
Keep me Updated: An Empirical Study of Third-Party Library
Updatability on Android

Erik Derr, Sven Bugiel
CISPA, Saarland University
Saarland Informatics Campus

Sascha Fahl, Yasemin Acar
Leibniz University Hannover

Michael Backes
CISPA, Saarland University
Saarland Informatics Campus

ABSTRACT
Third-party libraries in Android apps have repeatedly been shown
to be hazards to the users’ privacy and an amplification of their
host apps’ attack surface. A particularly aggravating factor to this
situation is that the libraries’ version included in apps are very
often outdated.

This paper makes the first contribution towards solving the
problem of library outdatedness on Android. First, we conduct a
survey with 203 app developers from Google Play to retrieve first-
hand information about their usage of libraries and requirements
for more effective library updates. With a subsequent study of li-
brary providers’ semantic versioning practices, we uncover that
those providers are likely a contributing factor to the app develop-
ers’ abstinence from library updates in order to avoid ostensible
re-integration efforts and version incompatibilities. Further, we
conduct a large-scale library updatability analysis of 1,264,118 apps
to show that, based on the library API usage, 85.6% of the libraries
could be upgraded by at least one version without modifying the
app code, 48.2% even to the latest version. Particularly alarming are
our findings that 97.8% out of 16,837 actively used library versions
with a known security vulnerability could be easily fixed through a
drop-in replacement of the vulnerable library with the fixed version.
Based on these results, we conclude with a thorough discussion
of solutions and actionable items for different actors in the app
ecosystem to effectively remedy this situation.

1 INTRODUCTION
Third-party libraries are an indispensable aspect of modern soft-
ware development. They ease the developer’s job, for instance, by
providing commonly useful functionality, sharing programming
know-how among developers, enabling monetization of software,
or integrating social media such as Facebook or Twitter. In contrast
to the benefits that developers reap from third-party code, end-
users of software are reportedly exposed to an increasing risk to
their privacy and security by those external software components.
Recent reports [17, 38] warn of the hidden costs of libraries in form
of buggy code that increases the app’s attack surface and introduces
security vulnerabilities. Sonatype [38] reports that older software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134059

components have a three times higher rate of vulnerabilities and
that almost 2 bn software component downloads per year include
at least one security vulnerability. These numbers are backed with
findings from different software ecosystems, e.g., for Windows ap-
plications [31] and Javascript libraries [23]. Moreover, their results
show that, although library updates with security fixes exist, they
are not adopted by developers.

Similarly, recent works [4, 9] have reported such alarming find-
ings for the Android ecosystem. About 70% of all third-party li-
braries in apps are (severely) outdated and a slow adoption rate
of updates of about one year aggravates the library outdatedness
problem. As a consequence, fast response times by library devel-
opers remain noneffective and even known security vulnerabili-
ties [3, 7, 33–35] remain a persistent threat in the app ecosystem,
when app developers do not integrate the existing fixes into their
apps. Google recognized their central role as market operator early
for amending this problem and introduced their application se-
curity improvement program (ASI) [12] in 2015. In this ongoing
effort, Google notifies developers when security problems were
detected in their apps and/or included third-party components and
enforces a remediation period to fix the detected vulnerabilities.
According to their statistics [14], this approach already proved to be
successful in improving the overall app market security. However
the main drawback is that this approach only fights the symptoms
of the underlying problem of developers not keeping dependencies
up-to-date.

To improve on this situation more sustainably, for instance by
realizing effective solutions that are practical and accepted by all
involved parties, it is important to first understand the app devel-
opers’ motivation for not updating third-party dependencies and
to investigate the role of other actors—like the library developers—
in the current situation. This paper makes the first contribution
towards such a solution by identifying the root causes why app
developers do not update third-party libraries on Android. We start
with conducting a survey with 203 app developers from Google
Play to collect first-hand information about library usage in apps.
Among others, this survey covers questions regarding library se-
lection criteria, developer tools, reasons to (not) update, as well
as feedback and comments on what app developers think needs
to be changed to enable more effective library upgrades. These
insights motivate a follow-up library release analysis that uncov-
ers that library developers are very likely a contributing factor to
the poor adaptation rate through an inconsistent and imprecise
library version specification, i.e., the actual changes in code and
API do not match the expected changes conveyed by the version
numbers (semantic versioning). As a result, app developers cannot
properly assess the expected effort for upgrading the library and

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2187

https://doi.org/10.1145/3133956.3134059

ultimately abstain from an update to prevent ostensible effort and
incompatibilities.

To investigate the actual effort of updating libraries, we conduct
a large-scale library updatability analysis of 1,264,118 apps from
Google Play. We analyzed the apps’ bytecode to check whether
included libraries are actually called by the app. Combining this
data with the results of an analysis of each library’s API robustness
across its different versions, we determine that 85.6% of all libraries
can be updated by at least one version, in 48.2% of all cases even to
the most current library version, simply by replacing the library
and without the need to change the host app’s code. Contributing
factors for this high updatability rate are a generally low library
API usage, i.e., on average 18 library API calls, and the fact that
the most frequently used APIs remain stable for the majority of
libraries. Focusing on security incidents, we find 16,837 actively
used libraries in apps that contain one publicly known security
vulnerability. Based on our analysis, 97.8% of these libraries could
be patched by simply exchanging the vulnerable library with the
fixed version, again without the need to change the app’s code.

Finally, the results of the developer survey and our follow-up
analyses helped us to identify problem areas and weak links in the
ecosystem. In Section 5 we summarize our findings and propose
actionable items for different entities including library developers,
the market place, development tools, and the Android system to
remedy the situation. Based on our findings and the responses from
our survey, we believe that these solutions are both effective in
amending the library outdatedness problem and accepted by the
majority of developers. In summary, this paper makes the following
contributions:
(1)We conduct a survey with 203 app developers from Google Play
to collect first-hand information on library usage and to identify
root causes of developers not updating their dependencies.
(2)We analyze library releases to uncover that library developers
are likely a contributing factor to a poor library adaptation. In 58%
of all library updates, the expected changes derived from semantic
versioning do not match the actual library code changes.
(3)We conduct a large-scale analysis of 1,264,118 apps to identify
libraries and their API usage. In 85.6% of cases, the detected library
can be updated by at least one version, in 48.2% of cases even to
the most current version. In addition, we find 16,837 apps that
include a library with a known security vulnerability, out of which
97.8% could be patched without app code adaption.
(4) Finally, we thoroughly discuss short-/long-term actionable items
for different entities of the app ecosystem to remedy the problem
of outdated libraries.

The remainder of this paper is structured as follows: In Section 2,
we explain how we conducted our developer survey and summarize
first results. We present the results of our library release analysis
in Section 3 and the results of our library updatability analysis in
Section 4. We thoroughly discuss our survey and analysis results
and propose actionable items in Section 5. We compare with related
work in Section 6 and conclude the paper in Section 7.

Table 1: Demographics of developer survey participants.

Gender Age (x = 32.90 ± 1.60 years)
Female 10 (04.93%) 15–19 6 (02.96%)
Male 186 (91.63%) 19–29 63 (31.03%)
No answer 7 (03.45%) 29–39 64 (31.53%)

39–49 31 (15.27%)
Highest educational degree 49–59 15 (07.39%)
Graduate 117 (57.64%) 59–69 4 (01.97%)
College 41 (20.20%) No answer 20 (09.85%)
High school 30 (14.78%)
No degree 12 (05.91%)
No answer 3 (01.48%)

2 APP DEVELOPER SURVEY
We conducted an online survey with Android application develop-
ers who already published at least one application on Google Play.
We investigated the developers’ main motives and knowledge when
it comes to managing third-party libraries for their apps. Mainly,
we were interested in the following three questions:

Q1:What is the common workflow to search for and to integrate
third-party libraries into applications?

Q2: How frequently do developers update their apps/libs and what
is their main motivation for updates?

Q3: What are possible reasons to not update dependencies and
what solutions could app developers think of?

2.1 Ethical Concerns
The questionnaire (see Appendix A) was approved by the ethical
review board of our university. We also took the strict German data
and privacy protection laws into account for collecting, processing,
and storing participant information. We collected email addresses
from Android application developers who had previously published
at least one application on Google Play and kindly asked them
to participate in our online questionnaire, whether they like to
be blacklisted for future user studies, and whether they want to
learn more about our scientific work. Overall, we sent out 60,000
invite emails. Before filling out the questionnaire, developers had
to consent to the use and publication of their answers.

2.2 Participants
In response to the invitation emails, 203 app developers finished the
questionaire within five days (participation rate of 0.34%). Of all par-
ticipants, 91.6% reported being male, 4.9% female, and the remaining
3.4% declined to answer. Participants’ mean age was 32.9 years (with
a margin of error of 1.6 years with α = .05). The general coding
experience was relatively high with a mean of 12.11 ± 1.35 years.
The Android experience was reported with 4.06 ± 0.33 years on av-
erage. Of all participants, 34% affirmed that developing apps is their
primary job. Asked about the context of app development, 35.5%
reported to develop apps in a company, 38.4% are self-employed,
and 61.6% develop apps (also) as a hobby. The participants reported
to have worked on 13.188 ± 4.42 apps. A detailed overview of the
participants’ demographics and professional background can be
found in Table 1 and Table 2.

