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ABSTRACT
Memory-corruption vulnerabilities pose a serious threat to mod-
ern computer security. Attackers exploit these vulnerabilities to
manipulate code and data of vulnerable applications to generate
malicious behavior by means of code-injection and code-reuse at-
tacks. Researchers already demonstrated the power of data-only
attacks by disclosing secret data such as cryptographic keys in the
past. A large body of literature has investigated defenses against
code-injection, code-reuse, and data-only attacks. Unfortunately,
most of these defenses are tailored towards statically generated
code and their adaption to dynamic code comes with the price of
security or performance penalties. However, many common appli-
cations, like browsers and document viewers, embed just-in-time
compilers to generate dynamic code.

The contribution of this paper is twofold: first, we propose a
generic data-only attack against JIT compilers, dubbed DOJITA.
In contrast to previous data-only attacks that aimed at disclos-
ing secret data, DOJITA enables arbitrary code-execution. Second,
we propose JITGuard, a novel defense to mitigate code-injection,
code-reuse, and data-only attacks against just-in-time compilers
(including DOJITA). JITGuard utilizes Intel’s Software Guard Ex-
tensions (SGX) to provide a secure environment for emitting the
dynamic code to a secret region, which is only known to the JIT
compiler, and hence, inaccessible to the attacker. Our proposal is
the first solution leveraging SGX to protect the security critical JIT
compiler operations, and tackles a number of difficult challenges.
As proof of concept we implemented JITGuard for Firefox’s JIT
compiler SpiderMonkey. Our evaluation shows reasonable overhead
of 9.8% for common benchmarks.

1 INTRODUCTION
Dynamic programming languages, like JavaScript, are increasingly
popular since they provide a rich set of features and are easy to
use. They are often embedded into other applications to provide
an interactive interface. Web browsers are the most prevalent ap-
plications embedding JavaScript run-time environments to enable
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website creators to dynamically change the content of the current
web page without requesting a new website from the web server.
For efficient execution modern run-time environments include just-
in-time (JIT) compilers to compile JavaScript programs into native
code.
Code-injection/reuse. Unfortunately, the run-time environment
and the application that embeds dynamic languages often suffer
frommemory-corruption vulnerabilities due to massive usage of un-
safe languages such as C andC++ that are still popular for compatibil-
ity and performance reasons. Attackers exploit memory-corruption
vulnerabilities to access memory (unintended by the programmer),
corrupt code and data structures, and take control over the targeted
software to perform arbitrary malicious actions. Typically, attackers
corrupt code pointers to hijack the control flow of the code, and to
conduct code-injection [2] or code-reuse [45] attacks.

While code injection attacks have become less appealing, mainly
due to the introduction of Data Execution Prevention (DEP) or
writable xor executable memory (W⊕X), state-of-the-art attacks de-
ploy increasingly sophisticated code-reuse exploitation techniques
to inject malicious code-pointers (instead of malicious code), and
chain together existing instruction sequences (gadgets) to build the
attack payload [51].

Code-reuse attacks are challenging to mitigate in general be-
cause it is hard to distinguish whether the execution of existing
code is benign or controlled by the attacker. Consequently, there
exists a large body of literature proposing various defenses against
code-reuse attacks. Prominent approaches in this context are code
randomization and control-flow integrity (CFI). The goal of code
randomization [34] schemes is to prevent the attacker from learning
addresses of any gadgets. However, randomization techniques re-
quire extensions [5, 7, 16, 17, 24] to prevent information-disclosure
attacks [18, 50, 52]. Control-flow integrity (CFI) [1] approaches
verify whether destination addresses of indirect branches com-
ply to a pre-defined security policy at run time. Previous work
demonstrated that imprecise CFI policies in fact leave the system
vulnerable to code-reuse attacks [8, 9, 14, 19, 25, 26, 49]. Further,
defining a sufficiently accurate policy for CFI was shown to be
challenging [21].
Data-only attacks. In addition to the aforementioned attack
classes, data-only attacks [13] have been recently shown to pose a
serious threat to modern software security [30]. Protecting against
data-only attacks in general is even harder because any defense
mechanism requires the exact knowledge of the input data and
the intended data flow. As such, solutions that provide memory
safety [43, 44] or data-flow integrity [10] generate impractical per-
formance overhead of more than 100%.
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JIT attacks. Existing defenses against the attack techniques men-
tioned above are mainly tailored towards static code making their
adoption for dynamic languages difficult. For example, the JIT-
compiler regularly modifies the generated native code at run time
for optimization purposes. On the one hand, this requires the code
to be writable, and hence, enables code-injection attacks. On the
other hand, it makes state-of-the-art defenses challenging to adopt,
either due to the increased performance overhead in the case of
CFI [47] (+9.6%; in total 14.6%)1, or due to unclear practicality of
code-pointer hiding [16]. In particular, the authors point out that
the overhead for the JIT version is much higher and not every
defense deployed for static code was applied to the JIT code [16].
Further, the attacker controls the input of the JIT compiler, and
can input a program that is compiled to native code containing
all required gadgets. Finally, the attacker can tamper with the in-
put of the JIT compiler to generate malicious code, as we show in
Section 3.
Goals and Contributions. In this paper we present our defense,
JITGuard, that hardens JIT compilers for browsers against disclo-
sure attacks. To motivate our defense we first propose a generic
data-only attack against the JIT compiler that allows to execute
arbitrary code, and can bypass all existing code-injection and code-
reuse defenses. Concurrently to our work, researchers published a
data-only attack that targets internal data structures of Microsoft’s
JIT Engine [57]. As we discuss in Section 8.3 JITGuard prevents
this attack as well as our DOJITA. To protect the JIT compiler
against run-time attacks without relying on additional defenses
like code randomization or control-flow integrity, JITGuard uti-
lizes Intel’s Software Guard Extensions (SGX) [32] to execute the
JIT-code compiler in an isolated execution environment. This en-
ables JITGuard to hide the location of JIT-code in memory while
simultaneously preventing an adversary from launching data-only
attacks on the JIT-compiler. In contrast to previous work we do not
require expensive analysis of the generated program to construct
a CFI policy [47], or synchronization between processes [54], or
repetitive system calls to change memory permission [16, 41] while
providing protection against data-only attacks.
To summarize, our main contributions are:

• A generic data-only attack against JIT compilers that can by-
pass all existing JIT code protection techniques. In contrast to a
previous data-only attack [30], which only allows to manipulate
data flow (e.g., to leak cryptographic keys), our attack allows to
execute arbitrary code without manipulating any code pointers.

• A novel JIT compiler protection, JITGuard, which hardens JIT
compilers against code-injection, code-reuse, and data-only at-
tacks. JITGuard utilizes SGX to isolate the JIT compiler from the
surrounding application. As we elaborate in Section 5 this raises
a number of challenges and is technically involved.

• A proof-of-concept implementation of JITGuard for Firefox’s
JavaScript JIT compiler SpiderMonkey and real-world SGX hard-
ware. We explain in detail how we solve several performance-
related challenges that arise when executing the JIT compiler in
an enclave.

1Compared to MCFI [46], a CFI implementation by the same author for static code.
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Figure 1: Main components of a JavaScript JIT engine.

• An extensive performance and security evaluation for JITGuard.
We report an average overhead of 9.8% for the integrated bench-
marking suites of SpiderMonkey.

2 BACKGROUND AND RELATEDWORK
In this section we briefly explain the technical concepts required to
understand the remainder of this paper. We start with a short intro-
duction of Intel’s Software Guard Extensions (SGX) [32] which con-
stitutes the trusted computing base for our defense tool JITGuard.
Then we explain the basic principles of just-in-time compilers for
browsers, which is the main use case for our proof-of-concept im-
plementation in this paper.

2.1 Software Guard Extensions
SGX is a hardware extension enabling isolated execution environ-
ments called enclaves. Enclaves are created within a user-mode
process and cannot be accessed by any (higher privileged) system
entity, including the creator process and the OS. This is enforced
by the CPU through access control. In particular, the memory of
an enclave can only be accessed by the code executed within the
enclave. However, this policy can only be enforced while the en-
clave memory resides within the CPU-internal memory (cache). To
protect enclave memory outside of the CPU, it is encrypted and
integrity-protected with an enclave-specific key. The encryption
prevents attackers from accessing any secrets that are stored within
enclaves. Before the enclave memory is loaded into the CPU, SGX
verifies its integrity to ensure that an adversary did not include any
modifications.

