At the high level, security is defined in the real-ideal paradigm.

We imagine an ideal interaction, in which parties give their inputs

to a trusted third party who computes the desired function f and

announces the result. In this interaction, the only thing a malicious

party can do is select its input to f . In the real interaction, honest

parties interact following the prescribed protocol, while malicious

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

5

parties may arbitrarily deviate from the protocol. We say that the

protocol securely realizes f if the real world is “as secure as” the

ideal world. More formally, for every adversary attacking the real

protocol, there is an adversary (called “simulator”) “attacking” the

ideal interaction achieving the same effect.

We assume some familiarity with modern garbled circuit con-

structions, in particular, the Free-XOR optimization of Kolesnikov

& Schneider [30]. This is reviewed in Section 3. Free-XOR garbled

circuits are secure under a circular correlation-robust hash assump-

tion [11].

3 OVERVIEW OF THE LEGO PARADIGM
We now give more details about the mechanics of the LEGO para-

digm. Here we describe the MiniLEGO approach of [13]. We chose

MiniLEGO as it is the simplest LEGO protocol to present. At the

same time, it contains and conveys all relevant aspects of the para-

digm.

3.1 Soldering via XOR-Homomorphic
Commitments

The sender generates many individual garbled NAND gates. Each

garbled gate д is associated with wire labels L0

д ,L
1

д for the left input

wire, labels R0

д ,R
1

д for the right input wire, and labels O0

д ,O
1

д for

the output wire. Here the superscript of each label indicates the

truth value that it represents. In MiniLEGO, all gates are garbled

using the Free-XOR optimization of Kolesnikov & Schneider [30].

Therefore, there is a global (secret) value ∆ so that L1

д = L0

д ⊕ ∆

and R1

д = R0

д ⊕ ∆ and O1

д = O0

д ⊕ ∆. More generally, a wire label

Kb
д can be written as Kb

д = K0

д ⊕ b · ∆. Importantly, the same ∆ is

used for all garbled gates.

The garbled gate consists of the garbled table itself (i.e., for a

single NAND gate, the garbled table consists of two ciphertexts

when using the scheme of [62]) along with XOR-homomorphic
commitments to the “zero” wire labels L0

д , R
0

д , and O
0

д . A global

homomorphic commitment to∆ is also generated and shared among

all gates.

To assemble assorted garbled gates into a circuit, the LEGO

paradigm uses a technique called soldering. Imagine two wires

(attached to two unrelated garbled gates) whose zero-keys are A0

andB0
, respectively. The sender can “solder” these wires together by

decommiting to S = A0 ⊕B0
. We require that such a decommitment

can be performed given separate commitments to A0
and B0

, and

that the decommitment reveals no more than S . Importantly, S is

enough information to allow the receiver to transfer a garbled truth

value from the first wire to the second (and vice-versa). For example,

if the receiver holds wire labelAb (for unknown b), he can compute

Ab ⊕ S = (A0 ⊕ b · ∆) ⊕ S = B0 ⊕ b · ∆ = Bb ,

which is the garbled encoding of the same truth value, but on the

other wire.

Gates are assigned to buckets by the receiver, where each bucket,

while possibly containing malicious gates, will be assembled to

correctly implement the NAND gate. For the gates inside a bucket,

the sender therefore solders all their left wires together, all their

right wires together, and all their output wires together with the

effect that the bucket can operate on a single set of input labels and

produce a single set of output labels. For β gates in a bucket, this

gives β ways to evaluate the first gate (use solder values to transfer

its garbled inputs to the ith bucket gate, evaluate it, then transfer

the result back to the first gate). In the most basic form of LEGO,

the cut-and-choose ensures that the majority of gates within the

bucket are good. Hence the evaluator can evaluate the bucket in β
ways and take the majority output wire label. Each bucket therefore

logically behaves like a correct garbled gate.

The buckets are then assembled into a complete garbled circuit by

soldering output wires of one bucket to the input wires of another.

3.2 Recent LEGO Improvements
In recent years several improvements to the LEGO approach has

been proposed in the literature. The TinyLEGO protocol [14] pro-

vide several concrete optimizations to the above MiniLEGO proto-

col, most notably a more efficient bucketing technique. The sub-

sequent implementation [46] further optimized the protocol and

showed that, combined with the XOR-homomorphic commitment

scheme of [10, 15], the LEGO paradigm is competitive with previ-

ous state-of-the-art protocols for malicious 2PC, in particular in

scenarios where preprocessing is applicable.

In addition to the above works, the protocol of [63] also explores

optimizations of LEGO using a different soldering primitive, dubbed

XOR-Homomorphic Interactive Hash (XOR-HIH). This technique

has a number of advantages over commitments as they allow for a

better probability than MiniLEGO and TinyLEGO of catching cheat-

ing in the C&C phase. XOR-HIH also yields buckets only requiring

a single “correct” gate, whereas MiniLEGO requires a majority and

TinyLEGO requires a mixed majority of gates and wire authenti-

cator gadgets. However, due to the communication complexity of

the proposed XOR-HIH instantiation being larger than that of the

[10, 15] commitment schemes, the overall communication complex-

ity of [63] is currently larger than that of TinyLEGO.

4 OVERVIEW OF OUR CONSTRUCTION
DUPLO protocol big picture. At the high level, our idea is to extend

the LEGO paradigm to support components of arbitrary size and

distinct functionalities, rather than just a single kind of component

that is either a single gate or the entire circuit. The approach is

similar in many ways to the LEGO protocol and is broken up into

three phases.

In the function-independent phase, since some subroutines can

be known before fixing the final computed function, the garbler

generates many independent garblings of each kind of component,

along with related commitments required for soldering. For each

kind of component, the parties perform a cut-and-choose over all

garbled components. The receiver asks the garbler to open some

fraction of these components, which are checked for correctness.

The remaining components are assembled randomly into buckets.
The soldering required to connect components into a bucket is done

at this step.

In the function-dependent phase, the parties agree on circuits

that can be assembled from the available components. The parties

perform soldering that connects different buckets together, forming

the desired circuits.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

6

In the online phase, the parties have chosen their inputs for an

evaluation of one of the assembled circuits. They perform oblivious

transfers for the evaluator to receive its garbled input, and the

garbler also releases its own garbled inputs. The evaluator then

evaluates the DUPLO garbled circuit and receives the result.

Challenges and New Techniques. The seemingly simple high-level

idea described above encounters several significant technical chal-

lenges in its realization. We address the issues in detail in Section 5.

Here we mention that the main challenge is that the LEGO para-

digm uses the same Free-XOR offset ∆ for all garbled components,

and its soldering technique crucially relies on this fact. This is not

problematic when components are single gates, but turns out to

lead to scalability issues for larger components. As a result, we

must change the fundamental garbling procedure, and therefore

change the soldering approach.

The TinyLEGO approach uses an input recovery technique in-

spired by [32]. The idea is that if the garbler cheats in some compo-

nents, then the resulting garbled circuit will either give the correct

garbled output, or else it will leak the garbler’s entire input! In

the latter case, the evaluator can simply evaluate the function in

the clear. As above, the TinyLEGO approach to this input recovery

technique relies subtly on the fact that the components are small,

and as a result it does not scale for large components. We introduce

an elegant new technique that works for components of any size,

and improves the concrete cost of the input recovery mechanism.

Implementation, Evaluation, Integration. We implemented a high-

performance prototype of our protocol to explore the effect of

varying component sizes in the C&C paradigm. We study a variety

of scenarios and parameter choices and find that our generalizations

of C&C can lead to significant performance improvement. Details

are given in Section 7.

We have adapted the Frigate circuit compiler of Mood et al. [43],

which compiles a variant of C into circuits suitable for garbled

circuit 2PC applications. We modified Frigate so that subroutines

are treated as DUPLO components. As an example, a CBC-MAC

algorithm that makes calls to an AES subroutine will be compiled

into an “outer circuit” built from atomic AES components, as well

as an “inner circuit” that implements the AES component from

boolean gates. In our implementation, the inner circuits are then

garbled as DUPLO components, and the outer circuits are used to

assemble the components into high-level functionalities.

5 DUPLO PROTOCOL DETAILS
We now give more details about the challenges in generalizing the

LEGO paradigm, and our techniques to overcome them.

5.1 Different ∆’s
The most efficient garbling schemes use the Free-XOR optimiza-

tion of [30]. MiniLEGO/TinyLEGO are compatible with Free-XOR,

and in fact they enforce that all garbled gates use the same global

Free-XOR difference ∆. However, having a common ∆ does lead

to some drawbacks. In particular, consider the part of the cut-and-

choose step in which the receiver chooses some garbled gates to

be opened/checked. If we fully open a garbled gate, both wire la-

bels are revealed for each wire. In MiniLEGO, this would reveal ∆

and compromise the security of the unopened gates, which share

the same ∆. To avoid this, the MiniLEGO approach is to make the

sender reveal only one out of the four possible input combinations to

each opened gate (by homomorphically decommitting to the input

wire labels). Note that the receiver may now have only a 1/4 prob-

ability of detecting an incorrectly garbled gate (the technique of

[63] improves this probability to 1/2). The cut-and-choose analysis

must account for this probability.

This approach of only partially opening garbled gates does not

scale well for large components. If a component has n input wires,

then the receiver will detect bad components with probability 1/2n

in the worst case. In the DUPLO protocol, we garble each com-

ponent c with a separate Free-XOR offset ∆c (so each gate inside

the garbled component uses ∆c , but other garbled components use

different offset). Hence, DUPLO components can be fully opened
in the cut-and-choose phase, while XOR gates are still free inside

each component.

As a result:

• Bad components are detected with probability 1, so the sta-

tistical analysis for DUPLO cut-and-choose is better than

Mini/TinyLEGO by a constant factor.

• We can use a variant of the optimization suggested in [19]

to save bandwidth for cut-and-choose. Initially the sender

only sends a short hash of each garbled component. Then to

open a component, the sender decommits to the input and

output keys as well as the ∆c used for garbling the compo-

nent. Hence, communication for the opened components is

minimal.

Adapting soldering. It remains to describe how to adapt the sol-

dering procedure to solder wires with different Free-XOR offsets

(the MiniLEGO approach relies on the offsets being the same). Here

we adapt a technique of [1] for soldering wires. Using the point-

and-permute technique for garbled circuits [4], the two wire labels

for each wire have random and opposite least-significant bits. We

refer to this bit as the color bit for a wire label. The evaluator sees
the color bit of a wire, but not the truth value of a wire.

In MiniLEGO, the garbler commits to the “zero-key” for each

wire, which is the wire label encoding truth value false. In DUPLO,

we have the garbler generate homomorphic commitments to the

following:

• For each wire, commit to the wire label with color bit zero. In
this section we therefore use notation Kb

to denote a wire

label with color bit (not necessarily truth value) b.
• For each wire, commit to an indicator bit σ for each wire

that denotes the color bit of the false wire label. Hence, wire
label Kb

has truth value b ⊕ σ .
• For each component c , commit to its Free-XOR offset ∆c .

