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ABSTRACT
While the feasibility of constant-round and actively secure MPC has

been known for over two decades, the last few years have witnessed

a flurry of designs and implementations that make its deployment

a palpable reality. To our knowledge, however, existing concretely

efficient MPC constructions are only for up to three parties.

In this paper we design and implement a new actively secure 5PC

protocol tolerating two corruptions that requires 8 rounds of inter-

action, only uses fast symmetric-key operations, and incurs 60% less

communication than the passively secure state-of-the-art solution

from the work of Ben-Efraim, Lindell, and Omri [CCS 2016]. For

example, securely evaluating the AES circuit when the parties are

in different regions of the U.S. and Europe only takes 1.8s which is

2.6× faster than the passively secure 5PC in the same environment.

Instrumental for our efficiency gains (less interaction, only sym-

metric key primitives) is a new 4-party primitive we callAttested OT,

which in addition to Sender and Receiver involves two additional

“assistant parties” who will attest to the respective inputs of both

parties, and which might be of broader applicability in practically

relevant MPC scenarios. Finally, we also show how to generalize our

construction to n parties with similar efficiency properties where

the corruption threshold is t ≈
√
n, and propose a combinatorial

problem which, if solved optimally, can yield even better corruption

thresholds for the same cost.
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1 INTRODUCTION
Secure multiparty computation (MPC) allows a group of parties

with private inputs to compute a joint function of their inputs

correctly, despite the potential misbehavior of some of them, and

without revealing any information beyond what can be inferred

from the outcome of the computation. Since the seminal results

from the 1980s [10, 15, 24, 51], which demonstrated the feasibil-

ity of general-purpose MPC for computing arbitrary functions, a

large body of work has focused on improving both asymptotic

and concrete efficiency of these feasibility results, in particular in

the last few years. For constant-round MPC, which is the focus

of this work, the main ingredient of most existing constructions

is Yao’s garbled circuit protocol [51] and its multi-party variant

[5]. In the two-party case, Yao’s original passively secure construc-

tion can be efficiently transformed into an actively secure one by

applying the cut-and-choose paradigm (e.g., [38, 44]) which has

been extensively studied and optimized over the last decade or so

(cf. [2, 3, 28, 29, 35, 37, 39, 40, 42, 43, 45, 47, 48, 50]), and even ex-

tended to the three-party case tolerating two corruptions [18]. This

paradigm, however, is a multiplicative factor of s more expensive

than the passively secure variant in both computation and commu-

nication, where s denotes a statistical security parameter typically

set to a value between 40 and 128, depending on the intended secu-

rity level. Recent work by Mohassel et al. [46] and Ishai et al. [31]

show that with only one corruption, actively secure 3PC can be

obtained without this multiplicative overhead. In fact, they propose

constructions that are as efficient as the passive Yao’s garbled circuit

protocol for two parties.
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Comparison of different MPC protocols

Protocol No. corr. Comm. Assumption Adversary

[32] t < n
3

O(κn3 |C |) PRG Malicious

[41] t < n O(κ2n2 |C |) PRG+OT Malicious

[9] t < n O(κn2 |C |) PRG+OT Semihonest

[33] t < n O(
κn2s |C |
log |C | ) PRG+OT Malicious

[26] t < n O(
κn2s |C |
log |C | ) PRG+OT Malicious

Ours t <
√
n O(κn2t |C |) PRG+OT Malicious

Table 1: Comm. complexity of constant-round MPC

To our knowledge, prior to this work it was not known whether

the same level of efficiency could be obtained beyond the three-

party case. Even in the case of five parties with only two corrup-

tions, the existing constant-round MPC constructions are either

only secure against passive adversaries [9], or incur a multiplica-

tive overhead (in the security parameter) in both computation and

communication, as is the case with concurrent and independent

works [26, 33]).

1.1 Our contributions
In this work, we design an actively secure 5PC protocol with secu-

rity against two corruptions that requires 8 rounds of interactions,

only uses fast symmetric-key operations (i.e., no use of Oblivious

Transfer [OT]), and incurs 60% less communication compared to

the state-of-the-art solution of Ben-Efraim et al. [9], which is only

passively secure (against 4 corruptions). Instrumental in our con-

struction is a new 4-party primitive we call Attested OT (AOT),

which in addition to Sender and Receiver involves two additional

“assistant parties” who will attest to the respective inputs of both

parties.

We also show how to generalize our construction to a larger

number of parties n with similar efficiency properties where the

corruption threshold is t ≈
√
n. In fact, we also formulate a com-

binatorial problem that, if solved optimally, can yield even higher

corruption thresholds than we currently obtain (our current solu-

tion requires the use of oblivious transfer for n parties; however a

better assignment can eliminate the need for OT). With t denoting
the number of corruptions (as a function of n), Comm. denoting
communication complexity and κ, s denoting the computational

and statistical security parameters, respectively, the communication

complexity of our protocol and its comparison with other recent

works on constant-round MPC is provided in Table 1. Note that the

protocol by Ishai et al. [32] is the only prior work with active secu-

rity and asymptotic complexity close to ours, but which does not

yield a 5PC with two corruptions (since t < n/3), and its concrete

efficiency is not well-understood.

We have implemented our actively secure 5PC protocol (with up

to two active corruptions; denoted by 5PC-M for brevity) as well as a

simpler passively secure variant (denoted by 5PC-SH), and compare

their performance to the state-of-the-art implementation of [9]

when run with five parties and passive security (with up to four

corruptions). 5PC-SH requires 8× less communication, while 5PC-

M incurs 60% less communication compared to [9]. For medium- to

high-latency networks (i.e., machines across US and machines in

the US and Europe, respectively), where constant-round protocols

are more suitable, 5PC-SH evaluates the AES and SHA circuits

2.6 − 4.8× faster than [9], while 5PC-M is a factor of 1.7 − 2.6×

faster than [9]. As a concrete example, securely evaluating the

AES circuit with machines located across the US and Europe takes

5PC-M 1.88s, while the [9] protocol runs in 4.86s.

1.2 Technical overview
Our starting point is the actively secure 3PC protocol with abort

by Mohassel et al. [46], whose idea was to designate one party P3

as the evaluator and the other two parties (P1, P2) as circuit gar-

blers. Since at most one party is corrupted, one garbler is always

honest. Hence, they have both garblers generate the garbled circuit

using a seed that they agree upon and have P3 check equality of the

garbled circuits before proceeding with garbled input generation

and evaluation. This ensures honest garbled circuit generation, and

with a little more work to get maliciously secure garbled input gen-

eration, they obtain an actively secure 3PC protocl with essentially

no additional communication cost compared to semihonest 2PC

using garbled circuits.

Generalizing this approach to the five-party case and beyond

quickly runs intomajor technical challenges. Consider the following

naïve generalization, where we designate, say, P5 as the evaluator,

and P1, . . . , P4 as the garblers. We can have the garblers agree

upon a seed s , and invidividually generate the garbled circuit using

s and send this to P5. P5 would then check the equality of the

circuits and rejects if they do not match. Now let us assume that

P5 somehow receives the garbled inputs for all parties (we will see

that this has its own challenge). This approach fails since if the

two corrupted parties are P5 and one of the garblers, then the two

of them combined learn both the seed (and therefore the garbled

circuit secrets) and all other parties garbled inputs which they can

combine to recover everyone’s inputs.

A more promising approach is to have the garblers generate

the garbled circuit in a distributed manner [5, 9, 18, 20] so that no

single garbler would learn the secrets, but then the challenge in this

distributed setting is to obtain security against malicious garblers.

Unfortunately, the existing solutions do not provide the concrete

efficiency we are aiming for and incur a significant overhead (at

least multiplicative in security parameter) compared to the semi-

honest variant.

4-partymalicious circuit garbling. To get around the above techni-

cal challenge, we design a new 4-party distributed garbling scheme

with the properties that (i) if only one garbler is corrupted, then

the garbled circuit is correct and its secrets remain hidden from

the adversary, and (ii) if two garblers are corrupted, the garbled

circuit remains correct but the adversary learns its secrets. This

is sufficient for 5PC, since in the case of two corrupted garblers,

the evaluator P5 is guaranteed to be honest, and hence the only

guarantee we need is the correctness of the garbled circuit.

Our starting point is a semi-honest 4-party distributed garbling

scheme (4DG) in the same spirit as [9, 18, 20] that takes place

between the four garblers P1, . . . , P4. We assume that all the ran-

domness needed by Pi is generated using a random seed si . We now

distribute these seeds among the four garblers (P1, . . . , P4) such
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that the seed generated by Pi is known to two other parties, and

at the same time no single party has knowledge of all four seeds.

In particular, the following assignment works where Si denotes

the set of indices of parties with knowledge of si : S1 = {1, 3, 4},

S2 = {2, 3, 4}, S3 = {1, 2, 3}, and S4 = {1, 2, 4}. The intuition is

that all the computation and communication generated based on

each si can be perfomed by three parties and checked against each

other for correctness. With at most two corruptions, at least one of

the parties is honest and hence any malicious behavior is caught.

In principle, one can turn this idea into a compiler that trans-

forms the semi-honest 4DG into a 4DG with malicious security

tolerating two corruptions as discussed above. However, the result-

ing protocol would still not be as efficient as we want it to be. For

example, this requires treating the many two-party OTs performed

in the distributed garbling in a non-black-box way and checking

the messages sent/received during the OTs among three designated

parties, which is expensive.

Instead, we show how to replace each two-party OT in the semi-

honest 4DG with a new protocol for four parties we call Attested

OT (AOT), wherein one party is the sender, another is the receiver,

and two other parties are “attesters" whose role is to check honest

behavior by sender and receiver. We design such a protocol using

only symmetric-key operations (i.e., commitments), and show that

in the multiple-instance/batch setting (when many such OTs are

performed), the amortized communication cost is that of sending

two commitments and one decommitment. This gives us a protocol

that is based solely on PRGs (in a black-box manner). In addition,

we describe a specialized commitment with better efficiency, based

on AES and secure in the “ideal cipher model” and also a batched

version of our attested OT protocol (that additionally assumes the

existence of collision-resistant hash functions). We note here, that

instead of using attested OTs, one can also replace the OTs with

OT extension protocols ([30]). However, some advantages of our

attested OT protocol over OT extension are: a) fewer rounds (1 vs

3), b) less communication, and c) weaker hardness assumption.

As a result of these optimizations, we obtain a maliciously secure

4DG protocol with a very small overhead compared to the semi-

honest approach. The garblers send the garbled circuits to P5 for

evaluation (with parties sending hashed copies of each other’s

shares to enable P5 to check the correctness of the garbled circuit).

Garbled input generation. To enable P5 to learn the garbled in-

puts, it is possible for us to have the parties peform the garbled

input generation using a maliciously secure 5PC protocol since the

cost is only proportional to the input size. However, doing so will

be inefficient and would also require the use of public-key opera-

tions (which we wish to avoid). To obtain more efficient garbled

input generation, we consider two separate cases: One for obtain-

ing the garbled inputs for the garblers, and another for obtaining

the evaluator’s garbled input. In the former, each garbler Pi can
generate the parts of the garbled circuit for which it has the seeds,

but needs the other garblers’ help to generate the missing parts.

To do this, Pi secret-shares his input bit with the other garblers

(who have the seed that Pi is missing). These garblers will compute

the “garbled labels” on these shares and we show that these shares

can be combined in a “homomorphic” manner to obtain Pi ’s input
shares. This idea does not quite completely work and runs into

subtleties, as a malicious P5 colluding with one of the garblers can

learn both labels corresponding to Pi ’s inputs. To defeat this, we

have an additional step where the garblers mask their shares with

secret-sharings of 0. To generate P5’s garbled input, we reduce the

problem to the previous case, by having P5 secret-share its input

between at least three garblers. This almost works, except that in

order to prevent the garblers from lying about their share of P5’s

input, we require the garblers to commit to all the labels and have

them open to the “correct” shares (this technique is similar to that

used in [46] in the context of 3 parties).