The code executed within an enclave runs in the context of the
creating process. Thus, it can access the process memory, e.g., for
communicating with the host. SGX ensures that the enclave is
isolated from other processes, enclaves, and the operating system.

2.2 JIT Engines
JIT engines provide a run-time environment for high-level scripting
languages, allowing the script to interact with application-specific
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functionality. They leverage so-called just-in-time (JIT) compilers
to transform an interpreted program or script into native code at
run time. Browsers in particular make heavy use of JIT compilers
to increase the performance of JavaScript programs. JavaScript is a
high-level scripting language explicitly designed for browsers to
dynamically change the content of a website, e.g., in reaction to user
input. In general, JIT engines consist of at least three main com-
ponents, as shown in Figure 1: 1 an interpreter, 2 a JIT compiler
and 3 a garbage collector.

1 Interpreter. The purpose of JIT compilers is to increase the
execution performance of JavaScript by compiling the script to
native code. Since compilation can be costly, usually not all of
the scripting code is compiled. Instead, JIT engines include an
interpreter which transforms the input program into unoptimized
bytecode, which is then executed by the interpreter. During the
execution of the bytecode, the interpreter profiles the JavaScript
program to identify parts (i.e., usually functions) of the code which
are executed frequently (hot code). When the interpreter identifies
a hot code path, it estimates if compilation to native code would be
more efficient than continuing to interpret the bytecode. If this is
the case, it passes the hot code to the JIT compiler.

2 JIT compiler. The JIT compiler takes the bytecode as input
and outputs corresponding native machine code. Similar to regu-
lar compilers, the JIT compiler first transforms the bytecode into
an intermediate representation (IR) of the program, which is then
compiled into native code, also called JIT code. In contrast to the
bytecode, which is interpreted in a restricted environment through
a virtual machine, this native code is executed directly by the pro-
cessor that runs the browser application. To ensure that malicious
JavaScript programs cannot harm the machine of the user, the JIT
compiler limits the capabilities of the emitted JIT code. In partic-
ular, the compiled program cannot access arbitrary memory, and
the compiler does not emit potentially dangerous instructions, e.g.,
system call instructions. Further, the emitted native code is con-
tinuously optimized, and eventually, de-optimized when the JIT
compiler determines that this is not needed anymore. Because the
JIT compiler has to write the emitted native code to memory as
part of its output, the most straightforward way of setting up JIT
code pages is to set them as read-write-executable. Since such pages
represent an easy target for attackers, browsers started mapping
JIT pages as writable while the compiler emits the native code, and
re-mapping the JIT pages to non-writable afterwards [41]. How-
ever, there is still a window of opportunity for an attacker while
the compiler is emitting the code.

3 Garbage Collector. The last major component is the garbage
collector. In contrast to C and C++, in JavaScript the memory is man-
aged automatically. This means that the garbage collector tracks
memory allocations and releases unused memory when it is no
longer needed.

2.3 JIT-based Attacks and Defenses
Typically attacks on JIT compilers exploit the read-write-executable
JIT memory in combination with the fact that attackers can in-
fluence the output of the JIT compiler by providing a specially

Address     Opcodes       Disassembly 
1:          90            nop
2:          90            nop
3:          90            nop
4:          3C35          cmp al, 35 
6:          90            nop
7:          90            nop
8:          90            nop
9:          90            nop

Unaligned Native Code

Address     Opcodes       Disassembly 
0:          B8 9090903C   mov  eax, 0x3C909090
5:          35 90909090   xor  eax, 0x90909090

Native Code

function foo() {
    var y = 0x3C909090 ^ 0x90909090;
}

JavaScript

Figure 2: During JIT spraying the attacker exploits that large constants are
directly transferred into the native code. By jumping into the middle of an
instruction the attacker can execute arbitrary instructions that are encoded
into large constants.

crafted input program. In the popular pwn2own exploiting con-
test, Gong [28] injected a malicious payload into the JIT memory
to gain arbitrary code execution in the Chrome browser without
resorting to code-reuse attacks like return-oriented programming
(ROP) [51]. To prevent code-injection attacks, W⊕X was adapted
for JIT code [11, 12, 16, 41]. However, as discussed in the previous
section, JIT code pages must be changed to writable for a short time
when the JIT compiler emits new code, or optimizes the existing JIT
code. Song et al. [54] demonstrated that this small time window can
be exploited by an adversary to inject a malicious payload. They
propose to mitigate this race condition by splitting the JIT engine
into two different processes: an untrusted process which executes
the JIT code, and a trusted process which emits the JIT code. Their
architecture prevents the JIT memory from being writable in the
untrusted process at any point in time. Since the split JIT engine
now requires inter-process communication and synchronization
between the two processes, the generated run-time overhead can
be as high as 50% for JavaScript benchmarks. Further, this approach
does not prevent code-reuse attacks.

Code-reuse attacks chain existing pieces of code together to ex-
ecute arbitrary malicious code. JIT engines facilitate code-reuse
attacks because the attacker can provide input programs to the
JIT compiler, and hence, influence the generated code to a certain
degree. However, as mentioned in Section 2.2, the attacker cannot
force the JIT compiler to emit arbitrary instructions, e.g., system
call instructions which are required for most exploits. To bypass
this restriction Blazakis [6] observed that numeric constants in
a JavaScript program are copied to the JIT code, as illustrated in
Figure 2: an adversary can define a JavaScript program which as-
signs large constants to a variable, here the result of 0x3C909090
xor 0x90909090 is assigned to the variable y. When the compiler
transforms this expression into native code, the two constants are
copied into the generated instructions. This attack is known as JIT
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spraying and enables the attacker to inject 3-4 arbitrary bytes into
the JIT code. By forcing the control flow to the middle of the mov
instruction, the CPU will treat the injected constant bytes as an
instruction and execute them.

JIT spraying can be mitigated by constant blinding, i.e., masking
large constant C through xor with a random value R at compile
time. The JIT compiler then emits an xor instruction to unblind the
masked constant before using it (((C ⊕ R) ⊕ R = C ⊕ 0 = C). While
constant blinding indeed prevents JIT spraying it decreases the
performance of the JIT code. Further, Athanasakis et al. [4] demon-
strated that JIT spraying can also be performed with smaller con-
stants, and that constant blinding for smaller constants is impracti-
cal due to the imposed run-time overhead. Recently, Maisuradze
et al. [36] demonstrated a JIT-spraying attack by controlling the
offsets of relative branch instructions to inject arbitrary bytes into
the JIT code.

Another approach to mitigate JIT-spraying is code randomiza-
tion. Homescu et al. [29] adopted fine-grained randomization for
JIT code. However, similar to static code, code randomization for
JIT code is vulnerable to information-disclosure attacks [52]. While
Crane et al. [16] argued that leakage resilience based on execute-
only memory can be applied to JIT code as well, they do not im-
plement code-pointer hiding for the JIT code which makes the per-
formance impact hard to estimate. Tang et al. [55] and Werner et
al. [59] proposed to prevent information-disclosure attacks through
destructive code reads. Their approach is based on the assumption
that benign code will never read from the code section. Destructive
code reads intercept read operations to the code section, and over-
write every read instruction with random data. Hence, all memory
leaked by the attacker is replaced by random data, rendering it unus-
able for code-reuse attacks. However, Snow et al. [53] demonstrated
that this mitigation is ineffective in the setting of JIT code. In par-
ticular, the attacker can use the JIT compiler to generate multiple
versions of the same code by providing a JavaScript program with
duplicated functions. Upon reading the code section the native code
of the first function will be overwritten while the other functions
are intact and can be used by the attacker to conduct a code-reuse
attack.

Ansel et al. [3] designed a generic sandboxing approach based
on Software-based Fault Isolation (SFI), which prevents the JIT-
compiled code from modifying other parts of the program. The
authors do not quote a single overhead figure, however, almost all
of their benchmarks have an overhead greater than 20%.