Consider a wire i with labels (K0

i ,K
1

i = K0

i ⊕ ∆i) and indicator

bit σi , and another wire j in a different component with labels

(K0

j ,K
1

j = K0

j ⊕ ∆j) and indicator bit σj . To solder these wires

together, the garbler will give homomorphic decommitments to the

following solder values:

sσ = σi ⊕ σj ; SK = K0

i ⊕ K0

j ⊕ s
σ · ∆j ; S∆ = ∆i ⊕ ∆j

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

7

Note that the decommitment to S∆ can be reused for all wires

soldered between these two components. Now when the evaluator

learns wire label Kb
i (with color bit b visible), he can compute:

Kb
i ⊕ S

K ⊕ b · S∆ = Kb
i ⊕ (K0

i ⊕ K0

j ⊕ s
σ · ∆j) ⊕ b · (∆i ⊕ ∆j)

= b · ∆i ⊕ (K0

j ⊕ s
σ · ∆j) ⊕ b · ∆i ⊕ b · ∆j

= K0

j ⊕ (sσ ⊕ b) · ∆j = Ksσ ⊕b
j

Also note that a common truth value has opposite color bits on

wires i & j if and only if sσ = σi ⊕ σj = 1. Hence, the receiver

obtains the wire label Ksσ ⊕b
j which encodes the same truth value

as Kb
i .

DUPLO bucketing. In Section 3.1 we described how [13] used a

bucket size that guaranteed a majority of correct AND gates in each

bucket. In this work we use the original bucketing technique of [44]

that only requires a single correct component in each bucket, but

requires a majority bucket of wire authenticator (WA) gadgets on

each output wire. The purpose of a WA is to accept or reject a wire

label as “valid” without revealing the semantic value on the wire,

and as such a simple construction can be based on a hash function

and C&C. A WA consists of a “soldering point” (homomorphic

commitments to a ∆ and a zero-key), along with an unordered pair

{H (K0

i),H (K0

i ⊕∆)}. A wire labelK can be authenticated checking

for membershipH (K) ∈ {H (K0

i),H (K0

i ⊕ ∆)}. In order to defeat

cheating a C&C step is carried out on the WAs to ensure that a

majority of any WA bucket only accepts committed wire labels.

The choice of using WAs in this work is motivated by the fact that

DUPLO components can be of arbitrary size and are often much

larger than a single gate. By requiring fewer such components in

total, we therefore achieve much better overall performance as

WAs are significantly cheaper to produce in comparison to garbled

components.

Avoiding commitments to single bits. We also point out that the

separate commitments to the zero-label K0

i and the indicator bit

σi can be combined into a single commitment. The main idea is

that the least significant bit of K0

i is always zero (being the wire

label with color bit zero). Similarly, when using Free-XOR, the

offset ∆ must always have least significant bit 1. Hence in the

solder values S and S∆, the evaluator knows a priori what the
least significant bit will be. We can instead use the least significant

bits of the K0

i commitments to store the indicator bit σi so that

homomorphic openings convey σi ⊕ σj . This approach saves s bits
of communication per wire commitment over the naive approach of

instantiating the bit-commitments using [15] using a bit-repetition

code with length s .
In the online evaluation phase, the garbler decommits to the

indicator bits of the evaluators designated input and output. In

this case, the garbler does not want to decommit the entire wire

label as this would potentially let the evaluator learn the global

difference ∆ (if the evaluator learned the opposite label through

the OTs or evaluation). To avoid this, we have the garbler generate

many commitments to values of the special form R∥0 for random

R ∈ {0, 1}κ−1
. Using the homomorphic properties of these commit-

ments, this can be done efficiently by having the garbler decommit

s random linear combinations of these commitments to ensure that

all of them have the desired form with probability 1 − 2
−s
. Then

when the garbler wants to decommit to a wire label’s indicator bit

only, it gives a homomorphic decommitment to the wire label XOR

a mask R∥0, which hides everything but the indicator bit.

5.2 Improved Techniques for Circuit Inputs
We also present a new, more efficient technique for input recovery.

The idea of input recovery [32] is that if the sender in a 2PC protocol

cheats, the receiver will learn the sender’s input (and can hence

compute the function output).

Within each DUPLO bucket, the cut-and-choose guarantees at

least one correctly garbled component and a majority of correct

output-wire authenticators. As such, the evaluator is guaranteed

to learn, for each output wire of a component, either 1 or 2 valid
garbled outputs. If only one garbled output is obtained, then it is

guaranteed to be the correct one. Otherwise, the receiver learns both

wire labels and hence the Free-XOR offset ∆c for that component.

The receiver can then use the solder values to iteratively learn both
wire labels on all wires in the circuit (at least all the wires in the

connected component in which the sender cheated).

However, knowing both wire labels does not necessarily guar-

antee that the receiver learns their corresponding truth values. We

need a mechanism so that the receiver learns the truth value for

the sender’s garbled inputs.

Our approach is to consider special input-components. These

consist of an empty garbled circuit but homomorphic commitments

to a zero-wire-label K and a Free-XOR offset ∆ that serve as solder-

ing points. Suppose for every input to the circuit, we use such an

input component that is soldered to other components. The sender

gives his initial garbled input by homomorphically decommitting

to either the zero wire-label K or K ⊕ ∆. If the sender cheats within
the computation, the receiver will learn ∆. The key novelty in our

approach is to use self-authenticating wire labels. In an input-

gadget, the false wire label must be H (∆) and the true wire label

must be H (∆) ⊕ ∆ (the sender will still commit to whichever has

color bit zero). Then when the sender cheats, the receiver learns ∆,
and can determine whether the sender initially opened H (∆) (false)
or H (∆) ⊕ ∆ (true).

This special form of wire labels can be checked in the cut-and-

choose for input components. In the final circuit, we assemble

input-components into buckets to guarantee that a majority within

each bucket is correct. Then the receiver can extract a cheating

sender’s input according to the majority of input-components in a

bucket.

5.3 Formal Description, Security
Our protocol implements secure reactive two-party computation

[45], i.e., the computation has several rounds of secret inputs and

secret outputs, and future inputs and as well as the specification of

future computations might depend on previous outputs.

To be more precise, let F denote the ideal functionality F
L,Φ
R2PC

in Fig. 9 on page 1040 in [45]. Recall that this functionality allows

to specify a reactive computation by dynamically specifying the

functionality of sub-circuits and how they are linked together. The

command (Func, t , f) specifies that the sub-circuit identified by t
has circuit f . The command (Input, t , i,x) gives input x to wire i

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

8

on sub-circuit t . Only one party supplies x , the other party inputs

(Input, t , i, ?) to instruct F that the other party is allowed to give

an input to the specified wire. The command defines the wire to

have value x . The command (Link, t1, i1, t2, i2) specifies that output
wire i1 of sub-circuit t1 should be soldered on input wire i2 of sub-

circuit t2. When an output value becomes defined to some x , this
in turn defines the linked input wire to also have value x . The
command (Garble, t , f) evaluates the sub-circuit t . It assumes that

all the input wires have already been defined. It runs f on these

values and defines the output wires to the outputs of f . There are
also output commands that allow to output the value of a wire to a

given party. They may be called only on wires that had their value

defined.

The set L allows to restrict the set of legal sequences of calls

to the functionality. We need the restriction that all (Func, t , f)
commands are given before any other command. This allows us to

compute how many times each f is used and do our preprocessing.

The function Φ allows to specify how much information about

the inputs and outputs of F is allowed to leak to the adversary.

We need the standard setting that we leak the entire sequence of

inputs and outputs to the adversary, except that when an honest

party has input (Input, t , i,x), then we only leak (Input, t , i, ?) and
when an honest party has output (Output, t , i,y), then we only

leak (Output, t , i, ?).
With many components, many buckets, and many 2PC execu-

tions, the formal description of our protocol is rather involved. It is

therefore deferred to Appendix A while we in the full version [29]

prove the following theorem.

Theorem 5.1. Our protocol implements F in the UC framework
against a static, poly-time adversary.

6 SYSTEM FRAMEWORK
In this section we give an overview of the DUPLO framework and

our extension to the Frigate compiler that allows to transform a

high-level C-style program into a set of boolean circuit compo-

nents that can be fed to the DUPLO system for secure computation.

We base our protocol on the recent TinyLEGO protocol [14], but

adapted for supporting larger and distinct components. Our proto-

col has the the following high-level interface:

Setup Aone-time setup phase that initializes the XOR-homomorphic

commitment protocol.

PreprocessComponent(n, f) producesn garbled representations
Fj of f that can be securely evaluated.

PrepareComponents(i) produces i input authenticators that can
be used to securely transfer input keys from garbler G to

evaluator E. In addition, for all Fj previously constructed us-

ing PreprocessComponent, this call constructs and attaches

all required output authenticators. These gadgets ensure that

only a single valid key will flow on each wire of all garbled

components (otherwise the evaluator learns the generator’s

private input).

Build(C) Takes a program C as input, represented as a DAGwhere

nodes consist of the input/output wires of a set of (possibly

distinct) components { fi } and edges consist of links from

output wires to input wires for all of these fi ’s. The Build
call then looks up all previously constructed Fj for each fi

and stitches these together using the XOR-homomorphic

commitments so that they together securely compute the

computation specified by C. This call also precomputes the

required oblivious transfers (OTs) for transferring E’s input
securely.

Evaluate(x ,y) Given the plaintext input x of garbler G and y of

evaluator E, the parties can now compute a garbled output

Z , representing the output of the f (x ,y). The system allows

both parties to learn the full output, but also distinct output,

e.g.G can learn the first half of f (x ,y) and E learn the second
half.

Decode Finally the system allows the parties to decode their des-

ignated output. The reason why we have a dedicated decode

procedure is to allow partial output decoding. Based on the

decoded values the parties can then start a new secure com-

putation on the remaining non-decoded output, potentially

adding fresh input as well. The input provided and the new

functionality to compute can thus depend on the partially

decoded output. This essentially allows branching within

the secure computation.

Following the terminology introduced in [46] we have that the

Setup, PreprocessComponent, and PrepareComponents calls can
be done independently of the final functionality C. These proce-

dures can therefore be used for function-independent preprocessing

by restricting the functionality C to be expressible from a predeter-

mined set of instructions. The Build procedure clearly depends on

C, but not on the inputs of the final computation, so this phase can

implement function-dependent preprocessing. Finally the Evaluate
and Decode procedures implement the online phase of the system

and depend on the previous two phases to run.

For a detailed pseudocode description of the system as well as a

proof of its security we refer the reader to Appendix A and the full

version [29], respectively.

6.1 Implementation optimizations
As part of our work we developed a prototype implementation in

C++ using the latest advances in secure computation engineering.