Generalizing to more than five parties. We now present the high-

level idea behind extending the above techniques to arbitrary n.
The idea, as before, is to designate n − 1 parties as garblers and

one party as the evaluator. The garblers will be given q seeds to

PRFs such that: a) No t − 1 of the garblers have all seeds; b) every

pair of seeds is held by at least one garbler; and c) every seed is

held by at least t + 1 parties. The reason for this assignment is

as follows: Requiring that no t − 1 of the garblers have all seeds

ensures that when t − 1 garblers and the evaluator are corrupt,

the privacy (and correctness) of the distributed garbled circuit is

guaranteed which leads to security of the nPC. When every pair of

seeds is held by at least one garbler, then this garbler can act as the

“attester” in our AOT protocol described earlier, and hence we can

replace standard OTs with AOTs (this is not a strict requirement

but yields more efficient protocols). Finally, requiring that every

seed is held by at least t + 1 parties ensures that when t garblers are
corrupt, there will be at least one honest party that computes the

“right” message and hence the (honest) evaluator will never get an

incorrect garbled circuit. The last condition is necessary only for

actively secure nPC. Realizing the above requires us to obtain an

assignment of q seeds to n − 1 garblers with the above properties,

which we call the (n, t ,q)-assignment problem. We show how this

can be done, in general, with q ≈ n and t ≈
√
n. We leave as an

interesting open question to solve the assignment optimally.

1.3 Related work
As discussed above, a large body of work has studied efficiency of

constand-round MPC based on the seminal works of [5, 51], e.g.,

[7, 9, 20, 25, 32]. In the passive case, the first implementation of

constant-round MPC is due to FairplayMP [7], and the state-of-the-

art implementation is due to [9]. In the active case, the most efficient

constructions are due to recent and concurrent work by Hazay et

al. and Katz et al. [26, 33]. As discussed earlier, however, these

constructions consider a dishonest majority and as a result have an

additional multiplicative factor of overhead in security parameter

compared to our solution. More efficient constructions for the 3-

party case appeared in [18, 31, 46]. We compare the asymptotic

efficiency of our protocol with the works most related to ours

(security with abort – in the case of active security) in Table 1.

In the case of MPC with round complexity proportional to the

depth of the circuit, two different lines of research have been pur-

sued, which we now briefly overview. In the cryptographic set-

ting, building on the seminal work by Goldreich et al.[24], offline-

generated (authenticated)multiplication triplets are used to perform

secure computation in a fast online phase [17, 21, 22, 34], with a few

recent works particularly focusing on the three-party case [4, 23].
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In the information-theoretic setting, building on [10, 15], MPC is

achieved using secret-sharing techniques, with several recent work

focusing on better efficiency in the three-party case [12, 16, 36, 52].

Finally, our seed sharing techniques can be seen as being similar in

spirit to the notion of replicated secret sharing from [19].

2 PRELIMINARIES
We let κ denote the security parameter, and use x

$

← S to denote

choosing a value uniformly at random from set S , and | | to denote

concatenation of two strings. When denoting message spaces, we

abuse notation and use M for unspecified message spaces that will

be clear from the context.

Model and security definition. We will argue the security of our

constructions in the simulation paradigm [13, 14, 24]. For simplicty,

we will follow Canetti’s formulation for execution of multi-party

cryptographic protocols [13], where the execution of a protocol by

a set of parties P1, . . . , Pn proceeds in rounds, with inputs provided

by an environment program denoted by Z. Here we provide an

abridged formulation of security in such framework. All parties

are modelled as non-uniform interactive Turing machines (ITMs);

further, we will be focusing on the case n = 5, for which we pro-

vide concrete performance measures, although our approach works

for general n. An adversary A, who interacts with and acts as

instructed by the environment, at the beginning of the protocol

“corrupts” a fraction of the parties (i.e., we consider static secu-

rity); in the specific case n = 5, the adversary corrupts up to two

of them. (See Section 7 for the achieved thresholds for arbitrary

values of n.) These corrupted parties are under the control of the

adversary, and can actively and arbitrarily deviate from the protocol

specification. The environment receives the complete view of all

adversarial parties in the interaction. At the end of the interaction,

the environment outputs a single bit.

We now define two interactions. In the real interaction, the par-

ties run a protocol Π in the presence of A and Z, with input z,
z ∈ {0, 1}∗. Let REALπ ,A,Z denote the binary distribution ensem-

ble describingZ’s output in this interaction. In the ideal interaction,

parties send their inputs to an additional entity, a trusted function-

alitymachine F that carries the desired computation truthfully. Let

S (the simulator) denote the adversary in this idealized execution,

and IDEALF,S,Z the binary distribution ensemble describingZ’s

output after interacting with adversary S and ideal functionality

F .

A protocol Π is said to securely realize a functionality F if for

every adversaryA in the real interaction, there is an adversaryS in

the ideal interaction, such that no environmentZ, on any input, can

tell the real interaction apart from the ideal interaction, except with

negligible probability (in the security paramete κ). More precisely,

if the two binary distribution ensembles above are computationally

indistinguishable.

In this paper we will consider the secure computation of non-

reactive functions (also known as secure function evaluation—SFE),

represented by Boolean circuits (see below), and allowing abort,

as instructed by the adversary. We will denote the ideal compu-

tation of 5−ary function f with abort by F
f
sfe
(P), where P =

{P1, P2, P3, P4, P5}. Finally, protocols typically invoke other sub-

protocols. In this framework the hybrid model is like a real in-

teraction, except that some invocations of the sub-protocols are

replaced by the invocation of an instance of an ideal functionality

F ; this is called the “F -hybrid model.” We will perform such re-

placements, but some times, for the sake of efficiency, we will break

away from modular/black-box composition rules, and thus it will

be more convenient for us to express the security of components

in a property-based fashion.

Cryptographic building blocks. Our constructions make use of a a

pseudorandom function family, a collision-resistant hash function,

and a secure (non-interactive) commitment scheme. Our protocol

also makes use of variant of Oblivious Transfer we introduce in this

paper, calledAttested OT, whichwe describe in Section 3.We present

the definitions and security of the primitives above in Appendix A.

Distributed circuit garbling schemes. In this paper we will follow

the circuit-garbling approach to secure computation [51], and in par-

ticular distributed multi-party garbling (cf. [5, 20]). First, we present

some notation and correctness properties of garbling schemes, fol-

lowing Bellare et al. [6]. Given the circuit representation of the

function to be garbled f , a garbling scheme G = (Gb, En,De, Ev, f )
consists of the following randomized functions:

Garbling function Gb(f , 1κ ) outputs three strings (Gf, e,d);
encoding function En(e, ·) that maps an initial input x to a

garbled input X = En(e,x);
evaluation function Ev(Gf, ·) that maps every garbled input

X to a garbled output Y = Ev(Gf,X ); and
decoding function De(d, ·) that maps garbled output Y to a

final output y = De(d,Y ).

Bellare et al. [6] formulate a series of properties for circuit-

garbling schemes. In this paper we will be specifically interested in

the following:

Definition 2.1. We say that G = (Gb, En,De, Ev, f ) is a correct
circuit garbling scheme if for all functions f , and for all inputs x in

the domain of f , De(d, Ev(Gf, En(e,x))) = f (x), where (Gf, e,d) is
the output of Gb(f , 1κ ).

Several recent works on concretely efficient MPC (e.g., [9, 18])

use and instantiate circuit-garbling schemes that are computed by

multiple parties in a distributedmanner based onOblivious Transfer.

The functionality of such distributed garbling schemes is described

in Figure 9 in Appendix C (our specific distributed garbling function

will be described later). Our construction will be using the semi-

honest distributed garbling protocol due to Ben-Efraim et al. [9]

(which includes the free-XOR optimization) in order to obtain an

actively secure distributed garbling protocol. At a very high level,

their protocol allows parties to compute the distributed garbling

function with no communication for all XOR gates and requires

every party to perform (roughly) 2n bit-OTs and 8n string-OTs for

every AND gate in the circuit. For more details, we refer the reader

to [9]; however, the description of our version of the distributed

garbling protocol will not assume prior familiarity with [9].
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3 ATTESTED OBLIVIOUS TRANSFER
While our MPC protocol generalizes to n parties (as described in

Section 7), it will be easier to consider the specific case of 5-party

MPC, where the adversary actively corrupts at most 2 parties at

the beginning of the protocol; our experimental results will also

focus on this specific case. We now define two specific 4−party

functionalities – Attested OT (AOT) and Batch Attested OT (B-AOT).

AOT can be viewed as an OT protocol between a sender and a

receiver, with the additional help of two “assistant parties” who

will attest to the respective inputs of both parties, while B-AOT,

as its name indicates, is the combined/amortized version of AOTs

of multiple instances. These functionalities will help us instanti-

ate efficient malicious variants of OT in our distributed garbling

process with less interaction and using only symmetric-key primi-

tives. Throughout the following discussion, we will assume that the

public commitment key (obtained by executing ComGen(1κ )) as
well as the key for the collision-resistant hash function H (obtained

when sampling H fromH ) are publicly available to all parties.

3.1 Attested OT
The ideal functionality for Attested OT is presented in Figure 1. P1

is the sender with input (m0,m1) and P2 is the receiver with a bit

value b. P3 and P4 are the attesters: they obtain copies of both P1 and

P2’s inputs and will help P1 and P2 perform the OT functionality.

We present an AOT protocol secure against active corruptions in

Figure 2 and prove security of the protocol in Lemma 3.1. When

only considering a passive adversary, a much simpler information-

theoretic AOT protocol with only one attester suffices. We describe

this simple protocol in Figure 10 of Appendix C for completeness. In

describing the functionality and protocols, we assume that attesters

receive their copies of inputs from P1 and P2 in each execution.

When invoked in our 4-party distributed garbling, however, the

attesters obtain a random seed from P1 and P2 at the beginning

of the protocol and then use it to derive inputs to all future invo-

cations without interaction. We prove that our protocol is secure

against malicious adversaries by showing the lemma below (proof

in Appendix B.

Lemma 3.1. Assuming (ComGen,Com,Open) is a secure com-

mitment scheme, protocol Π4AOT securely realizes the F4AOT func-

tionality.

3.2 Batch Attested OT
In our distributed garbling protocol, we need to perform a large

batch of attested OT protocols (proportional to number of gates

in the circuit). It turns out that we can optimize communication

complexity of the protocol in the batch setting. In particular, P3 and

P4 only need to send a hash of all commitments they needed to send

to P1. Furthermore, only one of them needs to send decommitments,

while the other can just send the hash of all the decommitments

concatenated as that is sufficient for checking the equality of the

two. In Appendix C, F
B-4AOT

(Figure 11) describes the functionality

and Π
b-4aot

(Figure 12) describes the corresponding protocol for

this batch setting. The security of the batch assisted OT protocol

Functionality F
4AOT
(P1, P2, {P3, P4 })

F
4AOT

interacts with parties P1, P2, P3, P4 and the adversary S, with

P1 and P2 acting as sender and receiver, respectively, and P3, P4 as

attesters.

On input message (Sender, sid,m0,m1) from P1, where each

mi ∈ M, record (m0,m1) and send (Sender, sid,m0,m1) to

P3 and P4 and (Sender, sid) to the adversary. Ignore further

(Sender, sid, ·, ·) messages.

On input message (Receiver, sid, b) from P2, where b ∈
{0, 1}, record b and send (Receiver, sid, b) to P3 and

P4 and (Receiver, sid) to the adversary. Ignore further

(Receiver, sid, ·) inputs.

On input message (Attester, sid,m j
0
,m j

1
, b j ) from Pj , j ∈

{3, 4}, where each m j
i ∈ M, if (Sender, sid, ·, ·) and

(Receiver, sid, ·) have not been recorded, ignore this message;

otherwise, record (m j
0
,m j

1
, b j ) and send (Attester, sid) to the

adversary. Ignore further (Attester, sid, ·, ·, ·) messages.

On input message (Output, sid) from the adversary, if

(m0,m1, b) , (m3

0
,m3

1
, b3) or (m0,m1, b) , (m4

0
,m4

1
, b4),

send (Output, sid, ⊥) to P2; else send (Output, sid,mb ) to P2.

On input message (Abort, sid) from the adversary, send

(Output, sid, ⊥) to P2.

Figure 1: The 4-party Attested OT ideal functionality F
4AOT

.

(Lemma 3.2) below follows in a similar manner to the proof of

Lemma 3.1 and is omitted here.

