
Designing New Operating Primitives to Improve
Fuzzing Performance

Wen Xu Sanidhya Kashyap Changwoo Min
†

Taesoo Kim

Georgia Institute of Technology Virginia Tech†

ABSTRACT
Fuzzing is a software testing technique that finds bugs by repeatedly

injecting mutated inputs to a target program. Known to be a highly

practical approach, fuzzing is gaining more popularity than ever

before. Current research on fuzzing has focused on producing an

input that is more likely to trigger a vulnerability.

In this paper, we tackle another way to improve the performance

of fuzzing, which is to shorten the execution time of each itera-

tion. We observe that AFL, a state-of-the-art fuzzer, slows down by

24× because of file system contention and the scalability of fork()

system call when it runs on 120 cores in parallel. Other fuzzers

are expected to suffer from the same scalability bottlenecks in that

they follow a similar design pattern. To improve the fuzzing perfor-

mance, we design and implement three new operating primitives

specialized for fuzzing that solve these performance bottlenecks

and achieve scalable performance on multi-core machines. Our

experiment shows that the proposed primitives speed up AFL and

LibFuzzer by 6.1 to 28.9× and 1.1 to 735.7×, respectively, on the

overall number of executions per second when targeting Google’s

fuzzer test suite with 120 cores. In addition, the primitives improve

AFL’s throughput up to 7.7×with 30 cores, which is a more common

setting in data centers. Our fuzzer-agnostic primitives can be easily

applied to any fuzzer with fundamental performance improvement

and directly benefit large-scale fuzzing and cloud-based fuzzing

services.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; • Software
and its engineering → Software testing and debugging;

KEYWORDS
fuzzing; scalability; operating system

1 INTRODUCTION
Attackers exploit vulnerabilities to gain complete or partial control

of user devices or achieve user privacy. In order to protect users

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134046

from malicious attacks, various financial organizations and com-

munities, that implement and use popular software and OS kernels,

have invested major efforts on finding and fixing security bugs in

their products, and one such effort to finding bugs in applications

and libraries is fuzzing. Fuzzing is a software-testing technique

that works by injecting randomly mutated input to a target pro-

gram. Compared with other bug-finding techniques, one of the

primary advantages of fuzzing is that it ensures high throughput

with less manual efforts and pre-knowledge of the target software.

In addition, it is one of the most practical approach to finding

bugs in various critical software. For example, the state-of-the-art

coverage-driven fuzzer, American Fuzzy Lop (AFL), has discovered
over thousand vulnerabilities in open source software. Not only that,

even the security of Google Chrome heavily relies on its fuzzing

infrastructure, called ClusterFuzz [3, 20].
Fuzzing is a random testing technique, which requires huge

computing resources. For example, ClusterFuzz is a distributed

infrastructure that consists of several hundred virtual machines

processing 50 million test cases a day. The recently announced OSS-
Fuzz [22], Google’s effort tomake open source softwaremore secure,

is also powered by ClusterFuzz that processes ten trillion test inputs

a day on an average, and has found over one thousand bugs in five

months [14]. Besides Google, Microsoft proposed Project Spring-
field [31] that provides a cloud-based fuzzing service to developers

for security bug finding in their software. This movement clearly

indicates that large-scale fuzzing is gaining popularity [1, 25].

By looking at the complex software stacks and operating systems,

the performance of a fuzzer is critical. In other words, a better fuzzer

likely hits more security bugs in the target program more quickly

than other fuzzers. There are two broad research directions to tackle

this problem: 1) producing an input that is more likely to trigger

a vulnerability (i.e., shorter time required to reach a bug); and 2)

shortening the execution time of each iteration (i.e., more coverage

at a given time).

Prior research has mainly focused on the first approach. In par-

ticular, coverage-driven fuzzers [21, 29, 41] evaluate a test case by

the runtime coverage of a target program, and then try to gener-

ate test cases that are likely to cover untouched branches. More

advanced techniques include an evolutionary technique [12, 34], a

statistical model such as Markov chain [7], or combine fuzzing with

symbolic execution [13, 27, 36]. However, shortening the execution

time of each iteration of fuzzing also brings huge benefits. This

approach reduces the time to find a new bug given a fuzzing strat-

egy. Nowadays it takes fuzzers days, weeks or even months to find

an exploitable vulnerability in popular software due to its internal

complexity and security mitigations. Thus a slight improvement on

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2313

https://doi.org/10.1145/3133956.3134046

the performance makes a big difference, and the huge operational

costs of fuzzing are thereby saved.

A critical performance issue is that current fuzzers are not at

all scalable on commodity OSes with manycore architectures that

are readily available today (e.g., 2-4 sockets with 16-64 physical

cores). As Figure 2 shows, the performance scalability of fuzzing

is surprisingly poor. Most of the CPU cycles are wasted because

of contention in underlying OS, which degrades the scalability of

fuzzing with no more than 30 CPU cores. This is conceptually

counter-intuitive for fuzzing tasks since each fuzzing instance runs

independently without explicit contention.

We found that many state-of-the-art fuzzers [7, 12, 21, 29, 34,

38, 41] have a similar structure (i.e., launching and monitoring the

target application, creating and reading test cases, and optionally

syncing test cases among fuzzer instances in an iteration of fuzzing).

To complete these involved steps, they extensively rely on several

OS primitives while fuzzing a target application, which are the root

causes of the similar performance and scalability bottlenecks they

suffer from.

First, in each fuzzing iteration of a state-of-the-art fuzzer such as

AFL, it invokes fork() to clone the target application for a fresh run.

However, spawning processes simultaneously on multiple cores

by using the fork() system call is not scalable [8, 9, 11]. fork() is

designed to duplicate any running process. In the context of fuzzing,

a large portion of operations in fork() is repeated but has the same

effects, as the target process never changes.

Second, a fuzzer instance intensively interacts with the file sys-

tem by creating, writing, and reading small test cases for each run.

These file operations cause heavy updates to the metadata of the

file system, which is not scalable in terms of parallel fuzzing on

multiple cores [32].

Last but not least, existing fuzzers including AFL and LibFuzzer

share test cases among fuzzer instances in parallel fuzzing. A fuzzer

instance periodically scans the output directories of other instances

to discover new test cases. Moreover, it re-executes these external

test cases to determine whether they are interesting or not. The

number of directory enumeration operations and executions of the

target application increases non-linearly with more fuzzers and

longer fuzzing, which causes the third bottleneck.

In this paper, we propose three operating primitives for fuzzers

to achieve scalable fuzzing performance on multi-core machines.

These three primitives are specific to fuzzing and they aim at solving

the three performance bottlenecks described above. In particular,

we propose 1) snapshot(), a new system call which clones a new

instance of the target application in an efficient and scalablemanner;

2) dual file system service, which makes fuzzers operate test cases

on amemory file system (e.g., tmpfs) for performance and scalability

and meanwhile ensures capacity and durability by a disk file system

(e.g., ext4); 3) shared in-memory test case log, which helps fuzzers

share test case execution information in a scalable and collaborative

way.

In this paper, we make the following contributions:

• We identify and analyze three prominent performance bot-

tlenecks that stem in large-scale fuzzing and they are caused

by the intensive use of existing operating primitives that are

only better for the general purpose use.

core 0 core 1 core N...
afl

afl0 app afl1 app aflN app

afl driver

target app
fork/exec()

wait()

exit()
shared

jnz dest
log bitmap

...

dest:

❶

bitmap

test case

check/save

load/mutate

the test case

❷

❸❹

❺
loop

(instrumented)

/outN/out1/out0

private
directory

instances

❻

Figure 1: Overview of the AFL design. 1 Read/sync a candidate test
case from own/other’s output directory into a buffer, and mutate
the buffer for a new input and feed it to the target process; 2 (tar-
get process) fork a child process to execute the program with vis-
ited paths recorded in the tracing bitmap; 3 (target process) wait
for the child to terminate and send back its exit status; 4 save the
generated input into the output directory if it covers new paths by
observing the shared tracing bitmap; 5 repeat this fuzzing process;
and 6 on multi-core systems, each AFL instance run independently
in parallel.

• We design and implement three new fuzzing specific op-

erating primitives that can improve the performance and

scalability for the state-of-the-art fuzzers in a multi-core

machine.

• We apply and evaluate our proposed operating primitives

to AFL and LibFuzzer. By leveraging our proposed primi-

tives, AFL has at most 7.7×, 25.9×, and 28.9× improvement

on the number of executions per second on 30, 60, and 120

cores, respectively. Meanwhile, LibFuzzer can speed up by

at most 170.5×, 134.9×, and 735.7× on 30, 60, and 120 cores

respectively.

§2 describes the roles of operating primitives in fuzzing and how

they become critical performance bottlenecks. The design of new

operating primitives specialized for fuzzing is proposed in §3, and

§4 describes how new primitives help the state-of-the-art fuzzers

scale on multiple cores. §5 mentions the related implementation

details, and the evaluation of the proposed primitives is illustrated

in §6. The related works are listed in §7. §9 concludes the paper.

2 BACKGROUND AND MOTIVATION
In this section, we first describe how modern fuzzers work (§2.1)

and then explain how and why operating primitives, on which

fuzzers rely, become critical scalability bottlenecks (§2.3, §2.4).

2.1 Fuzzing Explained
Fuzzing is a widely used software-testing technique to find bugs in

applications. It tests software by injecting randomly mutated input

to a target program and monitors whether the target behaves abnor-

mally (e.g., crashed, raced, hanged, or failed on assertions). The in-

put that triggers an abnormal behavior is reported as a potential bug.

To detect bugs quickly, various techniques [7, 13, 20, 29, 34, 36, 41]

2

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2314

have been proposed to wisely mutate inputs with smart policies and

efficiently explore the program state. In particular, popular fuzzers

such as AFL [41] and LibFuzzer [29] use the past code coverage to

determine whether the current mutated input is interesting, and

use it as a feedback for the next execution. To get coverage infor-

mation, fuzzers require either instrumentation (if the source code is

available) or a system emulation layer (for binaries) such as QEMU.

In general, a fuzzer starts with a set of seed inputs (also known as

a corpus), runs a target program, and mutates the input based on

the feedback (e.g., coverage or crash) from the past execution. This

whole process is known as a fuzzing loop, and a fuzzer can iterate

for a certain amount of time or until it reaches a saturation point

(alas, indefinitely in most cases). Precisely, a fuzzing loop consists

of the following procedures:

(1) Load a test case (or input) with the highest priority from a

disk to a memory buffer.

