
DEFTL: Implementing Plausibly Deniable Encryption in Flash
Translation Layer

Shijie Jia†‡, Luning Xia†‡, Bo Chen§, Peng Liu¶

†Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing, China
‡State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China
§Department of Computer Science, Michigan Technological University, USA

¶College of Information Sciences and Technology, The Pennsylvania State University, USA
{jiashijie,xialuning}@iie.ac.cn,bchen1@mtu.edu,pliu@ist.psu.edu

ABSTRACT
Mobile devices today have been increasingly used to store and
process sensitive information. To protect sensitive data, mobile
operating systems usually incorporate a certain level of encryption
to protect sensitive data. However, conventional encryption cannot
defend against a coercive attacker who can capture the device
owner, and force the owner to disclose keys used for decrypting
sensitive information. To defend against such a coercive adversary,
Plausibly Deniable Encryption (PDE) was introduced to allow the
device owner to deny the very existence of sensitive data stored
on his/her device. The existing PDE systems, built on �ash storage
devices, are problematic, since they either neglect the special nature
of the underlying storage medium (which is usually NAND �ash),
or su�er from deniability compromises.

In this paper, we propose DEFTL, a Deniability Enabling Flash
Translation Layer for devices which use �ash-based block devices
as storage media. DEFTL is the �rst PDE design which incorporates
deniability to Flash Translation Layer (FTL), a pervasively deployed
“translation layer” which stays between NAND �ash and the �le
system in literally all the computing devices. A salient advantage
of DEFTL lies in its capability of achieving deniability while being
able to accommodate the special nature of NAND �ash as well as
eliminate deniability compromises from it. We implement DEFTL
using an open-source NAND �ash controller. The experimental
results show that, compared to conventional encryption which
does not provide deniability, our DEFTL design only incurs a small
overhead.

CCS CONCEPTS
• Security and privacy → Embedded systems security;

KEYWORDS
Plausibly Deniable Encryption; Flash Memory; FTL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . . $15.00
DOI: http://dx.doi.org/10.1145/3133956.3134011

1 INTRODUCTION
Mobile computing devices (e.g., smart phones and tablets) are in-
creasingly ubiquitous nowadays. Due to their portability and mo-
bility, more and more people today turn to such devices for daily
communications, web browsing, online shopping, electronic bank-
ing, etc. This however, leaves large amounts of sensitive personal/-
corporate data in these devices. To protect sensitive information,
all the major mobile operating systems have incorporated a certain
level of encryption [2, 25]. A broadly used encryption technique is
full disk encryption (FDE), which has been available on Android
phones since version 3.0 [35]. FDE can defend against a passive
attacker who tries to retrieve sensitive information from the data
storage. However, it cannot defend against an active attacker, who
can capture the device owner, and force the owner to disclose the
key used for decrypting the sensitive information. This applies to a
lot of real world scenarios. For example, a professional journalist
or human rights worker collects criminal evidence using his/her
mobile device in a region of oppression or con�ict, and stores the
information encrypted. However, when he/she tries to cross the bor-
der, the boarder inspector may notice the existence of the encrypted
data and may coerce him/her to disclose the decryption key. We
need a technique which can protect the sensitive data even when
the data owner faces such a coercive attack. This is a necessary
technique for protecting the sensitive data as well as the people
who possess them. In 2012, a videographer smuggled evidence of
human rights violations out of Syria. Due to lack of e�ective data
protection mechanisms, he instead hid a MicroSD card in a wound
on his arm [27, 31].

Plausibly Deniable Encryption (PDE) has been proposed to de-
fend against adversaries who can coerce users into revealing the
encrypted sensitive content (e.g., by forcing the victims to disclose
the keys for decryption). The high-level idea of PDE is: the original
sensitive data are encrypted into a cipher-text in such a way that,
when using a decoy key, a di�erent reasonable and innocuous plain-
text will be generated; only when using the true key, the original
sensitive data will be disclosed. Upon being coerced, the victim can
simply disclose the decoy key to avoid being tortured. Leveraging
the concept of PDE, a variety of deniable storage systems have been
proposed for PC platforms, e.g., TrueCrypt [38], Rubberhose [16],
HIVE [3], Gracewipe [45], Steganographic File Systems [1, 23, 30],
etc.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2217



However, achieving deniability in modern mobile platforms is
much more challenging than in PC platforms because: First, com-
pared to a PC platform, a mobile platform is usually equipped with
limited computational resources and sensitive to energy consump-
tion. In other words, the PDE designs for mobile platforms have
much higher requirements in e�ciency and energy e�ectiveness.
Therefore, the existing PDE systems [1, 3, 23, 30, 38] built for PC
platforms are not immediately applicable to the mobile platforms
due to their large overhead. Second, modern mobile devices usually
use NAND �ash as storage media. Flash storage products like SD
cards, MicroSD cards, and eMMC cards have dominated the stor-
age of mobile devices. Compared to mechanical disks which are
used broadly in the PC platforms, �ash memory has signi�cantly
di�erent nature: 1) Flash memory is update unfriendly. A �ash cell
cannot be over-written before it has been erased. However, the
erase can only be performed on the basis of a large region (i.e.,
a 128-KB block); 2) Flash memory is vulnerable to wear. A �ash
cell can only be programmed/erased for a limited number of times
before the wear begins to deteriorate its integrity.

Although deniable storage systems have also been proposed
for mobile platforms (e.g., Mobi�age [33, 34], Mobihydra [44], Mo-
bipluto [6], DEFY [31], etc.), most of the existing PDE systems
for mobile devices [6, 33, 34, 44], unfortunately, neglect the above
unique nature of the underlying �ash memory and view the �ash
storage as block devices. This can simplify the PDE designs, but
the resulting PDE systems may su�er from deniability compro-
mises in the underlying �ash storage, which usually incorporates
special techniques to accommodate �ash memory’s unique nature
(concrete attacks are shown in Sec. 3.1). When deniability is (par-
tially) compromised, the concrete attacks we will present shortly
in Sec. 3.1 show that the attacker can �gure out the existence of
hidden sensitive data.

DEFY [31] is till now the sole PDE system which works with
�ash memory to achieve deniability while being able to accommo-
date the special nature of �ash memory. However, DEFY su�ers
from several de�ciencies. First, DEFY heavily relies on the special
properties provided by a speci�c �ash �le system (i.e., YAFFS2),
which signi�cantly limits its broad applications in mobile devices.
Due to DEFY’s strong coupling with YAFFS2, it cannot be applied
to other �ash �le systems including F2FS and UBIFS. In addition, an
overwhelming majority of mobile devices nowadays do not allow
applications to directly access the raw NAND �ash, which signi�-
cantly inhibits the deployment of �ash �le systems. Instead, many
mobile devices (e.g., Android phones from Samsung, LG, HTC and
Motorola) use �ash memory in the form of a �ash-based block
device, by introducing a new �ash translation layer (FTL) to trans-
parently handle the special nature of �ash memory and exposing a
block-based access interface. DEFY unfortunately is incompatible
with this popular �ash storage architecture. Second, DEFY cannot
completely eliminate deniability compromises in �ash memory.
This is because, DEFY relies on disabling active garbage collection
in a lower security level to avoid overwriting the hidden sensitive
data in a higher security level. This however, opens a door for the
attacker to compromise deniability (Sec. 3.2).

In this paper, we present DEFTL, a Deniability Enabling Flash
Translation Layer for mobile devices which use �ash-based block

devices as storage. DEFTL is the �rst design that incorporates PDE
in FTL, a pervasively deployed “translation layer” which stays be-
tween the physical �ash layer and the �le system layer in literally
all the mobile computing devices. Our design relies on several key
insights:

First, having observed that most of the existing PDE systems
incorporate deniability in the upper layers (e.g., �le system layer [1,
23, 30] and block layer [3, 6, 33, 34, 38, 44]) and may su�er from
deniability compromises in the lower layers (e.g., storage medium
layer), we move the PDE design downwards. This is especially
necessary for mobile devices equipped with �ash storage, because
the adversary can have access to the raw �ash, and obtain a view
di�erent from the PDE systems working on the upper layers. Such a
di�erent view may allow the adversary to observe those unexpected
“traces” of the sensitive data (due to handling the special nature
of �ash memory), whose existence need to be denied. By moving
PDE to the lower layers, we make it possible to eliminate those
deniability compromises in the raw �ash, since we can now have the
same view as the adversary. In addition, our design is compatible
with �ash-based block devices, the most popular form of �ash
storage which exposes a block access interface. This can allow
any block-based �le systems (e.g., EXT4, FAT32) to be deployed,
achieving �le system friendliness.

