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ABSTRACT

Existing Greybox Fuzzers (GF) cannot be effectively directed, for
instance, towards problematic changes or patches, towards critical
system calls or dangerous locations, or towards functions in the
stacktrace of a reported vulnerability that we wish to reproduce.

In this paper, we introduce Directed Greybox Fuzzing (DGF)
which generates inputs with the objective of reaching a given set
of target program locations efficiently. We develop and evaluate
a simulated annealing-based power schedule that gradually as-
signs more energy to seeds that are closer to the target locations
while reducing energy for seeds that are further away. Experiments
with our implementation AFLGo demonstrate that DGF outper-
forms both directed symbolic-execution-based whitebox fuzzing
and undirected greybox fuzzing. We show applications of DGF to
patch testing and crash reproduction, and discuss the integration of
AFLGo into Google’s continuous fuzzing platform OSS-Fuzz. Due
to its directedness, AFLGo could find 39 bugs in several well-fuzzed,
security-critical projects like LibXML2. 17 CVEs were assigned.
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1 INTRODUCTION

Greybox fuzzing (GF) is considered the state-of-the-art in vulnera-
bility detection. GF uses lightweight instrumentation to determine,
with negligible performance overhead, a unique identifier for the
path that is exercised by an input. New inputs are generated by mu-
tating a provided seed input and added to the fuzzer’s queue if they
exercise a new and interesting path. AFL [43] is responsible for the
discovery of hundreds of high-impact vulnerabilities [42], has been
shown to generate a valid image file “from thin air” [41], and has a
large community of security researchers involved in extending it.
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However, existing greybox fuzzers cannot be effectively directed.1
Directed fuzzers are important tools in the portfolio of a security
reseacher. Unlike undirected fuzzers, a directed fuzzer spends most
of its time budget on reaching specific target locations without
wasting resources stressing unrelated program components. Typical
applications of directed fuzzers may include
• patch testing [4, 21] by setting changed statements as targets.
When a critical component is changed, we would like to check
whether this introduced any vulnerabilities. Figure 1 shows the
commit introducing Heartbleed [49]. A fuzzer that focusses on
those changes has a higher chance of exposing the regression.
• crash reproduction [18, 29] by setting method calls in the
stack-trace as targets. When in-field crashes are reported, only
stack-trace and some environmental parameters are sent to the
in-house development team. To preserve the user’s privacy, the
specific crashing input is often not available. Directed fuzzers
allow the in-house team to swiftly reproduce such crashes.
• static analysis report verification [9] by setting statements
as targets that a static analysis tool reports as potentially dan-
gerous. In Figure 1, a tool might localize Line 1480 as potential
buffer overflow. A directed fuzzer can generate test inputs that
show the vulnerability if it actually exists.
• information flow detection [22] by setting sensitive sources
and sinks as targets. To expose data leakage vulns, a security
researcher would like to generate executions that exercise sensi-
tive sources containing private information and sensitive sinks
where data becomes visible to the outside world. A directed
fuzzer can be used to generate such executions efficiently.

Most existing directed fuzzers are based on symbolic execution
[4, 9, 15, 20, 21, 27, 34, 66]. Symbolic execution is a whitebox fuzzing
technique that uses program analysis and constraint solving to
synthesize inputs that exercise different program paths. To imple-
ment a directed fuzzer, symbolic execution has always been the
technique of choice due to its systematic path exploration. Suppose,
in the control-flow graph there exists a path π to the target location.
A symbolic execution engine can construct a path condition, a first-
order logic formula φ (π ) that is satisfied by all inputs exercising
π . A satisfiability modulo theory (SMT) solver generates an actual
input t as a solution to the path constraint φ (π ) if the constraint is
satisfiable. Thus, input t exercises path π which contains the target.

1With “directed fuzzing” we mean the targeted generation of inputs that can reach a

specific set of program locations [20]. We do not mean the identification of the specific
input bytes in a seed input that already reaches a dangerous location in order to achieve
a specific value at that location as in taint-based directed fuzzing [11, 40]. Moreover,
we do not mean the generation of inputs to cover all program elements of a certain
type to achieve code coverage as in coverage-based fuzzing [7].
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1455 + /* Read type and payload length first */
1456 + hbtype = *p++;
1457 + n2s(p, payload);
1458 + pl = p;
· · ·

1465 + if (hbtype == TLS1_HB_REQUEST) {
1477 + /* Enter response type, length and copy payload */
1478 + *bp++ = TLS1_HB_RESPONSE;
1479 + s2n(payload, bp);
1480 + memcpy(bp, pl, payload);

Figure 1: Commit introducing Heartbleed: After reading the

payload from the incoming message p (1455-8), it copies

payloadmany bytes from the incoming to the outgoingmes-

sage. If payload is set to 64kb and the incoming message is

one byte long, the sender reveals up to ∼64kb of private data.

Directed symbolic execution (DSE) casts the reachability problem
as iterative constraint satisfaction problem. Since most paths are
actually infeasible, the search usually proceeds iteratively by finding
feasible paths to intermediate targets. For instance, the patch testing
tool Katch [21] uses the symbolic execution engine Klee [7] to
reach a changed statement. Suppose, we set Line 1480 in Figure 1
as target and Katch found a feasible path π0 reaching Line 1465
as intermediate target. Next, Katch passes the constraint φ (π0) ∧
(hbtype == TLS1_HB_REQUEST) to the constraint solver to generate
an input that actually exercises the target location in Line 1480.
Unlike greybox fuzzers, symbolic execution-based whitebox fuzzers
provide a trivial handle to implement directed fuzzing.

However, DSE’s effectiveness comes at the cost of efficiency [5].
DSE spends considerable time with heavy-weight program analy-
sis and constraint solving. At each iteration, DSE identifies those
branches that need to be negated to get closer to the target using
program analysis, constructs the corresponding path conditions
from the sequence of instructions along these paths, and checks
the satisfiability of those conditions using a constraint solver. In the
same time that a DSE generates a single input, a greybox fuzzer can
execute several orders of magnitude more inputs. This provides us
with an opportunity to develop light-weight and directed greybox
fuzzers. Started with the same seeds, when directed towards the
commit in Figure 1 our directed greybox fuzzer AFLGo takes less
than 20 minutes to expose Heartbleed while the DSE tool Katch
[21] cannot expose Heartbleed even in 24 hours.

In this paper, we introduceDirected Greybox Fuzzing (DGF) which
is focussed on reaching a given set of target locations in a program.
On a high level, we cast reachability as an optimization problem
and employ a specific meta-heuristic to minimize the distance of
the generated seeds to the targets. To compute seed distance, we
first compute and instrument the distance of each basic block to the
targets. While seed distance is inter-procedural, our novel measure
requires analysis only once for the call graph and once for each intra-
procedural CFG. At runtime, the fuzzer aggregates the distance
values of each exercised basic block to compute the seed distance as
their mean. The meta-heuristic that DGF employs to minimize seed
distance is called Simulated Annealing [19] and is implemented as
power schedule. A power schedule controls the energy of all seeds
[6]. A seed’s energy specifies the time spent fuzzing the seed. Like
with all greybox fuzzing techniques, by moving the analysis to
compile-time, we minimize the overhead at runtime.

DGF casts the reachability of target locations as optimization
problem while existing directed (whitebox) fuzzing approaches
cast reachability as iterative constraint satisfaction problem.

Our experiments demonstrate that directed greybox fuzzing out-
performs directed symbolic execution, both in terms of effectiveness
(i.e., DGF exposes more vulnerabilities) and in terms of efficiency

(i.e., DGF reaches more targets in the same time). Yet, an integration
of both techniques performs better than each technique individually.
We implemented DGF in the popular and very successful greybox
fuzzer AFL [43] and call our directed greybox fuzzer AFLGo. For
patch testing, we compare AFLGo to the state-of-the-art, Katch
[21] a directed symbolic execution engine, on the original Katch
benchmark. AFLGo discovers 13 bugs (seven CVEs) that Katch
could not expose, and AFLGo can cover 13% more targets in the
same time than Katch. Yet, when applied together both techniques
can cover up to 42% more targets than each individually. Both
directed fuzzing approaches complement each other. For crash re-
production, we compare AFLGo to the state-of-the-art, BugRedux
[18] a directed symbolic execution engine, on the original BugRe-
dux benchmark. AFLGo can reproduce three times more crashes
than BugRedux when only the method calls in the stack trace are
available. Our experiments demonstrate that the annealing-based
power schedule is effective and AFLGo is effectively directed. We
compared AFLGo with the undirected greybox fuzzer AFL into
which AFLGo was implemented. Indeed, AFLGo can exercise the
given set of targets 3 to 11 times faster than AFL for LibPNG and
between 1.5 to 2 times faster for Binutils.

Directed greybox fuzzing is effectively directed and efficiently
complements symbolic execution-based directed fuzzing.

Our experiments demonstrate that directed greybox fuzzing is
useful in the domains of patch testing and crash reproduction.
We also integrated AFLGo into OSS-Fuzz [58], a continuous test-
ing platform for security-critical libraries and other open-source
projects that has recently been announced at Google [44]. Our in-
tegration with AFLGo discovered 26 previously undiscovered bugs
in security-critical libraries, 10 of which are serious vulnerabilities
that were assigned CVEs. Most discoveries can be directly attributed
to AFLGo’s directedness.

AFLGo is an useful patch testing tool that effectively exposes
vulnerabilities that were recently introduced and incomplete
fixes of previously reported vulnerabilities.

