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ABSTRACT

We provide efficient constructions for trace-and-revoke sys-
tems with public traceability in the black-box confirmation
model. Our constructions achieve adaptive security, are based
on standard assumptions and achieve significant efficiency
gains compared to previous constructions.

Our constructions rely on a generic transformation from
inner product functional encryption (IPFE) schemes to trace-
and-revoke systems. Our transformation requires the underly-
ing IPFE scheme to only satisfy a very weak notion of security
– the attacker may only request a bounded number of random
keys – in contrast to the standard notion of security where
she may request an unbounded number of arbitrarily chosen
keys. We exploit the much weaker security model to pro-
vide a new construction for bounded collusion and random
key IPFE from the learning with errors assumption (LWE),
which enjoys improved efficiency compared to the scheme of
Agrawal et al. [CRYPTO’16].

Together with IPFE schemes from Agrawal et al., we obtain
trace and revoke from LWE, Decision Diffie Hellman and
Decision Composite Residuosity.

KEYWORDS

Inner-product functional encryption; Trace-and-revoke; Pub-
lic traceability

1 INTRODUCTION

A traitor tracing system [13] is a multi-receiver encryption
system, which aids content distributors in identifying ma-
licious receivers that construct pirate decryption boxes. In
more detail, data is encrypted under some public key pk and
each legitimate user of the system is provided a secret key
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sk𝑖 that allows her to decrypt the content. Since nothing
prevents a user from making copies of her key and selling
them for profit, traitor tracing systems provide the following
security guarantee to deter such behavior: if a coalition of
users pool together their keys and construct a pirate decoder
box capable of decrypting the ciphertext, then there is an
efficient “trace” algorithm which, given access to any such
decoder, outputs the identity of at least one guilty user.

An orthogonal functionality is that of broadcast encryption
[15], where the content provider encrypts data to some subset
𝑆 of users. Functionality requires that any user in 𝑆 be able
decrypt the content and security posits that no collusion of
users outside 𝑆 can do so. Trace-and-revoke systems combine
these two functionalities – when the system is deployed, the
content is encrypted to all users on the channel. However,
if copyright infringement occurs, then tracing is used to
detect the malicious users, or “traitors”, and future content
is encrypted using broadcast encryption to all users except
the traitors.

Trace-and-revoke systems have been studied extensively [14,
25, 29, 30, 35] and are notoriously hard to construct (please
see [11] for a detailed discussion). A desirable attribute for
trace-and-revoke systems is public traceability, meaning that
the tracing algorithm does not require any additional secrets.
Due to this property, the overall system remains secure even
if the tracing party is compromised. Moreover, the tracing
capability can be outsourced to an untrusted party in this
setting.

To the best of our knowledge, trace-and-revoke systems
with public traceability have only been achieved by Boneh
and Waters [11], and quite recently by Nishimaki, Wichs
and Zhandry (NWZ) [32]. The Boneh-Waters construction
is quite powerful in that it supports malicious collusions of
unbounded size but its ciphertexts are very large (their size

grows proportionally to
√
𝑁 , where 𝑁 is the total number of

users) and the scheme relies on pairing groups of composite
order. To achieve a ciphertext size that does not depend
on the total number of users in the system, we consider
the bounded collusion model, where the number of possible
traitors is a priori bounded by some 𝑡 that is polynomial in
the security parameter 𝜆. The bounded collusion model is
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quite standard in traitor tracing schemes and has received
significant attention; however, until the work of Nishimaki et
al. (NWZ) [32], all known schemes in this model [9, 20, 27]
support either revocation or public traceability but not both.

Recently, Nishimaki et al. (NWZ) [32] provided a generic
construction for traitor tracing systems from functional en-
cryption schemes. Functional encryption [10, 37] is a general-
ization of public key encryption allowing fine grained access
to encrypted data. We note that the strongest constructions
in [32] are based on the existence of indistinguishability obfus-
cation [7], for which we do not at present have any candidate
construction based on well established hardness assumptions.
Since our focus is on efficient constructions based on well
established hardness assumptions, we do not consider these
in this work. One may also instantiate the NWZ compiler
with a bounded collusion functional encryption scheme which
can be based on standard assumptions such as the existence
of public key encryption [18] or subexponential time hardness
of learning with errors (LWE) [5, 17]. For trace and revoke,
this results in a construction that supports public black box
traceability and adaptive security in addition to anonymity
of honest users and an exponential size universe of identities.

However, the generic nature of their construction results
in loss of concrete efficiency. For instance, when based on
the bounded collusion FE of [18], the resulting scheme has a
ciphertext size growing at least as 𝑂(𝑟 + 𝑡)5𝒫𝑜𝑙𝑦(𝜆)) where
𝑟 is the maximum size of the list of revoked users and 𝑡
the maximum coalition size (please see Appendix 6 for an
explanation of the bound). By relying on learning with errors,
this blowup can be improved to 𝑂((𝑟 + 𝑡)4𝒫𝑜𝑙𝑦(𝜆)) but at
the cost of relying on heavy machinery such as attribute
based encryption [19] and fully homomorphic encryption [17].
Additionally, this construction must also rely on complexity
leveraging for adaptive security and learning with errors with
subexponential error rates. The bounded collusion FE of [5]
leads to better asymptotic bounds 𝑂(𝑟 + 𝑡)3𝒫𝑜𝑙𝑦(𝜆)) but
suffers from large polynomial factors which hurt concrete
efficiency.

Our Approach. In this work, we revisit the connection be-
tween functional encryption and trace-and-revoke systems
and observe that the notion of FE required for bounded
collusion trace-and-revoke schemes is significantly weaker
than that considered by [32]. To begin, we show that the
functionality required from the underlying functional encryp-
tion scheme may be significantly weakened; rather than FE
for polynomial sized circuits,1 we show that inner product
functional encryption (IPFE) [1, 4] suffices. Efficient construc-
tions for IPFE satisfying adaptive security are available [4],
leading to trace-and-revoke systems which are significantly
simpler and more efficient than those implied by [32]. We
further improve our constructions by observing that for the
application of trace and revoke, the underlying IPFE schemes
must be secure in a much weaker security model than full

1More accurately, the circuits required by the NWZ compiler are
relatively simple, but ones for which we do not know any better FE
constructions than the general case.

fledged IPFE: the adversary may be restricted to only make
a bounded number of key queries, and only key queries for
randomly chosen vectors. We exploit the much weaker security
model to provide new constructions for bounded collusion
and random key IPFE from LWE and Decision Composite
Residuosity (DCR), which enjoy substantial benefits over us-
ing those of [4] in terms of parameter sizes. The improvement
is greatest for the LWE construction, as the LWE modulus
can be slightly super-polynomial rather than subexponential,
itself allowing to choose a smaller LWE dimension.

Our Results. We construct efficient trace-and-revoke sys-
tems with bounded collusion resistance, from standard as-
sumptions. Our schemes support public, black-box traceabil-
ity and achieve the strongest notion of adaptive security as
defined by [11]. Our construction is generic and leverages
recent constructions of modular inner product functional
encryption (IPFE) [1, 4]. Moreover, by targeting the weak
security game required by our application, we obtain more ef-
ficient versions of IPFE schemes that suffice for our purposes.
While [32] achieves trace-and-revoke in the strong security
model under the existence of public-key encryption, our ap-
proach leads to significantly more efficient schemes under the
DCR, LWE and DDH assumptions. In particular, we achieve
ciphertext and key sizes that are linear in the sum of revoked
list size 𝑟 and maximum coalition size 𝑡. Our DDH-based
construction achieves ciphertext and key sizes 𝑂((𝑟+𝑡)𝜆), our
DCR-based construction achieves ciphertext and key sizes̃︀𝑂((𝑟 + 𝑡)𝜆3), while our LWE-based construction has cipher-

text size ̃︀𝑂(𝑟 + 𝑡+ 𝜆) and key size ̃︀𝑂((𝑟 + 𝑡+ 𝜆)𝜆). We note
that our security definition considers the strongest notion of
“usefulness” [11] of the pirate decoder, which is not satisfied
by most other constructions. Indeed some schemes [14, 30]
are actually insecure in this strong game (see Appendix 6
for a detailed discussion). Finally, we give a DDH-based
traitor tracing construction (without revocation) that sup-
ports encryption of 𝑘 messages with ciphertext and key sizes
𝑂((𝑘 + 𝑡)𝜆). This improves ciphertext expansion over the
trace-and-revoke construction, as the plaintext messages are
binary.

Our Techniques. Let ℱℰ = (ℱℰ .Setup,ℱℰ .KeyGen,ℱℰ .Enc,
ℱℰ .Dec) be a functional encryption scheme for the inner-
product functionality over Zℓ

𝑝. Recall the inner product func-

tionality: the ciphertext encodes a vector v ∈ Zℓ
𝑝, the secret

key encodes a vector x ∈ Zℓ
𝑝 and decryption recovers the

inner product ⟨x,v⟩ mod 𝑝.
To construct a trace-and-revoke scheme, we proceed as

follows. At the time of key generation, a user id is first
assigned a uniformly sampled vector xid ∈ Zℓ

𝑝 and the entry
𝑝id = (id,xid) is stored in the public directory pd for full
public traceability. We may consider revocation and tracing
as two distinct functionalities that need to be combined so
that neither interferes with the security properties of the
other. We employ two different techniques to implement
these functionalities.
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To revoke a set ℛ of users with |ℛ| ≤ 𝑟, we first determin-
istically compute a vector vℛ ∈ Zℓ

𝑝 such that for all id ∈ ℛ,
we have ⟨xid,vℛ⟩ = 0 (modulo 𝑝). Note that this can be
implemented only if 𝑟 < ℓ. At the same time, for a user
id /∈ ℛ, the probability that ⟨xid,vℛ⟩ = 0 must be negligible,
as otherwise it would de facto be handled as a revoked user.
To guarantee this, we require that 𝑝 is 𝜆𝜔(1). Since we choose
xid uniformly random, we have ⟨xid,vℛ⟩ ̸= 0 for id ̸∈ ℛ with
overwhelming probability.

Using the underlying ℱℰ scheme, we would like to encrypt
the message 𝑚 ∈ Z⋆

𝑝 such that the users in the set ℛ are not
able to decrypt the message, but users not in ℛ are able to
decrypt. We achieve it as follows:

𝐶 = (ℱℰ .Enc(pk,𝑚 · vℛ),ℛ) = (𝐶1, 𝐶2).

Here the operation · denotes the scalar multiplication of each
component of vℛ with 𝑚. To decrypt, the user id with the
vector xid and the ℱℰ secret key 𝑠𝑘xid proceeds as follows:

(a) Compute vℛ from ℛ and abort if ⟨xid,vℛ⟩ = 0.
(b) If ⟨xid,vℛ⟩ ̸= 0, compute

ℱℰ .Dec(skxid , 𝐶1)

⟨xid,vℛ⟩
=
⟨xid,𝑚 · vℛ⟩
⟨xid,vℛ⟩

= 𝑚.

A non-revoked user will be able to correctly decrypt this
ciphertext with overwhelming probability. On the other hand,
a revoked user cannot implement Step (b).

We now consider the (public) tracing procedure. We will
show that given an oracle access to a pirate decoder 𝒟 and a
set 𝒮 = {id1, id2, . . . , } of suspected traitors with |𝒮| ≤ 𝑡, it
is possible to find an identity id in the set 𝒯 of traitors, as
long as 𝒯 ⊆ 𝒮. Here, we assume ℛ∩ 𝒮 = ∅ for simplicity.

Given a pirate decoder 𝒟, our tracing algorithm first finds
a pair of messages 𝑚 and 𝑚′ such that 𝒟 can distinguish the
encryption of 𝑚 and 𝑚′ with noticeable probability. As we
will show in the main body, such a pair can be found effi-
ciently. Then, the tracing algorithm proceeds as follows. Let
us consider a subset of suspect traitors 𝒮𝑖 = {id𝑖, id𝑖+1, . . .}
for 𝑖 = 1, . . . , |𝒮|+1. We then generate a probe ciphertext 𝐶𝒮𝑖

associated to 𝒮𝑖 with the following properties:

∙ The distribution of 𝐶𝒮 corresponds to the normal en-
cryption of 𝑚.
∙ The distribution of 𝐶∅ corresponds to the normal en-
cryption of 𝑚′.
∙ The probes 𝐶𝒮𝑖−1 and 𝐶𝒮𝑖 are indistinguishable with-
out a secret key for id𝑖−1.

The tracing algorithm then estimates the distinguishing ad-
vantage of the decoder 𝒟 for 𝐶𝒮𝑖−1 and 𝐶𝒮𝑖 for all 𝑖 ∈
{2, . . . , |𝒮|+1}. It outputs the identity id𝑖−1 of the user that
is excluded from 𝒮𝑖−1 to get 𝒮𝑖 such that the distinguishing
advantage between them is non-negligible.

We prove that the tracing algorithm always outputs some
user in 𝒯 . To see this, we first observe that by the first
and second properties above, the decoder 𝒟 distinguishes
𝐶𝒮1 = 𝐶𝒮 and 𝐶𝒮|𝒮|+1 = 𝐶∅ with non-negligible advantage.
Therefore, by the triangle inequality, there exists at least
one index 𝑖 such that 𝒟 distinguishes 𝐶𝒮𝑖−1 and 𝐶𝒮𝑖 with

non-negligible advantage. By the third property above, the
identity id𝑖−1 indeed corresponds to a traitor.

The above idea is implemented using inner product func-
tional encryption. To create the probe ciphertext, we first
set v𝒮 ∈ Zℓ

𝑝 as follows: If 𝑖 = 1, we set v𝒮 = 0; If 𝑖 = |𝒮|+ 1,
we set v𝒮𝑖 = (𝑚′ − 𝑚) · vℛ where vℛ is chosen as in the
ordinary encryption algorithm; Otherwise, we set v𝒮𝑖 so that

∙ ⟨xid,v𝒮𝑖⟩ = 0 for every id ∈ 𝒮𝑖 ∪ℛ,
∙ ⟨xid,v𝒮𝑖⟩ = (𝑚′ −𝑚) · ⟨xid,vℛ⟩ for every id ∈ 𝒮1∖𝒮𝑖.

Note that this can be implemented only if 𝑟+ 𝑡 < ℓ. We then
set the probe ciphertext as follows:

𝐶𝒮𝑖 = (𝐶1, 𝐶2) = (ℱℰ .Enc(pk,v𝒮𝑖 +𝑚 · vℛ),ℛ) .

We will show that by setting the probe ciphertext for tracing
as above, we can satisfy the three requirements. By construc-
tion, the first and the second requirements are satisfied. To
see the third property, we consider the decryption result of
the ciphertext using a secret key skxid for id. We have

ℱℰ .Dec(skxid , 𝐶1)

⟨xid,vℛ⟩
=
⟨xid,v𝒮𝑖 +𝑚 · vℛ⟩

⟨xid,vℛ⟩
=
⟨xid,v𝒮𝑖⟩
⟨xid,vℛ⟩

+𝑚.