Lemma 3.2. Assuming (ComGen,Com,Open) is a secure com-

mitment scheme, and H ← H is a collision resistant hash function,

protocol Π
b-4aot

securely realizes the F
B-4AOT

functionality.

3.3 Efficiency of Attested OT
Semi-honest case. Note that in the semi-honest case, first P1 and

P2 send their inputs to P3 and then P3 sends the output to P2. In

case of bit OT this requires 4 bits of communication, but in our four-

party garbling where P1 and P2 inputs can derived from a one-time

communicated seed, communicating a single bit per OT is sufficient.

Similarly, the string attessted OT requires κ bits of communication.

Also note that only one round of interaction would be sufficient

when using seeds to derive inputs for attesters.

Malicious case. Similarly, in the malicious case, first P1 and P2

send their inputs and randomness for the commitments to P3 and

P4. P3 and P4 exchange hashes of these values. But these steps

can be eliminated in our distributed garbling since inputs can be

derived from seeds. Finally P1 sends commitments and P3 sends

decommitments, while P3 and P4 also send hashes of commitments

which again is insignificant in the batch attested OT. So, the overall

communication complexity is two commitments and one decommit-

ment per OT. The computational cost is generating 6 commitments

and roughly 2 hashings per OT. Also note that only one round

of interaction is sufficient when using seeds to derive inputs for

attesters.
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Protocol Π
4aot
(P1, P2, {P3, P4})

The protocol is carried out among P1, P2, P3, P4, with P1 and P2

acting as sender and receiver, respectively, and P3, P4 as attestors.

Let Commit = (ComGen, Com, Open) be a secure noninteractive

commitment scheme.

Input. P1 holdsm0,m1, and P2 holds b .

Computation. Proceed as follows:

(1) P1 generates random values r0, r1 ← {0, 1}∗ and computes

(Com0, Open0
) := Com(m0; r0) and (Com1, Open1

) :=

Com(m1; r1). P1 sends Com0 and Com1 to P2 and

sends r0,m0, r1,m1 to P3 and P4, who store them as

r 3

0
,m3

0
, r 3

1
,m3

1
and r 4

0
,m4

0
, r 4

1
,m4

1
, respectively.

(2) P2 sends b to P3 and P4 who store them as b3
and b4

, re-

spectively.

(3) P3 and P4 exchange their copies of P1 and P2’s inputs and

the random values they receive from P1.

(a) If the values match, then for i ∈ {3, 4}, Pi
computes (Comi

0
, Openi

0
) and (Comi

1
, Openi

1
) using

scheme Commit and its random values, and sends

(Comi
0
, Comi

1
) to P2. (Wlog) P3 also sends Openib to

P2.

(b) If the values do not match, i.e., (m3

0
,m3

1
, b3, r 3

0
, r 3

1
) ,

(m4

0
,m4

1
, b4, r 4

0
, r 4

1
), they send a ⊥ message to P2 (de-

noting abort).

Output. P2 checks the following and outputs⊥ if any of items are true:

(i) It receives⊥ from P3 or P4; (ii) the three commitment pairs it has re-

ceived from P1, P3, P4 do not match; and (iii)Open(Com3

b, Open
3

b ) =

⊥ for b3 = b . Otherwise, P2 outputsm3

b3
= Open(Com3

b, Open
3

b ).

Figure 2: The actively secure 4-party protocol for Attested OT.

4 EFFICIENT AND ACTIVELY SECURE 5PC
We start by presenting our actively secure distributed garbling

protocol, followed by the 5PC (with abort) protocol. It turns out

that the protocol can be significantly simplified in the case of semi-

honest adversaries, which might also be of practical interest. We

conclude the section pointing out those simplifications.

4.1 Actively secure distributed garbling scheme
Our garbling scheme secure against actively malicious adversaries

builds on the passively secure distributed garbling protocol of Ben-

Efraim et al. [9] (which includes the free-XOR optimization). At

a very high level, we make three modifications to their protocol:

First, in order to achieve active security, we ensure that each party’s

randomness and keys are generated using a small random seed,

and that exactly two other parties learn the seed of each party. This

enables two other parties to “check” every parties’ computation.

Second, we replace calls to each batch of two-party OTs in their

protocol with calls to our 4-party Batch Assisted OT functionality

F
B-4AOT

; this avoids the use of OT protocols altogether, and reduces

the number of rounds of interactions to just one. Third, for each

party’s share of the garbled circuit, two other parties compute the

same share and send it to the party missing that share. This ensures

that at least one share is honestly generated and hence bad garbled

circuits can be detected. Through these modifications, we obtain a

Function f C
4GC
(s1, s2, s3, s4)

Inputs. All four parties hold the circuit C , security parameter κ and

pseudorandom function family F. ‘delta’, ‘perm’ and ‘key’ are known
public strings. In addition, Pi , i ∈ [4], has private input random seed

si ∈ {0, 1}κ .

Computation. Proceed as follows:

1. For i ∈ [4] do:

Ri := Fsi (‘delta’), Fsi ∈ F.
For every wire w in C that is not the output of an

XOR gate, generate a random permutation bit piw :=

Fsi (‘perm’ | |w ), and let k iw,0 := Fsi (‘key’ | |w | |0) and
k iw,1 := k iw,0 ⊕ Ri . (These wires are set in this way in

order to enable the free XOR technique.)

In a topological order, for every output wire w of an

XOR gate with input wires u and v , set piw := piu ⊕ p
i
v ,

k iw,0 := k iu,0 ⊕ k
i
v,0 and k

i
w,1 := k iw,0 ⊕ Ri .

2. For every w in C , set pw :=
⊕

4

i=1
piw .

3. For every AND gate д ∈ C with input wires u, v and output

wire w , every α, β ∈ {0, 1} and every j ∈ [4], set:

д jα ,β :=
( 4⊕
i=1

Fk iu,α (д | |j) ⊕ Fk iv,β
(д | |j)

)
⊕ k iw,0 ⊕

(
Ri · ((pu ⊕ α ) · (pv ⊕ β ) ⊕ pw )

) (1)

Outputs.

(Public outputs) Output to all parties д1

α ,β | | . . . | |д
4

α ,β , for ev-

ery AND gate д ∈ C and every α, β ∈ {0, 1}.

(Private outputs) Output s3, s4 to P1 and P2, and s1, s2 to P3 and

P4.

Figure 3: The 4-party distributed garbling function.

more efficient 4-party distributed garbling protocol that will help

us get a 5PC protocol secure against corrupted malicious parties.

Our distributed garbling function is defined in Figure 3 (which is a

tailored version of the n−party distributed garbling function from

Figure 9). We now describe our distributed garbling scheme G (cf.

Section 2) in more detail below:

In Figure 3 the garbling function is Gb(1κ , f ) and Gf is the
public output – i.e.,д1

α,β | | . . . | |д
4

α,β , for every AND gateд ∈ C

and every α , β ∈ {0, 1}.
For every input wire w corresponding to a party Pi ’s input

bit b, define p
j
w = Fsj (‘perm’| |w), pw = Σ4

j=1
p
j
w , b

′ = b ⊕ pw
and let the encoding function En(e, ·) be the concatenation of

Fsj (‘key’| |w | |0) ⊕ Fsj (‘delta’).b
′
, for all j ∈ [4]. That is, when

x = b,X = Fsj (‘key’| |w | |0) ⊕ Fsj (‘delta’).b
′,∀j ∈ [4].

The evaluation function Ev(Gf, ·) is the same function as in

the semi-honest protocol of [9].

Finally, for every output wirew , let Y = Ev(Gf,X ) be parsed
as k1

w | |k
2

w | |k
3

w | |k
4

w . Now, if k
i
w = kw,0 = Fsi (‘key‘| |w | |0) for

all i ∈ [4], then set αw = 0, else set αw = 1 if kiw = kw,0 =

Fsi (‘key‘| |w | |0) ⊕ Ri for all i ∈ [4]. If neither of the two cases

Session B1:  Multi-Party Computation 2 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

282



Protocol Π
4gc
(C, {P1, P2, P3, P4})

Inputs. All parties hold the circuit C , security parameter κ and

pseudorandom function family F. ‘delta’, ‘perm’, ‘key’, ‘bitOT’
and ‘strOT’ are known public strings. In addition, P1 holds seeds

{s1, s3, s4 }, P2 holds seeds {s2, s3, s4 }, P3 holds seeds {s1, s2, s3 }

and P4 holds seed {s1, s2, s4 }, where all si are random seeds to F.
Denote by Si the set of indices of parties with knowledge of si , i.e.,
S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, and S4 = {1, 2, 4}.

Keys and permutation bits. For i ∈ [4], for all j ∈ Si , Pj performs

the following:

Ri, j := Fsi (‘delta’). Note, that if parties are honest, then

Ri, j = Ri, ℓ = Ri for all j, ℓ ∈ Si .
For every wire w in C that is not the output of an XOR gate,

generate a random permutation bit pi, jw := Fsi (‘perm’ | |w ), and
set k i, jw,0 := Fsi (‘key’ | |w | |0) and k

i, j
w,1 := k i, jw,0 ⊕ Ri, j . Note,

that k i, jw,β denotes Pj ’s version of k iw,β , for β ∈ {0, 1}.

In a topological order, for every wire that is the output of an

XOR gate with input wires u and v , set pi, jw := pi, ju ⊕ pi, jv ,

k i, jw,0 := k i, ju,0 ⊕ k
i, j
v,0 and k

i, j
w,1 := k i, jw,0 ⊕ R

i, j
.

Computing (pu ⊕ α ) · (pv ⊕ β ) ⊕ pw , for α, β ∈ {0, 1}.

For every AND gate д ∈ C , denote the input wires by u, v
and the output wire by w , and denote Pi ’s XOR share of the

permutation bits by piu, p
i
v , p

i
w , respectively. Once again, recall

that pi, ju = piu, p
i, j
v = piv , p

i, j
w = piw for all honest j ∈ Si ; i.e.,

pi, ju denotes the value piu as computed by Pj , j ∈ Si , while piu
denotes its true value. Our goal is to compute XOR shares of

pu · pv = (⊕4

i=1
piu ) · (⊕

4

i=1
piv ) = (⊕

4

i=1
piu · p

i
v ) ⊕ (⊕i,jp

i
u · p

j
v ).

For all i ∈ [4], for all j ∈ Si , Pj locally computes pi, ju · pi, jv .

For all i, j ∈ [4], i , j , and all д ∈ C :

• For all ℓ ∈ Si , Pℓ generates a random bit r i, j, ℓ :=

Fsi (‘bitOT’ | |i | |j | |д).
• For all ℓ ∈ Si ∩ Sj , Pℓ locally computes (pi, ℓu ⊕ r i, j, ℓ ) ·

p j, ℓv . In our case, |Si ∩ Sj | = 2 and we will denote the in-

dices of the parties in Si ∩ Sj by ℓ1

i, j , ℓ
2

i, j , where needed.

• Parties invoke F
4AOT
(Ps , Pr , {Pℓ1

i, j
, Pℓ2

i, j
}), where s ∈

Si − Sj , r ∈ Sj − Si , and ℓ1

i, j , ℓ
2

i, j ∈ (Si ∩ Sj ): Ps
inputs (r i, j,s , pi,su ⊕ r i, j,s ), Pr inputs p j,rv , and Pℓzi, j

inputs (r i, j, ℓ
z
i, j , p

j, ℓzi, j
u ⊕ r i, j, ℓ

z
i, j , p

j, ℓzi, j
v ), for z = 1, 2.

Pr receives the output (piu ⊕ r
i, j ) · p jv (or ⊥).

For all i ∈ [4], all j ∈ Si , and all д ∈ C , Pj does the following:
• Pj locally XORs the values it obtains from the computation

above to compute pi, juv , i.e., Pi ’s XOR share of puv =
pu · pv as recorded by Pj .

• Similarly, Pj locally computes Pi ’s XOR shares of

puvw = pu · pv ⊕ pw puv̄w = pu · p̄v ⊕ pw
pūvw = p̄u · pv ⊕ pw pūv̄w = p̄u · p̄v ⊕ pw

where p̄ = 1 − p , for a bit p .

(Continued in Figure 5.)

Figure 4: The 4-party distributed garbling protocol.