The main contributions of this article are
• the integration of greybox fuzzing and Simulated Annealing,
• a formal measure of distance that is inter-procedural, accounts
for multiple targets at once, can be effectively pre-computed at
instrumentation-time, and is efficiently derived at runtime,
• the implementation of directed greybox fuzzing as AFLGo
which is publicly available at https://github.com/aflgo/aflgo,
• the integration of AFLGo as patch testing tool into the fully
automated toolchain of OSS-Fuzz which is publicly available
at https://github.com/aflgo/oss-fuzz, and
• a large-scale evaluation of the efficacy and utility of directed
greybox fuzzing as patch testing and crash reproduction tool.
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The remainder of this article is structured as follows. In Section 2,
we use Heartbleed as an example case study to explain the pertinent
features of directed greybox fuzzing. In Section 3, we discuss formal
measures of distance and the integration of greybox fuzzing with
Simulated Annealing. In Section 4, we present our implementation
as well as the experimental design. In Section 5, we apply AFLGo to
patch testing and compare it with the state-of-the-art (Katch [21]).
In Section 6, we discuss our integration of AFLGo into OSS-Fuzz
where it is directed towards the most recent changes. In Section 7,
we apply AFLGo to crash reproduction and compare it with the
baseline undirected greybox fuzzer (AFL) and the state-of-the-art
(BugRedux [18]). Section 8 elicits the threats to validity. The sur-
vey of related work in Section 9 is followed by our conclusion in
Section 10.

2 MOTIVATING EXAMPLE

We use the Heartbleed vulnerability as case study and motivating
example to discuss two different approaches to directed fuzzing.
Traditionally, directed fuzzing is based on symbolic execution. Here,
we compare Katch [21], a patch testing tool based on the symbolic
execution engine Klee [7], with AFLGo, our implementation of
directed greybox fuzzing that is presented in this paper.

2.1 Heartbleed and Patch Testing

Heartbleed [49] (CVE-2014-0160, ) is a vulnerability which com-
promises the privacy and integrity of the data sent via a purportedly
secure protocol (SSL/TLS). An excerpt of the commit that introduced
Heartbleed [46] is shown in Figure 1. Interestingly, Heartbleed can
be exploited without a man in the middle (MITM). Suppose, Bob has
a secret that the attacker Mallory wants to find out. First, Bob reads
the message type and payload from Mallory’s incoming message. If
the message is of a certain type, Bob sets the type and payload of the
outgoing message as his response. Finally, Bob copies payload many
bytes from the incoming message (pl) to the outgoing message (bp).
If less than payload bytes are allocated for pl, Bob reveals his secret.
Heartbleed was detected two years after it was introduced into
the OpenSSL library which led to a widespread distribution of the
vulnerability. As of April 2016, a quarter million machines are still
vulnerable [61].

Heartbleed was introduced on New Year’s Eve 2011 by commit
4817504d which implemented a new feature called Heartbeat.2. A
directed fuzzer that takes the changed statements as target locations
might have discovered the vulnerability when it was introduced [2],
preventing its widespread distribution. Now, OpenSSL consists of
almost half a million lines of code [47]; the commit introducing the
vulnerability added a bit more than 500 lines of code [46]. Arguably,
fuzzing all of OpenSSL in an undirected manner, when really only
the recent changes are considered error-prone, would be a waste
of resources. A directed fuzzer would exercise these changes much
more efficiently. Most patch testing tools are based on directed
symbolic execution, such as Katch [21], PRV [3], MATRIX [34],
CIE [4], DiSE [27], and Qi et al.’s patch testing tool [30]. Since Katch
represents the state-of-the-art in automated patch testing and is
readily available, we choose Katch for our motivating example.

2https://git.openssl.org/gitweb/?a=commit&h=4817504d

φ (b0)

φ (b1)

b′′ φ (bi )

φ (bi+1) t

b′

Figure 2: CFG sketch showing the branch conditions φ that

Katch collects along the path executed by the seed s.

2.2 Fuzzing the Heartbleed-Introducing Source

Code Commit

Katch is a state-of-the-art patch testing tool and directed symbolic
execution engine implemented on top of Klee [7]. First, OpenSSL
must be compiled to LLVM 2.9 bytecode.3 Then, Katch processes
one changed basic block at a time. For our motivating example,
Katch identifies 11 changed basic blocks as reachable target loca-
tions that are not already covered by the existing regression test
suite. For each target t , Katch executes the following greedy search:
Katch identifies a seed s in the regression test suite that is “closest”
to t . For instance, an existing seed might execute the branch bi in
Line 1465 but contain an incorrect message type (see Figure 2). This
seed is close in the sense that only one branch needs to be negated
to reach the target. Now, Katch uses program analysis i) to identify
the executed branchbi that is closest to the target t , ii) to construct a
path constraint Π(s ) = φ (b0)∧φ (b1)∧ ..∧φ (bi )∧ .. as a conjunction
of every branch condition that s executes, and iii) to identify the
specific input bytes in s it needs to modify to negate bi . In this case,
those input bytes encode the message type. Then, Katch negates
the condition of bi in Π to derive Π′ = φ (b0) ∧ φ (b1) ∧ .. ∧ ¬φ (bi ).
The constraint Π′ is passed to the Z3 Satisfiability Modulo Theory
(SMT) solver [10] to compute the specific values of the identified
input bytes such that bi is indeed negated. In this case, the resulting
incoming message would now contain the correct type (Line 1465)
and execute the vulnerability at Line 1480.4.

Challenges. While directed symbolic-execution-based white-
box fuzzing is very effective, it is also extremely expensive. Due to
the heavy-weight program analysis, Katch takes a long time to
generate an input. In our experiments, Katch cannot detect Heart-

bleed within 24 hours (Figure 3). Note that distance is re-computed
at runtime for every new path that is explored. The search might be

incomplete since the interpreter might not support every bytecode,
and the constraint solver might not support every language feature,
such as floating point arithmetic. The greedy search might get stuck
in a local rather than a global optimum and never reach the target.
Due to sequential search, Katch misses an opportunity to inform
the search for other targets by the progress of the search for the
current target; the search starts anew for every target.

3Katch as well as Klee never actually execute the binary but interprets the bytecode.
4Note that in our experiments we used the setup and seed corpus provided by Hanno
Böck [2]. The corpus does not exercise the changed code. Hence, in practice Katch
needs to negate more branches before being able to reach the vulnerability.
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CVE Fuzzer Runs Mean TTE Median TTE

AFLGo 30 19m19s 17m04s
Katch 1 > 1 day > 1 day

Figure 3: Time-to-Exposure (TTE), AFLGo versus Katch.

Opportunities. Our tool AFLGo is an extremely efficient directed
greybox fuzzer. AFLGo generates and executes several thousand
inputs per second and exposes Heartbleed in less than 20 minutes.5
AFLGo implements our novel directed greybox fuzzing technique
that requires virtually no program analysis at runtime and only light-
weight program analysis at compile/instrumentation time. AFLGo
implements a global search based on Simulated Annealing [19]. This
allows our directed greybox fuzzer to approach a global optimum
and reach the set of targets eventually. Just how fast the search
should approach an optimum is an input to our technique (time-to-

exploitation). AFLGo implements a parallel search, searching for all
targets simultaneously. The closer a seed s is to the targets and the
more targets s executes, the higher AFLGo assesses the fitness of s .

First, AFLGo instruments OpenSSL. An additional compiler pass
for Clang adds the classical AFL and our AFLGo instrumentation to
the compiled binary. The AFL instrumentation informs the fuzzer
about the increase in code coverage while the AFLGo instrumenta-
tion informs the fuzzer about the distance of the executed seed to
given the set of targets. The novel distance computation is discussed
in Section 3.2 and substantially more intricate than that of Katch.
It accounts for all targets simultaneously and is fully established
during compile time which reduces the overhead during runtime.

Then, AFLGo fuzzes OpenSSL using Simulated Annealing [19].
At the beginning, AFLGo enters the exploration phase and works
just like AFL. In the exploration phase, AFLGo randomly mutates
the provided seeds to generate many new inputs. If a new input
increases the code coverage, it is added to the set of seeds to be
fuzzed; otherwise, it is discarded. The provided and generated seeds
are fuzzed in a continuous loop. For example, AFLGo is started
with two seeds: s0 exercising branches ⟨b0,b ′⟩ in Figure 2 and s1
exercising ⟨b0,b1,b ′′⟩. Suppose, there is a direct path from b ′ to t
that is infeasible, i.e., cannot be exercised by an input. At the begin-
ning, roughly the same number of new inputs would be generated
from both seeds. The rationale for the exploration is to explore other
paths, even if longer. Even though s0 is “closer” to the target, the
“children” of s1 are more likely to actually reach t .

The time when AFLGo enters exploitation is specified by the
user. For our experiments, we set the time-to-exploitation to 20

hours and the timeout to 24 hours. In the exploitation phase, AFLGo
generates substantially more new inputs from seeds that are closer
to the target—essentially not wasting precious time fuzzing seeds
that are too far away. Suppose, at this point AFLGo generated a
seed s2 that exercises the branches ⟨b0,b1,bi ,bi+1⟩ in Figure 2. In
the exploitation phase, most of the time is spent on fuzzing the seed
s2 since it is closest to the target t . AFLGo slowly transitions from
the exploration phase to the exploitation phase, according to the
annealing function implemented as power schedule.

5This is the average value over 30 runs of AFLGo (Figure 3). Unlike Katch, AFLGo is
a random test generation technique s.t. experiments require statistical power.

3 TECHNIQUE

We develop directed greybox fuzzing (DGF), a vulnerability detec-
tion technique that is focussed on reaching user-defined target
locations. DGF retains the efficiency of greybox fuzzing because
it does not conduct any program analysis during runtime since
all program analysis is conducted at compile-time. DGF is easily
parallelizable such that more computing power can be assigned as
and when needed. DGF allows to specify multiple target locations.