Niu et al. [47] applied CFI to JIT code and found that it generates
on average 14.4% run-time overhead and does not protect against
data-only attacks which do not tamper with the control flow but
manipulate the data flow to induce malicious behavior.

3 OUR DATA-ONLY ATTACKS ON JIT
COMPILERS

Overview. As mentioned in the previous Section, existing JIT
protections only aim to prevent code-injection or code-reuse at-
tacks. However, in our preliminary experiments we observed that
arbitrary remote code execution is feasible by means of data-only
attacks which corrupt the memory without requiring to corrupt

JIT Compiler

Vulnerable 
Application

Attacker

Native Code

1 Exploit
Vulnerability

2 Trigger Native
Compiler

Trigger
execution7

Output

IR

Generate3
5 Input

6

4 Inject attacker IR
into existing IR

Figure 3: DOJITA enables the attacker to execute arbitrary code through a
data-only attack. In particular, the attacker manipulates the IR which is then
used by the JIT compiler to generate native code that includes a malicious
payload.

any code pointers. We implemented an experimental data-only at-
tack against JIT compilers, coined DOJITA (Data-Only JIT Attack),
that manipulates the intermediate representation (IR) to trick the
JIT compiler into generating arbitrary malicious payloads. Our ex-
periments underline the significance of data-only attacks, in the
presence of defenses against control-flow hijacking, and motivate
the design of our defense JITGuard. Figure 3 shows the high-level
idea of DOJITA:

The attacker 1 exploits a memory-corruption vulnerability to
read and write arbitrary data memory; 2 identifies a hot function
F in the input program, which will be compiled to native code;
3 during the compilation of F the JIT compiler will generate the
corresponding IR; the attacker discloses the memory address of the
IR in memory which is commonly composed of C++ objects; 4 in-
jects crafted C++ objects (the malicious payload) into the existing
IR. 5 Finally the JIT compiler uses the IR to generate the native
code 6 . Since the IR was derived from the trusted bytecode input,
the JIT compiler does not check the generated code again. 7 Thus,
the generated native code now contains a malicious payload that is
executed upon subsequent invocations of the function F .

Details. For our experiments we chose the JavaScript engine
of Internet Explorer, called Chakra [38]. Our goal is to achieve
arbitrary code execution by exploiting a memory-corruption vul-
nerability without manipulating the JIT code or any code pointers.
Further, we assume that the static code and the JIT code are pro-
tected against code-reuse and code-injection attacks, e.g., by either
fine-grained code randomization [16], or fine-grained (possibly
hardware-supported) control-flow integrity [31, 47].

For our attack against Chakra we carefully analyzed how the
JIT compiler translates the JavaScript program into native code.
We found that the IR of Chakra is comprised of a linked list of
IR::Instr C++ objects where each C++ object embeds all informa-
tion, required by the JIT compiler, to generate a native instruction or
an instruction block. These objects contain variables like m_opcode
to specify the operation, and variables m_dst, m_src1, and m_src2
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IR::Instr

...

m_src1
m_dst
m_opcode

m_src2

m_next
IR::Instr
m_next

IR::Instr
m_next

m_opcode

m_src2

IR::Instr

m_src1

m_opcode

m_dst

m_next

...

m_opcode

m_src1m_src1
m_dstm_dst

...
m_src2

...
m_src2

...

m_next
m_opcode

m_src1

IR::Instr

m_dst

m_src2

m_next
IR::Instr

m_src1

...

m_dst
m_opcode

m_src2

Figure 4: The IR ofChakra consists of a linked list of IR:InstrC++ objects. The
attacker injects instructions by overwriting the m_next pointer of a benign
object (dotted line) to point to a linked list of crafted objects.

to specify the operands for the operation. To achieve arbitrary code
execution, we carefully craft our own objects, and link them to-
gether. Figure 4 shows the IR after we injected our own IR::Instr
objects (lower part of the figure), by overwriting the m_next data
pointer of the benign IR::Instr objects (upper part of the figure).
When the JIT compiler uses the linked list to generate the native
code it will include our malicious payload. It is noteworthy that
m_opcode cannot specify arbitrary operations but is limited to a
subset of instructions like (un-)conditional branches, memory ac-
cesses, logic, and arithmetic instructions. This allows us to generate
payloads to perform arbitrary computations, and to read and write
memory. However, for a meaningful attack we have to interact with
the system through system calls. We inject a call instruction to
the system call wrapper functions which are provided by system
libraries. To resolve the addresses of these function, we leverage a
similar approach as JIT-ROP [52]. In particular, we first disclose the
address of GetProcAddress() which is a function that takes the
name of an exported library function as an argument and returns
its address. This enables our payload to resolve and call arbitrary
functions, and hence, interact with the system.

Our proposed data-only attack against the JIT compiler cannot
be mitigated by any state-of-the-art defenses or defenses proposed
in the literature [16, 47]. The reason is that these defenses cannot
distinguish the benign IR from the injected IR.

Implementation. For our proof-of-concept of DOJITA we imple-
mented an attack framework that allows the attacker to specify
an arbitrary attack payload. Our framework parses and compiles
the attack payload to the ChakraCore IR, i.e., the framework au-
tomatically generates C++ memory objects that correspond to the
instruction of the attack payload. Next, the framework exploits
a heap overflow in Array.map() (CVE-2016-7190), which we re-
introduced to themost recent public version of ChakraCore (version
1.4), to acquire the capability of reading and writing arbitrary mem-
ory. After disclosing the internal data-structures of the JIT compiler,
we modify a number of data pointers within these structures to
include our malicious IR. The JIT compiler will then iterate through

the IR memory objects, and generate native code. While the injec-
tion of malicious IR into the benign IR depends on a race condition,
we found that the attack framework can reliably win this race by
triggering the execution of the JIT compiler repeatedly. Appendix A
contains an example payload that creates a file and writes arbitrary
content to it.

Our proposed data-only attack against the JIT compiler cannot
be mitigated by any state-of-the-art defenses or defenses proposed
in the literature [16, 47]. The reason is that these defenses cannot
distinguish the benign IR from the injected IR.

In our testing, DOJITA succeeded 99% of the times.

Comparison to Related Work. Independently from our work,
Theori [57] published a similar attack that also targets the internal
data structures of Microsoft’s JIT compiler. Their attack targets a
temporary buffer which is used by the JIT compiler during com-
pilation to emit the JIT code. This temporary buffer is marked as
readable and writable. However, once the JIT compiler generated
all instruction from the IR, it relocates the content of the tem-
porary buffer into the JIT memory which is marked as readable
and executable. By injecting new instructions into this temporary
buffer one can inject arbitrary code into the JIT memory. Microsoft
patched the JIT compiler to include a cyclic redundancy checksum
of the emitted instructions during compilation. The JIT code is only
executed if the checksum of the relocated buffer corresponds to the
original checksum.

This defense mechanism which was recently added by Microsoft
does not prevent our attack. While the attack by Theori [57] is simi-
lar to ours, we inject our malicious payload at an earlier stage of the
compilation. As a consequence, the checksum, which is computed
during compilation, will be computed over our injected IR. Since
we do not perform any modifications in later stages, the checksum
of the relocated buffer is still valid and the JIT compiler cannot
detect our attack.

In the remainder of this paper, we present our novel defense
that leverages Intel’s SGX to mitigate code-injection, code-reuse,
and data-only attacks against just-in-time compilers (including
DOJITA).

4 THREAT MODEL AND ASSUMPTIONS
Themain goal of this paper is to mitigate attacks that target JIT code
generation and attacks exploiting the JIT-compiled code. Therefore,
our threat model and assumptions exclude attacks on the static
code. Our threat model is consistent with the related work in this
area [6, 16, 36, 47, 54].
• Static code is protected. State-of-the-art defenses against code-

injection and code-reuse attacks for static code are deployed and
active. In particular, this means that code-injection is prevented
by enforcing DEP [37], and code-reuse attacks are defeated by
randomization-based solutions [16, 17], or (hardware-assisted)
control-flow integrity [1, 31, 58]. Additionally, we assume that
the static code of the application and the operating system are
not malicious.