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2188

Table 2: Professional background of participants in our on-
line app developer survey.

Years of general coding experience
< 1 year 4 (01.97%)
1–5 years 45 (22.17%)
5–10 years 51 (25.12%)
10+ years 103 (50.74%)

x = 12.11 ± 1.35 years

Years of Android experience
< 1 year 2 (01.0%)
1–2 years 19 (09.5%)
2–3 years 28 (14.0%)
4–5 years 40 (20.0%)
5–10 years 37 (18.5%)
10+ years 4 (02.0%)

x = 4.06 ± 0.33 years

How learned Android programming†

Self-taught 182 (89.66%)
On the job 66 (32.51%)
Online coding course 38 (18.72%)
Class in university 25 (12.32%)
Class in school 8 (03.94%)
Other 0 (00.00%)

Developing apps primary job
Yes 69 (33.99%)
No 134 (66.01%)

Context of app development†

Company 72 (35.47%)
Self-employed 78 (38.42%)
Hobby 125 (61.58%)

Company size
< 10 employees 27 (37.50%)
10–50 employees 16 (22.22%)
50–100 employees 7 (09.72%)
100+ employees 22 (30.56%)

Number of apps worked on
1–5 apps 101 (50.00%)
6–10 apps 50 (24.75%)
11–50 apps 44 (21.78%)
51–100 apps 5 (02.48%)
100+ apps 2 (00.99%)

x = 13.188 ± 4.42 apps
† Multiple choice, sum does not need to equal 100%

2.3 Q1: Workflow and Integration
In the first part of the survey we seek to answer how app develop-
ers choose and integrate libraries into their apps. Figure 1 shows
the primary sources of the participants to search for libraries. It
is evident that the majority of app developers use search engines,
followed by the project hoster GitHub. The relatively small num-
ber of dedicated Android community websites, such as Android
Arsenal or Android Weekly, underlines the lack of a central library
marketplace/package manager such as Cocoapods for iOS or npm
for JavaScript. Being asked about library selection criteria (see Fig-
ure 2), 79.7% of all participants named functionality as main criteria.
Open source (61.7%) and good documentation (52.3%) are further
criteria for library selection. In general, recommendations and user
ratings are less important. Security (26.6%) and particularly the use
of permissions (29.7%) are among the least important criteria, which
is particularly surprising after news reports and scientific research
on permission misuse of advertisement libraries [8, 19, 35, 39].

Besides information about how libraries are chosen, it is impor-
tant to know the preferred development platform and integration

1
1
1
2
2
2

4
4

7
7
7

11
26

85

Friends/Colleagues

Gradle

Maven

Android Weekly

Community

Library developer website

Other apps

Package Manager

Android Arsenal

Forums

Other

Stackoverflow

Github

Google

0 25 50 75

Where do you search for libraries?

Figure 1: Primary sources for finding libraries among our
survey participants

0 (0%)

4 (3.12%)

34 (26.56%)

37 (28.91%)

38 (29.69%)

41 (32.03%)

45 (35.16%)

58 (45.31%)

67 (52.34%)

79 (61.72%)

102 (79.69%)

Closed Source

Other

Security

Ratings

Use of Android Permissions

Recommendations

Update Frequency

Popularity

Documentation

Open Source

Functionality

0 40 80 120

Chose libraries according to specific criteria?

Figure 2: Reported criteria for library selection among our
survey participants

17 (8.37%)

27 (13.3%)

35 (17.24%)

124 (61.08%)

Other

Eclipse

Application Generator

Android Studio

0 50 100 150

How do you develop your apps?

Figure 3: Primary development environment of our survey
participants

approach by developers. Figure 3 suggests that Android Studio is the
preferred IDE for app development (61%), followed by application
generator frameworks such as Xamarin or Cordova (17.2%) and
Eclipse with the Android plugin (13.3%). A small fraction of app
developers (8.4%) prefers different environments such as NetBeans
or even the command line. Similar to development platforms, there
are different possibilities to integrate a library (see Figure 4). The
Android Gradle plugin, introduced in 2014, is a powerful depen-
dency manager and the default in Android Studio. Although two
thirds of app developers use Gradle, more than half of them also
resort to manual inclusion or use a combination of different ap-
proaches. Build systems such as Maven (14%) or Ant (3.9%) are not
widespread in Android app development. Users of Xamarin prefer
to use its convenient package manager NuGet.

2.4 Q2: Application and Library Maintenance
In the second part of the survey, we asked the participants about
app release frequency, whether they update their dependencies, and
about their main motivation to perform app and library updates
(see Figure 5). 78% of the app developers release new app updates
on a variable schedule, while only 22% rely on a fixed schedule,

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2189

5 (3.91%)

6 (4.69%)

12 (9.38%)

18 (14.06%)

67 (52.34%)

84 (65.62%)

Ant

Do not know

Other

Maven

Add JAR file

Gradle

0 25 50 75 100

How do you integrate libraries into your app?

Figure 4: Used library integration techniques by our survey
participants

78% 22%
0 25 50 75 100

Response No Yes

Is your app updated on a fixed schedule?

30% 3% 46% 20%
0 25 50 75 100

Response No I don't know Yes, some of them Yes, all of them

Do you update the libraries in your app regularly?

18% 2% 66% 14%
0 25 50 75 100

Response Never I don't know Sometimes Regularly

Do you read changelogs/announcements for new library versions?

Figure 5: Questions and responses for Q2 regarding app/li-
brary release frequency.

6 (2.96%)

8 (3.94%)

44 (21.67%)

64 (31.53%)

32 (15.76%)

32 (15.76%)

17 (8.37%)

Weekly

Bi−weekly

Monthly

Quarterly

Twice per year

Yearly

Never

0 20 40 60

At which interval do you release app updates?

Figure 6: Interval at which our participants release their app
updates

e.g., app developers at companies with a fixed release schedule. The
majority of developers releases new updates within a time period of
one to three months. However, there is also a considerable number
of developers (39.9%) that provides updates at most twice a year.

The main motivation to release new app versions is to provide
new functionality and fixing bugs (see Figure 7). Only one third
of the developers explicitly names library updates as a reason to
provide a new app version. This is contrary to the main motivation
to update the apps’ libraries where the dominant answer is bug
fixing (only three developers did not name this). Functionality is
only the third most common reason (56.5%), right behind security
fixes (57.6%). Of all app developers, 66% update at least some of
their libs regularly, while 30% completely abstain from updating
the dependencies. Changelogs and release announcements are an
effective means to reach app developers, since 70% of the developers
read them at least sporadically.

10 (4.93%)

67 (33%)

169 (83.25%)

183 (90.15%)

Other

Library updates

Bug fixing

New functionality

0 50 100 150 200

For which reason do you update your app?

2 (2.35%)

2 (2.35%)

48 (56.47%)

49 (57.65%)

82 (96.47%)

I don't know

Other

New features

Security

Bug fixing

0 25 50 75

Why do you update your apps' libraries?

Figure 7: Reasons why our survey participants update apps
and their apps’ libraries

64%64%64%64%31%31%31%31%4%4%4%4%
0 25 50 75 100

Response No I don't know Somewhat Yes

Are you happy with Gradle's usability?

Figure 8: Usability satisfaction of our participants with the
Gradle build system

3 (2.34%)

8 (6.25%)

9 (7.03%)

13 (10.16%)

17 (13.28%)

34 (26.56%)

42 (32.81%)

64 (50%)

73 (57.03%)

I don't know

Other

I don't care

Bad/missing library documentation

Missing update documentation

Too much effort

Unaware of updates

Prevent incompatibilities

Library was still working

0 25 50 75

Reason why your app would include outdated libraries?

Figure 9: Self-reported reasons why the participants’ apps
would include an outdated library

2.5 Q3: Reasons for Outdated Libs
The last part of the survey asked questions about problems that
might be a reason for not updating libraries. We also requested
a self-reporting on reasons for outdated libraries and asked the
developers for their opinion on possible solutions.

Since Gradle is the default dependency management system in
Android, we asked about Gradle’s usability and drawbacks. While
the majority of the participants likes Gradle (65.3% in Figure 8)
or only sees minor limitations (31%), only three participants are
unhappy with Gradle’s usability. The most frequently named draw-
backs include a weak build performance with more complex apps
and a steep learning curve compared to the simplicity of adding
libraries manually. We then explicitly asked for reasons that their
apps contain outdated libraries (see Figure 9). For 57% of the par-
ticipants there is no incentive to update the library as it works as
intended. Half of the participants are afraid of experiencing incom-
patibilities, for instance, through modified or renamed library APIs,
or they refrain from updating due to an expected high integration
effort. Another reason is that app developers are just unaware of
library updates (33%).

Figure 10 shows a selection of potential approaches to facilitate
better library management. Of all participants, 65.6% wish to have

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2190

12 (9.38%)

23 (17.97%)

39 (30.47%)

62 (48.44%)

84 (65.62%)

Other

Different distribution channels

System service or package manager

Central library marketplace

Better IDE integration

0 25 50 75 100

What would help making library updates easier
 for app developers?