Second, we incorporate two modes, a public mode and a PDE
mode, into FTL, and carefully isolate the two modes to achieve
deniability. When operating in the public mode, the user can store
and process public non-sensitive data which can be known by the
adversary; when operating in the PDE mode, the user can store and
process sensitive data which should be hidden and their existence
should be able to be denied. The deniability is achieved by using the
data (and their behavior) in the public mode to deny the data (and
their behavior) in the PDE mode. To avoid deniability compromises,
the public mode should not have any knowledge on the existence
of the PDE mode. This however, will lead to an over-write issue,
in which the data written in the public mode may over-write the
data written in the PDE mode. To address the over-write issue,
we carefully modify the block allocation and garbage collection
strategies in FTL such that the two modes can be “stealthily” isolated
without being known by the adversary.
Contributions. Our contributions are summarized in the follow-
ing:

• We introduce the �rst concrete attacks on the existing PDE
systems for mobile devices. Our attacks can successfully
compromise deniability provided by all the prior mobile
PDE systems.

• Eliminating deniability compromises from �ash-based block
devices is an open problem which has not been addressed
in prior work. DEFTL is the �rst design which directly
incorporates deniability in the �ash translation layer, and
is able to eliminate the deniability compromises present
in �ash storage. In addition, the inherent over-write issue
of PDE systems can be mitigated by modifying the block
allocation and the garbage collection such that the public
non-sensitive data and the hidden sensitive data can be
“stealthily” isolated.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2218



• We provide security analysis and a proof-of-concept im-
plementation of DEFTL using an open source NAND �ash
controller framework. Compared to conventional encryp-
tion (e.g., FDE) in �ash-based block devices, our DEFTL
can achieve deniability with a small additional overhead.

2 BACKGROUND
2.1 Flash Memory
Flash memory is a non-volatile storage medium which can be elec-
trically erased and reprogrammed. Compared to traditional mechan-
ical drives, �ash memory can achieve much higher I/O throughput
with much lower power consumption, and thus gains popularity in
the modern computing devices. The �ash memory family contains
NAND-type and NOR-type �ash. In this work, we focus on NAND
�ash, which has been used extensively in popular �ash storage
media including eMMC cards, SD cards, MicroSD cards, SSD drives
and USB sticks.

NAND �ash stores information using an array of memory cells.
Di�erent from mechanical disks, NAND �ash has several unique
characteristics. First, it has an erase-before-write design. Speci�cally,
overwriting the same �ash cell is not feasible before an erasure
is performed over it. Note that a block erasure will re-set all the
bits in the entire block to “1” bits. Second, the unit for a read/pro-
gram operation is a page (which can be 512 bytes, 2KB, or 4KB),
but the unit for an erase operation is a block, which consists of
multiple (typically 32, 64, or 128) pages. Therefore, overwriting
a page requires �rst erasing the entire encompassing block. If a
few other pages of this block are �lled with valid data, erasing
this block requires copying the valid data elsewhere and writing
them back after the erase operation is performed, leading to sig-
ni�cant write ampli�cation. To mitigate write ampli�cation, �ash
usually adopts an out-of-place update strategy [17], in which when
a logical disk region is overwritten, it is simply re-mapped to a
new empty page without erasing the original invalid page. Third,
each �ash block has a �nite number (e.g., 10K) of program-erase
(P/E) cycles. In other words, a �ash block will be worn out if the
number of programs/erases performed over it exceeds a certain
threshold. Therefore, wear leveling is required to distribute pro-
grammings/erasures evenly across the entire �ash to prolong its
lifetime.

2.2 Flash Translation Layer (FTL)
There are two common options of using NAND Flash. The �rst
option is to build a �le system speci�cally for raw NAND Flash (i.e.,
a �ash �le system). Popular �ash �le systems include YAFFS [42],
UBIFS [26] and F2FS [21]. However, a �ash �le system usually
requires directly accessing the raw �ash memory, which is unfortu-
nately rarely supported by modern mobile devices. For example, the
most recent Android phones like Nexus 6P do not allow a direct ac-
cess to the raw �ash; only the old versions of Android phones (e.g.,
Nexus One and Nexus S) can allow such an access [7]. Therefore,
�ash �le systems are becoming less and less popular.

The second option is to emulate the �ash medium as a block
device by exposing a block-based access interface, such that the
�ash medium can be compatible with traditional block-based �le

File System

I/O with LBA

NAND Flash 

I/O with PBA

Address 
Translation

Garbage 
Collection

Wear 
Leveling

Bad Block 
Management

FTL

Flash-based block device

Figure 1: The architecture of a �ash-based block device

systems (e.g., EXT4 and FAT32). All the popular �ash storage prod-
ucts (e.g., eMMC cards, SD cards, MicroSD card, SSD drives and
USB sticks) are manufactured following this manner. In this option,
a piece of special �ash �rmware, Flash Translation Layer (FTL), is
introduced between the �le system and the raw NAND �ash to
transparently handle the unique nature of NAND �ash. In this work,
we mainly consider �ash storage devices which are exposed as block
devices using FTL. We call this type of �ash devices “�ash-based
block devices”. Figure 1 shows the architecture of a �ash-based
block device. In general, FTL implements four key functions: ad-
dress translation, garbage collection, wear leveling and bad block
management.
Address translation. To reduce write ampli�cation, �ash storage
usually implements an out-of-place update mechanism, in which to
overwrite data stored on a page, the new data will be programmed
to a fresh empty page, while the page storing the stale data will be
simply marked as invalid. Therefore, the location of valid data may
change over time, which requires maintaining mappings between
the addresses (i.e., Logical Block Address, or LBA) from upper layer
and the actual �ash addresses (Physical Block Address, or PBA).
FTL manages such mappings and provides a block-based access
interface.
Garbage collection. The out-of-place update mechanism used in
�ash may result in a large number of invalid pages/blocks over time,
which need to be reclaimed. This is usually handled by garbage
collection. To reclaim blocks, garbage collection usually periodi-
cally performs the following operations [37]: 1) select those blocks
satisfying certain reclaim criteria as victim blocks; 2) copy the valid
data stored in the victim blocks to free blocks, and update the
corresponding mappings; 3) erase the victim blocks.
Wear leveling. Each �ash block can only be programmed/erased
for a limited number of times (i.e., a limited P/E cycles). To prolong
the lifetime of �ash memory, FTL usually performs wear leveling
by distributing programmings/erasures evenly among the entire
�ash. The existing wear leveling strategies mainly include dynamic
and static wear leveling. Dynamic wear leveling always writes data
to those blocks which have less P/E cycles. Comparatively, static
wear leveling will periodically swap hot and cold blocks [43].
Bad block management. As �ash cells degrade over time, �ash
memory will eventually develop blocks that are not able to reliably
store data. Those blocks should be marked as “bad” and avoid being
used to store data. During manufacturing, the entire �ash blocks

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2219



will be scanned and an initial table of bad blocks will be generated.
During run time, the FTL will monitor the newly generated bad
blocks and add them to the bad block table [36].

2.3 Hidden Volume Technique
The hidden volume technique can be used to defend against a coer-
cive adversary, and is implemented in popular encryption software
like VeraCrypt [10] and TrueCrypt [38]. It works as follows: Two
volumes, a public volume and a hidden volume, are created on
the disk. The public volume is encrypted using a decoy key and is
placed across the entire disk. The hidden volume is encrypted using
a secret true key and is placed towards the end of the disk from
a secret o�set. The sensitive data being protected will be stored
in the hidden volume. Note that the entire disk will be �lled with
random data initially. Upon being coerced by the adversary, to
protect the true key, the victim can simply disclose the decoy key.
Using the decoy key, the adversary can decrypt the public volume,
and is not able to detect the existence of the hidden volume, since
he/she cannot di�erentiate the encrypted hidden volume from the
randomness being �lled initially.

A signi�cant issue for the hidden volume technique is, the data
written to the public volume may over-write the data stored in
the hidden volume, since the existence of the hidden volume is
unknown to the system which manages the public volume. This
work achieves deniability in mobile devices equipped with �ash-
based block devices by: 1) adapting the hidden volume technique
to �ash translation layer; 2) mitigating the over-write issue by
carefully tuning block allocation and garbage collection in FTL. In
the remainder of this paper, we use a hidden volume-based PDE
system to represent a PDE system which relies on the hidden volume
technique to achieve deniability.

3 ATTACK SCENARIOS
In this section, we provide concrete attack scenarios, in which
the adversary is able to compromise deniability provided by prior
PDE systems for mobile devices [6, 31, 33, 34, 44]. For each attack
scenario, we assume the adversary is able to obtain the physical
image of the raw NAND �ash [4].

3.1 Attacking the Hidden Volume-based PDE
Systems for Mobile Devices

When attacking a hidden volume-based PDE system for mobile
devices equipped with �ash-based block devices, the adversary can
identify three types of �ash blocks (Figure 2) by having access to
the raw NAND �ash:

• Type-I: blocks �lled with random data.
• Type-II: blocks with a few pages �lled with random data

followed by pages �lled with all “1” bits.
• Type-III: blocks �lled with all “1” bits.

Note that a block erasure in �ash will re-set the entire block to all “1”
bits (Sec. 2.1). Thus, the type-III blocks are those which have been
erased to prepare for new writing requests, which do not contain
any valid data. In the following, we show that by analyzing the
type-I and type-II blocks, the adversary may be able to compromise

A page

Type-I Type-II

Random data

Random data

...