• Data randomization. The targeted application employs Ad-
dress Space Layout Randomization (ASLR) [48]. This prevents an
adversary from knowing any addresses of allocated data regions
a priori and enables us to hide sensitive data from the attacker.
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• Secure initialization. An adversary can only attack JITGuard
after its initialization phase.

• Memory-corruption vulnerability. The target program suf-
fers from at least one memory-corruption vulnerability. The
attacker can exploit this vulnerability to disclose and manipulate
data memory of known addresses. This is a common assumption
for browser exploits [14, 49, 52].

• Scripting Engine. An adversary can utilize the scripting engine
to perform arbitrary (sandboxed) computations at run time, e.g.,
adjust the malicious payload based on disclosed information.

The goal of the adversary is to gain the ability to execute arbitrary
code in the browser process. The attacker can then try and further
compromise the system, or leak sensitive information from the web
page (e.g., launching the attack from some malicious advertisement
code). The use of some defense mechanisms, like sandboxing [15,
27], can make the former attack harder. However, such defenses do
not prevent the latter attack and are orthogonal to JITGuard.

We also note that any form of side-channel, e.g., cache and timing
attacks to leak randomized memory addresses, or hardware attacks
are beyond the scope of this paper.

5 DESIGN OF JITGUARD
Our main goal is to harden the JIT compiler against code-injection,
code-reuse and data-only attacks. To achieve this we isolate all
critical components of the JIT compiler from the main application,
potentially containing a number of exploitable vulnerabilities. The
isolation is enforced through hardware by utilizing SGX. Note, that
intuitively one can isolate the whole JIT engine with SGX. However,
the JIT code frequently interacts with static code, and since every
call requires a context switch between enclave and host process,
this would result in a tremendous amount of overhead. To avoid
this overhead we decompose the JIT engine to execute the JIT code
outside of the enclave. To prevent the attacker from exploiting the
JIT code to launch code-injection or code-reuse attacks we hide the
JIT code by using randomization. Further, we mitigate information
disclosure attacks by building an indirection that transfers the
control flow between the static application code and the JIT code
without disclosing the address of the JIT code through trampolines.
Figure 5 shows our design of JITGuard in more detail:

1 We use SGX to isolate the JIT compiler and its data from the
rest of the application. As a consequence the attacker can no longer
exploit memory-corruption vulnerabilities in the host process to
launch attacks against the JIT compiler, as described in Section 3.
2 We randomize the JIT code and JIT stack memory addresses to
protect against code-injection and code-reuse attacks and prevent
the attacker from locating the JITGuard-Region. Even though our
randomization does not prevent an adversary from injecting code,
e.g., by compiling a specially crafted JavaScript program [6, 36],
the attacker cannot disclose the address of the injected code which
is required to redirect the control flow to the injected code. The
same holds for code-reuse attacks where the attacker requires the
addresses of the gadgets.

3 We leverage segmentation registers to build an indirection
layer to prevent information-disclosure attacks that target the tran-
sition between static and JIT code. This is necessary since the
attacker is able to disclose data at known addresses (see Section 4).
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Figure 6: The same region of physical memory is mapped twice in the virtual
memory with different permissions.

Thus, we utilize trampolines which contain jump instructions that
obtain the address of the JIT code using an offset from a segmen-
tation register. The content of the segmentation register itself is
available only through a system call, hence an adversary needs to
launch a successful attack against the JIT compiler to disclose it. The
compiler needs to be able to efficiently update the indirection layer;
however, using read-write-executable permissions would allow an
attacker to simply inject new code into the trampoline mapping. To
allow the former without the latter, we employ a double mapping
of the trampolines (see Figure 6).

Using this technique, the same region in physical memory 4 is
mapped twice in the virtual address space of the process. The first
mapping 5 is executable but not writable. The second mapping 6
is writable but not executable, and its address is protected through
randomization. The compiler uses the second mapping to update
the trampolines (e.g., when a new function is compiled) and the
indirection layer, while the (potentially vulnerable) static code uses
the executable trampoline mapping. Although an adversary has
access to the executable mapping, the address of JIT code cannot be
leaked through the executable trampoline since it is protected using
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the segmentation register. In the following we present a proof-of-
concept implementation of JITGuard based on the JavaScript engine
of Firefox called SpiderMonkey. We will explain in detail how we
tackle the challenge of decomposing the JIT engine, adapting the
JIT compiler to SGX, and preventing the JIT compiler and JIT code
from leaking the location of the JITGuard-Region.

Our modifications consist of 2 673 additional lines of code, com-
pared to 521 000 lines of C/C++ code in the SpiderMonkey source.

6 ISOLATING THE JIT COMPILERWITH SGX
The core component of JITGuard is an SGX enclave which contains
the code and data of the JIT compiler and the randomization se-
crets. We will use enclave to refer to this specific enclave. While
enclaves are well suited for isolating trusted code and data, the
SGX threat model assumes everything outside of the enclave is
untrusted. Therefore, SGX requires a context switch to execute
code outside of the enclave. This is an expensive operation and
makes the straightforward approach of isolating the whole JIT en-
gine (including the generated JIT code) impractical because the JIT
code frequently interacts with static application code. In particular,
we measured up to 600 interactions per millisecond in our tests.
However, our threat model (Section 4) is different to that of SGX:
we assume that the code running outside the enclave (static code
and operating system) is not malicious. This allows us to relax
some of the constraints of regular enclave applications. Instead of
using SGX to isolate the full JIT engine, we use it to isolate the
security-critical components (JIT compiler), and to securely store
the randomization secret. This approach enables us to bootstrap
the JITGuard-Region, whose address is unknown to the attacker.
By emitting the JIT code to the JITGuard-Region it can be executed
securely outside the enclave, and we avoid disclosing the location
of the JITGuard-Region by using trampolines. Thus, the JIT code
can interact with the static application code without requiring SGX
context switches.

In the following, we provide more details on how we initialize
JITGuard and the interaction of the JIT compiler in the enclave
with the rest of the JIT engine.

6.1 Initialization
JITGuard is initialized at the start of the program before the attacker
can interact with the vulnerable application. Hence, we can launch
the initialization phase from the static code part of the application.
The initialization component of JITGuard first allocates two mem-
ory regions, the trampoline and the JITGuard-Region, and then
starts the enclave.

JITGuard chooses the location of the JITGuard-Region perfectly
at random and uses it to store the JIT code, the JIT stack, and the
writable mapping of the trampolines. The protection of the JIT
code and stack is based on the assumption that the location of the
JITGuard-Region remains secret throughout the execution of the
application. JITGuard achieves this by passing the randomization
secret to the enclave and setting all memory that was used during
the initialization phase to zero. Henceforth, all memory accesses to
the JITGuard-Region are mediated through the enclave to prevent
the address from being written to memory which is accessible to
the attacker.

The second memory region is the executable mapping of the
trampolines. This double mapping of the trampolines is necessary
because JITGuard needs to modify the trampolines during run time
and the attacker can infer the address of the executable trampo-
lines based on pointers used by the static code. Without this double
mapping, a less secure solution would be to switch the memory
region between read-writable and read-executable. However, an ad-
versary could still exploit the short time window while the memory
is writable to inject malicious code into the trampoline region [54].
We provide more details on our trampoline mechanism in Section 7.

Finally, JITGuard sets up the JIT compiler enclave providing the
address of the JITGuard-Region as a parameter. As mentioned in
Section 2.2, the JIT engine consists of different components. How-
ever, we encapsulate only the JIT compiler inside an enclave. While
switching between enclave and host execution has some overhead,
we carefully designed JITGuard to achieve practical performance,
by executing the rest of the components of the JIT engine outside
the enclave. In our security analysis (Section 8) we explain how
JITGuard securely interacts with the host process.

6.2 Run Time
JITGuard requires a few modifications to the JIT compiler: (1) to be
compatible to SGX, (2) to prevent disclosure of the location of the
JITGuard-Region, and (3) to emit the JIT code to the randomized
memory region.