Protocol Π
4gc
(C, {P1, P2, P3, P4}) (cont’d)

Computing Ri ·
(
(pu ⊕ α ) · (pv ⊕ β ) ⊕ pw

)
. For all i, j ∈ [4], i , j ,

and all д ∈ C :

For all ℓ ∈ Si , Pℓ generates a random κ-bit string Q i, j, ℓ
:=

Fsi (‘strOT’ | |i | |j | |д).
For all ℓ ∈ Si ∩Sj , Pℓ locally computes (Ri, ℓ ⊕Q i, j, ℓ ) ·p j, ℓuvw .

Again, Ri, ℓ is the version of Ri held by Pℓ .
Parties invoke F

4AOT
(Ps , Pr , Si ∩ Sj ), where s ∈ Si − Sj , r ∈

Sj − Si , and ℓ ∈ (Si ∩ Sj ): Ps inputs (Q i, j,s , Ri,s ⊕ Q i, j,s ),

Pr inputs p j,ruvw , and Pℓ inputs (Q i, j, ℓ, R j, ℓ ⊕ Q i, j, ℓ, R j, ℓ ).
Pr receives the outputQ i, j,s ⊕ Ri,s ·p j,ruvw , which is the same

asQ i, j ⊕ Ri ·p juvw if parties are honest. The same is repeated

for puv̄w , pūvw , and pūv̄w .

Let ρ i, j, ℓw,α ,β denote Pj ’s XOR share of Ri ·
(
(pu ⊕ α ) · (pv ⊕

β ) ⊕ pw
)
, as recorded by Pℓ .

Outputs. Let Ri denote the set of indices of seeds held by Pi , i ∈ [4]a.
In other words, R1 = {1, 3, 4}, R2 = {2, 3, 4}, R3 = {1, 2, 3}, and

R4 = {1, 2, 4}. For all i ∈ [4], for all д ∈ C , and for all α, β ∈ {0, 1}:

For all j ∈ Ri , for c ∈ [4], when c = j , Pi locally computes

F
k j,iu,α
(д | |c) ⊕ F

k j,iv,β
(д | |c) ⊕ k j,iw,0 ⊕ ρ

c, j,i
w,α ,β . When c , j , Pi

computes F
k j,iu,α
(д | |c) ⊕ F

k j,iv,β
(д | |c) ⊕ ρc, j,iw,α ,β . As a result, Pi

holds three of the four shares it needs to compute the garbled

circuit.

For j = [4] − Ri , for all ℓ ∈ Sj , for c ∈ [4]
(1) When c = j , Pℓ sends Fk j, ℓu,α

(д | |c)⊕F
k j, ℓv,β
(д | |c)⊕k j, ℓw,0 ⊕

ρc, j, ℓw,α ,β to Pi . b

(2) When c , j , Pℓ sends F
k j, ℓu,α
(д | |c) ⊕ F

k j, ℓv,β
(д | |c) ⊕

ρc, j, ℓw,α ,β to Pi .
If all three versions of each value Pi receives is the same it

locally XORs the four values computed above for all д ∈ C to

obtain дiα ,β , and output д
1

α ,β | | . . . | |д
4

α ,β for all α, β ∈ {0, 1}

and all AND gates д ∈ C . Else, they output ⊥.

a
While sets Ri and Si are the same in the 5PC case, they define different sets

and would be different in the general case.

b
For ease of composition we assume all parties send the complete value, but in

fact two parties can only send the hash, which can be batched across all gates

to save on communication.

Figure 5: The 4-party distributed garbling protocol (continued from

Fig. 4).

hold, then output ⊥; otherwise, output y = αw ⊕ pw , where
pw = Σ4

i=1
piw , and where piw = Fsi (‘perm’| |w). Thus, the

decoding function De(d,Y ) = αw ⊕ pw .

Ben-Efraim et al. [9] show that the garbling scheme G, defined

via the functions above is a correct garbling scheme. In addition,

it is easy to see that when the 4 parties are honest, our protocol

Π
4gc
(C, {P1, P2, P3, P4} described in Figures 4 and 5 computes the

function in Figure 3 correctly (Definition 2.1) in the F
4AOT

-hybrid

(F
B-4AOT

-hybrid) model. We leave this explicit corroboration for the

full version of the paper.
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4.2 The actively secure 5PC protocol
The 5PC protocol proceeds through the following steps detailed

below. All parties hold the circuit C , security parameter κ, pseu-
dorandom function family PRF, hash function H , and description

of the commitment scheme. ‘delta’, ‘perm’, ‘key’, ‘bitOT’, ‘strOT’
and ‘rand’ are known public strings. Pi has a private input xi ∈

{0, 1}ℓ . The circuit C(x1,x2,x3,x4,x5) is modified into a circuit

C ′(x1,x2 | |x
′
2
,x3 | |x

′
3
,x4 | |x

′
4
) = C(x1,x2,x3,x4,x

′
2
⊕ x ′

3
⊕ x ′

4
). The

steps in the protocol are as follows:

1. Seed distribution. Parties P1, P2, P3, P4, known as the gar-

blers, run a seed distribution phase in which each party picks

a seed si and the seeds are distributed such that every party

knows 3 seeds and every seed is held by 3 parties.

2. Garbled input generation. For garblers and evaluator:

Garblers. Consider an input wire w of party P1 with

a bit value b. The two labels corresponding to w are

k1

w,0 | |k
2

w,0 | |k
3

w,0 | |k
4

w,0 and k1

w,1 | |k
2

w,1 | |k
3

w,1 | |k
4

w,1 and

its permutation bit is pw = ⊕j ∈[4]p
j
w . The goal is to let

the evaluator P5 learn k1

w,b⊕pw
| | . . . | |k4

w,b⊕pw
.

1. First, P1 learns p
j
w for all j ∈ [4] from the other

parties (P1 will check the correctness of these

values by comparing the different versions of

these values he receives). P1 sets b ′ = b ⊕ p
j
w .

2. Observe that P1 can compute k1

w,b⊕pw
, k3

w,b⊕pw
,

and k4

w,b⊕pw
on his own and send them to P5.

This is because P1 knows seeds s1, s3, and s4.

We must also somehow enable P5 to compute

k2

w,b⊕pw
(without any other party learning this

value and P5 itself learning anything else).

3. To do this, P1 will secret-share b ′ among P2, P3

and P4; that is, they will receive b2,b3,b4, respec-

tively, such that b2 ⊕ b3 ⊕ b4 = b
′
.

4. Pℓ , for ℓ ∈ {2, 3, 4} can compute k2

w,bℓ
[ℓ] :=

Fs2
(‘key’| |w | |0) ⊕ Fs2

(‘delta’) · bℓ as a share of
k2

w,b⊕pw
. Through the secret sharing of b ′ into

b2,b3 and b4, we actually have that k2

w,b2

[2] ⊕

k2

w,b3

[3] ⊕ k2

w,b4

[4] = k2

w,b′ = k
2

w,b⊕pw
.

While the above stepswork functionally, security breaks

down, as P5 colluding with one of the garblers can learn

both wire labels. To prevent this, we have two garblers,

P1 and any other garbler, provide in addition secret

sharings of 0 which each P2, P3 and P4 add to their cor-

responding shares. These values will cancel out when

combined, but will ensure that P5 colluding with a gar-

bler cannot learn anything else.

Evaluator. To compute the garbled label for the evalu-

ator (P5)’s input, P5 first secret-shares his input with

P1, P2, P3, P4, and now these shares can be treated as in-

puts of P1, P2, P3, P4. However, a bit more care is needed

to prevent Pi , i ∈ [4] lying about their share of P5’s

input. To prevent this, we have all parties provide com-

mitments to all labels and have the corresponding party

“open” the right label to the right share. This is quite

similar to the technique used by Mohassel et al. [46].

5. Distributed circuit garbling. Parties execute the distributed
circuit garbling protocol Π

4gc
(C, {P1, P2, P3, P4} from Figures

4 and 5. One party (say, P1) sends the distributed garbled

circuit to P5, while other parties send a hash of the garbled

circuit. P5 accepts only if the hashes of the distributed garbled

circuit match.

6. Evaluation and output. P5 calls the Ev(Gf, ·) procedure
to evaluate the distributed garbled circuit Gf received. The
output labels Y are sent to all parties. Every party runs the

De(d,Y ) to obtain the output of the computation, y.

The complete protocol, Π
5pc
(C, {P1, . . . , P5}), is described in Fig-

ure 6. The security of the protocol is proven in Theorem 4.1 below,

the proof of which is given in Appendix B.

Theorem 4.1. Assuming (ComGen,Com,Open) is a secure com-

mitment scheme, and H
$

← H is a collision-resistant hash func-

tion, protocol Π
5pc
(C, {P1, . . . , P5}) securely realizes the functionality

FC
sfe
({P1, . . . , P5})

1
in the F

4AOT
-hybrid model.

In practice, it is useful to execute the distributed circuit garbling

protocol phase of the 5PC in our protocol before both the garbled

input generation phases, so that the protocol can be split into a

(slower) offline phase, that is independent of all inputs to the com-

putation, and a (faster) online phase, that depends on inputs. In

this case, our proof should be modified to use an adaptive notion of

distributed garbling similar to what is defined in [6], and can then

be shown to be secure in the random oracle model.

4.3 Passively secure 5PC protocol
So far we have described our 5PC protocol against malicious ad-

versaries. The protocol can be signifcantly simplified in the semi-

honest case. We only point out the simplification we can make

to the actively secure 5PC protocol but omit a full description. (i)

First, all calls to F
4AOT

can be replaced by the semi-honest variant

described in Figure 10, which avoids the use of commitments and is

much more communication efficient. In particular, the bit OTs only

require communicating a single bit while the string OTs only com-

municate a single string. (ii) It is sufficient for one of the garblers

(say, P1) to compute the full garbled circuit an send it to P5. The

other parties can simply provide the necessary shares for comput-

ing the garbled circuit to P1. Consequently, they also do not sent

hashes of the garbled circuit to P5. (iii) Some extra checks done in

the garbled input generation can also be removed. For example, it

is sufficient for only one party (as opposed to three) to send share

of the permutation bits for input wires, and we can remove the

commitments introduced for preventing malicious behavior in the

garbled input generation for P5. This yields a much more efficient

semi-honest 5PC protocol, as shown in our experimental results in

Section 6.1.

1
Recall that we slightly abuse notation, and mean security with abort.
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Protocol Π
5pc
(C, {P1, . . . , P5})

Inputs. All parties hold the circuit C , security parameter κ and pseu-

dorandom function family F. ‘delta’, ‘perm’, ‘key’, ‘bitOT’, ‘strOT’
and ‘rand’ are known public strings. Let (ComGen, Com, Open) be
a secure noninteractive commitment scheme, and H a collision-

resistant hash function. In addition, Pi has a private input xi ∈
{0, 1}ℓ . The circuit C(x1, x2, x3, x4, x5) is modified into a circuit

C′(x1, x2 | |x ′
2
, x3 | |x ′

3
, x4 | |x ′

4
) = C(x1, x2, x3, x4, x ′

2
⊕ x ′

3
⊕ x ′

4
).

Seed distribution.

P1 and P2 generate random seeds s1 and s2 respectively and

send them to both P3 and P4. P3 and P4 exchange these two

seeds and abort if they do not match. P3 and P4 send s3 and

s4 to both P1 and P2. P1 and P2 exchange these two seeds and

abort if they do not match.

Denote by Si the set of indices of parties with knowledge of

si , i.e., S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, and

S4 = {1, 2, 4}.

Garbled input generation for P1, . . . , P4. For all i ∈ [4], for each
input wirew corresponding to Pi with input value b , do the following:

Let j = [4] − Ri . For all ℓ ∈ Sj , Pℓ computes p j, ℓw :=

Fsj (‘perm’ | |w ) and sends it to Pi . Pi checks that it receives
the same value from all Pℓ ’s. If so, simply denote the bit by

p jw ; if not, it sets aborti := true. If aborti = true, it sets b to a

uniformly random value independent of its true input.

Pi then sets pw := ⊕4

j=1
p jw and b′ := b ⊕ pw .