Figure 10: Preferred improvements for making library up-
dates easier

23% 12% 12% 52%
0 25 50 75 100

Response No I don't know I do not mind Yes

Would you accept automatic library updates on user devices
 in cases where they do not break functionality?

Figure 11: Acceptance of automatic library updates on end-
user devices among our participants

better development tools, for instance, an improved IDE integra-
tion. Among the app developers, 78.9% like the idea of having a
central library market place or package manager, similar as in other
ecosystems, such as iOS or JavaScript. Many library developers dis-
tribute their libraries via different channels, such as Maven Central
or Bintray. For those who host their library only on their website,
developers would welcome additional, potentially more convenient,
distribution channels.

Finally, we asked whether participants would accept an auto-
mated on-device library patching via the Android OS, as long as it
would not break app functionality. Half of the responses fully agreed
with such a solution, while about 12% were not sure whether this
is a good idea. About 23% clearly disagreed with such an approach,
while another 12% did not mind.

2.6 Limitations
As with any user study, our results should be interpreted in con-
text. We chose an online study because it is difficult to recruit
Google Play developers for an in-person study at a reasonable cost.
Choosing to conduct an online study gave us less control over the
recruitment process; however, it allowed us to recruit a large and
geographically diverse sample. Because we targeted Google Play
developers, we could not easily take advantage of services like
Amazon’s Mechanical Turk or survey sampling firms. Managing
online study payments outside such infrastructures is very chal-
lenging; as a result, we did not offer compensation and instead
asked participants to generously donate their time. As might be
expected, the combination of unsolicited recruitment emails and
no compensation led to a strong self-selection effect, and we expect
that our results represent Android developers who are interested
and motivated enough to participate.

In any online study, some participants may not provide full effort,
or may answer haphazardly. In this case, the lack of compensation
reduces the motivation to answer in a constructive manner; those
who are not motivated will typically not participate in the first
place. We attempt to remove any obviously low-quality data (e.g.,
responses that are entirely invective) before analysis, but we cannot
discriminate perfectly.

3 LIBRARY RELEASE ANALYSIS
The survey results indicate that 77% of app developers update at
most a strict subset of their included libraries (see Figure 5). One
of the main reasons for this is that there is no obvious need to
update the library when it works as intended. The survey suggests
that bugfixes and security fixes would be a reason to update if
new library versions would provide dedicated patch-only changes
and would not mix bugfixes with new functionality. Another more
alarming reason is that libraries are not updated due to the fear of
experiencing incompatibilities and an expected high integration
effort. This raises the question how library developers release new
versions and whether their current release strategy could be a con-
tributing factor to poor library adoption. In the following, we seek
to answer this question by analyzing how often library versions
change existing APIs and provide versions with mixed types of
changes, i.e., security fixes and new functionality. A related but pre-
viously uncovered aspect is how library developers communicate
these changes, i.e., which changes might an app developer expect
given a library version number and do these expectations match
the actual changes made in code and API.

3.1 Semantic Versioning
The concept of classifying a version number into different cate-
gories to infer the expected effort of integration was proposed as
Semantic Versioning (SemVer) by Preston-Werner [36]. It comprises
a set of simple rules that dictate how library developers assign and
increment new version numbers. The basic idea is that if library
developers adhere to these rules, the library consumer (typically
the app developer) can assess, just by looking at the version string,
whether or not a library update can be performed without addi-
tional implementation and code adaption effort. Semantic Versioning
works as follows: First, the lib developer declares the public API, e.g.,
by documenting it. Then, any changes in the documented public
API are communicated with the version number. The version format
consists of three numbers X.Y.Z (Major.Minor.Patch). Whenever
a new version includes bug fixes or code-only changes that do not
affect the API, the patch version number is incremented. Backwards
compatible API additions/changes increment the minor version and
backwards incompatible API changes (removed methods, incom-
patible argument types) increase the major number. Intuitively, a
library without further dependencies can be updated without ad-
ditional effort if a new version is a minor/patch version. A major
version might require additional integration effort, depending on
the changes of APIs in use.

3.2 Android Library Versioning
To investigate the status quo in Android library versioning we con-
duct an empirical study of expected changes versus actual changes
to confirm or disprove that library developers can be a contributing
factor to the problem of a poor library adaptation in the Android
app ecosystem. To this end, we build on and extend the library
database of the LibScout project [4]. In total, we analyze 89 distinct
libraries with 1,971 versions with a minimum set of 10 versions per
library. In our test set all libraries make use of the X.Y.Z versioning
scheme, except OrmLite which uses an X.Y scheme. In addition,
Dropbox (v2.0.5.1) and FasterXML-Jackson (v2.4.1.1) include a single

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2191

library version with a sub-patch level. However, due to the absence
of a changelog for these versions, we can not properly assess the
necessity of such version numbers. In the following, we describe in
more detail how we determine the actual changes in code and the
expected changes conveyed by the version number.

Expected Changes. We extend the LibScout tool and integrate
a version parser that classifies version changes expressed by the
version string into patch, minor, and major releases. By comparing
consecutive library versions we then retrieve a list of expected
changes, e.g., a version 2.4.1 immediately following version 2.3.7 is
classified as minor release.

Actual Changes. Semantic Versioning requires that the public
library API has to be properly defined at some point, either via an
explicit documentation or via the code itself. Since some libraries
either lack a full documentation or do not provide a history of their
API reference, we programmatically extract the public API from
the original library SDKs. The public API set of the first version of
each library in our dataset is used as a baseline.
1. Filtering undocumented APIs: Undocumented public meth-
ods are not meant to be used by an app developer and hence should
not be considered part of the public API. By extracting the public
API programmatically, we have to filter such methods in a best
effort approach (see also Section 5). To this end, we exclude public
methods that reside in subpackages named internal. Moreover,
we conservatively filter classes (and their declared methods) that
have been renamed and shortened through an obfuscation tool
like ProGuard [20]. Concretely, we consider classes named with
one or two lowercase, alpha characters as obfuscated (following
ProGuard’s renaming rules).
2. Determining actual changes: To determine actual changes
between consecutive library versions, we implement an API diff al-
gorithm that operates on two sets of public APIs apiold and apinew ,
where apiold is the API set of the immediate predecessor version of
apinew . An API is described by its signature that includes package
and class name as well as the list of argument and return type, e.g.
com.facebook.Session.getAccessToken()java.lang.String .
If apiold = apinew we have a patch-level release, i.e., there are code
changes only. If apiold ⊊ apinew , new APIs were added but existing
ones did not change. This is classified as a backwards-compatible
minor release. Whenever apiold includes APIs that are not included
in apinew we conduct a type analysis to check for compatible coun-
terparts in apinew . Compatible changes include generalization of
argument types, e.g., an argument with type ArrayList is replaced
by its super type List. Generalization on return types is generally
not compatible and depends on the actual app code that uses the
return value. Since we do not conduct a code analysis we treat non-
matching return types as incompatibility. To not suffer from false
positives, we furthermore abstain from searching for alternative
candidates when the class and/or package name do no longer match,
since this may result in ambiguity.1 Hence we report conservative
numbers when searching for API alternatives. If we are able to
identify alternatives for all APIs that do not match exactly, we may

1Updating imports is typically done automatically by an IDE like Android Studio and
is therefore not considered as incompatibility.

Table 3: SemVer misclassification by type (expected vs. ac-
tual change). Highlighted cells are critical as the actual se-
mantic versioning suggests compatibility although the op-
posite is the case.

Expected
patch minor major

Actual
patch — 5.7% 0.85%
minor 11.93% — 0.48%
major 15.02% 24.02% —

classify the release as patch or minor. All other cases are classified
as major release.

3.3 Semantic Versioning Statistics
Applied to our library set, we found that in 58% of all version
changes, the library developer incorrectly specified the new version
string, i.e., according to Semantic Versioning rules the expected
release level did notmatch the actual release level. Evenworse, there
is no single library that achieved a 100% correctness in versioning.
Only 3/89 libraries (3.4%) correctly classified the release level in
more than 80% of all releases, with the android-oauth-client library
ranking first (93.8%). On the other hand, 10/89 (11.2%) of libraries
specified the version string correctly in less than 20% of all cases.
Two libraries (universal-image-loader and log4j) have not specified a
single version change correctly. Further, we could not find a positive
or negative, statistically significant, correlation between library
category (e.g., Advertising, Utilities) and the Semantic Versioning
classification score.

A mismatch between expected and actual changes is always
disadvantageously for the library consumer in that she can not
properly assess whether a new library version can be used as a
drop-in-replacement or whether a considerable amount of work has
to be spent to integrate the update. The severity of the mismatch,
however, depends on the type of inconsistency. In particular, two
types of inconsistencies are problematic: if either patch or minor
release is expected, but the actual changes indicate a major release
(highlighted cells in Table 3). These numbers show that library
developers under-specify changes in 39% of all cases, i.e., the version
increment is too moderate and suggests compatibility although
API changes might break existing applications. In about 6.5% of
cases library developers over-specify changes which does not effect
compatibility but might impede wide-spread adaptation due to a
high expected integration effort.