6.2.1 SGX Compatibility. To make the JIT compiler compatible
with SGX we created a custom system call wrapper and adjusted
the internal memory allocator. As mentioned in Section 2.1, the
operating system is considered untrusted in the SGX design, which
is why the code inside of an enclave cannot use the system call in-
struction. To issue a system call, the enclave code has to first switch
execution to the host process, and then call a wrapper function
of a system library. The SGX developer framework provides func-
tionality to easily call outside functions from the enclave. Outside
functions can then invoke any system call. However, for system
calls in JITGuard we abstained from using the functions generated
by the SDK for two reasons: first, the context switch function of
the developer framework saves the complete state (i.e., all registers)
to enclave memory and then clears the content of all registers to
prevent information leakage to the host process or the operating
system. This is not necessary in our case because we consider the
attacker can only access application memory; second, by issuing a
system call through a library function, data might be leaked outside
of the enclave which then becomes accessible to the attacker. To
avoid both cases, we implemented our own system call wrapper
which stores the required parameters in the designated registers
inside the enclave, and then exits the enclave to issue the syscall
instruction (without storing and clearing the state or writing any-
thing to the application memory). Further, we adjusted the internal
memory allocator of the JIT compiler to use pre-allocated memory
within the enclave to avoid leaking information to the application
memory.

6.2.2 Leakage-resilience. Another challenge is to prevent the JIT
compiler from leaking the address of the JITGuard-Region. Since
the JIT compiler consists of a huge code base it is hard to verify that
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no instruction leaks this address. We avoid manual inspection of
the whole source code of the JIT compiler by employing a fail-safe
technique that is based on a fake pointer. In particular, JITGuard
converts the real pointer to the JITGuard-Region into a fake pointer
by adding a random offset during the creation of the enclave. We
then modify each function that requires access to the JITGuard-
Region (e.g., to emit the JIT code or modify the trampoline) to first
convert the fake pointer back to the original pointer. This happens
as late as possible, e.g., in the very C++ statement that writes a jump
target to the JIT-compiled code page. At the same time we verify
that the code which uses the pointer does not leak the pointer to
memory outside of the enclave. This technique is fail safe because
even if a non-verified function within the enclave would leak the
address, it would only leak the fake pointer. However, the fake
pointer is useless to the attacker without the random offset, which
is stored securely inside enclave memory.

6.2.3 JIT Code Generation. The JavaScript interpreter con-
stantly profiles the code while it executes it. Once the profiler
determines it would benefit the performance to compile the inter-
preted code into native code, it calls the JIT compiler. In JITGuard
this requires the interpreter to issue a context switch to the enclave
and to pass the interpreted code as a parameter. The advantage
of this design is that we have a single point of entry for the JIT
compiler. SGX allows the enclave to access the host memory, so
the compiler in the enclave can directly access the data in the host
memory without the need to copy the data first.

In addition to that, the JIT compiler requires a small number of
functions from the host, e.g., such as timing information, for which
we add dedicated enclave exit points to switch execution to the
host process.

6.3 SpiderMonkey
The previously mentioned implementation details are not specific to
SpiderMonkey, but are valid for most JIT compilers. In the following
we discuss some SpiderMonkey-specific aspects we encountered
while implementing JITGuard.

SpiderMonkey features a second JIT compiler, called IonMonkey.
IonMonkey takes the native code of the regular JIT compiler, called
the Baseline compiler, and speculatively optimizes it (e.g., assuming
that the variables will have the same type as previous invocations).
For our proof-of-concept implementation of JITGuard we disabled
IonMonkey. However, from a conceptual point of view, IonMonkey
can be extended in the same way as the Baseline compiler.

Further, SpiderMonkey recently adopted W⊕X for the JIT code
which simplified extending SpiderMonkey with JITGuard. The rea-
son is that JIT compilers which do not employ W⊕X expect to be
able to modify the JIT code at any time, and thus modifications
are spread over multiple functions. In JITGuard the native code
is emitted to the JITGuard-Region, which requires us to adjust all
functions that modify the JIT code. This is limited to a small number
of functions in SpiderMonkey. On the other hand, JIT compilers
that do not support W⊕X can be extended with JITGuard as well,
although we would expect additional engineering effort because of
the more widespread modifications to the JIT code.

➁
JMP *(segReg + offset)

Call Trampoline

Static Code

CALL tr_jit_fun

fun:

Direct disclosure offset :  address of jit_fun

Jump Table

JIT Code

➀ jit_fun:
SWAP_STACK
ASM_INS

Native Stack

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

JIT Stack

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

➂

Figure 7: JITGuardmediates control-flow transfers from static code to the JIT
code through call trampolines. In this way, function pointers to the random-
ized JIT region are hidden from an adversary.

7 TRANSFERRING CONTROL FLOW
BETWEEN JIT AND STATIC CODE

JITGuard randomizes the memory location of the JIT code, JIT
stack, and the writable trampoline mapping to protect them from an
adversary with access to the host process memory. However, during
run time the JIT code closely interacts with the static code inside
the host process. Indeed, we counted the number of control-flow
switches between the static code and the JIT code and measured up
to 600 times per millisecond in our testing. Since the attacker has
access to the host memory, we must prevent leaking any pointers
from the randomized region into the non-randomized part of the
host memory. This is challenging, because usually JIT and static
code use the same stack during execution.

To cleanly isolate randomized JIT code from static code, we also
switch to a separate stack, which is hidden inside our randomized
region. In this way, the randomized stack can be used safely during
JIT execution and an adversary cannot recover a return pointer to
the JIT code from the native stack. In the following, we describe
how JITGuard securely handles the transition from static code to
JIT code execution, and JIT code to static code execution.

7.1 Static Code calls JIT Code
Static code calls JIT code functionswhen switching from interpreted
to optimized script code. This is depicted in Figure 7.

In Step 1 the static code initiates the switch to the JIT code
by calling a trampoline. Each trampoline targets a single JIT code
function.

If the pointers to the JIT-compiled functions were written as
constants directly in the trampoline code, an adversary could easily
disclose these pointers and compromise the randomized code region.
To prevent this, we set up a x86 segment at initialization time2 so
that it starts at a random address. Hence, we only need to write an
offset into that segment to the trampoline. In Step 2 the trampoline
fetches the address of the function inside the randomized area
from a jump table in the randomized segment. Each trampoline
consists of a single jump instruction that retrieves the address using
a constant offset in the segment, e.g., jmp *%gs:(0x2a00). The

2While memory segmentation is not enforced in the 64 bit modes of the x86 processor,
segment registers can still be used to hold such base addresses. This is used on some
operating systems, e.g., to implement fast access to per-cpu data [35]. We leverage the
segmentation register gs, which is not used otherwise.
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➁
Static Code

ASM_INS
RET

fun:

Direct disclosure offset :  fun return address

Jump Table

JIT Code

jit_fun:
SETUP_RET
SWITCH_STACK
JMP fun

Native Stack

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

JIT Stack

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

➂ JMP *(segReg + offset)

Return Trampoline ➀

Figure 8: JITGuard mediates control-flow transfers from JIT code to static
code through return trampolines. These are set up by the JIT code before
jumping to the static function. This hides the return address to the JIT code
from the static code.

start address of the segment cannot be disclosed by the attacker.3
The jump table is protected from the attacker because it is located
inside a randomized region.4

In Step 3 the JIT code switches from the native stack to the
randomized stack, and subsequently starts executing its code. In
particular, the randomization code updates rsp and rbp to their
new location inside the randomized area and saves their previous
values in the JIT stack. The JIT code expects a particular alignment
of the stack, so the randomization code needs to adjust the stack
to that alignment. When the JIT-compiled function returns, the
randomization code restores the old values for the registers so they
point to the normal stack again and returns execution to the static
code.

The compiler needs a way to prepare those trampolines. If the
trampolines were writable by the host code, the attacker could write
malicious code to the trampoline and execute it. Thus, JITGuard
leverages a double mapping of the trampolines (see also Figure 6),
and keeps the address of the writable mapping hidden inside its
SGX enclave, so the host code cannot read it.

7.2 JIT Code calls Static Code
During JIT code execution, it is possible to call functions inside the
static code. For instance, JIT code may call a library function that
is implemented in static code.