We define an inter-procedural measure of distance (i.e., seed to
target locations) that is fully established at instrumentation-time
and can be efficiently computed at runtime. While our measure is
inter-procedural, our program analysis is actually intra-procedural
based on the call graph (CG) and intra-procedural control-flow
graphs (CFGs). We show how this yields quadratic savings com-
pared to an inter-procedural analysis. CG and CFGs are readily
available in the LLVM compiler infrastructure.

Using this novel measure of distance, we define a novel power
schedule [6] that integrates themost popular annealing function, the
exponential cooling schedule. The annealing-based power schedule
gradually assigns more energy to seeds that are closer to the target
locations while reducing energy for seeds that are further away, as
per our distance measure.

3.1 Greybox Fuzzing

We start by explaining how greybox fuzzing works and by point-
ing out where the distance-instrumentation and the annealing-
based power schedule are implemented—to realize directed greybox
fuzzing. Fuzzing is a term coined in the 1990s, whenMiller et al. [24]
used an random testing tool to investigate the reliability of UNIX
tools. Today, we distinguish three streams based on the degree of
program analysis: black-box fuzzing only requires the program to
execute [60, 62, 65].White-box fuzzing based on symbolic execution
[7, 8, 12] requires heavy-weight program analysis and constraint
solving. Greybox fuzzing is placed in-between and uses only light-
weight instrumentation to glean some program structure. Without
program analysis, greybox fuzzingmay bemore efficient thanwhite-
box fuzzing. With more information about internal structure, it may
be more effective than blackbox fuzzing.

Coverage-based greybox fuzzers (CGF) like AFL [43] and Lib-
Fuzzer [53] use lightweight instrumentation to gain coverage infor-
mation. For instance, AFL’s instrumentation captures basic block
transitions, along with coarse branch-taken hit counts. CGF uses
the coverage information to decide which generated inputs to retain

for fuzzing, which input to fuzz next and for how long.We extend
this instrumentation to also account for the distance of a chosen
seed to the given set of target locations. The distance computation
requires finding the shortest path to the target nodes in the call
graph and the intra-procedural control-flow graphs which are read-
ily available in LLVM.6 The shortest path analysis is implemented
as Dijkstra’s algorithm [23].

Algorithm 1 shows an algorithmic sketch of how CGF works.
The fuzzer is provided with a set of seed inputs S and chooses
inputs s from S in a continuous loop until a timeout is reached or
the fuzzing is aborted. The selection is implemented in chooseNext.
For instance, AFL essentially chooses seeds from a circular queue
6http://llvm.org/docs/Passes.html
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in the order they are added. For the selected seed input s , the CGF
determines the number p of inputs that are generated by fuzzing
s as implemented in assignEnergy (line 3). This is also where
the (annealing-based) power schedule is implemented. Then, the
fuzzer generates p new inputs by randomly mutating s according
to defined mutation operators as implemented in mutate_input
(line 5). AFL uses bit flips, simple arithmetics, boundary values, and
block deletion and insertion strategies to generate new inputs. If the
generated input s ′ covers a new branch, it is added to the circular
queue (line 9). If the generated input s ′ crashes the program, it is
added to the set S✗ of crashing inputs (line 7). A crashing input
that is also interesting is marked as unique crash.

Algorithm 1 Greybox Fuzzing
Input: Seed Inputs S
1: repeat
2: s = chooseNext(S )
3: p = assignEnergy(s ) // Our Modifications

4: for i from 1 to p do

5: s ′ = mutate_input(s )
6: if t ′ crashes then
7: add s ′ to S✗

8: else if isInteresting(s ′) then
9: add s ′ to S
10: end if

11: end for

12: until timeout reached or abort-signal
Output: Crashing Inputs S✗

Böhme et al. [6] showed that coverage-based greybox fuzzing
can be modelled as a Markov chain. A state i is a specific path in
the program. The transition probability pi j from state i to state j is
given by the probability that fuzzing the seed which exercises path
i generates a seed which exercises path j. The authors found that
a CGF exercises certain (high-frequency) paths significantly more
often than others. The density of the stationary distribution formally
describes the likelihood that a certain path is exercised by the
fuzzer after a certain number of iterations. Böhme et al. developed
a technique to gravitate the fuzzer towards low-frequency paths by
adjusting the number of fuzz generated from a seed depending on
the density of the neighborhood that is implemented into AFLFast,7
a fork of AFL. The number of fuzz generated for a seed s is also
called the energy of s . The energy of a seed s is controlled by a
so-called power schedule. Note that energy is a property that is local
to a state in the Markov chain unlike temperature which is global
in simulated annealing.

3.2 A Measure of Distance between a Seed

Input and Multiple Target Locations

In order to compute distance across functions, we assign a value to
each node in the call graph (CG) on function-level and in the intra-
procedural control-flow graphs (CFGs) on basic-block level. The
target functionsTf and target basic blocksTb can be swiftly identified
from the given source-code references (e.g., d1_both.c:1480).
7https://github.com/mboehme/aflfast

2

2+2
2

2

3+1
2

γ1

2

1+3
2

γ2

(a) Arithmetic Mean

1

1
1
2+

1
2

3
4

1
1
3+

1
1

γ1

3
4

1
1
1+

1
3

γ2

(b) Harmonic Mean

Figure 4: Difference between node distance defined in terms

of arithmetic mean versus harmonic mean. Node distance is

shown in the white circles. The targets are marked in gray.

The function-level target distance determines the distance from a
function to all target functions in the call graph while the function
distance determines the distance between any two functions in the
call graph. More formally, we define the function distance df (n,n′)
as the number of edges along the shortest path between functions
n and n′ in the call graph CG. We define the function-level target
distance df (n,Tf ) between a function n and the target functions
Tf as the harmonic mean of the function distance between n and
any reachable target function tf ∈ Tf :

df (n,Tf ) =



undefined if R (n,Tf ) = ∅[∑
tf ∈R (n,Tf ) df (n, tf )

−1
]−1

otherwise
(1)

where R (n,Tf ) is the set of all target functions that are reachable
from n in CG. The harmonic mean allows to distinguish between a
node that is closer to one target and further from another and a node
that is equi-distant from both targets. In contrast, the arithmetic
mean would assign both nodes the same target distance. Figure 4
provides an example.

The basic-block-level target distance determines the distance from
a basic block to all other basic blocks that call a function, in addition
to a multiple of the function-level target distance for the function
that is called. Intuitively, we assign the target distance to a basic
block based on its average distance to any other basic block that calls
a function in the call chain towards the target locations. Moreover,
the assigned target distance is smaller if that call chain is shorter. The
BB distance determines the distance between any two basic blocks
in the CFG. More formally, we define BB distance db (m1,m2) as the
number of edges along the shortest path between basic blockm1 and
m2 in the control-flow graphGi of function i . Let N (m) be the set of
functions called by basic blockm such that ∀n ∈ N (m).R (n,Tf ) , ∅.
Let T be the set of basic blocks in Gi such that ∀m ∈ T .N (m) , ∅.8
We define the basic-block-level target distance db (m,Tb ) between
a basic blockm and the target basic blocks Tb as

db (m,Tb ) =




0 ifm ∈ Tb
c · min
n∈N (m)

(df (n,Tf )) ifm ∈ T
[ ∑
t ∈T

(db (m, t ) + db (t ,Tb ))
−1
]−1

otherwise

(2)

where c = 10 is a constant that magnifies function-level distance.
Note that db (m,Tb ) is defined for allm ∈ Gi .
8Note that none of the target basic blocks Tb needs to exist in the current CFGGi but
there may exist BBs T that transitively call a function containing a target BB.
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Finally, we have all the ingredients to define the normalized seed

distance, the distance of a seed s to the set of target locations Tb .
Let ξ (s ) be the execution trace of a seed s . This trace contains the
exercised basic blocks. We define the seed distance d (s,Tb ) as

d (s,Tb ) =

∑
m∈ξ (s ) db (m,Tb )

|ξ (s ) |
(3)

The fuzzer continously maintains a set S of seeds to fuzz. We
define the normalized seed distance d̃ (s,Tb ) as the difference be-
tween the seed distance of s to Tb and the minimum seed distance
of any previous seed s ′ ∈ S toTb divided by the difference between
the max. and the min. seed distance of any seed s ′ ∈ S to Tb :9

d̃ (s,Tb ) =
d (s,Tb ) −minD
maxD −minD

(4)

where

minD = min
s ′∈S

[
d (s ′,Tb )

]
(5)

maxD = max
s ′∈S

[
d (s ′,Tb )

]
(6)

Note that the normalized seed distance d̃ ∈ [0, 1]. Notice also that
heavy-weight program analysis of the distance-computation can
be moved to instrumentation-time, to keep the performance over-
head minimal at runtime. First, call graph and intra-procedural
control-flow graphs are extracted. This is achieved either using the
compiler itself10 or when only the binary is available using bit code
translation (or lifting).11 Given the target locations, function-level
and basic-block-level target distance can be computed at instru-
mentation time. Only the normalized seed distance is computed at
runtime by collecting these pre-computed distance values.

3.3 Annealing-based Power Schedules

We develop a novel annealing-based power schedule (APS). Böhme
et al. [6] showed that greybox fuzzing can be viewed as a Markov
chain that can be efficiently navigated using a power schedule.12
This provides us with an opportunity to employ Markov Chain
Monte Carlo (MCMC) optimization techniques, such as Simulated
Annealing. Our annealing-based power schedule assigns more en-
ergy to a seed that is “closer” to the targets than to a seed that is
“further away”, and this energy difference increases as temperature
decreases (i.e., with the passage of time).