As the basis for our protocol we start from the libOTe library for

efficient oblivious transfer extension [48]. As we in this work re-

quire UC XOR-homomorphic commitments to the input and output

wires of all components we instantiate our protocol with the effi-

cient construction of [15] and use the implementation of [50] in

our prototype.

As already mentioned, our protocol is described in detail in

Appendix A. However, for reasons related to efficiency our actual

software implementation deviates from the high-level description

in several aspects

• In the homomorphic commitment scheme of [15], commit-

ments to random values (chosen by the protocol itself) are

cheaper than commitments to values chosen by the sender.

Hence, whenever applicable we let the committed key-values

be defined in this way. This optimization saves a significant

amount of communication since the majority of commit-

ments are to random values.

• Along the same lines we heavily utilize the batch-opening

mechanism described in [15]. The optimization allows a

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

9

sender to decommit to n values with total bandwidth nκ +
O (s) as opposed to the naive approachwhich requiresO (nκs).

• In the PrepareComponents step we construct all output-wire
key authenticators using a single global difference ∆ka. This

saves a factor 2x in terms of the required number of commit-

ments and solderings, at the cost of an incorrect authentica-

tor only getting caught with probability 1/2 (as opposed to

prob. 1 using distinct differences). However as the number of

required key authenticators depends on the total number of

output wires of all garbled components the effect of this dif-

ference in catching probability does not affect performance

significantly when considerings many components.

In addition to the above optimizations, our implementation takes

full advantage of modern processors’ multi-core capabilities and in-

struction sets. We also highlight that our code leaves a substantially

lighter memory footprint than the implementation of [46] which

stores all garbled circuits and commitments in RAM. In addition

to bringing down the required number of commitments on the

protocol level, our implementation also makes use of disk storage

in-between batches of preprocessed component types. This has the

downside of requiring disk reads of the garbled components during

the online phase, but we advocate that the added flexibility and

possibility of streaming preprocessing is well worth this trade-off

in performance.

6.2 Frigate Extension
The introduction of Fairplay [39], the first compiler targeted for

secure computation (SC), has stimulated significant interest from

the research community. Since then, a series of new compilers

with enhanced performance and functionality have been proposed,

such as CBMC [21], Obliv-C [61], and ObliVM [38]. Importantly,

the state-of-the-art compiler, Frigate [43], features a modular and

extensible design that simplifies the circuit generation in secure

computation. Relying on its rich language features, we provide an

extension to the original Frigate framework, in which we divide

the specific input program into distinct functions. We can then

generate a circuit representation for each function which is fully

independent from the circuit representation of other functions. Due

to this independence we can easily garble each distinct function

separately using the DUPLO framework and afterwards solder these

back together such that they compute the original source program.

As an additional improvement, which is tangential to the main

thrust of this work, we construct an AES module that optimizes

the number of uneven gates (all even gates can be garbled and

evaluated without communication using e.g. [62]).
In the following, we describe the details of our compiler ex-

tension. Similar to the Frigate output format, our circuit output

contains a set of input and output calls, gate operations, and func-

tion calls. The input and output calls consist of wires, which we

enumerate and manage. We also use wires to represent declared

variables in the source program. Each wire (or, rather its numeric

id) is placed in a pool, and is ready for use whenever a new variable

is introduced. Our function representation however differs from

that of Frigate. In that work, each function reserves a specific set of

wire values which requires no overlap among the functions’ wires.

As a result, Frigate’s function representation is dependent on that

of other functions. We remove this dependency by creating and

managing separate wire pools for each function. In particular, every

time a variable is introduced, our compiler searches for the free

wires with the smallest indices in the pool of the current working

function. Similarly to the original Frigate, our compiler will free

the wires it can after each operation or variable assignment. Hence,

our function is represented independently of other functions.

We now describe our strategy for constructing our optimized

AES circuit. A key component of AES is the Rijndael S-Box [12]

which is a fixed non-linear substitution table used in the byte sub-

stitution transformation and the key expansion routine. The circuit

optimization in our AES-128 source program is described in the

context of this S-Box. We note that if we generate the S-Box dynam-

ically using the Frigate compiler, this will not optimize the number

of uneven gates substantially. Hence, we create an AES-128 source

program that embed a highly optimized S-Box circuit statically. To

the best of our knowledge, [6] presents one of the most efficient

S-Box circuit representation which contains only 32 uneven gates

in a total of 115 gates. Therefore, we integrate this S-Box into our

AES-128 source program, which allows our Frigate extension to

optimize the number of uneven gates. For the key-expanded AES-

128 circuit, which takes a 128-bit plaintext and ten 128-bit round

keys as input and outputs a 128-bit ciphertext, this results in 5,120

uneven gates. This is almost a 2x reduction compared the AES-128

circuit originally reported in Frigate. Furthermore, our AES-128

circuit has 640 fewer uneven gates than the circuit reported in Tiny-

Garble [54] which is the current best compiler written in Verilog.

For completeness we note that for the non-expanded version of

AES-128, our compiled circuit results in 6,400 uneven gates.

7 PERFORMANCE
In order to evaluate the performance of our prototype we run a

number of experiments on a single server with simulated network

bandwidth and latency. The server has two 36-core Intel(R) Xeon(R)

E5-2699 v3 2.30GHz CPUs and 256GB of RAM. That is, 36 cores

and 128GB of RAM per party. As both parties are run on the same

host machine we simulate a LAN and WAN connection using the

Linux tc command: a LAN setting with 0.02ms round-trip latency,

1 Gbps network bandwidth; a WAN setting with 96ms round-trip

latency, 200Mbps network bandwidth.

For both settings, the codewas compiled usingGCC-5.4. Through-

out this section, we performed experiments with a statistical se-

curity parameter s = 40 and computational security parameter

k = 128. The running times recorded are an average over 10 trials.

We demonstrate the scalability of our implementation by evalu-

ating the following circuits:

AES-128 circuit consisting of 6,400 AND gates. The circuit takes a

128-bit key from one party and a 128-bit block from another

party and outputs the 128-bit ciphertext to both. (Note that

this functionality is somewhat artificial for secure computa-

tion as the AES function allows decryption with the same

key; thus the player holding the AES key can obtain the

plaintext block. We chose to include the ciphertext output to

the keyholder to measure and demonstrate the performance

for the case where both parties receive output.)

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

10

CBC-MAC circuit with different number of blocksm ∈ {16, 32,

64, 128, 256, 1024} using AES-128 as the block cipher. The

circuit therefore consists of 6, 400m AND gates. The circuit

takes a 128-bit key from one party andm 128-bit blocks from

another party and outputs a 128-bit block to both.

Mat-Mul circuit consisting of around 4.2 million AND gates. The

circuit takes one 16 × 16 matrix of 32-bit integers from each

party as input and outputs the 16 × 16 matrix product to

both.

Random circuit consisting of 2
n
AND gates for various n where

topology of the circuit is chosen at random. The circuit takes

128-bit input from each party and outputs a 128-bit value to

both.

7.1 Effect of Decomposition
In this section we show howDUPLO scales for the above-mentioned

circuits, when considering subcomponents of varying size. As dis-

cussed in Section 1.1, we expect the performance of our protocol

to be optimal for a subcomponent size somewhere inbetween the

extremes of whole-circuit and gate-level C&C. We empirically val-

idate this hypothesis by running two kinds of experiments, one

for the randomly generated circuits and one for the real-world

AES-128, CBC-MAC-16 and Mat-Mul circuits. The purpose of the

random circuit experiment is to explore the trade-offs in overall

performance between different decomposition strategies. For the

latter experiment we aim to find their optimal decomposition strat-

egy, both to see how this aligns to the random circuit experiment,

but also for use in our later performance comparison in Section 7.2.

Random Circuits. In order to build a random circuit consisting of

2
n
AND gates that is easily divisible into different subcomponent

sizes we initially generate a number of smaller random circuit

containing 2
t
AND gates with 256 input wires and 128 output

wires. This is done by randomly generating non-connected XOR

and AND until exactly 2
t
AND gates have been generated. Then

for each of these generated gates i we assign their two input wires

at random from the set of gates with index smaller than i (the gate
id i is also the gate’s output wire). Finally we solder 2

n−t
copies of

these components together into a final circuit C , thus consisting of

2
n
AND gates overall. We consider n ∈ {10, 12, 14, 16, 18, 19, 20} in

this experiment, and for each of these we build a circuit of size 2
n

using several values of t .
As we are only considering relative performance between dif-

ferent strategies in these experiments we evaluate random circuit

using a single thread for each party on the previously mentioned

LAN setup.
1
We summarize our findings in Figure 1. We initially

consider very few, but large subcomponents and then gradually

decrease the size. Thus, the x-axis of the figure represents the con-

tinuum from whole-circuit C&C (t = n) towards gate-level C&C
(t = 0). The overall trend of our experiments is strikingly clear,

initially as the number of subcomponents increases (t decreases)
the running time goes down as well due to our protocol taking ad-

vantage of the amortization benefits offered by the LEGO paradigm.

However for all circuit sizes considered it is also apparent that at

some point this benefit is outweighed by the overhead of soldering

1
For best absolute performance, we would always run our implementation using

several threads per party.

2
5

2
8

2
11

2
14

2
17

2
20

0

5,000

10,000

15,000

20,000

25,000

Subcomponent size (2
t
AND gates)

R
u
n
n
i
n
g
t
i
m
e
m
s

n = 10 n = 12 n = 14 n = 16

n = 18 n = 19 n = 20

Figure 1: DUPLO performance for random circuits consist-
ing of 2

n AND gates divided into 2
n−t subcomponents.

and committing to the increasing number of input/output wires

between the components. It is at exactly this point (the vertex of

each graph), in the sweet spot between substantial LEGO amorti-

zation and low soldering overhead, that DUPLO has it’s optimal

performance. We thus conclude that for an ideally decomposable

circuit such as the ones generated in this experiment the viability

of the DUPLO approach is apparent.

Real-world circuits. The experiments for the random circuits

show that the DUPLO approach for C&C does have merit for cir-

cuits that can be divided into multiple identical subcomponents.

Clearly, this is a very narrow class of functions so in addition we

also evaluate our prototype on the previously mentioned real-world

circuits in order to investigate their optimal decomposition strat-

egy. We first describe our approach of dividing these circuits into

subcomponents.

AES-128 We consider the following three strategies:

• Five kinds of subcomponents: each computing one of the

functions of the AES algorithm, that is 1x Key Expansions

(1,280 AND gates), 11x AddRoundKey, 10x SubBytes (512

AND gates), 10x ShiftRows, and 9x MixColumns.

• Three kinds of subcomponents: 1x Key Expansions and

Initial Round (1,280 AND gates); 9x AES Round Functions

(each 512 AND gates); 1x AES Final Round (512 AND

gates).

