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ABSTRACT
Cloud computing has become an irreversible trend. Together comes

the pressing need for verifiability, to assure the client the correct-

ness of computation outsourced to the cloud. Existing verifiable

computation techniques all have a high overhead, thus if being

deployed in the clouds, would render cloud computing more expen-

sive than the on-premises counterpart. To achieve verifiability at

a reasonable cost, we leverage game theory and propose a smart

contract based solution. In a nutshell, a client lets two clouds com-

pute the same task, and uses smart contracts to stimulate tension,

betrayal and distrust between the clouds, so that rational clouds

will not collude and cheat. In the absence of collusion, verification

of correctness can be done easily by crosschecking the results from

the two clouds. We provide a formal analysis of the games induced

by the contracts, and prove that the contracts will be effective under

certain reasonable assumptions. By resorting to game theory and

smart contracts, we are able to avoid heavy cryptographic protocols.

The client only needs to pay two clouds to compute in the clear,

and a small transaction fee to use the smart contracts. We also con-

ducted a feasibility study that involves implementing the contracts

in Solidity and running them on the official Ethereum network.

KEYWORDS
Verifiable Computing; Smart Contract; Game Theory; Collusion;

Trust

1 INTRODUCTION
Cloud computing has reached critical mass and become indispens-

able to businesses. A 2016 report [43] found that 95% of the or-

ganizations surveyed are running applications or experimenting
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with the cloud. Data from Synergy Research Group [46] showed

that the worldwide cloud computing market reached $148 billion in

2016, having grown by 25% on an annual basis. Gartner predicted

more than $1 trillion in IT spending will be directly or indirectly

impacted by the transition to cloud computing by 2020 [18].

In the context where organizations embrace clouds and reap clear

business benefits, verifiability becomes a critical requirement for

cloud computing. Cloud computing is a service provided by an

external party, thus it is difficult for the client to fully trust the

cloud provider. Should the cloud return a wrong result for a mission-

critical task, the consequence would be disastrous. To exercise due

diligence and gain greater confidence in computation outsourced

to the cloud, clients need to be able to verify the correctness of the

results returned.

Roughly, existing solutions for verifying outsourced computation

are based on either cryptography or replication (see Section 9). Typ-

ically in the cryptography-based approach, the client outsources

a task to a single cloud server. The cloud returns the computation re-

sult and proves to the client that the result was computed correctly.

Cryptography ensures the client will reject with a high probability

if the result is incorrect. In the replication-based approach, the

client gives the same task to multiple clouds and the clouds compute

the task independently. The client then collects and crosschecks the

results. As long as the number of faulty servers is below a threshold,

the correctness of result can be verified using a consensus protocol.

A Cost Analysis Existing verifiable computation techniques are

not quite economically sound. The biggest motivation for busi-

nesses to adopt cloud computing is perhaps cost saving. For exam-

ple, we used the Amazon AWS Total Cost of Ownership Calculator

[3] on a few typical settings, and found that by moving their on-

premises IT infrastructures to AWS, companies could save 50% to

69% of the cost (See Appendix A). The saving is large, however is

not large enough to sustain existing verifiable computation tech-

niques. Cloud computing is based on the pay-per-use paradigm

and the clients are charged for the resources they use. Using the

cryptography-based approach to verify a task in the cloud means

that the client has to pay for the overhead imposed by the cryp-

tographic algorithms/protocols. The typical overhead is 10
3
- 10

9

times higher than computing the task itself [52] and would translate

to a prohibitively high financial cost to the client. The replication-

based approach usually computes the task in the clear and the
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overheads mainly come from employing multiple replicas. Usually

at least 3 replicas are required
1
, which means the total cost to the

client is at least tripled. From the cost saving figures showed earlier,

it is clear that using 3 or more clouds for verification is very likely

to cost more than simply using on-premises IT infrastructures.

Problem Statement In summary, we want verifiable cloud com-

puting at a competitively low cost. The clients should be able to get

a strong correctness guarantee of the computation in the clouds,

and pay similar or less than what they pay when using on-premises

IT infrastructures. To accomplish this, we opt for the replication

based approach because it is much closer to being practical. It is

clear from the analysis above that to make the financial cost of the

solution competitive compared to on-premises IT, the client should

pay no more than 2 replicas for the computation and should mini-

mize other overheads. The biggest challenge of using only 2 replicas

is collusion. If the two clouds coordinate and output the same wrong

result, the client might accept the wrong result without even re-

alizing it. It becomes even more challenging when heavy-weight

cryptographic protocols have to be avoided in order to reduce the

overhead to an acceptable level. To this end, we resort to game

theory and a new financial instrument, namely smart contracts, for
tackling the problems.

The Idea Rather than forbidding or preventing collusions through

technical means such as cryptography, we work towards under-

mining, through economic means, the foundation that collusion

is grounded on. This should not be surprising since collusion is a

topic studied in economics for many years. Three insights from

economists establish the premise of our work:

• Collusion occurs “whenever it is more profitable to all of the par-

ticipants than their feasible alternatives” [47]. Since collusion is

often driven by economic incentives, imposing high fines on col-

lusion has become a major instrument for preventing collusions

in the real world. The fines make collusion a less profitable choice

than not colluding, thus offset the motivation for collusion.

• Colluding parties have their own interests, and this is a source of

tension between them [35]. Colluding parties are not a single cor-

porate entity. More interestingly, they are often competitors who

collude in order to gain extra profit. Nevertheless, each party is

responsible to its own and acts in its own interest. Under suitable

conditions, collusion can dissolve and competition can resume.

• The most pressing problem for the colluding parties is how to

prevent cheating. This is a natural consequence of pursuing self-

interest, i.e. parties act in their own interest and try to maximize

their own profit. In fact, “the central difficulty of collusion is

that it is often profitable for firms to secretly deviate from the

collusive agreement” [35].

Our key idea is to sabotage collusion by using smart contracts.

Here smart contracts materialize self-enforcing agreements and

payments that serve multiple purposes: (1) To weaken the incentive

for collusion by taking a deposit from the clouds as security for

the delivery of the correct result. The clouds will be penalized

by losing their deposit should they deliver a wrong result. (2) To

create an incentive for correct computation by redistributing the

fine to the honest cloud as a reward. (3) To create distrust between

1
Except for [11], which uses a minimal of 2 replicas. However the protocol introduces

an overhead that is about 10 - 20 times of the computation being verified.

the colluders by incentivizing them to betray their partner in the

collusion coalition. On the whole, we intend to make collusion a less

favorable choice and make it much harder for potential colluding

parties to trust each other, so that rational parties will stay away

from collusion because it is unprofitable and too risky.

Contributions Based on the idea above, we designed two smart

contracts (the Prisoner’s contract and the Traitor’s contract) to be

used in scenarios where a client outsources a computation task to

two clouds and cross-checks the results from the two clouds. With

moderate and reasonable assumptions, the contracts guarantee

that the two clouds, if they are rational, will behave honestly even

though they have the opportunity to collude together and cheat. We

conducted detailed game theoretical analysis of the contracts. We

proved that for the two clouds, both being honest and not colluding

is the unique sequential equilibrium (a stronger form of Nash equi-

librium) of the game. We also show feasibility of the contracts by

building them for the Ethereum network. We created the contracts

using Solidity and executed them on the official Ethereum network.

We provide a breakdown of financial and computational overheads

for our contracts. Our figures show that the total transaction cost

for executing each contract is below $1.

The Prisoner’s contract is to be signed by a client and two

clouds. The name comes from the fact that the contract induces a

game similar to the famous Prisoner’s Dilemma game between the

two clouds. At a high level, the contract says that the client will

pay the two clouds to compute a task, but to get the job, each cloud

has to pay a deposit. The honest cloud will get its deposit back

later, the cheating cloud will lose its deposit (if cheating is detected).

Moreover, if one cloud cheats and one cloud is honest, the cheating

cloud’s deposit goes to the honest cloud as a bonus (after deducting

certain necessary costs). Similar to in the Prisoner’s Dilemma game,

although it seems both clouds gain most by colluding with each

other, both clouds eventually end up being honest. This is because

they know the other will act in its own interest, which means they

will deviate from collusion for a higher payoff.

The problem with the Prisoner’s contract is that it only works

if the two clouds cannot make credible and enforceable promises.

This is not true especially with the help of smart contracts. We

demonstrate this by the Colluder’s Contract, which is a secret

smart contract between the two clouds. In the contract, the cloud

who initiates the collusion coalition agrees to pay a bribe to incen-

tivize the other cloud to collude. More importantly, both clouds

make a commitment by paying a deposit which will be taken if they

do not follow the collusion strategy. The contract totally changes

the game: when the deposit is high enough to offset the benefit a

cloud can gain by betraying the other, betrayal is no longer more

profitable and collusion becomes the best strategy for both clouds.

To bust this form of more robust collusion coalition policed by

collusion agreements such as the Colluder’s contract, we designed

the Traitor’s contract. Intriguingly, the Traitor’s contract works
not by countering the collusion agreement directly, but by forgiving

one (and only one) cloud who follows the collusion strategy. The

aim of the Traitor’s contract is not to incentivize the clouds to

deviate from the collusion, but to encourage them to report the

collusion to the client. By getting information about collusion, the

client can further investigate the case and punish the cheating cloud.

By following the collusion strategy, the reporting cloud avoids the
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punishment imposed by the collusion agreement thus making the

agreement useless. If the other cloud does cheat, the reporting

cloud will get a reward, which makes reporting the most profitable

strategy
2
. Overall, reporting is risk-free (the reporting cloudwill not

be punished by the Prisoner’s contract and the Colluder’s contract)

and more profitable. The consequence is that both clouds know that

if they try to initiate a collusion coalition, the other will collude but

also report it to the client. This creates distrust between the clouds

so that neither will want to initiate the collusion coalition, and they

will stay honest to avoid being betrayed and punished.

The main cost of our smart contract based solution is the cost

for employing two clouds to compute (in the clear) the same task.

We assume that an offline Trusted Third Party (TTP) is available to

resolve the dispute when an inconsistency or anomaly is detected.

However, if the two clouds are rational, the TTP will never be

involved. Even if in the unlikely cases the TTP is called upon, the

cost for dispute resolution is borne by the faulty cloud, not the client.

The implementation of the contract requires only a few (constant

number) additional cryptographic operations that are very light.

Our experiments on the official Ethereum network show that the

transaction cost for using smart contract facilities is small.

2 PRELIMINARIES
In Section 2.1 and 2.2, we briefly review relevant concepts in game

theory. The two sections are mostly based on [34, 36].