(2) Mutate the buffered input by randomly modifying certain

bytes in the input or appending random bytes to the end of

the input.

(3) Launch the target application with the newly generated in-

put, and monitor its runtime execution.

(4) If the test case is interesting, save the input to the disk as a

new test case for further mutation in successive runs (e.g.,
explored a new branch).

(5) Repeat step (1) for another fuzzing iteration.

Whenmultiple instances of fuzzers run in parallel, every instance

performs an additional syncing phase for exchanging useful test

cases among instances. After executing a certain number of fuzzing

loops, a fuzzer periodically checks any new test cases generated

by other fuzzers and re-executes some of them to decide whether

they are interesting to the fuzzer itself, meaning that they cover

any execution path or basic block that the fuzzer has yet to discover.

These interesting ones are saved in the private corpus directory of

the fuzzer.

2.2 Design of AFL
AFL is the state-of-the-art fuzzer, which discovers numerous security-

crucial bugs of non-trivial, real-world software. We now focus on

explaining the concrete design of AFL and its design considerations

on performance and scalability for multi-core systems. We illustrate

its overall design and workflow in Figure 1.

Mutating inputs (1). AFL uses an evolutionary coverage-based

mutation technique to generate test cases for discovering new ex-

ecution paths of the target application [42]. In AFL, an execution

path is represented as a sequence of taken branches (i.e., a coverage
bitmap) in the target instance for a given input. To track whether

a branch is taken, AFL instruments every conditional branch and

function entry of the target application at the time of compilation.

Launching the target application (2). Traditional fuzzers call
fork() followed by execve() to launch an instance of the target

application. This process occurs in every fuzzing loop to deliver a

new input to the target application. It is not only time consuming,

but also a non-scalable operation. Previous research shows that

the majority of fuzzing execution explores only the shallow part

of the code and terminates quickly (e.g., because of invalid input

format), which results in frequent executions for the input test

cases. Thus, the cost of fork() and execve() dominates the cost of

fuzzing [7, 34, 36]. Tomitigate this cost, AFL introduced a fork server,

which is similar to a Zygote process in Android [39] that eliminates

the heavyweight execve() system call. After instantiating a target

application, the fork server waits for a starting signal sent over the

pipe from the AFL instance. Upon receiving the request, it first clones

the already-loaded program using fork() and the child process

continues the execution of the original target code immediately

from the entry point (i.e., main) with a given input generated for the

current fuzzing loop. The parent process waits for the termination

of its child, and then informs the AFL process. The AFL process

collects the branch coverage of the past execution, and maintains

the test input if it is interesting.

Bookkeeping results (3 , 4) The fork server also initializes a

shared memory (also known as tracing bitmap) between the AFL

instance and the target application. The instance records all the

coverage information during the execution and writes it to the

shared tracing bitmap, which summarizes the branch coverage of

the past execution.

Fuzzing in parallel (6). AFL also supports parallel fuzzing to

completely utilize resources available on a multi-core machine and

expedite the fuzzing process. In this case, each AFL instance inde-

pendently executes without explicit contention among themselves

(i.e., embarrassingly parallel). From the perspective of the design

of AFL, the fuzzing operation should linearly scale with increasing

core count. Moreover, to avoid apparent contention on file system

accesses, each AFL instance works in its private working directory

for test cases. At the end of a fuzzing loop, the AFL instance scans

the output directories of other instances to learn their test cases,

called the syncing phase. For each collaborating neighbor, it keeps a

test case identifier, which indicates the last test case it has checked.

It figures out all the test cases that have an identifier larger than the

reserved one, and re-executes them one by one. If a test case covers

a new path that has not been discovered by the instance itself, the

test case is copied to its own directory for further mutation.

2.3 Perils to Scalable Fuzzing
During a fuzzing loop, fuzzers utilize several OS primitives such as

fork() and file operations, as described in §2.1 and §2.2. Unfortu-

nately, when scaling fuzzers to run multiple instances in parallel,

these primitives start to become performance bottlenecks, resulting

in a worse end-to-end performance than that of a single fuzzing

instance. We now give an in-depth detail of the potential system

bottlenecks in each phase of the fuzzing process.

Cloning a target application. Every fuzzing execution requires

a fresh instance of a target application to test a generated input.

Most existing fuzzers use the fork() system call to quickly clone

the target application, i.e., for each fuzzing run, the parent process

clones a new target instance that starts in an identical process state

(e.g., virtual memory space, files, sockets, and privileges).

Bottlenecks. From the performance aspect, there are two prob-

lems with the fork() system call. First, an OS repeatedly per-

forms redundant operations in fork() that are neither used nor

necessary for executing a target application during the fuzzing

loop. Second, concurrent spawning of processes by using the

3

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2315

fork() system call is not scalable because of various con-

tentions (e.g., spinlocks) and standard requirements (e.g., PID
should be assigned in an incremental order in POSIX). These

operations are required for a general-purpose fork() in an OS,

but significantly deter the scalability of fuzzing. For example,

fork() needs to update the reverse mapping of a physical page

for swapping under memory contention, which is a well-known

scalability bottleneck in the current Linux kernel [8, 9, 11].

Moreover, fork() stresses the global memory allocator for allo-

cating various metadata required for a new task, needs to set up

security and auditing information, and has to add the task to the

scheduler queue, which are all known to be non-scalable with

increasing core count. Hence, none of the above operations are

necessary and important for the purpose of fuzzing.

Creating a mutated test case. Each cloned process runs with

a different, freshly mutated test case, to discover new paths and

crashes. To support a variety of applications, existing fuzzers store

a test case as a standard file and pass it to the target application,

either as a command line argument or via standard input. At the end

of a fuzzing loop, fuzzers store interesting test cases on the disk and

fetch them later to generate mutated test cases for the next run. The

number of test cases stored in disk increases monotonically until

fuzzers terminate because any saved test case can be evolved again

by mutation in a later fuzzing loop. Therefore, the most common

practice is to “keep the test cases as small as possible” (e.g., 1 KB
is ideal for AFL [43]) because this minimizes file I/O as well as the

search space for mutation, which keeps typical test cases to merely

hundreds of bytes. At every run, fuzzers heavily interact with the

file system to manage test cases.

Bottlenecks. Typical file system operations that fuzzers rely on

are, namely, open/creat (for generating the mutated test case),

write (for flushing interesting test cases), and read (for loading

test cases) of small files in each fuzzing loop, importantly in

parallel. Two benchmarks in FxMark [32] can be used to explain

in detail the scalability of the fuzzer: MWCL (i.e., creating a

file in a private directory) and DWOL (i.e., writing a small

file in a private directory). More specifically, the process of

creating and writing small files heavily modifies the file system

metadata (e.g., allocating inode for file creating and disk blocks

for file writing), which is a critical section in most file system

implementations, and not scalable [32].

Syncing test cases each other. A fuzzer running in parallel can

expedite the search space exploration by sharing useful test cases

with other fuzzers at the syncing phase. In this phase, each fuzzer

checks the test cases of other fuzzer by iterating their test case

directories. For example, the file name of a test case for an AFL

instance starts with a prefix recording a sequence number as its

identifier, which denotes that a test case starting with a greater

sequence number was created later in fuzzing runs. While syncing,

an AFL instance scans the directory of its neighbors and decides

whether or not a test case is synced by that prefix. Then, it re-

executes the obtained test case to get its tracing bitmap and decides

whether the test case is useful.

5k

10k

15k

20k

25k

30k

35k

40k

45k

1 15 30 45 60 75 90 105 120

20

40

60

80

100

1 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

(a) Number of executions

Fuzzing execs

Sync execs

%
t
i
m
e
s
p
e
n
t

#core

(b) Time breakdown

Fuzzing time

Sync time

Figure 2: Multi-core scalability of AFL for libjpeg library. Figure 2(a)
shows the numbers of fuzzing executions (i.e., testing newly mu-
tated test cases) and sync executions (i.e., evaluating test cases
of other fuzzers). Figure 2(b) shows the execution time break-
down for fuzzing and syncing executions. Even though fuzzing is
an embarrassingly-parallel workload without dependencies among
fuzzers, the scalability of AFL is surprisingly poor. The number of
executions of AFL saturates at 15 cores, and starts degrading from
30 cores onward, and completely collapses at 120 cores. The reason
for scalability collapse by around 24× in total is because of 1) the
inherent design limitation of the syncing phase (2× slowdown) of
AFL; 2) the fork() system call overhead (6× slowdown); and 3) the file
system overhead for opening and closing small files (2× slowdown).

Bottlenecks. Scanning directories at the syncing phase is not
scalable for the following reasons: First, the number of direc-

tory enumeration operations to discover new, unsynced test

cases increases non-linearly with more fuzzers, which results

in a longer syncing phase. For instance, each fuzzer will take

O (f ×t), where f is the number of fuzzers and t is the number of

test cases in a test case directory. Second, directory enumeration

severely interferes with creating a new test case because a direc-

tory write operation (i.e., creating a file) and a read operation

(i.e., enumerating files) cannot be performed concurrently [32].

2.4 Scalability of AFL
To evaluate the impact of these bottlenecks, we ran AFL, a state-of-

the-art fuzzer, for fuzzing the libjpeg library, JPEG decompressor,

by varying the number of cores from 1 to 120 (see the environment

details in §6). We used the input corpus (i.e., seed inputs) provided

by AFL [40]. Figure 2 presents the number of executions for fuzzing

the libjpeg library, which shows that the scalability of AFL is sur-

prisingly poor. The number of executions saturates at 15 cores and

completely collapses at 120 cores. Considering that a typical server

in a data center is a two- or four-socket machine with 32 or 64 cores,

the current state-of-the-art fuzzers cannot fully exploit the typical

servers.