Usually, the return address of a function is stored on the stack. If
the JIT code calls the native code without taking special measures,
the native code can easily retrieve the return pointer from the stack
and disclose the location of the JITGuard-Region. To prevent this
attack, the native code uses return trampolines to return securely
to the JIT code. Using this scheme, the return address on the native
code stack actually represents the address of the return trampo-
line, which then retrieves the original return address using the
randomized segment (see Section 7.1).

Hence, the JIT code has to prepare the return trampoline prior to
calling the static code function in Step 1 of Figure 8. In particular,
3The base address of the segment can only be disclosed using a system call, arch_prctl,
or using a special instruction, rdgsbase. Our threat model prevents the adversary
from invoking that system call, since it is only used in the initialization code. The
instruction rdgsbase has to be explicitly activated by the operating system, which is
currently not even supported on Linux (and it is not used by Firefox).
4Theoretically, the native code could read the pointers in the randomized segment
using an instruction like mov *%gs:(0x2a00), %rax, but the gs segment register is
not used anywhere in the code of Firefox.

it will store the return address to the JIT code in a jump table, that
is protected because it is located inside the randomized segment.
Furthermore, it will switch the stack pointer to the native stack,
save the offset between the two stacks in the randomized segment,
and set the return address on the native stack to point to the return
trampoline.

In Step 2 , the JIT code then issues the static code function call.
The static code then executes normally5 until it returns. The return
trampoline in Step 3 then retrieves the original return address
using the segment register and an offset into the jump table. Finally,
it returns to the JIT code, which will restore the JIT stack using the
saved offset and continue execution at the instruction immediately
after the call to the static code.

8 SECURITY ANALYSIS
The goal of JITGuard is to mitigate code-injection, code-reuse, and
data-only attacks against the JIT code. As written in our threat
model (Section 4), protecting the static code, i.e., the browser and
the static part of the JIT compiler, is beyond the scope of this paper
and can be achieved leveraging existing defenses [1, 16, 33].

8.1 Code-injection/reuse Attacks
Both code injection and reuse techniques are used by the attacker
to execute arbitrary code after the control flow has been hijacked.
In particular, the attacker overwrites a code pointer with a mali-
cious pointer to injected code or the first gadget of a ROP payload.
However, this requires that the attacker knows the exact address
of the injected code or the gadget.

JITGuard does not prevent the attacker from injecting code us-
ing techniques like JIT spraying [6, 36]. However, we prevent the
attacker from disclosing the JITGuard-Region which contains the
JIT code and data. As a consequence, the attacker cannot hijack
any code pointers used by the JIT code, and cannot exploit the
generated JIT code for code-injection or code-reuse attacks.

Next, we analyze the resilience of JITGuard against information-
disclosure attacks.

8.2 Information-disclosure Attacks
The security of JITGuard is built on the assumption that the attacker
cannot leak the address of the JITGuard-Region. Therefore, we
carefully analyzed every component that communicates with the
JITGuard-Region and analyzed them. In particular, there are seven
components that interact with the randomized region, and hence,
could potentially leak the randomization secret: (1) the initialization
code, (2) the JIT compiler in the enclave, (3) the JIT code, (4) the
trampolines, (5) the transitions between JIT and static code, (6) the
garbage collector, or (7) system components. In the following we
explain how JITGuard prevents information-disclosure attacks for
each of these components.

5Some native functions require access to the most recent stack frames on the JIT stack.
We support this through copying the most important information of a small number
of recent stack frames from the JIT stack to the corresponding location on the native
code stack. The fields we copy do not contain pointers to the stack and we replace the
address return pointers with the corresponding trampolines. We do not copy these
frames back to the JIT stack, so the native code has no way to influence the JIT stack
(except legitimately returning a value to the caller).
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(1) Initialization code. During the initialization the JITGuard-
Region is allocated through the mmap system call which returns
the memory address. Next, the address of the JITGuard-Region is
passed to the enclave, and we set all registers, local variables, and
the stack memory that is used for temporarily spilling register to
zero. This ensures that the address of the JITGuard-Region is not
stored in memory outside of the enclave.

(2) Enclave. The first action the initialization function of the
enclave takes is to obfuscate the address of the JITGuard-Region
by adding a random value. Henceforth, the JIT compiler will work
on the fake pointers. Note that those fake pointers are useless to
an attacker without the random offset, which is stored securely
inside the enclave. We identified 11 functions that require the actual
address of the JITGuard-Region, e.g., to allocate memory for the JIT
code stack, or to write the generated JIT code. We patch all of these
functions to convert the fake pointer back to the original address as
late as possible, e.g., in the very C++ statement that writes a jump
target to the JIT-compiled code page. Further, we ensure that the
original address is then not propagated in the data structures of the
JIT compiler. Since we add this translation to the code ourselves, and
it happens at the very last moment, we can verify that the address
to the JITGuard-Region is never leaked by those 11 functions. Due
to the large code base of the JIT compiler we cannot exclude the
possibility that other functions leak the address of the JITGuard-
Region to memory outside of the enclave. However, in this case
these functions would only leak the fake pointer which cannot be
de-obfuscated without possessing the randomization secret which
is stored securely within the enclave.

(3) JIT code. The JIT code does not leak any pointers to the
JITGuard-Region to attacker-accessiblememory. To do this, it would
need to leak either the program counter or the stack pointer to the
heap. We carefully analyzed the JIT compiler and found no support
for such behavior.

Another way the attacker could force the JIT code to indirectly
leak an address that points into the JITGuard-Region is to generate
an exception while the JIT code is executing. This would cause the
operating system to store the current execution context (including
instruction and stack pointers, which would both point into the
JITGuard-Region) in a memory region readable by the attacker.
There are two main strategies the attacker could use to trigger an
interrupt: cause the JIT code to access invalid memory to trigger an
exception, or use a timer to trigger a delayed interrupt. However,
both strategies are infeasible. First, JavaScript is a memory-safe
language, and the JIT-compiled code cannot access invalid mem-
ory. Second, the execution of JavaScript is single-threaded, and
timer events are delivered synchronously, which means that the
JIT code first safely exists, before a timer event, e.g., triggered by
setTimeout(), is handled.

(4) Trampolines. Throughout the run time, the execution
switches between the native code and the JIT code. As explained
in the previous paragraph the JIT code cannot leak any addresses
of the JITGuard-Region. We use trampolines as an indirection to
prevent that any pointers to the JITGuard-Region are leaked to
memory that can be disclosed by the static code. The trampolines
adjust the stack pointer to point to the native or JIT stack, and

change the control flow. The trampolines use a segment register
as an indirection to access the JITGuard-Region to avoid leaking
any addresses during this transition. Specifically, the CPU resolves
the indirection using the segment register as a base address. The
segment base address is set in the kernel. This translation is trans-
parent to user mode, thus, the attacker cannot disclose the location
of the JITGuard-Region through the trampolines.

(5) JIT/static code transitions. To ensure the JIT code does not
leak any information when it calls a static function, we check any
arguments and the CPU registers to make sure they do not repre-
sent or contain pointers to the JITGuard-Region. We use similar
checks to verify the return value of JIT-compiled functions to static
functions.

(6) Garbage collector. Dynamic languages employ a garbage
collector for automatic memory management. This requires the
garbage collector to be aware of all memory that is used throughout
the execution. On the other hand, the garbage collector code out-
side the enclave cannot handle addresses in the JITGuard-Region.
We moved the code responsible for the garbage collection of sen-
sitive memory areas (JIT-compiled code, JIT stack) to the enclave,
where the actual addresses are available. As a consequence, the at-
tacker cannot leak addresses to the JITGuard-Region by disclosing
memory used by the garbage collector.

(7) System components. Linux’s proc filesystem [22] provides a
special file for each process that contains information about its
complete memory layout. If the attacker gains access to this file, the
attacker can disclose the address of randomized memory sections,
including the JITGuard-Region. However, this file is mainly used
for debugging purposes and on recent versions, access requires
higher privileges by default. Additionally, sandboxes, which are
used as an orthogonal defense mechanism to isolate JIT engines
from the rest of the system (see Section 4), prevent any access to
this file.