Therefore, the decryption result of the probe ciphertext 𝐶𝒮𝑖

is 𝑚 if id ∈ 𝒮𝑖 and 𝑚′ if id ∈ 𝒮∖𝒮𝑖. Then we observe that the
decryption results of 𝐶𝒮𝑖 and 𝐶𝒮𝑖−1 are the same, as long
as we use a secret key for id ∈ 𝒮 ∪ℛ with id ̸= id𝑖−1. By the
security property of inner product functional encryption, this
implies that any coalition of users ⊆ 𝒮 cannot distinguish
two ciphertexts without having skxid𝑖−1

. Namely, the third

requirement regarding the probe ciphertext also holds.

Our LWE-based IPFE. Here, we give the overview of our
direct construction of LWE-based IPFE scheme that enjoys
improved efficiency compared to [4]. Let ℓ and 𝑝 be the
dimension and modulus of the space on which inner-products
are taken. Furthermore, let 𝑞 = 𝑝𝑘 be the LWE modulus,
where 𝑘 is some integer. In our scheme, the master secret
key is Z ∈ Zℓ×𝑛, chosen from a Gaussian distribution with
standard deviation 𝜎. The public key is of the form pk =
(A ∈ Z𝑚×𝑛

𝑞 ,U = ZA ∈ Zℓ×𝑛
𝑞 ). To generate a secret key for

the vector x ∈ Zℓ
𝑝, we first pick a vector x̄ ∈ Zℓ from a short

Gaussian distribution over Zℓ conditioned on x̄ ≡ x mod 𝑝.
Then, the secret key is set as skx = (x̄𝑡, x̄𝑡 · Z). One may
wonder why do we set x̄ like this instead of just setting
x̄ = x. This is because we will use some nice properties of
the Gaussian distribution in our security proof, as will be
explained later. The ciphertext for a vector y ∈ Zℓ

𝑝 is of the

form (c0 ≈ As, c1 ≈ Us+ 𝑝𝑘−1 · y) where x ≈ y means that
‖x− y‖ is small.

Here, we skip the explanation of the decryption algorithm
and directly go to the intuition for the security proof. We first
observe that since all entries of Z are small, c1 ≈ ZAs ≈ Zc0.
Given this observation, we can change the distribution of
the ciphertext as c0 being a random vector u ←˒ Zℓ

𝑞 and

c1 ≈ Zu+ 𝑝𝑘−1 · y without being detected by the adversary,
assuming the LWE assumption.
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The main difficulty in the proof is in showing that c1 ≈
Zu + 𝑝𝑘−1y does not leak any information more than nec-
essary. Note that c1 does leak some information. Namely,
given a secret key skx for x, we can still decrypt the mod-
ified ciphertext to obtain ⟨x,y⟩ mod 𝑝. What we have to
prove is that the ciphertext does not leak any information of
⟨x′,y⟩ mod 𝑝 for all x′ ̸∈ SpanZ𝑝

({x𝑖}𝑖∈[𝐿]), where 𝐿 is the

number of key queries and {x1, . . . ,x𝐿} is the set of vectors
for which the adversary is given corresponding secret keys.

This will be shown by an information theoretic argument
using the fact that certain amount of information on Z is
hidden from the adversary. In particular, we explain that
an attempt to obtain any information of ⟨x′,y⟩ mod 𝑝 by

computing ⟨x′, c1⟩ ≈ x′
𝑡
Zu+𝑝𝑘−1·⟨x′,y⟩ mod 𝑞 fails because

x′
𝑡
Z retains sufficiently high min-entropy and thus x′

𝑡
Zu is

uniformly random modulo 𝑞 by the leftover hash lemma.
To see this, let X𝑡𝑜𝑝 ∈ Z𝐿×ℓ be the matrix obtained by

vertically concatenating {x̄𝑖 ∈ Zℓ}𝑖∈𝐿. Via secret keys, the
adversary learns the value of X𝑡𝑜𝑝Z. Let us ignore the ad-
ditional leakage on Z from the public key in this overview.
Note that in X𝑡𝑜𝑝Z, the matrix X𝑡𝑜𝑝 acts in parallel on the
columns of Z. We can hence restrict ourselves to the distri-
bution of z𝑖 conditioned on b𝑖 := X𝑡𝑜𝑝z𝑖. It can be seen that
z𝑖 is distributed on the shifted kernel lattice Λ, defined as

Λ = {v ∈ Z𝑚 : X𝑡𝑜𝑝 · v = 0}.

If the standard deviation 𝜎 is sufficiently large (i.e., larger
than the smoothing parameter of Λ), the vector z𝑖 behaves
like the continuous Gaussian even though it is sampled from
the discrete Gaussian. In particular, it spreads all directions
under the only constraint that X𝑡𝑜𝑝z𝑖 = b𝑖, and thus ⟨x′, z𝑖⟩
has sufficiently high entropy, allowing us to conclude. In [4],
the equivalent of X𝑡𝑜𝑝 in their proof is arbitrarily chosen by
the adversary and ℓ = 𝐿+ 1. This results in exponentially
large smoothing parameter for corresponding Λ. Therefore,
they have to take 𝜎 exponentially large, which is exactly the
source of the inefficiency in their scheme. In our case, the
matrix X𝑡𝑜𝑝 is chosen uniformly at random from a small-
width Gaussian distribution. (Recall that in our weakened
security definition, the adversary does not have control over
x𝑖.) Furthermore, we set ℓ large compared to 𝐿. We can
then invoke the result of [3], which says that the smoothing
parameter of Λ corresponding to such X𝑡𝑜𝑝 is small. This
allows us to choose 𝜎 much smaller and significantly improve
the efficiency.

Organization of the paper. The remainder of the paper is
organized as follows. In Section 2, we provide definitions and
preliminaries required for our work. In Section 3, we provide
our generic construction of trace-and-revoke systems from
inner product functional encryption. In Section 4, we provide
our new construction of bounded collusion IPFE from LWE
and in Section 5 we provide concrete instantiations of trace-
and-revoke systems from the DDH and DCR assumptions.
We provide a generic transformation from an inner product
functional encryption scheme to a traitor tracing scheme that

supports multi-message encryption in the full version of this
work that is on ePrint [2].

2 DEFINITIONS AND
PRELIMINARIES

Notation. The set {1, . . . , 𝑛} of natural numbers is denoted by
[𝑛]. A set is denoted by an uppercase letter. The cardinality
of a set 𝑋 is denoted as |𝑋|. If 𝑋 is finite, we let 𝑈(𝑋)
denote the uniform distribution over 𝑋, and we may write
𝑥 ←˒ 𝑋 to refer to 𝑥 being sampled from 𝑈(𝑋). Vectors will
be denoted by bold letters. By default, we treat a vector as a
column vector. For two vectors x and y, we let ⟨x,y⟩ denote
the canonical inner product between them and (x‖y) denote
the vertical concatenation of them. For a positive integer 𝑁 ,
we let Z𝑁 denote the ring of integers with addition and
multiplication modulo 𝑁 . The set of all functions that run
in polynomial time is denoted by 𝒫𝑜𝑙𝑦(·).

In our scheme descriptions, a user’s identifying information
is denoted by id. A set of users is thus represented by a set
of their respective identifying information. A set of users
is denoted by an uppercase calligraphic letter. The set of
revoked users is denoted by ℛ. The set of traitors is denoted
by 𝒯 and the set of users that are suspected to be traitors is
denoted by 𝒮.

In this section, we recall the notions of trace-and-revoke
systems and inner product functional encryption.

2.1 Trace-and-Revoke Systems

In a public key traitor tracing encryption scheme, there
is a single public key for encryption and many users with
decryption capabilities, each having its own unique secret key.
Additionally, the encryption scheme provides a feature to
identify at least one user from a coalition of malicious users
(traitors) that built an unauthorized decryption device 𝒟.
Let 𝒯 be the set of traitors and we assume that the size |𝒯 |
of the traitor coalition is at most 𝑡. The tracing algorithm
aims at disclosing the identity of at least one user from the
set 𝒯 of traitors.

In [9], the minimal black-box access model was consid-
ered where the tracing procedure has access to the pirate
decryption device 𝒟 only through an oracle 𝒪𝒟. The ora-
cle 𝒪𝒟 takes as input any message-ciphertext pair (𝑀,𝐶)
and returns 1 if 𝒟(𝐶) = 𝑀 and 0 otherwise. Hence, it only
tells whether the decoder decrypts 𝐶 to 𝑀 or not. If the de-
coder fails to decrypt correctly, the tracing algorithm knows
nothing about the decrypted value returned by the decoder.
A practical example supporting this assumption is that a
pirated media player will only indicate if it is able to play
some encrypted media and nothing more about the results
of his attempts of decryption.

The decryption device 𝒟 is assumed to decrypt correctly
with significant probability all messages that have been prop-
erly encrypted, as otherwise the decryption device is not very
useful. Let ℛ be any set of revoked users, of cardinality ≤ 𝑟.
Let the message 𝑚 be sampled uniformly at random from the
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message spaceℳ and let 𝐶(ℛ) be the output of the encryp-
tion algorithm Enc using the public encryption key pk and ℛ
as the set of revoked users. With 𝐶(ℛ) as input, the device 𝒟
outputs 𝑚 with probability significantly more than 1/|ℳ|:

Pr
𝑚 ←˒ 𝑈(ℳ)

𝐶(ℛ) ←˒ Enc(pk,ℛ,𝑚)

[︁
𝒪𝒟(𝐶(ℛ),𝑚) = 1

]︁
≥ 1

|ℳ| +
1

𝜆𝑐
, (1)

for some constant 𝑐 > 0.2 The probability of decryption for
a decoder 𝒟 can be estimated by repeatedly querying the
oracle 𝒪𝒟 with plaintext-ciphertext pairs, using Hoeffding’s
inequality. Alternatively, we may force the correct decryption
probability to be non-negligibly close to 1, by using an all-
or-nothing transform (see [24]). We also assume that the
decoder 𝒟 is stateless/resettable, i.e., it cannot see and adapt
to it being tested, and replies independently to successive
queries. Handling stateful pirate boxes has been investigated
in [22, 23].

We let the identity space ID and the message spaceℳ be
implicit arguments to the setup algorithm below. We let the
secret key space 𝒦 and the ciphertext space 𝒞 (along with ID
andℳ) be implicit public parameters output by the setup
algorithm.

Definition 2.1. A dynamic identity-based trace-and-revoke
scheme (𝑡, 𝑟)-𝒯 ℛ in black-box confirmation model is a tuple
𝒯 ℛ = (Setup, KeyGen,Enc,Dec,Trace) of five probabilistic
polynomial-time algorithms with the following specifications.

∙ Setup(1𝜆, 1𝑡, 1𝑟) takes as input the security parame-
ter 𝜆, the bound 𝑡 on the size of traitor coalitions and
the bound 𝑟 on the number of revoked users. It out-
puts (msk, pk, pd) containing the master secret key, the
encryption key and the (initially empty) public direc-
tory pd. We will implicitly assume that pd is available
to all algorithms.
∙ KeyGen(msk, id) takes as input the master secret msk
and an identity id ∈ ID of a user, and outputs a secret
key 𝑠𝑘id and some public information 𝑝id for id. It also
updates the public directory pd to include 𝑝id.

3

∙ Enc(pk,ℛ,𝑚) takes as input the public key pk, a set
ℛ of cardinality ≤ 𝑟 which contains the 𝑝id of each
revoked user in pd, and a plaintext message 𝑚 ∈ ℳ.
It outputs a ciphertext 𝐶 ∈ 𝒞.
∙ Dec(skid, 𝐶) takes as input a secret key skid of a user
with identity id and a ciphertext 𝐶 ∈ 𝒞. It outputs a
plaintext 𝑚 ∈ℳ.
∙ Trace(pd,ℛ,𝒮,𝒪𝒟) is a black-box confirmation tracing
algorithm that takes as input the public directory pd,
a set ℛ of ≤ 𝑟 revoked users, a set 𝒮 of ≤ 𝑡 suspect

2In [32], a weaker notion of usefulness is considered (leading to a better
security guarantee): the box is considered useful if it distinguishes
between encryptions of two adversarially chosen plaintexts. We note
that our security proof actually handles this weaker usefulness. In fact,
we show in Lemma 3.2 that the notion of usefulness given here implies
that it is possible to efficiently find two plaintexts whose ciphertext
distributions can be distinguished by the decryption box. The rest of
the security proof carries over in an identical way for both usefulness
notions.
3We emphasize that 𝑝id does not need to contain id.

users, and has black-box access to the pirate decoder 𝒟
through the oracle 𝒪𝒟. It outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming
probability over the randomness used by the algorithms, we
have:

∀𝑚 ∈ℳ,∀id ∈ ID : Dec(skid,Enc(pk,ℛ,𝑚)) = 𝑚,

for any set ℛ of ≤ 𝑟 revoked users and for any id such that
id /∈ ℛ.

Public Traceability. It is required that, when 𝒮 contains
the set 𝒯 of traitors who produced the pirate decoder 𝒟, then
the id output by the tracing algorithm belongs to 𝒯 . This
requirement is formalized using the following game, denoted
by AD-TT, between an adversary 𝒜 and a challenger:

∙ The challenger runs Setup(1𝜆, 1𝑡, 1𝑟) and gives pk to
𝒜.
∙ Adversary 𝒜 may ask the challenger to add polyno-
mially many users in the system. Adversary 𝒜 may
choose the id’s of the users, but does not obtain the
corresponding skid. Nevertheless, the public directory
pd is updated accordingly.
∙ Adversary 𝒜 is allowed to make up to 𝑡 arbitrary traitor
key queries. It may observe the database pd to choose
its queries in an adaptive way. If it queries id ∈ ID to
the challenger, then:
− If the key for id was previously generated, i.e., if 𝑝id

is found in the database pd, then the challenger re-
sponds with skid. The challenger records the identity
query id in a list 𝒯 .

− Otherwise (i.e., user id is a new user in the system),
the challenger runs KeyGen(msk, id), responds with
skid and updates the directory pd with the public
information 𝑝id for id. The challenger also records
the identity query id in the list 𝒯 .

∙ Adversary 𝒜 is allowed to (adaptively) choose a set ℛ
of up to 𝑟 revoked users in pd. The challenger gives
𝒜 all the corresponding skid. These queries can be
interleaved with extensions of the number of users and
user corruption queries, in an adaptive manner.
∙ Adversary 𝒜 finally produces a pirate decoder 𝒟. It
chooses a suspect set 𝒮 of cardinality ≤ 𝑡 that con-
tains 𝒯 , and sends 𝒮 to the challenger.
∙ The challenger then runs Trace(pd,ℛ,𝒮,𝒪𝒟). The ad-
versary wins if both of the following hold:
− Equation (1) is satisfied for the set of revoked usersℛ

chosen by the adversary (i.e., decoder 𝒟 is useful),
− the execution of Trace outputs ⊥ or outputs an id

that does not belong to 𝒯 with probability ≥ 1/𝜆𝑐.