Simulated Annealing (SA) [19] is inspired by the annealing
process in metallurgy, a technique involving heating and the con-
trolled cooling of a material to increase the size of its crystals and
reduce their defects. Similarly, the SA algorithm converges asymp-

totically towards the set of global optimal solutions. This set, in our
case, is the set of seeds exercising the maximum number of target
locations. SA is a Markov Chain Monte Carlo method (MCMC) for
approximating the global optimum in a very large, often discrete
search space within an acceptable time budget. The main feature of
9It is worth noting that a definition of normalized seed distance as the arithmetic
mean of the “normalized” basic-block-level target distance (w.r.t. min. and max. target
distance) – in our experiments – resulted in the probability density being centered
around a value much less than 0.5 with significant positive kurtosis. This resulted in
substantially reduced energy for every seed. The definition of normalized seed distance
in Eq. (4) reduces kurtosis and nicely spreads the distribution between zero and one.
10https://llvm.org/docs/Passes.html#dot-callgraph-print-call-graph-to-dot-file
11For instance, using mcsema: https://github.com/trailofbits/mcsema.
12Böhme et al’s explore-schedule has been implemented into AFL since version 2.33b.
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Figure 5: Impact of seed distance d̃ (s,Tb ) and current time on

the energy p (s,Tb ) of the seed s (for tx = 40min).

SA is that during the randomwalk it always accepts better solutions
but sometimes it may also accept worse solutions. The temperature

is a parameter of the SA algorithm that regulates the acceptance of
worse solutions and is decreasing according to a cooling schedule.
At the beginning, when T = T0 = 1, the SA algorithm may accept
worse solutions with high probability. Towards the end, when T is
close to 0, it degenerates to a classical gradient descent algorithm
and will accept only better solutions.

A cooling schedule controls the rate of convergence and is a
function of the initial temperatureT0 = 1 and the temperature cycle
k ∈ N. Note that while energy is local to a seed, the temperature

is global to all seeds. The most popular is the exponential cooling
schedule [19]:

Texp = T0 · α
k (7)

where α < 1 is a constant and typically 0.8 ≤ α ≤ 0.99.
Annealing-based power schedule. In automated vulnerability

detection, we usually have only a limited time budget. Hence, we
would like to specify a time tx when the annealing process should
enter “exploitation” after sufficient time of “exploration”. Intuitively,
at time tx , the simulated annealing process is comparable to a
classical gradient descent algorithm (a.k.a. greedy search). We let
the cooling schedule enter exploitationwhenTk ≤ 0.05. Adjustment
for values other than 0.05 and for different cooling schedules is
straightforward. Thus, we compute the temperature Texp at time t
as follows

0.05 = αkx for Texp = 0.05; k = kx in Eq. (7) (8)
kx = log(0.05)/ log(α ) solving for kx in Eq. (8) (9)

Texp = α
t
tx

log(0.05)
log(α ) for k =

t

tx
kx in Eq. (7) (10)

= 20−
t
tx simplifying Eq. (10) (11)

In what follows, we define our annealing-based power schedule
(APS) using the exponential cooling schedule. Given the seed s and
the target locations Tb , the APS assigns energy p as

p (s,Tb ) = (1 − d̃ (s,Tb )) · (1 −Texp) + 0.5Texp (12)

The behavior of the APS is illustrated in Figure 5 for three values of
current time t and normalized seed distance d , respectively. Notice
that energy p ∈ [0, 1]. Moreover, when starting the search (t = 0),
the APS assigns the same energy to a seed with a high seed distance
as to one with a low seed distance. A seed that exercises only targets
(i.e., d̃ = 0) is assigned more and more energy as the time progresses.
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Figure 6: Annealing-based power factor which controls the

energy thatwas originally assigned byAFL’s power schedule

(tx = 40), (a) for seed with maximal distance to all targets

(d̃ = 1) and (b) for a seed with minimal distance to all targets

(d̃ = 0). Notice the different scales on the y-axis.

Practical Integration. Now, AFL already implements a power
schedule.13 So, how do we integrate our APS? The existing schedule
assigns energy based on the execution time and input size of s , when
s has been found, and how many ancestors s has. We would like to
integrate AFL’s pre-existing power schedule with our annealing-
based power schedule and define the final integrated annealing-
based power schedule. Let pafl (s ) be the energy that AFL normally
assigns to a seed s . Given basic blocks Tb as targets, we compute
the integrated APS p̂ (s,Tb ) for a seed s as

p̂ (s,Tb ) = pafl (s ) · 210·p (s,Tb )−5 (13)

The annealing-based power factor f = 210(p (s,Tb )−0.5) controls
the increase or reduction of energy assigned by AFL’s power sched-
ule. The behavior of the annealing-based power factor is shown in
Figure 6 for the two extremal cases of the normalized seed distance
d̃ (s,Tb ). Let us consider the first extremal case where the normal-
ized seed distance is maximal (i.e., d̃ (s,Tb ) = 1; Fig. 6.a). At the
beginning (t = 0), the power factor f = 1, such that the seed is
assigned the same energy that AFL would assign (p̂ (s,Tb ) = pafl).
However, after only ten minutes (t = 10min), the same seed is as-
signed only about 15% of the original energy. In fact, from equations
(12) and (13) we can see that

lim
t→∞

p̂ (s,Tb ) =
pafl
32

if d̃ (s,Tb ) = 1 (14)

In other words, a seed s that is “very far” from reaching the target
locations, is assigned less and less energy until only about one thirty-
second of the original energy pafl is assigned. Let us now consider
the second extremal case where the normalized seed distance is
minimal (i.e., d̃ (s,Tb ) = 1; Fig. 6.b). At the beginning (t = 0), the
power factor f = 1 just like for the seed with maximal distance.
However, from equations (12) and (13) we can see that

lim
t→∞

p̂ (s,Tb ) = 32 · pafl if d̃ (s,Tb ) = 0 (15)

In other words, a seed s that is “very close” to reaching the target
locations, is assigned more and more energy until about thirty times
the original energy pafl is assigned.

13Since version 2.33b, AFL implements the explore schedule [6].

3.4 Scalability of Directed Greybox Fuzzing

The central benefit of greybox fuzzing is its efficiency resulting from
the absence of any program analysis; it generates and executes very
large numbers of inputs in a short time. Now, directed greybox
fuzzing (DGF) seems to add some program analysis, specifically of
control-flow and call graphs. So then, how does DGF scale?

While our distance measure is inter-procedural, the program
analysis is actually intra-procedural. This provides substantial sav-
ings compared to an inter-procedural analysis. Our own experience
with an inter-procedural analysis is as follows. In a very early
instantiation, AFLGo would first construct the inter-procedural
control-flow graph (iCFG) by connecting all the call-sites of one
function with the first basic block of the called functions. This
would already take several hours. Once the iCFG was available, it
would compute the target distance within the iCFG for every basic
block as the average length of the shortest path to any target. Due
to the huge number of nodes in the iCFG, this could also take several
hours. Today, AFLGo completely skips the iCFG computation and
after computing function-level target distance in the call graph,
only computes the basic-block level target distance to the call sites
within the same intra-procedural control-flow graph. At the call-
sites, the function-level target distance is used as approximation
for the remainder of the path to the targets. At its core, BB-level
target distance relies on Djikstra’s shortest-path algorithm which
has a worst-case complexity of O (V 2) where V is the number of
nodes. Suppose, there are n intra-procedural CFGs with an average
m nodes. The complexity of a shortest-distance computation in
the iCFG is O (n2 ·m2). In contrast, the complexity of our shortest
distance computation in the call graph and all intra-procedural
control-flow graphs is O (n2 + nm2). This yields savings that are
quadratic in the number of functions n.

Moreover, we designed DGF such that most of the heavy-weight
analysis can be moved to compile-time (i.e., instrumentation-time).
Hence, DGF retains most of its efficiency at runtime.

• At compile time, the basic-block-level target distance is com-
puted for each basic block in every function. A simple extension
of the classical AFL trampoline adds the basic-block target dis-
tance to each basic block in the program. A trampoline is a
set of instructions that implement the instrumentation. The
instrumentation framework, LLVM can handle static analysis
for large programs quite efficiently.
• At runtime, AFLGo is as scalable as AFL which is known to
scale to large programs such as Firefox, PHP, and Acrobat
Reader. The AFLGo trampoline only aggregates the basic-block-
level target distance values and the number of executed basic
blocks and contains only few more instructions than the origi-
nal AFL trampoline. The annealing-based power schedule is
implemented in the fuzzer itself. There is no reasonwhyAFLGo
cannot scale as well as AFL.

In summary, we move most of the program analysis to instrumen-
tation time to maintain the efficiency at runtime. During instru-
mentation time, we try to keep the program analysis light-weight
by computing an inter-procedural measure via light-weight intra-
procedural analysis. In our experience this provides huge savings,
reducing instrumentation time from several hours to a few minutes.

Session K2:  Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2335



AFLGo 
Graph Extractor

Program
Source Code

Control
Flow graph

Call graph

Targets

AFLGo 
Distance Calculator BB-Distance

AFLGo 
Instrumentor

AFLGo 
Fuzzer

Instrumented
Binary

Seed 
inputs

Error 
inputs

Figure 7: Architecture: After the Graph Extractor generates the call and control-flow graphs from the source code, the dis-

tance calculator computes the basic-block-level target distance for each basic block which is used by the Instrumentor during

intrumentation. The instrumented binary informs the Fuzzer not only about coverage but also about the seed distance.