8.3 Data-only Attacks
During a data-only attack the attacker manipulates the data on
which the existing code operates. As we have shown in Section 3,
attacks like DOJITA are as powerful as code-injection attacks. JIT-
Guard mitigates data-only attacks like DOJITA by isolating the
code and data of the JIT compiler in an enclave, and isolating it
from the untrusted host process. Hence, the attacker can no longer
manipulate the intermediate representation of the JIT compiler to
launch DOJITA-like attacks. This also prevents attacks [57] that
target the temporary output buffer of the JIT compiler because this
buffer is within the enclave.

For this reason, the only remaining data-only attack vector on
the JIT compiler is its direct input, i.e., the unoptimized JavaScript
bytecode which should be compiled. However, this bytecode rep-
resentation is already used by the JIT engine during interpreter
execution. In Section 2.2 we explained that the interpreter limits the
capabilities of the interpreted bytecode for security reasons. This
is why the bytecode representation is designed in such a way, that
potentially harmful instructions cannot be encoded. For instance,
it does not support system call instructions, absolute addressing,
unaligned jumps, or direct stack manipulation. As a consequence,
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Figure 9: JavaScript performance overhead for Sunspider 1.0.2 with the various components of JITGuard enabled.

an adversary cannot utilize the bytecode to force the JIT compiler
to create malicious native code, but has to resort to manipulating
the IR of the JIT compiler (which is mitigated by JITGuard).

The bytecode uses integer IDs to resolve call targets, which
cannot be exploited by themselves. The IDs are then resolved using
tables, which an adversary could theoretically compromise using
a data-only attack. However, this attack would also work in the
absence of any JIT compiler, and hence, it is not directly related to
JITGuard.

9 PERFORMANCE EVALUATION
We rigorously evaluated the performance impact of JITGuard on
SpiderMonkey using the JavaScript benchmark Sunspider 1.0.2 [56].

Sunspider is a well-known benchmark suite that focuses on
the core of the JavaScript language and is suggested by Mozilla
to measure the performance of SpiderMonkey [42]. The bench-
mark includes multiple real-world tasks that are used in modern
JavaScript apps, like dealing with JSON, code decompression, and
3D raytracing. We chose this benchmark since it only uses the core
functionality of JavaScript, but it does not depend on other parts
of the browser, like the DOM. Our implementation of JITGuard
only includes the core JavaScript engine. The tests from the Sun-
spider suite are also widely used in recent browser benchmarks:
as an example, the JetStream suite incorporates eleven tests from
Sunspider.

Sunspider strives to be statistically sound. The total score of Sun-
spider is the total time needed to perform each of the benchmarks.
We ran each benchmark ten times, and report the relative overhead
on the weighted average of the run times, which equals the relative
overhead on the total time.

We performed all evaluations on a computer with Ubuntu
14.04.4 LTS with the Linux kernel version 3.19.0.25. The machine
has an Intel Core i7-6700 processor clocked at 3.40 GHz and 32 GB
of RAM. We applied our modifications to SpiderMonkey version 47.
To ensure the reliability of the results, we disabled the dynamic
frequency scaling of the processor.

To fully understand the impact of each component of our design,
we measured the overhead of each of them independently, as well

as the overall impact of JITGuard. We summarize our results in
Figure 9.

Static Code → JIT Randomization. First, we evaluated the ran-
domization of the stack during the transition from static code to
JIT-compiled code (Static → JIT: Randomization in Figure 9; see
Section 6.1). This component has no measurable overhead, since
we only add a small constant overhead to each call to the JIT code.
bitops-nsieve-bits has the greatest overhead, 1.6%.

Static Code→ JIT Trampolines. Second, we evaluated the impact
of the trampolines that are used for calls from the static code to
the JIT-compiled code (Static→ JIT: Trampolines in Figure 9; see
Section 7). The average overhead of this component is around 1.0%,
since we only add one jump instruction compared to the unmodified
flow. Five benchmarks in groups access, bitops, and controlflow have
the highest overheads, ranging from 10% to 19%.

Upon investigation we found that their usage of the trampolines
is significantly higher than usual, up to 316 calls per microsec-
ond compared to the average of 83 calls per microsecond for all
benchmarks.

Both Trampolines and Randomization. We then measured the im-
pact of the trampolines and stack randomization that are employed
for calls from JIT-compiled code to static code, in addition to the pre-
vious components (All Trampolines & Randomization in Figure 9).
We measured these components together as the implementation
depends on the previous components for performance reasons. The
average overhead in this case is 9.2%. access-fannkuch and bitops-
nsieve-bits have the highest overhead, exceeding 19%, due to their
high overheads in the previous test (18%). bitops-bitwise-and and
math-cordic have the highest additional overhead w.r.t. the previous
tests, moving from below 2% to 12.9% and 15.7% respectively. This
additional overhead is due to their high frequency of calls from the
JIT code to the static code, 579 and 594 times per millisecond re-
spectively, compared to the average of 196 times per millisecond for
all benchmarks. This overhead is due to the imbalance between call
instructions and ret instructions, which thrashes the processor’s re-
turn stack. This is necessary to implement our security guarantees.
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The additional overhead of other benchmarks is correlated with
the frequency of these transitions as well.

Full JITGuard. We then measured the impact of the full JITGuard
(Full JITGuard in Figure 9, where the error bars refer to the 95%
confidence interval on the values). The average overhead for the
complete scheme, including trampolines, stack randomization, and
SGX compiler, is 9.8%, implying that the overhead due to SGX
communication and SGX mode switches is well below 1%. This
overhead specifically related to SGX is due to the low number of
calls to the SGX compiler. In average, the SGX compiler is called
only 6 times for each benchmark, while the maximum number of
calls is 23. The maximum overhead in this benchmark is math-
spectral-norm, which exceeds 32%. However, the overhead is still
just 4.8 ms in this case; the higher relative overhead is due to the
very fast run time of this benchmark, 14.6 ms compared to the
average of 230 ms.

Finally, we compared our results to another run of the bench-
mark, with all JIT compilers disabled (interpreter only). JIT allows
the benchmark to run more than 13 times faster on average and up
to 260 times faster for some benchmarks. This confirms that JIT-
compiled code is one order of magnitude faster than the interpreter,
even including our overhead of 9.8%.

10 DISCUSSION
Portability of JITGuard. Applying JITGuard to a JIT engine re-

quires manual effort. However, we argue this one-time effort scales
due to the similarity in the high-level design of major JIT en-
gines and their limited number. In fact, other mitigations, like
CFI [31, 39, 58], require individual effort for each JIT engine as
well.

Choice of different JavaScript Engines. The attentive reader may
have noticed that our attack was implemented for Edge’s JIT engine
while our defense hardens Firefox’s JIT engine. This is due to the
fact that we started both projects independently from each other.
However, the general idea of both the attack and the defense lever-
age design features which are common to all major JIT engines and
are, thus, general.

Effectiveness of memory hiding. A number of recent works [20,
23] have questioned the effectiveness of memory hiding to pro-
tect sensitive memory areas that are not referenced elsewhere in
memory. Gawlik et al. [23] specifically consider a web browser
and introduce crash-resistant programming. However, one of the
countermeasures they mention, guard pages, can be successfully
applied to JITGuard since it only has one randomized region that
needs to be protected. Gawlik et al. exploit signal handlers as an
oracle in order to disclose whether a specific page is mapped. The
code of those handlers can be augmented so that it calls a specific
entry point on the enclave every time such an exception happens.
If the address where the signal happened is close to or inside the
JITGuard-Region, the enclave will then immediately terminate the
program before the address can be exploited by the malicious code.

Alternative Techniques. To isolate the JIT compiler one could use
randomized segments protected through segment registers, or a

separate process. Using the randomized segments to hide the com-
piler, its stack, and its heap would be possible, but would require a
considerable effort to make sure that no information leak is possible.
On the other hand, SGX provides a clean separation.