2.1 Games and Strategies
In this paper, we describe games in extensive form with imperfect in-
formation. In extensive form, a game is depicted as a game tree. The

tree shows choices and information available to players when they

are called to take an action, the order in which players make their

moves, the outcomes of the game and the payoffs of the outcomes.

Imperfect information means that the players may not know all

the actions taken by the other players. Imperfect information is

more realistic and allows a wider scope of analysis than perfect

information, i.e. assuming players knows every move of the others.

For example, simultaneous moves and deception can be captured

by imperfect information. Formally, we have:

Definition 2.1. A finite game in extensive form with imper-
fect information, or game for short in this paper, is a tuple

G = (N ,A,H ,Z, χ , ρ,σ ,u,I) where:

• N is a set of n players.

• A is a single set of actions.

• H is a set of nonterminal choice nodes.

• Z is a set of terminal nodes, disjoint fromH .

• χ : H → 2
A

is the action function, which assigns to each choice

node a set of possible actions.

• ρ : H → N is the player function, which assigns to each nonter-

minal node a player i ∈ N who chooses an action at that node.

• σ : H × A → H ∪ Z is the successor function, which maps

a choice node and an action to a new choice node or terminal

node such that for all h1,h2 ∈ H and a1,a2 ∈ A, if σ (h1,a1) =
σ (h2,a2) then h1 = h2 and a1 = a2.

2
Reporting is most profitable only if collusion happens. The contract has clauses to

punish a cloud that misreports a fabricated case.

• u = (u1, ...,un ) where ui : Z → R is a real-valued utility func-

tion for player i on the terminal nodesZ.

• I = (I1, ...,In ) where Ii is an equivalent relation that partitions

player i’s choice nodes {h ∈ H : ρ (h) = i} into ki information

sets Ii,1, ...,Ii,ki with the property that χ (h) = χ (h
′) and ρ (h) =

ρ (h′) whenever there exists a j for which h ∈ Ii, j and h
′ ∈ Ii, j .

In the definition, (N ,A,H ,Z, χ , ρ,σ ,u) captures the setting
and rules of the game, and I captures the imperfection of informa-

tion. An example game is shown in Figure 1. In the game tree, we

use circles for choice nodes and rectangles for terminal nodes. Each

node has a labelvi . In the game, there are two playersN = {P1, P2}.
Actions available to players are A = {L,M,R, ℓ, r ,x ,y}. The choice
nodes are H = {v0,v2,v3,v4,v5,v6,v7} and the terminal nodes

are Z = {v1,v8,v9,v11,v12,v13,v14,v15}. The function χ assigns

actions to choice nodes. Actions {L,M,R} are assigned to v0. The
nodes v2 and v3 are both assigned {ℓ, r }, and the nodes v4 to v7
all have the same actions {x ,y}. The function ρ assigns choice

nodes to players. In the figure, we label the choice nodes with its

player. In the game P1 has {v0,v4,v5,v6,v7} and P2 has {v2,v3}.
The function σ is captured in the tree structure by the parent-

child relationship. After a player chooses an action, the game will

move to the child node following the edge labeled with the ac-

tion. The utility of outcomes for each player are displayed at the

bottom under the leaf nodes. Information sets are represented as

elongated dashed circles encompassing some nodes, unless the in-

formation set has only one node. So there are 3 information sets

for P1: I1,1 = {v0},I1,2 = {v4,v5},I1,3 = {v6,v7}, while only 1

information set for P2: I2,1 = {v2,v3}. A player cannot distinguish

nodes in the same information set. For example, after P1 has made

the first move, P2 does not know whether he is at v2 or v3 because
he does not know whether P1 choseM or R.
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Figure 1: An Example Game

Strategies determine the action a player will take at any stage

of a game. In this paper, we focus on behavior strategies which
are more general than pure strategies and are equivalent to mixed

strategies in our setting.

Definition 2.2. Let G be a game, a behavior strategy si of player
i is a function that assigns each information set Ii, j ∈ Ii a probabil-

ity distribution over the actions in χ (Ii, j ), with the property that

each probability distribution is independent of the others. A com-
pletely mixed behavior strategy is a behavior strategy in which

every action is assigned a positive probability. A strategy profile
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is a list of all players’ strategies s = (si )i ∈N . A strategy profile with-

out player i’s strategy is defined as s−i = (s1, . . . , si−1, si+1, . . . , sn ).
We can also write s = (si , s−i ).

For example the game in Figure 1 can have a strategy profile

(s1, s2)where s1 =
(
[
1

3
(L), 1

3
(M ), 1

3
(R)], [ 3

4
(x ), 1

4
(y)], [ 1

2
(x ), 1

2
(y)]
)
,

s2 = ([1(ℓ), 0(r )]). For P1, the strategy s1 says that to play all actions
at information set I1,1 with a equal probability of

1

3
, to play x with

a probability of
3

4
and y with a probability of

1

4
at information set

I1,2, and to play x andy with a equal probability of 1

2
at information

set I1,3. For P2 the strategy s2 says that to play ℓ for sure and never
play r at information set I2,1.

2.2 Sequential Equilibrium
The most important solution concept in game theory is the Nash

equilibrium. Informally, in a Nash equilibrium, every player’s strat-

egy is the best given the other players’ strategies, and no one can

do better by changing strategy if the others do not change their

strategies. However Nash equilibria can be weak sometimes. In

some Nash equilibria, it is possible that a player’s strategy includes

irrational actions (non-credible threats) that lead to a lower payoff

for himself. There are several refinements of the Nash equilibrium

that aim to exclude those implausible equilibria. A stringent and

influential refinement is the sequential equilibrium [28]. Sequential

equilibria exclude weak strategies by requiring a strategy to be

sequentially rational, i.e. optimal not just in terms of the whole

game but also at each information set. The sequential equilibrium

can also be seen as a refinement of other popular refinements e.g.

subgame perfect equilibrium and perfect-Bayes equilibrium.

A sequential equilibrium is comprised of a strategy profile and a

belief system. With imperfect information, players have to make

decisions under uncertainty. When the player is called to make

a decision, he needs beliefs of where he is in the game tree. The

belief system allows players to construct a strategy that is optimal

at every point in the tree.

Definition 2.3. In a game G, a belief system β = (βi )i ∈N is

the following: for each player i , βi assigns each information set

Ii, j ∈ Ii a probability distribution over the nodes in Ii, j . For each

node h ∈ Ii, j , the belief βi (h) = Pr [h |Ii, j ], i.e. the probability that

player i is at h given that he is at Ii, j .

Definition 2.4. In a game G, the player i’s expected payoff at h,
given the play of the game is at node h when the players implement

the strategy profile s , is the sum of the utility of each terminal nodes,

weighted by the probability of reaching the node:

ui (s;h) =
∑
z∈Z

Pr [z |(s,h)] · ui (z)

The player i’s expected payoff atIi, j is the sum of expected payoff

at each h ∈ Ii, j , weighted by the belief βi (h):

ui (s;Ii, j , β ) =
∑

h∈Ii, j

βi (h) · ui (s;h)

Definition 2.5. An assessment is a pair (s, β ) in which s is a
behavior strategy profile and β is a belief system.

Definition 2.6. Let G be a game, (s, β ) be an assessment, the

strategy profile s = (si , s−i ) is called rational at information set

Ii, j , relative to β , if for each behavior strategy s ′i , si of player i:

ui (s;Ii, j , β ) ≥ ui ((s
′
i , s−i );Ii, j , β )

The assessment is called sequentially rational if for each player

i and each information set Ii, j ∈ I, the strategy profile s is rational
at Ii, j relative to β .

Definition 2.7. An assessment (s, β ) is said to be consistent if
there exists a sequence of fully mixed behavior strategy profiles

(sk )k ∈N satisfying the following conditions:

(1) The profile (sk )k ∈N converges to s , i.e. limk→∞ (s
k ) → s;

(2) The sequence of beliefs (βk )k ∈N induced by (sk )k ∈N (by Bayes’

rule) converges to the belief system β , i.e. limk→∞ (β
k ) → β ;

Definition 2.8. An assessment (s, β ) is called a sequential equi-
librium if it is sequentially rational and consistent.

Given a sequential equilibrium, the expected utility of each player

at any point of the game is the highest given the strategy profile and

his beliefs. Therefore a rational player will not deviate from the equi-

librium. Consistent (Definition 2.7) ensures that the beliefs match

the strategy profile by requiring the beliefs to be derivable from

the strategy profile by applying Bayes’ rule. The two conditions

in the Definition 2.7 ensure this is true even with the unreachable

information sets that are not on the equilibrium path.

2.3 Smart Contracts
Cryptocurrencies have gained great popularity recently. The idea
of cryptocurrencies is grounded on a decentralized network of peers

that provides the infrastructure to maintain a public ledger, which

stores all transactions of the network. The ledger is stored in the

form of a blockchain whose state is agreed by the peers through a

consensus protocol. As the name indicates, cryptocurrencies use

cryptography to secure transactions and to control the creation of

additional units of the currency. Smart contracts are machinery

built on top of cryptocurrencies to allow defining and executing

contracts on the blockchain. In the simplest terms, a smart con-

tract is a piece of computer program stored and running on the

blockchain. The program code captures the logic of contractual

clauses between parties. The execution of the code is triggered

by events e.g. transactions added to the blockchain. The code is

executed by the consensus peers and the correctness of execution

is guaranteed by the consensus protocol of the blockchain. Ideally,

we can think smart contracts as being executed by a trusted global

machine that will faithfully execute every instruction.

Ethereum [15] is perhaps the most prominent example of cryp-

tocurrencies that support smart contracts. In Ethereum, the cur-

rency is called ether. Ethereum contracts can be written in various

expressive scripting languages such as Solidity. Ethers are held in

and can be transferred between accounts. There are two types of

accounts: externally owned accounts and contract accounts. An

externally owned account is associated with a unique public-private

key pair, owned by someone and has an ether balance in it. The

owner has the private key that can be used to sign transactions

from this account. Contract accounts do not have an associated

private key. It maintains an ether balance and stores the code of

a contract that decides the flow of the ethers in the account. A

transaction in Ethereum is an instruction that is constructed and
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cryptographically signed by an externally owned account owner.

Each transaction has two address fields that specify the sender and

the receiver. One can initiate a contract by creating a transaction

in which the receiver is a new contract account address and the

data field contains the contract code. A transaction can also be

used as a message to invoke a function in a contract. In this case the

receiver’s address is the contract account storing the contract code

and the function to be invoked along with arguments is specified

in the data field of the transaction. The behavior of a contract is

purely decided by the execution of its code. A transaction also in-

cludes some “gas” and a “gas price” [53]. Executing a transaction

will consume gas and the amount of gas consumed is converted

into ether using the gas price, the ether is charged to the sender’s

account as the transaction fee.