Such poor scalability is counter-intuitive because fuzzing is an

embarrassingly-parallel workload without any dependency among

4

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2316

start with
the reserved

user context (ctx)

Waiting
❶

on block

sys_snapshot()❷

❸

❹

BEG_SNAPSHOT

sys_snapshot()
END_SNAPSHOT

main()

a) exit()
b) return
c) killed

callback()

restore ctx

Figure 3: Simplified use of snapshotting via the snapshot() system
call. A process (e.g., fork server in AFL) starts by storing user context
using sigsetjmp() system call and thenwaits for a “go” signal to start
its execution 1 . Once it gets the signal, it prepares for execution
(e.g., setting up command line arguments) and creates a snapshot
2 , then starts executing the main() 3 . If the process terminates
for any reason (e.g., exit(), SEGFAULT), a callback function, callback(),
which is registered at 2 , is called. It can be used for any purpose
(e.g., bookkeeping trace bits). By restoring the snapshot 4 , the ker-
nel restores the memory and OS resources (e.g., file and socket de-
scriptors) to their original state 2 . Finally, program execution is
reverted to the initial location 1 using siglongjmp().

fuzzers. The performance breakdown in Figure 2(b) shows the ev-

idence that with increasing core count, the actual time spent on

mutating and fuzzing new test cases decreases, whereas increasing

time is spent on the syncing phase. One important point is that all

synced test cases from other fuzzers have already been executed and

re-executing them is meaningless considering the overall progress

of the exploration of the target application. In addition, Figure 2(a)

indicates that starting from 45 cores, the OS kernel becomes the

main scalability bottleneck, in which most of the time, each fuzzing

instance first suffers from the file system contention, and also the

non-scalable fork() system call which contributes to a total 24×

overhead due to the aforementioned scalability bottlenecks in both

OS as well as the inherent design flaws of fuzzers.

Summary. Fuzzing looks embarrassingly parallel, but the de-

sign choices of both the fuzzer itself and the OS introduce

performance and scalability bottlenecks in non-trivial ways,

which require performance engineering in underneath layers

to completely exploit the full potential of the hardware.

3 OPERATING PRIMITIVES
We now present the design of our three scalable operating prim-

itives for fuzzing: a new snapshot() system call to replace the

heavyweight fork() system call (§3.1), file system service special-

ized for optimizing small file operations in fuzzing (§3.2), and a

shared in-memory test-case log for efficient, scalable syncing (§3.3).

3.1 Snapshot System Call
As we discussed in §2.3, fuzzers rely on fork() to take a snapshot

of the target application and easily catch its crash. However, the

general-purpose fork() is heavyweight for fuzzing: this includes a

lot of unnecessary features such as creating the reverse mapping

of the child’s physical pages for swapping, which is a well-known

performance bottleneck in Linux [8, 9, 11]. Nevertheless, by treating

fuzzer as a first-class citizen in an OS, these known contentions can

be either alleviated or completely avoided without compromising

the correctness of the execution of a target process in fuzzing.

We propose a new system call, snapshot(), which is a light-

weight, scalable fork() substitute for fuzzing. Figure 3 illustrates

a simplified example of how to use the snapshot() system call.

snapshot() creates a snapshot of a process (e.g., its memory and OS

resources such as file and socket descriptors). After that, the process

can continue its execution. Upon request, snapshot() reverts the

status of the process to the snapshotted state. Its prototype is as

follows:

1 int snapshot(unsigned long cmd, unsigned long callback,
2 struct iovec *shared_addr)

cmd is either BEG_SNAPSHOT for snapshotting or END_SNAPSHOT for

reverting. At BEG_SNAPSHOT, a user can register a callback func-

tion, callback, and a vector of shared address ranges, shared_addr

that OS should keep intact. For instance, in the case of fuzzing,

shared_addr indicates the trace bitmap shared between a fuzzer

instance and the target process (check §4.2 for its practical use in

AFL). When a snapshotting process terminates, the OS will call the

registered callback function. Currently, we do not support nested

snapshotting. snapshot() is more lightweight and more scalable

than fork(). It even has better performance than pthread_create()

because it does not need to allocate and free thread stack, which

is required for pthread_create(). The unnecessary operations in

fork() and pthread_create() eventually incur costly TLB shoot-

downs, scheduler invocations, memory allocations, auditing, and

security related modifications (see Figure 8).

In the rest of this section, we describe the details of snapshot()

especially in the context of fuzzing. We divide a complete fuzzing

run into three phases, and describe how snapshot() cooperates

with the kernel and the target process at different phases.

3.1.1 Before Fuzzing: Process Snapshotting. For explanation, we
assume that the fuzzer we deal with applies the basic design of AFL’s

fork server. More specifically, we launch the target application in the

beginning. The application is instrumented with a prologue, which

keeps waiting for a signal sent from the fuzzer instance. Once a

request from the fuzzer instance is received, the application invokes

fork(). Then, the child process executes its actual main function

while its parent process is waiting for the child to terminate.

In our design, before performing any fuzzing run, the target

process first needs to save the user space execution context ctx,
or specifically, all of the current register values and signal masks

using sigsetjmp(). Then it goes into a loop and keeps waiting for

a new fuzzing request from the fuzzer instance. On receiving a

request, the process uses snapshot() to reserve its kernel context

(BEG_SNAPSHOT) and registers a callback function: callback(). This

user callback function acts as an epilogue of every fuzzing execution,

which we describe later in more detail (§3.1.3). By invoking it with

the BEG_SNAPSHOT command argument, the kernel operates on its

data structures as follows:

• Virtual Memory Area (VMA). snapshot() iterates the vir-
tual memory areas (i.e., vmas) of the process and temporarily

stores the start and end address of every vma.

• Page. snapshot() maintains a set of pages that belong to a

writable vma because it is possible that the target application

may modify these writable pages, which the kernel should

5

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2317

revert to the original state when the application terminates.

To track these writable pages and maintain their original

memory status, we use the copy-on-write (CoW) technique.

We change the permission of writable pages to read-only by

updating their corresponding page table entries (PTE) and

flushing TLB to maintain the consistency. Thus, any write

on these pages incurs a page fault, which the page-fault

handler captures and handles. Our approach includes an

optimization: We do not change the permission of mapped

writable virtual address for which the kernel is yet to allocate

a physical page because memory access on those pages will

always incur a page fault.

• brk. A process’s brk defines the end of its data segment,

which indicates the valid range of its heap region in Linux.

Thus it influences the results of heap allocations during the

execution of the process. snapshot() saves the brk value of

the current process.

• File descriptor.At the end of a snapshotted process, the ker-
nel closes file descriptors that are opened after snapshot but

revert the status of file descriptors that were already opened

before snapshot. snapshot() saves the status of open file

descriptors by checking the file descriptor table and bitmap

(i.e., open_fds).
Besides modifying these data structures, snapshot() saves the

registered callback function. When the snapshotted process is about

to terminate in the middle of a fuzzing run (e.g., calling exit()),
snapshot() can safely redirect the control flow to callback() func-

tion in the user space.

3.1.2 During Fuzzing: Demanding Page Copy. The target process
continues to execute its real main function with the runtime argu-

ments and environment variables after returning from snapshot().

When the target application is running, each memory write (at the

page boundary) triggers a page fault because of our modification

of the page permission to read-only, as described in §3.1.1, for any

writable page. In our modified page-fault handler, we first check

whether the fault address is in a snapshotted page originally. If that

is the case, then a copy of the page data is modified and linked to

its corresponding PTE with additional write permission. For the

unallocated pages with no corresponding physical pages, we just

allocate new pages and update the corresponding PTE with addi-

tional write permission. Lastly, we flush TLB entries to maintain

the consistency.

3.1.3 After Fuzzing: Snapshot Recovering. Before terminating a

snapshotted process, we call the registered callback(). In the case

of normal termination, i.e., returning from main(), it first informs

the exit status (0 in this case) to its parent process, which is the con-

trolling fuzzer instance. To deal with the situation where the target

process calls exit() to terminate, we modify the entry function of

sys_exit_group and check whether the process is snapshotted. If

so, it calls the registered callback function in the user space. On

the other hand, if the target process times out or crashes in the

middle of the execution, it will receive the corresponding signal

such as SIGSEGV or SIGALARM which terminates the victim process

by default. To inform the abnormal status to the parent process and

avoid re-creating the target process, our instrumented prologue

registers a particular handler for every crucial signal at the very

beginning. The handler calls callback() with the corresponding

exit status (e.g., 139 for the process, which has segmentation fault).

After calling the registered callback function, the process invokes

snapshot() with END_SNAPSHOT to revert to the original snapshot-

ted state. Then the reverted process restores the saved user-space

context ctx using siglongjmp(), which directs it to start waiting

for another fuzzing run. We describe the detailed procedure of

snapshot() for the END_SNAPSHOT command, which involves four

clean-up steps as follows:

• Recovering copied pages. snapshot() recovers the pages
that have a modified copy of the original one; it also de-

allocates the allocated physical memory, reverts correspond-

ing PTE, and flushes the corresponding TLB entries.

• Adjustingmemory layout. snapshot() iterates the VMAs

of the target process again and unmaps all of the newly

mapped virtual memory areas.

• Recovering brk. The brk value of a process affects the heap
allocations and it is restored to the saved brk value.

• Closing opened file descriptors. By comparing the cur-

rent file descriptor bitmap with the one saved before the past

fuzzing run, snapshot() determines the opened file descrip-

tors and closes them.

Compared with fork(), snapshot() saves a great amount of time

spent on copying numerous kernel data structures (e.g., file descrip-
tors, memory descriptor, signals, and namespaces). Moreover, it also

avoids setting up a new copy of security and auditing structures

and allocating a new stack area for the snapshotted process. As a

result, snapshot() does not stress the kernel memory allocator and

cgroup module. Moreover, snapshot() also removes the schedul-

ing cost, which involves adding and removing a new or exiting

process from the run queue of the scheduler, thereby eliminating

the contention from the run queue as well as the re-scheduling in-

terrupts. In summary, snapshot() plays the same role as fork()-ing

for fuzzing but in a much more lightweight and scalable fashion.

3.2 Dual File System Service
As we discussed in §2.3, mutating test cases actually involves small

file operations, including creat, write and read, that are not scal-

able in any existing file system: the root causes vary between file

systems, but examples include journalling, lock contention in the

implementation, or more severely, in the common VFS layer (e.g.,
the block allocator) [32].

We introduce our second operating primitive, dual file system

service, to provide efficient and scalable file operations for fuzzing.

The key idea of our approach is to exploit the fact that neither

a fuzzer instance nor the target instances require such a strong

consistency model. Only the fuzzer instance requires consistency

for serializingmutation states to the persistent storage for durability.

Upon unexpected failures (e.g., power or system crashes), the certain

loss of test cases is expected, but a fuzzer can always reproduce

them within an acceptable period of time. The new file system

service provides a two-level tiering of file systems: a memory file

system (e.g., tmpfs) seamlessly to the fuzzer instance and target

processes for performance, and a disk file system (e.g., ext4) to the

fuzzer instance for capacity and durability to store and maintain

crashes, inputs and mutation states.