Existing browsers can be retrofitted with an SGX-based design,
since it preserves the synchronous call semantics of existing code.
Using a separate process for the compiler, instead, requires a sub-
stantial redesign to support the asynchronous communication used
in IPC.6 Using separate processes also means the processes would
have different address spaces and, thus, a higher overhead would
be required due to additional communication and synchronization.
Moreover, a remote procedure call from the browser to the separate
compiler process would incur additional latency if that process is
not already running on another core, which is unlikely, especially
in case of elevated system load. On the other hand, the SGX enclave
is executed on the same core, so it does not require any action from
the system scheduler to run. The enclave can also leverage the data
already stored in the CPU caches. In our evaluation, the overhead
due to SGX is well below 1%. Finally, the remote attestation capabil-
ities of SGX can be leveraged to prove to the server that the browser
is using the JITGuard compiler and that it was not tampered with.

11 CONCLUSION
Protection of modern software against run-time attacks (code in-
jection and code reuse) has been a subject of intense research and
a number of solutions have been deployed or proposed. Moreover,
recently, researchers demonstrated the threat of the so-called data-
only attacks that manipulate data flows instead of the control flow
of the code. These attacks seem to be very hard to prevent because
any defense mechanism requires the exact knowledge of the input
data and the intended data flow. However, on the one hand, most
of the proposed defenses are tailored towards statically generated
code and their adaption to dynamic code comes with the price of
security or performance penalties. On the other hand, many wide-
spread applications, like browsers and document viewers, embed
just-in-time compilers to generate dynamic code.

We present a generic data-only attack, dubbed DOJITA, against
JIT compilers that can successfully execute malicious code even in
the presence of defenses against control-flow hijacking attacks such
as control-flow integrity (CFI) or randomization-based defenses. We
then propose JITGuard, a novel defense to mitigate code-injection,
code-reuse, and data-only attacks against just-in-time compilers
(including DOJITA). For this we utilize Intel’s Software Guard Ex-
tensions (SGX), and explain the challenges that we needed to tackle.
As proof-of-concept we implemented and evaluated JITGuard for
Firefox’s JIT compiler SpiderMonkey. The average overhead for the
complete scheme, including trampolines, stack randomization, and
SGX compiler, is 9.8%, where the overhead due to SGX communi-
cation and mode switches is below 1%. While we are working on
further performance optimizations, our prototype already demon-
strates practicality of JITGuard.

6 Recent versions of Chakra have been redesigned [40] around an out-of-process
compiler. Their defense required 27 000 additional lines of code, compared to 640 000
lines of C/C++ code in the Chakra source.
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A EXAMPLE PAYLOAD
The text of an example payload to the framework described in Sec-
tion 3 follows. Specifically, this payload creates a file and writes
arbitrary content to it. This payload is parsed by our attack frame-
work, which then creates one or more malicious IR objects for each
statement. The JIT compiler then generates native code correspond-
ing to the payload.

var pay load = `;

push rbp

mov rbp , rsp

sub rsp , 0x500

;

; Resolve function addresses

;

; LoadLibraryEx(kernel32.dll , 0,0)

;

xor r8, r8

xor rdx , rdx

mov rcx , #addr_buf_kernel32dll

call #addr_LoadLibraryExA

mov [# addr_handle_kernel32], rax

;

;

; GetProcAddr(hKernel , CreateFile)

;

mov rcx , rax

mov rdx , #addr_buf_CreateFileA

call #addr_GetProcAddr

mov [# addr_ptr_CreateFileA], rax

mov rcx , rax

;

;

; GetProcAddr(hKernel , WriteFile)

;

mov rcx , [# addr_handle_kernel32]

mov rdx , #addr_buf_WriteFile

call #addr_GetProcAddr

mov [# addr_ptr_WriteFile], rax

;

;

; GetProcAddr(hKernel , GetTempPath)

;

mov rcx , [# addr_handle_kernel32]

mov rdx , #addr_buf_GetTempPath

call #addr_GetProcAddr

mov [# addr_ptr_GetTempPath], rax

;

;

; GetProcAddr(hKernel , CLoseHandle)

;

mov rcx , [# addr_handle_kernel32]

mov rdx , #addr_buf_CloseHandle

call #addr_GetProcAddr

mov [# addr_ptr_CloseHandle], rax

;

;

; GetProcAddr(hKernel , ExitThread)

;

mov rcx , [# addr_handle_kernel32]

mov rdx , #addr_buf_ExitThread

call #addr_GetProcAddr

mov [# addr_ptr_ExitThread], rax

;

;

; GetTempPath ()

;

mov rcx , 0x400

mov rdx , #addr_buf_1024

call [# addr_ptr_GetTempPath]

;

;

; strcat(tmppath , filename)

;

mov rsi , #addr_buf_file_name

mov rdi , #addr_buf_1024

add rdi , rax

xor rcx , rcx

L_strcat:

xor rax , rax

mov al, [rsi]

mov [rdi], rax

add rcx , 0x1

add rsi , 0x1
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add rdi , 0x1

cmp rcx , #len_file_name

jne L_strcat

;

;

; CreateFile ()

;

mov rax , rsp

add rax , 0x20

mov [rax], 0x2

add rax , 0x8

mov [rax], 0x80

add rax , 0x8

mov [rax], 0x0

xor r9, r9

xor r8, r8

mov rdx , 0x40000000

mov rcx , #addr_buf_1024

call [# addr_ptr_CreateFileA]

mov [# addr_handle_file], rax

;

;

; WriteFile ()

;

mov rax , rsp

add rax , 0x20

mov [rax], 0x0

mov r9, #addr_buf_nbw

mov r8, #len_file_content

mov rdx , #addr_buf_file_content

mov rcx , [# addr_handle_file]

call [# addr_ptr_WriteFile]

;

;

; CloseHandle ()

;

mov rcx , [# addr_handle_file]

call [# addr_ptr_CloseHandle]

xor rcx , rcx

call [# addr_ptr_ExitThread]

;` ;

var a rg s = {

"#addr_LoadLibraryExA" :
LoadL ib ra ryEx . hex ( ) ,

"#addr_GetProcAddr" :
GetProcAddr . hex ( ) ,

"#addr_buf_kernel32dll" :
a d d r _ b u f _ k e r n e l 3 2 d l l . hex ( ) ,

"#addr_handle_kernel32" :
a dd r _hand l e _ke rne l 3 2 . hex ( ) ,

"#addr_buf_CreateFileA" :
a d d r _ bu f _C r e a t e F i l eA . hex ( ) ,

"#addr_ptr_CreateFileA" :
a d d r _ p t r _C r e a t e F i l eA . hex ( ) ,

"#addr_buf_WriteFile" :
a d d r _ bu f _Wr i t e F i l e . hex ( ) ,

"#addr_ptr_WriteFile" :
a d d r _ p t r _Wr i t e F i l e . hex ( ) ,

"#addr_buf_CloseHandle" :
add r_bu f_C lo seHand l e . hex ( ) ,

"#addr_ptr_CloseHandle" :
a dd r_p t r _C lo s eHand l e . hex ( ) ,

"#addr_buf_GetTempPath" :
addr_buf_GetTempPath . hex ( ) ,

"#addr_ptr_GetTempPath" :
addr_ptr_GetTempPath . hex ( ) ,

"#addr_buf_ExitThread" :
a dd r_bu f _Ex i tTh r e ad . hex ( ) ,

"#addr_ptr_ExitThread" :
a d d r _p t r _Ex i t Th r e ad . hex ( ) ,

"#addr_buf_1024" :
a dd r_bu f_1024 . hex ( ) ,

"#addr_buf_file_name" :
a dd r _bu f _ f i l e _name . hex ( ) ,

"#len_file_name" : u64 ( 0 ,
f i l e _name . l e ng t h + 1 ) . hex ( ) ,

"#addr_handle_file" :
a d d r _ h a n d l e _ f i l e . hex ( ) ,

"#addr_buf_nbw" :
addr_buf_nbw . hex ( ) ,

"#len_file_content" : u64 ( 0 ,
f i l e _ c o n t e n t . l e ng t h ) . hex ( ) ,

"#addr_buf_file_content" :
a d d r _ b u f _ f i l e _ c o n t e n t . hex ( ) ,

}
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