3 ADVERSARY MODEL AND ASSUMPTIONS
Following the convention of the verifiable computation literature,

in this paper, we consider only the integrity of the computation but

not the confidentiality. We consider an honest client who outsources
a computation task and pays two clouds to compute the result. For

the client, the goal is to get the correct result while minimizing the

cost. The clouds are unreliable and can return wrong results for

outsourced computation tasks. Note that in this paper, we do not

distinguish intentional and unintentional faults because it is difficult

to collect evidence. If trusted auditing services are available to

provide proper evidence then these two types of faults can be treated

differently. We assume the clouds are physically isolated and model

each cloud as an individual rational adversary. Rational means that

a party always acts in a way that maximizes its payoff, and is

capable of thinking through all possible outcomes and choosing

strategies which will result in the best possible outcome. Compared

to assuming a malicious adversary who will act arbitrarily, rational

is more realistic when modeling corporate behavior of the clouds.

Indeed, a cloud provider is more likely to cut corners in order to

maximize its profit thanmaliciously attack the client with no reason.

On the other hand, rational adversaries are weaker than malicious

adversaries because rationality precludes certain strategies. There is

a trade-off between the level of security guarantee and costs. In the

case that adversaries may behave irrational, cryptography-based

approaches could be used to ensure verifiability.

We assume incorrect computation costs less (e.g. by skipping

part or all of the computation), so the clouds are motivated to cheat.

For simplicity, we assume a cloud can come up with an incorrect

but plausible answer (cannot be easily proved to be wrong) at no

cost. In reality this is not free. However, assuming such an answer

can be picked with no cost guarantees that the lower bound of

deposits we derive later is always valid because the cheating cloud

loses strictly more if the cost of picking such an answer is more

than 0. We view collusion as coordinated actions that follows from

a mutual agreement between the adversaries. In reality, even if

parties collude, they still retain their separate judgement and act in

their own interests. Therefore modeling each cloud as an individual

adversary is more realistic than as a monolithic adversary who

corrupts and controls multiple clouds. We assume the adversaries

are computationally bounded so all cryptographic primitives we

need to use remain secure.

We assume there exists one or more cryptocurrencies that sup-

port smart contracts. Most smart contracts platforms are exper-

imental now but there has been much effort to bring them into

the real world. We assume the currency in these systems carries

a certain amount of monetary value and is accepted by all parties

under consideration as a medium of exchange. We assume the value

of the currency is stable during the whole lifetime of the contract

(and contracts derived from it). We assume the cryptocurrencies

are secure and the smart contracts are executed faithfully.

We assume the existence of a trusted third party (TTP), who

is offline most of the time but can be called upon to recompute

the task and resolve any disputes. We stress that if the clouds are

rational, then the TTP would never be involved. The very existence

of such a TTP provides a deterrence power which the adversaries

have to take into account when making decisions. Even without

taking actions, the TTP is a tangible threat to the adversaries and

will have a controlling influence over them. The idea is similar to

some strategic concepts in modern warfare and politics, e.g. “fleet

in being” and “nuclear deference”.

We also assume the following:

• The task to be computed is deterministic or can be reduced to

being deterministic, e.g. by providing a seed and using a pseudo-

random generator for the random choices if the task is probabilis-

tic. This is a common requirement in replication-based verifiable

computation. We also assume the probability of guessing the

correct result is small (e.g. by using inner state hash [6]).

• The task to be computed is not time-critical. We rely on the smart

contract network to enforce the contracts, which may have large

latency. The latency greatly depends on the status and parameters

of the smart contract network and we will unlikely to get any

guarantee for time-critical tasks.

• The parties can communicate freely and choose strategically

what to say and what not to say. They communicate through

reliable authenticated public or private channels.

• For simplicity, we assume all clouds have an equal cost for com-

puting the same task and the cost is public. In reality this assump-

tion does not always hold. Nevertheless, cost is not a decisive

factor in the game. Therefore, assuming equal cost does not affect

the analysis.

• The client is resource-constrained, i.e. it is not capable of recom-

puting the task to verify the result. In this case, proving faults

of cloud can be difficult for the client and the TTP is necessary.

We also assume the client is lazy, i.e. it will not ask the TTP

to recompute the task unless there is clear evidence that this is

necessary.

• Funds only flow among the parties under consideration, not

to/from external parties. For example we do not consider fines

imposed by legal systems or bribes offered by the client’s rival

in exchange for the clouds to output a wrong result. In general,

if the cloud can gain additional benefits, one solution could be

to increase the deposit. When the increment of deposit is large

enough and surpasses the benefit, the cloud will behave hon-

estly because otherwise the payoff will be worse than behaving

honestly.

• Parties are risk neutral. For other risk profiles (risk seeking or risk

aversion), the utility function can be adjusted to the risk profile
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and the equilibria still hold by choosing the deposits according

to the risk profile.

4 MONETARY VARIABLES
Below are the monetary variables we will use in the contracts (listed

in alphabetic order). They are all non-negative.

• b: the bribe paid by the ringleader of the collusion to the other

cloud in the collusion agreement (the Colluder’s contract).

• c: the cloud’s cost for computing the task.

• ch: the fee to invoke the TTP for recomputing a task and resolving

disputes.

• d : the deposit a cloud needs to pay to the client in order to get

the job.

• t : the deposit the colluding parties need to pay in the collusion

agreement (the Colluder’s contract).

• w : the amount that the client agrees to pay to a cloud for com-

puting the task.

• z: shorthand forw − c + d − ch

The following relations hold for obvious reasons:

• w ≥ c: the clouds do not accept under-paid jobs.

• ch > 2w : otherwise there is no need to use the clouds, the client

just uses the TTP for the computation. Note that ch will be paid

by the cheating cloud. An honest client pays strictly no more

than hiring two clouds (plus the mere transaction cost).

The following relations needs to hold when setting the contracts

in order for the desirable equilibria to hold. The parameter d can

be set by the client in the Prisoner’s contract, b and t can be set

by the clouds in the Colluder’s contract (see explanations in later

sections):

d > c + ch• b < c• t < z + d − b•

5 THE PRISONER’S CONTRACT
5.1 The Contract
The Prisoner’s contract is an outsourcing contract signed between a

client and two clouds. At a high level, it tries to incentivize correct

computation by asking the clouds to pay a deposit upfront. If a

cloud behaves honestly, the deposit will be refunded; if a cloud

cheats (and is detected), the deposit will be taken by the client.

Moreover, in the case where one cloud is honest and one cheats,

the honest cloud gets an additional reward that comes from the

deposit of the cheating cloud. The intuition is to create a Prisoner’s

dilemma between the clouds: although collusion leads to a higher

payoff than both behaving honestly, there is an even higher payoff

if one can lure the other into cheating while being honest itself.

Once both clouds understand this, they know collusion is not stable

because the other cloud will always try to deviate from it. Any

attempts (without a credible and enforceable promise) to persuade

the other to collude will be deemed to be a trap and thus will not

be successful. The contract is presented below and more comments

will follow afterwards.

(1) The contract should be signed between a client (CLT) and two

clouds (C1,C2). Should there be any dispute, the dispute will

be resolved by a trusted third party TTP.
(2) C1,C2 agree to compute a function f () on an input x . Both f ()

and x are chosen by CLT.

(3) The parties agree on deadlines T1 < T2 < T3.
(4) CLT agrees to pay w to each cloud for the correct and timely

computation of f (x ).
(5) As a condition, each of C1,C2 must pay a deposit of amount

d when signing the contract. The deposit will be held by the

smart contract.

(6) C1,C2 must pay the deposit before T1. If any Ci fails to do

so, the contract will terminate and any deposit paid will be

refunded.

(7) C1,C2 must deliver the computation result f (x ) before T2.
(8) Upon receiving the computation result from both C1,C2, or

when the deadline T2 has passed, CLT should do the following:

(a) If both C1,C2 failed to deliver the result, their deposits will

be taken in full by CLT;
(b) If both C1,C2 delivered the result, and the results are equal,

then after verifying the results, CLT must pay the agreed

amountw and refund the deposit d to each Ci ;
(c) Otherwise CLT will raise a dispute to TTP.

(9) Upon receiving a dispute raised byCLT, TTP computes f (x ). Let
yt ,y1,y2 be the results computed by TTP,C1,C2 respectively.

Then the cheating party can be decided by the following rule:

(a) For each Ci , if Ci failed to deliver the result, Ci cheated;
(b) For eachyi (i ∈ {1, 2}) delivered before the deadline, ifyi , yt

, Ci cheated;
TTP communicates the decision to CLT as well as to C1,C2.

(10) Upon receiving TTP’s decision, the dispute is resolved as fol-

lows:

(a) If none of C1,C2 cheated, CLT must pay the agreed amount

w and refund the deposit d to each Ci , and pay the fee for

resolving the dispute ch to TTP.
(b) If both C1,C2 cheated, their deposits will be taken in full by

CLT, and CLT pays the fee ch to TTP.
(c) If only one of C1,C2 cheated, then (1) the deposit of the

cheating cloud will be taken in full by CLT, and (2) CLT pays

the honest cloudw plus a bonus d−ch and refunds its deposit

d . CLT pays the fee ch to TTP.
(11) If after T3 > T2, the client has neither paid nor raised dispute,

then for any cloud Ci who delivered a result before T2, CLT
must pay Ci the agreed amountw and refund its deposit. Any

deposit left after that will be transferred to CLT.

In the contract there are various deadlines (T1 < T2 < T3). The
deadlines are used to enforce timeliness and also to avoid locking

away funds if some parties refuse to move forward. The latter

is particularly important in smart contracts as the balance in a

contract is controlled by a program. Without explicit deadlines and

code specifying what to do after the deadlines, the fund can be

locked forever by the contract. Note that we assume the client is

honest, therefore Clause 11 will never be invoked in this case. The

clause is included in the contract to assure the clouds that their

funds will not be locked.

Clause 8 says that the client is empowered to settle the contract

only when there is an obvious fault, i.e. none of the clouds delivers

the result, or when he is satisfied with results. In all other situations,

e.g. when only one result is received or the results do not match, the

contract must be settled by the TTP. Clauses 9 and 10 deal with the

cases in which the TTP is involved. The TTP declares who cheated
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and then the penalty/reward is dictated by the TTP’s judgement. If

the client is honest, dispute is only raised when something went

wrong and the cost for dispute resolution is covered by the deposit(s)

of the cheating cloud(s).