Random data

Random data

Random data

Random data

...

All “1”bits

All “1”bits

All “1”bits

All “1”bits

...

All “1”bits

All “1”bits

Type-III

A block

Figure 2: Three types of blocks in the �ash physical image
(Type-I: all random data; Type-II: a few random data fol-
lowed by all “1” bits; Type-III: all “1” bits)

the deniability provided by the existing mobile PDE systems [6, 33,
34, 44].

3.1.1 A�ack 1: Deniability Compromises from Analyzing
Type-I and Type-II Blocks. In hidden volume technique, any data
that cannot be decrypted by the decoy key (i.e., the key for decrypt-
ing public volume) will be interpreted as random data to deny the
existence of the hidden volume. However, in a hidden volume-based
PDE system for mobile devices, by observing the physical image of
raw �ash, the adversary may be able to identify a few type-I and
type-II blocks which appear to store random data but actually store
hidden sensitive data, leading to compromise of deniability.
Deniability compromises from the type-I blocks. The adver-
sary tries to decrypt the data in all the type-I blocks using the decoy
key. Without the existence of hidden volume, the adversary should
only obtain two types of decryption outcomes: 1) all the data in a
type-I block can be successfully decrypted, i.e., this is a type-I block
�lled with non-sensitive public data; 2) all the data in a type-I block
cannot be decrypted, i.e., this is a type-I block storing random data.

However, the existing hidden volume-based PDE systems for
mobile devices access the �ash-based block device via a block access
interface, and are thus not able to control the block allocation in
FTL. As a result, the public volume and the hidden volume may
share a common �ash block (e.g., after having erased a block and
used a portion of the pages in this block, the public volume is
unmounted and the hidden volume is mounted, and the empty pages
in this block will be used by the sensitive data stored to the hidden
volume). Therefore, if the adversary detects a few “special” type-I
blocks, in which the data stored at a few pages can be decrypted
into meaningful public data, and the data stored at the remaining
pages cannot be decrypted (i.e., the data stored at them are purely
randomness), he/she may suspect the existence of hidden volume,
leading to compromise of deniability.
Deniability compromises from the type-II blocks. The adver-
sary tries to decrypt all the data stored in the type-II blocks using
the decoy key. Without the existence of hidden volume, the adver-
sary should be able to obtain only one type of decryption outcome:
all the random data stored in a type-II block can be successfully de-
crypted into non-sensitive public data. This is because, without the
existence of hidden volume, a type-II block can only be generated

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2220



under the following circumstance: when data are written to the
public volume, due to the erase-before-write design of �ash storage,
a �ash block needs to be �rst erased to all “1” bits. If the amount of
data written to this block is smaller than the block size, they will
only occupy a few pages in this block. Therefore, if the adversary
detects a few “special” type-II blocks, in which the random data
cannot be decrypted into meaningful public data using the decoy
key, he/she may suspect the existence of hidden volume, leading to
compromise of deniability.

3.1.2 A�ack 2: Deniability Compromises from Duplicate
Random Data. All the hidden volume-based PDE systems for mo-
bile devices [6, 33, 34, 44] deny the hidden sensitive data by random
data, which are cryptographically secure and are initially �lled in
the entire �ash medium. In general, the random data �lled in �ash
pages will not be duplicate with each other due to their randomness
nature. However, with the presence and activities of the hidden vol-
ume, the adversary may be able to �nd out duplicate random data
among �ash pages in the prior PDE systems, leading to compromise
of deniability.
Deniability compromises introduced by garbage collection.
Upon garbage collection, the data stored at the valid pages of a
victim block will be copied to a new free block, and this victim
block will be erased. However, for performance consideration, the
victim blocks are usually not erased immediately [8, 18]. Therefore,
duplicate data may appear in both the victim blocks which have
not yet been erased and the new blocks used to store the valid data.
When such a garbage collection is used to reclaim the data stored
in the hidden volume, the adversary may be able to detect duplicate
random data in di�erent �ash blocks, though he/she does not have
any knowledge of the existence of the hidden volume. This will
lead to the compromise of deniability.
Deniability compromises introduced by bad block manage-
ment. A �ash block will be considered as “bad” due to the perma-
nent failure of one of its pages, even though all the other pages in
it still function correctly. When a block is detected as “bad”, all the
valid data being stored will be copied to a new free block. However,
most of the bad block management schemes [14, 24] simply mark
the block as bad, without removing the valid data stored in it. When
such a bad block management scheme is used in the hidden volume,
the adversary may be able to detect duplicate random data between
a normal block and a bad block, without knowing the existence of
the hidden volume. This will also lead to compromise of deniability.

3.1.3 Making A�acks Easier: The Decreasing Amount of
Random Data. The existing hidden volume-based PDE systems
for mobile devices try to hide sensitive data in the randomness being
�lled to the entire storage medium initially (Sec. 2.3). This implies
that the system should maintain an enough amount of randomness
over time. However, we show in the following that the expected
amount of randomness may not be maintained.
Unable to completely �ll the entire �ash medium with ran-
domness during initialization.During initialization, the existing
hidden volume-based PDE systems [6, 33, 34, 44] try to �ll the entire
storage medium with randomness. To achieve this, write requests
will be passed to the FTL via a block-based access interface, inform-
ing the FTL to �ll the LBAs with random data. However, due to

the internal complexity of FTL, over-writing all the LBAs is not
able to ensure that all the physical �ash blocks will be �lled with
randomness [15, 41].
Block erasure decreases randomness. In a hidden volume-based
PDE system, when new data are written to the public volume, they
will over-write the corresponding disk locations, and the remaining
disk locations are still �lled with randomness. Flash storage, how-
ever, does not allow an over-write operation before a block erasure
has been performed. In other words, before any data can be written,
the corresponding �ash block (originally �lled with randomness)
will be erased with all “1” bits. If this block is not completely �lled
by the new data, it will create a few pages in this block, which
are �lled with all “1” bits, rather than randomness. Additionally,
when data are updated/deleted, the corresponding �ash blocks will
be erased with all “1” bits, rather than randomness. The existing
PDE systems for mobile devices [6, 33, 34, 44] unfortunately only
operate in the block layer, and thus are not able to re-�ll those
pages which do not hold valid data with randomness.

3.1.4 Summary of The A�acks on The Hidden Volume-
based PDE systems. A common issue for all the existing hidden
volume-based PDE systems for mobile devices is that they are
incorporated into the block device layer, which can only allow them
to access the �ash memory via a block-based access interface. In
other words, they are not able to handle the deniability compromises
in �ash memory, by either controlling the block allocation strategy
(Attack 1 described in Sec. 3.1.1 is thus possible), or manipulating
garbage collection and bad block management (Attack 2 described
in Sec. 3.1.2 is thus possible). This observation motivates us to push
the PDE design to �ash translation layer (FTL) to eliminate those
deniability compromises.

3.2 Attacking DEFY
DEFY [31] is till now the sole PDE system which directly works
with �ash memory to achieve deniability. It heavily relies on the
properties o�ered by �ash �le system YAFFS2. To achieve PDE,
DEFY introduces multiple security levels, and the lower security
levels will not have any knowledge on the existence of the higher
security levels. Upon facing coercive attack, the victim can use the
data/activities at the lower security levels to deny the data/activities
at the higher security levels. However, the data from the lower
security levels may overwrite the data from the higher security
levels. To mitigate this issue, DEFY disables garbage collection at
the lower security levels.

As the adversary is able to enter a lower security level, he/she
can compromise the deniability o�ered by DEFY as follows: The
adversary copies the device’s data elsewhere, deletes them from
the device, and writes the data back to the device. After repeating
the aforementioned operations a few times, he/she will �nd that no
more data are allowed to be written to the device, even though there
is still a large amount of empty space. This is because, by disabling
garbage collection in this (lower) security level, no invalid space
can be reclaimed. This provides the adversary a clear indication of
the existence of deniability.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2221



4 MODEL AND ASSUMPTIONS
4.1 System Model
We mainly consider mobile computing devices which use �ash-
based block devices (e.g., eMMC cards, SD cards, and MicroSD
cards) as storage media. Such devices are pervasive nowadays. For
example, a majority of smart phones (e.g., Android phones, iPhones,
Windows phones) and tablets use eMMC cards as internal storage,
and MicroSD cards as external storage. We also consider other
computing devices (e.g., laptops) which are equipped with SSDs.

4.2 Adversarial Model
We consider a computationally bounded adversary who can capture
a victim device equipped with �ash-based block device. The adver-
sary can obtain root privilege of the device, and have a full control
over the device’s internal and external storage. In addition, the
adversary can coerce (e.g., by torture) the device owner to disclose
the decryption key. Note that as the adversary is in possession of
the victim device, he/she is able to obtain a full snapshot of the
storage medium. This includes the physical image of the raw NAND
�ash, obtainable by forensic data recovery tools [4]. We call the
aforementioned adversary a “single-snapshot” adversary. We do
not consider an adversary who can periodically obtain a snapshot of
the storage medium from the victim device by monitoring the device
unbeknownst to the victim (i.e., a multiple-snapshot adversary).