• A single component consisting of the entire AES-128 cir-

cuit (6,400 AND gates), i.e. whole-circuit C&C.
CBC-MAC-16 We consider decomposing this circuit into a single

subcomponent of varying size. In each case, the component

contains i ∈ {16, 8, 4, 2, 1} AES-128 blocks, meaning each of

these consists of 6, 400i AND gates.

Mat-Mul In order to multiply two matrices A,B use the block-

matrix algorithm: We divideA,B intom ×m 32-bit submatri-

ces Ai, j ,Bi, j for i, j ∈ [1, 16/m]. To compute AB, the block

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

11

16 8 4 2 1

10
3

10
4

Subcomponent Size (#AES-128)

A
m
o
r
t
i
z
e
d
R
u
n
n
i
n
g
t
i
m
e
m
s

N = 1

N = 32

N = 128

Figure 2: DUPLO performance for N parallel executions of
CBC-MAC-16 using different decomposition strategies.

entries Ai,k are first multiplied by the block entries Bk, j for
k ∈ [1,m], while summing the results over k . It is therefore
the case that the experiment contains two different kinds of

components,m ×m 32-bit matrix product andm ×m 32-bit

matrix addition. In our experiment we consider block matrix

sizesm ∈ {16, 8, 4, 2} and the concrete number of AND gates

for each kind of component are reported in Table 1.

When performing N = 1, 32, 128 executions of AES-128 in paral-

lel, we observe that our protocol performs best when considering

the entire circuit as a single component. For example of perform-

ing N = 128, evaluating AES-128 with single component takes

28.18 milliseconds while splitting the AES-128 into three or five

relatively small subcomponents, it costs 35.2 and 32.21 milliseconds

respectively. This is in contrast to what we observed in the random

circuit experiment, but can be explained by the non-uniformity

of the considered decomposition strategies. The fact that we split

the AES-128 into small subcomponents, some of which are only

used once, has a very negative influence on DUPLO performance as

there is some overhead associated with preparing each component

type while at the same time no LEGO-style amortization can be

exploited when preparing only a single copy.

For the CBC-MAC-16 circuit however whole-circuit C&C is not

the optimal approach and we summarize the observed performance

for the different decompositions in Figure 2. Here we see that the

best strategy is to decompose the circuit into many identical sub-
components. The trend observed is similar to the random circuit

experiments where initially it is best to optimize for many identical

subcomponents. In particular for a single execution of CBC-MAC-

16 it is best to decompose into 16 copies of the AES-128 circuit

yielding around 5x performance increase over the whole-circuit

approach. For the parallel executions (which contain overall many

more AES-128 circuits) we can see that it is best to consider subcom-

ponents consisting of 4xAES-128 circuits each. The lower relative

performance difference between the strategies for the parallel exe-

cutions is due to there being a minimum of N circuits for utilizing

LEGO amortization, even for the whole-circuit approach. However

16 8 4 2

10
4

10
5

Subcomponent Size (m ×m)

A
m
o
r
t
i
z
e
d
R
u
n
n
i
n
g
t
i
m
e
m
s

N = 1

N = 32

N = 128

Figure 3: DUPLO performance for N parallel executions of
Mat-Mul using different decomposition strategies.

as the number of total subcomponents grow it can be seen that

there are savings to be had by grouping executions together.

Block Component Size Number Executions N
Size Mult Add 1 32 128

2x2 8,192 124 11,160 7,815 7,554

4x4 65,536 496 14,847 7,539 6,622
8x8 524,288 1,984 52,334 9,615 7,324

16x16 4,194,304 0 351,002 11,338 9298

Table 1: Component sizes and amortized running time per
execution for Mat-Mul (ms). Best performance marked in
bold.

Finally for the Mat-Mul circuit we see a similar overall trend as in

the CBC-MAC-16 experiment (Table 1 and Figure 3). Most notably

is the performance increase for a single execution yielding around

31x by considering blocks of size 2 × 2 instead of a single whole-

circuit 16 × 16. This experiment indeed highlights the performance

potential of the DUPLO approach for large computations that can

naturally be decomposed into distinct repeating subcomponents, in

this case matrix product and matrix addition. This is in contrast to

the previous AES-128 example where this approach was penalized.

The difference however is that in the Mat-Mul experiment each

subcomponent is repeated several times and therefore all benefit

from LEGO amortization.

Experiment Discussion. The above real-world examples show

that the DUPLO approach has merit, but the exact performance

gains depend significantly on the circuit in question. As a gen-

eral rule of thumb DUPLO performs best when the circuit can be

decomposed into many identical subcomponents as can be seen

from the CBC-MAC-16 and Mat-Mul experiments (the more the

better). As there is no immediate way of decomposing the AES-128

circuit in this way, we see that performance suffers when the cir-

cuit cannot be decomposed into distinct repeating parts. However

the Mat-Mul experiments show that decomposing the circuit into

distinct circuits can certainly have merit, however it is crucial that

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

12

Protocol Setting N

AES CBC-MAC-16 Mat-Mul

Ind.Prep Offline Online Ind.Prep Offline Online Ind.Prep Offline Online

WMK[55] LAN 1 ✗ (✗) 125 ✗ (✗) 1,177 ✗ (✗) 43,930

WAN 1 ✗ (✗) 2,112 ✗ (✗) 11,443 ✗ (✗) 368,190

RR[49]

LAN

1 ✗ 198 8.83 ✗ 3,495 35.52 ✗ 120,200 913

32 ✗ 67.77 3.60 ✗ 1,296 20.71 ✗ 36,437 1,247

128 ✗ 40.70 2.86 ✗ 863 18.38 - - -

1024 ✗ 24.90 3.06 ✗ 471 17.48 - - -

WAN

1 ✗ 941 527 ✗ 12039 565 ✗ 467,711 1,550

32 ✗ 311 472 ✗ 4202 471 ✗ 157,928 1,677

128 ✗ 192 557 ✗ 2743 573 ✗ - -

1024 ✗ 115 577 ✗ 1762 597 ✗ - -

NST[46]

LAN

1 1,506 22.34 2.54 2,594 230 18.14 - - -

32 119 2.42 0.22 965 38.63 1.34 - - -

128 75.64 2.08 0.16 922 37.90 0.87 - - -

1024 60.48 1.85 0.14 - - - - - -

WAN

1 9,325 223 195 13,812 699 219 - - -

32 599 15.17 6.71 4,158 151 8.54 - - -

128 341 12.75 6.24 3,810 148 7.15 - - -

1024 256 11.81 5.56 - - - - - -

DUPLO

LAN

1 ✗ 371 8.62 799 29.83 41.94 10,268 569 118
32 ✗ 47.03 0.65 303 10.18 3.72 7,124 331 83.73
128 ✗ 27.77 0.41 213 11.54 2.49 6,260 303 58.65
1024 ✗ 17.58 0.30 175 13.30 1.61 - - -

WAN

1 ✗ 7,391 585 8,970 1,370 620 50,856 1,775 744
32 ✗ 347 19.37 1,477 49.21 23.62 32,098 517 135
128 ✗ 148 5.55 990 22.23 8.85 27,613 388 101
1024 ✗ 74.03 1.53 733 15.93 3.83 - - -

Table 2: All timings arems per circuit. Best results are marked in bold. Cells with “✗” denote setting not supported. Cells with
“-” denote program out of memory.

Protocol Setting

CBC-MAC-32 CBC-MAC-64 CBC-MAC-128 CBC-MAC-256 CBC-MAC-1024

Offline Online Offline Online Offline Online Offline Online Offline Online

WMK[55]
LAN

(✗) 2,298 (✗) 4,539 (✗) 9,029 (✗) 18,003 (✗) 71,787

DUPLO 1,211 68.29 1,877 104 2,991 196 5,072 274 14,167 1,003

WMK[55]
WAN

(✗) 21,460 (✗) 41,114 (✗) 79,157 (✗) 155,995 (✗) 606,329

DUPLO 12,269 656 15,039 698 19,089 793 27,093 910 81,883 1,733

Table 3: Comparison for CBC-MAC-XX. All timings arems per circuit. Best results aremarked in bold. “(✗)” denotes the setting
is supported, but we only ran the “everything online” version of WMK.

each subcomponent is repeated a minimal number of times or the

non-repeating part of the computation is relatively small.
2

7.2 Comparison with Related Work
We also compared our prototype to three related high-performance

open-source implementations of malicious-secure 2PC. All exper-

iments use the same hardware configuration described at the be-

ginning of this section. For all experiments we have tried tuning

the calling parameters of each implementation to obtain the best

performance.

When reporting performance of our DUPLO protocol, we split

the offline part of the computation into an independent prepro-

cessing (Setup + PreprocessComponent + PrepareComponents)
whenever our analysis shows that dividing the computation into

subcomponents is optimal — i.e., when evaluating AES-128 we do

not have any function-independent preprocessing since the optimal

configuration is to let the component consist of the entire circuit.

2
This is not the case for the AES-128 circuit as the non-repeating part consists of

around 40% of the entire computation.

We summarize our measured timings for all the different protocols

in Table 2, and now go into more detail:

Better Amortization by Subdivision. The protocol of Rindal &

Rosulek (RR in our tables) [49] is currently the fastest malicious-

secure 2PC protocol in the multi-execution setting. The protocol

of Nielsen et al. (NST) [46] is the fastest that allow for function-

independent preprocessing, using the LEGO paradigm.
3

The general trend in Table 2 is that as the total complexity (com-

bined cost of all computations) grows, the efficiency of the DUPLO

approach becomes more and more apparent. For example, DUPLO

is 1.5x times faster (counting total offline+online time) than RR

whole-circuit C&C for 1024 AES-128 LAN. For the larger CBC-

MAC-16 scenario, the difference 2.5x. For the even larger case of 32

Mat-Mul executions, the difference is 5x. Our experiments clearly

3
The recent 2PC protocol of [56] appears to surpass NST in terms of performance in

this setting, but as this implementation is not publicly available at the time of writing

we do not consider it for these experiments. However, it can be indirectly compared

timing to WMK via RR.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

13

confirm that DUPLO scales significantly better than state-of-the-art

amortizing protocols.

When comparing to the LEGO C&C protocol of NST things are

harder to compare as they use a much slower BaseOT implementa-

tion than we do (1200ms vs. 200ms) which especially matters for

lower complexity computations. However even when accounting

for this difference, in total time, our approach has 2-3x better total

performance for AES-128. We note that if Ind. Prep. is applicable

for an application then DUPLO cannot compete with NST for small

computations, but as demonstrated from our CBC-MAC-16 exper-

iments, once the computation reaches a certain size and we can

decompose the target circuit into smaller subcomponents, DUPLO

overtakes NST in performance by a factor 5x.