5.2 The Game and Analysis
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Figure 2: The game induced by the Prisoner’s contract. Bold
edges indicate the actions that partieswill play in the unique
sequential equilibrium. The reachable terminal node of the
game is in grey.

The game induced by the prisoner contract is shown in Figure

2. In the game, the players are the two clouds, i.e. N = {C1,C2}.

Although the contract also involves the client and the TTP, they

can be eliminated from the game because they are honest and have

only one deterministic strategy. The clouds can communicate with

each other. They can discuss about collusion and work out a value

r , f (x ) that they would both send to cheat the client. In the

game, the action set is A = { f (x ), r ,other }. The first two means

the party sends f (x ) or r before the deadline, the last captures any
other actions the party may do. The game has two information

sets: I1 = {v0} belongs to C1, and I2 = {v1,v2,v3} belongs to
C2. H ,Z, χ , ρ,σ are captured by the tree structure. We use u1
and u2 to denote C1 and C2’s utility functions respectively. The

payoffs (utility) of the parties are listed below the terminal nodes.

Table 1 shows how the payoffs are calculated. The table shows

which contract clauses are applicable at each terminal node, the

payoff for each party prescribed by the contract clauses, the cost of

computation and the total amount gained or lost by each party at

each terminal node.

Next we analyze the game and show that if the deposit is large

enough, more precisely if d > c + ch, both parties will always send

f (x ) and the game will alway ends at v4. We prove by showing

that the game has a unique sequential equilibrium in which both

parties will play f (x ) with a probability 1. Thus, the only reachable

outcome is v4. The intuition behind the equilibrium is that for each

party, playing f (x ) always leads to the highest payoff for itself.

Indeed if we look at C2’s decision points v1: f (x ) leads to v4 while
r leads to v5 and other leads to v6. C2’s payoff isw − c if the game

ends at v4 and −d if the game ends at v5 or v6. Since w − c is

positive, it is always better than −d . Similarly, at decision point v2,
f (x ) leads to v7. If d > c + ch, then v7 has a higher payoff forC2 (z)
than v8 (w) and v9 (−d); at decision point v3, f (x ) leads to v10 that
has a higher payoff forC2 (z) than v11 (−d) and v12 (−d). Therefore

Outcome Party Clause Payoff in

Contract

Cost Total

v4

C1

8b

w c w − c
C2 w c w − c

v5, v6

C1

9, 10c

w +d −ch c w − c + d − ch
C2 −d 0 −d

v7, v10

C1

9, 10c

−d 0 −d
C2 w +d −ch c w − c + d − ch

v8

C1

8b

w 0 w
C2 w 0 w

v9, v11

C1

9, 10b

−d 0 −d
C2 −d 0 −d

v12

C1 8a or −d 0 −d
C2 (9, 10b) −d 0 −d

Table 1: Payoff analysis of Game 1

C2 will always play f (x ) no matter what is C1’s action. Knowing

that,C1 knows that the only reachable outcomes are v4,v7 and v10
because C2 will never play r or other. The payoff at v4 for C1 is

w − c that is greater than the payoffs of v7 (−d) and v10 (−d). Thus
C1 will choose f (x ) in order to reach v4 and get the best payoff.

Formally, we have the following:

Lemma 5.1. If d > c + ch, then Game 1 in Figure 2 has a unique
sequential equilibrium ((s1, s2), (β1, β2)) where




s1 = ([1( f (x )), 0(r ), 0(other)])
s2 = ([1( f (x )), 0(r ), 0(other)])
β1 = ([1(v0)])
β2 = ([1(v1), 0(v2), 0(v3)])

Theorem 5.2. If d > c + ch and C1,C2 are rational, Game 1 in
Figure 2 will always terminate at v4.

Lemma 5.1 states that the best move for both C1 and C2 is to

always send f (x ) in time (with a probability 1). Informally, the

beliefs can be reasoned as following: for C1, since I1 has only one

node, C1 knows that it is always at v0 when reaching I1 (i.e. β1 =
([1(v0)])); forC2, knowing thatC1’s strategy is to always send f (x ),
it believes that it always reaches v1 and not the other two nodes

in I2 (i.e. β2 = ([1(v1), 0(v2), 0(v3)])). Given Lemma 5.1, Theorem

5.2 can be proved easily: if both parties always send f (x ) with a

probability 1, the game always ends atv4. The proofs of the Lemma

and the Theorem can be found in the Appendix (Section B.1).

6 THE COLLUDER’S CONTRACT
The Prisoner’s contract works by creating a Prisoner’s dilemma

between the two clouds. However, it is not strong enough because

the dilemma can be solved if the clouds can make credible and

enforceable promises. In this section we will show how the two

clouds can use another smart contract to counter the Prisoner’s

contract.

6.1 The Contract
In the real world, despite high fines imposed by legal systems, collu-

sion coalitions can still be formed after having an covert agreement

among the colluders to redistribute profit and to punish those who

deviate from collusion. In the following, we will show the Colluder’s
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contract that captures and enforces such a collusion agreement be-

tween the two clouds. Essentially, the Colluder’s contract imposes

additional rules that will affect the parties’ payoffs with the aim to

make collusion the most profitable strategy for all colluding parties.

In the contract, the cloud who initiates the collusion pays the other

cloud a bribe of amount b to incentivize collusion. Also, both clouds

pay a deposit of amount t when signing the contract and the party

who deviates from collusion will be punished by losing the deposit.

The contract is presented below:

(1) The contract should be signed by two clouds C1 and C2. We

call the cloud who initiates the collusion the ringleader (LDR).
The ringleader can be either C1 or C2. We call the other cloud

the follower (FLR).
(2) LDR and FLR agree to deliver a value r , f (x ) as the compu-

tation result in CTP, which is a Prisoner’s Contract signed by

LDR and FLR and a client CLT to computef () on input x .
(3) As a condition, LDR must pay t + b and FLR must pay t when

they sign the Colluder’s contract. The amount will be paid into

and held by the smart contract.

(4) LDR and FLR must pay the amounts stated above before T4 <
CTP.T2, where CTP.T2 is the result delivery deadline specified

in CTP. If anyone fails to do so, the contract will terminate and

any deposits paid will be refunded.

(5) Once CTP has concluded, the following will be done to the

balance held by the contract:

(a) (Both follow) If both LDR and FLR output r in CTP, then t is
paid to LDR and t + b is paid to FLR;

(b) (FLR deviates) Else if LDR outputs r inCTP and FLR’s output
in CTP is not r , then 2 · t + b is paid to LDR and FLR gets

nothing;

(c) (LDR deviates) Else if LDR’s output is not r in CTP and FLR
outputs r in CTP, then 2 · t + b is paid to FLR and LDR gets

nothing;

(d) (Both deviate) Else t + b is paid to LDR and t is paid to FLR.

The contract must be signed before CTP.T2 because otherwise
it would be too late. The clouds needs to deliver the results in CTP
(Prisoner’s contract) before CTP.T2. The collusion agreement must

be signed before this time so that the clouds know for sure that the

collusion is secured and can deliver r without any risk. In clause 5d,

when both clouds deviate from collusion, none of them is punished.

Of course, another choice is to punish both in this case. The analysis

of this variant is similar and the equilibrium remains the same.

6.2 The Game and Analysis
The game induced by the Prisoner’s contract and the Colluder’s

contract is shown in Figure 3. Note that LDR has the choice of

not to initiate the collusion coalition, and FLR has the choice of

not to collude with LDR. In this two cases, they will not sign the

Colluder’s contract, and end up playing Game 1 (Figure 2) because

the only contract in effect is the Prisoner’s contract. We will not

show the analysis of these two branches here, as it is exactly the

same as we have shown in Section 5.2 (subject to relabelling of

nodes). Because only one terminal node is reachable in Game 1, we

can replace each branchwith a single terminal node, and its payoff is

the payoff of the only reachable terminal node in Game 1. Otherwise

the payoffs are decided jointly by the Prisoner’s contract and the
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Figure 3: The game induced by the Prisoner’s contract and
the Colluder’s contract. Bold edges indicate the actions that
parties will play in the unique sequential equilibrium. The
reachable terminal node of the game is in grey.

Colluder’s contract. The game has four information sets. They are

I1,1 = {v0} and I1,2 = {v2} (belong to LDR), and I2,1 = {v1} and
I2,2 = {v3,v4,v5} (belong to FLR). We use u1 and u2 to denote

LDR’s and FLR’s utility functions respectively. The analysis of the

payoff can be found in the full version of the paper [14].

In this contract, LDR pays FLR a bribe for collusion, which needs

to satisfy b < c , where c is the cost of computing f (x ). This is
necessary to ensure that LDR has the motivation to initiate the

collusion coalition. Note that the collusion is successful if both

clouds send r . In this case, LDR does not need to compute, but

needs to pay a bribe. Its payoff is w − b. On the other hand, if

there is no collusion and LDR computes honestly, its payoff is

w − c . Intuitively, LDR would only initiate the collusion coalition

if the collusion brings a higher payoff, i.e. when w − b > w − c
or equivalently b < c . The two clouds also pay a deposit t . The
amount needs to satisfy t > z+d −b, where z = w −c +d −ch. This
condition is necessary to ensure that (1) the deviating party always

gets a payoff no better than what it will get when not deviating, and

(2) the party who follows the collusion strategy will always get a

higher payoff than not following the strategy. When the conditions

are satisfied, we can prove the following Lemma and Theorem:

Lemma 6.1. If d > c+ch, b < c and t > z+d−b, then the game in
Figure 3 has a unique sequential equilibrium ((s1, s2), (β1, β2)) where
s1, β1 are LDR’s strategy and beliefs, and s2, β2 are FLR’s strategy
and beliefs:




s1 = ([1(init ), 0(¬init )], [0( f (x )), 1(r ), 0(other)])
s2 = ([1(collude ), 0(¬collude )], [0( f (x )), 1(r ), 0(other)])
β1 = ([1(v0)], [1(v2)])
β2 = ([1(v1)], [0(v3), 1(v4), 0(v5)])

Theorem 6.2. If d > c + ch, b < c , t > z + d − b and C1,C2 are
rational, Game 2 in Figure 3 will always terminate at v10.

Lemma 6.1 states that the best strategy for LDR is to always

initialize the collusion coalition and send r as the result, and the

best strategy for FLR is to always collude with LDR and send r as
the result. Following the strategies, the game will terminates at v10,
which gives both clouds the highest payoffs they can get (taking

into account the other party’s strategy). The proofs of the Lemma

and Theorem can be found in the full version of the paper [14].
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7 THE TRAITOR’S CONTRACT
In Section 6 we showed the Colluder’s contract that captures and

enforces a collusion agreement. The contract enables two clouds

to collude and ensures that no one will deviate from collusion. In

this section, we show the Traitors’ contract, which is designed

to address the collusion problem and force the clouds to behave

honestly.