No probabilistic polynomial-time adversary 𝒜 should be able
to win game AD-TT with non-negligible probability.

Almost Public Traceability. This is the same as public
traceability, except that Trace only outputs the associated
information about the traitors instead of their identities,
namely 𝑝id instead of id. Consequently, the second winning
condition of the adversary should be adapted so that it only
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requires the execution of Trace to output a 𝑝id that does not
belong to pd𝒯 , which is the set of all 𝑝id′ for id′ ∈ 𝒯 .

This restriction does not change much the functionality of
the tracing because, from 𝑝id, the authority can immediately
map back to id and the authority can still delegate the tracing
procedure to untrusted parties. On the other side, this variant
may be useful in practice as we do not leak the information
of users in the public directory.

We note that our proposed schemes satisfy the public
traceability instead of the almost public traceability. However,
it is easy to modify them so that they satisfy the latter.
Hereafter, we will not discuss about almost public traceability.

Traitor Tracing Scheme. A traitor tracing scheme is simply
a trace-and-revoke scheme without the capacity of revoking
users. It corresponds to the above definition where the revoked
set is always set to be empty, in the encryption as well as in
the security game.

Semantic Security. The IND-CPA security of a trace-and-
revoke scheme 𝒯 ℛ is defined based on the following game.

∙ The challenger runs Setup(1𝜆, 1𝑡, 1𝑟) and gives the pro-
duced public key pk to the adversary 𝒜. The adversary
may ask the challenger to add polynomially many users
in the system.
∙ The adversary (adaptively) chooses a set ℛ of ≤ 𝑟
revoked users in pd. The challenger gives 𝒜 all the skid
such that 𝑝id ∈ ℛ.
∙ The adversary then chooses two messages 𝑚0,𝑚1 ∈ℳ
of equal length and gives them to the challenger.
∙ The challenger samples 𝑏 ←˒ {0, 1} and provides 𝐶𝑚𝑏 ←˒
Enc(pk,ℛ,𝑚𝑏) to 𝒜.
∙ Finally, the adversary returns its guess 𝑏′ ∈ {0, 1} for
the 𝑏 chosen by the challenger. The adversary wins this
game if 𝑏 = 𝑏′.

The advantage of the adversary is defined as AdvIND-CPA
𝒯 ℛ,𝒜 =

|Pr[𝑏 = 𝑏′]−1/2|. The scheme 𝒯 ℛ is said semantically secure
if there is no probabilistic polynomial-time adversary 𝒜 that
wins this game with non-negligible advantage.

2.2 Inner Product Functional Encryption

In this section, we define functional encryption for the func-
tionality of inner products over Z𝑝.

Definition 2.2. A functional encryption scheme ℱℰ for
the inner product functionality over Z𝑝 is a tuple ℱℰ =
(ℱℰ .Setup, ℱℰ .KeyGen,ℱℰ .Enc,ℱℰ .Dec) of four probabilis-
tic polynomial-time algorithms with the following specifica-
tions:

∙ ℱℰ .Setup(1𝜆, 1ℓ) takes as input the security parameter
𝜆 and outputs the public key and the master secret
key pair (pk,msk);
∙ ℱℰ .KeyGen(msk,x) takes as input the master secret
key msk and a vector x ∈ Zℓ

𝑝 and outputs the secret
key skx;
∙ ℱℰ .Enc(pk,y) takes as input the public key pk and a
message y ∈ Zℓ

𝑝 and outputs the ciphertext cty;

∙ ℱℰ .Dec(skx, cty) takes as input the secret key of a user
skx and the ciphertext cty, and outputs an element
from Z𝑝 ∪ {⊥}.

The correctness requirement is that, with overwhelming prob-
ability over the randomness used by the algorithms, for
(pk,msk) ←˒ ℱℰ .Setup(1𝜆, 1ℓ) and ∀x,y ∈ Zℓ

𝑝:

ℱℰ .Dec (ℱℰ .KeyGen(msk,x),ℱℰ .Enc(pk,y)) = ⟨x,y⟩ mod 𝑝.

Security of ℱℰ. We consider security of functional encryp-
tion in the standard indistinguishability setting [10].

Definition 2.3. A functional encryption scheme ℱℰ =
(ℱℰ .Setup, ℱℰ .KeyGen,ℱℰ .Enc,ℱℰ .Dec) provides semantic
security under chosen-plaintext attacks (or IND-CPA secu-
rity) if no probabilistic polynomial-time adversary 𝒜 has
non-negligible advantage in the following game:

∙ The challenger runs ℱℰ .Setup(1𝜆, 1ℓ) and the master
public key mpk is given to 𝒜.
∙ The adversary adaptively makes secret key queries to
the challenger. At each query, adversary 𝒜 chooses a
vector x ∈ Zℓ

𝑝 and obtains the corresponding secret key
skx ←˒ ℱℰ .KeyGen(msk,x).
∙ Adversary 𝒜 chooses distinct messages y0,y1 ∈ Zℓ

𝑝

subject to the restriction that, for every vector x
queried in the previous step, it holds that ⟨x,y0⟩ =
⟨x,y1⟩ mod 𝑝 and sends them to the challenger. In re-
sponse, the challenger samples 𝑏 ←˒ {0, 1} and sends
ct⋆ ←˒ ℱℰ .Enc(pk,y𝑏) to 𝒜.
∙ Adversary 𝒜 makes further secret key queries for ar-
bitrary vectors x ∈ Zℓ

𝑝 of its choice. As before, it is
required that ⟨x,y0⟩ = ⟨x,y1⟩ mod 𝑝 for each query x
made by 𝒜.
∙ Adversary 𝒜 eventually outputs a bit 𝑏′ ∈ {0, 1} and
wins if 𝑏′ = 𝑏.

The adversary’s advantage is defined as Adv𝒜(𝜆) := |Pr[𝑏′ =
𝑏]− 1/2|.

The Random-Key Bounded-Collusion Model. In bounded
collusion functional encryption [18], the adversary 𝒜 is re-
stricted to ask at most 𝑄 secret key queries for some fixed
polynomial 𝑄, which is input to the setup algorithm. Addi-
tionally, our application permits an additional weakening of
the security model for inner product functional encryption:
we are only required to show security against an adversary
who first sees arbitrarily many random vectors x ←˒ Zℓ

𝑝, re-
quests secret keys for an adaptively chose subset of them, and
does not make secret key queries after it gets the challenge
ciphertext. The above definition of security against such a
restricted adversary will be called 𝑄-IND-CPA.

2.3 Lattice background

A lattice Λ is a (non-zero) discrete subgroup of R𝑚. A basis
of Λ is a linearly independent set of vectors whose Z-span is
Λ. We recall that the smoothing parameter of Λ is defined as

𝜂𝜀(Λ) = min
(︁
𝜎 > 0 :

∑︁
̂︀b∈̂︀Λ

exp(−𝜋‖̂︀b‖2/𝜎2) ≤ 1 + 𝜀
)︁
,
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where ̂︀Λ = {̂︀b ∈ SpanR(Λ) :
̂︀b𝑇 · Λ ⊆ Z} refers to the dual

of Λ. Note that if 𝜎 = Ω(
√
𝜆), we have that there exists

𝜀 = 2−Ω(𝜆) such that 𝜎 ≥ 𝜂𝜀(Z).
For a lattice Λ ⊆ R𝑚, a vector c ∈ R𝑚, and an invertible

Σ ∈ R𝑚×𝑚, we define the Gaussian distribution of parameter
Λ, c, and Σ by 𝐷Λ,Σ,c(b) ∼ 𝜌Σ,c(b) = exp(−𝜋‖Σ−1(b −
c)‖2) for all b ∈ Λ. When Σ = 𝜎I𝑚, we simply write 𝐷Λ,𝜎,c.
Sometimes, for convenience, we use the notation 𝐷Λ+c,Σ as
a shorthand for c+𝐷Λ,Σ,−c.

For 𝑚 ≥ 𝑛 and a rank-𝑛 matrix X ∈ R𝑚×𝑛, denote 𝑈X =
{‖Xu‖ : u ∈ R𝑛, ‖u‖ = 1}. The least singular value of
X is then defined as 𝑠𝑛(X) := inf(𝑈X) and similarly the
largest singular value of X is 𝑠1(X) := sup(𝑈X). For a matrix

Y ∈ R𝑛′×𝑚′
with 𝑛′ > 𝑚′, the least singular value and the

largest singular value are defined as 𝑠1(Y) := 𝑠1(Y
𝑡) and

𝑠𝑚′(Y) := 𝑠𝑚′(Y𝑡) respectively.
For the rest of this section, we assume that lattices are

full-rank, i.e., the dimensions of the span and the ambient
space match.

Lemma 2.4 (Corollary 2.8 in [16]). Let Λ′ ⊆ Λ ⊆ R𝑚

be two lattices with the same dimension. Let 𝜀 ∈ (0, 1/2).
Then for any c ∈ R𝑚 and any Σ such that 𝑠𝑚(Σ) ≥ 𝜂𝜀(Λ

′),
the distribution 𝐷Λ,Σ,c mod Λ′ is within statistical distance
2𝜀 from the uniform distribution over Λ/Λ′.

Lemma 2.5 (Lemma 1 in [21]). Let 𝑟 ≥ Ω(
√
𝜆) and

𝑞, ℓ,𝑚 > 0 integers. Let b ∈ Z𝑚
𝑞 be arbitrary and x cho-

sen from 𝐷Z𝑚,𝑟. Then for any V ∈ Zℓ×𝑚 and positive real
𝑟′ > 𝑠1(V), there exists a probabilistic polynomial-time algo-
rithm ReRand(V,b+x, 𝑟, 𝑟′) that outputs b′ = Vb+x′ ∈ Zℓ

𝑞

where x′ is within statistical distance 2−Ω(𝜆) from 𝐷Zℓ,2𝑟𝑟′ .

We use the following variant of the leftover hash lemma,
adapted from [28] (see also Lemma 11 in [4]).

Lemma 2.6 ([28]). Let 𝑚 ≥ 𝑛 ≥ 1 and 𝑞 = 𝑝𝑘 for 𝑝
prime and 𝑘 ≥ 1. Take 𝒳 a distribution over Z𝑚. Let 𝐷0

be a uniform distribution over Z𝑛×𝑚
𝑞 × Z𝑛

𝑞 and 𝐷1 be the

distribution of (A,A · x), where sampling A ←˒ Z𝑛×𝑚
𝑞 and

x ←˒ 𝒳 . Then,

∆(𝐷0, 𝐷1) ≤
1

2

⎯⎸⎸⎷ 𝑘∑︁
𝑖=1

𝑝𝑖·𝑛 · Pr𝑖.

where Pr𝑖 is the collision probability of two independent sam-
ples from (𝒳 mod 𝑝𝑖).

The above lemma implies that if the distribution (𝒳 mod 𝑝)
is within statistical distance 𝜀 from the uniform distribution
over Z𝑚

𝑝 , then we have

∆(𝐷0, 𝐷1) ≤ 𝜀+
√︀

𝑞𝑛/𝑝𝑚.

This can be seen by considering a distribution 𝒳 ′ such that
(𝒳 mod 𝑝) is uniform distribution over Z𝑚

𝑝 and ∆(𝒳 ,𝒳 ′) ≤ 𝜀.

Lemma 2.7 (Special case of Lemma 8 in [4]). There
exists a universal constant 𝐾 > 1 such that for all 𝑚 ≥ 2𝑛,

𝜀 > 0 and 𝜎 ≥ 𝐾𝜂𝜀(Z), the following holds for X ←˒ 𝐷𝑛×𝑚
Z,𝜎 :

Pr
[︀
𝜎
√
2𝜋𝑚/𝐾 < 𝑠𝑛(X) ≤ 𝑠1(X) < 𝜎𝐾

√
2𝜋𝑚

]︀
> 1− 4𝑚𝜀+𝑂(exp(−𝑚/𝐾)).

We will also require the following theorem, adapted from
Theorem 17 in [27].

Theorem 2.8 ([27]). Let 𝑛, 𝑚1, 𝑚2, and 𝜆 be integers
satisfying 𝑚2 ≥ 𝑚1 > 100 and 𝜎1, 𝜎2 be positive real num-
bers. Let 𝑛′ = max{𝜆, 𝑛} and assume that 𝑛′ > 100. We
also assume that they satisfy 𝜎1 ≥ Ω(

√
𝑚1𝑛′ log𝑚1), 𝑚1 ≥

Ω(𝑛′ log (𝜎1𝑛
′)), and 𝜎2 ≥ Ω(𝑛′

5/2√
𝑚1𝜎

2
1 log

3/2(𝑚1𝜎1)).
Then, there exists a probabilistic polynomial-time algorithm
that given 𝑛, 𝑚1, 𝑚2, 𝜆 (in unary), 𝜎1, and 𝜎2, returns X1 ∈
Z𝑛×𝑚1 , X2 ∈ Z𝑛×𝑚2 , and U ∈ Z𝑚×𝑚 with 𝑚 = 𝑚1 + 𝑚2

such that:

∙ the distribution of (X1,X2) is within statistical distance

2−Ω(𝑛′) of the distribution 𝐷𝑛×𝑚1
Z,𝜎1

×(𝐷Z𝑚2 ,𝜎2,𝛿1×· · ·×
𝐷Z𝑚2 ,𝜎2,𝛿𝑛)

𝑡, where 𝛿𝑖 denotes the 𝑖th canonical unit
vector in Z𝑚2 whose 𝑖th coordinate is 1 and whose
remaining coordinates are 0,
∙ we have | detU| = 1 and (X1|X2) ·U = (I𝑛|0),
∙ every column of U has norm ≤ 𝑂(

√
𝑛′𝑚1𝜎2) with

probability ≥ 1− 2−Ω(𝑛′).

Three remarks are in order regarding the theorem. First,
we take the transpose of the theorem in [27]. This is just
for a notational convenience. Secondly, the distribution of
X = (X1|X2) in Theorem 17 in [27] is slightly different
from the above in that all entries of the first column of
X equal to 1. As noted right after Lemma 7 in [27], the
theorem still holds even with the change. Finally, in the above
theorem, we introduce the statistical security parameter 𝜆
and differentiate it from the lattice dimension 𝑛, while the
theorem in [27] assigns the same variable 𝑛 for both. This
change is introduced because we will invoke the theorem for
possibly small 𝑛 for which 2−𝑛 is no longer negligible.

In our security analysis, we need a variant of the above the-
orem where X is chosen from a slightly different distribution
and U need not be efficiently samplable.

Lemma 2.9. Let 𝑛, 𝑚1, 𝑚2, 𝑚, 𝜆, 𝑛′, 𝜎1, 𝜎2 be as in Theo-

rem 2.8. Then, for all but 2−Ω(𝑛′) probability over (X1,X2) ∈
Z𝑛×𝑚1 × Z𝑛×𝑚2 chosen from 𝐷𝑛×𝑚1

Z,𝜎1
×𝐷𝑛×𝑚2

Z,𝜎2
, there exists

U ∈ Z𝑚×𝑚 such that | detU| = 1, (X1|X2) ·U = (I𝑛|0), and
every column of U has norm ≤ 𝑂(

√
𝑛′𝑚1𝜎2).