It is interesting to note that the online time of NST is vastly

superior to RR and DUPLO, especially for small circuits (2-4x). This

is due to the difference between whole-circuit C&C and gate-level

C&C where the NST bucket size is relatively small (and thus online

computation) even for a single circuit, whereas it needs to be 5-10x

larger for the whole-circuit approach. As the number of executions

increase we however see that this gap decreases significantly. We

believe the reason why NST still outperforms DUPLO in all online

running times is that the NST implementation is RAM only, whereas

DUPLO writes components and solderings to disk in the offline

phases and reads them in the online phase as needed. For RR we

notice some anomalies for their online times that we cannot fully

explain. We conclude that the throughput measured and reported

in our experiments might not be completely fair towards the RR

protocol, but might be explained by implementation decisions that

work poorly for our particular scenarios. In any case, we do expect

DUPLO to perform as fast or faster than RR in the online phase due

to less online rounds and data transfer.

Amortized-grade Performance for Single-Execution. The current
fastest protocol for single-execution 2PC is due to Wang et al.

(WMK) [55]. When comparing to their protocol, we ran all ex-

periments using the “everything online” version of their code since

this typically gives the best overall running time. We stress however

that the protocol also supports a function-dependent preprocessing

phase, but since this is not the primary goal of that work we omit

it here.

Unsurprisingly, the protocols designed for the multi-execution

settings (including DUPLO) are significantly faster than WMK

when considering several executions. However, even in the single-

execution setting, we see that DUPLO scales better and eventually

catches up to the performance of WMK for large computations.

WMK is 3x faster than DUPLO when the subcomponent is an en-

tire AES-128 circuit. Then, already for CBC-MAC-16 the ability

to decompose this into 16 independent AES-128 circuits yields

around 1.4x factor improvement over WMK. We further explore

this comparison in Table 3, by evaluating even larger circuits in the

single-execution setting. For larger CBC-MAC circuits, DUPLO is

around 4.7x faster on LAN and 7.4x on WAN.

7.2.1 Bandwidth Comparison. As a final comparison we also

consider the bandwidth requirements of the different protocols. In

addition to the previous three protocols we here also include the

recent work of Wang et al. (WRK) [56]. To directly compare we

report on the data required to transfer from constructor to receiver

Protocol #Execs Ind. Prep Dep. Prep Online

WMK[55] 1 ✗ ✗ 9.66MB

RR[49]
32 ✗ 3.75MB 25.76 kB

128 ✗ 2.5MB 21.31 kB

1024 ✗ 1.56MB 16.95 kB

NST[46]

1 14.94MB 226.86 kB 16.13 kB

32 8.74MB 226.86 kB 16.13 kB

128 7.22MB 226.86 kB 16.13 kB

1024 6.42MB 226.86 kB 16.13 kB

WRK[56]

1 2.86MB 570 kB 4.86 kB
32 2.64MB 570 kB 4.86 kB
128 2.0MB 570 kB 4.86 kB
1024 2.0MB 570 kB 4.86 kB

DUPLO

1 ✗ 12.94MB 19.36 kB

32 ✗ 2.60MB 18.97 kB

128 ✗ 1.96MB 18.96 kB

1024 ✗ 1.59MB 18.96 kB

Table 4: Comparison of the data sent from constructor to
evaluator AES-128 with k = 128 and s = 40. All numbers are
per AES-128. Best results marked in bold.

in Table 4 for different number of AES-128 executions.We stress that

these numbers are all from the same AES-128 circuit [53] and not

from our optimized Frigate version. As already established for AES-

128, DUPLO performs best by treating the entire circuit as a single

component, hence we do not distinguish between Ind. Prep and Dep.

Prep in the table. However we do stress that DUPLO only requires

solderings from the input-wires to the output-wires of potentially

large components, so for applicable settings we expect the Dep. Prep

of DUPLO to be much lower than that of NST and WRK as they

require solderings for each gate. It can be seen that for a single AES-

128 component DUPLO cannot compare with the protocol of WRK

in terms of overall bandwidth. This is natural as the replication

factor is much lower for gate-level C&C in this case. However

as the number of circuits grows we see that DUPLO’s bandwidth

requirement decreases significantly per AES-128 to a point where

it is actually better than WRK by a factor 1.6x at 1024 executions.

For the online phase it is clear that WRK’s bandwidth is better than

our protocol as we require decommitting the garbled input keys for

the evaluator which induces some overhead. However we note that

our implementation is not optimal in terms of online bandwidth

in that we have chosen flexibility over minimizing rounds and

bandwidth. For a dedicated application DUPLO’s online bandwidth

can be reduced by around 2x by combining the evaluate and decode

phases and running batch-decommit of the evaluator input wires

along with the output indicator bits.

REFERENCES
[1] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. 2015.

How to Efficiently Evaluate RAM Programs with Malicious Security. In EURO-
CRYPT 2015, Part I (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056.

Springer, 702–729. https://doi.org/10.1007/978-3-662-46800-5_27

[2] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In EUROCRYPT 2014
(LNCS), Phong Q. Nguyen and Elisabeth Oswald (Eds.), Vol. 8441. Springer, 387–

404. https://doi.org/10.1007/978-3-642-55220-5_22

[3] Gilad Asharov and Claudio Orlandi. 2012. Calling Out Cheaters: Covert Se-

curity with Public Verifiability. In ASIACRYPT 2012 (LNCS), Xiaoyun Wang

and Kazue Sako (Eds.), Vol. 7658. Springer, 681–698. https://doi.org/10.1007/

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

14

https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41

978-3-642-34961-4_41

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The Round Complexity

of Secure Protocols (Extended Abstract). In STOC 1990. ACM Press, 503–513.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits, See [60], 784–796.

[6] Joan Boyar and Rene Peralta. 2009. New logic minimization techniques with

applications to cryptology. Cryptology ePrint Archive, Report 2009/191. (2009).

http://eprint.iacr.org/2009/191

[7] Luís T. A. N. Brandão. 2013. Secure Two-Party Computation with Reusable Bit-

Commitments, via a Cut-and-Choose with Forge-and-Lose Technique - (Extended

Abstract). InASIACRYPT 2013, Part II (LNCS), Kazue Sako and Palash Sarkar (Eds.),
Vol. 8270. Springer, 441–463. https://doi.org/10.1007/978-3-642-42045-0_23

[8] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In FOCS 2001. IEEE Computer Society Press, 136–145.

[9] Ran Canetti and Juan A. Garay (Eds.). 2013. CRYPTO 2013, Part II. LNCS, Vol. 8043.
Springer.

[10] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus

Nielsen. 2016. Rate-1, Linear Time and Additively Homomorphic UC Commit-

ments. In CRYPTO 2016, Part III (LNCS), Matthew Robshaw and Jonathan Katz

(Eds.), Vol. 9816. Springer, 179–207. https://doi.org/10.1007/978-3-662-53015-3_7

[11] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. 2012.

On the Security of the “Free-XOR” Technique. In TCC 2012 (LNCS), Ronald Cramer

(Ed.), Vol. 7194. Springer, 39–53.

[12] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer. https://doi.org/10.1007/978-3-662-04722-4

[13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Se-

bastian Nordholt, and Claudio Orlandi. 2013. MiniLEGO: Efficient Secure Two-

Party Computation from General Assumptions. In EUROCRYPT 2013 (LNCS),
Thomas Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer, 537–556.

https://doi.org/10.1007/978-3-642-38348-9_32

[14] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto

Trifiletti. 2015. TinyLEGO: An Interactive Garbling Scheme for Maliciously

Secure Two-Party Computation. Cryptology ePrint Archive, Report 2015/309.

(2015). http://eprint.iacr.org/2015/309

[15] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto

Trifiletti. 2016. On the Complexity of Additively Homomorphic UC Commitments.

In TCC 2016-A, Part I (LNCS), Eyal Kushilevitz and Tal Malkin (Eds.), Vol. 9562.

Springer, 542–565. https://doi.org/10.1007/978-3-662-49096-9_23

[16] Tore Kasper Frederiksen and Jesper Buus Nielsen. 2013. Fast and Maliciously

Secure Two-Party Computation Using the GPU. In ACNS 2013 (LNCS), Michael J.

Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini

(Eds.), Vol. 7954. Springer, 339–356. https://doi.org/10.1007/978-3-642-38980-1_21

[17] Juan A. Garay and Rosario Gennaro (Eds.). 2014. CRYPTO 2014, Part II. LNCS,
Vol. 8617. Springer.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In STOC
1987, Alfred Aho (Ed.). ACM Press, 218–229.

[19] Vipul Goyal, Payman Mohassel, and Adam Smith. 2008. Efficient Two Party

and Multi Party Computation Against Covert Adversaries. In EUROCRYPT 2008
(LNCS), Nigel P. Smart (Ed.), Vol. 4965. Springer, 289–306.

[20] Adam Groce, Alex Ledger, Alex J. Malozemoff, and Arkady Yerukhimovich. 2016.

CompGC: Efficient Offline/Online Semi-honest Two-party Computation. Cryp-

tology ePrint Archive, Report 2016/458. (2016). http://eprint.iacr.org/2016/458

[21] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. 2012.

Secure two-party computations in ANSI C, See [60], 772–783.

[22] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure Two-

Party Computation Using Garbled Circuits. In USENIX Security 2011. USENIX
Association.

[23] Yan Huang, Jonathan Katz, and David Evans. 2013. Efficient Secure Two-Party

Computation Using Symmetric Cut-and-Choose, See [9], 18–35. https://doi.org/

10.1007/978-3-642-40084-1_2

[24] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.

Malozemoff. 2014. Amortizing Garbled Circuits, See [17], 458–475. https://doi.

org/10.1007/978-3-662-44381-1_26

[25] Nathaniel Husted, Steven Myers, abhi shelat, and Paul Grubbs. 2013. GPU and

CPU parallelization of honest-but-curious secure two-party computation. In

ACSAC 2013, Charles N. Payne Jr. (Ed.). ACM, 169–178. https://doi.org/10.1145/

2523649.2523681

[26] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively Secure OT

Extension with Optimal Overhead. In CRYPTO 2015, Part I (LNCS), Rosario Gen-

naro and Matthew J. B. Robshaw (Eds.), Vol. 9215. Springer, 724–741. https:

//doi.org/10.1007/978-3-662-47989-6_35

[27] Vladimir Kolesnikov and Alex J. Malozemoff. 2015. Public Verifiability in the

Covert Model (Almost) for Free. In ASIACRYPT 2015, Part II (LNCS), Tetsu Iwata

and Jung Hee Cheon (Eds.), Vol. 9453. Springer, 210–235. https://doi.org/10.1007/

978-3-662-48800-3_9

[28] Vladimir Kolesnikov, PaymanMohassel, Ben Riva, andMike Rosulek. 2015. Richer

Efficiency/Security Trade-offs in 2PC. In TCC 2015, Part I (LNCS), Yevgeniy Dodis

and Jesper Buus Nielsen (Eds.), Vol. 9014. Springer, 229–259. https://doi.org/10.