4 EVALUATION SETUP

To evaluate the efficacy and utility of directed greybox fuzzing we
conduct several experiments. We implemented the technique into
the existing (undirected) greybox fuzzer AFL [43] and call our tool
AFLGo. We apply AFLGo to two distinct problem domains: patch
testing and crash reproduction, and integrate it with OSS-Fuzz [58].

4.1 Implementation

AFLGo is implemented in four components, the Graph Extractor,
the Distance Calculator, the Instrumentor, and the Fuzzer. With our
integration into OSS-Fuzz, we demonstrate that these components
can be seemlessly integrated in the original build environment (e.g.,
make or ninja). The overall architecture is shown in Figure 7. In
the following, we explain how these components are implemented.
(1) The AFLGo Graph Extractor (GE) generates the call graph (CG)

and the relevant control-flow graphs (CFGs). CG nodes are
identified by the function signature while CFG nodes are iden-
tified by the source file and line of the first statement of the
corresponding basic block. The GE is implemented as exten-
sion of the AFL LLVM pass which is activated by the compiler
afl-clang-fast. The compiler environment variable CC is
set to afl-clang-fast and the project is built.

(2) The AFLGo Distance Calculator (DC) takes the call graph and
each intra-procedural control-flow to compute the inter-proce-
dural distance for each basic block (BB) as per Section 3.2. The
DC is implemented as a Python script that uses the networkx
package for parsing the graphs and for shortest distance com-
putation according to Djikstra’s algorithm. The DC generates
the BB-distance file which contains the basic-block-level target
distance for each BB.

(3) The AFLGo Instrumentor takes the BB-distance file and instru-
ments each BB in the target binary. Specifically, for each BB, it
determines the respective BB-level target distance and injects
the extended trampoline. The trampoline is a piece of assembly
code that is executed after each jump instruction to keep track
of the covered control-flow edges. An edge is identified by a
byte in a 64kb-shared memory. On a 64-bit architecture, our
extension uses 16 additional bytes of shared memory: 8 bytes
to accumulate the distance values, and 8 bytes to record the
number of exercised BBs. For each BB, the AFLGo Instrumentor

adds assembly code i) to load the current accumulated distance
and add the target distance of the current BB, ii) to load and
increment the number of exercised BBs, and iii) to store both
values to shared memory. The instrumentation is implemented
as an extension of the AFL LLVM pass. The compiler is set
to afl-clang-fast and the compiler flags to reference the
BB-distance file, and the project is built with ASAN [35].

(4) The AFLGo Fuzzer is implemented into AFL version 2.40b
(which already integrates AFLFast’s explore schedule [6]). It
fuzzes the instrumented binary according to our annealing-
based power schedule (see Section 3.3). The additional 16 bytes
in the shared memory inform the fuzzer about the current seed
distance. The current seed distance is computed by dividing the
accumulated BB-distance by the number of exercised BBs.

4.2 Infrastructure

We executed all experiments on machines with an Intel Xeon CPU
E5-2620v3 processor that has 24 logical cores running at 2.4GhZ
with access to 64GB of main memory and Ubuntu 14.04 (64 bit) as
operating system. We always utilized exactly 22 cores to keep the
workload compareable and to retain two cores for other processes.

For all experimental comparisons of AFLGo with the baseline
(i.e., AFL, Katch, or BugRedux), both fuzzers are started with the
same seed corpus. If no seed corpus is available, we start AFLGo
with the empty file as seed corpus (i.e., echo "" > in/file). For
all experimental comparisons, both fuzzers have the same time
budget and computational resources to reach the same set of target
locations.

5 APPLICATION 1: PATCH TESTING

We show the application of directed greybox fuzzing to patch testing
and compare our implementation AFLGo with the state-of-the-art
patch testing tool Katch. Suppose, a security-critical library like
Libbfd is being fuzzed continuously and no vulnerabilities have
been found for quite some time. Now, the library is changed to
add a new feature. It would be profitable to focus the next fuzzing
campaign specifically on these changes to check whether the recent
changes introduced new vulnerabilities. The state-of-the-art patch
testing tool is Katch [21], a directed whitebox fuzzer that is based
on the symbolic execution engine Klee [7].
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Project Tools diff, sdiff, diff3, cmp
Program Size 42,930 LoC
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GNU Diffutils
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objcopy, objdump, ranlib, readelf
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Program Size 68,830 LoC + 800kLoC from libraries
Chosen Commits 181 commits from Apr’11–Aug’12

GNU Binutils

Figure 8: Description of the Katch benchmark [21]

In this experiments, we compare our directed greybox fuzzer
AFLGo with Katch in terms of patch coverage and vulnerability
detection. We use the same subjects, experimental parameters, and

infrastructure as the authors of Katch. However, we excluded the
smallest subject, findutils, because it has the capability to execute
arbitrary commands and delete arbitrary files. AFLGo actually exe-
cutes the instrumented binary while Katch merely interprets the
LLVM Bytecode. Some descriptive statistics about the remaining
subjects are shown in Figure 8. The virtual infrastructure is pro-
vided on request by the authors of Katch.We reuse the same scripts
in the infrastructure to determine target locations and to analyze
the results. We use the same seed corpus und set the same timeout

(i.e., 10 mins per target for Diffutils, 15 mins per target for Binutils).
Conservatively, we make only one virtual core and about 3GB of
main memory available to AFLGo while four cores and 16GB were
made available to Katch.

However, we note that such tool comparisons should always
be taken with a grain of salt. An empirical evaluation is always
comparing only the implementations of two concepts rather than
the concepts themselves. Improving the efficiency or extending the
search space may only be a question of “engineering effort” that
is unrelated to the concept [32]. We make a conscious effort to
explain the observed phenomena and distinguish conceptual from
technical origins. Moreover, we encourage the reader to consider
the perspective of a security researcher who is actually handling
these tools to establish whether there exists a vulnerability.

5.1 Patch Coverage

We begin by analyzing the patch coverage achieved by both Katch
and AFLGo as measured by the number of previously uncovered
basic blocks that were changed in the respective patch.

Table 1: Patch coverage results showing the number of previ-

ously uncovered targets that Katch and AFLGo could cover

in the stipulated time budget, respectively.

#Changed #Uncovered

Basic Blocks Changed BBs Katch AFLGo

Binutils 852 702 135 159
Diffutils 166 108 63 64

Sum 1018 810 198 223

Katch — 59 139 84 — AFLGo

Figure 9: VennDiagram showing the number of changedBBs

that Katch and AFLGo cover individually and together.

AFLGo covers 13% more previously uncovered changed basic blocks

than Katch.AFLGo covers 223 of the previously uncovered changed
basic blocks while Katch covers 198. Column 2 of Table 1 shows the
total number of changed basic blocks while Column 3 shows those
that are not already covered by the existing regression test suite.
Finally, columns 4 and 5 show the number of previously uncovered
basic blocks that Katch and AFLGo covered, respectively. We call
previously uncovered changed basic blocks targets.

While we would expect Klee to take a substantial lead, AFLGo
actually outperforms Katch in terms of patch coverage on the
same benchmark that was published with the Katch paper.

We analyzed the reason why the remaining targets have not
been covered. Many were not covered due to limitations in our
current prototype that we share with Katch. For instance, more
than half of the changed basic blocks are accessible only via register-
indirect calls or jumps (e.g., from function-pointers). Those do
not appear as edges in the analyzed call-graph or in the control-
flow graph. Also, symbolic execution as well as greybox fuzzing is
bogged down by the large search space when the program requires
complex input structure. For example, many Binutils targets can be
executed only if the seed file contains specific sections (e.g., sections
for certain architectures like ARM or MIPS), with an individually
defined structure. Both techniques would stand to benefit from a
higher-quality regression test suite and from a model-based fuzzing
approach [28].

To understand how researchers can benefit from both approaches,
we investigated the set of targets covered by both techniques. As
we can see in Figure 9, AFLGo can cover 84 targets that Katch
cannot cover while Katch covers 59 targets that AFLGo cannot
cover. We attribute the reasonably small intersection to the indi-
vidual strengths of each technique. Symbolic execution can solve
difficult constraints to enter “compartments” that would otherwise
be difficult to access [38]. On the other hand, a greybox fuzzer can
quickly explore many paths towards the targets without getting
stuck in a particular “neighborhood” of paths.

AFLGo and Katch complement each other. Together they cover
282 targets, 42% and 26% more than Katch and AFLGo would
cover individually.
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As future work, we are planning to integrate symbolic-execution-
based directed whitebox fuzzing and directed greybox fuzzing to
achieve a directed fuzzing technique that is both very effective and
very efficient in terms of reaching pre-specified target locations.
We believe that such an integration would be superior to each
technique individually. An integrated directed fuzzing technique
that leverages both symbolic execution and search as optmization
problem would be able to draw on their combined strengths to
mitigate their indiviual weaknesses. Driller [38] is an example of
an (undirected) fuzzer that integrates the AFL greybox fuzzer and
the Klee whitebox fuzzer.

5.2 Vulnerability Detection

Table 2: Showing the number of previously unreported bugs

found by AFLGo (reported Apr’2017) in addition to the num-

ber of bug reports for Katch (reported Feb’2013).

Katch AFLGo

#Reports #Reports
14

#New Reports #CVEs

Binutils 7 4 12 7
Diffutils 0 N/A 1 0

Sum 7 4 13 7

AFLGo found 13 previously unreported bugs in addition to 4 of

the 7 bugs that were found by Katch. Despite the thorough patch
testing by Katch, AFLGo exposed 13 bugs that still existed in
the most recent version.15 These bugs are comprised mostly of
buffer overflows and null pointer derefences; types of errors that
Katch (and Klee) can normally handle. Seven (7) of the previously
unreported bugs exist in the libbfd-library and were assigned CVE-
IDs. Libbfd allows to manipulate object files that are compiled for
a variety of instruction set architectures. Libbfd is widely used in
assemblers, linkers, and binary analysis tools.