4.3 Assumptions
Our design relies on multiple assumptions, which are also required
in the prior PDE systems for mobile devices [6, 33, 34, 44]. The
assumptions are summarized in the following:

• The adversary will know the design of DEFTL. However,
he/she does not have any knowledge on the keys and pass-
words of the PDE mode.
• The adversary will stop coercing the device’s owner once

he/she is convinced that the decryption keys have been
revealed.

• The adversary cannot capture a device working in the
PDE mode or after a crash of the PDE mode. Otherwise,
he/she can trivially retrieve the sensitive data or detect the
existence of PDE.

• The operating system, bootloader, baseband OS, and �ash
�rmware are all malware-free. In addition, the adversary
will not be able to perform reverse engineering over the
bootloader and the �ash �rmware, since PDE always re-
quires incorporating addition code into those components
and performing reverse engineering will unavoidably lead
to compromise of deniability.

5 DEFTL DESIGN
In this section, we present DEFTL, the �rst design that enables
plausible deniability in Flash Translation Layer.

5.1 DEFTL Overview
In general, to achieve deniability, we should answer two key ques-
tions as follows:

Question 1: How to prevent the sensitive data from being leaked to
a coercive adversary?

Intuitively, we can hide the sensitive data within the public non-
sensitive data, and use the public data to deny the existence of
hidden data. Speci�cally, any state/behavior of the hidden data
can be interpreted as the state/behavior of the public data. We
adapt the hidden volume technique (Sec. 2.3) to FTL to achieve
deniability. Speci�cally, we introduce two volumes, a public volume
and a hidden volume. The public volume will occupy the entire
�ash medium, and the hidden volume is stored stealthily among
the public volume. All the public non-sensitive data will be stored
in the public volume, which will be encrypted by a decoy key. All
the sensitive data will be stored in the hidden volume, which will
be encrypted by a true key. Correspondingly, we have two modes, a
public mode and a PDE mode. The public mode refers to the system
which manages the public volume, while the PDE mode refers to
the system which manages the hidden volume. The entire �ash
medium will be �lled with cryptographically secure randomness
during initialization.

When implementing the hidden volume technique in FTL, we
incorporate a few additional strategies to avoid deniability com-
promises being resulted from handling the special nature of �ash
memory: First, to eliminate deniability compromises from type-I
blocks (Sec. 3.1.1), we enforce a special “no overlap block” policy,
such that the public and the hidden volume will not share �ash
blocks; Second, to eliminate deniability compromises from type-II
blocks (Sec. 3.1.1), we manipulate the type-II blocks belonging to the
hidden volume. Speci�cally, when unmounting the hidden volume,
we �ll the empty pages of type-II blocks with randomness, such
that each type-II block for the hidden volume will be indistinguish-
able from a block truly �lled with randomness. Third, to eliminate
deniability compromises from duplicate random data (Sec. 3.1.2),
we modify the garbage collection and the bad block management
in the PDE mode, such that the victim blocks and the bad blocks
will be erased immediately after the valid data stored on them have
been copied to other blocks. Last, to maintain an enough amount of
randomness (Sec. 3.1.3): during initialization, we �ll the entire �ash
medium with randomness by directly writing random data to all
the physical �ash blocks; when unmounting the hidden volume, we
�ll those empty pages (i.e., a page with all “1”s) with randomness.

Question 2: How to prevent the hidden sensitive data from being
over-written by the pubic non-sensitive data?

To avoid deniability compromises, the public mode should not
have any knowledge on the existence of the hidden volume. Oth-
erwise, the adversary may take advantage of this to compromise
deniability. However, without such knowledge, the data being writ-
ten to the public volume may over-write the data stored in the
hidden volume. A strategy which can mitigate this over-write issue
while being able to be compatible with the �ash translation layer,
is desired. Our strategy is, we “stealthily” isolate the public vol-
ume and the hidden volume by manipulating block allocation and
garbage collection in FTL as follows: First, we create a free block
pool which stores all the blocks available to be allocated to the new
data. When allocating blocks in the public mode, we always select
blocks from the head of the pool; when allocating blocks in the PDE
mode, we always select blocks from the tail of the pool; Second, we

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2222



manipulate the garbage collection (in both the public mode and the
PDE mode), such that blocks can be reclaimed frequently enough
to �ll the head of the free block pool and the public mode is less
likely to allocate blocks belonging to the hidden volume.

Following the insights described above, we design DEFTL to
enable deniability in �ash translation layer. In the remainder of this
section, we describe key components of DEFTL. We �rst introduce
block types and metadata used by DEFTL to manage the public and
the hidden volume. We then elaborate key operations in initializa-
tion, public mode and PDE mode. Finally, we introduce user steps
for using DEFTL.

5.2 Block Types and Metadata
Block types. DEFTL di�erentiates four types of �ash blocks: 1)
The blocks which do not store any valid public or hidden data.
These truly free blocks can be reclaimed by both the public and
the hidden volume. We call these blocks in state A. 2) The blocks
which do not store any valid public data, but store valid hidden
data. These blocks can be reclaimed in the public volume, since the
public mode should not have any knowledge on the existence of
the hidden data to avoid deniability compromises. We call these
blocks in state B. 3) The blocks which contain both the valid public
volume pages (i.e., the pages which store valid public data) and the
invalid public volume pages (i.e., the pages which store obsolete
public data). We call these blocks in state C. 4) The blocks which
only contain valid public volume pages. We call these blocks in
state D.
Metadata. To manage both the public and the hidden volume,
DEFTL maintains a few metadata:

• Mapping table. To provide a block-based access interface
to the external entity (e.g., the �le system), every logical
block address (LBA) should be mapped to a physical �ash
address. In DEFTL, we maintain a mapping table for each
volume. The external entity like the �le system can access
either the public volume or the hidden volume, and each
volume is mapped to a set of �ash blocks transparently by
FTL using the corresponding mapping table. Note that the
mapping table for the hidden volume is stored encrypted
(using the true key) in a few �ash blocks (see Sec. 5.5),
such that those blocks are indistinguishable from other
blocks truly �lled with randomness. This is to prevent the
adversary from identifying the existence of the hidden
volume mapping table without the true key.

• Dirty block table. Both block allocation and the selection
of the victim blocks during garbage collection are based
on the number of valid/invalid pages in each block [20].
Therefore, for each volume, we maintain a dirty block table,
which keeps track of the number of valid pages for each
block belonging to this volume. Since the hidden volume
should not use those blocks which have been occupied
by the data written to the public volume, we maintain a
separate dirty block table for the hidden volume, which
includes all the free blocks (blocks in both state A and B)
in the public volume. Note that the dirty block table for the
hidden volume will be encrypted (using the true key) and
stored together with the hidden volume mapping table.

• Other metadata. We also maintain other essential meta-
data shared by both volumes, e.g., a bad block table (which
keeps track of the bad blocks), a root table (which keeps
track of the location of the metadata for public volume),
an erasure count table (which keeps track of the erasure
count of each �ash block for wear leveling purpose).

5.3 Initialization
During initialization, DEFTL �rst �lls the entire �ash medium with
random data, and then initializes the public and the hidden volume.
Filling the entire �ash with randomness. A fundamental re-
quirement for a hidden volume-based PDE (Sec. 2.3) is that the
entire storage medium must be �lled with cryptographically secure
random data, which will be used to deny the existence of hidden
sensitive data. However, all the existing hidden volume-based PDE
schemes for mobile devices [6, 33, 34, 44] can only �ll the �ash
medium with randomness using a block-based access interface.
This however, is not able to ensure that all the physical �ash blocks
will be �lled with randomness (Sec. 3.1.3). DEFTL works in the FTL
layer and can have direct access to the raw �ash. Therefore, we can
simply �ll each physical �ash block with randomness, which can
be generated by taking advantage of random telegraph noise [40].
Initializing the public and the hidden volume. We create a
public volume across the entire �ash, to store all the public non-
sensitive data. The corresponding public volume metadata (i.e., the
mapping table and the dirty block table) will be encrypted using
the decoy key and stored in a few �ash blocks, and this location
information will be kept in the root table. The root table, the bad
block table, and the erasure count table will be stored in the �ash
blocks reserved at the beginning of the �ash medium. The mapping
table is empty and can be �lled with “0” initially, and the dirty
block table should include all the �ash blocks except the reserved
blocks. Note that the dirty block table will organize the blocks
according to the count of valid pages in each block in an increasing
order. The entire public volume will be encrypted using the decoy
key. A portion of �ash blocks are used to create a hidden volume,
which will be encrypted using the true key. The corresponding
hidden volume metadata (i.e., the mapping table and the dirty block
table, which are empty and can be �lled with “0” initially) will be
encrypted by the true key and stored in a few �ash blocks (see
Sec. 5.5) belonging to the hidden volume. Without obtaining the
true key, the adversary is not able to identify the existence of the
hidden volume and its metadata since they cannot be di�erentiated
from the randomness �lled by DEFTL. A storage layout of DEFTL
is shown in Figure 3.