7.1 The Contract
The main difficulty when designing the Traitor’s contract is how

to avoid creating a counter/counter-back loop. The client can use a

contract to counter the Colluder’s contract by providing an addi-

tional reward to the honest cloud and change the equilibrium so

that collusion is less preferable. However, once the clouds knows

what is offered in the contract, they may be able to create a counter

contract so that collusion becomes the equilibrium again. This loop

can go endlessly.

To get out of the loop, the Traitor’s contract works not by coun-

tering the Colluder’s contract, but by offering the first cloud who

reports a collusion to the client the total immunity of the penalty

that is imposed by the Prisoner’s contract
3
. The aim of the Traitor’s

contract is not to incentivize the clouds to deviate from the col-

lusion, but to incentivize the clouds to report the collusion. If a

Traitor’s contract is signed and a collusion is reported, the TTP

will step in and decide who cheated. A counter contract is pointless

because once the TTP is involved, the payoff of a cloud depends

only on whether it cheated but not the other cloud’s behavior.

The subtlety of the Traitor’s contract is that the immunity granted

will allow the reporting cloud to secretly betray the partner while

pretending to follow collusion strategy. This is important because

without this immunity, a cloud will never report voluntarily: if it

reports and follows the collusion strategy, it will lose its deposit

in the Prisoner’s contract (because TTP will find both clouds are

cheating); however if it reports then deviates from the collusion

strategy, it will lose its deposit in the Colluder’s contract. In ei-

ther case the reporting cloud is worse off than not reporting. The

Traitor’s contract promises that the reporting cloud will not be

punished by the Prisoner’s contract. Then it is safe for the report-

ing cloud to follow the collusion strategy, and by doing so, the

reporting cloud can also get away from the punishment imposed

by the Colluder’s contract. In consequence, betrayal is risk free. In

addition, the Traitor’s contract promises a reward to the reporting

cloud if the collusion is true. Therefore reporting is preferable to

staying in the collusion coalition because it is risk-free and leads

to a higher payoff. The Traitor’s contract destabilizes collusion by

encouraging betrayal. Moreover, the fear of betrayal creates distrust

between the clouds. The distrust will eventually deter the formation

of the collusion coalition. In addition, the Traitor’s contract also

punishes misreporting, i.e. a cloud reporting a fabricated case in

order to gain benefits. The contract is presented below:

(1) The contract should be signed between a client (CLT) and a

cloud who reports collusion. We call this cloud the traitor (TRA).
CLT and TRA must have signed CTP, a Prisoner’s contract.

3
Technically, the immunity is granted not by exempting the penalty in the Prisoner’s

contract, but by refunding and compensating the penalty.

(2) CLT only signs the Traitor’s Contract with the first cloud who

reports the collusion. CLT agrees to compensate TRA’s loss in
CTP in suitable cases.

(3) TRAmust deliver the computation result of f (x ) in this contract,
which can be different from the one delivered in CTP.

(4) As a condition, CLTmust pay a deposit of amountw + 2 ·d − ch
that equals the maximum amount TRA could lose in CTP plus

the reward. TRA must pay a deposit of amount ch that equals

the fee for dispute resolution. The deposits will be held by the

smart contract.

(5) The contract should be fully signed before CTP.T2, the dead-
line for delivering the result in CTP. Otherwise the contract
terminates and any deposit paid will be refunded.

(6) TRA must deliver a result in this contract before CTP.T2.
(7) CLT always raises a dispute instead of invoking Clause 8 in

CTP.
(8) Once CTP is settled by TTP, the following will be done to the

deposits held by this contract:

(a) If in CTP none of the clouds cheated (as asserted by TTP),
thenCLT’s depositw+2 ·d−ch is refunded, and TRA’s deposit
ch is paid to CLT. Nothing is paid to TRA;

(b) Else if in CTP the other cloud did not cheat and TRA cheated

and TRA delivered a correct result in this contract, then 2 ·

d − ch is paid to CLT andw + ch is paid to TRA;
(c) Else if in CTP both clouds cheated and TRA delivered a cor-

rect result in this contract, then TRA gets back its deposit ch.
TRA is also paidw + 2 · d − ch. Nothing is paid to CLT;

(d) Elsew + 2 · d − ch is paid to CLT and ch is paid to TRA.
(9) If TRA delivered a result in this contract, andCTP.T3 has passed,

then all deposits, if any left, go to TRA.

To report collusion, TRA must follow the following procedure:

(i) Wait until the Colluder’s contract has been created and signed

by the other cloud.

(ii) Before signing the Colluder’s contract, report the collusion to

the client. Optionally, TRA can submit evidence of collusion e.g.

the address of the Colluder’s contract and the value r that to be
output in the event of collusion.

(iii) Sign the Colluder’s contract only after it has signed the Traitor’s

contract with the client.

CLT only signs the Traitor’s contract with the first cloud who

reports the collusion. This is because in our case the collusion

coalition has only twomembers. It is too generous to forgive both of

them. Once the Traitor’s contract is fully signed, CLT always raises

a dispute in CTP. There are two potential punishments imposed

on TRA by the Prisoner’s contract and the Colluder’s contract. To

ensure that TRA’s payoff is not worse off in the event of a true

collusion, TRA needs to deliver r in CTP to get away from the

punishment imposed by the Colluder’s contract, and then deliver

f (x ) in the Traitor’s contract to get the compensation of the penalty

imposed by CTP (the Prisoner’s contract). It is important that TRA
follows the procedure to ensure it signs all three contracts or only

CTP, otherwise it might have to bear a loss (see Game 3 and Game 4

in the following sections). To dispel TRA’s concern of being cheated

to “turn in”, CLT pays into the contractw + 2 ·d − ch to assure TRA
that its loss will be compensated and its reward will be given.
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Figure 4: The sub-game induced by the Prisoner’s contract and the Traitor’s contract. Bold edges indicate the actions that
parties will play in the unique sequential equilibrium. The reachable terminal node of the game is in grey.

Before reporting, TRA needs to wait until the other cloud has

signed the contract, i.e. fully committed to collusion. Otherwise if

TRA reports and the other cloud decides not to sign the Colluder’s

contract, TRAwill be in the situation of (unintentional) misreporting

because the other cloud can deliver the correct result inCTP. When

reporting, TRA can submit evidence of collusion. Note that the

evidence submitted by TRA is a “best-effort proof”. The purpose

of the evidence is not to convince the client about the collusion,

but to give the client more information about the collusion. The

conclusive evidence of collusion/cheating is TTP’s decision and the

settlement of Traitor’s contract (clause 8) relies only on values in

Prisoner’s contract and TTP’s decision. CLT will sign the Traitor’s

contract even if the evidence is not strong or verifiable. TRA can

falsely report with some fabricated evidence, but as we will show in

the next section, a rational cloud will not misreport. This is because

when signing the contract, TRA needs to pay ch into the contract

and will lose this amount in the event of misreporting.

7.2 A Sub-game and Analysis
Before showing the full game, we first show and analyze a sub-

game (Game 3, Figure 4). The players in the game include TRA
who can be either C1 or C2, and OTH who is the other cloud. We

use u1 to denote the utility function of OTH and u2 to denote

the utility function of TRA. In Game 3, there is not a fully signed

Colluder’s contract, either because no one initiates the collusion

coalition, or because the collusion attempt is rejected. In the game,

TRA can choose not to report at all. If TRA decides not to report

(branch to v1), then the only contract in effect is the Prisoner’s

contract and the branch is exactly the same as the tree of Game

1. On the other hand, TRA can choose to falsely report a case of

collusion (misreporting). It also has the choice to later deliver the

correct result in the Traitor’s contract (branch tov2), or later deliver
a wrong result in the Traitor’s contract (branch to v3). In both

cases, the payoffs of the clouds are affected jointly by the Prisoner’s

contract and the Traitor’s contract. The analysis of the payoffs can

be found in the full version of the paper [14].

The game has five information sets. They are: I1 = {v1,v2,v3}
that belongs to OTH, and I2,1 = {v0}, I2,2 = {v4,v5,v6}, I2,3 =
{v7,v8,v9} and I2,4 = {v10,v11,v12} that belongs to TRA. We have

the following Lemma and Theorem:

Lemma 7.1. If d > c + ch, then Game 3 in Figure 4 has a unique
sequential equilibrium ((s1, s2), (β1, β2)) where s1, β1 areOTH’s strat-
egy and beliefs, and s2, β2 are TRA’s strategy and beliefs:




s1 = ([1(f (x )), 0(r ), 0(other)])
s2 = ([1(¬report), 0(report, y′ = f (x )), 0(report, y′ , f (x ))],

[1(f (x )), 0(r ), 0(other)], [1(f (x )), 0(r ), 0(other)],
[1(f (x )), 0(r ), 0(other)])

β1 = ([1(v1), 0(v2), 0(v3)])
β2 = ([1(v0)], [1(v4), 0(v5), 0(v6)], [1(v7), 0(v8), 0(v9)],

[1(v10), 0(v11), 0(v12)])

Theorem 7.2. If d > c + ch and TRA and OTH are rational, then
Game 3 in Figure 4 will always terminate at v13.

Lemma 7.1 states that if there is not an effective Colluder’s con-

tract, then the best strategy for the clouds is to not report a false

collusion case, and to send the correct computation result in the

Prisoner’s contract. Intuitively, the misreporting cloud will be pun-

ished by losing ch and will only end up with a higher payoff if

the other cloud happens to cheat. However, without an effective

Colluder’s contract, the other cloud would unlikely to cheat spon-

taneously. If the other cloud behaves honestly, then misreporting

will lead to a lower payoff than not reporting. Therefore none of

the clouds will misreport, and they will send the correct result to

get the highest possible payoffs (at v13). The proofs can be found

in the full version of the paper [14].