Our directed greybox fuzzer significantly outperforms the state-
of-the-art in terms of vulnerability detection. AFLGo is shown
to be an effective patch testing tool.

We investigated how the discovery of these bugs is related to
the target locations. Twelve (12) bugs were discovered as a direct
consequence of the directedness of AFLGo. Specifically, seven bugs
have a stack trace that contain the target locations; the other five
bugs are found in the vicinity of the target locations. The original
Katch experiments were conducted on 356 commits to binutils
and diffutils more than four years ago (Feb’13). Since the early bug
reports, countless other bugs have been reported. We reported 13
bugs that still existed in the most recent version of binutils and
diffutils (see Table 3). However, we believe that AFLGo exposed
many more bugs in the experimental subjects that have since all
been fixed.
14In order to determine which bugs AFLGo can find that were reported by the authors
of Katch (#Reports), we executed all crashing inputs of AFLGo before and after each
patch for these errors. If the number of crashing inputs reduces with the patch, the
corresponding bug is marked as detected by AFLGo. We sought final confirmation by
comparing the stack traces in the bug reports with those produced by our crashers. The
bug reports can be found here: https://srg.doc.ic.ac.uk/projects/katch/preview.html
15All of the bugs discovered with AFLGo were fixed within the day of our reports.

Table 3: Bug report and CVE-IDs for discoveries of AFLGo.

Report-ID
16

CVE-ID Report-ID CVE-ID

Binutils

21408 21418
21409 CVE-2017-8392 21431 CVE-2017-8395
21412 CVE-2017-8393 21432 CVE-2017-8396
21414 CVE-2017-8394 21433
21415 21434 CVE-2017-8397
21417 21438 CVE-2017-8398

Diffutils http://lists.gnu.org/archive/html/bug-diffutils/2017-04/msg00002.html

We attribute much of this advantage of AFLGo over Katch
to the efficiency of directed greybox fuzzing. AFLGo requires no
program analysis at runtime and hence generates several order of
magnitute more inputs than Katch. Another source of effectivness
is the runtime checking while Katch requires a constraint-based
error detection mechanism. A runtime checker [14, 35, 37] crashes
the program when it detects an error for an execution. For instance,
we instrumented our subjects with the runtime checker Address-
Sanitizer (ASAN). If an input causes illegal memory reads or writes,
e.g., by reading beyond the memory allocated for a buffer, or by
writing memory that has already been free’d, then ASAN signals
a SEGFAULT even if the program would not normally crash. The
fuzzer uses this signal from the runtime checker to report an error
for a generated input. In contrast, Katch symbolically executes
(i.e., interprets) the program’s LLVM intermediate representation
and uses constraint solving to determine whether an error exists.
Most symbolic-execution-based whitebox fuzzers integrate error
detection directly into the constraint solving process. This embed-
ding restricts the detection to such errors that can be encoded as
constraint violations. The error detection is further impaired by
the incompleteness of the environment model that underlies the
symbolic interpreter. For instance, the bug we found in diffutils
caused a null pointer dereference in the regular expression compo-
nent of GLIBC. However, Katch implements a simplified model of
GLIBC called Klee-uCLIBC and hence could not possibly find this
bug in diffutils. In contrast, AFLGo as greybox fuzzer executes the
compiled binary concretely and reports any crashing input.

6 APPLICATION 2: CONTINUOUS FUZZING

To study the practical utility of directed greybox fuzzing, we in-
tegrated AFLGo into Google’s OSS-Fuzz which was released only
few months ago (Dec’16) [44]. OSS-Fuzz [58] is a continuous test-
ing platform for security-critical libraries and other open-source
projects. In a fully automated fashion and in regular intervals, OSS-
Fuzz checks out the registered projects, builds, and fuzzes them.
Bug reports are automatically submitted to the project maintainer
and closed once the bug is patched. During on-boarding of a new
project, the maintainer provides build scripts and implements one
or more test-drivers for OSS-Fuzz. As of May’17, 47 open-source
projects have been integrated. On Google’s machines, OSS-Fuzz
churns ten trillion (1013) inputs per day and has discovered over
1,000 bugs of which 264 are security-critical vulnerabilities [59].
However, while OSS-Fuzz always fuzzes the most recent version,
the fuzzers (AFL [43] / LibFuzzer [53]) are not directed towards the
most recent changes which could introduce new vulnerabilities.

16https://sourceware.org/bugzilla/show_bug.cgi?id=[report-id]
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Table 4: The tested projects and AFLGo’s discoveries.

Project Description #Reports #CVEs

libxml2 [55] XML Parser 4 4 req. & assigned
libming [56] SWF Parser 1 1 req. & assigned
libdwarf [52] DWARF Parser 7 4 req. & assigned
libc++abi [51] LLVM Demangler 13 none requested

libav [50] Video Processor 1 1 req. & assigned
expat [48] XML Parser 0 none requested

boringssl [45] Google’s fork of OpenSSL 0 none requested
Sum 26 10 CVEs assigned

We integrated AFLGo into Google’s fully automated fuzzing plat-
form OSS-Fuzz and discovered 26 distinct bugs in seven security-
critical open-source projects (see Table 4). A vulnerability in five
of the tested projects could be used for remote exploits, as they
are facing the internet. We assess 10 bugs as security-critical vul-
nerabilities that can be exploited for Denial-of-Service attacks or
potentially for a remote arbitrary code execution attack.

AFLGo is a successful patch testing tool for OSS-Fuzz that can
discover vulnerabilities even in well-fuzzed projects.

In the following, we investigate the AFLGo’s discoveries and
how its directedness contributed towards exposing these bugs. We
focus specifically on the discoveries in LibXML2 and LibMing.

6.1 LibXML2

LibXML2 [55] is a widely used XML parser library for C that is a
core-component in PHP. By fuzzing the 50 most recent commits
of LibXML2, AFLGo discovered four (4) distinct crashing buffer
overflows. All of these could be reproduced in the DOM-validator
of the most recent version of PHP. Two are invalid writes of size
up to 4kb that could potentially be exploited for arbitrary code
execution. We submitted bug reports, patches, and published a
security advisory. Following four CVEs were assigned:
CVE-2017-{9047,9048,9049,9050}

We could identify two crashers (CVE-2017-{9049,9050}) as in-
complete fixes. An incomplete bug fix is a patch that attempts to fix
a previously reported bug, yet the bug can still be reproduced. The
bug may be fixed for the input in the original bug report; but other
inputs would still be able to expose the bug. In this case, the first
bug was fixed for the parser of “non-colonized” names (NCNames)
but not for the parser of more general names (Names). The second
bug was fixed for the HTML parser (htmlParseName) but not for
the XML parser in general (xmlParseName). By directing the grey-
box fuzzer towards the changed statements in the previous fixes of
these bugs, AFLGo effectively generated other crashing inputs that
would expose these bugs that were supposed to be fixed.

The other crashers (CVE-2017-{9047,9048}) are localized in the
vicinity of the same commit. In commit ef709ce2, the developer
patched a null-pointer dereference by adding a bounds check to
method xmlAddID in valid.c. This function is called by two other
functions, xmlParseOneAttribute and xmlValidateOneNamespace.
However, as shown in Figure 10, in order to reach these functions,
the parser must first execute xmlValidateOneElement. Both previ-
ously unreported overflows are exposed when this function prints
the contents of the element at different points in the function.

6397 ret &= xmlValidateOneElement(ctxt, doc, elem);
6398 if (elem->type == XML_ELEMENT_NODE) {
6399 attr = elem->properties;
6400 while (attr != NULL) {
6401 value = xmlNodeListGetString(doc, attr->children, 0);

6402 ret &= xmlValidateOneAttribute(ctxt,elem,attr,value);
6403 if (value != NULL)
6404 xmlFree((char *)value);
6405 attr = attr->next;
6406 }
6407 ns = elem->nsDef;
6408 while (ns != NULL) {
6409 if (elem->ns == NULL)

6410 ret &= xmlValidateOneNamespace(ctxt, doc, elem, ns,

6411 NULL, ns->href);
6412 else

6413 ret &= xmlValidateOneNamespace(ctxt, doc, elem, ns,

6414 elem->ns->prefix, ns->href);
6415 ns = ns->next;
6416 }
6417 }

Figure 10: The function containing CVE-2017-{9047,9048}
(in bold) is on the path to the function that was changed in

commit ef709ce2 via those shown with grey background.

AFLGo can discover previously reported vulnerabilities that
were supposed to be fixed. Furthermore, AFLGo can discover
new vulnerabilities in error-prone software components that
are patched more often than not.

6.2 LibMing

Libming [56] is a widely-used library for reading and generating
Macromedia Flash files (.swf) that was bundled with PHP until
version 5.3.0 and is now available as an extension. By fuzzing the
50 most recent commits of LibMing, AFLGo discovered an incom-
plete fix. The bug was recently discovered by another security
researcher, received CVE-2016-9831, and was patched by the main-
tainer with a security advisory to update libming. However, directed
to these recent changes AFLGo could generate another crashing
input that would produce exactly the same stack trace (see Fig-
ure 11). The patch was incomplete. We submitted a bug report with
a detailed analysis and a patch which was reviewed and accepted.
CVE-2017-7578 was assigned to identify this vulnerability.