Figure 12 summarizes the total number of expected and actual
changes between consecutive versions by release level for the 1,971
analyzed versions. The expected changes denote how library de-
velopers specified new version strings. This distribution is what
you would expect for a typical library lifecycle; a stable base API
with occasional additions and code-only changes such as bug and
security fixes for the majority of releases. However, the reality looks
different: 44% of all versions in our analysis were classified as major
release due to non-compatible changes and/or removals of existing

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2192

874 (44.34%)
166 (8.42%)

382 (19.38%)
707 (35.87%)

715 (36.28%)
1,098 (55.71%)

Major

Minor

Patch

0 500 1000
Number of changes between library versions

Se
m

an
tic

 v
er

si
on

in
g

ch
an

ge

Expected changeActual change

Figure 12: Total number of expected and actual changes
between consecutive library versions grouped by patch/mi-
nor/major.

APIs. This indicates a poor library design without carefully tak-
ing into account the effort/incompatibilities that consumers might
experience.

3.4 Security Fixes
Finally, we have a dedicated look at security fixes in libraries. These
are the most important kind of updates and should typically be
provided as a patch release. However, even when released with a
short bug-fixing time, such patches miss their intended effect if they
are slowly adapted by app developers or not at all. Ultimately, the
end-user will be at risk and suffer from vulnerabilities like identity
theft or private data leakage. To check if library developers adhere
to this rule, we analyze the Facebook and Dropbox vulnerabilities
used in [4], vulnerabilities in Apache Commons Collections (Apache
CC) and OkHttp found via blog entries, as well as known library
vulnerabilities reported by Google’s ASI program [12]. In total, we
were able to investigate eight distinct bugfix versions2. For the eight
vulnerable libraries, we first determine whether the bugfix version
is a patch release or whether the library provider mixed bugfixes
with new content or even changed existing APIs. We subsequently
compare these findings with the official changelog to see whether
the fix is mentioned and properly documented. Table 4 shows the
detailed results.

Six out of ten patched libraries (including two backports) are mi-
nor releases, i.e., the developer did not intend to provide a dedicated
bugfix version. Only Airpush and Dropbox provide a patch-level
fix, while Facebook, MoPub, Supersonic and Vungle provide a major
version, i.e., they include new functionality and/or break existing
APIs. Apache CC and OkHttp provide an additional backport of the
security patch to allow an effortless adaption by older versions.
Surprisingly, both backport versions are patch-only updates, while
the fixes for the current releases were announced as minor versions
and even included major changes. Mixing critical security patches
with API changes is considered bad practice and certainly con-
tributes to a poor adaptation rate. Besides the version number, the
changelog is the primary way to convey and explain important fixes
and changes to the library consumer (see Figure 5). However, only
Apache CC explicitly mentions a security fix in its changelog, four
libraries at least mention a bug fix. Only the Dropbox and OkHttp
vulnerabilities have a CVE entry. In order to provide transparency
2We had to exclude further vulnerabilities reported by ASI since we were not able to
retrieve the original SDKs for either the fixed version and/or some older versions.

and increase the chance that the patch is adapted by developers,
some libraries provide a blog/support entry in which they provide
additional details about the vulnerability. MoPub at least provides a
short note in its GitHub repository, referencing the respective ASI
support document.

Although we cannot provide the same detailed analysis for the
native libraries listed in the ASI program (libjpeg-turbo, libpng,
libupnp, OpenSSL, and Vitamio), we checked their expected SemVer
and changelogs for the fix versions. Only Vitamio provided the
security fix as part of a major release (5.0). All other libraries pro-
vide a patch-level version and, more interestingly, even provide
detailed changelogs for every (security) bugfix made. In our data-
base of Java/Android libraries, only the Android support libraries
and OkHttp provide comparable changelogs regarding the level of
detail.

4 LIBRARY UPDATABILITY
Keeping third-party dependencies up-to-date is a complex problem
with many facets and different parties involved. On the one hand,
there are app developers who mainly wish to update libraries for
bugfixes and security fixes (see Section 2). On the other hand, there
are library developers that want app developers to adapt new li-
brary versions within a reasonable time-frame, e.g., for fixes and/or
new functionality. In Section 3 we showed that library developers
contribute to the adaptation problem by not giving app developers
a simple means of assessing whether or not a new library version
can be integrated without compatibility issues.

To properly assess the current status quo in library updatability,
we have to analyze which library versions and which parts thereof
are in use by applications. Given this information, we can then
determine whether an actual major library release indeed requires
additional integration effort or could still be updated as the set of
used APIs remains compatible. To this end we scan 1,264,118 apps
from Google Play and identify included library versions. For each
found library, we subsequently analyze the application bytecode to
determine how the library is used in terms of API calls. Based on
that information we infer the highest library version that is fully
API compatible for that app/library combination.3

4.1 Approach
We base our approach on the open-source project LibScout [4]. We
extend its implementation to conduct the following analyses:
1. Library API robustness:We first analyze the robustness of the
public library API across versions of a given library. For each library
with more than 10 versions, we determine, on a per-API level, the
highest version that provides this exact API. We are conservative
in that we do not search for alternative candidates if the API in
question is no longer available, e.g., due to method removal or
renaming. Similar to the SemVer analysis, we filter methods that
are obfuscated or reside in internal packages. As a result, we receive
a comprehensive data set with updatability information for each
library version/API pair. Note, that this analysis is much more
fine-grained than the API compatibility analysis conducted in [4],
which checks whether or not the entire API set of some version is
3There might be cases in which a fully API-compatible library version still breaks the
client application. This is discussed in Section 5.3

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2193

Table 4: Library versions with a fixed security vulnerability, the expected and actual SemVer, whether and how the security
fix is described and whether this library vulnerability is listed in Google’s ASI program. Versions marked with (B) denote
backport patches.

Library Fix Version exp. SemVer actual SemVer Changelog CVE other in ASI

Airpush 8.1x minor patch – – – ✓

Apache CC 3.2.2 (B) / 4.1 patch / minor patch /major security – blog+report –
Dropbox 1.6.2 patch patch bugfix CVE-2014-8889 blog –
Facebook 3.16 minor major bugfix – – –
OkHttp 2.7.5 (B) / 3.2.0 patch / minor patch / major bugfix CVE-2016-2402 blog –
MoPub 4.4.0 minor major bugfix – GitHub ✓

Supersonic 6.3.5 patch major – – – ✓

Vungle 3.3.0 minor major – – blog ✓

present in the successor version. This data would be insufficient to
determine whether an actively used library can be updated.
2. Library usage: To identify the actively used parts of a library,
we scan the application bytecode for invocations of this library.
To account for identifier renaming obfuscation, we match the li-
brary API with the identified root package name, e.g., when the
original library root package com.gson was obfuscated/renamed
to com.mygson or com.ab, we rename the original library API ac-
cordingly. For ambiguous profile matches, i.e., LibScout is not able
to distinguish patch-level changes in libraries, we select one of the
matched libraries. Since patch-level changes are API-compatible
this does not affect the subsequent updatability check.
3. Library updatability: Finally, we combine these two data sets
to determine whether and to which extent libraries in apps can be
updated. While libraries can, by definition, be replaced by patch
and minor releases, this large-scale analysis investigates whether
libraries can be replaced by subsequent major versions that account
for 44% of all library releases. Furthermore, this allows us to identify
hotspot-APIs, i.e., APIs of the libraries that are most/least frequently
used, and to determine their stability.

4.2 Updatability Statistics
We conduct a large-scale evaluation in which we analyzed 98 dis-
tinct libraries and scanned 1,264,118 apps from Google Play. The
results are summarized in Figure 13. LibScout successfully identifies
2,028,260 libraries (exact matches only). In 239,019 cases (11.8%),
we could not detect any library APIs that are actively used, i.e.,
those libraries are dead code. For the remaining 1,789,241 libraries,
we can determine the set of used APIs and correlate it with the
API robustness data. The results suggest that in 85.6% of the cases
the identified library can be upgraded by at least one version (Up-
grade1+) without any code adaption, simply by replacing the old
library. Even more surprising, a subset of 861,852 libraries (48.2%)
can be upgraded to the most current library version (Upgrade2Max).
Only in 14.4% of the cases the library can not be upgraded by a
single version without additional effort (non-upgradable), i.e., the
next version changed or removed used APIs. One major reason for
this high updatability rate is that although the majority of libraries
offer hundreds or even thousands of different API functions, the

Table 5: Updatability to the most current version by sum of
libraries and library matches grouped into 20% bins. How
to read: Between 80–99% of all identified versions of 10 dis-
tinct libraries can be upgraded to the latest version. These
10 libraries account for 579,294 library matches.

Percentage by # of libs by # of lib matches

100% 5 (13.5%) 11,346 (1%)
80–99% 10 (27%) 579,294 (51%)
60–79% 5 (13.5%) 139,189 (12.3%)
40–69% 5 (13.5%) 121,671 (10.7%)
20–39% 4 (10.8%) 228,393 (20.1%)
0–19% 8 (21.6%) 55,690 (4.9%)

Total 37 1,135,583

typical app developer only uses a small subset thereof. Our results
indicate that the average number of APIs used across libs is 18.