6

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2318

Fuzzeri

Fuzzerj

Shared in-memory test case log

bitmap

test case

metadata

(e.g., filename)

(e.g., size)

index 0

bitmap

test case

metadata

(e.g., filename)

(e.g., size)

index 1

bitmap

test case

metadata

(e.g., filename)

(e.g., size)

index N

❶push()

pop()❷

...

Figure 4: An illustration of shared in-memory test-case log to effi-
ciently share test case information (e.g., file name and trace bitmap)
among fuzzers. By sharing test case information, fuzzers can judge
if a test case created by other fuzzers is useful or not without re-
executing the test case or re-enumerating the test case directory.
Conceptually, a test case log is a fixed-size circular log supporting
push() and pop() operations. Unlike conventional circular log, how-
ever, an element is removed from the log once all fuzzers perform
pop() operations.

Our dual file system service creates a separate instance of a mem-

ory file system as the private working directory for every launched

fuzzer instance. This approach completely avoids the contention

of accessing test cases simultaneously under the same folder. In

addition, it also gives the illusion to fuzzers that only the memory

file system is available so that fuzzers create and read test cases in

the memory file system. To give such an illusion while providing

large capacity beyond memory and durability, our test case flusher,

the core component of the file system service, periodically checks

whether the memory usage of the memory file system exceeds the

pre-defined threshold. If so, it moves test cases in the memory file

system to the disk file system. These test case files are replaced with

the symbolic links that point to their corresponding copies on the

disk file system. We choose a victim file to be moved based on its

age (i.e., we always choose the oldest file). This age-based eviction

policy works well in fuzzing because the test cases generated earlier

are more likely to have lower coverage and are less likely to be

re-read by the fuzzer instance for mutation. Both the threshold

(h) and the proportion of the oldest test cases to be moved to the

disk (α) can be configured when launching the file system service

daemon.

Our approach defers the durability guarantee until test cases are

moved to the disk file system so as to support eventual durability.

However, in the context of fuzzing, such deferring is fine. Compar-

ing that relying on a single disk file system, there are two different

cases: 1) we can loose files on the memory file system upon system

crash and 2) there is a very small window in which a fuzzer cannot

see the moved file, when a file is moved but its symbolic link is not

yet created. However, those cases are completely fine in fuzzing

because they do not affect the correctness of fuzzing but makes

fuzzers re-generate or re-test such test cases.

3.3 Shared In-memory Test-Case Log
In the case of parallel fuzzing, a fuzzer leverages the test cases gener-

ated by its neighbors in the syncing phase. However, as mentioned

earlier, the current design of fuzzers requires expensive directory

enumeration to find new test cases and re-execute them to get trace

information. Thus, with many fuzzing instances, the syncing phase

incurs a lot of unnecessary re-execution of test cases and imposes

an overhead on the OS kernel.

We introduce a shared in-memory test case log for real collabora-

tive fuzzing without any overhead. The test case log is a fixed-size,

in-memory circular log (see Figure 4), which helps fuzzers effi-

ciently manage and share generated test cases. Each test case log is

created and controlled by a master fuzzer instance. Meanwhile any

other instances can access the log as a slave. Each element of the

log stores the information of a test case, including its filename, size,

hash value and tracing bitmap. Like conventional circular queues,

our test case log maintains HEAD. Only the master is allowed to

push a new element into the log on HEAD. Note that, unlike con-

ventional circular queues, any slave which attaches to the log can

perform pop() to get the oldest element. Each slave maintains its

local TAIL (TAILi). When it invokes pop(), an element at TAILi is

popped. Once all the slaves pop the oldest element, we move the

global TAIL forward by one. For scalability, the test case log is de-

signed in a lock-free manner. In addition, even if the process runs

indefinitely, our fixed-size design guarantees a bound in memory

usage.

For fuzzer developers to leverage the test case log in practice,

we design several interfaces listed in Table 1.

Each fuzzer instance creates its own test case log at the very

beginning (create_log()). It also needs to attach to the test case

log of all other fuzzers for test case sharing (attach_log()). Dur-
ing fuzzing, a fuzzer pushes the executed test case information to

its test case log if the test case is interesting (push_testcase())
at the end of each fuzzing run; at the syncing phase, a fuzzer

pops a test case from its neighbor (pop_testcase()) to exam-

ine whether the test case is useful or not. Note that each fuzzer

always gets the first test case from the log, which it is yet to ex-

amine while avoiding the costly directory enumeration. More im-

portantly, since the tracing bitmap (i.e., trace_bits in AFL, and
__sancov_trace_pc_guard_8bit_counters in LibFuzzer) of every

generated test case is directly achieved, re-execution is not neces-

sary. The log is eventually destroyed by the fuzzer (close_log())
when fuzzing ends.

4 SCALING STATE-OF-THE-ART FUZZERS
We claim that all the application fuzzers that follow the five-step

fuzzing loop listed in §2 can benefit from at least one of our operat-

ing primitives. Table 2 concludes the applicability of these primi-

tives on 10 known open-source fuzzers developed in recent years.

In this section, we first explains on how our three operating

primitives can generally improve the performance of an applica-

tion fuzzer in §4.1. Among these selected fuzzers, American Fuzzy

Lop (AFL) and LibFuzzer are two representative ones which are

widely used and successful in finding numerous bugs. They also

serve as a foundation for many later research works and fuzzing

projects ([7, 21, 22, 36]). Thus, we implement two working proto-

types based on the Linux x86_64 platform by applying our new

operating primitives to AFL and LibFuzzer. §4.2 and §4.3 present

the related technical details in practice.

7

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2319

Method Call Semantics

create_log(int id, size_t tc_size) Create a shared in-memory test case log for the calling instance identified by id;
tc_size indicates the size of the metadata of a test case

attach_log(int id) Attach to the test case log belonging to the fuzzer instance id
push_testcase(int id, testcase_t *tc) Push a newly generated test case tc into the log of the instance id
pop_testcase(int id, testcase_t *tc) Fetch a test case from the test case log of the instance id into tc
flush_log(int id) Flush out all the stale test cases from the instance id by force

close_log(int id) Destroy the test case log owned by the instance id

Table 1: Shared in-memory test case log interface overview. Application fuzzer can leverage these interfaces to share test cases among running
instances and achieve scalable collaborative fuzzing. A fuzzer instance invokes push_testcase() to save the metadata of its generated test case
(e.g., filename, tracing bitmap) into its test case log, and invokes pop_testcase() to reference the information of the test cases evolved by other
fuzzer instances. Hence, directory enumeration and test case re-execution are no longer required.

Fuzzers Snapshot Dual FS In-memory log

AFL ✓ ✓ ✓

AFLFast ✓ ✓ ✓

Driller ✓ ✓ ✓

LibFuzzer - ✓ ✓

Honggfuzz - ✓ ✓

VUzzer ✓ ✓ ✓

Choronzon ✓ ✓ ✓

IFuzzer ✓ ✓ ✓

jsfunfuzz ✓ ✓ -

zzuf ✓ - -

Table 2: It shows how three proposed operating primitives can ben-
efit 10 chosen mainstream fuzzers including AFL [41], AFLFast [7],
Driller [36], LibFuzzer [29], Honggfuzz [21], VUzzer [34], Choron-
zon [12], IFuzzer [38], jsfunfuzz [35], and zzuf [2], according to their
design and implementation.

4.1 Overview
4.1.1 Snapshot System Call. First, the snapshot() system call

can be applied as a perfect substitute for fork() in the fork server

of AFL (see §4.2.1 for more details).

Quite a number of existing fuzzers such as Choronzon [12],

VUzzer [34], IFuzzer [38], jsfunfuzz [35] and zzuf [2] launch a target

instance by invoking fork() and execve() (i.e., subprocess.Popen()
in Python). The combination of these two operations are not scal-

able and dominate the time cost of fuzzing an application (see §2.2).

To apply the snapshot() system call to these fuzzers, we can in-

strument the target with the prologue which connects to the fuzzer

and sets the restore point, and the epilogue which is the callback

function even without the source of the target. The fuzzers can

thereby leverage the snapshot() system call in the same way as

AFL.

LibFuzzer creates a running thread for each target instance. Its

in-process model avoids the contention brought by fork(). There-

fore, the snapshot() system call becomes useless in such a case.

4.1.2 Dual File System Service. In most cases, a fuzzer instance

always needs to create and read test cases under a particular direc-

tory on a file system. And it is not scalable for multiple instances to

perform these operations on a disk file system. Thus all the appli-

cation fuzzers can benefit from our two-tiered file system service.

Considering the fact that the working directory of a fuzzer process

is configurable for most fuzzers, applying the file system service to

them is straightforward. LibFuzzer has multiple fuzzer instances

in one process. Consequently, assigning a separate directory for

each instance requires extra modification (see §4.3).

As a special case, zzuf does not generate input before launching

the target. It intercepts file and network operations and directly

mutates the program’s input with a given seed for reproduction.

Therefore, our two-tiered file system service does not bring much

benefit to zzuf by default.

4.1.3 Shared In-memory Test Case Log. Feedback-driven fuzzers

like AFL, LibFuzzer and Choronzon support parallel fuzzing by

sharing test cases among all the running instances. A fuzzer instance

periodically checks the test cases generated by its neighbors and

archives the interesting ones for itself. The performance bottlenecks

of this syncing phase mainly come from directory enumeration

and test case re-execution (see §2.3), which can be well solved by

applying the shared in-memory test case log.

Some evolutionary fuzzers such as VUzzer and IFuzzer do not

natively support collaborative fuzzing. The fuzzer instance solely

evolves without a syncing phase in its fuzzing loop. By applying

our shared in-memory test case log, these fuzzers can be extended

to support real multi-tasking on multiple cores without contention.

More general fuzzers like zzuf and jsfunfuzz are not driven by

any metric or feedback to evolve their test input at runtime. A

test case is considered interesting only when it triggers abnormal

behaviors (e.g., memory violations, timeout, assertion failures). For

these fuzzers, online test case sharing is not effective because of

the limited size of their generated corpus.

Derivatives. Driller [36] and AFLFast [7] are two AFL-based

fuzzers proposed in recent years. Driller extends AFL with sym-

bolic execution while AFLFast optimizes the test case scheduling

algorithm applied in AFL. As these two fuzzers do not modify the

controlling part of AFL, our primitives can also be applied to them

in the same way as AFL. Similarly, Honggfuzz [21] is a derivative

of LibFuzzer. It leverages hardware features to collect coverage

information without modifying the working model of LibFuzzer.

Thus, we can apply our operating primitives to it in the same way

as LibFuzzer.