ERROR: AddressSanitizer: heap-buffer-overflow
WRITE of size 1 at 0x62e00000b298 thread T0

#0 0x5b1be7 in parseSWF_RGBA parser.c:68:14
#1 0x5f004a in parseSWF_MORPHGRADIENTRECORD parser.c:771:3
#2 0x5f0c1f in parseSWF_MORPHGRADIENT parser.c:786:5
#3 0x5ee190 in parseSWF_MORPHFILLSTYLE parser.c:802:7
#4 0x5f1bbe in parseSWF_MORPHFILLSTYLES parser.c:829:7
#5 0x634ee5 in parseSWF_DEFINEMORPHSHAPE parser.c:2185:3
#6 0x543923 in blockParse blocktypes.c:145:14
#7 0x52b2a9 in readMovie main.c:265:11
#8 0x528f82 in main main.c:350:2

Figure 11: This previously reported bug had been fixed but

incompletely. AFLGo could reproduce the exact same stack

trace on the most recent (fixed) version.
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7 APPLICATION 3: CRASH REPRODUCTION

Directed greybox fuzzing is also relevant for crash reproduction.
Many companies that produce well-known commercial software
have an automated bug reporting facility. When the VideoLAN
Client (VLC) [64] crashes, e.g., due to a buffer overflow in LibPNG
[54], the user can choose to report this bug to the developers by
the push of a button. Such automated bug reports are important to
a company not only to ensure quality of service. From a security-
perspective a buffer overflow is a vulnerability that can be exploited
to gain root access to any user’s machine. However, concerned
about the user’s privacy, the VideoLan organization would not
allow to send the particular file that crashes the video player. After
all, it might contain confidential information. Instead, the software
would send the stack trace and a few environmental parameters. It
remains for the in-house development team to actually reproduce
the potentially security-critical vulnerability.

We evaluate whether directed greybox fuzzing is indeed directed
by comparing AFLGo with the base-line AFL [43] in terms of effi-
ciency. We also evaluate whether directed greybox fuzzing applied
to crash reproduction outperforms the state-of-the-art in crash
reproduction by comparing AFLGo with BugRedux in terms of ef-
fectiveness. BugRedux [18] is a directed symbolic execution-based
whitebox fuzzer based on Klee [7] that takes a sequence of target
locations, such as method calls in a stack trace of a program crash,
and generates an input that exercises the target locations in the
given sequence with the objective of crashing the program.

7.1 Is DGF Really Directed?

In this experiment, we use our directed greybox fuzzer AFLGo to
assess how quickly an in-house development team could automati-
cally reproduce the crash—by specifying the method calls in the stack

trace as target locations. We compare the average time to reproduce
the crashes with the undirected greybox fuzzer AFL. We use the
subjects shown in Figure 12. To compare AFLGo to the baseline
AFL, we choose the vulnerabilities in Binutils that were reported
in the context of our earlier work [6]. However, to mitigate any
potential experimenter bias, we chose the reproducible ones from
the Top-10 most recent vulnerabilities reported for LibPNG [54].
Binutils is a collection of binary analysis tools and has almost one
million Lines of Code (LoC) while LibPNG is an image library and
has almost half a million LoC. Both are widely used open-source C
projects. The vulnerabilities are identified by the CVE-ID and are
discussed in the US National Vulnerability Database [63]. We set a
timeout of either (8) hours and the time-to-exploitation tx to seven
(7) hours. We repeated this experiment 20 times.

We use the following measures of fuzzing efficiency and perfor-
mance gain. Time-to-Exposure (TTE) measures the length of the
fuzzing campaign until the first test input is generated that exposes
a given error. We determine which error a test case exposes by
executing the failing inputs on the set of fixed versions, where each
version fixes just one error. If the input passes on a fixed version, it
is said to witness the corresponding error. If it is the first such test
case, it is said to expose the error. The factor improvement (Factor)
measures the performance gain as the mean TTE of AFL divided

Program CVE-ID Type of Vulnerability

LibPNG [54] CVE-2011-2501 Buffer Overflow
LibPNG [54] CVE-2011-3328 Division by Zero
LibPNG [54] CVE-2015-8540 Buffer Overflow
Binutils [6] CVE-2016-4487 Invalid Write
Binutils [6] CVE-2016-4488 Invalid Write
Binutils [6] CVE-2016-4489 Invalid Write
Binutils [6] CVE-2016-4490 Write Access Violation
Binutils [6] CVE-2016-4491 Stack Corruption
Binutils [6] CVE-2016-4492 Write Access Violation
Binutils [6] CVE-2016-6131 Write Access Violation

Figure 12: Subjects for Crash Reproduction.

by the mean TTE of AFLGo. Values of Factor greater than one in-
dicate that AFLGo outperforms AFL. The Vargha-Delaney statistic

(Â12) is a non-parametric measure of effect size [39] and is also the
recommended standard measure for the evaluation of randomized
algorithms [1]. Given a performance measureM (such as TTE) seen
inm measures of AFLGo and n measures of AFL, the Â12 statistic
measures the probability that running AFLGo yields higherM val-
ues than running AFL. We use Mann-Whitney U to measure the
statistical significance of performance gain. When significant, we
mark the Â12 values in bold.

Table 5: Performance of AFLGo over AFL.We run this exper-

iment 20 times and highlight statistically significant values

of Â12 in bold. A run that does not reproduce the vulnerabil-

ity within 8 hours receives a TTE of 8 hours.

CVE-ID Tool Runs µTTE Factor Â12

Li
bP

N
G
[5
4] 2011-2501 AFLGo 20 0h06m 2.81 0.79

AFL 20 0h18m – –

2011-3328 AFLGo 20 0h40m 4.48 0.94

AFL 18 3h00m – –

2015-8540 AFLGo 20 0m26s 10.66 0.87

AFL 20 4m34s – –

Bi
nu

til
s[
6]

2016-4487 AFLGo 20 0h02m 1.64 0.59
AFL 20 0h04m – –

2016-4488 AFLGo 20 0h11m 1.53 0.72

AFL 20 0h17m – –

2016-4489 AFLGo 20 0h03m 2.25 0.68

AFL 20 0h07m – –

2016-4490 AFLGo 20 1m33s 0.64 0.31

AFL 20 0m59s – –

2016-4491 AFLGo 5 6h38m 0.85 0.44
AFL 7 5h46m – –

2016-4492 AFLGo 20 0h09m 1.92 0.81

AFL 20 0h16m – –

2016-6131 AFLGo 6 5h53m 1.24 0.61
AFL 2 7h19m – –

Mean Â12 Median Â12
AFLGo 0.66 0.68
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LibPNG. To reproduce the CVEs in LibPNG, AFLGo is three (3) to

11 times faster than AFL.More details are shown in Table 5. In eight
hours, we can generate a crashing input to collect the stack trace for
three (3) CVEs in LibPNG. For CVE-2015-8540, AFLGo needs only
in a few seconds to reproduce the vulnerability while AFL requires
almost five minutes. For CVE-2011-3328, AFLGo spends merely
half an hour while AFL requires three hours. For the remaining
CVE, AFLGo can reproduce the crash in only four minutes while
AFL takes more than four times as long.

Binutils. To reproduce the CVEs in Binutils, AFLGo is usually

between 1.5 and 2 times faster than AFL. Two CVEs, are difficult to
expose. Both, AFL and AFLGo can reproduce these vulnerabilities
only in less than 35% of runs, such that the difference is not sta-
tistically significant. The four CVEs on the left side of Table 5 are
usually reproduced in less than ten minutes where AFLGo can gain
a speedup of up to 3.5 times over AFL. Only for CVE-2016-4490,
AFLGo seems to exhibit the same performance as AFL. However,
that CVE is exposed in a few seconds and at this scale the external
impact is not negligible.

AFLGo as extension of AFL is effectively directed. Unlike AFL,
it can be successfully directed towards provided target locations.
Moreover, AFLGo is an effective crash reproduction tool.

7.2 Does DGF Outperform the Symbolic

Execution-based State of the Art?

In this experiment, we compare AFLGowith BugRedux, the state-of-
the-art in crash reproduction, on its own dataset and using the same
experimental setup, starting configuration, and timeouts. BugRedux
[18] is a directed whitebox fuzzer based on Klee, takes as input a
sequence of program statements, and generates as output a test case
that exercises that sequence and crashes the program. It was shown
that BugRedux works best of the complete method-call sequence is
provided that lead to the crash. However, as discussed earlier often
only the stack-trace is available, which does not contain methods
that have already “returned”, i.e., finished execution. Hence, for our
comparison, we set the method-calls in the stack trace as targets.
Despite our request for all subjects from the original dataset, only
a subset of nine subjects could be located for us. For two subjects
(exim, xmail), we could not obtain the stack-trace that would specify
the target locations. Specifically, the crash in exim can only be
reproduced on 32bit architectureswhile the crash in xmail overflows
the stack such that the stack-trace is overridden. The results for the
remaining seven subjects are shown in Table 6.

Table 6: Bugs reproduced for the original BugRedux subjects

Subjects BugRedux AFLGo Comments

sed.fault1 ✗ ✗ Takes two files as input
sed.fault2 ✗ ✓

grep ✗ ✓

gzip.fault1 ✗ ✓

gzip.fault2 ✗ ✓

ncompress ✓ ✓

polymorph ✓ ✓

Result. AFLGo is substantially more effective than BugRedux on
its own benchmark. The only crash that AFLGo cannot reproduce
is due to a simple engineering problem. AFLGo is incapable of
generatingmore than one file. AFLGo reproduces four of six crashes
in under ten minutes (< 10min) and the remaining two (gzip.1+2)
in about four hours (≈ 4h) well below the time budget of 24 hours.

Given only the stack-trace, AFLGo can reproduce three times
(3x) more crashes than BugRedux on its own benchmark.