To prepare for the proof of Lemma 2.9, we define Rényi
Divergence (RD) and review its properties following [6]. For
any two probability distributions 𝑃 and 𝑄 such that the
support of 𝑃 is a subset of the support of 𝑄 over a countable
domain 𝑋, we define the RD (of order 2) by 𝑅(𝑃‖𝑄) =∑︀

𝑥∈𝑋 𝑃 (𝑥)2/𝑄(𝑥), with the convention that the fraction is
zero when both the numerator and denominator are zero.
We will use the following property: if 𝑃 (resp. 𝑄) is a direct
product of independent distributions 𝑃1 and 𝑃2 (resp. 𝑄1

and 𝑄2), then we have 𝑅𝐷(𝑃‖𝑄) = 𝑅𝐷(𝑃1×𝑃2‖𝑄1×𝑄2) =
𝑅𝐷(𝑃1‖𝑃2) ·𝑅𝐷(𝑄1‖𝑄2).
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Lemma 2.10 (Lemma 2.9 in [6]). Let 𝑃 and 𝑄 denote
distributions with Supp(𝑃 ) ⊆ Supp(𝑄) and 𝐴 ⊆ Supp(𝑄) be
arbitrary set. Then, we have 𝑄(𝐴) ≥ 𝑃 (𝐴)2/𝑅(𝑃‖𝑄) where
𝑃 (𝐴) and 𝑄(𝐴) are measure of 𝐴 under the distribution 𝑃
and 𝑄 respectively.

We also recall that the RD between two offset discrete
Gaussians is bounded as follows.

Lemma 2.11 (Lemma 4.2 in [26]). For any 𝑛-dimensional
lattice 𝐿 ⊆ R𝑛 and invertible matrix Σ, set 𝑃 = 𝐷Λ,Σ,w and
𝑄 = 𝐷Λ,Σ,z for some fixed w, z ∈ Λ. Then, 𝑅(𝑃‖𝑄) ≤
exp(2𝜋‖w − z‖2/𝑠𝑛(Σ)2).

Then, we proceed to the proof of Lemma 2.9.

Proof of Lemma 2.9. Let 𝐴 ⊆ Z𝑛×𝑚 be the set of X =
(X1|X2) such that U satisfying the properties listed in the
statement does not exist. Theorem 2.8 implies that when X is
sampled from the distribution 𝑄 := 𝐷𝑚1×𝑚2

Z,𝜎1
×(𝐷Z𝑚2 ,𝜎2,𝛿1×

· · ·×𝐷Z𝑚2 ,𝜎2,𝛿𝑛)
𝑡, we have𝑄(𝐴) ≤ 2−Ω(𝑛′). We want to prove

that 𝑃 (𝐴) = 2−Ω(𝑛′) for the distribution 𝑃 := 𝐷𝑛×𝑚1
Z,𝜎1

×
𝐷𝑛×𝑚2

Z,𝜎2
. By Lemma 2.10, we have 𝑃 (𝐴) ≤

√︀
𝑄(𝐴) ·𝑅(𝑃‖𝑄) ≤√︀

𝑅(𝑃‖𝑄) ·2−Ω(𝑛′). To complete the proof, it suffices to show
𝑅(𝑃‖𝑄) = 𝑂(1). We have

𝑅(𝑃‖𝑄) = 𝑅
(︀
𝐷𝑛×𝑚1

Z,𝜎1
×𝐷𝑛×𝑚2

Z,𝜎2
‖𝐷𝑚1×𝑚2

Z,𝜎1

×(𝐷Z𝑚2 ,𝜎2,𝛿1 × · · · ×𝐷Z𝑚2 ,𝜎2,𝛿𝑛)
)︀

= 𝑅((𝐷Z,𝜎2)
𝑛‖(𝐷Z,𝜎2,1)

𝑛)

≤ exp(2𝜋𝑛/𝜎2
2),

where we use Lemma 2.11 in the last inequality. Since 𝜎2 ≥
Ω(𝑛1/2), we conclude that 𝑅(𝑃‖𝑄) = 𝑂(1). This completes
the proof of Lemma 2.9. □

Next, we define the learning with errors (LWE) assumption.
It was shown that the assumption holds as long as certain
lattice problems are hard in the worst case [12, 34, 36].

Definition 2.12. For an integers 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆),
𝑞 = 𝑞(𝜆), a real number 𝛼(𝜆) ∈ (0, 1), and an algorithm𝒜, the
advantage for the learning with errors problem LWE𝑛,𝑚,𝑞,𝛼

of 𝒜 is defined as follows:⃒⃒
Pr[𝒜(A,As+ x)→ 1]− Pr[𝒜(A,w + x)→ 1]

⃒⃒
where A ←˒ Z𝑛×𝑚

𝑞 , s ←˒ Z𝑛
𝑞 , w ←˒ Z𝑚

𝑞 , and x ←˒ 𝐷𝑚
Z,𝛼𝑞. We

say that LWE𝑛,𝑚,𝑞,𝛼 assumption holds if the advantage is
negligible for every probabilistic polynomial-time 𝒜.

3 TRACE AND REVOKE FROM
INNER-PRODUCT FUNCTIONAL
ENCRYPTION

In this section, we provide a generic transformation from
a bounded collusion, random keys inner-product functional
encryption scheme ℱℰ to a trace-and-revoke scheme 𝒯 ℛ.
Since intuition was provided in Section 1, we proceed directly
to the formal construction.

3.1 The Scheme

We construct a trace-and-revoke scheme 𝒯 ℛ following the
specifications of Definition 2.1. Our scheme assumes the
existence of a public directory pd which contains the identities
of the users that have been assigned keys in the system. The
public directory is initially empty. We assume that pd can
only be modified by a central authority (the key generator).

(1) Setup(1𝜆, 1𝑡, 1𝑟). Upon input the security parameter 𝜆,
the bound 𝑡 on the number of traitors and the bound
𝑟 on the number of revoked users, proceed as follows:

(a) Let (pk,msk)← ℱℰ .Setup(1𝜆, 1ℓ), where ℓ = 𝑡+𝑟+1.
(b) Output the public key pk and master secret key msk.

(2) KeyGen(msk, id). Upon input the master secret key msk
and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ←˒ Zℓ
𝑝. The pair 𝑝id = (id,xid) is appended

to the public directory pd.
(b) Let skid ← ℱℰ .KeyGen(msk,xid).
(c) Output skid.

(3) Enc(pd, pk,ℛ,𝑚). Upon input the public key pk, a set
of revoked users ℛ of cardinality ≤ 𝑟 and a plaintext
messages 𝑚 ∈ℳ = Z𝑝, proceed as follows:

(a) Compute vℛ ∈ Zℓ
𝑝 ∖ {0⃗} such that ⟨xid,vℛ⟩ = 0 for

every id ∈ ℛ.
(b) Compute yℛ = 𝑚 · vℛ.
(c) Output 𝐶 = (𝐶1, 𝐶2) = (ℱℰ .Enc(pk,yℛ),ℛ).

(4) Dec(pd, skid, 𝐶). Upon input the secret key skid for user
id and a ciphertext 𝐶 = (𝐶1, 𝐶2), proceed as follows:

(a) Parse 𝐶2 as 𝐶2 = ℛ. If id ∈ ℛ, then abort.

(b) Compute vℛ ∈ Zℓ
𝑝 ∖ {0⃗} such that ⟨xid,vℛ⟩ = 0 for

every id ∈ ℛ.
(c) Compute and output𝑚 = ℱℰ .Dec(skid, 𝐶1)/⟨xid,vℛ⟩.

(5) Trace(pd,ℛ,𝒮,𝒪𝒟). Upon input the public directory pd,
a revoked set of users ℛ, a suspect set 𝒮 of users and
given access to the oracle 𝒪𝒟, first proceed as follows:

(a) Find 𝑚,𝑚′ ∈ℳ such that the following quantity is
non-negligible:⃒⃒⃒

Pr
𝐶←˒Enc(pd,pk,ℛ,𝑚)

[︁
𝒪𝒟(𝐶,𝑚) = 1

]︁
− Pr

𝐶′←˒Enc(pd,pk,ℛ,𝑚′)

[︁
𝒪𝒟(𝐶′,𝑚) = 1

]︁ ⃒⃒⃒
.

(b) Set 𝒮1 = {id1, id2, . . .} = 𝒮 ∖ ℛ.
(c) Compute vℛ ∈ Zℓ

𝑝 ∖ {0⃗} such that ⟨xid,vℛ⟩ = 0 for
every id ∈ ℛ.

Then execute the following steps with 𝑖 = 1, 2, . . .:
(d) If 𝑖 = 1, set v𝒮𝑖 = 0⃗. If 𝒮𝑖 = ∅, set v𝒮𝑖 = (𝑚′−𝑚)·vℛ.

Else compute v𝒮𝑖 ∈ Zℓ
𝑝 such that:

(i) ⟨xid,v𝒮𝑖⟩ = 0 for every id ∈ 𝒮𝑖 ∪ℛ.
(ii) ⟨xid,v𝒮𝑖⟩ = (𝑚′ − 𝑚) · ⟨xid,vℛ⟩ for every id ∈
𝒮1 ∖ 𝒮𝑖.

(e) Repeat the following steps sufficiently many times
(as dictated by Hoeffding’s inequality) to compute an
approximation of the probability 𝑝𝑖 that the response
from 𝒪𝒟 is 𝑏𝑖 = 1.

(i) Construct y = v𝒮𝑖 +𝑚 · vℛ ∈ Zℓ
𝑝;

(ii) The probe ciphertext is 𝐶𝒮𝑖 = (ℱℰ .Enc(pk,y),ℛ);
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(iii) Provide the oracle 𝒪𝒟 with (𝐶𝒮𝑖 ,𝑚) as input and
get a binary value 𝑏𝑖 as output.

(f) If 𝑖 > 1 and |𝑝𝑖− 𝑝𝑖−1| is non-negligible, then output
id𝑖−1 and abort;

(g) If 𝒮𝑖 = ∅, then output ⊥ and abort; else, set 𝒮𝑖+1 =
𝒮𝑖 ∖ {id𝑖}.

For the correctness and the tracing security proof, we
require that in Step (a) of Algorithm Enc, in Step (b) of Algo-
rithm Dec and in Step (c) of Algorithm Trace, the vector vℛ
be uniquely determined by ℛ, in the same unique way across
all algorithms. One way of achieving this property is to order
the xid’s for id ∈ ℛ lexicographically, and run a deterministic
linear system solver. We proceed in the same way (using
always the same deterministic algorithm) for vector v𝒮𝑖 at
Step (d) of Algorithm Trace.

We remark that one can send ℛ instead of vℛ in the
encryption algorithm. This will make the ciphertext longer,
but make the encryption and decryption algorithms slightly
more efficient.

We first check the correctness of the scheme.

Theorem 3.1. Assume that 𝑝 = 𝜆𝜔(1). Let ℛ be a set of
revoked users of cardinality ≤ 𝑟. Then, for every id /∈ ℛ and
every 𝑚 ∈ℳ = Z𝑝, we have

Dec(pd, skid,Enc(pd, pk,ℛ,𝑚)) = 𝑚,

with probability ≥ 1− 𝜆−𝜔(1).

Proof. As xid is uniform in Zℓ
𝑝, and thanks to the parame-

ter choices of 𝑝 = 𝜆𝜔(1) and ℓ > 𝑟, we have that ⟨xid,vℛ⟩ ̸= 0,
with overwhelming probability. The execution of Dec(pd, skid, 𝐶),
with 𝐶 = (𝐶1, 𝐶2) = Enc(pd, pk,ℛ,𝑚), proceeds to Step (b)
and computes (with overwhelming probability):

Dec(pd, skid, 𝐶) =
ℱℰ .Dec(skid, 𝐶1)

⟨xid,vℛ⟩
=
⟨xid,𝑚 · vℛ⟩
⟨xid,vℛ⟩

= 𝑚,

by correctness of ℱℰ . □

Now, we consider the implementation of Step (a) of Al-
gorithm Trace. The aim is to find 𝑚,𝑚′ ∈ Z𝑝 such that an
encryption of 𝑚 has a non-negligible probability difference
of decrypting to 𝑚 and 𝑚′ via 𝒪𝒟. These plaintexts are
used for tracing as follows: the first probe ciphertext distribu-
tion will be a genuine encryption of 𝑚, while the last probe
ciphertext distribution will be a genuine encryption of 𝑚′.
(To see this, observe that for the last probe ciphertext, we
have 𝒮𝑖 = ∅ and v𝒮𝑖 = (𝑚′−𝑚) ·vℛ. Consequently, we have
𝐶𝒮𝑖 = (ℱℰ .Enc(pk,y),ℛ) where y = v𝒮𝑖 +𝑚 ·vℛ = 𝑚′ ·vℛ.)
The fact that 𝒪𝒟 behaves differently for these two distribu-
tions ensures that there will be an 𝑖 such that |𝑝𝑖 − 𝑝𝑖−1|
is non-negligible. Now, if the oracle 𝒪𝒟 was perfect, i.e., a
genuine encryption of 𝑚 always decrypts to 𝑚 for all 𝑚,
then the existence of a pair (𝑚,𝑚′) as in Step (a) would be
immediate. The difficulty is that the oracle 𝒪𝒟 only achieves
correct decryption with non-negligible advantage.

Lemma 3.2. Let ℛ be arbitrary and assume that Equa-
tion (1) holds for ℛ. Then, with probability ≥ 1/(4𝜆𝑐) over

the choice of 𝑚,𝑚′ ←˒ ℳ, we have:⃒⃒⃒
Pr

𝐶←˒ Enc(pk,ℛ,𝑚)

[︁
𝒪𝒟(𝐶,𝑚) = 1

]︁
− Pr

𝐶′←˒ Enc(pk,ℛ,𝑚′)

[︁
𝒪𝒟(𝐶′,𝑚) = 1

]︁ ⃒⃒⃒
≥ 1

2𝜆𝑐
.

Based on Lemma 3.2, Step (a) of Algorithm Trace can be
implemented by repeatedly sampling 𝑚,𝑚′ ←˒ ℳ and esti-
mating the probabilities that𝒪𝒟(𝐶,𝑚) = 1 and𝒪𝒟(𝐶′,𝑚) =
1 using Hoeffding’s bound, until the probability difference is
sufficiently large.

Proof. For 𝑚,𝑚′ ∈ ℳ, let 𝑃 (𝑚′,𝑚) denote the proba-
bility that 𝒪𝒟(𝐶′,𝑚) = 1, where 𝐶′ ←˒ Enc(pd, pk,ℛ,𝑚′).
Equation (1) states that

Pr
𝑚←˒ℳ

[𝑃 (𝑚,𝑚)] ≥ 1

|ℳ| +
1

𝜆𝑐
.

Let us assume by contradiction (of the statement to be
proved), that

Pr
𝑚,𝑚′←˒ℳ

[|𝑃 (𝑚,𝑚)− 𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
] > 1− 1

4𝜆𝑐
. (2)

We show that if (2) holds, then the following inequality holds
as well.