5.4 Public Mode
The public mode is used to manage the public volume, which stores
the regular non-sensitive data that can be disclosed to the adver-
sary (i.e., public data). In the following, we elaborate several key
operations in this mode, including public volume mounting, block
allocation, and garbage collection. These operations incorporate our
design considerations for deniability purpose. Note that we neglect
other regular operations (e.g., bad block management, public block
unmounting), since no special designs need to be incorporated to
them to achieve deniability.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2223



A flash 
block

Reserved blocks

Public volume and its metadata 
(encrypted with the decoy key)

Hidden volume and its metadata 
(encrypted with the true key)

Figure 3: A storage layout of DEFTL

Mounting the public volume. The public volume is encrypted
by a decoy key, which can be derived from a decoy password using
a key derivation function (e.g., PBKDF2 [19]). During booting, the
user enters the decoy password to activate the public mode. Using
the decoy password, DEFTL can derive the decoy key and use the
decoy key to decrypt the public volume metadata, which can be
localized by reading the root table. If the password is the correct
decoy password, the decryption will be successful1; otherwise, the
system aborts from mounting the public volume. Using the mapping
table of the public volume, the blocks for the public volume can
be localized, and the entire public volume will be decrypted and
mounted. Note that during this mounting process, all the �ash
blocks which store data/metadata of the hidden volume cannot
be localized and decrypted. This can prevent the adversary from
identifying the existence of the hidden volume. In addition, from
the view of upper layer, the public volume appears as a regular
block device, which can be used to deploy any block-based �le
systems (e.g., EXT4, FAT32). This �le system friendliness [6] is an
“unexpected” bene�t of DEFTL.
Block allocation. In the public mode, DEFTL allocates �ash blocks
for the new writes according to the public volume dirty block ta-
ble. Note that the dirty block table stores the count of valid pages
for each �ash block, and organizes the blocks according to their
counts in an increasing order. When new write requests have been
received and new blocks need to be allocated, DEFTL selects the
free blocks from the head of the dirty block table (Figure 4). By
smartly manipulating the dirty block table of the public volume,
DEFTL ensures that it is more likely the blocks in state A will be
allocated (see Sec. 5.5), rather than the blocks in state B, which store
the hidden sensitive data. A free block being allocated needs to be
erased if it has not yet been erased before.

As it is shown in Figure 5, the free blocks being allocated will be
used to store valid public data, turning to state D (arrow 1 in Fig-
ure 5). The blocks in state D may then be updated/deleted, turning
to state C (arrow 2 in Figure 5).
Garbage collection. In the public mode, both the blocks in state
A and the blocks in state B are viewed as free blocks and can be
allocated for storing new data. In other words, once the blocks in
state A have been completely used, the blocks in state B will be
allocated, leading to data lost in the hidden volume. It seems that
the over-write issue cannot be completely addressed for the hidden

1This can be easily veri�ed by embedding a few known symbols at the beginning of
the metadata.

C DA,B

Block allocation

Garbage collection

Figure 4: The dirty block table of the public volume

1  (block allocation)

C 

（valid pages and 

invalid pages）

D 
(all valid pages)

A,B
 (no valid page)

2 
 (data updated/deleted)

3 
 (g

ar
bag

e 
co

lle
ct

io
n)

Figure 5: Block state transition in the public mode

volume-based PDEs [6, 33, 34, 44], since the hidden volume is part
of the public volume. DEFTL further mitigates this issue by tuning
the garbage collection strategy. Speci�cally, DEFTL performs an
active garbage collection over those blocks in state C to reclaim the
space occupied by the invalid pages. When the number of invalid
pages in a block in state C reaches a certain threshold, DEFTL will
copy the valid data from this block to a block in state D. After all
the pages in this block are invalidated, it will turn to state A (arrow
3 of Figure 5). Correspondingly, it will be relocated to the head of
dirty block table (Figure 4).

5.5 PDE Mode
The PDE mode is used to manage the hidden volume, which stores
the sensitive data whose existence needs to be denied. In the fol-
lowing, we elaborate several key operations in this mode, including
hidden volume mounting/unmounting, block allocation, garbage
collection, and bad block management. These operations incorpo-
rate our design considerations in the PDE mode for deniability
purpose.

Before elaborating di�erent operations, we �rst answer a re-
mained question about where to store the hidden volume metadata
(including both the mapping table and the dirty block table). Two
design concerns are: 1) they will not (or very unlikely) be over-
written by the public data; and 2) they can be localized in the PDE
mode. We choose to store them at the last several free blocks in
the dirty block table of the public volume. Note that in the public
mode, the free blocks include blocks in both state A and B. This
solution can address the aforementioned concerns, because: First, it
is very unlikely that the public data will over-write them since the
public mode allocates free blocks from the head of the dirty block
table. Second, they can be localized in the PDE mode by reading the
public volume metadata. Although the adversary may also be able
to localize them. Without the true key, he/she will not be able to
decrypt the blocks storing those metadata, and cannot di�erentiate
them from the blocks full of randomness.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2224



B2 B1A

Block allocation

Garbage collection

Figure 6: The dirty block table of the hidden volume

Mounting the hidden volume. Hidden volume is encrypted with
a true key, which is derived from a true password using a key
derivation function (e.g., PBKDF2 [19]. During booting, the user
can enter the true password to activate PDE mode. Using the true
password, DEFTL can derive the true key. DEFTL further localizes
the hidden volume metadata, and decrypts them using the true key.
If the decryption is successful (refer to Sec. 5.4 for the approach
about how to check whether the decryption is successful or not),
the true key is correct and the hidden volume can be mounted.
Otherwise, the system aborts from mounting the hidden volume.
Using the mapping table of the hidden volume, the blocks storing
hidden sensitive data (i.e, the blocks in state B) will be localized,
and the entire hidden volume will be decrypted. Note that from
the view of upper layer, the hidden volume appears to be a regular
block device, which can be used to deploy any block-based �le
systems.
Block allocation. In the PDE mode, DEFTL allocates blocks ac-
cording to the hidden volume dirty block table. The dirty block
table stores the count of valid pages (i.e., the pages which store
valid hidden data) for the blocks in state A and B, and organizes
those blocks according to their counts in an increasing order. Note
that each time when mounting the hidden volume, DEFTL will
adjust the hidden volume dirty block table according to the public
volume dirty block table, such that the blocks in state A and B will
be exactly the same in both tables. When new sensitive data are
written and new blocks need to be allocated, DEFTL selects free
blocks from the dirty block table from the tail of the blocks in state
A (Figure 6). Excluding blocks in state C and D from the hidden
volume dirty block table is necessary, as it can prevent the hidden
data from over-writing the data stored in the public volume. When
a free block is allocated, it needs to be erased �rst if it has not yet
been erased before. When the new data have been written, the map-
ping table/dirty block table need to be updated correspondingly.
Especially for the dirty block table, the blocks should be always
organized according to the count of valid pages in each block in an
increasing order.

We further di�erentiate the blocks in state B into two sub-types:
B1 - the blocks which only contain valid hidden data; B2 - the blocks
which contain both valid and invalid hidden data. As it is shown in
Figure 7, the free blocks being allocated will be used to store valid
hidden data, turning to B1 (arrow 4 in Figure 7). The blocks in state
B1 may be updated/deleted, turning to B2 (arrow 5 in Figure 7).
Garbage collection. To ensure an enough amount of blocks in
state A, DEFTL needs to reclaim the space occupied by the invalid
pages from the blocks in state B2. This can be achieved by an active
garbage collection in the PDE mode. Speci�cally, when the number
of invalid pages in a B2 block reaches a certain threshold, DEFTL

A
 (truly free blocks)

B1
 (all valid pages)

B2
 (with invalid pages)

5 
 (data updated/deleted)

4  (
blo

ck
 a

llo
ca

tio
n) 6 (garbage collection)

Figure 7: Block state transition in the PDE mode

will copy the valid data from this block to a B1 block. After all the
valid pages in this victim block are reclaimed, it will turn to state A
(arrow 6 of Figure 7). Correspondingly in the dirty block table, it
will be relocated to the head of the blocks in state A (Figure 6). To
eliminate deniability compromises caused by the garbage collection
(Sec. 3.1.2), DEFTL erases the reclaimed block immediately.
Bad blockmanagement. When a �ash block is identi�ed as “bad”,
DEFTL will replace it using a free block. The valid data from this
bad block will be copied to the free block, and the mapping table
will be updated. To eliminate deniability compromises from bad
block management (Sec. 3.1.2), DEFTL will immediately erase this
bad block [39].
Unmounting the hidden volume. The PDE mode will create a
few blocks in state B, which are unknown to the public mode. There-
fore, the public mode may allocate those blocks to store data written
to the public volume. To reduce this probability, upon unmounting
the hidden volume, DEFTL will modify the dirty block table of the
public volume in the following manner: 1) keep the positions of
the blocks in state C and D unchanged; 2) relocate the positions
of the blocks in state A and B according to the dirty block table of
the hidden volume, so that they are exactly the same in both tables.
Adjusting the public volume dirty block table is to ensure that the
public mode will not use the blocks in state B until all the blocks in
state A have been used, signi�cantly reducing the chance of over-
writing. In addition, to avoid deniability compromises (Sec. 3.1.1),
DEFTL will �nd out those blocks in state B which have not yet been
fully used, and �ll the empty pages in those blocks with random
data. This can ensure that those blocks will be indistinguishable
from blocks truly �lled with randomness from the view of the pub-
lic mode. DEFTL also needs to �ll those empty pages (i.e., pages
with all “1” bits) in blocks of state A with randomness, to prevent
the amount of randomness from decreasing (Sec. 3.1.3).