8

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2320

4.2 Scaling AFL
Each of our three operating primitives can benefit AFL in solving a

corresponding performance bottleneck that AFL suffers from (see

§2).

4.2.1 Snapshot Server. Applying the snapshot() system call to

AFL is straightforward that does not requiremuch engineering effort.

We instrument a new snapshot server before the main() entry of a

target application as a substitute of the old fork server.

The snapshot server first invokes sigsetjmp() to reserve the

user space execution context, including the current register values

and signal masks to a global area. Then, similar to the fork server,

it waits for the starting signal from the controlling AFL instance.

Once the snapshot server receives a request, it invokes snapshot()

with the command BEG_SNAPSHOT, the address of a callback function

cleanup(), which is also instrumented into the target application.

Moreover, the base address and size of the tracing bitmap are passed

into the kernel through shared_addr. The memory updates to the

bitmap, that occur during a fuzzing run, should not be reverted

because AFL relies on the bitmap state to determine whether or not

the previous test case is interesting.

The snapshot server directly calls the original main() with run-

time arguments and environment variables. If the snapshotted pro-

cess normally returns from main(), the instrumented callback func-

tion cleanup() will be invoked to inform the controlling AFL in-

stance about the exit status and call snapshot()with END_SNAPSHOT

to revert back to the snapshotted state.

In the instrumented assembly payload, we also register different

signal handlers for various kill signals, which call cleanup() with

their corresponding exit status. Note that AFL sends a SIGKILL to

the spawned child process of the fork server if the current run

is timed out. In our case, the AFL instance cannot kill the target

instance. Thus we make AFL send a SIGUSR1 to the snapshot server

instead when timeout occurs, which is also handled by redirecting

the control flow to cleanup().

4.2.2 Removing File System Contention. AFL can be directly de-

ployed on our two-level tiered file system without any modification.

The first tier, which is a memory file system (i.e., tmpfs), contains
a private directory for each AFL instance. AFL only interacts with

the memory file system to read and save test cases. The second tier

is the disk-based file system, which is transparent to the running

fuzzers. The dual file system service daemon periodically moves

some set of oldest test cases (α) from the first tier of the AFL’s private

directory, including all the saved test cases that cause either crashes

or hangs, to the second tier (disk-based file system) if the memory

usage is higher than the pre-defined threshold value (h). Moreover,

all generated test cases are eventually saved to the disk file system

by the service daemon if a running AFL instance terminates.

4.2.3 Efficient Collaborative Syncing. Here we explain how to

use our third operating primitive, shared in-memory test case log at

the syncing stage of AFL which saves time that an instance wastes

while iterating the directory and re-executing test cases obtained

from its neighbors.

During initialization, each AFL instance is assigned a test case

log that is shared among all the other fuzzers. And then it connects

to the test case logs of all its neighbors. Note that we already know

the number of running instances beforehand, which is a reasonable

assumption for parallel fuzzing on multiple cores and is also a com-

mon practice in various concurrent applications such as databases,

runtime systems etc. Each time a new interesting test case is added

to the fuzzing log (i.e., add_to_queue()), its file path, file size, and
the complete trace bitmap (i.e., trace_bits of 65,536 bytes by de-

fault) are combined as an element and saved into the shared logging

sequence.

During the syncing stage (i.e., sync_fuzzers()), a particular AFL
instance pops out unsynced elements in the shared test case log

from the other fuzzers. Then it directly references the saved trace

bitmap of the unsynced elements to determine whether or not

the corresponding test case is interesting. Later, the AFL instance

sweeps the stale elements out of its test case log after they have

been checked by all other fuzzers at the end of every syncing phase.

Note that AFL tries to trim the saved test cases to simpler ones with

the same path coverage, which means that the size of a test case

can shrink during fuzzing. This results in the stale file information

being saved in the test case log. However, an AFL instance always

makes a copy of the interesting test case synced from other fuzzers

in its own output directory. Thus, we rely on the return value of the

final write() to determine the up-to-date size of a test case from

another AFL instance.

4.3 Scaling LibFuzzer
LibFuzzer [29] is a specialized form of coverage-guided, in-process

fuzzer for fuzzing single-threaded libraries and applications. It is

fragile and restrictive compared with the AFL. To fuzz a library,

the programmer should link the LibFuzzer with the library and

provide a specific fuzzing entry point, also called target function, for

feeding the inputs to the library. At the time of fuzzing, LibFuzzer

tracks the reachability of the code, that is executed with either the

seed corpus data (input test cases) or the mutated results based on

the generated corpus data (mutated test cases). For code coverage,

LibFuzzer relies on the SanitizerCoverage [37] instrumentation

of the LLVM that catches various memory-related errors and keeps

track of memory accesses.

At a high level, each LibFuzzer instance maintains a trace pro-

gram bitmap, which it updates after obtaining the coverage infor-

mation provided by the instrumentation engine after every run.

Moreover, it also maintains a local, in-memory hash table that

stores the test cases LibFuzzer thinks are interesting, The key of

the hash table is SHA1 of the interesting test case it ran, which is

also saved on the disk so that other LibFuzzer instances can use

to make further forward progress. In particular, each LibFuzzer

instance periodically scans the shared corpus directory to obtain

any new test case that has a SHA1 value missing in the hash table.

Currently, this is done at the granularity of a second (default) if an

instances is unable to obtain new coverage after the mutation.

Launching the target application. LibFuzzerworks by invoking
an entry function that wraps the target code a developer wants to

test. LibFuzzer also provides the option of running amulti-threaded

version in which the master process creates a pre-defined number

N of threads, where N is given by the user. Then LibFuzzer keeps

invoking itself within a single threaded mode for N times.

9

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2321

Bookkeeping results. After invocation, each LibFuzzer instance
first creates a local log file, which logs information about the cov-

erage, test case output, and applied mutating strategies, as well

as the current syncing states. After creating the log, a LibFuzzer

instance L reads the corpus directory, if provided, and adds all the

input test cases into its hash table and then starts mutating each

of them. L fuzzes a library by first resetting the instrumentation

bitmap and then calling the target function with the generated

input buffer and its size. L updates its trace bitmap with the help

of the instrumentation engine and then calculates the coverage as

soon as the target function returns. If the coverage increases, L first

inserts the new input with its SHA1 into the hash table, and later

saves the input to the shared corpus directory on the disk.

Fuzzing in parallel. After several unsuccessful mutations, L peri-

odically peeks through the shared corpus directory to obtain new

test cases saved by other running instances. To obtain a new test

case from the shared directory, L first traverses the directory and

only reads those files whose time is greater than the time when in-

voking the directory read operation. After reading input test cases,

L calculates the SHA1 value and only re-executes those test cases

whose SHA1 value is missing in the hash table. Later, L saves the

newly executed test case to its own corpus after deciding whether

it was interesting and then updates the overall coverage L has

achieved. L repeats this whole process for all the saved test cases

in the shared directory and then it moves to the mutating phase to

create new test cases that can further improve the coverage of the

program.

Bottlenecks. LibFuzzer’s in-process model brings restrictions on

the execution of the target but overcomes the issue of forking (un-

like AFL). Thus, the snapshot() system call makes no improvement

on its performance. However, it still suffers from two design issues

which can be solved by the other two primitives: 1) The current de-

sign of collaborative syncing is vague, as each instance re-executes

the interesting test cases even if other instances have already gained

their related features. It is not wise for different LibFuzzer instances

to sync through the file system because they already have a copy

of the generated corpus in their own memory, which can be eas-

ily shared among themselves. 2) Moreover, the syncing phase of

LibFuzzer suffers from file system overhead because it does read

and write to the same shared-corpus directory, which is not scalable,

as shown by prior research [32]. The file system induces a lot of

overhead in order to maintain the consistency of the data, which is

not entirely required for applications like fuzzers. We now describe

our proposed changes to improve the scalability of LibFuzzer with

increasing core count based on the new operating primitives.

4.3.1 Efficient Collaborative Syncing. LibFuzzer already pro-

vides a notion of collaborative fuzzing by allowing any LibFuzzer

instance to get the new test cases from other instances because all

instances write their new test cases to a specific shared corpus di-

rectory. To remove the overhead of the redundant file system based

operations, we use the shared in-memory test case log (see §3.3) by

exposing the test case, its coverage bitmap, and the SHA1 of the test

case. Moreover, each LibFuzzer instance (L) also maintains a local

table of how many test cases it has popped out from the log of other

instances. Thus, after finishing a syncing round, L increases the

number of new test cases it has read from a collaborating instance

in its local table. In addition, now the LibFuzzer does not re-execute

the copied corpus since it can directly update the coverage bitmap,

which is also shared among all collaborators. Hence, by merely

utilizing a fraction of memory, we not only remove the redundant

executions, but also improve the the file system overhead in terms

of reading corpus data from the shared directory.

4.3.2 Removing File System Contention. The shared in-memory

test case log partially resolves the file system overhead by removing

the directory traversal and file reading during the syncing stage.

However, the current design of LibFuzzer still suffers from the

contention of writing the interesting corpus data to the shared

directory. In addition, it also maintains the log of each running

instance in the root directory where the application is being fuzzed.

Unfortunately, both of these designs are non-scalable. First, Linux

holds a directory lock when creating a new file. To solve the con-

tention, our two-tiered file system service creates a local directory

on memory file system for each LibFuzzer instance to write both

the interesting corpus data and its log. The service daemon copies

the data from the first tier, memory file system, to the second tier file

system (storage medium) in order to provide an eventual durability

(see §3.2).

5 IMPLEMENTATION
We implemented and applied our design decisions to both AFL (ver-

sion 2.40b) and LibFuzzer, a part of LLVM v4.0.0, on Linux v4.8.10.

5.1 Operating Primitives
We implemented a new x86_64 system call snapshot() for generic

fuzzers to clone an instance of the target program. It supports

snapshotting the memory and other system states of a running

process and rolling a snapshotted process back to its original state.

snapshot() has system call number 329 and its implementation

involves 750 lines of code (LoC) introduced into the Linux kernel.

snapshot() also requires the cooperation of the page fault handling

process in the kernel in order to track memory updates during a

fuzzing run. We also modified the exit and signal handling routine

of a user process in the kernel, in order to prevent a snapshotted

process from being accidentally terminated at runtime, and mean-

while ensure that a process can normally handle these signals in an

expected way if it is not in snapshot. These changes involve around

100 LoC scattering at different places in the kernel source.

We also developed a library containing six interfaces of the

shared in-memory test case log in around 100 LoC. In particular,

the test case log is implemented as a POSIX shared memory object

supported by /dev/shm utility in Linux.