1007/978-3-662-46494-6_11

[29] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto

Trifiletti. 2017. DUPLO: Unifying Cut-and-Choose for Garbled Circuits. Cryptol-

ogy ePrint Archive, Report 2017/344. (2017). http://eprint.iacr.org/2017/344.

[30] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit:

Free XOR Gates and Applications. In ICALP 2008, Part II (LNCS), Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and

Igor Walukiewicz (Eds.), Vol. 5126. Springer, 486–498.

[31] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure

Computation with Malicious Adversaries. In USENIX Security 2012. USENIX
Association.

[32] Yehuda Lindell. 2013. Fast Cut-and-Choose Based Protocols for Malicious and

Covert Adversaries, See [9], 1–17. https://doi.org/10.1007/978-3-642-40084-1_1

[33] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-

Party Computation in the Presence of Malicious Adversaries. In EUROCRYPT 2007
(LNCS), Moni Naor (Ed.), Vol. 4515. Springer, 52–78.

[34] Yehuda Lindell and Benny Pinkas. 2011. Secure Two-Party Computation via Cut-

and-Choose Oblivious Transfer. In TCC 2011 (LNCS), Yuval Ishai (Ed.), Vol. 6597.
Springer, 329–346.

[35] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. 2008. Implementing Two-

Party Computation Efficiently with Security Against Malicious Adversaries. In

SCN 2008 (LNCS), Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti (Eds.),

Vol. 5229. Springer, 2–20.

[36] Yehuda Lindell and Ben Riva. 2014. Cut-and-Choose Yao-Based Secure Com-

putation in the Online/Offline and Batch Settings, See [17], 476–494. https:

//doi.org/10.1007/978-3-662-44381-1_27

[37] Yehuda Lindell and Ben Riva. 2015. Blazing Fast 2PC in the Offline/Online Setting

with Security for Malicious Adversaries. In ACM CCS 2015, Indrajit Ray, Ninghui
Li, and Christopher Kruegel: (Eds.). ACM Press, 579–590.

[38] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. 2015. ObliVM: A Programming

Framework for Secure Computation. In 2015 IEEE Symposium on Security and
Privacy. 359–376. https://doi.org/10.1109/SP.2015.29

[39] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay—

a Secure Two-party Computation System. In USENIX Security 2004. USENIX
Association.

[40] Payman Mohassel and Matthew Franklin. 2006. Efficiency Tradeoffs for Mali-

cious Two-Party Computation. In PKC 2006 (LNCS), Moti Yung, Yevgeniy Dodis,

Aggelos Kiayias, and Tal Malkin (Eds.), Vol. 3958. Springer, 458–473.

[41] Payman Mohassel and Ben Riva. 2013. Garbled Circuits Checking Garbled

Circuits: More Efficient and Secure Two-Party Computation, See [9], 36–53.

https://doi.org/10.1007/978-3-642-40084-1_3

[42] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and Joan Feigenbaum. 2014.

Reuse It Or Lose It: More Efficient Secure Computation Through Reuse of En-

crypted Values. In ACM CCS 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li

(Eds.). ACM Press, 582–596.

[43] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. 2016. Frigate: A Validated,

Extensible, and Efficient Compiler and Interpreter for Secure Computation. In

2016 IEEE European Symposium on Security and Privacy (EuroS&P). 112–127.
https://doi.org/10.1109/EuroSP.2016.20

[44] Jesper Buus Nielsen and Claudio Orlandi. 2009. LEGO for Two-Party Secure

Computation. In TCC 2009 (LNCS), Omer Reingold (Ed.), Vol. 5444. Springer,

368–386.

[45] Jesper Buus Nielsen and Samuel Ranellucci. 2016. Reactive Garbling: Foundation,

Instantiation, Application. In ASIACRYPT 2016, Part II (LNCS). Springer, 1022–
1052. https://doi.org/10.1007/978-3-662-53890-6_34

[46] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant

Round Maliciously Secure 2PC with Function-independent Preprocessing us-

ing LEGO. In 24. Annual Network and Distributed System Security Symposium
(NDSS’17). The Internet Society.

[47] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. 2009.

Secure Two-Party Computation Is Practical. In ASIACRYPT 2009 (LNCS), Mitsuru

Matsui (Ed.), Vol. 5912. Springer, 250–267.

[48] Peter Rindal. 2017. libOTe: an efficient, portable, and easy to use Oblivious

Transfer Library. https://github.com/osu-crypto/libOTe. (2017).

[49] Peter Rindal and Mike Rosulek. 2016. Faster Malicious 2-Party Secure Compu-

tation with Online/Offline Dual Execution. In USENIX Security 2016. USENIX
Association.

[50] Peter Rindal and Roberto Trifiletti. 2017. SplitCommit: Implementing and An-

alyzing Homomorphic UC Commitments. Cryptology ePrint Archive, Report

2017/407. (2017). http://eprint.iacr.org/2017/407

[51] abhi shelat and Chih-Hao Shen. 2011. Two-Output Secure Computation with

Malicious Adversaries. In EUROCRYPT 2011 (LNCS), Kenneth G. Paterson (Ed.),

Vol. 6632. Springer, 386–405.

[52] abhi shelat and Chih-Hao Shen. 2013. Fast two-party secure computation with

minimal assumptions. In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor,

and Moti Yung (Eds.). ACM Press, 523–534.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

15

https://doi.org/10.1007/978-3-642-34961-4_41
http://eprint.iacr.org/2009/191
https://doi.org/10.1007/978-3-642-42045-0_23
https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-38348-9_32
http://eprint.iacr.org/2015/309
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-642-38980-1_21
http://eprint.iacr.org/2016/458
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1145/2523649.2523681
https://doi.org/10.1145/2523649.2523681
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-46494-6_11
https://doi.org/10.1007/978-3-662-46494-6_11
http://eprint.iacr.org/2017/344
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1007/978-3-642-40084-1_3
https://doi.org/10.1109/EuroSP.2016.20
https://doi.org/10.1007/978-3-662-53890-6_34
https://github.com/osu-crypto/libOTe
http://eprint.iacr.org/2017/407

[53] Nigel Smart and Stefan Tillich. 2017. Circuits of Basic Functions Suitable For MPC

and FHE. (2017). http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

[54] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,

and Farinaz Koushanfar. 2015. TinyGarble: Highly Compressed and Scalable

Sequential Garbled Circuits. In 2015 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 411–428. https://doi.org/10.1109/SP.2015.32

[55] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2017. Faster Secure Two-

Party Computation in the Single-Execution Setting. In EUROCRYPT 2017 (LNCS),
Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10212. 399–424. https:

//doi.org/10.1007/978-3-319-56617-7_14

[56] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling

and Efficient Maliciously Secure Two-Party Computation. Cryptology ePrint

Archive, Report 2017/030. (2017). http://eprint.iacr.org/2017/030.

[57] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. Cryptology ePrint Archive, Report 2017/189. (2017).

http://eprint.iacr.org/2017/189.

[58] Xiao Shaun Wang, S. Dov Gordon, Allen McIntosh, and Jonathan Katz. 2016.

Secure Computation of MIPS Machine Code. In ESORICS 2016, Part II (LNCS).
Springer, 99–117. https://doi.org/10.1007/978-3-319-45741-3_6

[59] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In FOCS 1986. IEEE Computer Society Press, 162–167.

[60] Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). 2012. ACM CCS 2012. ACM
Press.

[61] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-

Oblivious Computation. Cryptology ePrint Archive, Report 2015/1153. (2015).

http://eprint.iacr.org/2015/1153

[62] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole -

ReducingData Transfer in Garbled Circuits UsingHalf Gates. In EUROCRYPT 2015,
Part II (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer,

220–250. https://doi.org/10.1007/978-3-662-46803-6_8

[63] Ruiyu Zhu and YanHuang. 2017. Faster LEGO-based Secure Computationwithout

Homomorphic Commitments. Cryptology ePrint Archive, Report 2017/226. (2017).

http://eprint.iacr.org/2017/226

A PROTOCOL DETAILS
We describe and analyse the protocol in the UC framework. We

will here give an abstract description that lends itself to a security

analysis. In Section 6.1 we describe some of the optimisations that

were done in the implementation and why they do not affect the

security analysis. We describe the protocol for two parties, the

garbler G and the evaluator E. We will describe the protocol in the

hybrid model with ideal functionalities FHCOM and FOT for xor-

homomorphic commitment and one-out-of-two oblivious transfer.

The precise description of the ideal functionalities are standard by

now and can be found in [15] and [26]. Here we will denote the

use of the functionalities by some pseudo-code conventions. When

using FHCOM it is G that is the committer and E that is the receiver.

When G executes Commit(cid,x) for cid ∈ {0, 1}∗ and x ∈ {0, 1}κ ,
then FHCOM stores (cid,xcid) (where xcid = x) and outputs cid to E.
WhenG executesOpen(cid1, . . . , cidc), where each cidi was output
to E at some point, then FHCOM outputs (cid1, . . . , cidc , ⊕ci=1

xcidi)
to E. When G executes an open command, then the commitment

identifies (cid1, . . . , cidc) are always already known by E. If FHCOM
outputs(cid′

1
, . . . , cid′c , ⊕

c
i=1

xcidi) where some cid′i , cidi then E
always tacitly aborts the protocol. Similarly the cid used in the

commit command is always known and E aborts if G uses a wrong

one. When using FOT it is G that is the sender and E that is the

receiver. We assume that we have access to a special OT which

has a special internal state ∆ ∈ {0, 1}κ , which is chosen by G
once and for all at the initialisation of the ideal functionality by

executing OTinit(∆). After that, when G executes OTsend(id,x0)
for id ∈ {0, 1}∗ and x0 ∈ {0, 1}

κ
and E executes OTreceive(id,b)

for b ∈ {0, 1}, then FOT outputs (id,xb) to E, where x1 = x0 ⊕ ∆. If
the protocol specifies that G is to execute OTreceive(id,b) and it

does not or uses a wrong id, then E will always detect this and will

tacitly abort.

When we instruct a party to send a value, we tacitly assume the

receiver stores it under the same name when it is received.

When we instruct a party to check a condition, we mean that

the party will abort if the condition is false.

When a variable like Kid is created in our pseudo-code, it can

be accessed by another routine at the same party using the same

identifier. Sometimes we use the store and retrieve key-words to
explicitly do this. To save on notation, it will sometimes be done

more implicitly, when it cannot lead to ambiguity. In general, if an

uninitialised variable like Kid is used in a protocol, then there is an

implicit "retrieve Kid" in the line before.