Pr
𝑚′←˒ℳ

[ Pr
𝑚←˒ℳ

[|𝑃 (𝑚,𝑚)−𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
] > 1− 1

2𝜆𝑐
] >

1

2
.

(3)
By contradiction of (3) above, let us assume that

Pr
𝑚′←˒ℳ

[ Pr
𝑚←˒ℳ

[|𝑃 (𝑚,𝑚)−𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
] > 1− 1

2𝜆𝑐
] ≤ 1

2
.

We consider two types of𝑚′, depending whether Pr𝑚[|𝑃 (𝑚,𝑚)−
𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐 ] is greater than 1 − 1
2𝜆𝑐 (Type 1) or not

(Type 2). Let 𝑥 ≤ 1/2 be the proportion of 𝑚′’s of the first
type. Then we would have

Pr
𝑚,𝑚′

[|𝑃 (𝑚,𝑚)− 𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
]

= Pr
𝑚′

[Pr
𝑚

[|𝑃 (𝑚,𝑚)− 𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
]]

=
1

|ℳ|
∑︁
𝑚′

of Type 1

Pr
𝑚

[|𝑃 (𝑚,𝑚)− 𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
]

+
1

|ℳ|
∑︁
𝑚′

of Type 2

Pr
𝑚

[|𝑃 (𝑚,𝑚)− 𝑃 (𝑚′,𝑚)| < 1

2𝜆𝑐
]

≤ 1

|ℳ|
∑︁
𝑚′

of Type 1

1 +
1

|ℳ|
∑︁
𝑚′

of Type 2

(1− 1

2𝜆𝑐
)

= 𝑥+ (1− 𝑥)(1− 1

2𝜆𝑐
) ≤ 1− 1

4𝜆𝑐
,

which would contradict (2) above.
We consider an 𝑚′ of Type 1. Using the fact that∑︀
𝑚 𝑃 (𝑚′,𝑚) ≤ 1, we obtain:∑︁

𝑚

𝑃 (𝑚,𝑚) <
|ℳ|
2𝜆𝑐

+
∑︁
𝑚

(︂
𝑃 (𝑚′,𝑚) +

1

2𝜆𝑐

)︂
≤ 1 +

|ℳ|
𝜆𝑐

.

This contradicts Equation (1). □
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3.2 Semantic Security

We start by proving IND-CPA security of our scheme.

Theorem 3.3. If ℱℰ is 𝑟-IND-CPA secure, then 𝒯 ℛ is
IND-CPA secure.

Proof. Let 𝒜𝒯 ℛ be a probabilistic polynomial-time ad-
versary that breaks semantic security of 𝒯 ℛ. We construct
a probabilistic polynomial-time adversary 𝒜ℱℰ that breaks
semantic security of ℱℰ . Adversary 𝒜ℱℰ proceeds as follows.

∙ It first obtains the public key pk output by the ℱℰ
challenger (who runs the ℱℰ .Setup(1𝜆, 1ℓ) algorithm)
and relays it to 𝒜𝒯 ℛ.
∙ The adversary 𝒜𝒯 ℛ adaptively chooses at most 𝑟 iden-
tities id (that forms the revoked setℛ) and are included
in pd. The adversary 𝒜ℱℰ then queries the ℱℰ chal-
lenger for each xid for all id ∈ ℛ and receives the
corresponding skid. Adversary 𝒜ℱℰ relays all skid for
each id ∈ ℛ to 𝒜𝒯 ℛ.
∙ When 𝒜𝒯 ℛ chooses two messages 𝑚0,𝑚1 ∈ ℳ and
provides them to 𝒜ℱℰ , adversary 𝒜ℱℰ proceeds as
follows:
− It computes vℛ ∈ Zℓ

𝑝 ∖ {0⃗} such that ⟨xid,vℛ⟩ = 0
for every id ∈ ℛ.

− It sends yℛ,0 = 𝑚0 · vℛ and yℛ,1 = 𝑚1 · vℛ to the
ℱℰ challenger who samples 𝑏 ←˒ {0, 1} and encrypts
yℛ,𝑏 as 𝐶yℛ,𝑏 ←˒ ℱℰ .Enc(pk,yℛ,𝑏).

− Adversary 𝒜ℱℰ receives 𝐶yℛ,𝑏 from the ℱℰ chal-
lenger and sends 𝐶 = (𝐶yℛ,𝑏 ,ℛ) to 𝒜𝒯 ℛ.

∙ Finally, adversary 𝒜𝒯 ℛ outputs its guess 𝑏′ ∈ {0, 1}
and 𝒜ℱℰ also outputs 𝑏′ as its own guess of 𝑏.

Note that adversary 𝒜ℱℰ behaves as an IND-CPA challenger
in the view of 𝒜𝒯 ℛ. Further, it is a valid adversary against
ℱℰ , as ⟨yℛ,0,xid⟩ = ⟨yℛ,1,xid⟩ for every vector xid queried to
the ℱℰ challenger (i.e., each id ∈ ℛ). The advantage of 𝒜ℱℰ
is exactly the same as the advantage of 𝒜𝒯 ℛ. □

We may observe that for 𝒯 ℛ to be IND-CPA secure, an 𝑟-
IND-CPA secure ℱℰ scheme is sufficient. However, as we see
below, for traceability with up to 𝑡 colluding traitors along
with 𝑟 already revoked users, we need an ℱℰ scheme that
is (𝑡+ 𝑟)-IND-CPA secure.

3.3 Traceability

Here, we prove the traceability of the scheme. To start with,
we first prove the following lemma.

Lemma 3.4. Assume that a pirate decoder 𝒟 satisfies Equa-
tion (1) for some ℛ and 𝒮. Then, the execution of Trace does
not return ⊥ but returns some id ∈ 𝒮 with overwhelming
probability.

Proof. We consider a variant of Trace that continues its
execution until it exhausts 𝒮∖ℛ, even if it has already output
an id. We consider the probabilities 𝑝𝑖 at the start and end
of that modified execution.

(1) At the beginning, algorithm Trace considers 𝒮1 = 𝒮 ∖ℛ
and v𝒮1 = 0. Hence, the genuine ciphertext output by

the Enc algorithm and the probe ciphertext created
by the Trace algorithm for the suspect subset 𝒮1 are
exactly the same.

(2) When 𝑖 = |𝒮 ∖ ℛ| + 1, we have 𝒮𝑖 = ∅ and v𝒮𝑖 =
(𝑚′ −𝑚) · vℛ. In Step (a) of the Trace algorithm, the
messages𝑚 and𝑚′ were chosen such that the difference
in the probabilities 𝑝1 and 𝑝|𝒮∖ℛ|+1 is ≥ 1/(2𝜆𝑐).

Note that the two latter observations imply, via the triangle
inequality, that there exists an 𝑖 such that |𝑝𝑖 − 𝑝𝑖−1| is non-
negligible. By the Hoeffding bound, Trace algorithm outputs
id𝑖−1 with overwhelming probability. □

Then, we prove the following theorem.

Theorem 3.5. If ℱℰ is (𝑡+ 𝑟)-IND-CPA secure, then 𝒯 ℛ
satisfies public traceability.

Proof. Let us assume by contradiction that an adversary
𝒜 can break the public traceability of 𝒯 ℛ with non-negligible
probability. We then construct a probabilistic polynomial-
time adversary 𝒜ℱℰ that breaks the semantic security of ℱℰ .
Adversary 𝒜ℱℰ proceeds as follows.

∙ It first obtains the public key pk output by the ℱℰ
challenger (who runs the ℱℰ .Setup(1𝜆, 1ℓ) algorithm)
and relays it to the adversary 𝒜.
∙ When 𝒜 asks 𝒜ℱℰ to create a 𝑝id for some id, adversary
𝒜ℱℰ in turn asks the ℱℰ challenger to do the same.
The ℱℰ challenger randomly chooses a vector xid ←˒ Zℓ

𝑝

and sends it to 𝒜ℱℰ who further relays it to 𝒜.
∙ When 𝒜 makes a key query for an identity id, adver-
sary 𝒜ℱℰ queries the ℱℰ challenger for a secret key.
Adversary 𝒜ℱℰ receives the corresponding skid from
the ℱℰ challenger and relays it to 𝒜.
∙ When 𝒜 chooses a setℛ of up to 𝑟 revoked users, adver-
sary 𝒜ℱℰ makes |ℛ| key queries to the ℱℰ challenger.
Adversary 𝒜ℱℰ is given the set skid’s of corresponding
secret keys that is relayed to 𝒜. Recall that by the defi-
nition of the public traceability game, these queries can
be interleaved with extensions of the number of users
and user corruption queries, in an adaptive manner.

Note that since 𝒜 makes at most 𝑡 key queries and |ℛ| ≤ 𝑟,
adversary 𝒜ℱℰ makes at most 𝑡+ 𝑟 key queries for the ℱℰ
challenger.

∙ Adversary 𝒜 finally produces a pirate decoder 𝒟4 and
chooses a suspect set 𝒮 of cardinality ≤ 𝑡 that con-
tains 𝒯 . Then, the adversary 𝒜ℱℰ executes the Trace
algorithm on 𝒪𝒟 to find 𝑖 such that |𝑝𝑖 − 𝑝𝑖−1| is
non-negligible. If Trace outputs ⊥ or index 𝑖 such that
id𝑖−1 ∈ 𝒯 , then𝒜ℱℰ outputs a random bit. We say that
the event Abort occurs in such a case. Otherwise, it sets
y0 = v𝒮𝑖−1 +𝑚 ·vℛ and y1 = v𝒮𝑖 +𝑚 ·vℛ, and sends

them as challenge messages to the ℱℰ challenger.5

4Recall that we assume that 𝒟 is stateless/resettable and replies
independently to successive queries.
5 Here, 𝑚 and 𝑚′ are chosen as in Step (a), vℛ ∈ Zℓ

𝑝 is chosen

as in Step (c), and v𝒮𝑖−1
,v𝒮𝑖

∈ Zℓ
𝑝 are chosen as in Step (d) of

algorithm Trace.
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∙ The ℱℰ challenger samples 𝑏 ←˒ {0, 1} and then sends
ℱℰ .Enc(pk,y𝑏) to 𝒜ℱℰ . The adversary 𝒜ℱℰ runs 𝒪𝒟
on input (𝐶𝑏,𝑚), where 𝐶𝑏 = (ℱℰ .Enc(pk,y𝑏),ℛ).
Then 𝒪𝒟 outputs the bit 𝑏′ ∈ {0, 1}.
∙ Finally, adversary 𝒜ℱℰ outputs the same bit 𝑏′ ∈ {0, 1}
if 𝑝𝑖 − 𝑝𝑖−1 > 0 and 1− 𝑏′ otherwise.

We first argue that 𝒜ℱℰ is a valid adversary against the ℱℰ
challenger. Recall that when Abort does not occur, we have
id𝑖−1 /∈ 𝒯 but id𝑖−1 ∈ 𝒮. The keys queried by𝒜ℱℰ are for id ∈
ℛ∪𝒯 . This set ℛ∪𝒯 can be partitioned into ℛ∪ (𝒯 ∩𝒮𝑖−1)
and 𝒯 ∩ (𝒮1 ∖ 𝒮𝑖−1). Note that since id𝑖−1 ̸∈ 𝒯 , we have
𝒯 ∩ 𝒮𝑖−1 = 𝒯 ∩ 𝒮𝑖 and thus ℛ∪ (𝒯 ∩ 𝒮𝑖−1) = ℛ∪ (𝒯 ∩ 𝒮𝑖).
(1) For id ∈ ℛ, we have ⟨xid,y0⟩ = ⟨xid,y1⟩ = 0. For

id ∈ 𝒮𝑖−1 ∩ 𝒯 = 𝒮𝑖 ∩ 𝒯 , we have ⟨xid,y0⟩ = ⟨xid,y1⟩ =
𝑚 · ⟨xid,vℛ⟩. Hence for all id ∈ ℛ ∪ (𝒯 ∩ 𝒮𝑖−1) for
which the skid was queried by 𝒜ℱℰ , the inner products
⟨xid,y0⟩ and ⟨xid,y1⟩ have the same value.

(2) Similarly, for id ∈ 𝒯 ∩ (𝒮1 ∖ 𝒮𝑖−1), we have ⟨xid,y0⟩ =
⟨xid,y1⟩ = 𝑚′ · ⟨xid,vℛ⟩.

Hence, 𝒜ℱℰ is a valid adversary against the ℱℰ challenger.

We recollect that in the AD-TT game, we say that 𝒜 wins
if the decryption box 𝒟 output by it is such that when Trace
is executed on input 𝒪𝒟, it fails to identify a traitor. In such
a case, Trace either outputs ⊥ or it outputs an id𝑖−1 ̸∈ 𝒯 with
probability at least 1/𝜆𝑐. We next argue that if 𝒜 outputs 𝒟
that satisfies this winning condition of the AD-TT game, then
𝒜ℱℰ has non-negligible advantage in the above game. To see
this, we first observe that when Abort occurs, 𝒜ℱℰ returns a
random bit and it correctly guesses 𝑏 with probability 1/2.
Then, it suffices to show the following:

∙ In the above game, Abort does not occur with non-
negligible probability.
∙ Conditioned on Abort not occurring, Trace outputs
id𝑖−1 such that |𝑝𝑖 − 𝑝𝑖−1| is non-negligible.

Indeed, the combination of them implies that the advantage
of 𝒜ℱℰ is non-negligible, since |𝑝𝑖 − 𝑝𝑖−1| is the advantage of
𝒜ℱℰ conditioned on Abort not occurring.

The second item follows because if |𝑝𝑖 − 𝑝𝑖−1| is not suffi-
ciently large, Trace does not output id𝑖−1 at Step (f) of Trace
except for a negligible probability (because of the Hoeffding
bound). Next, we prove the first item. Since we are assuming
𝒟 satisfies the winning condition, when Trace is executed
on input 𝒪𝒟, it outputs ⊥ or it outputs an id𝑖−1 ̸∈ 𝒯 with
probability at least 1/𝜆𝑐. The claim now follows since the for-
mer event occurs only with negligible probability by Lemma
3.4. □

4 TRACE AND REVOKE FROM
LEARNING WITH ERRORS

Recall that Agrawal et al. [4] provided a construction for
inner product functional encryption from LWE. Instantiating
our generic transformation of Section 3 with this scheme is
possible, but leads to reliance on LWE with subexponential
error rates. In Subsection 4.2, we provide a new construction
of an inner product functional encryption scheme from LWE

in a much weaker model than that considered in [4]. We
restrict to the setting of bounded collusions and also crucially
exploit the fact that the adversary’s key requests are random
vectors for our application as described in Section 3. The
performances of both resulting trace-and-revoke systems are
discussed in Subsection 4.1.