Furthermore, we wrote a 100 LoC simple dual file system service

daemon which can be launched by a fuzzer for a private working

directory on partitioned tmpfs and periodical test case flushing (see

§3.2).

5.2 Applications
We applied all of our three operating primitives to AFL, and only

the second and third ones to LibFuzzer.

In order to make AFL use snapshot() instead of fork() to clone

a new target instance, we rewrote AFL’s fork server instrumented

into the target application during compilation without modifying

10

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2322

much of its original working mechanism. However, the timeout

and other kill signals are particularly handled since the snapshot

server runs within the same process of the target instance in our

design. Whatever errors occur during a fuzzing run, the snapshot

server must be maintained. Our new snapshot server (for 64-bit

target) has around 350 LoC.

Moreover, we implemented a new function to replace the old

one for syncing test cases from other fuzzer instances. It utilizes the

shared in-memory test case log by linking the library and invoking

related interfaces (see §3.3). An individual AFL instance updates its

own test case log with the path, size and coverage information of

the generated test cases. It also keeps track of the test case logs

belonging to other AFL instances. The new syncing phase introduces

around 50 LoC into AFL’s code.

In LibFuzzer, similar to AFL, we can have a per-thread in-memory

shared queue among the instantiated instances of LibFuzzer, which

is individually updated by the instance, and a list table to keep tracks

of how many corpus data an instance has read from each neighbors.

We added around 200 LoC into LibFuzzer to implement our ideas.

For both fuzzers, we launch our two-tiered file system service

daemon to have a separate directory on tmpfs for each fuzzer in-

stance. The daemon provides the eventual durability, which allows

us to resume previous fuzzing in the future.

6 EVALUATION
We evaluate our proposed design decisions by answering the fol-

lowing questions:

• What is the overall impact of our design choices on two

classes of fuzzers (i.e., AFL and LibFuzzer)? (§6.1, §6.2)
• How does each design choice help improve the scalability of

fuzzers? (§6.3)

Experimental setup. We evaluate the scalability of two fuzzers—

AFL and LibFuzzer—on an eight-socket, 120-coremachinewith Intel

Xeon E7-8870 v2 processors. Even though it is not conventionally

used at this moment, we use it for the purpose of research to ex-

trapolate the performance characteristics of future, large multi-core

machines. We choose libraries from Google’s fuzzer test suite [24]

to evaluate both AFL and LibFuzzer.

Since the fuzzer test suite already provides the wrapper function

for fuzzing libraries with LibFuzzer, we wrote our own wrapper to

fuzz these libraries with AFL. In particular, we changed the fuzzing

entry for LibFuzzer into the main() function, which can be com-

piled into an executable. LibFuzzer assumes that the input is stored

in a buffer with a certain size. To test AFL by reusing the test suites

for LibFuzzer, our wrapper opens the input test case whose path

is indicated by the argument of the program, and then loads the

test case into a memory buffer. Moreover, we observe that AFL also

allows the target application to directly receive input data from

stdin and performs different file operations from ones used for

delivering input through file. To evaluate this interactive fuzzing

mode, we also fuzzed djpeg built on top of IJG’s libjpeg, which

accepts standard input. Each fuzzing test lasts for 5 minutes for

both AFL and LibFuzzer, and for every used core, we bind a single

fuzzer instance to it.

In the experiment, the file system service checks the usage of

the in-memory file system (i.e., tmpfs) every 30 seconds in the

experiment. If the usage exceeds 80%, then the service daemon

flushes the oldest 25% test cases to the disk file system (i.e., SSD)
(see §4.2.2).

Performance metric. We aim at improving the overall perfor-

mance of fuzzers, regardless of their fuzzing strategies (e.g., muta-

tion policies). To demonstrate such performance benefits, we use

executions per second to evaluate a fuzzer, which is more direct and

scientific. Using the notation of path coverage or bugs found to

show performance improvement tends to be subjective as fuzzers

saturate too quickly with a small corpus size in a laboratory envi-

ronment [7].

6.1 AFL

Figure 5 presents the results of our optimized AFL version (opt—
AFLOPT) against the original version (stock—AFL). AFLOPT improves

the fuzzing execution by 6.1 to 28.9× for nine tested libraries at

120 cores. Moreover, our techniques not only drastically decrease

the average syncing time per core of AFLOPT by 41.7 to 99.8%, but

also enable generating more new test cases by mutating the input

corpus data. Furthermore, we simply provide an empty file as the

seed input when fuzzing openssl-1.0.2d. Because of the serious

performance bottleneck, timeout occurs when several AFL instances

process the only input test case while AFL cannot proceed if there is

no valid input test case for mutation. That explains why there is no

experimental result for openssl-1.0.2d at 90, 105 and 120 cores.

Note that AFLOPT does not change the fuzzing algorithm of stock—
AFL, but our operating primitives remove the contention either from

the inherent design flaws of AFL or from the underlying OS. More-

over, other evolutionary techniques [7, 34] can benefit from our

operating primitives to expedite the process of concurrently finding

new bugs. Another interesting observation is that besides libpng,

woff, boringssl, and c-ares, the other five applications show al-

most linear scalability because these applications do not frequently

invoke dynamic memory allocations and thus are free from kernel

memory allocation overhead such as cgroup accounting or even
page cache maintenance by the zone allocator of the kernel, which

is currently the hot spot in the kernel.

We also found that some applications (harfbuzz, libpng, woff,

libxml and c-ares) suffer from the known open()/close() system

call overhead while reading input test cases [32]. We further remove

this overhead by employing a multi-partition file system in which

each slave saves the data in the own partition as described in §3.2.

This approach further improves the scalability of these libraries by

1.2 to 2.3×.

In summary, our AFLOPT version is the most current lightweight

approach to fuzz any application without realizing on any special-

ized fuzzers that limit the scope of fuzzing, and finding new bugs

efficiently.

6.2 LibFuzzer

Figure 6 presents the results of fuzzing some of the libraries with

LibFuzzer. We choose a set of libraries because LibFuzzer inher-

ently suffers from its threading design limitation, which exits if

any error occurs or if the program encounters any signals. We

observe that LibFuzzer improves applications’ fuzzing execution

11

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2323

0k

100k

200k

300k

400k

500k

1 15 30 45 60 75 90 105 120

0k

200k

400k

600k

800k

1 15 30 45 60 75 90 105 120

0k

200k

400k

600k

800k

1000k

1 15 30 45 60 75 90 105 120

0k

40k

80k

120k

160k

200k

1 15 30 45 60 75 90 105 120

0k

80k

160k

240k

320k

400k

480k

560k

1 15 30 45 60 75 90 105 120

0k

100k

200k

300k

400k

500k

600k

1 15 30 45 60 75 90 105 120

0k

100k

200k

300k

400k

1 15 30 45 60 75 90 105 120

0k

50k

100k

150k

200k

1 15 30 45 60 75 90 105 120

0k

50k

100k

150k

200k

250k

1 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

(a) harfbuzz
stock

opt

(b) libpng (c) woff

E
x
e
c
s
/
s
e
c

(d) libxml (e) boringssl (f) c-ares

E
x
e
c
s
/
s
e
c

#core

(g) re2

#core

(h) openssl-1.0.2d

#core

(i) libjpeg

Figure 5: The execution numbers per second of the original and our optimized version of AFL by fuzzing Google’s fuzzer test suite plus libjpeg
on 1 to 120 cores. In the case of openssl-1.0.2d, from 90 cores, each fuzzing instance times out, which results in no further execution as there
are no valid input test cases for mutations due to the severe performance bottlenecks in the stock version of AFL.

0k

400k

800k

1200k

1600k

1 15 30 45 60 75 90 105 120

0k

1000k

2000k

3000k

4000k

5000k

6000k

7000k

1 15 30 45 60 75 90 105 120

0k

200k

400k

600k

1 15 30 45 60 75 90 105 120

0k

50k

100k

150k

1 15 30 45 60 75 90 105 120

0k

150k

300k

450k

600k

750k

1 15 30 45 60 75 90 105 120

0k

400k

800k

1200k

1600k

2000k

2400k

2800k

1 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

(a) harfbuzz

stock

opt

(b) libpng (c) sqlite

E
x
e
c
s
/
s
e
c

#core

(d) woff

#core

(e) libxml

#core

(f) boringssl

Figure 6: The execution numbers per second of the original and our optimized version of LibFuzzer by fuzzing Google’s fuzzer test suite on 1
to 120 cores.

count from 1.1 – 735.7×. We measure at least two orders of mag-

nitude in change with libpng and boringssl because both suffer

from the inefficient syncing phase of the LibFuzzer, and we im-

prove their scalability by 145.8× and 735.7× via the in-memory test

case log (see §3.3). Another reason for such overhead is that neither

of them can find a good test case, which results in periodic corpus

directory enumeration to find new interesting test cases from col-

laborating LibFuzzer instances. While other libraries do not suffer

from the poor test cases, their scalability is improved by 1.1 – 1.3×

because they benefit from our shared in-memory test case log as

well as the dual file system service.

6.3 Evaluating Design Choices
We now evaluate the effectiveness of each of our design decisions

by evaluating some sets of benchmarks. We choose libpng for

evaluation, as both Figure 5 and Figure 6 illustrate that it has the

highest improvement over the version of fuzzers. We evaluate the

scalability behavior of our optimized AFL on the tmpfs file system

for the in-memory test case log (refer §3.3) and the snapshot()

(§3.1) system call experiments. Later, we show the impact of the

physical medium on AFL (§3.2).

12

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2324

10k

20k

30k

40k

50k

60k

1 15 30 45 60 75 90 105 120

20

40

60

80

100

1 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

(a) Fuzzing executions

AFL w/ log

AFL w/o log

%
t
i
m
e
s
p
e
n
t

#core

(b) Syncing phase execution time

AFL w/ log

AFL w/o log

Figure 7: Evaluation of the shared in-memory test case log in terms
of the number of executions and the time spent while fuzzing the
libpng library. While Figure 7(a) shows the number of new execu-
tions, Figure 7(b) shows the percentage of time spent in the syncing
phase.