In the following, we analyzed the extent to which libraries in
apps could be upgraded to the latest version. In contrast to the
SemVer analysis in the previous section, this puts a higher focus
on the robustness of more popular APIs. Libraries that are stable in
their most frequently used APIs, even across major versions, are
assumed to have a high-updatability rate. To verify this assumption,
we grouped 37 libraries for which we have more than 10 versions
and more than 50 matches in our large-scale analysis according to
updatability to the newest version. Table 5 shows the fraction of
library matches that can be updated to the latest version, bucketed
into 20% bins. The column on the right aggregates the absolute
numbers of matches for those libraries.

We could not find a correlation between the absolute number
of used APIs and library updatability. While the libraries in the
top bucket on average use 11.9 APIs (with a standard deviation
of σ = 7.8), the libraries in the last bucket only have a slightly
higher API usage (mean = 14.7, σ = 8.4). However, aggregating
the top ten most frequently used library functions and correlating
them with their stability across library versions revealed the root
cause. Libraries with a high updatability to the most current version
are stable for the most popular APIs (even across major versions),
while libraries with a very low updatability showed a completely

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2194

2,028,260

239,0191,789,241

257,1171,532,124

670,272861,852

All matches

Used/Unused libraries

Upgrade possible

Upgradability

0 500,000 1,000,000 1,500,000 2,000,000

N
um

be
r o

f l
ib

ra
ry

 m
at

ch
es

Library matches
Libraries unused

Libraries used
Non−Upgradable

Upgradeable
Upgrade1+

Upgrade2Max

Figure 13: Library updatability of current apps on Google Play

different picture. In these cases, either (parts of) the most popular
APIs have been completely replaced by a new APIs or existing ones
have been modified or renamed. In our data set, Google’s Gson
library was a positive example with a 99.91% updatability to the
most current version in 315,079/315,371 library matches. On the
other hand, Retrofit could have been upgraded to the latest version
only in 0.07% (20/30,568) cases due to major API changes in recent
versions.

4.3 Security Vulnerability Fixing
Besides general library updatability, we are particularly interested
in how easy vulnerable library versions can be patched. To this end,
we investigate the eight publicly known vulnerabilities described
in Section 3. We could not easily increase the set of libraries since
it is not trivial to find reports on SDK vulnerabilities (see Table 4).
However, the affected libraries are commonly used by many ap-
plications (14.4% of 1,264,118) and thus any vulnerability in these
libraries does affect thousands or even millions of users.

Table 6 shows the libraries with the range of vulnerable versions.
After scanning the app repository, we found 18,397 apps that in-
clude one of the vulnerable library versions. This is particularly
surprising for the vulnerabilities reported by ASI, since the remedi-
ation deadline for those libraries has already expired4, i.e., many
app developers either have not reacted to Google’s reporting or
did not receive a notification in the first place. The subsequent API
usage analysis revealed that 91.5% of these libraries are actively
used by applications, i.e., at least one API call to the library was
found in the non-library code. In the remaining 8.5% of cases the
library is included in the app but is not in use, i.e., it is considered
dead code. This number is slightly lower than the 11.8% reported
for all libraries. For the advertising library MoPub we were not able
to find apps with one of the vulnerable library versions from the
year 2015. Note that using some of these libraries is already suffi-
cient to be vulnerable. This includes all advertisement libraries and
Dropbox. There is no need to explicitly invoke specific APIs, since
the library’s core functionality (Dropbox authentication or showing
ads in a WebView) is triggered upon initialization without further
interaction. For the remaining libraries the vulnerable functionality
has to be triggered by the application such as login at Facebook or
certificate pinning from OkHttp.

4Apps are not deleted from Google Play after the remediation phase but further app
updates are rejected as long as the vulnerability remains unfixed.

Out of the 16,837 actively used libraries, 97.8% could be patched
through a simple drop-in replacement of the vulnerable version
with the fixed one. In 57.3% of the cases, the library could even be
replaced by the most current version available. The perfect updata-
bility result for Airpush is due to the fact, that the patched version
is the most current version to date and includes code changes only.
Therefore, all versions of the second-to-last version 8.0 could be
upgraded to the latest version. Dropbox achieved the lowest auto-fix
rate since there were some changes to the most frequently used
APIs between 1.5.4 and the fixed version 1.6.2. Note, that the actual
numbers for Airpush and Vungle could even be higher, since we
were only able to retrieve between 1–3 versions prior to the fixed
version.

5 DISCUSSION
In the Android app ecosystem the majority of developers makes an
increasing use of third-party libraries to enhance usability and func-
tionality of their apps. However, those components are a double-
edged sword. While alleviating development through code reuse,
they have been found to be a major source of bugs and security vul-
nerabilities [17, 38, 40, 42]. To provide end-users reliable software,
it is therefore of outmost importance to keep third-party libraries
up-to-date. However, recent studies [4, 9, 23, 31] have demonstrated
that in reality, we are far from having up-to-date third-party com-
ponents and as a consequence this ultimately puts the end-user’s
privacy and security at risk.

Our app developer survey (see Section 2) was a first step towards
identifying the root causes why developers do not update libraries.
A valuable insight is that while about 60% of app developers regu-
larly update their application (at least once per quarter), mainly for
new functionality, the motivation to update the included libraries
is quite low (only 33% considers updating libraries as part of the
app update). Contrary to the motivation to update apps for new
functionality, the main incentive to update libraries is primarily
bugfixes and security fixes. However, this is impeded by the fact
that 63% of all library releases mix code fixes with new content
and/or non-compatible API changes (cf. Figure 12).

5.1 The Role of the Library Developer
Our survey suggests that many developers abstain from updating
dependent libraries due to an expected high integration effort and
to prevent incompatibilities. Our library API analysis in Section 3
supports this assumption. There is consistently a mismatch between

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2195

Table 6: Number of apps found with a vulnerable library version, number of apps that actively use this library, number of apps
that could be patched to the first non-vulnerable version without code adaptation (update2Fix), to the most current version
available (update2Max), or not updated to a fixed version without code modification (non-fixable). Unused libraries are not
considered in the last three columns.

Library Vuln. Versions Matches Libs in use update2Fix update2Max non-fixable

Airpush 8.0 4,746 4,545 4,545 (100%) 4,545 (100%) 0
Apache CC 3.2.1 / 4.0.0 1,199 749 749 (100%) 502 (67%) 0
Dropbox 1.5.4 - 1.6.1 710 682 410 (60.1%) 6 (0.01%) 272 (39.9%)
Facebook 3.15 1,839 1,808 1,792 (99.1%) 4 (0.22%) 16 (0.88%)
OkHttp 2.1.0 - 2.7.4 7,319 7,179 7,169 (99.9%) 3,013 (42%) 10 (0.14%)

3.0.0 - 3.1.2 500 237 237 (100%) 236 (99.6%) 0
MoPub 3.10 - 4.3 — — — — —
Supersonic 5.14 - 6.3.4 1,198 905 905 (100%) 743 (82.1%) 0
Vungle 3.0.6 - 3.2.2 886 732 653 (89.2%) 594 (81.1%) 79 (10.8%)

Total 18,397 16,837 16,460 (97.8%) 9,643 (57.3%) 377 (2.2%)

expected changes, i.e., conveyed through the version number, and
the actual changes based on code/API changes (the semantic version
was correct only in 42% of all cases). One problem is that some of the
library developers are too conservative in that they never increase
the major number, e.g., Digits (29 versions), FasterXML-Jackson-
Core (61 versions), or vkontakte (29 versions), making the three
number versioning scheme an effective two number versioning
scheme. Another problem is when different libraries from the same
developer, e.g. Android support libraries or Google Play Service
libraries, have the same release cycle and different libraries receive
the same new version number independent from the actual changes.
The main reason for the mismatch between expected and actual
semantic version, however, is probably the wrong assessment of
changes by the lib developer. This means, that the specification of
the patch, minor, or major version is determined by the amount of
code changes and effort spent for this update rather than whether
the new release is API compatible to the current version.

Another aspect is that 44% of all library updates comprise major
versions. This implies that many library developers too frequently
release versions that might potentially break application code. This
is also backed by survey responses highlighting library update
problems like “It often impacts the rest of the code. Backwards com-
patibility isn’t ensured and that leads to a big effort in updating the
libs.” or “Sometimes library updates break existing features, due to
methods changes”. A more careful API design and aggregating un-
forced changes like API renaming to fewer major versions would
remedy this situation. As highlighted in Section 4, keeping the
most frequently used APIs stable, even across major versions, also
has a considerable effect on the overall updatability. In particular,
library developers should spend more effort in providing dedicated
releases for critical bugfixes and security fixes. In six out of ten
cases (cf. Table 4), security fixes were even bundled as major release,
which severely impedes widespread adoption.

As there is no widely accepted library market place or package
manager for Android, changelogs are typically the main means to
communicate changes to the application developer. Since about
80% of app developers read changelogs at least from time to time,
this is a good way to provide detailed information on bugfixes and

API changes. However, in reality, the majority of changelog entries
advertises new functionality rather than reporting (detailed) bug
fixes. The fact that we could only find a single entry security fix
illustrates the current status quo pretty well. It seems that library
developers put their main focus on functionality that, according to
our survey results, is only the third most important update crite-
rion. A recent study [26] reports that API changes/removals in the
Android SDK typically trigger discussions on Stack Overflow. A
simple means of providing community support after major releases
would involve an active participation of library developers in such
discussions to clarify changes and provide guidelines on how to
perform the upgrade.