4.1 Two Trace-and-Revoke Constructions

Our IPFE to trace-and-revoke generic transformation cannot
be directly instantiated with the LWE-based IPFE over Z𝑝

from [4], because the key generation algorithm of the latter is
stateful: it keeps track of all the secret keys it has generated.
The statefulness necessity may be explained as follows. The
master secret key is an integer matrix with small entries.
When the attacker makes a key query for a vector modulo 𝑝,
it learns the integer product between a conversion to the
integers of that vector and the master secret key. If the key
generation algorithm does not maintain a state, then it does
not seem possible to prevent an adversary from making key
queries for vectors that are linearly dependent modulo 𝑝 but
linearly independent over the integers: the attacker could
then make valid key queries but still learn the master secret
key.

The Key Generation State is Unnecessary. In [4], it was
noted that if the vectors queried by the adversary are guar-
anteed to be linearly independent modulo 𝑝, then there is
no need for a stateful key generation algorithm. In our case,
there are as many vectors as users, each vector is uniformly
sampled from Zℓ

𝑝 and the adversary has access to ≤ 𝑟+ 𝑡 < ℓ

vectors. By setting 𝑝 = 2Ω(𝜆), the probability that there ex-
ists a subset of 𝑡 key vectors that are linearly independent
is 2−Ω(𝜆). We can then remove the state in the LWE-based
IPFE over Zℓ

𝑝, and apply the transformation from the previ-
ous section.

The resulting trace-and-revoke scheme inherits the unsat-
isfactory performance of its underlying IPFE (see [4, Sec-
tion 4.2] for further details), stemming from the subexponen-
tial error rate in the LWE hardness assumption.

Large LWE Errors are Unnecessary. In Subsection 4.2
below, we exploit the randomness of the key queries further,
as well as the bounded number of queries (as allowed by
our trace-and-revoke application). We obtain a random-key
bounded-collusion FE for inner products from LWE with
significantly better parameters. In particular, we rely on
slightly super-polynomial error rates for LWE, which allows
to take smaller parameters.6

Both the public key and master secret key of the resulting

trace-and-revoke scheme consist of ̃︀𝑂((𝑡+ 𝑟 + 𝜆)𝜆) bits. To

every user id corresponds a secret key skid of bit-length ̃︀𝑂(𝑡+

𝑟+𝜆) and a vector 𝑝id of bit-length ̃︀𝑂(𝑡+𝑟+𝜆). Algorithm Enc

maps a plaintext in {0, 1} to a ciphertext of bit-length ̃︀𝑂(𝑡+
𝑟 + 𝜆).

6We observe that the scheme from Subsection 4.2 allows for polynomial
error rates, but the correctness of our trace-and-revoke construction

requires 𝑝 ≥ 𝜆𝜔(1), which leads to a 𝜆𝜔(1) LWE error rate in our IPFE.
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4.2 Bounded Collusion FE for Inner
Products from LWE

The construction we provide here relies on LWE with a small
error rate and hence small modulus and dimension. Our
construction is quite close to [4] except the key generation
algorithm. In [4], the key generation algorithm is determin-
istic, whereas in our scheme it is randomized and involves
certain Gaussian distribution. This change allows us to prove
the security of our scheme in the improved parameter setting
compared with [4].

Construction. Let 𝑝 be the modulus of the scheme, 2ℓ be
the dimension of the scheme, and 𝐿 be the upper bound on
the size of the collusion.

∙ ℱℰ .Setup(1𝜆, 1𝐿, 12ℓ). Set integers 𝑛, 𝑚, 𝑞 = 𝑝𝑘 for
some integer 𝑘 ≥ 2, and reals 𝛼 ∈ (0, 1) and 𝜎0, 𝜎1, 𝜎2 >
0, as explained below. Sample A ←˒ Z𝑚×𝑛

𝑞 and Z ←˒
𝐷2ℓ×𝑚

Z,𝜎0
. Compute U = Z ·A ∈ Z2ℓ×𝑛

𝑞 . Define

msk := Z and pk := (A,U).

∙ ℱℰ .KeyGen(msk,x). Given x = (𝑥1, . . . , 𝑥2ℓ)
𝑡 ∈ Z2ℓ

𝑝 ,
sample 𝑥̄𝑖 ←˒ 𝐷𝑝Z+𝑥𝑖,𝜎1 for 𝑖 ∈ [ℓ] and 𝑥̄𝑖 ←˒ 𝐷𝑝Z+𝑥𝑖,𝜎2

for 𝑖 ∈ [ℓ + 1, 2ℓ]. Set x̄ := (𝑥̄1, . . . , 𝑥̄2ℓ)
𝑡 ∈ Z2ℓ and

z𝑡x = x̄𝑡 · Z ∈ Z𝑚. Note that we have x̄ ≡ x mod 𝑝 by
construction. Finally, return skx = (x̄, zx).

∙ ℱℰ .Enc(pk,y). To encrypt a vector y ∈ Z2ℓ
𝑝 , sample

s ←˒ Z𝑛
𝑞 , e0, e1 ←˒ 𝐷𝑚

Z,𝛼𝑞 and compute

c0 = As+ e0 ∈ Z𝑚
𝑞 , c1 = Us+ e1 + 𝑝𝑘−1 · y ∈ Z2ℓ

𝑞 .

Then, return the ciphertext 𝐶 = (c0, c1).

∙ ℱℰ .Dec(skid, 𝐶). Given 𝐶 = (c0, c1) and a secret key
(x̄, zx) for x ∈ Z2ℓ

𝑝 , compute 𝜇′ = ⟨x̄, c1⟩−⟨zx, c0⟩ mod

𝑞 and output the value 𝜇 ∈ Z𝑝 that minimizes |𝑝𝑘−1 ·
𝜇− 𝜇′|.

Setting the Parameters. We have to set the parameters so
that the correctness requirement is satisfied and the security
reduction from LWE𝑛,𝑚,𝑞,𝛼′ works, for some non-trivial error
rate 𝛼′. We require that

∙ 𝑝𝑘−1/4 > 𝜎0(𝜎1 + 𝜎2)𝛼𝑞
√
ℓ𝑚 · 𝜔(log3/2 𝜆), to ensure

that the error term in decryption has magnitude less
than 𝑝𝑘−1/4 with probability 1− 𝜆−𝜔(1),

∙ 𝜎1, 𝜎2 ≥ 𝑝 · Ω(
√
𝜆), to be able to apply Lemma 2.4 in

the security proof,
∙ 𝛼/𝛼′ ≥ Ω(𝜎0

√
𝑚) and 𝜎0, 𝛼

′𝑞 ≥ Ω(
√
𝜆), to be able to

apply Lemma 2.5 in the security proof,
∙ 𝜅 ≥ Ω(𝜆 + 𝐿 log 𝜆), to ensure the (overwhelmingly
likely) existence of a U as in Lemma 2.9 in the security
proof,
∙ 𝜎1 ≥ Ω(

√
ℓ𝜅 log ℓ), ℓ ≥ Ω(𝜅 log(𝜎1𝜅)), and

𝜎2 ≥ Ω(𝜅5/2
√
ℓ𝜎2

1 log
3/2(ℓ𝜎1)), to be able to apply

Lemma 2.9 in the security proof with 𝜅 ≥ Ω(𝜆+𝐿 log 𝜆)
as above,
∙ 𝜎0 ≥ Ω(𝑝𝜅ℓ𝜎2) and 𝑞𝑛+1/𝑝𝑚 ≤ 2−Ω(𝜅), to be able to
apply Lemma 4.2 in the security proof.

To satisfy the above requirements and rely on LWE pa-
rameters for which all known attacks cost 2𝑜(𝜆), we may set
the parameters as follows. We choose 𝜅 = Θ(𝜆 + 𝐿 log 𝜆),

𝑝 = 𝜆𝜔(1), and:7

ℓ = ̃︀Θ((𝜆+ 𝐿) log 𝑝)

𝜎0 = ̃︀Θ((𝜆+ 𝐿)5(𝑝 log 𝑝)3𝜆) 𝜎1 = Θ(𝑝
√
𝜆)

𝜎2 = ̃︀Θ((𝜆+ 𝐿)3(𝑝 log 𝑝)2𝜆)

1/𝛼 = ̃︀Θ((𝜆+ 𝐿)9(𝑝 log 𝑝)6𝜆2)

1/𝛼′ = ̃︀Θ((𝜆+ 𝐿)14.5(𝑝 log 𝑝)9𝜆3) 𝑚 = ̃︀Θ(𝜆+ 𝐿)

𝑞 = ̃︀Θ((𝜆+ 𝐿)15(𝑝 log 𝑝)9𝜆3) 𝑘 = Θ(1)

𝑛 = ̃︀Θ(𝜆)

Decryption Correctness. To show the correctness of the
scheme, we first observe that, modulo 𝑞:

𝜇′ = ⟨x̄, c1⟩ − ⟨zx, c0⟩ = 𝑝𝑘−1 · ⟨x,y⟩+ ⟨x̄, e1⟩ − ⟨zx, e0⟩.

Below, we show that the magnitude of the term ⟨x̄, e1⟩ −
⟨zx, e0⟩ is ≤ 𝜎0(𝜎1+𝜎2)𝛼𝑞

√
ℓ𝑚 ·𝜔(log3/2 𝜆) with probability

1−𝜆−𝜔(1). Thanks to the parameter choices, the latter upper
bound is smaller than 𝑝𝑘−1/4, which suffices to guarantee
decryption correctness.

Note that 𝑥̄𝑖 ∈ Z2ℓ is chosen from 𝐷𝑝Z+𝑥𝑖,𝜎1 if 𝑖 ∈ [ℓ]

and 𝐷𝑝Z+𝑥𝑖,𝜎2 otherwise. We thus have ‖x̄‖ ≤ (𝜎1 + 𝜎2)
√
ℓ ·

𝜔(
√
log 𝜆) with probability 1− 𝜆−𝜔(1). This, together with

e1 ∼ 𝐷2ℓ
Z,𝛼𝑞, implies that |⟨x̄, e1⟩| ≤ 𝛼𝑞(𝜎1 + 𝜎2)

√
ℓ · 𝜔(log 𝜆)

with probability 1− 𝜆−𝜔(1). Furthermore, since each column
of Z is chosen from 𝐷2ℓ

Z,𝜎0
, we have ‖zx‖ ≤ 𝜎0(𝜎1 + 𝜎2)

√
ℓ𝑚 ·

𝜔(log 𝜆) with probability 1 − 𝜆−𝜔(1). As a result, we have

|⟨zx, e0⟩| ≤ 𝜎0(𝜎1 + 𝜎2)𝛼𝑞
√
ℓ𝑚 · 𝜔(log3/2 𝜆) with probability

1− 𝜆−𝜔(1).

Security. We now show that the scheme above is secure,
for our relaxed notion of 𝐿-IND-CPA security. The proof is
similar to [4], but we exploits the weaker security model of
bounded number of random key queries. In particular, we
perform a much more careful analysis on the conditional
distribution of Z from the view of the adversary.

Theorem 4.1. If the parameters are set as above, the
above scheme is 𝐿-IND-CPA secure under the LWE𝑛,𝑚,𝑞,𝛼′

assumption.

Proof. The proof proceeds with a sequence of games that
starts with the real game and ends with a game in which the
adversary’s advantage is negligible. For each 𝑖, we call 𝑆𝑖 the
event that the adversary wins in Game 𝑖.

Game 0: This is the ordinary security game. Namely, at
the outset of the game, the adversary 𝒜 is given the master
public key pk. Then, it sees 𝑄 random vectors {x𝑖}𝑖∈[𝑄],

where x𝑖 ←˒ Z2ℓ
𝑝 and 𝑄 is an arbitrary polynomial specified

by 𝒜. Then, it makes secret key queries for these vectors.
The number of the key queries is bounded by 𝐿. Note that
the adversary can only make key queries for random vectors
chosen as x ←˒ Z2ℓ

𝑝 . In the challenge phase, the adversary 𝒜
7We note that it is possible to choose parameters that allow to take 𝑝 as

low as 𝑝 = 2, but in our trace-and-revoke application we use 𝑝 = 𝜆𝜔(1)

to guarantee correctness.
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comes up with two distinct vectors y0, y1 and receives an
encryption 𝐶 of y𝛽 for 𝛽 ←˒ {0, 1} sampled by the challenger.
The adversary is not allowed to make secret key queries after
the challenge phase. When 𝒜 halts, it outputs 𝛽′ ∈ {0, 1} and
𝑆0 is the event that 𝛽′ = 𝛽. Note that for any vector x for
which 𝒜 makes a secret key query, we must have ⟨x,y0⟩ ≡
⟨x,y1⟩ mod 𝑝 if 𝒜 is a legitimate adversary.

Game 1: We modify the generation of x and x̄ for all secret
key queries. Namely, instead of choosing x ←˒ Z2ℓ

𝑝 and then

sampling x̄, the challenger first chooses x̄ = (𝑥̄1, . . . , 𝑥̄2ℓ)
𝑡 as

𝑥̄𝑖 ←˒ 𝐷Z,𝜎1 for 𝑖 ∈ [ℓ] and 𝑥̄𝑖 ←˒ 𝐷Z,𝜎2 for 𝑖 ∈ [ℓ+ 1, 2ℓ] and
then sets x := x̄ mod 𝑝. We claim that this changes the joint
distribution of (x, x̄) only negligibly. To see this, we observe
that the distribution of 𝑥̄𝑖 conditioned on 𝑥̄𝑖 ≡ 𝑥𝑖 mod 𝑝
is 𝐷𝑝Z+𝑥𝑖,𝜎1 for 𝑖 ∈ [ℓ] and 𝐷𝑝Z+𝑥𝑖,𝜎2 for 𝑖 ∈ [ℓ + 1, 2ℓ].
Therefore, it suffices to show that 𝑥̄𝑖 mod 𝑝 is statistically
close to the uniform distribution over Z𝑝 when 𝑥̄𝑖 is chosen

from 𝐷Z,𝜎1 or 𝐷Z,𝜎2 . This follows from 𝜎1, 𝜎2 ≥ 𝑝 · Ω(
√
𝜆)

and Lemma 2.4. Therefore, we have that |Pr[𝑆1]−Pr[𝑆0]| ≤
2−Ω(𝜆).

Game 2: We modify the generation of 𝐶 = (c0, c1) in the
challenge phase. Namely at the outset of the game, the chal-
lenger picks s ←˒ Z𝑛

𝑞 , e ←˒ 𝐷𝑚
Z,𝛼′𝑞 (which may be chosen

ahead of time) as well as Z ←˒ 𝐷2ℓ×𝑚
Z,𝜎0

. Let V ∈ Z(𝑚+2ℓ)×𝑚

be the matrix that is obtained by putting I𝑚 on top of Z,
where I𝑚 is the unit matrix of size 𝑚. We then set the
ciphertext 𝐶 = (c0, c1) ∈ Z𝑚

𝑞 × Z2ℓ
𝑞 as

b = As+ e

(c0‖c1) = ReRand(V,b, 𝛼′𝑞, 𝛼/(2𝛼′)) + 𝑝𝑘−1 · y𝛽 (4)

where ReRand is from Lemma 2.5. We claim that this change
alters the view of the adversary only negligibly. To show
this, we first observe that 𝑠1(V) ≤

√︀
1 + 𝑠1(Z)2 ≤ 𝑂(𝜎0

√
𝑚)

holds with all but 2−Ω(𝑚) ≤ 2−Ω(𝜆) probability by Lemma 2.7.
By Lemma 2.5 and our parameter choices, we have

c0 = I𝑚 ·As+ e0 = As+ e0,

c1 = Z ·As+ e1 + 𝑝𝑘−1 · y𝛽 = Us+ e1 + 𝑝𝑘−1 · y𝛽 ,

where e0 and e1 are within statistical distance 2−Ω(𝜆) from
𝐷𝑚

Z,𝛼𝑞. Therefore,we have that |Pr[𝑆2]− Pr[𝑆1]| ≤ 2−Ω(𝜆).