Let j = 4−Ri . For all ℓ ∈ Sj , Pi generates random bits bℓ such
that ⊕ℓ∈Sj bℓ = b

′
, and random strings βℓ ∈ {0, 1}κ such that

⊕ℓ∈Sj βℓ = 0
κ
. Pi sends bℓ, βℓ to Pℓ . Denote by j1, j2, j3 the

three indices in Sj . Pj1 generates random strings γjℓ ∈ {0, 1}κ

where ⊕3

ℓ=1
γjℓ = 0

κ
, and sends γj2 to Pj2 and γj3 to Pj3 .

If aborti = false, then for all j ∈ Ri , Pi computes k j,iw,b′ :=

Fsj (‘key’ | |w | |0) ⊕ Fsj (‘delta’) ·b
′
and sends to P5; otherwise,

Pi sends ⊥ to P5.

Let j = [4] − Ri . For all ℓ ∈ Sj , if abortℓ = false, Pℓ computes

k i, jw,bj
:= Fsj (‘key’ | |w | |0) ⊕ Fsj (‘delta’) · bℓ and sends cℓ :=

k i, jw,bj
⊕ βℓ ⊕ γℓ to P5; otherwise Pℓ sends ⊥ to P5.

Finally, P5 computes the label of wire w as the concatenation

of k j,iw,b′ for all j ∈ Ri and k
i
w,b′ := ⊕ℓ∈Sj c j for j = [4] − Ri

(or sets abort5 := true if it receives any ⊥ message from any

Pi , i ∈ [4]).

(Continued in Figure 7.)

Figure 6: The 5PC protocol, secure against malicious adversaries.

5 EFFICIENCY CONSIDERATIONS
We start by discussing the communication efficiency of our 5PC

protocol, followed by number of communication rounds, followed

by a fast instantiation of a non-interactive commitment scheme.

Communication. In the 4-party distributed circuit garbling pro-

tocol, the main communication cost is due to calls to the AOT

protocol. Specifically, the number of F
4AOT

calls for bit-OTs is 12 per

AND gate (since there are 4 × 3 pairwise OTs in the semi-honest

distributed circuit garbling protocol), where each party plays the

role of the sender in 3 and of the receiver in 3. Since every bit AOT

Protocol Π
5pc
(C, {P1, . . . , P5}) (cont’d)

Garbled input generation for P5. For each input wire w in the

original circuit C corresponding to P5 with input value b , denote the
corresponding input wires for P2, P3, P4 in the modified circuit C′ by
w2, w3, w4.

P5 generates random bits b2, b3, b4 such that b2 ⊕ b3 ⊕ b4 = b ,
and sends bi to Pi , i ∈ {2, 3, 4}.

For each of the three wires wℓ , for all i ∈ [4], for j ∈ Ri , each
Pi computes k j,iwℓ,e := Fsj (‘key’ | |wℓ | |0) ⊕ Fsj (‘delta’) · e

and r j,ie := Fsj (‘rand’ | |wℓ | |e), for e ∈ {0, 1}, and com-

putes (Comi
j,wℓ,e

, Openij,wℓ,e
) := Com(k j,iwℓ,e ; r j,ie ). It then

sends the ordered pair (Comi
j,wk ,0

, Comi
j,wk ,1

) to P5 (or ⊥, if

aborti = true).
P5 verifies that all commitment pairs it receives from the other

parties are consistent, i.e., all commitments derived from the

same seeds are equal. If not, it sets abort5 := true.
For each wire wℓ where ℓ ∈ {2, 3, 4}, Pℓ performs the steps

above for garbled input generation of non-P5 parties to compute

and send to P5 garbled inputs for wirewℓ using the input value

bℓ . The only difference compared to above is that instead of

only sending k j, ℓwℓ,bℓ
for all j ∈ Sℓ , Pℓ sends Openj, ℓwℓ,bℓ

=

(k j, ℓwℓ,bℓ
, r j, ℓe ) to P5. If Open(Open

j, ℓ
wℓ,bℓ

Comj,wℓ,bℓ ) = 0, P5

sets aborti := true.

Distributed circuit garbling.

P1, . . . , P4 run the distributed circuit garbling protocol

Π
4gc
(C′, {P1, P2, P3, P4 }) using the seeds generated and dis-

tributed above as input. As a result, for all i ∈ [4], Pi learns the
garbled version of circuit C′, call it GC′ (or ⊥). In addition, for

all j ∈ Si , Pj learns si .
P1 sends GC′ (or ⊥) to P5, while the other parties only send

H (GC′) (or ⊥). P5 checks that all the GC′ and the received

hash values are consistent; otherwise sets abort5 := true.

Evaluation and output. P5 now has the correct garbled circuitGC′,
and garbled inputs (call this X ) for all parties. It evaluates the garbled

circuit using Ev(GC′, X ) to getY and sendsY to all parties. All parties

execute y = De(d, Y ) to compute the output of the function, ya
.

a
For ease of exposition, we assume that the evaluator does not receive any

output. If we require the evaluator to obtain output, then similarly to what is

done in the 2-party setting, the evaluator also receives hashes of both output

labels along with the garbled circuit, thus allowing the evaluator to learn what

bit the output label corresponds to.

Figure 7: The 5PC protocol, secure against malicious adversaries

(continued from Fig. 6).

has a communication of 3κ bits, this part gives us a total communi-

cation of 36κ |C | bits. The number of F
4AOT

calls for the string-OTs

is 36 per AND gate, borrowing all optimizations from [9], where

each party is the sender in 9 and receiver in 9. Since the AOTs are

performed for each gate in parallel, we also take advantage of our

Batch AOT protocol to obtain better efficiency. In particular, the

amortized communicaton cost of each AOT in the batch setting is

two commitments and one decommitment. This yields 96 commit-

ments and 48 decommitments (κ-bits each); i.e., 144κ bits of total
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communication per gate for the string OTs. Hence, the OT phase

has a total communication of 180κ |C | bits.
To communicate the shares of the computed garbled circuit

among the parties, each of the 4 parties must send 4 garbled circuit

“shares” and each garbled gate requires 16κ bits of communication.

This yields a total of 64κ |C | bits of communication. This sums up all

communications that grow with the number of AND gates, yielding

a total of roughly 244κ |C | bits of communication in total.

In contrast, the passively secure 5PC protocol of [9] which would

perform a 5-party distributed circuit garbling, would require 20

bit OTs per gate and 60 string OTs per gate. Ignoring the com-

munication cost of the bit OTs and assuming 4/3 hash values are

communicated per string OT (since these are correlated OTs they

can benefit from a 1/3 reduction in communication [9]), this yields

80κ bits of communication per gate. An additional communication

of 500κ bits per gate is required for exchanging the garbled circuit

(each of the 5 parties receives 5 of the full garbled circuits which

at 20κ bits pergate ). This results in a total of 580κ bits of com-

munication per gate or roughly 580κ |C | bits of communication in

total.

In summary, we obtain a 5PC protocol tolerating two malicious

corrupted parties with 58% better communication complexity than

the semi-honest 5PC protocol with security against four corrup-

tions. We realize that the security guarantees are incomparable; yet,

this indicates that one can achieve a tradeoff between number of

corrupted parties and communication complexity.

Rounds. The protocol requires two initial rounds to exchange

the seeds among the parties. This initial exchange, however, can

be done only once and then used for multiple protocol execution;

hence, we do not count it towards the total round complexity. Each

set of Batch AOTs requires one round, hence a total of two. One

additional round is required for exchanging shares of the garbled

circuit, and another round for sending the garbled circuits to P5.

Three additional rounds are needed for P5 to learn all the garbled

inputs, and one extra round to send the results back to all parties.

This yields a total of 8 rounds of interaction for the full 5PC protocol

(ignoring the two rounds for exchanging the seeds).

A fast commitment scheme. While instantiating our bit and string

commitments (required in the bit- and string-OT protocols), we

observe that the (standard) commitment scheme with Com(m; r ) =
(c = H (m | |r ),d = m | |r ) (where H is a hash function, modeled as

a random oracle), with c being the commitment and d the open-

ing/decommitment, has an overhead of 2.44 microseconds per com-

mitment (our protocol makes use of many commitments, propor-

tional to the circuit size).

We reduce this overhead by constructing new bit and string

commitment scheme based on block ciphers (e.g., AES), whose

security holds in the ideal cipher model [11, 27, 49]. At a high level,

our commitment scheme is as follows. Let F : {0, 1}κ × {0, 1}κ →

{0, 1}κ denote a random permutation, parameterized by a key k—
denoted Fk (·). We assume that all parties have access to k (and

hence Fk (·)). Our bit commitment scheme is then

Com(b; r )
∆
= (c = Fk (r ) ⊕ r ⊕ b

κ , d = r | |b),

where bκ denotes bit b repeated κ times and r is chosen at random

from {0, 1}κ . Hiding follows from the fact that the distribution of

Fk (r ) ⊕ r is indistinguishable from Uκ (the uniform distribution

on κ bits), which follows simply from Fk (·) being a pseudorandom

function and r being chosen at random. Regarding binding, an

adversarial sender must find r , r ′ such that Fk (r ) ⊕ r = Fk (r
′) ⊕ r ′,

where x denotes the complement of x , in order to break it. If the

adversary makes at most q queries to Fk (·), then one can show that

the probability of finding such a pair is at most
q2

2
κ .

Now, a similar approach does not however work for string com-

mitments — e.g., Fk (r ) ⊕ r ⊕ m for m ∈ {0, 1}κ is not a secure

commitment. However, we can show that

Com(m; r )
∆
= (c = Fk (r ) ⊕ r ⊕ Fk (m) ⊕m, d = r | |m)

is a secure commitment scheme using an argument similar to the

above. This gives us a commitment scheme with an overhead of

only 0.04 microseconds per commitment (roughly 62 times faster

than the SHA256 based commitment scheme).

6 IMPLEMENTATION AND EXPERIMENTS
We implemented both our semi-honest as well as maliciously secure

5PC protocols (henceforth referred to as 5PC-SH and 5PC-M, for

brevity) and ran various experiments for different circuit sizes and

different latencies. Our code built upon the code for n−party semi-

honest secure computation provided by Ben-Efraim et al. [8]. For all

our experiments, wemeasured the times for the offline phase, which

is independent of the inputs to the computation (distributed garbled

circuit computation), and for the online phase, which is dependent

on the inputs to the computation (garbled input generation, garbled

circuit evaluation and output sharing), separately.

Platforms and parameters. We ran our experiments on Microsoft

Azure Classic DS4_V2 VM instances (2.4 GHz Intel Xeon Processor

with 8 cores) in three different configurations. All our experiments

use hardware instructions AES-NI for the PRFs and SHA-256 for the

hash function. For the first experiment, all instances were located in

the Eastern US region. For the second experiment, the 5 instances

were spread across East, Central, West, North Central, and South

Central US regions, and for the third experiment, 3 garblers were

located in the Western US region with a garbler and an evaluator

located in Central Europe. As was reported in [9], network fluc-

tuations account for almost all the variations in timings in our

protocols.

We ran the protocol for 5 parties (semi-honest and malicious) on

2 different functions. In the first function, parties each hold 128-bit

shares of key and input and the output of the computation was the

AES function on the XOR of the party’s inputs. The AES circuit

we used had 6800 AND gates. In the second function, parties hold

300-bit values as input and the output of the computation was the

SHA-256 function on the concatenation of all party’s inputs. The

SHA-256 circuit we used had 90,825 AND gates. Each experiment

was performed 30 times and we computed the mean and standard

deviation of all experiments. All numbers provided in the tables

are in milliseconds with a 95% confidence interval. We compare
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Total Communication of 5 parties [MB]

AES SHA-256

BLO 73.3 756

5PC-M 28.6 356

5PC-SH 9.3 112.2

Table 2: Communication comparison

all our results with the results obtained when executing the semi-

honest protocol/code of [8, 9] for 5 parties (secure against 4 semi-

honest corruptions and henceforth referred to as BLO
2
) on the same

platforms as our experiments. While our computation (as well as

communication) can be parallelized across the 8 cores (across the

garbling process) we only deployed mild parallelization and leave

further optimizations to future work.