8 THREATS TO VALIDITY

The first concern is external validity and notably generality. First,
our results may not hold for subjects that we did not test. However,
we conduct experiments on a large variety of open-source C projects
which comprises the largest class of software with security-critical
vulnerabilities. One can establish that this covers indeed the largest
class when comparing the number of CVEs issued for this class of
programs with the CVEs issued for any other class of programs [57].
Second, a comparison with a directed whitebox fuzzer other than
Katch or BugRedux might turn out differently. However, Katch
and BugRedux are state-of-the-art directed fuzzers based in Klee.
Klee [7] is the most widely-used symbolic execution engine and
basis for most directed whitebox fuzzers for C [15, 16, 33]. Katch
was implemented by the authors of Klee. Moreover, we make sure
that the comparisonwith Katch and BugRedux is fair:We re-use the
same benchmarks that the authors used to show the effectiveness
in the original papers [18, 21].

The second concern is internal validity, i.e., the degree to which
a study minimizes systematic error. First, a common threat to inter-
nal validity for fuzzer experiments is the selection of initial seeds.
However, for our experiments we always used the corpus that
was readily available, such as the existing regression test suite for
Binutils and the Katch experiments, the available corpora for the
OSS-Fuzz experiments, and otherwise the seed corpus that AFL
classically provides for the most important file-formats. Moreover,
when comparing two fuzzers, they are always started with the same
seed corpus such that both fuzzers gain the same (dis-)advantage.
Second, like implementations of other techniques, AFLGo may not
faithfully implement the technique presented here. However, as
shown in the comparison with AFL, AFLGo is effectively directed.

The third concern is construct validity, i.e., the degree to which
a test measures what it claims, or purports, to be measuring. We
note that results of tool comparisons should always be taken with a
grain of salt. An empirical evaluation is always comparing only the
implementations of two concepts rather than the concepts them-
selves. Improving the efficiency or extending the search space of a
fuzzer may only be a question of “engineering effort” that is unre-
lated to the concept [32]. However, we make a conscious effort to
explain the observed phenomena and distinguish conceptual from
technical origins. Moreover, we encourage the reader to consider
the perspective of a security researcher who is actually handling
these tools to establish whether there exists a vulnerability.
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9 RELATEDWORK

We begin with a survey of existing approaches to directed fuzzing

and typical applications. This is followed by a survey of coverage-
based fuzzing where the objective is to generate inputs that can
achieve maximum code coverage. Finally, we discuss taint-based
directed fuzzers where the objective is to identify and fuzz the
specific input bytes in a seed to achieve a specific value at a given
program location.

Directed fuzzing, to the best of our knowledge, is mostly imple-
mented into a symbolic execution engine, like Klee [7]. Directed
Symbolic Execution (DSE) employs the heavy machinery of sym-
bolic execution, program analysis, and constraint solving to sys-
tematically and effectively explore the state space of feasible paths
[20]. Once a feasible path is identified that can actually reach the
target, the witnessing test case is generated a posteriori as a solution
of the corresponding path constraint. DSE has been employed to
reach dangerous program locations, such as critical system calls
[15], to cover the changes in a patch [3, 21, 34], to reach previously
uncovered program elements to increase coverage [66], to validate
static analysis reports [9], for mutation testing [16], and to repro-
duce field failures in-house [18, 33]. In contrast to DSE, directed
greybox fuzzing (DGF) does not require the heavy machinery of
symbolic execution, program analysis, and constraint solving. The
lightweight program analysis that DGF does implement is com-
pletely conducted at compile-time. Our experiments demonstrate
that DGF can outperform DWF, and that both techniques together
are even more effective than each technique individually.

Coverage-based fuzzing seeks to increase code coverage of a seed
corpus in one way or another. The hope is that a seed corpus that
does not exercise a program element e will also not be able to
discover a vulnerability observable in e . Coverage-directed greybox

fuzzers [6, 31, 36, 43, 53] use lightweight instrumentation to collect
coverage-information during runtime. There are several boosting
techniques. AFLFast [6] focusses the fuzzing campaign on low-
frequency paths to exercise more paths per unit time. Vuzzer [31]
assigns weights to certain basic blocks, such as error-handling code,
to prioritize paths that are more likely to reveal a vulnerability.
Sparks et al. [36] uses a genetic algorithm to evolve a fixed-size seed
corpus and an input grammar to penetrate deeper into the control-
flow logic. Coverage-basedwhitebox fuzzers [7, 12, 13] use symbolic-
execution to increase coverage. For instance, Klee [7] has a search
strategy to priotize paths which are closer to uncovered basic blocks.
The combination and integration of both approaches have been
explored as well [26, 38]. In contrast to directed greybox fuzzing,
coverage-based fuzzers consider all program elements as targets
in order to achieve maximum code coverage. However, stressing
unrelated components is a waste of resources if the objective is
really only to reach a specific set of target locations.

Taint-based directed whitebox fuzzing leverages classical taint
analysis [17, 25] to identify certain parts of the seed input which
should be fuzzed with priority to increase the probability to gen-
erate a value that is required to observa a vulnerability at a target
location (e.g., a zero value in the denominator of a division opera-
tor) [11, 31, 40]. This can drastically reduce the search space. For
instance, Buzzfuzz [11] marks portions of the seed file as fuzzable
which control arguments of all executed and critical system calls.

A large proportion of the seed file does not need to be fuzzed. The
coverage-based fuzzer Vuzzer [31] uses tainting to exercise code
that is otherwise hard to reach. After identifying pertinent condi-
tional statements, Vuzzer uses tainting to achieve a different branch
outcome with an increased likelihood. Unlike DSE, taint-based di-
rected whitebox fuzzing does not require the heavy machinery of
symbolic execution and constraint solving. However, it requires
that the user provides a seed input that can already reach the target
location. In contrast, AFLGo can even start with an empty seed
input as is evident in our experiments. In future work, it would
be interesting to study how our DGF might benefit from a similar
taint-based approach implemented in Vuzzer: At runtime an analy-
sis would first identify those conditional statements that need to
be negated in order to decrease the distance, and then use taint-
ing to increase the probability to actually negate these statements
during fuzzing. However, our intuition is that a main contributing
factor of greybox fuzzing becoming the state-of-the-art in vulnera-
bility detection is its efficiency; the ability to generate and execute
thousands of inputs per second. Maintaining this philosophy we
designed DGF to conduct all heavy-weight analysis at compile-time,
while retaining its efficiency at runtime.

10 CONCLUSION

Coverage-based greybox fuzzers like AFL attempt to cover more
program paths without incurring any overhead of program analysis.
Symbolic execution based whitebox fuzzers like Klee or Katch
use symbolic program analysis and constraint solving to accurately
direct the search in test generation as and when required.

Symbolic execution has always been the technique of choice to
implement a directed fuzzer [3, 4, 9, 15, 20, 21, 27, 29, 33, 34, 66].
Reaching a given target is simply a matter of solving the right path
constraints. Symbolic execution provides an analytical, mathemat-
ically rigorous framework to explore paths specifically with the
objective of reaching a target location. In contrast, greybox fuzzing
is inherently a random approach and does not support directedness
out of the box. Fundamentally, any greybox fuzzer merely applies
random mutations to random locations in a random seed file.

In this paper, we attempted to bring this directedness to greybox
fuzzing. To retain the efficiency of greybox fuzzing at runtime, we
moved most (light-weight) program analysis to instrumentation-
time and use Simulated Annealing as practical global meta-heuristic
during test generation. Unlike directed symbolic execution, directed
greybox fuzzing does not incur any runtime performance overheads
due to heavy-weight program analysis, or the encoding and solving
of the executed instructions as path constraint.

Our directed greybox fuzzer AFLGo is implemented in only a
few thousand lines of code and is easy to set up. In fact, its integra-
tion into OSS-Fuzz exposes AFLGo to over 50 different security-
critical programs and libraries. Unlike symbolic execution, a di-
rected greybox fuzzer is inherently random and cannot be systemat-

ically steered towards a given set of targets. Hence, it is astonishing
that in our experiments AFLGo performs as well and even better
than existing directed symbolic-execution-based whitebox fuzzers,
such as BugRedux and Katch, both in terms of effectiveness (i.e.,
AFLGo detects more vulnerabilities) as well as in terms of efficiency
(i.e., AFLGo reaches more targets in the same time).
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Directed greybox fuzzing can be used in myriad ways: for direct-
ing the search towards problematic changes or patches, towards
critical system calls or dangerous locations, or towards functions
in the stacktrace of a reported vulnerability that we wish to repro-
duce. We show applications of directed greybox fuzzing to patch
testing (where locations in the patch code need to be reached) and
crash reproduction of field failures (where stack trace needs to be
reproduced). We also discuss the integration of our directed fuzzer
into the continuous fuzzing platform OSS-Fuzz.

As future work, we are planning to integrate symbolic-execution-
based directed whitebox fuzzing and directed greybox fuzzing. An
integrated directed fuzzing technique that leverages both symbolic
execution and search as optimization problemwould be able to draw
on their combined strengths to mitigate their indiviual weaknesses.
As evidenced by our experiments, this would lead to even more
effective patch testing for the purpose of teasing out potentially
vulnerable program changes. We are also planning to evaluate the
effectiveness of AFLGo when integrated with a static analysis tool
that points out dangerous locations or security-critical components.
This would allow us to focus the fuzzing effort on corner-cases
which are more likely to contain a vulnerability.

In order to download our tool AFLGo and our integration with
OSS-Fuzz, the reader can execute the following commands

$ git clone https://github.com/aflgo/aflgo.git

$ git clone https://github.com/aflgo/oss-fuzz.git
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