7.3 The Full Game and Analysis
Now we show the full game induced by the three contracts and

its analysis. The game is shown in Figure 5. Note that by defi-

nition, LDR is the party who initiates the collusion coalition by

signing the colluder’s contract first, therefore in the game it al-

ways moves first. In the game, if LDR decides not to initiate the

collusion coalition, or if it initiates but FLR rejects to join, then

the two clouds will end up playing Game 3 because there is not

a fully signed Colluder’s contract. If FLR agrees to collude with

LDR, they will enter a different branch. The payoffs in this branch

are quite different from those in the Game 3, due to the fact that

the Colluder’s contract is fully signed and effective. In this branch,

it is always FLR who plays the role of traitor, i.e. FLR will be the

one that signs the Traitor’s contract with the client. If LDR signs

the Traitor’s contract with the client, then following the report

Session A5:  Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

220



v2

FLR/TRA

v3

v6

v15

f (x )

v16

r
v17

other

f (x )

v7

v18

f (x )

v19

r
v20

other

r

v8

v21

f (x )

v22

r
v23

other

other

¬Report

v4

v9

v24

f (x )

v25

r
v26

other

f (x )

v10

v27

f (x )

v28

r
v29

other

r

v11

v30

f (x )

v31

r
v32

other

other

Report ,y′ = f (x )

v5

v12

v33

f (x )

v34

r
v35

other

f (x )

v13

v36

f (x )

v37

r
v38

other

r

v14

v39

f (x )

v40

r
v41

other

other

Report ,y′ , f (x )

LDR/OTH LDR/OTH

FLR/TRA FLR/TRA FLR/TRA FLR/TRA FLR/TRA FLR/TRA

(w−c
w−c

)
( z−t−b
−d+t+b

)
( z
−d

) (
−d+t
z−t

)
(w−b
w+b

)
(
−d+t
−d−t

) (
−d
z

)
(
−d−t−b
−d+t+b

)
(
−d
−d

) ( w−c
w−c−ch

)
( z−t−b
−d+w−c+t+b

)
( z
−d+w−c

) (
−d+t
z−t

)
(
−d−b
z+b

)
(
−d+t
z−t

) (
−d
z

)
(
−d−t−b
z+t+b

)
(
−d
z

) ( w−c
w−c−ch

)
( z−t−b
−d+t+b

)
( z
−d

) (
−d+t
z−t

)
(
−d−b
−d+b

)
(
−d+t
−d−t

) (
−d
z

)
(
−d−t−b
−d+t+b

)
(
−d
−d

)

v1

FLR

collude

v0

LDR

init

Game 4

Game 3

¬init

Game 3

¬collude

(w−c
w−c

) (w−c
w−c

)

(u1

u2

)
:

(u1

u2

)
:

(u1

u2

)
:

z = w − c + d − ch, d > c + ch, t > z + d − b

Figure 5: The game induced by the Prisoner’s contract, the Colluder’s contract and the Traitor’s contract. Bold edges indicate
the actions that parties will play in the unique sequential equilibrium. The reachable terminal node of the game is in grey.

procedure, FLR will not sign the Colluder’s contract and the game

will go to the ¬collude branch. The payoff analysis can be found

in the full version of the paper [14]. In the game, there are seven

information sets: I1,1 = {v0} and I1,2 = {v3,v4,v5} belong to LDR,
I2,1 = {v1},I2,2 = {v2},I2,3 = {v6,v7,v8},I2,4 = {v9,v10,v11} and
I2,5 = {v12,v13,v14} belong to FLR.

Lemma 7.3. If d > c + ch,b < c and t > z +d −b, then Game 4 in
Figure 5 has a unique sequential equilibrium ((s1, s2), (β1, β2)) where
s1, β1 are LDR’s strategy and beliefs, and s2, β2 are FLR’s strategy
and beliefs:




s1 = ([1(¬init), 0(init)], [0(f (x )), 1(r ), 0(other)])
s2 = ([0(¬collude), 1(collude)],

[0(¬report), 1(report, y′ = f (x )), 0(report, y′ , f (x ))],
[0(f (x )), 1(r ), 0(other)], [0(f (x )), 1(r ), 0(other)],
[0(f (x )), 1(r ), 0(other)])

β1 = ([1(v0)], [0(v3), 1(v4), 0(v5)])
β2 = ([0(v6), 1(v7), 0(v8)], [0(v9), 1(v10), 0(v11)],

[0(v12), 1(v13), 0(v14)])

Theorem 7.4. If d > c + ch,b < c and t > z +d −b and LDR and
FLR are rational, then Game 4 in Figure 5 will always terminate at
v13 in Game 3 ( Figure 4).

Lemma 7.3 states that in Game 4, LDR (who can be any one of the

two clouds) will always choose not to initiate the collusion coalition.

The reason that LDR will not attempt to collude is because FLR’s
best strategy is to pretend to collude and then report the collusion

to the client. No matter what LDR does, the payoff it can get from

this branch is always less than not to collude. Thus LDR would

rather stay away from the collusion. Since no one want to initiate

the collusion coalition, there will be no Colluder’s contract. Then

the two clouds will end up playing Game 3, and the analysis in

Section 7.2 shows that they will eventually behave honestly in

the sub-game. The proofs can be found in the full version of the

paper [14].

8 IMPLEMENTATION
We implemented the contracts in Solidity 0.4.4 [45] and tested them

on the Ethereum network with Geth [19]. We used the Crypto-

Con [37], a smart contract that implements elliptic curve cryp-

tography (ECC), for implementing cryptographic operations on

blockchain. The contracts are loosely coupled with the actual com-

putation tasks as an external service. The actual computation tasks

can be treated as blackboxes and the contracts do not need to know

their internal details. The contracts will be called before/during/after

executing the tasks, with e.g. the input and output of the tasks. The

source code of our contracts can be found at (https://github.com/

mjod89/SmartContracts). The pseudocode of the smart contracts

and the protocols can be found in the full version of the paper [14].

We ran the experiments on a MacBook Pro with a 2.8 GHz intel i5

CPU and 8 GB RAM.

8.1 Cryptographic Primitives
To implement the contracts on a public blockchain (e.g. Ethereum),

we will need to resolve the following challenges:

• Privacy: Since the blockchain is publicly visible to everyone and

data on the blockchain is immutable, the biggest concern would

be the privacy of input/output of the computation, which need

to be specified in the contracts. The client might want to keep

them confidential to the public while using the contract.

• Verifiability: While privacy and confidentiality are important, it

is also essential that the equality/inequality of the computation

results can be verified by the peers in the network because the

execution of the contracts is conditioned on those relations.

• Efficiency: The blockchains have a limited space for storing data,

and the peers in the network need to verify all transactions.

Therefore size and complexity of the transaction are limited.

To address the issues, we use a suitable collision resistant hash

function and two other cryptographic primitives: commitments and
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Non-interactive Zero Knowledge Proofs (NIZK). Informally, a com-

mitment scheme is a two-phase protocol. In the commitment phase,

a committer commits to a valuem by choosing a secret s to generate
a commitment Coms (m). The commitment should be hiding, i.e. it
is infeasible to knowm given only Coms (m) but not s ; the commit-

ment should also be binding, i.e. it is infeasible to findm′ ,m and

s ′ , s such that Coms ′ (m
′) = Coms (m). In our implementation,

we use the well-known Pedersen Commitment Scheme [40]. NIZK

allows a prover to non-interactively convince a verifier about a state-

ment without leaking information. We are interested in proving the

equality and inequality of values concealed in commitments. More

precisely, given two commitments Coms1 (m1),Coms2 (m2) and the

pairs(s1,m1), (s2,m2), a prover can generate a proof σ= ifm1 =m2

or σ, if m1 , m2. Given the commitments and proof, a verifier

can run a verification algorithm V (Coms1 (m2),Coms2 (m2),σ=) or
V (Coms1 (m1),Coms2 (m2),σ,) that output 1 only if the relation to

be proved holds (expect for a negligible probability). The NIZKs we

use are obtained by applying the Fiat-Shamir heuristic on Sigma

protocols in [9, 10]. More details can be found in Appendix C.

Instead of using the plaintext input/output, the implementa-

tion of the contracts needs to handle cryptographic values and the

parties need to run some protocols. The pseudocode of the smart

contracts and the protocols can be found in the full version of the

paper [14]. As an example we briefly describe what the parties do

when using the Prisoner’s contract (H is the collision resistant hash

function):

• Input: The client chooses the function f (in fact a description or

binary code of the function) and input x , then computesm1 =

H ( f ),m2 = H (x ) and two commitments Coms1 (m1),Coms2 (m2).
The client sends the commitments as part of the contract to the

blockchain, and ( f ,x , s1, s2) to the clouds. The clouds verify the

commitments on the blockchain is correct then sign the contract.

• Output: When delivering the computation result yi , the cloud Ci
computesmyi = H (yi ) and the commitment Comsyi (myi ). The
commitment is sent to the blockchain as part of the transaction

and (yi , syi ) are sent to the client through a private channel.

• Client proof: If y1,y2 received by the client are equal and also the
commitments appeared on the blockchain are correct, the client

creates a NIZK σ=. The Ethereum peers can run the verification

algorithm V (Comsy
1

(my1 ),Comsy
2

(my2 ),σ=) and be convinced

if the algorithm outputs 1.

• TTP proof: If the client raises a dispute, it sends ( f ,x , s1, s2) and
all (yi , syi ) it received to the TTP. The TTP verifies the commit-

ments on the blockchain are correct, then recomputes yt = f (x )
and computes a commitmentComst (yt ). It then comparesyi with
yt to decide who cheated. It then computes an NIZK for each

Ci (NULL if Ci didn’t deliver a result). If yi = yt , then the NIZK

is σ=, otherwise the NIZK is σ,. The TTP sends Comst (yt ) and
the two NIZK to the blockchain. The peers knows Ci is honest if
V (Comsyi (myi ),Comsyt (myt ),σ=) = 1, or Ci is not honest if Ci
did not deliver or V (Comsyi (myi ),Comsyt (myt ),σ,) = 1.

The collision resistance property of the hash function and the

binding property of the commitment scheme enable us to replace

the actual input/output values that should be put on the blockchain

with their commitments. By storing only commitments on the

blockchain, we hide information about the input/output. NIZK

Contract Functions Cost in Gas Cost in $

P
r
i
s
o
n
e
r
’
s

Init 2,298,950 0.4015

Create 206,972 0.0361

Bid 74,899 0.0131

Deliver 94,373 0.0164

Pay 821,244 0.1434

Dispute 2,126,950 0.3714

C
o
l
l
u
d
e
r
’
s

Init 1,971,270 0.3443

Create 281,852 0.0492

Join 58,587 0.0102

Enforce 103,156 0.0180

T
r
a
i
t
o
r
’
s

Init 2,018,459 0.3525

Create 161,155 0.0281

Join 66,802 0.0117

Deliver 82,846 0.0145

Check 719,051 0.1256

Table 2: Cost of using the smart contracts on the official
Ethereum network. The transactions are viewable on the
blockchain (addresses can be found in Appendix D)

allows the peers to verify equality/inequality of values in the com-

mitments without knowing the actual values. Therefore we solve

the privacy problem. The schemes we use are efficient and the

overhead is really small (see next section).