We assume that we have a free-xor garbling scheme (Gb, Ev)
which has correctness, obliviousness and authenticity. We recall

these notions now. The key length is some κ. The input to Gb is

a poly-sized circuit C computing a function C : {0, 1}n → {0, 1}m

along with (K0

1
, . . . ,K0

n ,∆) ∈ ({0, 1}κ)n+1
, where lsb(∆) = 1. The

output is (L0

1
, . . . ,L0

m) ∈ ({0, 1}κ)m and a garbled circuit F . Here

F is the garbled version of C . Define K1

i = K0

i ⊕ ∆. For x ∈ {0, 1}n

define Kx = (Kx1

1
, . . . ,Kxn

n). This is the garbled input, i.e., the
garbled version of x . Define L1

i = L0

i ⊕ ∆. For y ∈ {0, 1}m define

Ly = (L
y1

1
, . . . ,L

ym
m). This is the garbled output. The input to Ev is

a garbled circuit F and a garbled input (K1, . . . ,Kn) ∈ ({0, 1}κ)n .
The output is ⊥ or a garbled output (L1, . . . ,Lm) ∈ ({0, 1}κ)m . The

scheme being free-xormeans the inputs and outputs are of the above

form. Correctness says that if you do garbled evaluation, you get the

correct output. Obliviousness says that if you are given F but not

given (K0

1
, . . . ,K0

n ,∆), then the garbled input leaks no information

on the plaintext input (or output). Authenticity says that if you are

given only a garbled circuit forC and a garbled input for x , then you
cannot compute the garbled output for any other value than the

correct value C (x). These notions have been formalized in [5]. We

will in fact require extended versions of these notions as we use a

reactive garbling scheme in the sense of [45]. In a reactive garbling

scheme one can make several independent garblings and then later

solder an output wire id with keys (K0

id,K
1

id) onto an input wire

id′ with keys (K0

id′
,K1

id′
) in another circuit. This involves releasing

some information to the evaluator which allows the evaluator later

to compute Kb
id′

from Kb
id for either b = 0 or b = 1. The notion of

reactive garbling scheme is given in [45]. We will use the reactive

garbling scheme from [1]. We will later describe how to solder in

[1] and we then recall the notion of reactive garbling scheme from

[45] to the detail that we need in our proofs.

We finally assume that we have access to a programmable ran-

dom oracleH : {0, 1}κ → {0, 1}κ . Note that this in particular implies

that H is collision resistant.

We assume that we are to securely compute one circuit C which

consist of sub-circuits C and solderings between input wires and

output wires of these sub-circuits. We call the position in C in

which a sub-circuit C is sitting a slot and each slot is identified

by some identifier id. There is a public mapping from identifiers

id to the corresponding sub-circuit C . If C : {0, 1}n → {0, 1}m ,

then the inputs wires and output wires of the slot are identified by

id.in.1, . . . , id.in.n and id.out.1, . . . , id.out.m. Sub-circuits sitting

at a slot are called functional sub-circuits. There are also some

special sub-circuits:

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

16

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14
http://eprint.iacr.org/2017/030
http://eprint.iacr.org/2017/189
https://doi.org/10.1007/978-3-319-45741-3_6
http://eprint.iacr.org/2015/1153
https://doi.org/10.1007/978-3-662-46803-6_8
http://eprint.iacr.org/2017/226

• E in-gates, with n = 0 and m = 1. These are for letting E
input a bit. The output wire is identified by id.out.1.
• G in-gates, also with n = 0 andm = 1. These are for letting

G input a bit. The output wire is identified by id.out.1.
• E out-gates, with n = 1 and m = 0. These are the output

gates of E. The input wire is identified by id.in.1.
• G out-gates, with n = 1 and m = 0. These are the output

gates of G. The input wire is identified by id.in.1.
Besides a set of named sub-circuits, the circuit C also contains

a set S of solderings (id1, id2), where id1 is the name of an output

wire of a sub-circuit and id2 is the name of an input wire of a

sub-circuit. We require that all input wires of all sub-circuits are

soldered to exactly one output wire of a sub-circuit and that there

are no loops. This ensures we can plaintext evaluate the circuit as

follows. For each in-gate id assign a bit xid and say that id.out.1 was
evaluated. Now iteratively: 1) for each soldering (id1, id2) where
id1 was evaluated, let xid2

= xid1
and say id2 was evaluated, and

2) for each sub-circuit where all input wires were evaluated, run

C on the corresponding bits, assign the result to the output wires

and say they are evaluated. This way all out-gates will be assigned

a unique bit. The goal of our protocol is to let both parties learn

their own output bits without learning any other information. We

assume some given evaluation order of the sub-circuits that allows
to plaintext evaluate in that order.

We assume that we have two functions L1,α1
: N→ N for set-

ting the parameters of the cut-and-choose. Consider the following

game parametrised by n ∈ N. First the adversary picks L = L1 (n)
balls. Let α = α1 (n). Some of them are green and some are red. The

adversary picks the colours. Then we sample uniformly at random

L−αn of the balls. If any of the sampled balls are red, the adversary

immediately loses the game. Then we uniformly at random throw

the remaining αn balls into n buckets of size α . The adversary wins

if there is a bucket with only red balls. We assume that L1
and α1

have been fixed such that the probability that any adversary wins

the game is 2
−s
, where s is the security parameter. Note that the

functions depend on s , but we ignore this dependence in the nota-

tion. We assume that we have two other functions L2,α2
: N→ N.

We consider a game similar to the above, but where the adversary

wins if all sampled balls are green and there is a bucket with a

majority of red balls. We assume that L2
and α2

have been fixed

such that the probability that any adversary wins the game is 2
−s
.

Overview of Notation.

• id: generic identifier, just a bit-string naming an object.

• ∆id: the difference with identifier id. Defined to be the value

in the commitment with identifier id.dif. It should hold that

lsb(∆id) = 1.

• σid: the indicator bit with identifier id. Defined to be the

value in the commitment with identifier id.ind.
• Kσid

id : base-key with identifier id. Defined to be the value in

the commitment with identifier id.base. It should hold that

lsb(Kσid
id) = 0.

• K1−σid
id : esab-key with identifier id. Defined to be Kσid

id ⊕ ∆id.

• K0

id: 0-key with identifier id.

• K1

id: 1-key with identifier id.
• Kid: key held by E. It should hold that Kid ∈ {K

0

id,K
1

id}.
• L1 (n): total number of objects to create when one component

should be good per bucket and n buckets are needed.

• α1 (n): bucket size when one component should be good per

bucket and n buckets are needed.

• L2 (n): as above, but majority in each bucket is good.

• α2 (n): as above, but majority in each bucket is good.

• Par(id): mapping from input wire id to the unique parent

output wire. This is well-defined given the soldering set S .
• rco: A special wire index used in recovering inputs of a

corrupted G.
• E: a set of identifiers id for which id is an in-gate.

• I: a set of identifiers id with which Recover could be called

but which are not in E.

Main Structure. We assume that E knows an input bit xid for

each E in-gate id before it is evaluated and that G knows an input

bit xid for each G in-gate id before it is evaluated. The inputs are

allowed to depend adaptively on previous outputs. At the end of

the protocol E knows an output bit yid for each E out-gate id and G
knows an output bit yid for each G out-gate id.

During the pre-processing G will commit to key material for

all wires. The keys K0

id and K1

id will be well defined from these

committed values, even ifG is corrupt.We then implement the input

protocols and the evaluation protocols such that it is guaranteed

that for each wire, E will learn Kid ∈ {K
0

id,K
1

id}.

We then implement the input protocols such that it is guaranteed

that for each G-input gate id the evaluator will learn some Kid ∈

{K0

id,K
1

id}. This holds even if G or E is corrupted. If G is honest, it

is guaranteed that Kid = Kxid
id . If G is corrupted, then xid is defined

by Kid = Kxid
id . Furthermore, for each E-input gate E will learn

Kid ∈ {K
0

id,K
1

id}. This holds even if G or E is corrupted. If E is

honest, it is guaranteed thatKid = Kxid
id . If E is corrupted, then xid is

defined byKid = Kxid
id . This ensures that after the input protocols, an

input bit xid is defined for each input wire, called the plaintext value
of the wire. This allows us to mentally do a plaintext evaluation of

the circuits, which gives us a plaintext bit for each output wire and

input wire of all components. We denote the bit defined for wire id
by xid. We call this the correct plaintext value of the wire. Note that

this value might be known to neither E nor G. However, by security
of the input protocols E will learn the correct key Kxid

id for in-gates.

We then implement the evaluation protocol such that E iteratively

will also learn the correct keys Kxid
id for all internal wires id. For the

G-output wires, the evaluator E will just send Kxid
id to G who knows

(K0

id,K
1

id) and can decode to xid. By authenticity E cannot force an

incorrect output. For the E-output wires, the evaluator E will be

given the indicator bit for the keys which will allow to compute

exactly xid from Kxid
id . That the evaluator learns nothing else will

follow from obliviousness of the garbling scheme.

Below we give a full description of the Duplo protocol, decom-

posed into subprotocols. Security proofs are deferred to the full

version.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

17

function GenWire(id,K ,∆) ▷ Require: lsb(∆) = 1

G: K0

id ← K ▷ the 0-key

G: ∆id ← ∆ ▷ the difference

G: K1

id ← K0

id ⊕ ∆id ▷ the 1-key

G: σid ← lsb(K0

id) ▷ the indicator bit

G: Commit(id.dif,∆id)
G: Commit(id.ind,σid)
G: Commit(id.base,Kσid

id)

end function

function VerWire(id)
G: Open(id.dif); E: receive ∆id
E: check lsb(∆id) = 1

G: Open(id.ind); E: receive σid
G: Open(id.base); E: receive Kσid

id
E: check lsb(Kσid

id) = 0

E: K1−σid
id ← Kσid

id ⊕ ∆id

E: store K0

id,K
1

id,∆id,σid
end function

function GenSold(id1, id2)

G: Open(id1.ind, id2.ind); E: receive σid1, id2

if σid1, id2
= 0 then

G: Open(id1.base, id2.base)
else

G: Open(id1.base, id2.base, id2.dif)
end if
E: receive Kid1, id2

G: Open(id1.dif, id2.dif)
E: receive ∆id1, id2

check lsb(∆id1, id2
) = 0

check lsb(Kid1, id2
) = σid1, id2

end function

function EvSold(id1, id2,K)
E: return K ⊕ Kid1, id2

⊕ lsb(K)∆id1, id2

end function
function EvSold(id1, id2)

E: retrieve Kid1

E: Kid2
← EvSold(id1, id2,Kid1

)

end function

function GenKeyAuth(id)
G: K0

id ← {0, 1}
κ

G: ∆id ← {0, 1}
κ−1 × {1}

G: GenWire(id,K0

id,∆
0

id)

G: Aid ← {H (K0

id),H (K1

id)}

G: send Aid
end function

function VerKeyAuth(id)
VerWire(id)
E: check Aid = {H (K0

id),H (K1

id)}

end function

function PreProcessKA

ℓ ← #output wires of all functional sub-circuits

Let L = L2 (ℓ) ▷ # KAs generated

Let αka = α2 (ℓ) ▷ bucket size

∀Li=1
: GenKeyAuth(preka.i)