Game 3: We further modify the generation of 𝐶 = (c0, c1)
in the challenge phase. Instead of setting b = As + e, we
choose b = u+ e, where u ←˒ Z𝑚

𝑞 . Then, the ciphertext is
set as in Equation (4). Under the LWE assumption, we have
that |Pr[𝑆3]− Pr[𝑆2]| is negligible.
Game 4: We modify the generation of 𝐶 = (c0, c1) once
more. Namely, the ciphertext is now set as

c0 = u+ e0,

c1 = Z · u+ e1 + 𝑝𝑘−1 · y𝛽 ,

where u ←˒ Z𝑚
𝑞 and e0, e1 ←˒ 𝐷𝑚

Z,𝛼𝑞. Similarly to Game 2,
this change does not alter the view of the adversary much.
By Lemma 2.5 and our parameter choices, we have that
|Pr[𝑆4] − Pr[𝑆3]| ≤ 2−Ω(𝜆). Below, we prove that Pr[𝑆4] is
exponentially close to 1/2, which will complete the proof.

Define y = y1 − y0 ∈ Z2ℓ
𝑝 . Let {x𝑖𝑗 ∈ Z2ℓ

𝑝 }𝑗∈[𝐿′] be the
vectors corresponding to the secret key queries made by
𝒜, where 𝐿′ ≤ 𝐿. As 𝒜 is a legitimate adversary, we have
⟨x𝑖𝑗 ,y⟩ = 0 mod 𝑝 for each secret key query x𝑖𝑗 . The view of

the adversary contains 𝐿′ tuples {x𝑖𝑗 , x̄𝑖𝑗 , zx𝑖𝑗
}𝑗∈[𝐿′], where

the vectors {x𝑖𝑗}𝑗∈[𝐿′] form a Z𝑝-basis of a subspace of the

(2ℓ− 1)-dimensional vector space y⊥ := {x ∈ Z2ℓ
𝑝 : ⟨x,y⟩ =

0 mod 𝑝}. We define X𝑡𝑜𝑝 ∈ Z𝐿′×2ℓ as the matrix whose 𝑗-th
row is x̄𝑡

𝑖𝑗 for 𝑗 ∈ [𝐿′].

We say that X𝑡𝑜𝑝 ∈ Z𝐿′×2ℓ is good when we can choose
U ∈ Z2ℓ×2ℓ such that |detU| = 1, X𝑡𝑜𝑝 ·U = (I𝐿′ |0), and
every row of U has norm ≤ 𝑂(

√
𝜅ℓ𝜎2) (see Lemma 2.9). For

a good X𝑡𝑜𝑝, we can define X ∈ Z2ℓ×2ℓ as X := U−1. It can
be seen that the upper 𝐿′ rows of X corresponds to X𝑡𝑜𝑝.
We denote the lower 2ℓ − 𝐿′ rows of the matrix as X𝑏𝑜𝑡.
We note that since X is invertible over Z, so is it modulo 𝑞.
Without loss of generality, we assume that U and X𝑏𝑜𝑡 are
deterministically determined from X𝑡𝑜𝑝. (If there are more
than one matrix satisfying the required properties, we sort
them in the lexicographical order and pick the first one.)
Note that it might be infeasible to efficiently compute U
and X𝑏𝑜𝑡 from X𝑡𝑜𝑝. This does not cause any problem in our
proof because all the following arguments are information
theoretic.

We state the following lemmas:

Lemma 4.2. Assume that 𝜎0 ≥ Ω(𝑝𝜅ℓ𝜎2) and 𝑞𝑛+1/𝑝𝑚 ≤
2−Ω(𝜅). Then the following distributions are within 2−Ω(𝜅)

statistical distance:

(A,u,ZA,X𝑡𝑜𝑝,X𝑡𝑜𝑝Z,X𝑏𝑜𝑡Zu) ≈
(A,u,ZA,X𝑡𝑜𝑝,X𝑡𝑜𝑝Z,v)

where A ←˒ Z𝑚×𝑛
𝑞 , u ←˒ Z𝑚

𝑞 , Z ←˒ 𝐷2ℓ×𝑚
Z,𝜎0

, each row of

X𝑡𝑜𝑝 ∈ Z𝐿′×2ℓ
𝑞 is chosen from 𝐷ℓ

Z,𝜎1
×𝐷ℓ

Z,𝜎2
, and v ←˒ Z2ℓ−𝐿′

𝑞 .
Note that if X𝑏𝑜𝑡 is not good, then X𝑏𝑜𝑡 is undefined. In such
a case, the term X𝑏𝑜𝑡Zu is replaced with ⊥.

Lemma 4.3. If there exists an adversary 𝒜 whose advan-
tage in Game 4 is 𝜖, then there exists another (unbounded)
adversary ℬ whose distinguishing advantage between the two

distributions in Lemma 4.2 is 𝜀/𝑄𝐿′
.

Given these two lemmas, we can conclude the proof of

Theorem 4.1 since these imply 𝜀/𝑄𝐿′
< 2−Ω(𝜅) and thus

𝜀 < 𝑄𝐿 · 2−Ω(𝜅) = 2𝑂(𝐿 log 𝜆)−Ω(𝜅) ≤ 2−Ω(𝜆). □

It remains to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. By Lemma 2.9, matrix X𝑡𝑜𝑝 is

good with all but 2−Ω(𝜅) probability. In the following, let us
fix good X𝑡𝑜𝑝 and prove that the above two distributions

are 2−Ω(𝜅)-close. We first consider the distribution X𝑏𝑜𝑡Z
conditioned on X𝑡𝑜𝑝Z. Note that in X𝑡𝑜𝑝Z and X𝑏𝑜𝑡Z, ma-
trices X𝑡𝑜𝑝 and X𝑏𝑜𝑡 act in parallel on the columns of Z.
We can hence restrict ourselves to the distribution of X𝑏𝑜𝑡z𝑖
conditioned on X𝑡𝑜𝑝z𝑖, with z𝑖 sampled from 𝐷Z2ℓ,𝜎0

. Let

b𝑖 = X𝑡𝑜𝑝z𝑖 ∈ Z𝐿′
and fix z⋆𝑖 ∈ Z2ℓ arbitrary such that
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b𝑖 = X𝑡𝑜𝑝z
⋆
𝑖 . The distribution of z𝑖 given (X𝑡𝑜𝑝,X𝑡𝑜𝑝z𝑖) is

𝐷Λ+z⋆𝑖 ,𝜎0 , with Λ = {x ∈ Z2ℓ : X𝑡𝑜𝑝x = 0}. Therefore, we
have that given X𝑡𝑜𝑝z𝑖, the vector X𝑏𝑜𝑡z𝑖 is distributed as
X𝑏𝑜𝑡 ·𝐷Λ+z⋆𝑖 ,𝜎0 .

Let U𝑙𝑒𝑓 (resp. U𝑟𝑖𝑔) denote the left 𝐿
′ (resp. right 2ℓ−𝐿′)

columns of U. We are to show that the distribution X𝑏𝑜𝑡 ·
𝐷Λ+z⋆𝑖 ,𝜎0 is 𝐷Z2ℓ−𝐿′

,𝜎0
√
Σ

−1
,w
, where Σ = U𝑡

𝑟𝑖𝑔U𝑟𝑖𝑔 and

w = −
√
Σ
−𝑡

U𝑡
𝑟𝑖𝑔U𝑙𝑒𝑓b𝑖. To see this, we first show that the

supports of both distributions are the same. More specifically,

we prove X𝑏𝑜𝑡 · Λ = Z2ℓ−𝐿′
. To do so, it suffices to show

that for any a ∈ Z2ℓ−𝐿′
, we have a ∈ X𝑏𝑜𝑡 · Λ. By the

construction of U, we have X𝑡𝑜𝑝U𝑟𝑖𝑔 = 0 and X𝑏𝑜𝑡U𝑟𝑖𝑔 =
I2ℓ−𝐿′ . Now, a ∈ X𝑏𝑜𝑡 · Λ follows because we have a =
X𝑏𝑜𝑡 · (U𝑟𝑖𝑔a) and X𝑡𝑜𝑝 ·U𝑟𝑖𝑔a = 0. We next evaluate the

probability of a ∈ Z2ℓ−𝐿′
being output by X𝑏𝑜𝑡 ·𝐷Λ+z⋆𝑖 ,𝜎0 .

This probability equals to the probability of a′ ∈ Z2ℓ being
output by 𝐷Λ+z⋆𝑖 ,𝜎0 for a′ that is the unique vector in Λ+z⋆𝑖
satisfying a = X𝑏𝑜𝑡 ·a′. Since a′ ∈ Λ+z⋆𝑖 , we have X𝑡𝑜𝑝 ·a′ =
X𝑡𝑜𝑝(a

′ − z⋆𝑖 ) +X𝑡𝑜𝑝z
⋆
𝑖 = 0+ b𝑖 = b𝑖. Therefore, the vector

a′ can be written as a′ = X−1(b𝑖‖a) = U(b𝑖‖a) = U𝑙𝑒𝑓b𝑖 +
U𝑟𝑖𝑔a. The probability we consider is proportional to

exp
(︀
−𝜋‖a′‖2/𝜎2

0

)︀
= exp

(︀
−𝜋‖U𝑙𝑒𝑓b𝑖 +U𝑟𝑖𝑔a‖2/𝜎2

0

)︀
= exp

(︁
−𝜋‖
√
Σa+

√
Σ
−𝑡

U𝑡
𝑟𝑖𝑔U𝑙𝑒𝑓b𝑖‖2/𝜎2

0

)︁
· exp

(︁
−𝜋(‖U𝑙𝑒𝑓b𝑖‖2 − ‖

√
Σ
−𝑡

U𝑡
𝑟𝑖𝑔U𝑙𝑒𝑓b𝑖‖2)/𝜎2

0

)︁
⏟  ⏞  

does not depend on a

∝ exp
(︁
−𝜋‖
√
Σ(a−w)‖2/𝜎2

0

)︁
.

This implies this equals to the probability of a being output
by 𝐷Z2ℓ−𝐿′

,𝜎0
√
Σ

−1
,w

. To sum up, conditioned on X𝑡𝑜𝑝Z, the

matrix X𝑏𝑜𝑡Z is distributed as (𝐷Z2ℓ−𝐿′
,𝜎0
√
Σ

−1
,w
)𝑚.

We then consider the joint distribution of (A,u,ZA,X𝑏𝑜𝑡Zu)
(conditioned on (X𝑡𝑜𝑝,X𝑡𝑜𝑝Z)). In the following, let us con-
sider the distribution of XZA instead of ZA. We do not loose
any information by doing this since X is invertible modulo
𝑞 and the latter distribution can be recovered from the for-
mer by just multiplying X−1 from the left. Furthermore, we
observe that XZA is the vertical concatenation of X𝑡𝑜𝑝ZA
and X𝑏𝑜𝑡ZA. Since the former can be recovered from X𝑡𝑜𝑝Z
and A, which are already included in the tuples, we ignore
the former.

Let us denote Y := X𝑏𝑜𝑡Z ∼ (𝐷Z2ℓ−𝐿′
,𝜎0
√
Σ

−1
,w
)𝑚. To

complete the proof, we will show that the following distribu-
tions are statistically close:

(A,u,YA,Yu) ≈ (A,u,B,v)

where B ←˒ Z(2ℓ−𝐿′)×𝑛
𝑞 , and v ←˒ Z2ℓ−𝐿′

𝑞 . We first show

that (Y mod 𝑝) is within 2Ω(−𝜆) statistical distance from the

uniform distribution over Z(2ℓ−𝐿′)×𝑚
𝑝 . This follows by setting

Λ = Z2ℓ−𝐿′
and Λ′ = 𝑝 · Z2ℓ−𝐿′

and applying Lemma 2.4 to
Y in a column-wise manner. We check that the parameters

satisfy the required condition of Lemma 2.4. We have

𝑠2ℓ−𝐿′(
√
Σ
−1

) = 𝑠1(Σ)−1/2 ≥ ((2ℓ− 𝐿′)2 · ‖Σ‖∞)−1/2

≥ Ω((𝜅1/2ℓ𝜎2)
−1),

where the last inequality follows from the upper bound
on the norms of the rows of U. We therefore have 𝜎0 ·
𝑠2ℓ−𝐿′(

√
Σ
−1

) ≥ 𝑝 · Ω(
√
𝜅) by our choice of 𝜎0. We then

finally apply Lemma 2.6 in a row-wise manner to obtain
that Y(A|u) is almost uniformly random. We note that the

lemma can be applicable because 𝑞𝑛+1/𝑝𝑚 ≤ 2−Ω(𝜅). This
completes the proof of Lemma 4.2. □

Proof of Lemma 4.3. The reduction works as follows.
Given (A,u,ZA,X𝑡𝑜𝑝,X𝑡𝑜𝑝Z, v), algorithm ℬ randomly

guesses indices {𝑖𝑗}𝑗∈𝐿′ ∈ [𝑄]𝐿
′
for which the adversary

makes key queries. The public key pk = (A,U = Z · A)
and the master key msk = Z are determined by the given
problem instance. (Note that Z is not given to ℬ, so it is im-
plicitly chosen.) Then ℬ chooses {x̄𝑖}𝑖∈[𝑄] as follows. When
𝑖 ∈ {𝑖𝑗}𝑗∈[𝐿′], there exists 𝑗 such that 𝑖 = 𝑖𝑗 . Then algo-

rithm ℬ sets x̄𝑡
𝑖 to be the 𝑗-th row of the given matrix X𝑡𝑜𝑝.

Otherwise, it chooses x̄𝑖 as in Game 4. The key queries are
handled as follows. Whenever 𝒜 queries key for x𝑖 such that
𝑖 ̸∈ {𝑖𝑗}𝑗∈[𝐿′], algorithm ℬ aborts and outputs a random bit.
Other queries can be handled using X𝑡𝑜𝑝Z in the problem
instance. To create the challenge ciphertext ℬ sets

c0 = u, c1 = X−1 · (X𝑡𝑜𝑝Zu‖v) + e1 + y𝛽 .

We can observe that when v = X𝑏𝑜𝑡Zu, we have c1 = Zu+
e1 + y𝛽 and the distribution of the challenge ciphertext
corresponds to that of Game 4.