8.2 Overhead and Cost
Overhead The additional overhead incurred by cryptography is

small. We implement the commitment and NIZK schemes in ECC.

In each contract, each party need to generate at most 2 commit-

ments. Also in each contract at most 2 NIZKs need to be generated

and verified. The most costly cryptographic operation is the point

multiplication (MUL) operation. Generating a commitment needs 2

MUL. Generating and verifying a equality NIZK each needs 2 MUL

as well. Generating an inequality NIZK needs 4 MUL and verifying

needs 3 MUL. The commitments and NIZKs are generated locally

by the parties. On the blockchain, the peers only need to verify the

NIZKs. The commitments and NIZKs are small in size. When using

256-bit ECC, a commitment is only 512 bits, an equality NIZK is

768 bits and an inequality NIZK is 1536 bits. The size can be further

reduced if point compression is used.

Financial Cost In Table 2, we show the cost of setting up and

executing the contracts on the offical Ethereum network. The cost is

in the amount of gas consumed by each function, and the converted

monetary value in US dollar. The gas price was 2 × 10−9 ether (2

Gwei) in all transactions and the exchange rate was 1 ether = $87.32.

As we can see, the financial cost for using the smart contracts

on the Ethereum network is low. The cost is roughly related to the

computational and storage complexity of the function. For example,

in Prisoner’s contract, Init (to store a contract on the blockchain)

and Dispute (require verification of NIZKs) cost more than other

functions. For the Prisoner’s contract, the total cost (for the client

and the two clouds) is about 3.8 million gas ($0.65) if there is no

dispute, or about 5 million gas ($0.88) with dispute resolution. For

the Colluder’s contract, the total cost is about 2.4 million gas ($0.42).

And for the Traitor’s contract, the total cost is about 3 million gas

($0.53). The cost can be further reduced if the contracts are reused
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(see Appendix D.2). Note that Ethereum will have native support

for ECC [42], which means we can expect a much lower cost for

calling functions that involves ECC operations (e.g. Dispute).

9 RELATEDWORK
Verifiable computation There has been much work on verifiable

computation based on cryptography, e.g. a good survey can be found

in [52] and see [1, 16, 51] for some more recent work. Although

providing high-assurance execution, cryptography-based solutions

are computationally too costly. The overhead for verification can

be made small. However the overhead for pre-computation and

for the prover to compute the proof is orders of magnitude higher

than the actual cost of the computation being verified. Replication

is a long-established technique for building dependable systems,

see e.g. [2, 8, 11–13, 27, 33, 44, 48, 50]. To verify the computation,

the task is run by n servers and as long as t servers are honest,

the correctness of the result can be guaranteed by a consensus

protocol. The traditional solution for collusion is to enlarge n. The
assumption is that collusion will become more difficult or even

impossible when n increases. However this is not an option when

we have to limitn to 2. In [11], a protocol is designed to allow a client

to use a minimum of 2 servers to achieve verifiability. However, the

protocol assumes at least one server is honest, thus it precludes the

possibility of collusion in the 2 servers case. The protocol also incurs

an overhead that is 10 - 20 times higher than the plain execution.

Game theory and verifiable computation There has been work

on applying game theory in replication based verifiable computa-

tion. In [6], the authors considered the 2 servers case and proposed a

scheme that induces a game similar to the Prisoner’s contract game

by punishing the cheating cloud and giving a bounty to the honest

cloud when results returned by the clouds do not match. However,

in this scheme, the client has to bear the cost of re-computation

(to find who cheated) and also the bounty. The penalty paid by the

cheating cloud may not be large enough to cover the additional cost

to the client. Also as with the Prisoner’s contract, the scheme is

subject to the collusion attack. To counter collusion, it needs to use

multiple servers and assume some of them are honest. The multi-

server case is further studied in [32] with an extended scheme. In

[39] and [41], the authors proposed similar schemes in which the

client gives the task to one cloud, and with a certain probability,

also selects another cloud to re-compute the task. To incentivize the

clouds to stay honest, contracts were designed to punish the clouds

when the results do not match. The schemes are based on a strong

assumption that the two clouds cannot communicate, let alone

collude, with each other, thus are weaker than the Prisoner’s con-

tract. In [26], the authors considered the case in which the clouds

can collude (but cannot make creditable and enforceable promises).

They proposes contracts that punish both clouds or reward both

clouds when the task is not audited and the results are different.

The contracts can incentivize honesty. However, if the two clouds

can make creditable and enforceable promises (e.g. using a contract

similar to the Colluder’s contract), they can make collusion the

equilibrium of the game.

Secure Computation with Cryptocurrencies There is a line

of research that focuses on interweaving cryptocurrencies with

multiparty secure computation protocols. Most of the work (e.g.

[4, 7, 30, 31]) focuses on incentivizing fairness and (timely) delivery

of the results. The essential idea is that each party deposits some

cryptocurrencis and parties who withhold results will lose their

deposits. In [29], the authors considered a crowd-sourcing environ-

ment in which a user publishes a job and anyone can submit an

answer and gets a bounty. The idea is to use a cryptography-based

verifiable computation scheme so that the solver can submit a proof

of correctness along with the answer, which will be checked by min-

ers or a designated verifier. The scheme uses cryptocurrencies to

solve mainly the fair payment problem, rather than the verifiability

problem.

Rational Adversaries It has been recognized that in many cases,

traditional models of adversaries in cryptography are either too

weak (semi-honest) or too strong (malicious). Recently there is a line

of research bridging cryptography and game theory that models

adversaries as self-interested rational entities [5, 17, 20–23, 25]. The

research shows that by considering a rational adversary, which is

arguably more realistic, it is possible to design protocols that are

more efficient or can circumvent impossibility results.

Other Related Work In [38], the authors proposed a method to

prevent the concentration of mining power by utilizing distrust.

They designed nonoutsourceable puzzles that allow a malicious

worker to steal the reward if the mining task is outsourced. The

risk would deter mining coalitions such as mining pools or hosted

mining. In [49], the authors proposed an attack against mining pools

using smart contracts that reward pool workers who withhold their

blocks. In [24], the authors showed that smart contracts can be

used for malicious purposes. They showed several criminal smart

contracts for e.g. leaking confidential information and various real-

world crimes.

10 CONCLUSION AND FUTUREWORK
Verifiability is a highly desirable property in cloud computing, cost-

efficiency is another one. In this paper, we propose a smart contract

based solution aiming to achieve both. In our solution, the client

outsources the same computation to two clouds, and uses smart

contracts to create games between two rational clouds. The games

will restrain the clouds from colluding and cutting corners. Instead,

they will stay honest to pursue their highest payoffs. Now without

collusion, verifiability can be achieved by simply crosschecking

the results returned by the clouds. The main cost is the cost for

employing two clouds, other costs are small.

In this work we assume the client is honest. One future direction

would be to consider the client as a potential adversary. This would

make the interplay among parties more complex and requires sig-

nificant changes to the contracts. Another future direction would

be to consider repeated interactions among the parties. Repeated

interactions introduces significant changes to the settings because

the incentive can be now influenced by reputation and long-term

profitability. Also the current deposit mechanism is not very effi-

cient from the cloud point of view. If the cloud has many clients and

simultaneous contracts, the cloud must have a large cash reserve to

pay all deposits at the same time. One direction would be to inves-

tigate more efficient deposit mechanisms by e.g. pooling contracts

or insurance. Currently the contracts are written case-by-case. Ulti-

mately we would like to have standard, verified and composable
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templates/subroutines, much like standard wording/clauses we use

in traditional contracts. We would also like to develop counter-

collusion contracts in general for other purposes, e.g. to prevent

vote buying in e-voting systems like [37].
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A SAVING ON TCO
The following was calculated using the Amazon AWS Total Cost of

Ownership (TCO) Calculator on May 3 2017. We used the default

assumptions and following configurations:

• Location: US-east (N. Virginia)

• Servers: non-DB, CPU cores per VM = 4, memory per VM =16

GB, Hypervisor = VMware, Guest OS = linux, VM usage =30%,

optimized by CPU, Host = 2 CPU, 8 cores, 96 GB RAM.

• Storage: type = SAN, Max IOPS = 1, backup/month = 30%

• Network: data center bandwidth = 1000 Mbit/s, Peak/Average

ratio = 3

• IT Labor: Burdened Annual Salary =$120,000, number of VMs

per admin = 50

In Table 3 we show the 3-year Total Cost of Ownership for

different sizes of IT infrastructure. In the table, small means a small

infrastructure with 10 servers and 10 TB storage capacity (with

the above configuration), median means 100 servers and 100 TB

storage, and large means 1000 servers and 1,000 TB storage.

Infrastructure Size On-premises Cloud Saving

small $429,876 $132,167 69%

median $2,112,717 $980,999 54%

large $18,835,526 $9,356,390 50%

Table 3: 3-year TCO comparison

B ANALYSIS OF GAMES
B.1 Analysis of Game 1

Proof of Lemma 5.1
Proof. First, let the strategy profile in the equilibrium be (s1, s2)

where {
s1 = ([ϕ1 ( f (x )),ϕ2 (r ),ϕ3 (other)])
s2 = ([ψ1 ( f (x )),ψ2 (r ),ψ3 (other)])

In the above, ϕi and ψi are unknown probabilities. They satisfy

0 ≤ ϕ1,ϕ2,ϕ3 ≤ 1 and ϕ1 + ϕ2 + ϕ3 = 1, 0 ≤ ψ1,ψ2,ψ3 ≤ 1 and

ψ1 +ψ2 +ψ3 = 1. In the belief system, β1 = ([1(v0)]) because I1
has only one node. The beliefs β2 can be derived from Bayes’ rule:{

β1 = ([1(v0)])
β2 = ([ϕ1 (v1),ϕ2 (v2),ϕ3 (v3)])

Let us reason backwards to find how the players choose their

actions. The level above the terminal nodes are three nodes that

formsC2’s information set I2 = {v1,v2,v3}. At this information set,

it is C2’s turn to move. As a rational player, C2 tries to maximize

its expected payoff at this information set, which is:

u2 (s;I2, β ) = β2 (v1)u2 (s;v1) + β2 (v2)u2 (s;v2) + β2 (v3)u2 (s;v3)
= ϕ1u2 (s;v1) + ϕ2u2 (s;v2) + ϕ3u2 (s;v3)

In the above, we have:




u2 (s;v1) = ψ1u2 (v4) +ψ2u2 (v5) +ψ3u2 (v6)
u2 (s;v2) = ψ1u2 (v7) +ψ2u2 (v8) +ψ3u2 (v9)
u2 (s;v3) = ψ1u2 (v10) +ψ2u2 (v11) +ψ3u2 (v12)

We argue that ifψ1 = 1,ψ2 = 0,ψ3 = 0, i.e. if C2 plays f (x ) with a

probability 1, thenC2 gets the highest expected payoff. Observe that

when d > c + ch, the following holds: u2 (v4) > u2 (v5) = u2 (v6),
u2 (v7) > u2 (v8) > u2 (v9), and u2 (v10) > u2 (v11) = u2 (v12). Thus
the above probabilities will maximize the expected payoff at each

node, i.e. now u2 (s;v1) = u2 (v4),u2 (s;v2) = u2 (v7),u2 (s;v3) =
u2 (v10) are all at their maximum values. In consequence,u2 (s ;I2, β ),
the expected payoff for C2 at information set I2, is also maximized.