5.6 User Steps
To activate the mobile device equipped with a �ash-based block
device, the user will enter either the decoy or the true password.
How to di�erentiate the decoy and the true password has been
well discussed in the existing hidden volume-based mobile PDE
systems [6, 33, 34, 44]. Note that the user can either memorize the
password, or use a smart card if the password is long and hard
to be memorized. When a password is entered, the bootloader
will inform DEFTL to boot into the corresponding mode. There
are a few reserved command block wrappers (CBW) in the SCSI
command [11], which can be used to pass the commands from the
upper layer to DEFTL.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2225



For regular daily use, the user enters the decoy password to
activate the public mode. When storing sensitive data, the user
quits the public mode (i.e., unmounts the public volume and logs
out), and enters the true password. A potential booting-time attack
which may compromise deniability was mitigated by adding dump
operations during password authentication [44]. Note that during
initialization, the user should �rst enter the public mode, initial-
ize the public volume metadata, and then enter the PDE mode to
initialize the hidden volume metadata. Once the user and his/her
mobile device is captured, the adversary will coerce him/her for
the secret being used to decrypt the device. At this point, the user
can disclose the decoy password to avoid being tortured. DEFTL
aims to ensure that by using the decoy password and the device
being captured, the adversary is not able to detect the existence of
the hidden sensitive data.

6 ANALYSIS AND DISCUSSION
6.1 Security Analysis
The hidden volume technique (Sec. 2.3) achieves deniability by
hiding an encrypted hidden volume (using a true key) among an
encrypted public volume (using a decoy key which can be disclosed
to the adversary). The encrypted hidden volume cannot be identi-
�ed since it cannot be di�erentiated from the randomness being
�lled initially. We show in the following that DEFTL can provide
deniability in the �ash medium layer comparable to the hidden
volume technique.

Theorem 6.1. Under a single-snapshot adversary, the deniability
provided by DEFTL in the �ash medium layer is comparable to the
hidden volume technique.

Proof. (sketch). when the adversary captures both the victim
and the mobile device, he/she coerces the victim, and the victim
discloses the decoy password. The adversary can attack DEFTL and
try to compromise deniability in three cases:

Case 1: The adversary obtains a snapshot of the raw �ash, and
performs forensic analysis over it. For hidden volume technique,
without using the decoy key, the adversary cannot learn more from
the storage state except random bits, if the output of the encryption
algorithm is random enough. For DEFTL, when performing the
aforementioned attack on the raw �ash, the adversary cannot learn
more except randomness and regular data without any deniability
indications. Random data include: 1) data encrypted using the decoy
key; and 2) data encrypted using the true key; and 3) randomness
�lled by DEFTL. Without using the decoy/true key, the encrypted
ciphertexts are indistinguishable from randomness if the output
of the encryption algorithm is random enough. The regular data
without any deniability indications include: 1) the system metadata
stored in the few reserved blocks at the beginning of the �ash
medium, which are regular metadata for any FTLs and clearly do
not contain any deniability indications; 2) a few empty pages with
all “1" bit pages due to block erasure, which is regular in a full
disk encryption over �ash, and also do not contain any deniability
indications. Therefore, under this attack, the adversary obtains an
equivalent storage state for both the hidden volume technique and
DEFTL in terms of deniability.

Case 2: Using the decoy password, the adversary enters the public
mode, decrypts the public data, and performs forensic analysis on
the raw �ash. Under this attack, the storage state (in raw �ash)
resulted from DEFTL is equivalent to that resulted from the hidden
volume technique. From the view of the adversary, the entire �ash
blocks are �lled with public data/metadata and randomness, which
logically form a volume which is equivalent to the public volume in
the hidden volume technique. The �ash blocks storing the hidden
sensitive data cannot be localized by the adversary since the hidden
volume metadata cannot be decrypted by the adversary. In addition,
the adversary cannot di�erentiate the encrypted hidden data from
randomness without the true key. Therefore, all the blocks for
hidden volume logically form a volume equivalent to the hidden
volume in the hidden volume technique.

Case 3: The adversary enters the public mode, and plays with it
to try to compromise deniability. Speci�cally, the adversary tries
to read/write/delete data in the public mode, and observes the
change of the storage state in the raw �ash. We show that by
performing this attack, the adversary will not gain any advantages
in detecting indications present in the raw �ash which can be used
to compromise deniability. Clearly, read operations will not create
any impact on the �ash state. Write operations will a�ect block
allocation and garbage collection, and then create impacts on the
�ash state. Delete operations will also create impacts on the �ash
state since it will a�ect garbage collection. However, since both
the block allocation and garbage collection in DEFTL follow the
design of a regular FTL without deniability, the adversary will not
be able to observe any “special” indications from the �ash state and
suspect the existence of PDE.

�

Theorem 6.1 con�rms that DEFTL is able to provide deniability
in the �ash medium layer. Considering that there are no deniability
compromises under the �ash medium layer2, we conclude that
DEFTL is secure.

6.2 Discussion
Wear leveling. In both the public mode and the PDE mode, wear
leveling will be triggered each time when the erasure count of a
block (we call it wear leveling victim block) being allocated exceeds
a certain threshold over the average erasure count. The wear lev-
eling will be performed as follows: 1) select a young block (i.e.,
a block with a small erasure count) from the blocks which store
valid data. These blocks correspond to the blocks in state C and
D in the public mode, and the blocks in state B in the PDE mode,
respectively; 2) copy the valid data stored in the young block to the
wear leveling victim block; 3) update the mapping table and the
dirty block table; 4) allocate this young block instead. The blocks
reserved at the beginning of the �ash medium will not have signi�-
cant wear leveling issue, because: �rst, the root table and the bad
block table will be updated rarely; second, the erasure count table
can be only updated during unmounting a volume by temporarily
storing/updating the erasure count information using RAM. Note

2The raw NAND �ash is the lowest layer in a �ash-based storage system we can access
at this point. The potential layer under the raw �ash is out of the scope of this paper.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2226



that a �ash-based block device is usually equipped with a certain
amount of built-in RAM [28, 29].
Encryption issues. As for encryption, DEFTL can integrate with
FDE technology. The encryption algorithm (e.g., AES-XTS) can
make the cipher output of data indistinguishable from random
data [33].
Defending against a multiple-snapshot adversary. DEFTL is
not able to defend against a multiple-snapshot adversary, who can
have periodical access to the storage medium of the victim device.
This is because, by comparing multiple snapshots, the adversary can
be able to detect unaccountable changes in the �ash storage state.
For example, a block located at the end of the free blocks in the dirty
block table should be unlikely used during a short period accord-
ing to the block allocation strategy in the public mode. However,
the adversary may observe changes on this block in a subsequent
snapshot (e.g., obtained in a few hours after the last snapshot) and
may suspect that it is used by the PDE mode. Defending against a
multiple-snapshot adversary is much more challenging, which will
be investigated in our future work.
P/E cycles increase. To prevent randomness from decreasing,
DEFTL �lls randomness to empty pages in the blocks in state A and
B, which will increase the P/E cycles of the blocks. The increased
P/E cycles can be eliminated by one-block-one-key policy, which
can only be implemented in FTL rather than block device layer.
By using this strategy, the attack described in Sec. 3.1.2 will not
happen, since the same data will be re-encrypted using a di�erent
key before being copied to another block. However, it will produce
a huge overhead in FTL by introducing additional key management
as well as data encryption/decryption.
System crash. We assume that the adversary cannot capture a
device after a crash of PDE mode, e.g., due to power loss. Otherwise,
the adversary can observe a non-deniable state, and compromise
deniability. For example, when the PDE mode is performing garbage
collection, the system crashes before the block being reclaimed has
been erased. By capturing the device at this point, the adversary is
able to observe that duplicate random data (the data encrypted by
the true key) exist at two di�erent blocks.

7 IMPLEMENTATION AND EVALUATION
7.1 Implementation
We implemented a prototype of DEFTL using OpenNFM [9], an
open source NAND �ash controller framework. Note that DEFTL
is applicable to any block-based �ash device using FTL, though we
use OpenNFM for our prototype implementation. To incorporate
DEFTL, we modi�ed OpenNFM to support two modes, a public
mode and a PDE mode. Each volume in these two modes maintains
a speci�c mapping table. We ported DEFTL to LPC-H3131 [22], a
development board equipped with 180 MHz ARM microcontroller,
512MB NAND �ash3, and 32MB SDRAM. The NAND �ash has
128KB block size and 2KB page size. The entire NAND �ash has

3The mobile devices like smart phones and smart watches today can have a few
gigabytes in storage, and 500MB may be a little small compared to the storage capacity
of those main-stream mobile devices. We choose LPC-H3131 due to two reasons: 1) it is
cost e�ective; 2) the main purpose of our evaluation is to assess the additional overhead
by incorporating deniability, which is not signi�cantly a�ected by the capacity of the
storage.