There has also been some discussion about the usefulness of
Semantic Versioning. While it is certainly not supposed to be the
gold standard, it is, in fact, a simple and useful means for library
developers to express compatibility and for consumers to quickly
assess the expected library integration effort. Almost all libraries
in our dataset already use the X.Y.Z scheme, however, it seems
that API compatibility is not always the main factor in the version-
ing process. An open question remains how many developers are
aware of concepts like SemVer and would be able to interpret ver-
sion changes correctly. To raise the awareness, library developers
could pro-actively promote SemVer compliance, e.g. by adding a
SemVer compliant badge to their code repository. In the long term,
this concept will likely become more known, at least among iOS de-
velopers, since the new Swift package manager enforces versioning
according to SemVer rules.

5.2 How to improve Library Updatability?
Based on the survey responses and the follow-up analyses there
are different possibilities on how to improve library updatability
for different entities of the app ecosystem. Note, that this section is
giving educated advices and actionable items based on first-hand
information of app developers and results aggregated from follow-
up analyses on libraries and apps fromGoogle Play. Implementation,
evaluation and assessment of developer adaption for the proposed
technical solutions are subject to future work.

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2196

The marketplace. One possibility to improve adaption is a cen-
tralized marketplace, like the Google Play Store. With the App
Security Improvement program, Google introduced a service that
identifies security problems in apps. It notifies the respective app
developer and provides a support document on how to fix the prob-
lems. However, this service also enforces that security fixes are
deployed within reasonable time. While this helps to improve the
overall application security on the market, it also comes with inher-
ent limitations. It only warns about known vulnerabilities and app
developers that are writing apps for markets other than the Play
Store do not benefit. The main limitation is, however, that it only
fights the symptoms and does not tackle the underlying problem
of the poor library version adaption rate.

About 79% of the developers in the survey could think of a ded-
icated library store or package manager for Android. There are
already established package managers for other ecosystems such
as nuget (.net), npm (JavaScript), Cargo (Rust), or Cocoapods (iOS).
There is no equivalent in size and acceptance for Android to search
for libraries to date. This is also documented by our survey in which
the majority of developers simply refers to “Google” or “Internet”
when being asked where to search for libraries. An accepted cen-
tral solution could also enforce certain library requirements or
quality standards more easily. For instance, the new Swift package
manager [2] (for macOS and soon for iOS) expects packages to be
distributed as source and to be named according to SemVer rules.
Source distributions might foster contributions and creation of
patches through the community. This is also backed by the results
of the survey in which open-source is the main criteria for library
selection for 61% of developers, next to functionality with about
80%.

Development tools. In 2014 the Android Gradle plugin was in-
troduced to give app developers a powerful dependency manager
to facilitate building complex applications with a larger number
of third-party components. But although this is the preferred way
to integrate libraries for about 30% of app developers, there is still
a high number (20%) that manually integrates libraries or uses a
combination of different methods (33%). Despite Gradle’s high ac-
ceptance (64% like its usability, 31% somewhat), the main criticism
constitutes its poor performance and the steep learning curve that
might be reasons to resort to different approaches. Google picked
up this criticism and recently announced a new Gradle version for
Android Studio that particularly improves build times for complex
applications [6]. Another argument against mixed approaches is
that including libraries manually implies a higher update effort,
since new versions have to be downloaded manually and there is no
notification when new releases become available. This reinforces
the unawareness of library updates among app developers as shown
in Figure 9. In contrast, Android Studio 2.2 recently integrated an
opt-in feature to automatically notify app developers when updates
of integrated third-party libraries from remote repositories such as
Maven Central and JCenter become available.

Besides improving the dependency manager, integrating our
detection of library version compatibility into the IDE could be
helpful to automatically classify a library update and to inform
about the expected code adaption effort based on the set of used
library APIs. We are currently in the process of evaluating how such

a plugin could be implemented for Android Studio, the preferred
IDE for about 61% of app developers in our survey.

Automated library updates to the rescue? A prominent example
for auto-updates is the former system component WebView that was
moved to a standalone-app in Android 5.0 after a series of severe
security vulnerabilities. Distributed as an app, Google can auto-
matically push security patches to this commonly used component
to reach millions of devices that do no longer receive Android OS
updates. Similarly, the app update mechanism of Google Play was
adapted to install app updates automatically as long as no new per-
missions are requested. However, patching libraries that are part of
the application bytecode is somewhat more challenging. Although
Section 4 has demonstrated that 85.6% of libraries could be automat-
ically updated, in 48.2% of the cases even to the latest version, there
might be additional obstacles that prevent auto-updates of minor
and major releases in reality (cf. Section 5.3). However, limiting
auto-updates to patch versions that provide critical bugfixes and
security fixes, would already tremendously improve the current
status-quo.

One possible integration approach includes the developer speci-
fying a subset of included libraries eligible for automatic updates.
A similar approach is deployed by Google Chrome to automati-
cally update extensions [18]. The difference, however, is that the
extension developer may specify this flag. There is also no formal
requirement or quality assurance required, since, in worst case, the
extension could simply be disabled after an unstable update. In
Android, one could further introduce an option to limit updates to
patch level updates that do not introduce new functionality. Accord-
ing to the survey, 52% of app developers would welcome such an
automated update mechanism, while only one quarter disapproves
such approaches. Note, that the questionnaire asked for updates
in general, not for bugfix/security fix updates in particular. Thus,
the acceptance for auto-fixing critical bugs only might actually be
higher.

There are also different on-device deployment strategies to inte-
grate new library versions. One option that does not require larger
modifications of the app installation routine is to integrate new
libraries during on-device compilation time. In Android 6, the ahead-
of-time compiler on the device compiles the entire applications’
bytecode to native code. There, the compilation would have to be
re-triggered for each library update, similar as for new app updates.
With Android 7, the ahead-of-time compilation was replaced by a
just-in-time compiler [13]. This way, library code could be updated
through a forced re-compilation whenever such code is used by
the app. Given the generally low library API usage, the expected
compilation overhead should be negligible.

Decoupling library code from application code, i.e., moving to dy-
namic linking, would be another option to facilitate library updates.
Dynamic linking of third-party components has been disallowed
by Android and iOS for a long time due to security reasons. This
changed with iOS 8, released in September 2014, when Apple ad-
dressed these security concerns with a new kernel extension to
check the integrity of app files [1], i.e., whether dynamic libraries
are signed, have a valid Team Identifier and that this identifier
matches the one of the containing application. Updating (compati-
ble) libraries is then simplified to replacing the library file.

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2197

5.3 Threats to Validity
Programmatically determining the public API of a software com-
ponent is a non-trivial task, specifically on Android where, among
others, advertisement libraries are typically obfuscated with iden-
tifier renaming. We distinguish obfuscated and non-obfuscated
names in a best effort approach, but for corner cases this is gener-
ally undecidable. The same is true for whitelisting package names
that are supposed to be used internally. Only the ground truth in
form of a proper documentation for all library releases would pro-
vide the complete public interface. However, this information is not
always available. Given that we are conservative in our filtering
list, we report a lower bound on updatability, e.g., when we erro-
neously include an obfuscated public API which is not present in
the successor version due to re-obfuscation.

We conduct our library updatability analysis based on API com-
patibility. This constitutes the main factor to determine whether
a library can be updated without any code adaption. We do not
include rare cases in which public, static class fields are renamed in
subsequent library releases. While such cases can cause incompati-
bility, we assume that they do not occur frequently. Moreover, we
do not assess whether the intended functionality is preserved in
the new release, i.e., that no new bugs are introduced and no code
semantics changed that cause unexpected side-effects. Changing
semantics of already existing APIs is considered bad practice and
strongly discouraged as there is no simple means of detecting such
cases for the library consumer.

We also consider the case when libraries depend on additional
libraries. Versions that include other libraries can only be updated
if all sub-dependencies can be updated as well. We found that
55% of the libraries in our database include at least one version
with sub-dependencies. However, throughmanual investigation, we
identified most of these dependencies as optional. In the majority
of cases, advertisement mediation frameworks can be configured
to use multiple ad libraries from different providers. There are two
utility libraries that are used by five other libraries, Gson and okio
with an updatability of 99.9% and 100%, respectively. Hence, it is
safe to assume that these sub-dependencies do not influence the
updatability of libraries that include them.

Finally, we investigated changes of the minimal, required An-
droid API level by libraries. Although this does not affect the cor-
rectness of our library updatability results, the app developer might
have to increase the app’s minimum API level in order to update a
library. This implies that the updated application may no longer be
compatible with devices having an older Android version which
consequently reduces the app’s potential user base. To investigate
the severity of such cases we aggregated a history of changes of
the minimal API for the eight libraries in Table 6 from publicly
available changelogs. Across versions, libraries have changed the
minSDK version between 1–2 times. The most current version of
five libraries requires a minimum API level between 11–16 (An-
droid 3.0–4.1). Dropbox does not state this requirement explicitly,
only indirectly via an Android sample (API level 19, Android 4.4).
According to the latest Google Play Access Statistics [15] less than
2% of all users have a device with API level < 16 (9% with API
level < 19). These results suggest that library developers are very
conservative in their choice of the minimal SDK to support a wide

range of devices and consequently the expected loss of potential
users is negligible for app developers.