6.1 Experimental Evaluation
Asymptotically, we compared our protocols to maliciously secure

MPC protocols that tolerate dishonest majoirty as well as dishonest

minority (such as [32]). However, to the best of our knowledge, the

only available implementations of constant-round MPC tolerate

dishonest majority (or are for the semi-honest case), and hence we

compare the concrete efficiency only with these works.

Communication measurements. We first present the total com-

munication (among all parties) of our protocols and a comparison

with the numbers from [9]. As can be seen from Table 2, the total

communication of 5PC-M is less than half that of BLO’s communi-

cation (however, this protocol tolerates 4 semi-honest corruptions

and could be optimized for 2 corruptions), while the communication

in 5PC-SH is only 12 − 15% that of BLO.

We present our experimental results on the three different net-

work configurations listed above. While constant round protocols

are not affected greatly affected by variation in latency of the net-

work, since the overall computation time of our protocol is only

a few hundred milliseconds or so, and our protocol has 8 rounds,

latency variations affect our overall execution times a bit.

Low-latency network. In this network, all Azure Classic DS4_V2

VM instances were located in the Eastern US region with an av-

erage round-trip time of 2.7 milliseconds across all the instances

(maximum time of 7.1 milliseconds). The average bandwidth as

measured by the Iperf testing tool was 4.5 Gbps. We report the

following times: offline execution time (OFT), which measures the

wall clock time taken to execute the offline (distributed garbling)

phase; the online execution time (ONT), which measures the wall

clock time taken to execute the online (input-specific) phase; total

protocol time (TPT) which measures the wall clock time to execute

the entire protocol; and the CPU time (CPUT), which measures the

total time spent on computing across all cores (note that this time

can sometimes be larger than TPT when there is great degree of

parallelization in the implementation). The results are presented

and compared in Tables 3 and 4.

2
The protocol execution time of [9] does not vary with the number of corruptions.

5PC-M

OFT ONT TPT CPUT

Garblers 198 ± 2 8 ± 1 206 ± 3 184 ± 2

Evaluator 50 ± 1 23 ± 1 74 ± 2 57 ± 2

5PC-SH

OFT ONT TPT CPUT

Garblers 130 ± 2 8 ± 1 138 ± 2 114 ± 1

Evaluator 24 ± 1 23 ± 1 46 ± 2 36 ± 1

BLO

OFT ONT TPT CPUT

All parties 118 ± 2 4 ± 1 122 ± 3 203 ± 2

Table 3: Execution times [ms]: AES circuit, low latency

5PC-M

OFT ONT TPT CPUT

Garblers 2402±21 9 ± 1 2411 ± 22 2715 ± 28

Evaluator 587 ± 11 148 ± 5 735 ± 16 632 ± 11

5PC-SH

OFT ONT TPT CPUT

Garblers 1536±14 9 ± 1 1545 ± 15 1328 ± 10

Evaluator 297 ± 17 150 ± 4 447 ± 21 363 ± 10

BLO

OFT ONT TPT CPUT

All parties 994 ± 13 56 ± 1 1050 ± 14 2543 ± 17

Table 4: Execution times [ms]: SHA-256 circuit, low latency

As can be seen from the table, for the AES circuit, our 5PC-M

is only 69% slower than BLO (which is only passively secure) in

terms of TPT, with CPUT being even lesser in our case (indicating

that compute time can be reduced in our protocol through greater

parallelization which our protocol accommodates). Our 5PC-SH

takes about the same time as BLO (due to the very fast network,

the savings in communication is not visible and the BLO protocol

takes advantage of parallelization in compute even though the CPU

time in BLO is 78% more than in our protocol). For the SHA-256

circuit, our 5PC-M is only about 2.3 times slower than BLO, with

roughly same CPU times, and our 5PC-SH is about 1.5 times slower

than BLO, with about 52% of the CPU time, once again due to the

parallelization optimizations performed in BLO.

Medium-latency network. For the second experiment, the 5 in-

stances were spread across East, Central,West, North Central, South

Central US regions with an average round-trip time of the slowest

link (East to West) being 92.8 milliseconds (maximum time of 974.6

milliseconds). The average bandwidth, again of the slowest link,

as measured by the Iperf testing tool was 292 Mbps. The results

are presented and compared in Tables 5 and 6. As communication

becomes critical in medium-latency networks, our protocols per-

form significantly better than existing protocols in this domain.

As can be seen from the table, for the AES circuit, our 5PC-M is

actually 1.83 times faster than BLO (which, again, is only passively
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5PC-M

OFT ONT TPT CPUT

Garblers 648 ± 48 39 ± 3 687 ± 51 182 ± 4

Evaluator 243 ± 52 84 ± 3 328 ± 55 60 ± 4

5PC-SH

OFT ONT TPT CPUT

Garblers 441 ± 69 44 ± 3 485 ± 71 116 ± 2

Evaluator 111 ± 21 111±17 223 ± 38 36 ± 2

BLO

OFT ONT TPT CPUT

All parties 1177±43 81 ± 3 1259±46 207 ± 3

Table 5: Execution times [ms]: AES circuit, med. latency

5PC-M

OFT ONT TPT CPUT

Garblers 3430 ± 99 38 ± 2 3468± 101 2707±22

Evaluator 789 ± 197 288±126 1077± 323 607 ± 10

5PC-SH

OFT ONT TPT CPUT

Garblers 1937 ± 68 41 ± 2 1978 ± 70 1348±12

Evaluator 526 ± 158 214 ± 5 740 ± 163 338 ± 5

BLO

OFT ONT TPT CPUT

All parties 6007± 159 139 ± 2 6146± 161 2593±14

Table 6: Execution times [ms]: SHA-256 circuit, med. latency

secure) in terms of total execution time; this is due to our better

overall communication complexity as this factor dominates even

in medium-latency networks . Our 5PC-SH is 2.6 times faster than

BLO. For the SHA-256 circuit, our 5PC-M is once again 1.77 times

faster than BLO, while our 5PC-SH is 3.1 times faster than BLO.

High-latency network. For the last experiment, 3 garblers were

located in the Western US region and the remaining garbler and

the evaluator located in North Europe. with an average round-trip

time of the slowest link (West US to North Europe) being 142.6

milliseconds (maximum time of 153.2 milliseconds). The average

bandwidth, again of the slowest link, as measured by the Iperf

testing tool was 146 Mbps. The results
3
are presented and compared

in Tables 7 and 8. For AES, our 5PC-M is 2.6 times faster than BLO

in total execution time and our 5PC-SH is 4.8 times faster than

BLO. For SHA-256, our 5PC-M is 1.7 times faster than BLO, while

5PC-SH is 3.38 times faster than BLO.

3
Network time is the huge dominating factor in this case. Since we measure average

time of garblers, when one of the links between a garbler and evaluator is slow, the

time of the evaluator is affected more than the average time of the garblers, sometimes

leading to a longer total time for the evaluator.

5PC-M

OFT ONT TPT CPUT

Garblers 1655± 104 220±18 1875± 122 196 ± 2

Evaluator 1116 ± 45 316 ± 5 1432 ± 50 63 ± 2

5PC-SH

OFT ONT TPT CPUT

Garblers 790 ± 96 110±28 900 ± 124 120 ± 1

Evaluator 750 ± 32 264±30 1014 ± 62 39 ± 1

BLO

OFT ONT TPT CPUT

All parties 4556± 256 299±10 4855± 266 249±51

Table 7: Execution times [ms]: AES circuit, high latency

5PC-M

OFT ONT TPT CPUT

Garblers 7529 ± 478 242 ± 32 7771 ± 510 2875±32

Evaluator 2444 ± 214 453 ± 4 2897 ± 219 642 ± 14

5PC-SH

OFT ONT TPT CPUT

Garblers 3722 ± 384 221 ± 23 3943 ± 407 1409±17

Evaluator 3069 ± 396 455 ± 14 3524 ± 410 397 ± 12

BLO

OFT ONT TPT CPUT

All parties 12957±624 366 ± 18 13323±642 2751±16

Table 8: Execution times [ms]: SHA-256 circuit, high latency

7 THE n-PARTY CASE
So far, we have described our efficient MPC protocol for the case of

five parties. It turns out that the ideas easily generalize to more than

five parties as long as we can find appropriate seed distribution

strategies that meet certain combinatorial properties. Next, we

review these properties and various seed assignment strategies.

To generalize our approach to n-party MPC with at most t cor-
rupted parties, similarly to the five-party case, we let Pn be the

evaluator and have the remining n − 1 parties simulate a q-party
distributed garbling scheme (q-DG) to generate the garbled cir-

cuit used for evaluation. We focus on the generalization of the

distributed garbling component of the MPC protocol and note that

similar ideas can be used for the generalization of the garbled-input

step.

At a high level, this q-DG protocol needs to satisfy two main

properties: (i) Produce a correct garbled circuit even if up to t < n
of the garblers are corrupted, and (ii) hide its randomness from the

adversary (i.e., the randomness used to garble the circuit) even if up

to t − 1 garblers are corrupted. The adversary’s corruption strategy

can be split into two cases. If the adversary corrupts t garblers, but
the evaluator remains honest, the first condition ensures that the

garbled circuit is honestly generated and the honest evaluator (Pn )
will evaluate the correct garbled circuit. If, on the other hand, the

adversary corrupts Pn and t − 1 of the garblers, the second property

ensures that the corrupt evaluator does not learn the secrets of the
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garbled circuit and hence no information about the honest garblers’

inputs is revealed.

To obtain a protocol that meets the above two properties, we

follow the same approach as in the five-party case. In particular, we

assume that all the randomness needed by the party i in the q-party
distributed garbling is generated using a random seed si . Hence, we
have q seeds s1, . . . , sq that need to be distributed among the n − 1

garblers. This seed distribution step should satisfy the following

properties:

1. Privacy: No t − 1 garblers
4
should hold all seeds. This prop-

erty is required for both the semi-honest and the malicious

variants of our MPC protocol, and ensures that a corrupt

evaluator does not learn an honest garbler’s input to the

computation.

2. OT Attestation: For every pair of seeds si , sj , there should
be a party Pk that holds both seeds. This party will play

the role of attester in our AOT protocols, which we use as

replacement for OT.We note that a more expensive variant of

our construction without AOT can do without this condition.

3. Correctness: Every seed is held by at least t +1 parties. This

property is only needed for the actively malicious case as it

ensures that when each message of the semi-honest garbling

protocol is received from t + 1 parties, at least one of those

messages was generated by an honest party and hence it

must be the correct message.

7.1 The (n, t ,q)-Assigment Problem
The above requirements yield an interesting combinatorial prob-

lem, which we call the (n, t ,q)-assignment problem, for finding seed

assignments that minimize n and q but maximize the corruption

threshold t . It is easy to obeserve that the (5, 2, 4)-assignment we

used in our 5PC protocol ({s1, s3, s4}, {s2, s3, s4}, {s1, s2, s3}{s1, s2, s4})

has all three properties. Next, we provide a general solution to the

problem that works for all values of n, and also explore better as-

signments for particular values of n. A more thorough study of the

problem is left as future work.

We describe a simple solution for the case n = t2 + 1 and q = t2

that meeds the Privacy and Correctness properties discussed above.

Let s1, . . . , sq be the random seeds we need to assign to n−1 parties.

We simply assign to Pi the seeds s((i−1) mod q)+1
, . . . , s((i+t ) mod q)+1

.

The modular operation enforces that we “cycle around” when sq is

reached. It is easy to see that this assignment satisfies Privacy since

even if the t − 1 parties chosen not to have any overlap in their set

of assigned seeds, they can only cover (t − 1)(t + 1) = t2 − 1 = q − 1

seeds. Note that this assignment does not meet the OT Attestation

condition and hence needs to be instantiated using standard OTs

(with OT extension), where each OT message is computed by the

t + 1 parties who hold the seeds for either the sender or the receiver

in that OT instance. Finally, it is easy to see that each seed si is held
by t + 1 parties, namely, Pi mod q , . . . , P(i+t+1) mod q .

4
That’s right, t − 1 and not t , as we have to account for the possiblity of the evaluator

being corrupted.

7.2 A Few Special Cases
The above assignment strategy is general but does not always yield

the optimal assignment. For example, while it yields the optimal

solution for t = 2 and n = 5, the best solution it yields for t = 3 is

n = 10 and q = 9. We now show a simple alternative assignment

where q = 6 suffices which implies fewer seeds and a more efficient

distributed garbling protocol.