4, 096 erase blocks, and each block is composed of 64 pages. Each
mapping table is less than 576KB in size, as it contains less than
4, 096 ∗ 64 mappings, each of which can be represented by 18 bits.
Our encryption algorithm is instantiated using AES-XTS, while our
key derivation function is instantiated using PBKDF2 [19].

We benchmarked the original OpenNFM and di�erent modes of
DEFTL using �o [12] with the non-bu�ered I/O option. The �o is
run in a host computer with Intel i5 CPU at 3.30GHz, 4GB RAM,
and Windows 10 Pro 64-bit.

7.2 Performance Evaluation
DEFTL introduces a few additional strategies into the FTL to achieve
deniability. To �gure out how those strategies a�ect the perfor-
mance of regular FTL (i.e., does not provide deniability), we per-
form evaluation over three systems: 1) the default OpenNFM (no
deniability); 2) the public mode of DEFTL; and 3) the PDE mode
of DEFTL. Note that encryption/decryption will be performed in
the upper layer (e.g., �le system), rather than in FTL, since the
computational power in a �ash-based block device is limited4.
Throughput. To ensure an enough number of blocks in state A
such that data loss of hidden volume can be mitigated, DEFTL
adopts active garbage collection. If the number of blocks that con-
tain invalid pages (i.e., the blocks in either state C or B2) has reached
a threshold, DEFTL will trigger the garbage collection. We per-
formed multiple experiments by alerting the garbage collection
threshold, and compared the performance for the three systems.
The benchmark results for their read/write throughput are shown
in Figure 8 and 9. We observed that the reading (including both
sequential and random read) throughput of both the public and
the PDE mode of DEFTL are almost the same as OpenNFM. This is
because, DEFTL does not need to modify read operation to achieve
deniability. For write operation (including both sequential and ran-
dom write), when the garbage collection threshold is small (e.g., 16),
DEFTL slightly degrades in performance compared to OpenNFM.
However, when the garbage collection threshold is increased, the
performance will be improved. Potential reasons are:

a) To avoid blocking upcoming read/write requests for a long
time, DEFTL only triggers active garbage collection during the
system idle time. In this way, garbage collection will not signi�-
cantly a�ect normal user access. If and only if the following two
conditions are satis�ed: 1) the total number of free blocks (blocks
in state A and B) has decreased to a threshold, and 2) during the
uninterrupted writing operations of the system, DEFTL will trigger
the active garbage collection during system busy time. However, in
this case, the large number of available victim blocks and invalid
pages will help reduce the overhead (e.g., selecting victim blocks
and copying valid pages) of garbage collection. Therefore, DEFTL
will not signi�cantly decrease the write throughput.

b) OpenNFM will search allocatable blocks for write requests
only when they arrive. Comparatively, in DEFTL, we optimize the
block allocation strategy by preparing the free allocatable blocks for
upcoming write requests in advance. This helps decrease response

4If the �ash device is equipped with encryption hardware module, one may consider
to perform encryption/decryption in FTL, which only slightly a�ects the overall
read/write throughput [7]

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2227



Figure 8: Throughput comparison between OpenNFM and
the public mode of DEFTL. SR - sequential read, RR - ran-
dom read, SW - sequentialwrite, RW - randomwrite. GC-XX,
in which “XX” means the threshold of garbage collection in
DEFTL

Figure 9: Throughput comparison between OpenNFM and
the PDE mode of DEFTL

time for write requests and slightly increase the write throughput
in DEFTL.
Wear leveling. To distribute writes evenly across the entire �ash
(Sec. 2.2), DEFTL utilizes a global wear leveling strategy. We use
Hoover economic wealth inequality indicator, which was used in
previous work [7, 32] to evaluate wear leveling e�ectiveness. This
metric calculates an appropriately normalized sum of the di�erence
of each measurement to the mean. For �ash memory, it indicates
the fraction of erasures that must be re-assigned to other blocks
in order to achieve completely even wear. Assuming the erasure
counts of all the n erase blocks are f1, f2,..., fn , and F =

∑n
i=1 fn ,

the wear leveling inequality (WLI) can be computed as: WLI =
1
2
∑n
i=1‖

fi
F −

1
n ‖.

We evaluated the wear leveling e�ectiveness of DEFTL by vary-
ing the wear leveling threshold. To compute the WLI, we follow
these steps: 1) Choose a wear leveling threshold; 2) Fill the entire
�ash with approximately 500MB data (we call this process a wear
leveling test epoch). In DEFTL, we write data to both the public
volume and the hidden volume; 3) Erase all the data being written;
4) Repeat each epoch until 250GB data has been written in total; 5)
Compute WLI. In addition to WLI, we also calculated the average
number of erasures per block performed during each epoch.

The results are shown in Table 1, under di�erent wear level-
ing (WL) thresholds. We have following observations: 1) When

Table 1: Wear leveling e�ectiveness of DEFTL
Wear leveling threshold Average erasures WLI (%)

200 0.97 11.5
150 1.06 10.2
100 1.10 8.9
50 1.15 7.3

the threshold decreases, a more active wear leveling will be per-
formed. Meanwhile, more blocks will be erased and erasures will
be distributed more evenly among blocks. Therefore, the increas-
ing of average erasures per block and decreasing of WLI can be
observed when the threshold decreases. 2) Under di�erent wear
leveling thresholds, DEFTL has small WLIs (around 10% as shown
in Table 1). This implies that DEFTL can achieve an acceptable wear
leveling.

8 RELATEDWORK
Deniable encryption was originally explored by Canetti et al. [5]
in communications. In data storage, there are mainly two types of
PDE systems: steganography-based and hidden volumes-based.
Steganography-based PDEs. Anderson et al. proposed the �rst
steganographic �le system [1]. They present two solutions: hiding
sensitive data within cover �les or within random data. StegFS [23]
used the second approach to work on EXT2 �le system with a
block allocation table to track �les. Pang et al. [30] introduced
another steganographic �le system, which uses an unencrypted
global bitmap to ensure that blocks are not accidentally overwritten.
All the steganography �le systems try to hide sensitive data among
regular �le system, which may result in data loss of hidden �les, as
they may be overwritten by the regular �le data. To mitigate the risk
of data loss, they need to maintain a large amount of redundant data,
which will lead to ine�cient use of disk space. The ine�cient use
of disk space and increased IO operations make them unacceptable
for mobile devices [33].
Hidden volume-basedPDEs.Two well-known desktop PDE tools
are TrueCrypt [38] and FreeOTFE [13]. TrueCrypt is sensitive to
the type of �le systems to avoid over-writing of the hidden volume.
Blass et al. [3] present HIVE, which relies on the expensive write-
only oblivious RAM. HIVE su�ers from a high system overhead
and is thus not suitable for mobile devices. Zhao et al. [45] present
Gracewipe, which relies on a Trusted Platform Module (TPM) and
CPU’s trusted execution mode (e.g., Intel TXT). It requires extra
special secure hardware and thus is not suitable for mobile devices.

Mobi�age is the �rst hidden volume-based PDE scheme for mo-
bile devices. It is implemented in two versions: one for FAT32 �le
system in external storage [33], and the other for EXT4 �le sys-
tem in internal storage [34]. The FAT32 version is not suitable for
mobile devices without external storage; the EXT4 version needs
to signi�cantly modify EXT4 �le system that introduces a large
attack surface against PDE. MobiHydra [44] improves Mobi�age
by addressing a new booting-time attack and adding multi-level
deniability. MobiPluto [6] further introduces a �le system friendly
PDE design by combining the hidden volume technology and thin
provisioning.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2228



Other PDEs. Peters et al. [31] introduced DEFY, a deniable en-
crypted �le system based on YAFFS2, a �ash-speci�c and single-
threaded �le system which directly handles raw NAND �ash. DEFY
is vulnerable to the deniability compromises described in Sec. 3.2.
In addition, it is incompatible with the �ash-based block device,
which is the most popular form of �ash storage media being used in
computing devices today. This is because, the deniability achieved
in DEFY strongly relies on the system properties o�ered by YAFFS2,
which is unfortunately rarely used nowadays.

9 CONCLUSION
In this paper, we propose DEFTL, a Deniability Enabling Flash
Translation Layer for devices that use �ash-based block devices as
storage media. DEFTL is the �rst design that incorporates deniabil-
ity into the FTL, a pervasively deployed “translation layer” which
stays between the physical �ash layer and the �le system layer in
literally all the computing devices. A salient advantage of DEFTL is
that, for the �rst time, it eliminates deniability compromises from
the underlying �ash medium, and meanwhile, accommodates the
special nature of �ash memory. Experimental evaluation con�rms
the e�ciency of DEFTL, compared to the encryption storage for
�ash without deniability support.