E: Sample V ⊂ [L] uniform of size L − αkaℓ.
E: send V
∀i ∈V : VerKeyAuth(preka.i)
for all functional sub-circuits id do

for all j = 1, . . . ,mid do
pick αka uniform, fresh KAs i < V
rename them to ids id.ka.1, . . . , id.ka.αka.
∀
αka
i=2

: GenSold(id.ka.1, id.ka.i)
end for

end for
end function

function GenInKeyAuth(id)
∆id ← {0, 1}

κ−1 × {1}

K0

id ← H (∆id)

GenWire(id,K0

id,∆
0

id)

Aid ← {H (K0

id),H (K1

id)}

G sends Aid
end function

function VerInKeyAuth(id)
VerKeyAuth(id)
E: check Kid = H (∆id)

end function

function PreProcessInKA

ℓ ← #input wires in C

Let L = L2 (ℓ) ▷ # KAs generated

Let αinka = α2 (ℓ) ▷ bucket size

∀Li=1
: GenInKeyAuth(preka.i)

E: Sample V ⊂ [L] uniform of size L − αinkaℓ.
E: send V
∀i ∈V : VerInKeyAuth(preka.i)
for all input wires id do

pick αinka uniform, fresh KAs i < V
rename them to ids id.ka.1, . . . , id.ka.αinka.
∀
αinka
i=2

: GenSold(id.ka.1, id.ka.i)
end for

end function

function PreProcessOTInit

G: ∆ot ← {0, 1}
κ

G: Commit(ot,∆ot)
G: OTinit(∆ot)
for i ∈ [s] do

G: Ri ← {0, 1}κ , OTsend(Ri , oti)
G: Commit(oti ,Ri)
E: bi ← {0, 1},Rbi ← OTreceive(bi , oti)
E: send (Rbi ,bi)

G: receive (R̄i , ¯bi); check R̄i = R ¯bi
if ¯bi = 0 then

G: Open(oti)
else

G: Open(oti , ot)

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

18

end if
E: receive R̃i
E: check R̃i = Rbi

end for
end function

function GenSub(id,C) ▷ C : {0, 1}n → {0, 1}m

G: (K1, . . . ,Kn) ← ({0, 1}κ)n

G: ∆id ← {0, 1}
κ−1 × {1}

G: (L1, . . . ,Lm , Fid) ← Gb(K1, . . . ,Kn ,∆id)
G: send Fid
∀ni=1

: GenWire(id.in.i,Ki ,∆id)

∀mi=1
: GenWire(id.out.i,Li ,∆id)

end function

function VerSub(id,C) ▷ C : {0, 1}n → {0, 1}m

∀ni=1
: VerWire(id.in.i)

∀mi=1
: VerWire(id.out.i)

E: ∆id ← ∆id.in.1
E: ∀ni=2

: check ∆id.in.i = ∆id
E: ∀mi=1

: check ∆id.out.i = ∆id
E: ∀ni=1

: Ki ← K0

id.in.i
E: ∀mi=1

: Li ← K0

id.out.i
E: check (L1, . . . ,Lm , Fid) = Gb(K1, . . . ,Kn ,∆id)

end function

function EvSub(id)
E: ∀ni=1

: Ki ← retrieveKid.in.i
E: (L1, . . . ,Lm) ← Ev(Fid,K1, . . . ,Kn)
E: ∀mi=1

: storeKid.out.i ← Li
end function

function GenSoldSub(id1, id2)

∀ni=1
: GenSold(id1.in.i, id2.in.i)

∀mi=1
: GenSold(id2.out.i, id1.out.i)

∀mi=1
: GenSold(id.1.out.i, id.1.out.i .ka.1)

end function

function PreProcessSub

for all sub-circuit types C do
Let ℓ be the number of times C is used.

Let L = L1 (ℓ) ▷ #circuits generated

Let αid = α1 (ℓ) ▷ bucket size

∀Li=1
: GenSub(C .pre.i,C)

E: Sample V ⊂ [L] uniform of size L − αidℓ.
E: send V
∀i ∈V : VerSub(C .pre.i,C)
for all slots id where C occurs do

pick αid uniform, fresh circuits i < V
rename them to have ids id.1, . . . , id.αid.
∀
αid
i=2

: GenSoldSub(id.1, id.i)
end for

end for
end function

function AssembleSubs

for all functional sub-circuits id do
∀ni=1

: idpar.i ← Par(id.1.in.i)

∀ni=1
: GenSold(idpar.i , id.1.in.i)

end for
end function

function EvKAs(id,Kid)

α ← αka ▷ if generated using PreProcessKA

α ← αinka ▷ if gen. using PreProcessInKA

∀αi=1
: Ai ← Aid.ka.i ▷ get key authenticators

L ← ∅

for K ∈ Kid do
K1 = K
∀αi=2

: Ki = EvSold(id.ka.1, id.ka.i,K)
if #{i ∈ {1, . . . ,α } |Ai (Ki) = ⊤} > α/2 then
L ← L ∪ {K }

end if
end for
if L = {K } then return K
else if L = {K0,K1} then

∆← K0 ⊕ K1

Recover(id,∆)
else abort
end if

end function

function EvSubs(id)
▷ Evaluate first circuit in bucket

∀nj=1
: idpar.j ← Par(id.1.in.j)

∀nj=1
: EvSold(idpar.j , id.1.in.j)

∀nj=1
: retrieve Kid.1.in.j

EvSub(id.1)
∀mj=1

: retrieve Kid.1.out.j
∀mj=1

: EvSold(id.1.out.j, id.1.out.j .ka.1)
∀mj=1

: Kj ← {Kid.1.out.j .ka.1} ▷ key sets

▷ Evaluate remaining circuits in bucket

for i = 2, . . . ,αid do E:
∀nj=1

: EvSold(id.1.in.j, id.i .in.j)
EvSub(id.i)
∀mj=1

: EvSold(id.i .out.j, id.1.out.j)
∀mj=1

: EvSold(id.1.out.j, id.1.out.j .ka.1)
∀mj=1

: Kj ← Kj ∪ {Kid.1.out.j .ka.1}

end for
∀mj=1

: Kid.1.out.j ← EvKAs(kaj ,Kj)

end function

function InputG(id) ▷ id is an ID of a G in-gate

G: retrieve the input bit xid for id
G: K ← Kxid

id.ka.1
G: send K
E: Kid ← EvKAs(id, {K })
E: store Kid

end function

function InputE(id) ▷ id is an ID of an E in-gate

G: Rotid ← {0, 1}
κ
, OTsend(Rotid , otid)

G: Commit(otid,Rotid)
E: botid ← {0, 1},Rbotid ← OTreceive(botid , otid)

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

19

E: retrieve the input bit xid for id
E: send fid = xid ⊕ botid
G: eid = fid ⊕ σid
E: id′ ← id.ka.1
if eid = 0 then

G: Open(id′, otid)
else

G: Open(id′, otid, ot)
end if
E : receive D = Kid′ ⊕ Rotid ⊕ eid∆ot
G: Open(id′.dif, ot); E : receive Sid = ∆id′ ⊕ ∆ot
G: Open(id.ind); E : receive σid
E: K = D ⊕ Rbotid

⊕ (xid ⊕ σid)Sid
E: Kid′ ← EvKAs(id, {K })
E: check lsb(Kid′) = xid ⊕ σid
E: store Kid′

end function

function OutputE(id) ▷ id: ID of an E output gate

E: retrieve soldering (id1, id.out.1) from C.
E: retrieve Kid1

.

G: Open(id1.ind); E: receive σid1

E: yid ← lsb(Kid1
) ⊕ σid1

.

end function

function OutputG(id) ▷ id: ID of an G output gate

E: retrieve soldering (id1, id.out.1) from C
E: retrieve Kid1

E: send Kid1

G: receive Kid1

G: check Kid1
∈ {K0

id1

,K1

id1

}

G: yid ← b where Kb
id1

= Kid1
.

end function

function Main(C)

PreProcessKA()
PreProcessInKA()
PreProcessOTInit()
PreProcessSub()
AssembleSubs()
for all sub-circuit id in evaluation order do

if id is a G in-gate then InputG(id)
else if id is an E in-gate then InputE(id)
else if id is a G out-gate then OutputG(id)
else if id is a E out-gate then OutputE(id)
else EvSubs(id)
end if

end for
end function

function RecoverInputBit(id,∆) ▷ ∆ = ∆id.ka.1
id′ ← id.ka
∆1 ← ∆
α ← αinka
∀αj=1

retrieve Kj ← Kid′ .j ;

∀αj=2
retrieve ∆id′ .1, id′ .j ; ∆j ← ∆id′ .1, id′ .j ⊕ ∆1

if #{j ∈ {1, . . . ,α } |H (∆j) = Kj } > α/2 then
xid ← 0

else xid ← 1

end if
end function

function PreProcessRecovery

G: ∆rco ← {0, 1}
κ

G: Commit(rco,∆rco)
G: ∀id ∈ I ∪ E: Open(id.ka.1.dif, rco)
E: ∀id ∈ I ∪ E: receive ∆id,rco
G: ∀id ∈ E: Open(rco, id.ka.1.dif)
E: ∀id ∈ E: receive ∆rco, id

end function

function RecoverInputBits(id,∆) ▷ ∆ = ∆id.ka.1
retrieve ∆id,eecov
∆rco ← ∆id,rco ⊕ ∆
for all id′ ∈ E do

retrieve ∆rco, id′

∆id′ ← ∆rco, id′ ⊕ ∆rco
RecoverInputBit(id′,∆id′)

end for
end function

function Recover(id,∆) ▷ ∆ = ∆id.ka.1
RecoverInputBits(id,∆)
go to recovery mode

end function
function OutputG(id) ▷ In recovery mode

E: retrieve soldering (id1, id.out.1) from C
E: retrieve xid1

E: retrieve K0

id1

E: retrieve ∆0

id1

E: send K
xid

1

id1

end function
function OutputE(id) ▷ In recovery mode

E: retrieve soldering (id1, id.out.1) from C.
E: retrieve xid1

.

E: yid ← xid1
.

end function

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

20

	Abstract
	1 Introduction
	1.1 DUPLO: building garbled circuits from big pieces
	1.2 Related work
	1.3 Our Contributions and Outline of the Work

	2 Preliminaries
	3 Overview of the LEGO Paradigm
	3.1 Soldering via XOR-Homomorphic Commitments
	3.2 Recent LEGO Improvements

	4 Overview of Our Construction
	5 DUPLO Protocol Details
	5.1 Different 's
	5.2 Improved Techniques for Circuit Inputs
	5.3 Formal Description, Security

	6 System Framework
	6.1 Implementation optimizations
	6.2 Frigate Extension

	7 Performance
	7.1 Effect of Decomposition
	7.2 Comparison with Related Work

	References
	A Protocol Details