6 RELATEDWORK
There have been several studies on different software ecosystems
to assess the ripple effect of API changes. Dig et al. [16] found that
in 80% of cases API changes in libraries break the client application
upon update. Kim et al. [22] investigated the relationship between
library API changes and bugs. They found that the number of bugs
particularly increases after API refactoring. Bavota et al. [5] studied
the evolution of dependencies between Java projects of the Apache
ecosystem to find that client projects are more willing to upgrade a
library when the new version includes a high number of bugfixes.
At the same time, API changes discouraged the user from upgrading
since substantial code adaption effort might be required to include
the new release. While those findings are in line with our results,
i.e., mismatch of expected and actual changes and insights from
app developers about why libraries are not updated, this work goes
one step further. We identified root causes for this problem in the
Android ecosystem. Based on our results we thoroughly discussed
various options to remedy this situation that would have a high
app developer acceptance (based on our survey results).

McDonnell et al. [29] studied the Android API stability and adop-
tion and found that app developers do not quickly adopt new APIs
to avoid instability and integration effort. Another study on the
Android API [25] showed that including fast-changing and error-
prone APIs negatively affects the app ratings in the market. In
contrast to our work, these studies investigated the Android API,
however, we can confirm their findings for third-party libraries
as well. Particularly, for over-privileged libraries, app developers
often receive negative feedback and ratings, e.g. “some users have
complained about the permissions the app requires due to libraries”
or “Google Play services and especially maps required for sometime
the storage permission which led to lots of questions and negative
ratings”.

Various studies [21, 30, 37] emphasized that code reuse is wide-
spread in the Android market and that third-party libraries account
for most of it [24, 27]. At the same time, the number of critical
bugs and security vulnerabilities in third-party components has
steadily increased. Over the last years they have become the weak-
est link and the prime attack vector of applications [38]. Dedicated
research [8, 19, 35, 39] has particularly found advertisement li-
braries to be hazards for the end-users’ security and privacy by
secretly collecting private data or even opening backdoors. This
has motivated a line of research to automatically detect libraries
in applications [10, 28, 32, 41]. However, these early approaches
were insensitive to exact library versions. More recent studies [4, 9]
adopted Software Bertillonage techniques [11] to identify concrete
library versions and to uncover that about 70% of included libs
in Google Play apps are outdated by at least one version. Similar
alarming results have recently been reported for other ecosystems,
such as Javascript [23] and Windows [31].

As a consequence, fast response times by library developers re-
main ineffective and even known security vulnerabilities [3, 7, 33–
35] remain a persistent threat in the app ecosystem, when app

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2198

developers take on average more than 300 days to integrate the ex-
isting fixes [4]. While previous work focused on detecting outdated
libraries, this work seeks to find the root causes. Ultimately, our
findings allowed us to propose actionable items that are both effec-
tive in amending the library outdatedness problem and accepted
by the majority of app developers.

7 CONCLUSION
With the rapidly increasing number of used libraries, large parts
of Android apps consist of third-party code. Critical bugs and se-
curity vulnerabilities in such components reach a high number of
end-users and put their privacy and sensitive data at risk. At the
same time reality shows that important patches either reach the
app consumer only after an unacceptable long period or not at all.
This paper is the first to identify the root causes of why Android
app developers do not adopt new versions. Based on first-hand
information of app developers and results of two empirical studies,
we propose actionable items for different entities of the app ecosys-
tem to remedy this alarming situation. We belief that tackling the
underlying problem is more effective than fighting the symptoms.
This approach is also preferred by Derek Weeks (vice president
at Sonatype) when being asked for a long-term solution: “It’s not
a story about security professionals solving the problem, it’s about
how we empower development with the right information about the
(software) parts they are consuming.”

Ethical considerations. We reported apps that include a vulnera-
ble library version to Google’s ASI program.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) through funding for the Center for
IT-Security, Privacy and Accountability (CISPA) (FKZ: 16KIS0345,
16KIS0656) and the project SmartPriv (FKZ: 16KIS0377K).

REFERENCES
[1] Apperian. 2014. The Impact of iOS 8 on App Wrapping. https://www.apperian.

com/mam-blog/impact-ios-8-app-wrapping. (2014). Last visited: 08/25/2017.
[2] Apple. 2016. Swift Package Manager Community Proposal. https://

github.com/apple/swift-package-manager/blob/master/Documentation/
PackageManagerCommunityProposal.md. (2016). Last visited: 08/25/2017.

[3] Google ASI. 2016. Security Vulnerability in Vungle Android SDKs prior to 3.3.0.
https://support.google.com/faqs/answer/6313713. (2016). Last visited: 08/25/2017.

[4] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library
Detection in Android and its Security Applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS ’16).
ACM, New York, NY, USA, 356–367.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. 2015. How the Apache Community Upgrades Dependencies:
An Evolutionary Study. Empirical Softw. Engg. 20, 5 (Oct. 2015), 1275–1317.

[6] Android Developers Blog. 2017. Android Studio 3.0 Canary 1. https://android-
developers.googleblog.com/2017/05/android-studio-3-0-canary1.html. (2017).
Last visited: 08/25/2017.

[7] Dropbox Blog. 2015. Security bug resolved in the Dropbox SDKs for An-
droid. https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-
the-dropbox-sdks-for-android. (2015). Last visited: 08/25/2017.

[8] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal Analysis
of Android Ad Library Permissions. In MoST’13. IEEE.

[9] ZhihaoMike Chi. 2016. LibDetector: Version Identification of Libraries in Android
Applications. (August 2016).

[10] Jonathan Crussell, Clint Gibler, andHao Chen. 2013. Andarwin: Scalable detection
of semantically similar android applications. In ESORICS’13. Springer.

[11] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram Hindle. 2011.
Software Bertillonage: Finding the Provenance of an Entity. In Proceedings of the

8th Working Conference on Mining Software Repositories (MSR ’11). ACM, New
York, NY, USA, 183–192.

[12] Android Developers. 2015. App Security Improvement Program. https://developer.
android.com/google/play/asi.html. (2015). Last visited: 08/25/2017.

[13] Android Developers. 2016. Android 7 for Developers. https://developer.android.
com/about/versions/nougat/android-7.0.html. (2016). Last visited: 08/25/2017.

[14] Android Developers. 2017. App Security Improvements: Looking back
at 2016. https://android-developers.googleblog.com/2017/01/app-security-
improvements-looking-back.html. (2017). Last visited: 08/25/2017.

[15] Android Developers. 2017. Google Play Dashboard. https://developer.android.
com/about/dashboards/index.html. (2017). Last visited: 08/25/2017.

[16] DannyDig and Ralph Johnson. 2006. HowDoAPIs Evolve? A Story of Refactoring:
Research Articles. J. Softw. Maint. Evol. 18, 2 (March 2006), 83–107.

[17] Hewlett Packard Enterprise. 2016. HPE Cyber Risk Report. https://techbeacon.
com/resources/2016-cyber-risk-report-hpe-security. (2016). Last visited:
08/25/2017.

[18] Google. Last visited: 02/10/2017. Chrome Extensions Autoupdating. https://
developer.chrome.com/extensions/autoupdate. (Last visited: 02/10/2017).

[19] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. InWISEC’12. ACM.

[20] GuardSquare. 2016. ProGuard Java Obfuscator. http://proguard.sourceforge.net.
(2016).

[21] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song.
2013. Juxtapp: A Scalable System for Detecting Code Reuse Among Android
Applications. In DIMVA’12. Springer.

[22] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Investi-
gation into the Role of API-level Refactorings During Software Evolution. In
Proceedings of the 33rd International Conference on Software Engineering (ICSE
’11). ACM, New York, NY, USA, 151–160.

[23] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In Proceedings of the Network
and Distributed System Security Symposium (NDSS ’17).

[24] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. An inves-
tigation into the use of common libraries in android apps. In Proceedings of the
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER ’16), Vol. 1. IEEE, 403–414.

[25] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 9th joint
meeting on foundations of software engineering (ESEC/FSE ’13). ACM, 477–487.

[26] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How Do API Changes Trigger Stack Overflow
Discussions? A Study on the Android SDK. In Proceedings of the 22nd International
Conference on Program Comprehension (ICPC 2014). ACM, New York, NY, USA,
83–94.

[27] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2014. Revisiting Android Reuse Studies in the Context of Code
Obfuscation and Library Usages. In Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA, 242–251.

[28] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and
Accurate Detection of Third-party Libraries in Android Apps. In ICSE’16. ACM.

[29] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study
of API Stability and Adoption in the Android Ecosystem. In Proceedings of the
2013 IEEE International Conference on Software Maintenance (ICSM ’13). IEEE
Computer Society, Washington, DC, USA, 70–79.