6.3.1 Shared In-memory Test Case Log. We run stock—AFL with
and without the shared in-memory test case log applied on the

libpng library, and Figure 7 presents the experimental results. In

terms of the new fuzzing executions that exclude the re-executions

at the syncing stage, the in-memory shared logging speeds up

AFL at roughly 13× at 120 cores. We can observe that the overall

time spent on syncing by AFL linearly increases and around 90% of

the total fuzzing time is used for syncing at the worst case. Note

that the syncing stage does not contribute anything directly to the

whole progress of the exploration of the target program. Without

modifying the working mechanism AFL follows at the syncing stage,

our new primitive successfully removes the performance bottleneck

and the percentage of time spent at the syncing stage drops to at

most 8.05%, which is totally acceptable.

6.3.2 Snapshotting. Even though the in-memory queue removes

the overhead from the syncing phase and brings it down to 8.1%,

we observe that the scalability of AFL is still saturated after 45 cores

(Figure 7). The primary reason for such saturation is the fork()

system call. Figure 8(a) shows the impact of replacing the fork()

with the snapshot() system, which improves the scalability of the

libpng fuzzing by 12.6× and now fuzzing is bottlenecked by the file

operations (i.e.open()/close()). To further validate the necessity

of our snapshot() system call, we create a micro benchmark to

stress test the existing process creation APIs such as fork() and

pthread_create(). The micro benchmark first spawns a per-core

process that individually creates processes or threads using the

aforementioned APIs, including the snapshot() system call, and

then terminates immediately. Figure 8(b) presents the results for

the process creation along with the number of fuzzing executions

of the libpng library, which clearly shows that both fork() and

pthread_create() do not scale beyond 15 cores and suffer from

scalability collapse after 45 cores. On the other hand, snapshot()

system call scales almost linearly with increasing core count and

outperforms both of the process spawning APIs by 3004.5×. More-

over, snapshot() is considered a generic system call for fuzzers. The

0k

100k

200k

300k

400k

500k

600k

700k

800k

1 15 30 45 60 75 90 105 120

1k

10k

100k

1000k

10000k

1 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

(a) Fuzzing executions

AFL w snapshot()

AFL w/o snapshot()

E
x
e
c
s
/
s
e
c

#core

(b) Process spawns and fuzzing executions

snapshot()

fork()

Figure 8: Evaluation of our snapshot() system call against fork() sys-
tem call and pthread_create() function. Figure 8(a) shows the impact
of snapshot() system call while fuzzing the libpng library. Figure 8(b)
shows the scalability of all the primitives that are used to create a
new process along with the optimized AFL case while fuzzing the
libpng library.

0k

100k

200k

300k

400k

500k

600k

700k

800k

1 2 4 15 30 45 60 75 90 105 120

E
x
e
c
s
/
s
e
c

HDD

SSD

tmpfs

ptmpfs

Figure 9: Impact of the file system on our optimized version of AFL
for the libpng library.

allowed number of snapshotted processes is sufficient to handle the

executions that AFL can have concurrently in practice.

6.3.3 File-system Overhead. Most existing fuzzers save inter-

esting test cases as well as the crash information in a directory

specified by a user. Figure 9 presents the impact of the physical

medium while fuzzing the libpng library with our optimized AFL,

which clearly illustrates that AFL does a lot of file system-specific

operations and is affected by the physical medium as well as the file

system overhead. For example, by changing the physical medium

from HDD to SSD, the scalability of AFL improves by 1.7×, which fur-

ther improves by §3.2 while switching from SSD to an in-memory

file system (tmpfs). However, even with tmpfs, the most trimmed

version of a file system, we observe that its performance is satu-

rated at 60 cores, which happens because opening and closing files

in a shared directory is not a scalable operation [32]. To mitigate

this problem, we use a partitioned (ptmpfs) approach to partially

mitigate the scalable bottleneck of the file system, which improves

the performance by 1.9×, 6.3×, and 10.8× over simple tmpfs, SSD, and

HDD, respectively. In summary, by using our partitioned approach,

we improve the scalability of AFL by 24.3× over the stock version of

AFL on 120 cores.

13

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2325

7 RELATEDWORK
Ourwork ismotivated by previous research on fuzzing techniques [7,

12, 13, 21, 23, 27, 29, 34, 36, 41], which aim to explore program paths

wisely, and large-scale fuzzing [20, 22, 31], which aims to explore

program paths faster using many, networked machines. Our goal in

this work is improving the performance and scalability of fuzzing

in a single, multi-core machine so our techniques can be orthog-

onally used with previous work. We also influenced by previous

work on OS scalability [4, 5, 8–10, 16–18, 26, 32] and solutions

to improve scalability [6, 15, 19, 28, 30, 33] but we analyzed OS

scalability bottlenecks with interactions of fuzzers and proposed

practical solutions for scalable, performant fuzzing.

Fuzzing. Existing fuzzing techniques strive to mutate input wisely

for a better exploration of target programs and the earlier detection

of bugs. For instance, feedback-driven fuzzers [12, 21, 23, 29, 34, 41]

profile various runtime characteristics of past fuzzing runs and

the profiled results directs the generation of the following inputs.

More specifically, coverage-driven fuzzers [23, 29, 41] use past code

coverage to determine whether or not a mutated input is interesting.

Some fuzzers [12, 34] retrieve more advanced knowledge such as

code- and data- flow feature, or various metrics to catalyze the

evolution of input. Honggfuzz [21] uses hardware features (e.g., Intel
PT, Intel BTS) as a more general solution to execution tracing than

software instrumentation. Fuzzing is likely to stuck at particular

branches with complex conditions for uncertain time due to its

randomness. Existing research addresses this issue by either wisely

scheduling the sequence of the test cases in the waiting queue [7]

or combining fuzzing with symbolic execution [13, 27, 36]), which

was originally proposed to solve sophisticated condition checks.

Note that our research on solving the performance bottleneck

of fuzzing is orthogonal to the previous works mentioned above.

What we propose are fuzzer-agnostic primitives from the operating

system side to speed up fuzzing, especially with a number of fuzzer

instances running concurrently.

Large-scale fuzzing. In recent years, serious vulnerabilities in

modern software and OS exploited by attackers for profit are on a

rapid increase. As a response, large companies and organizations

expend a huge amount of hardware resources on automated fuzzing

to discover bugs in their own products. For example, the fuzzing in-

frastructure ClusterFuzz [20] by Google consists of several hundred

virtual machines running around 6,000 Chrome instances simulta-

neously. It also powers project OSS-Fuzz [22] to process trillions of

test cases targeting open source software. Furthermore, Microsoft

provides a cloud-based fuzzing service called Project Springfield [31]

for developers to find security bugs in the software. Our proposed

operating primitives can help boost the fuzzers deployed on large

clusters of cloud servers with abundant hardware resources and

thus save significant cost.

Process snapshot. Recent research works [6, 15, 28] propose sev-

eral OS primitives based on process snapshot to provide a temporary

and isolated execution context for running particular code flexibly.

lwCs (light-weight contexts) [28] provides independent units of
protection, privilege, and execution state within a process. The

lwCreate call creates an in-process child lwC with an identical

copy of the calling lwC’s states. Different from the snapshot() sys-

tem call, the new lwC gets a private copy of per-thread register

values, virtual memory, file descriptors, and credentials for isolation

purpose. Shreds [15] provide an in-process execution context for

a flexibly defined segment with private memory access. After the

code enters a sensitive section, it is granted a private memory pool

isolated from the virtual memory space while all the other process

states remain the same.Wedge [6] is another similar system used for

splitting complex applications into fine-grained and least-privilege

compartments. Note that the goal of these works is to create a

lightweight execution context for sandboxing. As a result, the new

execution context possesses private memory space, credentials, and

other system states that are isolated from the calling context. By

contrast, the execution context before and after the snapshot()

system call is completely the same for fuzzing purposes.

OS scalability. Researchers have been optimizing existing OSes [4,

8–10, 16, 17, 26] or completely rewriting them based on new design

principles [5, 18]. Our design decisions for fuzzing are inspired by

these prior works and concurrent programming in general. For

instance, while Wickizer et al. [4] improved the performance of

the Linux fork() in general, we resolve the issue by designing a

lightweight process spawning API that is specific to applications

like fuzzing. In addition, prior works have used in-memory file

systems to hide the file system overhead; instead we use it in the

form of two-level caching to provide a required file system interface

as well as the memory bandwidth.

OS specialization. Prior research works [19, 30, 33] have also

focused on removing the underlying overhead of OS in both the

bare metal and cloud environments. Even though, our work on

specializing OS for fuzzing ventures into a similar direction, it is

still generic from an OS perspective compared with library OS,

which has focused on rewriting the application for performance.

8 DISCUSSION AND FUTUREWORK
Applicable fuzzers. We only analyze and improve performance

and scalability of the general application fuzzers that natively exe-

cute the target with concrete input values in round. Our operating

primitives may bring less benefit to many other fuzzing tools which

rely on symbolic execution, taint analysis or instruction emula-

tion to find security bugs. OS kernel fuzzers are also out-of-scope.

These fuzzers may suffer from different performance bottlenecks

and require corresponding solutions.

Cross-platform implementation. We implemented the work-

ing prototype of our design choices on Linux platform. However,

there is a greater demand on finding bugs in MacOS and Windows

applications because of their popularity. We will port our imple-

mentation to these two platforms in the near future.

Scalable fuzzing on VM clusters. The scalability of fuzzers de-
pends not just on the design of fuzzers. As the cloud provider starts

adopting fuzzing as one of its major services (e.g., Project Springfield
on Microsoft Azure [31]) or abstracting fuzzing instances inside

a VM or container (e.g., OSS-Fuzz by Google [22]), the scalability

of underlying abstractions plays an important role in determining

the fuzzing performance. Our goal in this work is to improve the

performance and scalability of fuzzing in a multi-core machine.

However, there may exist different bottlenecks when fuzzing with

a large-scale VM cluster because of the semantic gap between a VM

and the hypervisor. Efficient and scalable hypervisor primitives are

14

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2326

required to bridge the semantic gap between a hypervisor, a guest

OS, and all the way up to the fuzzing instance.

9 CONCLUSION
Fuzzing is now one of the most critical tools to find several security

bugs in various organizations and communities. However, with

increasing code bases and trivial bugs vanishing out of air, fuzzers

nowadays spend days, weeks or even months to find critical bugs

that not only requires large computing resources but also results in

monetary expenditure. Till now, prior works have only focused on

producing interesting input test cases to find new bugs quickly, but

have forgo the design aspects from a system’s perspective. In this

work, we carefully study and profile the various components of

two state-of-the-art fuzzers and their interaction with the OS and

find three design flaws, which we address for two fuzzers: AFL and

LibFuzzer. With our proposed operating primitives, AFL has at most

7.7×, 25.9×, and 28.9× improvement on the number of executions per

second on 30, 60, and 120 cores, respectively. Meanwhile, LibFuzzer

can speed up by at most 170.5×, 134.9×, and 735.7× on 30, 60, and

120 cores respectively.