We then consider the case of v is random. We will show
that the distribution of X · 𝑐⃗1 mod 𝑞 is independent of 𝛽. As
the matrix X is independent of 𝛽 ∈ {0, 1} and invertible over
Z𝑞, this implies that the distribution of c1 is independent of
𝛽 as well (recall that X is information theoretically known
to 𝒜, which means that, if c1 carries any information on 𝛽,
so does X · c1 mod 𝑞). The first 𝐿′ entries of X · c1 (namely,
X𝑡𝑜𝑝 · c1) do not depend on 𝛽 because we have the equality
𝑝𝑘−1 ·X𝑡𝑜𝑝 · y0 = 𝑝𝑘−1 ·X𝑡𝑜𝑝 · y1 mod 𝑞, by construction of
X𝑡𝑜𝑝. The last 2ℓ − 𝐿′ entries are uniformly random, since
they are masked by the random vector v.

At the end of the game, algorithm ℬ outputs the same bit
as 𝒜.

It can be seen that ℬ perfectly simulates Game 4 when
v = X𝑏𝑜𝑡Zu and a game that is independent of 𝛽 when v
is random. Therefore, conditioned on ℬ not aborting, the
distinguishing advantage of ℬ is the same as 𝒜. Since ℬ
aborts and outputs a random bit with probability 1/𝑄𝐿′

, the

advantage of ℬ is 𝜖/𝑄𝐿′
. This completes the proof of Lemma

4.3. □

5 TRACE AND REVOKE FROM DDH
AND PAILLIER

In this section, we describe two (near) instantiations of the
generic construction presented in the last section. We are not
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aware of existing IPFE schemes that meet the requirements
for our generic Trace-and-Revoke construction, but some
existing ones can be made to fit the framework.

5.1 Trace and Revoke from DDH

Following the work of Abdalla et al. [1], two DDH-based
adaptively secure IPFEs modulo the group size 𝑞 have been
proposed [4, 8]. However, these schemes enjoy limited cor-
rectness: as decryption involves the computation of a discrete
logarithm, one restricts the set of exponents to be small. For
instance, one may design the schemes so that inner prod-
ucts that are small compared to 𝑞 can be decrypted. This
restriction seems incompatible with the requirements of our
trace-and-revoke scheme, as the inner product 𝑚 · ⟨xid,vℛ⟩
occurring in the decryption algorithm has no reason to be
small compared to 𝑝, even if the plaintext 𝑚 is small. In the
DDH-based trace-and-revoke scheme below, we circumvent
the issue for the scheme from [4] by removing the ⟨xid,vℛ⟩
component before taking the discrete logarithm.

∙ Setup(1𝜆, 1𝑡, 1𝑟, 𝐿). Choose a cyclic group G of prime
order 𝑞 along with two generators 𝑔, ℎ ←˒ G. DDH
in G should be 2𝜆-hard, but taking base-𝑔 logarithms
of elements 𝑔𝑥 with 𝑥 ∈ {1, . . . , 𝐿} should be tractable.
Set ℓ = 𝑡 + 𝑟 + 1. For each 𝑖 ≤ ℓ, sample 𝑠𝑖, 𝑡𝑖 ←˒ Z𝑞

and compute ℎ𝑖 = 𝑔𝑠𝑖 · ℎ𝑡𝑖 . Define

msk := (s, t) and pk :=
(︀
G, 𝑔, ℎ, {ℎ𝑖}𝑖∈[ℓ]

)︀
.

∙ KeyGen(msk, id). Sample xid ←˒ Zℓ
𝑞.

Set sk𝑖𝑑 = (⟨xid, s⟩, ⟨xid, t⟩) ∈ Z2
𝑞 and 𝑝id = xid.

∙ Enc(pk,ℛ,𝑚) proceeds as follows to encrypt 𝑚 ∈
{1, . . . , 𝐿}.

(1) Compute vℛ ∈ Zℓ
𝑞 ∖ {⃗0} such that ⟨xid,vℛ⟩ = 0 for

every id ∈ ℛ.
(2) Set y = 𝑚 · vℛ and sample 𝑟 ←˒ Z𝑞.
(3) Compute 𝐷0 = 𝑔𝑟, 𝐷1 = ℎ𝑟 and 𝐸𝑖 = 𝑔𝑦𝑖 · ℎ𝑟

𝑖 for
all 𝑖 ≤ ℓ.

The ciphertext 𝐶 is (𝐷0, 𝐷1, 𝐸1, . . . , 𝐸ℓ,ℛ).
∙ Dec(skid, 𝐶). Write 𝐶 = (𝐷0, 𝐷1, 𝐸1, . . . , 𝐸ℓ,ℛ) and
let xid denote the vector corresponding to skid = (𝑠𝑥, 𝑡𝑥).
Compute:

𝐶xid =
(︁ ℓ∏︁

𝑖=1

𝐸
𝑥id,𝑖

𝑖

)︁
/(𝐷𝑠𝑥

0 ·𝐷
𝑡𝑥
1 ).

Then, recover vℛ from ℛ and output the base-𝑔 loga-

rithm of 𝐶
1/⟨vℛ,xid⟩
xid .

∙ Trace(pd,𝒮,ℛ,𝒪𝒟) proceeds as described in Section 3.

Correctness follows from elementary computations. The
only difference with the direct instantiation of our trace-and-
revoke construction is that the division by ⟨vℛ,xid⟩ occurs
before the computation of the discrete logarithm, hence en-
abling efficient decryption.

Key and Ciphertext Sizes. Both the public key and master
secret key consist of 𝑂((𝑡 + 𝑟) log 𝑞) bits. To every user id
corresponds a secret key skid of bit-length 𝑂(log 𝑞) and a
vector 𝑝id of bit-length 𝑂((𝑡+ 𝑟) log 𝑞). Algorithm Enc maps

a plaintext in Z𝑞 ∖ {0} to a ciphertext of bit-length 𝑂((𝑡 +
𝑟) log 𝑞). If we choose the DDH group as an elliptic curve
group (without pairings), we may set log 𝑞 = 𝑂(𝜆).

5.2 Trace and Revoke from Paillier

In [4], Agrawal et al. described two IPFEs relying on the
algebraic framework of Paillier’s encryption scheme [33]. One
scheme handles inner products of short integers vectors, while
the other handles inner products modulo a product 𝑁 =
𝑝 · 𝑞 of two safe primes. Both are proved secure under the
Decision Composite Residuosity (DCR) hardness assumption.
We explain here how to instantiate our trace-and-revoke
construction using this IPFE over Zℓ

𝑁 .
A first difficulty is the fact that the Key Generation al-

gorithm is stateful. However, this issue can be handled by
noticing that for random queries, the key generation algo-
rithm can be made stateless (see [4] and Subsection 4.1 for
more details). A further difficulty is the non-primality of 𝑁 :
our transformation requires the modulus to be prime. We
may actually apply the transformation and “pretend” that
𝑁 is prime, both in the scheme and in its security proof. The
non-primality of 𝑁 can be noticed only when finding vec-
tors orthogonal modulo 𝑁 to some specified vectors. When
such a task is performed, either the linear algebra operations
proceed and find such a vector, or they fail. In the latter
case, a non-trivial factor of 𝑁 has been found, which leads to
an algorithm against DCR. Hence, under the DCR hardness
assumption, such an event is unlikely. We now describe the
resulting DCR-based trace-and-revoke scheme.

∙ Setup(1𝜆, 1𝑡, 1𝑟). Choose safe prime numbers 𝑝 = 2𝑝′ +
1, 𝑞 = 2𝑞′ + 1 with sufficiently large primes 𝑝′, 𝑞′ >
2𝒫𝑜𝑙𝑦(𝜆), and compute𝑁 = 𝑝𝑞. Then, sample 𝑔′ ←˒ Z*𝑁2

and compute 𝑔 = 𝑔′2𝑁 mod 𝑁2, which generates the
subgroup of (2𝑁)-th residues in Z⋆

𝑁2 with overwhelm-
ing probability. Set ℓ = 𝑡 + 𝑟 + 1 and sample s from
the integer Gaussian distribution 𝐷Zℓ,𝜎 with standard

deviation parameter 𝜎 satisfying 𝜎 ≥
√
ℓ𝑁𝒫𝑜𝑙𝑦(𝜆).

Compute ℎ𝑖 = 𝑔𝑠𝑖 mod 𝑁2 for all 𝑖 ≤ ℓ. Define

msk := s and pk :=
(︀
𝑁, 𝑔,𝒢, {ℎ𝑖}𝑖∈[ℓ]

)︀
.

∙ KeyGen(msk, id). Sample xid ∈ Zℓ with coefficients i.i.d.
uniform in {0, . . . , 𝑁 − 1}. Set sk𝑖𝑑 = ⟨xid, s⟩ ∈ Z and
𝑝id = xid.
∙ Enc(pk,ℛ,𝑚) proceeds as follows to encrypt 𝑚 ∈ Z𝑁 ∖
{0}.

(1) Compute vℛ ∈ Zℓ
𝑝 ∖ {0⃗} such that ⟨xid,vℛ⟩ = 0 for

every id ∈ ℛ.
(2) Set y = 𝑚 · vℛ and sample 𝑟 ←˒ {0, . . . , ⌊𝑁/4⌋}.
(3) Compute 𝐶0 = 𝑔𝑟 mod 𝑁2 and 𝐶𝑖 = (1 + 𝑦𝑖𝑁) ·

ℎ𝑟
𝑖 mod 𝑁2 for all 𝑖 ≤ ℓ.

The ciphertext 𝐶 is (𝐶0, 𝐶1, . . . , 𝐶ℓ,ℛ).
∙ Dec(skid, 𝐶). Write 𝐶 = (𝐶0, 𝐶1, . . . , 𝐶ℓ,ℛ) and let xid

denote the vector corresponding to skid. Compute:

𝐶xid = 𝐶
−skid
0 ·

(︁ ℓ∏︁
𝑖=1

𝐶
𝑥id,𝑖

𝑖

)︁
mod 𝑁2.
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Then, recover vℛ from ℛ and output(︂
𝐶xid − 1 mod 𝑁2

𝑁

)︂
/⟨vℛ,xid⟩.

∙ Trace(pd,𝒮,ℛ,𝒪𝒟) proceeds as described in Section 3.

We note that by exploiting the fact that the attacker makes
random queries, we may improve the parameter sizes provided
by [4] exactly as in Subsection 4.2. In more detail, the proof
of Theorem 5 (Appendix F) in [4] can be modified to show
that the advantage of the adversary in Game 3 is negligible
even when 𝜎 is chosen as above, exactly as described in
Subsection 4.2.

Key and Ciphertext Sizes. The public key and master secret
key respectively consist of 𝑂((𝑡+𝑟) log𝑁) and 𝑂((𝑡+𝑟) log𝑁)
bits. Note that the master secret key bit-length can be shrunk
to 𝑂(𝜆) by only storing the seed of the pseudo-random
generator used to create it. In that case, the master se-
cret key may be recomputed every time the KeyGen algo-
rithm is called. Further, to every user id corresponds a secret
key skid of bit-length 𝑂((𝑡 + 𝑟) log𝑁) and a vector 𝑝id of
bit-length 𝑂((𝑡+ 𝑟) log𝑁). Algorithm Enc maps a plaintext
in Z𝑁 ∖ {0} to a ciphertext of bit-length 𝑂((𝑡 + 𝑟) log𝑁).
To compensate for the number field sieve, we must choose

log𝑁 = ̃︀Ω(𝜆3).
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6 ADDITIONAL RELEVANT WORK

There are multiple parameters in trace-and-revoke systems
that one desires to optimize such as security definition, hard-
ness assumption, public traceability, collusion size, efficiency.
The most general adaptive security definition for trace and
revoke was provided by Boneh and Waters [11]. Here, the
adversary is permitted to adaptively make key requests, and
must finally submit a pirate decoder. For the adversary to win
the game, pirate decoder must be useful, i.e., the challenger
must be allowed to test it with various “probe” ciphertexts
and these must be decrypted with non-negligible probability,
and the tracing algorithm must be able to output at least
one user whose key was not requested by the adversary.

Strong Security for Trace and Revoke. The definition of
usefulness of the pirate decoder involves a subtlety – in the
strongest definition, the pirate decoder may be queried with
ciphertexts that may encode a set of maliciously chosen
revoked users [11]. Most constructions do not satisfy this
strong notion of security, indeed some schemes are actually
insecure in this strong game.

For instance in the schemes [14, 30], a probe ciphertext may
be distinguished from a normal ciphertext using a revoked key.
In the polynomial interpolation based method in [30], in order
to run tracing on a suspect set, the authority chooses a probe
polynomial which agrees with the original polynomial on all
the points in the suspected set. Therefore, if the suspected set
contains all the traitor keys, then the pirate cannot detect this
change from the original polynomial to the probe polynomial
and the tracing works well. However, if the pirate knows
one key (an evaluation of the original polynomial) in the
revoked set, then it can detect this change. This means that
a revoked key is useless in decrypting ciphertexts but useful

in detecting the presence of a tracing procedure. Therefore,
the tracing algorithm from [30] does not allow the adversary
to choose and corrupt keys of the revoked set in the tracing
game.

Combinatorial Schemes. We remark that another line of
work constructs combinatorial schemes [13, 29–31, 38, 39],
in contrast to the algebraic ones we have discussed so far;
however these are usually less efficient than the algebraic
candidates and the combination of trace and revoke is often
studied in weaker security models.

Parameters Obtained with the NWZ Compiler. The NWZ
compiler [32] may be instantiated with the bounded collusion
functional encryption scheme from [18]. This results in a
scheme that has a ciphertext size that depends polynomially
on the size of the circuit used by NWZ, as well as quartically
on the collusion bound 𝑟 + 𝑡. Since the circuit used by NWZ
has an input size of 𝑂(𝑟 + 𝑡), the ciphertext size grows at
least as 𝑂((𝑟 + 𝑡)5𝒫𝑜𝑙𝑦(𝜆)).

If the compiler is instantiated with the bounded collusion
scheme of [17] (compiled with [18]), then the ciphertext size
still grows as 𝑂((𝑟 + 𝑡)4𝒫𝑜𝑙𝑦(𝜆)), and moreover relies on the
subexponential hardness of learning with errors in addition
to heavy hammers such as fully homomorphic encryption and
attribute based encryption. We note that the 𝒫𝑜𝑙𝑦(𝜆) factors
above are unspecified, and possibly large: for instance, the
circuit in [18] is represented using randomizing polynomials
which adds a polynomial factor blow-up. Similarly, using
the bounded collusion FE of [5] leads to better asymptotic
bounds 𝑂(𝑟 + 𝑡)3𝒫𝑜𝑙𝑦(𝜆)) but also suffers from large poly-
nomial factors, since again the circuit is represented using
randomizing polynomials. Here, a quadratic factor (𝑟+ 𝑡)2 is
incurred by the query dependence of [5] and an additional
factor (𝑟 + 𝑡) is incurred due to circuit size dependence.
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