(10, 3, 6)-assignment (active security). Consider the first five
seeds s1, . . . , s5. There are

(
5

4

)
= 5 subsets of size four. We as-

sign each subset to one of the first five parties and assign s6 to

P6, P7, P8, P9. As before, P10 is not a garbler. It is easy to see that

no two parties hold all the seeds and each seed is held by at least

four parties. This satisfies both the Privacy and Correctness condi-

tions that are sufficient for actively secure MPC. This solution also

generalizes easily to a solution with q ≈ n and t ≈
√
n.

(7, 3, 6)-assignment (semi-honest security). The assignment

of the six seeds to the six garblers is as follows: {s1, s2, s3}, {s3, s4, s5},

{s2, s4, s5}, {s1, s5, s6}, {s2, s3, s6}, {s1, s4, s6}. This assignmentmeets

the Privacy and OT Attestation conditions, yielding a very efficient

semi-honest 7PC protocol that can fully benefit from our AOT pro-

tocols. In particular, it is easy to see that no two parties hold all

six seeds and that every pair of seeds is held by at least one of the

garblers.
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A PRELIMINARIES (CONT’D)
In this section we present complementary preliminary material,

including the definition of the cryptographic building blocks.
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Definition A.1. A pseudo-random function (PRF) familyPRF is a

family of functions PRF : K×D → R. The setup algorithm produces

(on input 1
κ
) a key k at random from K . Let PRFk (·) be the function

parameterized by k . The security property requires that when k
is chosen at random from K , no PPT adversary A can distinguish

between PRFk (·) and a random function (with appropriate domain

and range), when given oracle access to one of the functions.

Definition A.2. A collision-resistant hash function (CRHF) family

H is a family of functions H : K × D → R, where |D | < |R |. The
setup algorithm produces (on input 1

κ
) a key k at random from K .

LetHk (·) be the function parameterized by k . The security property
requires that when k is chosen at random fromK , no PPT adversary

A, givenH and k , can produce x0 and x1 (with x0 , x1) such that

Hk (x0) = Hk (x1), except with negligible probability in κ.

DefinitionA.3. A (non-interactive) commitment scheme (for ames-

sage spaceM) is a triple of algorithms (ComGen,Com,Open) such
that:

CK ← ComGen(1κ ), where CK is the public commitment

key;

form ∈ M, (c,d) ← Com(m) is the commitment/decommitment

pair form. (We omit mentioning the public key CK when it is

clear from the context.) When we wish to make explicit the

randomness used by Com(·), we write Com(m; r );
m̃ ← Open(c,d), wherem̃ ∈ M∪{⊥}, andwhere⊥ is returned

if c is not a valid commitment to any message;

satisfying the following properties:

Correctness: For anym ∈ M,Open(Com(m)) =m.

Hiding: For allm0,m1 ∈ M output by any PPT adversary A,

the distributions c0 and c1 are indistinguishable to A, where

(cb ,db ) ← Com(mb ) for b ∈ {0, 1}, except with negligible

probability.

Binding: No PPT adversary A can produce (c,d0,d1,m0,m1)

(withm0 , m1) such that Open(c,db ) → mb for b ∈ {0, 1},
except with negligible probability.

Oblivious Transfer. While our protocol does not make use of the

oblivious transfer primitive, we present the primitive below for

completeness (as the protocol of [9], which we modify, does). The

oblivious transfer (OT) functionality is described in Figure 8; for a

description of a protocol implementing the functionality, we refer

the reader to [9].

B PROOFS
Lemma 3.1 Assuming (ComGen,Com,Open) is a secure commit-

ment scheme, protocol Π4AOT securely realizes the F4AOT function-

ality.

Proof. (Sketch) We shall prove this considering various cor-

ruption scenarios and providing simulator strategies for each. For

any adversary A corrupting parties, we describe a simulator S

interacting with the ideal functionality F4AOT. We first consider

the case when only one party is corrupted. P1 is the sender and P2

is the receiver.

Functionality FOT(P1, P2)

FOT interacts with parties P1 and P2 and the adversary S, with P1

and P2 acting as sender and receiver, respectively.

Input.

On input message (Sender, sid,m0,m1) from P1, where each

mβ ∈ M, record (m0,m1) and send (Sender, sid) to the adver-
sary. Ignore further (Sender, ·, ·, ·) messages.

On input message (Receiver, sid, b) from P2, where b ∈
{0, 1}, record b and send (Receiver, sid) to the adversary. Ig-

nore further (Receiver, ·, ·) inputs.

Output. On input message (Output, sid) from the adversary, send

(Output, sid, success,mb ) to P2.

Figure 8: The Oblivious Transfer ideal functionality FOT.

P1 is corrupted: P2, P3 and P4 are honest. S runs A. It re-

ceives two tuples fromA, (m3

0
,m3

1
, r3

0
, r3

1
) and (m4

0
,m4

1
, r4

0
, r4

1
)

intended for P3 and P4. If the tuples are not equal, S sends ⊥

to the functionality, and simulates the honest parties abort-

ing. If the tuples are the same, A will send (Com1

0
,Com1

1

intended for P2. S verifies that the commitments are cor-

rectly generated using the tuple it obtained earlier. If not,

it sends an Abort message to the functionality; else, it sub-

mits (m3

0
,m3

1
,b3, r3

0
, r3

1
) as P1’s input to the functionality. This

completes the simulator’s description.

Note that in the real execution, if P3 and P4 receive two

sets of values (m3

0
,m3

1
, r3

0
, r3

1
) , (m4

0
,m4

1
, r4

0
, r4

1
), then P3 and

P4 will detect this and induce an abort in Step 3b of the proto-

col. This abort is independent of P2’s input b and identically

distributed to S’s abort. If P3 and P4 receive two sets of val-

ues that are equal, then P3 and P4 will generate and send

(Com1

0
,Com1

1
,Open1

m1

b2

) to P2 (as m3

0
= m4

0
and m3

1
= m4

1
,

when P3 and P4 are honest). If P1 sends a different set of com-

mitments (Com
1

0
,Com

1

1
) in Step 1 of the protocol, then P2 will

detect this and abort. Once again, this abort is independent

of b and identically distributed to S’s abort. Now, suppose

(Com
1

0
,Com

1

1
) = (Com3

0
,Com3

1
) (i.e., the commitments tom1

0

andm1

1
by P1, P3 and P4 are identical), then P2 indeed receives

the opening to Com1

b from P3 and P4 and hence outputsmb .

P2 is corrupted: In this case, P1, P3 and P4 are honest. S runs

A. It receives two bits from the adversary, b3,b4
, intended

for P3 and P4. If the two values are different, S sends Abort
to the functionality and simulates the honest parties aborting.

If the two bits are the same, it submits b3
as P2’s input to the

ideal functionality and receivesm3

b3
from the functionality.

It then generates two commitments/openings (Com1

0
,Com1

1
),

one committing tom3

b3
, and another to a dummy value, say,

0 (permuted based on the bit b3
), and sends the two com-

mitments to A on behalf of honest P1. It then sends decom-

mitment form3

b3
on behalf of honest P3. This completes the

simulation.
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In the real execution, P2 will receive commitments (Com1

0
,

Com1

1
) as well as the decommitmentOpen1

b2
in Step 3a. By the

hiding property of the commitment scheme, P2 will learn no in-

formation aboutm1

¯b2
and it can be replaced by a commitment

to 0, making the real and simulated views indistinguishable.

P3 is corrupted: since P1, P2 are honest,S receives (m3

0
,m3

1
,b3)

from the functionality. It then generates fresh randomness

r3

0
, r3

1
and sends (m3

0
,m3

1
, r3

0
, r3

1
) on behalf of P1 and b3

on

behalf of P2 to the adversary. If A sends a different tuple

intended for honest P4, S sends Abort to the functionality

and simulates the honest P4 aborting. Else, it receives two

commitments and a decommitment from A intended for P2.

If the commitments and/or decommitment are not consistent

with the tuples it sent to A earlier, S sends Abort to the

functionality. This completes the simulation.

In the real execution, if P3 cheats by sending a different set

of (m3

0
,m3

1
,b3, r3

0
, r3

1
) values in Step 3b, then P4 will send a ⊥

message to P2, which is what our simulator does as well. If

P3 cheats by sending a different set of commitments to P2 in

Step 3a, then again P2 will detect this as honest P4 (and P1)

send honest versions of these commitments. If P3 cheats by

sending a different opening of the commitment Com3

b3
, then

by the binding property of the commitment scheme, P3 can

indeed only open Com3

b3
= Com1

b2
tom1

b2
and hence P2 will

outputm1

b2
(or abort) which is identical to S’s behavior.

P4 is corrupted: This case is similar to when P3 is corrupted.

Next, let us consider the case when two parties are corrupted:

Note that our functionality in this case does not require privacy of

inputs since corrupted attesters will learn both parties’ inputs. It

only guarantees that an honest P2 will always output the rightmb
(or abort); hence, the only interesting cases are when P2 is honest,

i.e., P1 and P3 are corrupted, or P3 and P4 are corrupted (other cases

are symmetric).

P1 and P3 are corrupted: P2 and P4 are honest. S runsA. It re-

ceives a tuple from A, (m4

0
,m4

1
, r4

0
, r4

1
) intended from P1 to P4

and another tuple (m3

0
,m3

1
,b3, r3

0
, r3

1
) intended from P3 to P4.

If the tuples do not hold the same values,S sends Abort to the
functionality. , simulating the honest P4 aborting. If the tuples

are the same,A will send (Com1

0
,Com1

1
intended for P2.S ver-

ifies that the commitments are correctly generated using the

tuple it obtained earlier. If not, it sends Abort to the function-

ality, inducing P2’s abort. Else, it submits (m4

0
,m4

1
,b4, r4

0
, r4

1
) as

P1’s input to the functionality. This completes the simulator’s

description.

Consider the real execution. Recall that P4 is honest in this

case. If P3 sends a different set of values in Step 3b, then P4 will

send a⊥message, and P2 will abort the protocol. Now, if P1 or

P3 send maliciously generated messages (Com
i
0
,Com

i
1
) (for

i = 1, 3, in Step 1 or Step 3a, respectively), then P2 will detect

this and output ⊥ when P4 sends the correct (Com4

0
,Com4

1
)

to P1 in Step 3a. Similarly, if P3 sends a maliciously generated

message (m̄3

b3
, r̄b3 ) (in Step 3a), then, by the binding property

of the commitment scheme, m̄3

b3
= m1

b2
. Hence, P2 always

outputs m1

b2
or aborts. It is easy to see that the aborts are

identically distributed to the simulation.

P3 and P4 are corrupted: In this case, P1 and P2 are honest and

the simulation is very similar to the case above where P3 was

corrupted with the only difference that S does not simulate

an honest P4 aborting since P4 is not honest in this case.

�

Theorem 4.1 Assuming (ComGen,Com,Open) is a secure com-

mitment scheme, and H
$

← H is a collision-resistant hash func-

tion, protocol Π
5pc
(C, {P1, . . . , P5}) securely realizes the functionality

FC
sfe
({P1, . . . , P5})

5
in the F

4AOT
-hybrid model.

Proof. (Sketch) To prove our 5PC protocol Π
5pc
(C, {P1, . . . , P5})

secure, for any adversary A in the protocol, we describe a simula-

tor S that interacts with the ideal functionality FC
sfe
({P1, . . . , P5}).

There are two main corruption scenarios to consider: (i) When two

garblers are corrupted. In this case, without loss of generality we

assume P1 and P2 are corrupted since the protocol is symmetric

with respect to the garblers; and (ii) when the evaluator P5 and one

of the garblers is corrupted. Similary, wlog, we assume P1 and P5

are corrupted.

P1 and P2 are corrupted. At a high level, in this case the eval-

uator is honest, and hence the only guarantee we need from the

distributed circuit garbling is to generate a correct garbled circuit.

We also require that the garblers’ inputs are extractable from the

garbled input generation process. These two properties combined

will guarantee that we can describe a simulator that simulates any

adversary corrupting P1 and P2. More details follow.