Now let us move to the level above. It is C1’s turn to move.

Since C2’s strategy is ([1( f (x )), 0(r ), 0(other)]), if C1 plays f (x ),
the outcome will be v4 because C2’s response will be f (x ) for sure.
Similarly, ifC1 plays r the outcome will be v7, and ifC1 plays other
the outcome will be v10.Then the expected payoff of C1 is:

u1 (s;I1, β ) = β1 (v0)u1 (s;v0)
= ϕ1u1 (v4) + ϕ1u1 (v7) + ϕ3u1 (v10)

In the game, u1 (v4) > u1 (v7) = u1 (v10). Thus ϕ1 = 1,ϕ2 = 0,ϕ3 =
0 will maximize C1’s expected payoff. We can conclude that Ep is

sequentially rational because the strategy profile in Ep allows the

party to get the maximum payoff at every information set. Ep is

also the only sequentially rational assessment because both parties

have a strictly dominant strategy.

Consistent can be proven by using the following sequence sk =

(sk
1
, sk
2
) where




sk
1
=
(
[
k−2
k ( f (x )), 1k (r ),

1

k (other)]
)

sk
2
=
(
[
k−2
k ( f (x )), 1k (r ),

1

k (other)]
)

It is clear that sk is fully mixed, i.e. every pure strategy has a non-

zero probability. Because limk→∞
k−2
k = 1 and limk→∞

1

k = 0, sk

converges to s . The induced belief system βk = (βk
1
, βk

2
) is:




βk
1
= ([1(v0)])

βk
2
=
(
[
k−2
k (v1),

1

k (v2),
1

k (v3)]
)

which also converges to β . □

Proof of Theorem 5.2

Proof. In Lemma 5.1 we showed that the game has only one

sequential equilibrium. In the equilibrium both parties play f (x )
with a probability 1, thus the probability of reaching v4:

Pr [v4 |Ep ] = Pr [v0 |s] · Pr [v1|(s,v0)] · Pr [v4|(s,v1)] = 1 · 1 · 1 = 1

□

C COMMITMENT AND NIZK
Pedersen Commitment

• Public Parameters: (G, P ,Q ) such that G is an order-q elliptic

curve group over Fp , P and Q are random generators of G.
• Commit: To commit m ∈ Zq , choose s ∈R Zq , and compute

Coms (m) =mP + sQ .
• Open: Given (m, s ) and a commitment C , accept only if C =
mP + sQ .

Equality NIZK
• Public parameters: (G, P ,Q,H ) such that G is an order-q elliptic

curve group over Fp , P and Q are random generators of G and

H : {0, 1}∗ → Zq is a collision resistant hash function.

• To prove: For two Pederson commitments C1 = α1P + β1Q,C2 =

α2P + β2Q , the prover knows α1,α2, β1, β2, and α1 = α2.
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(1) The prover chooses γ ∈R Zq , computes the following: t = γQ ,

δ = H (P ,Q,C1,C2, t ), and η = (β1 − β2)δ + γ and sends σ= =
(t ,η) to the verifier

(2) The verifier computes δ = H (P ,Q,C1,C2, t ), checks ηQ
?

=

δ (C1 −C2) + t . Output 1 if true, otuput 0 otherwise.

Inequality NIZK
• Public parameters: (G, P ,Q,H ) such that G is an order-q elliptic

curve group over Fp , P and Q are random generators of G and

H : {0, 1}∗ → Zq is a collision resistant hash function.

• To prove: For two Pederson commitments C1 = α1P + β1Q,C2 =

α2P + β2Q , the prover knows α1,α2, β1, β2, and α1 , α2.
(1) The prover chooses γ1,γ2 ∈R Zq , computes the following:

t1 = γ1P , t2 = γ2Q , δ = H (P ,Q,C1,C2, t1, t2) and η1 = (α1 −
α2)δ + γ1,η2 = (β1 − β2)δ + γ2 and sends σ, = (t1, t2,η1,η2)
to the verifier

(2) The verifier computes δ = H (P ,Q,C1,C2, t1, t2), and output

1 if both of the following two conditions are true, output 0

otherwise:

– η1P + η2Q = δ (C1 −C2) + t1 + t2 and
– η2Q , δ (C1 −C2) + t2

D MORE ON THE EXPERIMENT
D.1 Addresses
Our experiment was carried out on the official Etheruem network.

Below are the account addresses and addresses of the transactions

that are shown in Table 2. They can be viewed through public

websites (e.g. https://etherscan.io/) or a suitable Ethereum client.

Contract Account Address
• Prisoner’s Contract:

0x09b61d58448d580c42b387334ac3fe28f2868887
• Colluder’s Contract:

0x255309e0612de2ab1812e21190b9a9b8f9a216d8
• Traitor’s Contract:

0x57b032d5a6adcc67739e8fd87a00c69bedbf7c65

Transaction Addresses
See Table 4. In the table Init is the transaction that send the

contract code to the blockchain. Other transactions are the ones

that invoke functions in the contracts. We tested the contracts with

multiple execution with different parameters. For each function, we

only record in the table one transaction that invokes it. There are

some variations on gas consumption in each execution, but they

are small and can be safely ignored.

D.2 Reuse Contracts
As we can see in Table 2, Init transaction (sending the contract

code to the blockchain) costs the most among all transactions when

using a contract. This is due to the high cost of storing data on the

blockchain. In many cases, the contracts can be reused. This is use-

ful, for example, when a client has a sequence of computation tasks

to outsource. Reusing a contract will reduce or destroy anonymity,

however this might not be a big concern in the commercial world.

In our contracts, we have a reset function that can be called

by the owner after the contract has concluded. The function will

clean up all data and reset the contract to the initial state. Then

the contract can be used as a new one. The cost of calling the reset

function is considerably smaller than setting up a new contract.

For example, resetting a Prisoner’s contract only costs about 56

thousand gas ($0.01), while setting up a new contract costs about

2.3 million gas ($0.40). This could help to reduce significantly the

transaction cost per contract execution.

E IS SIGNING MESSAGES ENOUGH TO DETER
CHEATING?

A question raised in the review process was that whether something

simple like just having the cloud providers sign messages is enough.

More specifically, one can design a mechanism in which the two

clouds sign all messages, including the one that delivers the result.

The client retains all the signed messages. If later the client finds

the result from a cloud is not correct, it can expose the wrongdoing

with the signature as evidence to the public, which will damage the

reputation of the cloud and/or cause the cloud a financial loss. The

clouds could be deterred by the consequences and thus would not

cheat in the first place.

This simple mechanism could work if the following two assump-

tions hold: (1) the clouds do not collude; (2) exposing the wrongdo-

ing will cause enough damage to the clouds and the clouds cannot

avoid it. The first assumption ensures that the client can at least

detect cheating (given that the client is assumed to be resource lim-

ited and cannot recompute the tasks by itself), and second ensures

that the clouds have the incentive to not to cheat.

In our paper, we consider cases in which collusion is a possibility

that cannot be eliminated. In real world, there are cases that the

clouds prefer not to collude, e.g. if collusion incurs a high cost that

exceeds the benefit of collusion. In such cases, if the client believes

that the clouds will not collude then the counter-collusion contracts

are not necessary because collusion is no longer a threat, and the

client could adopt simpler solutions.

In our paper, the deposit is held in advance and the cheating

cloud cannot get away from the penalty because the contracts are

enforced automatically and faithfully, assuming the smart contract

network is not compromised. In this case, the damage to the cheat-

ing cloud by losing deposit is concrete and invariable. On the other

hand, the damage caused by losing reputation depends on assump-

tions on practical factors such as the voice of the client, and the

effectiveness of the PR/legal departments of the cloud provider.

Some cloud providers might be able to avoid the damage by e.g.

changing their identities. If the damage is not enough or the clouds

can get away from penalty, threatening with exposing wrongdoing

will not deter cheating.
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Contract Transaction Address

P
r
i
s
o
n
e
r
’
s

Init 0x96a20c45d7eea44ae19932a7ffecb29017d92b25b1dca851033cc4d0080ae4fe
Create 0x2de04ff3047d0bb2cb4470e500247a50eacdaca6f85ff134accfb7b4d022368e
Bid 0x9c5e04c64d1df0df9bdaa552cf97b87323ba330e25b3d076b4105d3c07c8a372

Deliver 0xebc1893e285f21374e9c2c33bbbc4728f768e6d85d5552e701e56c4117b8445c
Pay 0x8d85f6ac943a19f9baf9cf1db439993939f78cf6934ae16eee1cf3b403a3d19b

Dispute 0x1dd851fb709d875d9f382b550032f20f24e29539336545b5fd733fd359f8951d

C
o
l
l
u
d
e
r
’
s

Init 0x583902f2f5550af92ccbb32dd522d0b975f3cc7c308afa3db38879d76f99edb0
Create 0xd04b7ca961a885626b4b2f62d4cffe25c38325751b0b5b1cbe3248b4a6121909
Join 0xfbad90496c4f2416a9baf49f8fc1cce3de6666b1e73f4e3cb57622d032f68ee4

Enforce 0xf06b571d4b89817d673fc4d079186525364dd744e6f291820469aff43b7134a0

T
r
a
i
t
o
r
’
s

Init 0x49cbcb5609997fb20d642782ba81c78b9504aedc37fd3aa9aca94e3374509f63
Create 0x27f4db8f47a34f0027f5312a032891af2b377002f807c41272a653a6b74a0375
Join 0x6365876c79025914ca0869d485757f148916a28ce12da00ae922520de0da8e99

Deliver 0xdc4e83f68c83a198b4d7d6acb17c6573c2c0bcae09df41054db791d723d84da4
Check 0xf333ed3c73fa28f1a964879ea8c6aa32cd612934e0d7b397ef330d9007767be1

Table 4: Transactions on the Ethereum network
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