[30] Israel J Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten
Berger, and Ahmed E Hassan. 2014. A large-scale empirical study on software
reuse in mobile apps. IEEE software 31, 2 (2014), 78–86.

[31] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-
tras. 2015. The Attack of the Clones: A Study of the Impact of Shared Code on
Vulnerability Patching. In Proc. 36th IEEE Symposium on Security and Privacy (SP
’15). IEEE, 692–708.

[32] Arun Narayanan, Lihui Chen, and Chee Keong Chan. 2014. Addetect: Automated
detection of android ad libraries using semantic analysis. In ISSNIP’14. IEEE.

[33] The Hacker News. 2014. Facebook SDK Vulnerability Puts Millions of Smart-
phone Users’ Accounts at Risk. http://thehackernews.com/2014/07/facebook-
sdk-vulnerability-puts.html. (2014). Last visited: 08/25/2017.

[34] The Hacker News. 2015. Backdoor in Baidu Android SDK Puts 100Million Devices
at Risk. http://thehackernews.com/2015/11/android-malware-backdoor.html.
(2015). Last visited: 08/25/2017.

[35] The Hacker News. 2015. Warning: 18,000 Android Apps Contains Code that Spy
on Your Text Messages. http://thehackernews.com/2015/10/android-apps-steal-
sms.html. (2015). Last visited: 08/25/2017.

[36] Tom Preston-Werner. 2013. Semantic Versioning 2.0.0. http://semver.org/. (2013).
Last visited: 08/25/2017.

[37] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E Hassan.
2012. Understanding reuse in the android market. In Proceedings of the 20th

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2199

https://www.apperian.com/mam-blog/impact-ios-8-app-wrapping
https://www.apperian.com/mam-blog/impact-ios-8-app-wrapping
https://github.com/apple/swift-package-manager/blob/master/Documentation/PackageManagerCommunityProposal.md
https://github.com/apple/swift-package-manager/blob/master/Documentation/PackageManagerCommunityProposal.md
https://github.com/apple/swift-package-manager/blob/master/Documentation/PackageManagerCommunityProposal.md
https://support.google.com/faqs/answer/6313713
https://android-developers.googleblog.com/2017/05/android-studio-3-0-canary1.html
https://android-developers.googleblog.com/2017/05/android-studio-3-0-canary1.html
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android
https://blogs.dropbox.com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-for-android
https://developer.android.com/google/play/asi.html
https://developer.android.com/google/play/asi.html
https://developer.android.com/about/versions/nougat/android-7.0.html
https://developer.android.com/about/versions/nougat/android-7.0.html
https://android-developers.googleblog.com/2017/01/app-security-improvements-looking-back.html
https://android-developers.googleblog.com/2017/01/app-security-improvements-looking-back.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://techbeacon.com/resources/2016-cyber-risk-report-hpe-security
https://techbeacon.com/resources/2016-cyber-risk-report-hpe-security
https://developer.chrome.com/extensions/autoupdate
https://developer.chrome.com/extensions/autoupdate
http://proguard.sourceforge.net
http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html
http://thehackernews.com/2014/07/facebook-sdk-vulnerability-puts.html
http://thehackernews.com/2015/11/android-malware-backdoor.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://semver.org/

International Conference on Program Comprehension (ICPC ’12). IEEE, 113–122.
[38] Sonatype. 2017. 2016 State of the Software Supply Chain. https://www.sonatype.

com/software-supply-chain. (2017). Last visited: 08/25/2017.
[39] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.

Investigating User Privacy in Android Ad Libraries. In MoST’12. IEEE.
[40] ThreatPost. 2016. Code reuse - A peril for secure software de-

velopment. https://threatpost.com/code-reuse-a-peril-for-secure-software-
development/122476/. (2016). Last visited: 08/25/2017.

[41] HaoyuWang, Yao Guo, ZiangMa, and Xiangqun Chen. 2015. WuKong: A Scalable
and Accurate Two-phase Approach to Android App Clone Detection. In ISSTA’15.
ACM.

[42] JeffWilliams and Arshan Dabirsiaghi. 2012. The unfortunate reality of insecure li-
braries. http://www.aspectsecurity.com/research-presentations/the-unfortunate-
reality-of-insecure-libraries. (2012). Last visited: 08/25/2017.

A APPENDIX: QUESTIONAIRE
Professional Background Questions:
B1: Is developing Android apps your primary job?
(i) yes, (ii) no
B2: Are you developing your apps as a hobby, are you self-employed
or do you work for a company? Please check all that apply.
(i) hobby, (ii) self-employed, (iii) company, (iv) other
B3: How large is your company?
(i) up to 10 employees, (ii) 10-50 employees, (iii) 50-100 employees,
(iv) >100 employees
B4: How many apps have you worked on?

App Development Questions:
A1: How do you develop your app/apps? (If more than one, please
choose the one you use primarily)
(i) Android Studio, (ii) Eclipse, (iii) Application Generator Frame-
work (Cordova, Xamarin,...), (iv) other
A2: Is/Are your app/apps updated on a fixed schedule?
(i) yes, (ii) no
A3: Which intervals do you use to update your app/apps?
(i) weekly, (ii) bi-weekly, (iii) monthly, (iv) quarterly, (v) twice per
year, (vi) yearly, (vii) never
A4: For which purpose do you update your app/apps? Please check all
that apply.
(i) new functionality, (ii) bugfixes, (iii) library updates, (iv) other

Third-Party Library Questions:
T1: Where do you search for the libraries?

T2: Do you choose libraries according to specific criteria? Please check
all that apply.
(i) Popularity, (ii) Functionality, (iii) Open-Source, (iv) Closed-Source,
(v) Required Permissions, (vi) Documentation, (vii) Recommenda-
tions, (viii) Ratings, (ix) Security, (x) Update frequency, (xi) other
T3: How many different library functions do your apps typically use?

T4: How do you integrate third-party libraries into your app? Please
check all that apply.
(i) Add JAR file, (ii) Gradle, (iii) Ant, (iv) Maven, (v) I don’t know,
(vi) other
T5: Are you happy with gradle’s usability?
(i) yes, (ii) somewhat, (iii) no, (iv) I don’t know
T6: Can you list a few problems that you’ve had with gradle?

T7: Do you update the libraries in your app regularly?
(i) yes, all of them, (ii) yes, some of them, (iii) no, (iv) I don’t know
T8: Why do you update your apps’ libraries?
(i) New features, (ii) Bugfixes, (iii) Security fixes, (iv) I don’t know,
(v) other
T9: If your app were to contain outdated libraries, why would that
be? Please check all that apply.
(i) Librarywas still working, (ii) Toomuch effort, (iii) Missing update
documentation, (iv) Unaware of updates, (v) Prevent incompatibili-
ties, (vi) Bad/missing library documentation, (vii) I don’t care, (viii)
I don’t know, (ix) other
T10: Do you have positive/negative examples for libraries regarding
updatability, documentation etc.? Please give details.

T11: Would you welcome automatic library updates on user devices
via the Android OS in cases where they do not break functionality?
(i) yes, (ii) no, (iii) I don’t mind, (iv) I don’t know
T12: Which of the following do you think would help make library
updates easier? Please check all that apply.
(i) Different distribution channels, (ii) Central library marketplace,
(iii) Better IDE integration, (iv) System service or package manager,
(v) other
T13: Have you ever encountered negative feedback/ratings solely be-
cause of included library functionality (e.g. libs that perform tracking
or aggregate user data)?
(i) yes, (ii) no, (iii) I don’t know
T14: What was the problem?

Demographics:
D1: How old are you? Enter 0 if you don’t want to answer

D2: What is your gender?
(i) male, (ii) female, (iii) I don’t want to answer
D3: What is your highest educational degree?
(i) High school, (ii) College degree, (iii) Graduate degree, (iv) I don’t
want to answer, (v) No degree
D4: How many years of general coding experience do you have?

D5: How many years of Android experience do you have?

D6: How did you learn to write Android code? Please check all that
apply.
(i) Self-taught, (ii) Class in school, (iii) Class in university, (iv) On
the job, (v) Online coding course, (vi) Other

Session J3: Problematic Patches CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2200

https://www.sonatype.com/software-supply-chain
https://www.sonatype.com/software-supply-chain
https://threatpost.com/code-reuse-a-peril-for-secure-software-development/122476/
https://threatpost.com/code-reuse-a-peril-for-secure-software-development/122476/
http://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
http://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries

	Abstract
	1 Introduction
	2 App Developer Survey
	2.1 Ethical Concerns
	2.2 Participants
	2.3 Q1: Workflow and Integration
	2.4 Q2: Application and Library Maintenance
	2.5 Q3: Reasons for Outdated Libs
	2.6 Limitations

	3 Library Release Analysis
	3.1 Semantic Versioning
	3.2 Android Library Versioning
	3.3 Semantic Versioning Statistics
	3.4 Security Fixes

	4 Library Updatability
	4.1 Approach
	4.2 Updatability Statistics
	4.3 Security Vulnerability Fixing

	5 Discussion
	5.1 The Role of the Library Developer
	5.2 How to improve Library Updatability?
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References
	A Appendix: Questionaire