S runs A. S receives two copies of each seed s1, s2 intended

for honest parties P3 and P4 from A. S checks whether the two

copies are the same or not. If not, it sends an abort message to the

functionality. Else S generates random seeds s3 and s4 on behalf of

honest P3 and P4 and sends them to the adversary. It then generates

random inputs x3,x4,x5 for P3, P4, P5 and uses them in the rest of

the simulation.

During the garbled input generationS behaves as honest P3, P4, P5

in most cases and using the random inputs and seeds it generated

above, and sends an abort to the functionality if it detects any

cheating, or if the adversary opens the commitments generated for

P5’s garbled input generation to a different value than expected

(this is indistinguishable from the real-world interaction due to

the binding property of the commitment). The aborts are indepen-

dent of the honest parties’ inputs as the inputs are always XORed

with three uniformly random pads one of which is held by an hon-

est party. If there is no abort, for each input wire of P1, A sends

Fs1
(‘key’| |w | |0) ⊕ Fs1

(‘delta’) ·b ′ intended for P5. Given that S has

knowledge of all seeds, it can use it to derive b ′ and further derive

P1’s input b = b ′ ⊕ pw . A similar strategy can be used to extract

P2’s input. Denote these inputs by x
′
1
,x ′

2
.

In the distributed garbling stage, S behaves as honest P3 and P4

and instructs the functionality to abort if it detects any cheating, i.e.,

if messages intended for P3 and P4 are not consistent. If there is no

abort, it is easy to see that the garbling function described in Figure 3

will be the output of honest parties. If the garbled circuit sent by

A intended for P5 (or its hash) is not the same as what the honest

parties would have obtained, S sends abort to the functionality.

5
Recall that we slightly abuse notation, and mean security with abort.
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S then sends x ′
1
,x ′

2
to the functionality. From the correctness

of the garbling function, if there are no aborts, the garbled circuit

evaluated by P5 in the real protocol would evaluate to the same

output as what the functionality returns.

P1 and P5 are corrupted. In this case, the evaluator is not honest

but only one of the garblers is malicious. At a high level, after ex-

tracting the adversary’s inputs for P1 and P5, the simulator obtains

the output of the computation from the functionality and helps

generate a fake circuit that always evaluates to that output, but

is indistinguisable from the real garbled circuit in the adversary’s

view. Furthermore, it should be hard for the adversary (corrupted

P5) to produce any output label that translates to a different value

than the hardcoded output in the fake garbled circuit. More details

follow.

S runs A. S receives two copies of seed s1 intended for honest

parties P3 and P4 fromA. S checks whether the two copies are the

same or not. If not, it sends an abort message to the functionality.

Else S generates random seeds s2, s3 and s4 on behalf of honest

P2, P3 and P4 and sends s3 and s4 to the adversary. It then generates

random inputs x2,x3 and x4 for P2, P3 and P4 and uses them in the

rest of the simulation.

S extracts P1’s input in the distributed garbled input generation

as in the previous case. Denote that by x ′
1
. Extracting P5’s input

is somewhat similar. Note that A sends three XOR shares of its

inputs to the garblers. At least two of these are honest parties and

hence S obtains those shares. The third share is extracted similarly

to the input extraction for the garblers above since the process for

garbling each share is similar and the three shares are XORed to

obtain the extracted input x ′
5
.

S now calls the functionality with inputs x ′
1
,x ′

5
for P1 and P5

and obtains out = f (x ′
1
,x2,x3,x4,x

′
5
). Next, the simulator who

plays the role of honest parties P2, P3, P4 needs to influence the

distributed circuit garbling scheme to generate a fake garbled circuit

that hard-codes out as its output when run on extracted inputs

x ′
1
,x ′

5
and the random inputs S generated on behalf of honest

parties, while ensuring that this fake distributed circuit garbling is

indistinguishable from the real distributed circuit garbling protocol

from the adversary’s point of view.

The idea behind this simulation is as follows and is similar to

the one in [9] except in our case the adversary can be malicious

on behalf of one garbler. S knows all the seeds generated above.

Furthermore, it has full control of any randomness and garbled

circuit shares generated using s2 since only P1 is corrupted among

the garblers and he does not hold s2, and S is playing the role of all

three parties holding s2. S participates in the distributed garbling

as before for all intermediate gates. For the output gates, however,

it needs to make sure that the labels corresponding to bits of out are
always the labels encrypted in rows corresponding to evaluation

using the extracted and random inputs S knows. Given that S has

knowledge of all seeds, it knows what the corresponding label for

out is (say, 0) and also knows the label corresponding to 1. For all

such rows that encrypt the label 1, S can produce the one-time

pads that are derived using s2 (on behalf of honest P2, P3 and P4)

such that the encrypted label is flipped to the label for 0 instead.

As a result, the generated garbled circuit will evaluate to out , and
this process is indistinguishable from the adversary’s point of view

given that it only can decrypt one row of each table and other rows

are indistinguishable from random given the semantic security of

the encryption used for garbling and the fact that the adversary

does not know all seeds.

S sends this fake garbled circuit (or its hash) on behalf of hon-

est parties to A who controls the evaluator. Finally, S receives

an output out ′ along with the corresponding output label. If it re-

ceives a different output than out from the adversary, it instructs

the functionality to abort. The probability that P5 can generate a

different output label is negligible since in this fake garbled cir-

cuit only one label is decrypted and portions of the other label are

encrypted using a seed that is not known to the adversary. As a

result, the distributions in the real- and ideal-world interactions are

indistinguishable. This completes the sketch of the proof. �

C FIGURES

Function f C
GC

Inputs. All parties hold the circuit C , security parameter κ . In addi-

tion Pi holds the following private inputs:
(1) A global difference string Ri ∈ {0, 1}κ chosen at random;

(2) For every wirew inC that is not the output of an XOR gate,

a random permutation bit piw and k iw,0 chosen at random

from {0, 1}κ

Computation. Proceed as follows:

1. For i ∈ [4], in a topological order, for every output wire w of

an XOR gate with input wires u and v , set piw := piu ⊕ p
i
v ,

k iw,0 := k iu,0 ⊕ k
i
v,0 and k

i
w,1 := k iw,0 ⊕ Ri .

2. For every w in C , set pw :=
⊕

4

i=1
piw .

3. For every AND gate д ∈ C with input wires u, v and output

wire w , every α, β ∈ {0, 1} and every j ∈ [4], set:

д jα ,β :=
( 4⊕
i=1

Fk iu,α (д | |j) ⊕ Fk iv,β
(д | |j)

)
⊕ k iw,0 ⊕

(
Ri · ((pu ⊕ α ) · (pv ⊕ β ) ⊕ pw )

) (2)

Outputs. Output to all parties д1

α ,β | | . . . | |д
4

α ,β , for every AND gate

д ∈ C and every α, β ∈ {0, 1}.

Figure 9: The distributed circuit-garbling function.
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Protocol Π
sh4aot
(P1, P2, P3)

The protocol is carried out among P1, P2, P3, with P1 and P2

acting as sender and receiver, respectively, and P3 as the at-

tester.

Input. P1 holdsm0,m1, and P2 holds b.

Computation.
(1) P1 sendsm0,m1 to P3, and P2 sends b to P3.

(2) P3 sendsmb to P2.

Output. P2 outputsmb .

Figure 10: The passively secure 4-party protocol for Attested OT.

Functionality F
B-4AOT

(P1, P2, {P3, P4 })

F
B-4AOT

interacts with parties P1, P2, P3, P4 and the adversary S, with

P1 and P2 acting as sender and receiver, respectively, and P3, P4 as

attesters.

Input.

On input message (Sender, sid, {m0,t ,m1,t }t∈[ℓ]) from P1,

where each mi,t ∈ M, record {(m0,t ,m1,t )}t∈[ℓ] and

send (Sender, sid, {m0,t ,m1,t }t∈[ℓ]) to P3 and P4 and

(Sender, sid) to the adversary. Ignore further (Sender, ...)
messages.

On input message (Receiver, sid, {bt }t∈[ℓ]) from

P2, where bt ∈ {0, 1}, record {bt }t∈[ℓ] and send

(Receiver, sid, {bt }t∈[ℓ]) to P3 and P4 and (Receiver, sid)
to the adversary. Ignore further (Receiver, ...) inputs.

On input message (Attester, sid, {m j
0,t ,m

j
1,t , b

j
t }t∈[ℓ]) from

Pj for j ∈ {3, 4}, where each m j
i,t ∈ M, record

{(m j
0,t ,m

j
1,t , b

j
t )}t∈[ℓ] and send (Attester, sid) to the adver-

sary. Ignore further (Attester, ...) messages.

Output. On input message (Output, sid) from the adversary,

if (m0,t ,m1,t , bt ) , (m3

0,t ,m
3

1,t , b
3

t ) or (m0,t ,m1,t , bt ) ,
(m4

0,t ,m
4

1,t , b
4

t ) for any t ∈ [ℓ], send (Output, sid, ⊥) to P2; else

send (Output, sid, {mbt ,t }t∈[ℓ]) to P2.

Figure 11: The 4-party Batch Attested OT ideal functionality F
B-4AOT

.

Protocol Π
b-4aot
(P1, P2, {P3, P4})

The protocol is executed among P1, P2, P3, P4, with P1 and P2 act-

ing as sender and receiver, respectively, and P3, P4 as attestors. Let

Commit = (ComGen, Com, Open) be a secure noninteractive com-

mitment scheme.

Inputs. P1 holds {m1

0,t ,m
1

1,t }t∈[ℓ], and P2 holds {b2

t }t∈[ℓ].

(1) P1 generates random values {r0,t , r1,t }t∈[ℓ] ← {0, 1}∗

and computes (Com1

0,t , Open0,t ) := Com(m1

0,t ; r0,t ),

(Com1

1,t , Open1,t ) := Com(m1

1,t ; r1,t ). P1 sends

{Com1

0,t }t∈[ℓ] and {Com1

1,t }t∈[ℓ] to P2 and

sends {r0,t ,m0,t , r1,t ,m1,t }t∈[ℓ] to P3 and P4,

who store them as {r 3

0,tm
3

0,t , r
3

1,t ,m
3

1,t }t∈[ℓ] and

{r 4

0,t ,m
4

0,t , r
4

1,t ,m
4

1,t }t∈[ℓ], respectively.

(2) P3 and P4 exchange hash of the values they re-

ceived from P1 i.e. H ({m3

0,t ,m
3

1,t , b
3

t , r
3

0,t , r
3

1,t }t∈[ℓ]) and

H ({m4

0,t ,m
4

1,t , b
4

t , r
4

0,t , r
4

1,t }t∈[ℓ]).

(a) If the values match, then for i ∈ {3, 4}, Pi com-

putes (Comi
0,t , Open

i
0,t ) and (Com

i
1,t , Open

i
1,t ) us-

ing scheme Commit and random values r i
0,t and r

i
1,t

respectively, compute H ({Comi
0,t , Com

i
1,t }t∈[ℓ]) and

sends the hash value to P2. (Wlog) P3 also sends

{Open3

t,b3

t
}t∈[ℓ] to P2.

(b) If the hash values do not match, i.e.,

H ({m3

0,t ,m
3

1,t , b
3

t , r
3

0,t , r
3

1,t }t∈[ℓ]) ,

H ({m4

0,t ,m
4

1,t , b
4

t , r
4

0,t , r
4

1,t }t∈[ℓ]), they send

⊥ message to P2 (denoting abort).

(3) P2 checks the following and outputs ⊥ if any of them

is true: (i) it receives ⊥ from P3 or P4; (ii) the hash of

the set of three commitments pairs it has received from

P1, P3, P4 do not match; i.e., H ({Com1

0,t , Com
1

1,t }t∈[ℓ]) ,

H ({Com3

0,t , Com
3

1,t }t∈[ℓ]) or

H ({Com1

0,t , Com
1

1,t }t∈[ℓ]) , H ({Com4

0,t , Com
4

1,t }t∈[ℓ])

(iii) Open(Com3

t,b3

t
, Open3

t,b3

t
) = ⊥ for b3

t = b2

t

and for any t ∈ [ℓ]. Otherwise, P2 outputs

{m3

t,b3

t
}t∈[ℓ] ← Open(Com3

t,b3

t
, Open3

t,b3

t
).

Figure 12: The 4-party protocol for Batch Attested OT.
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