10 ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful feedback.

This research was supported, in part, by the NSF award DGE-

1500084, CNS-1563848, CNS-1704701 and CRI-1629851, ONR under

grant N000141512162, DARPA TC (No. DARPA FA8650-15-C-7556),

and XD3 programs (No. DARPA HR0011-16-C-0059), and ETRI

IITP/KEIT[B0101-17-0644], and gifts from Facebook, Mozilla and

Intel.

REFERENCES
[1] Nightmare, 2014. https://github.com/joxeankoret/nightmare.

[2] zzuf, 2016. https://github.com/samhocevar/zzuf.

[3] Pwn2Own 2017: Chrome Remains the Winner in Browser Security, 2017. https://

securityzap.com/pwn2own-2017-chrome-remains-winner-browser-security/.

[4] B. Wickizer, S., Kaashoek, M. F., Morris, R., and Zeldovich, N. OpLog: a

library for scaling update-heavy data structures. CSAIL Technical Report (2013).

[5] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S.,

Roscoe, T., Schüpbach, A., and Singhania, A. The Multikernel: A New OS

Architecture for Scalable Multicore Systems. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (San Diego,

CA, Dec. 2008).

[6] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge: Splitting Appli-

cations into Reduced-Privilege Compartments. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI) (San Fran-

cisco, CA, Apr. 2008).

[7] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-based greybox

fuzzing as markov chain. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS) (Vienna, Austria, Oct. 2016).

[8] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, M. F., Morris, R.,

Pesterev, A., Stein, L., Wu, M., Dai, Y., Zhang, Y., and Zhang, Z. Corey: An

Operating System for Many Cores. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (San Diego, CA, Dec.

2008).

[9] Boyd-Wickizer, S., Clements, A. T., Mao, Y., Pesterev, A., Kaashoek, M. F.,

Morris, R., and Zeldovich, N. An Analysis of Linux Scalability to Many Cores.

In Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Vancouver, Canada, Oct. 2010).

[10] Boyd-Wickizer, S., Kaashoek, M. F., Morris, R., and Zeldovich, N. Non-

scalable locks are dangerous. In Proceedings of the Linux Symposium (Ottawa,

Canada, July 2012).

[11] Boyd-Wickizer, S., Kaashoek, M. F., Morris, R., and Zeldovich, N. OpLog: a

library for scaling update-heavy data structures.

[12] CENSUS. Choronzon - An evolutionary knowledge-based fuzzer. ZeroNights

Conference.

[13] Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D. Unleashing MAYHEM

on binary code. In Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland) (San Francisco, CA, May 2012).

[14] Chang, O., Arya, A., Serebryany, K., and Armour, J. OSS-Fuzz: Five months

later, and rewarding projects, 2017. https://security.googleblog.com/2017/05/

oss-fuzz-five-months-later-and.html.

[15] Chen, Y., Reymondjohnson, S., Sun, Z., and Lu, L. Shreds: Fine-grained execu-

tion units with private memory. In Proceedings of the 37th IEEE Symposium on
Security and Privacy (Oakland) (San Jose, CA, May 2016).

[16] Clements, A. T., Kaashoek, M. F., and Zeldovich, N. Scalable Address Spaces

Using RCU Balanced Trees. In Proceedings of the 17th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (London, UK, Mar. 2012).

[17] Clements, A. T., Kaashoek, M. F., and Zeldovich, N. RadixVM: Scalable

Address Spaces for Multithreaded Applications. In Proceedings of the 8th European
Conference on Computer Systems (EuroSys) (Prague, Czech Republic, Apr. 2013).

[18] Clements, A. T., Kaashoek, M. F., Zeldovich, N., Morris, R. T., and Kohler,

E. The Scalable Commutativity Rule: Designing Scalable Software for Multicore

Processors. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP) (Farmington, PA, Nov. 2013).

[19] Engler, D. R., Kaashoek, M. F., and O’Toole, Jr., J. Exokernel: An Operating

System Architecture for Application-level Resource Management. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (SOSP) (Copper
Mountain, CO, Dec. 1995), pp. 251–266.

[20] Google. Fuzzing for Security, 2012. https://blog.chromium.org/2012/04/

fuzzing-for-security.html.

[21] Google. Honggfuzz, 2016. https://google.github.io/honggfuzz/.

[22] Google. OSS-Fuzz - Continuous Fuzzing for Open Source Software, 2016. https:

//github.com/google/oss-fuzz.

[23] Google. syzkaller - linux syscall fuzzer, 2016. https://github.com/google/

syzkaller.

[24] Google. fuzzer-test-suite: Set of tests for fuzzing engines, 2017. https://github.

com/google/fuzzer-test-suite.

[25] iSEC. PeachFarmer, 2014. http://github.com/iSECPartners/PeachFarmer.

[26] Kashyap, S., Min, C., and Kim, T. Scalable NUMA-aware Blocking Synchroniza-

tion Primitives. In Proceedings of the 2017 USENIX Annual Technical Conference
(ATC) (Santa Clara, CA, July 2017).

[27] Kim, S. Y., Lee, S., Yun, I., Xu, W., Lee, B., Yun, Y., and Kim, T. CAB-Fuzz: Practical

Concolic Testing Techniques for COTS Operating Systems. In Proceedings of the
2017 USENIX Annual Technical Conference (ATC) (Santa Clara, CA, July 2017).

[28] Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D., Bhattacharjee,

B., and Druschel, P. Light-weight contexts: an OS abstraction for safety and

performance. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (Savannah, GA, Nov. 2016).

[29] LLVM. libFuzzer - a library for coverage-guided fuzz testing, 2017. http://llvm.

org/docs/LibFuzzer.html.

[30] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire,

T., Smith, S., Hand, S., and Crowcroft, J. Unikernels: Library Operating

Systems for the Cloud. In Proceedings of the 18th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(Houston, TX, Mar. 2013), pp. 461–472.

[31] Microsoft. Microsoft previews Project Springfield, a cloud-based

bug detector, 2016. https://blogs.microsoft.com/next/2016/09/26/

microsoft-previews-project-springfield-cloud-based-bug-detector.

[32] Min, C., Kashyap, S., Maass, S., Kang, W., and Kim, T. Understanding Manycore

Scalability of File Systems. In Proceedings of the 2016 USENIX Annual Technical
Conference (ATC) (Denver, CO, June 2016).

[33] Porter, D. E., Boyd-Wickizer, S., Howell, J., Olinsky, R., and Hunt, G. C.

Rethinking the Library OS from the Top Down. In Proceedings of the 16th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Newport Beach, CA, Mar. 2011), pp. 291–304.

[34] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., and Bos, H. VUzzer:

Application-aware Evolutionary Fuzzing. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS) (San Diego, CA,

Feb.–Mar. 2017).

[35] Ruderman, J. Releasing jsfunfuzz and domfuzz, 2015. http://www.squarefree.

com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/.

15

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2327

https://github.com/joxeankoret/nightmare
https://github.com/samhocevar/zzuf
https://securityzap.com/pwn2own-2017-chrome-remains-winner-browser-security/
https://securityzap.com/pwn2own-2017-chrome-remains-winner-browser-security/
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://google.github.io/honggfuzz/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
http://github.com/iSECPartners/PeachFarmer
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/
http://www.squarefree.com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/

[36] Stephens, N., Grosen, J., Salls, C., Dutcher, A.,Wang, R., Corbetta, J., Shoshi-

taishvili, Y., Kruegel, C., and Vigna, G. Driller: Augmenting fuzzing through

selective symbolic execution. In Proceedings of the 2016 Annual Network and
Distributed System Security Symposium (NDSS) (San Diego, CA, Feb. 2016).

[37] The Clang Team. Clang 5 documentation - SanitizerCoverage, 2017. http:

//clang.llvm.org/docs/SanitizerCoverage.html.

[38] Veggalam, S., Rawat, S., Haller, I., and Bos, H. IFuzzer: An Evolutionary

Interpreter Fuzzer Using Genetic Programming. In Proceedings of the 21th Eu-
ropean Symposium on Research in Computer Security (ESORICS) (Crete, Greece,
Sept. 2016).

[39] Zalewski, M. Fuzzing random programs without execve(), 2014. https://lcamtuf.

blogspot.com/2014/10/fuzzing-binaries-without-execve.html.

[40] Zalewski, M. AFL starting test cases), 2017. https://github.com/mirrorer/afl/

tree/master/testcases.

[41] Zalewski, M. american fuzzy lop (2.41b), 2017. http://lcamtuf.coredump.cx/afl/.

[42] Zalewski, M. Technical "whitepaper" for afl-fuzz), 2017. https://github.com/

mirrorer/afl/blob/master/docs/technical_details.txt.

[43] Zalewski, M. Tips for performance optimization, 2017. https://github.com/

mirrorer/afl/blob/master/docs/perf_tips.txt.

16

Session K2: Fuzzing Finer and Faster CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2328

http://clang.llvm.org/docs/SanitizerCoverage.html
http://clang.llvm.org/docs/SanitizerCoverage.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://github.com/mirrorer/afl/tree/master/testcases
https://github.com/mirrorer/afl/tree/master/testcases
http://lcamtuf.coredump.cx/afl/
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://github.com/mirrorer/afl/blob/master/docs/perf_tips.txt
https://github.com/mirrorer/afl/blob/master/docs/perf_tips.txt

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fuzzing Explained
	2.2 Design of [0.5]AFL
	2.3 Perils to Scalable Fuzzing
	2.4 Scalability of AFL

	3 Operating Primitives
	3.1 Snapshot System Call
	3.2 Dual File System Service
	3.3 Shared In-memory Test-Case Log

	4 Scaling State-of-the-art Fuzzers
	4.1 Overview
	4.2
	4.3

	5 Implementation
	5.1 Operating Primitives
	5.2 Applications

	6 Evaluation
	6.1
	6.2
	6.3 Evaluating Design Choices

	7 Related work
	8 Discussion and Future work
	9 Conclusion
	10 Acknowledgment
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 292.83, 19.91 Width 25.38 Height 63.45 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 292.8286 19.9088 25.3784 63.4462

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 16
 15
 16

 1

 HistoryList_V1
 qi2base