ACKNOWLEDGMENT
Luning Xia is the corresponding author. This work was partially
supported by the National Key Research & Development Program
of China (Grant No. 2016YFB0800102) and National Basic Research
Program of China (973 Program No. 2013CB338001). Peng Liu was
supported by ARO W911NF-13-1-0421 (MURI), NSF CNS-1422594,
and NSF CNS-1505664.

REFERENCES
[1] Ross Anderson, Roger Needham, and Adi Shamir. 1998. The steganographic �le

system. In International Workshop on Information Hiding. Springer, 73–82.
[2] Apple. 2015. FileVault. https://support.apple.com/en-us/HT204837. (2015).
[3] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. 2014.

Toward robust hidden volumes using write-only oblivious RAM. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 203–214.

[4] Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knij�, and
Mark Roelo�s. 2007. Forensic data recovery from �ash memory. Small Scale
Digital Device Forensics Journal 1, 1 (2007), 1–17.

[5] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. 1997. Deniable
encryption. In Annual International Cryptology Conference. Springer, 90–104.

[6] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. Mobipluto: File
system friendly deniable storage for mobile devices. In Proceedings of the 31st
Annual Computer Security Applications Conference. ACM, 381–390.

[7] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough:
towards sanitizing structural artifacts in �ash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 496–507.

[8] Siddharth Choudhuri and Tony Givargis. 2008. Deterministic service guarantees
for NAND �ash using partial block cleaning. In Proceedings of the 6th IEEE/ACM/I-
FIP international conference on Hardware/Software codesign and system synthesis.
ACM, 19–24.

[9] Google Code. 2011. OpenNFM. https://code.google.com/p/opennfm/. (2011).
[10] CodePlex. 2017. VeraCrypt SSD. https://veracrypt.codeplex.com/. (2017).
[11] Computerhope. 2017. SCSI. https://www.computerhope.com/jargon/s/scsi.htm.

(2017).
[12] Freecode. 2014. �o. http://freecode.com/projects/�o. (2014).
[13] FreeOTFE. 2012. FreeOTFE - Free disk encryption software for PCs and PDAs.

Version 5.21. Project website: http://www.freeotfe.org/ (2012).
[14] P Keith Garvin and H Duane Stanard. 2001. Method and system for managing

bad areas in �ash memory. (July 10 2001). US Patent 6,260,156.
[15] Peter Gutmann. 1996. Secure deletion of data from magnetic and solid-state

memory. In Proceedings of the Sixth USENIX Security Symposium, San Jose, CA,

Vol. 14. 77–89.
[16] J. Assange, R.P. Weinmann, and S. Dreyfus. 2001. Rubberhose Filesystem.

Archive available at: https://web.archive.org/web/20100915130330/http:// iq.org/
~pro�/rubberhose.org/ (2001).

[17] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2016. NFPS: Adding Undetectable
Secure Deletion to Flash Translation Layer. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. ACM, 305–315.

[18] Sanghyuk Jung and Yong Ho Song. 2013. LINK-GC: a preemptive approach for
garbage collection in NAND �ash storages. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing. ACM, 1478–1484.

[19] B. Kaliski. 2000. PBKDF2. https://tools.ietf.org/html/rfc2898. (2000).
[20] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. 1995. A Flash-Memory

Based File System.. In USENIX. 155–164.
[21] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS:

A new �le system for �ash storage. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). 273–286.

[22] Mantech. 2017. LPC-H3131. http://www.mantech.co.za/. (2017).
[23] Andrew D McDonald and Markus G Kuhn. 2000. StegFS: A steganographic �le

system for Linux. In Information Hiding. Springer, 463–477.
[24] ST Microelectronics. 2004. Bad Block Management in NAND Flash Memories.

Application note AN-1819, Geneva, Switzerland (2004).
[25] Microsof. 2013. BitLocker. https://technet.microsoft.com/en-us/library/hh831713.

aspx. (2013).
[26] MTD. 2015. Ubifs. http://www.linux-mtd.infradead.org/doc/ubifs.html. (2015).
[27] J. Mull. 2012. How a Syrian refugee risked his life to bear witness to atrocities.

In toronto Star Online.
[28] OpenSSD. 2011. Jasmine OpenSSD Platform. http://www.openssd-project.org/

wiki/Jasmine_OpenSSD_Platform. (2011).
[29] OpenSSD. 2014. Cosmos OpenSSD Platform. http://www.openssd-project.org/

wiki/Cosmos_OpenSSD_Platform. (2014).
[30] HweeHwa Pang, K-L Tan, and Xuan Zhou. 2003. StegFS: A steganographic �le

system. In Data Engineering, 2003. Proceedings. 19th International Conference on.
IEEE, 657–667.

[31] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. 2015. DEFY:
A Deniable, Encrypted File System for Log-Structured Storage. In 22th Annual
Network and Distributed System Security Symposium, NDSS.

[32] Joel Reardon, Srdjan Capkun, and David Basin. 2012. Data node encrypted �le
system: E�cient secure deletion for �ash memory. In Proceedings of the 21st
USENIX conference on Security symposium. USENIX Association, 17–17.

[33] Adam Skillen and Mohammad Mannan. 2013. On Implementing Deniable Storage
Encryption for Mobile Devices. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27.

[34] Adam Skillen and Mohammad Mannan. 2014. Mobi�age: Deniable Storage
Encryptionfor Mobile Devices. IEEE Transactions on Dependable and Secure
Computing 11, 3 (2014), 224–237.

[35] Source. 2016. Android full disk encryption. https://source.android.com/security/
encryption/. (2016).

[36] Avinash Srinivasan, Jie Wu, Panneer Santhalingam, and Je�rey Zamanski. 2014.
DeadDrop-in-a-Flash: Information Hiding at SSD NAND Flash Memory Physical
Layer. SECURWARE 2014 (2014), 79.

[37] Raja Subramani, Haritima Swapnil, Niharika Thakur, Bharath Radhakrishnan,
and Krishnamurthy Puttaiah. 2013. Garbage Collection Algorithms for NAND
Flash Memory Devices–An Overview. In Modelling Symposium (EMS), 2013 Euro-
pean. IEEE, 81–86.

[38] TrueCrypt. 2012. Free open source on-the-�y disk encryption software.Version
7.1a. Project website: http://www.truecrypt.org/ (2012).

[39] Chundong Wang and Weng-Fai Wong. 2012. Extending the lifetime of NAND
�ash memory by salvaging bad blocks. In Proceedings of the Conference on Design,
Automation and Test in Europe. EDA Consortium, 260–263.

[40] Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G Edward Suh, and Edwin C
Kan. 2012. Flash memory for ubiquitous hardware security functions: True
random number generation and device �ngerprints. In Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 33–47.

[41] Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and Steven Swan-
son. 2011. Reliably Erasing Data from Flash-Based Solid State Drives.. In FAST,
Vol. 11. 8–8.

[42] Ya�s. 2002. YAFFS. http://www.ya�s.net/. (2002).
[43] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao, Po-Chun Huang, Yuan-Hao

Chang, and Tei-Wei Kuo. 2014. Garbage collection and wear leveling for �ash
memory: past and future. In Smart Computing (SMARTCOMP), 2014 International
Conference on. IEEE, 66–73.

[44] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. 2014.
MobiHydra: Pragmatic and Multi-level Plausibly Deniable Encryption Storage
for Mobile Devices. In Information Security - 17th International Conference, ISC
2014, Hong Kong, China, October 12-14, 2014. Proceedings. 555–567.

[45] Lianying Zhao and Mohammad Mannan. 2015. Gracewipe: Secure and Veri�able
Deletion under Coercion. In Network and Distributed System Security Symposium.

Session J4:  Flash Security CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2229

https://support.apple.com/en-us/HT204837
https://code.google.com/p/opennfm/
https://veracrypt.codeplex.com/
http://www.freeotfe.org/
https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://web.archive.org/web/20100915130330/http://iq.org/~proff/rubberhose.org/
https://technet.microsoft.com/en-us/library/hh831713.aspx
https://technet.microsoft.com/en-us/library/hh831713.aspx
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform
http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Platform
https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
http://www.truecrypt.org/
http://www.yaffs.net/

	Abstract
	1 Introduction
	2 Background
	2.1 Flash Memory
	2.2 Flash Translation Layer (FTL)
	2.3 Hidden Volume Technique

	3 Attack Scenarios
	3.1 Attacking the Hidden Volume-based PDE Systems for Mobile Devices
	3.2 Attacking DEFY

	4 Model and Assumptions
	4.1 System Model
	4.2 Adversarial Model
	4.3 Assumptions

	5 DEFTL Design
	5.1 DEFTL Overview
	5.2 Block Types and Metadata
	5.3 Initialization
	5.4 Public Mode
	5.5 PDE Mode
	5.6 User Steps

	6 Analysis and Discussion
	6.1 Security Analysis
	6.2 Discussion

	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Performance Evaluation

	8 Related Work
	9 Conclusion
	References



