
Homomorphic Secret Sharing:
Optimizations and Applications

Elette Boyle
IDC, Israel

eboyle@alum.mit.edu

Geoffroy Couteau
DI ENS, CNRS, PSL Research
University, Paris, France

INRIA
geoffroy.couteau@ens.fr

Niv Gilboa
Ben Gurion University, Israel

gilboan@bgu.ac.il

Yuval Ishai
Technion, Israel, and UCLA, USA

yuvali@cs.technion.ac.il

Michele Orrù
DI ENS, CNRS, PSL Research
University, Paris, France

INRIA
michele.orru@ens.fr

ABSTRACT
We continue the study of Homomorphic Secret Sharing (HSS), re-
cently introduced by Boyle et al. (Crypto 2016, Eurocrypt 2017).
A (2-party) HSS scheme splits an input x into shares (x0,x1) such
that (1) each share computationally hides x , and (2) there exists
an efficient homomorphic evaluation algorithm Eval such that for
any function (or “program”) P from a given class it holds that
Eval(x0, P)+Eval(x1, P) = P (x). Boyle et al. show how to construct
an HSS scheme for branching programs, with an inverse polynomial
error, using discrete-log type assumptions such as DDH.

We make two types of contributions.

Optimizations.We introduce new optimizations that speed up the
previous optimized implementation of Boyle et al. by more than a
factor of 30, significantly reduce the share size, and reduce the rate
of leakage induced by selective failure.

Applications. Our optimizations are motivated by the observation
that there are natural application scenarios in which HSS is useful
even when applied to simple computations on short inputs. We
demonstrate the practical feasibility of our HSS implementation in
the context of such applications.

KEYWORDS
Homomorphic Secret Sharing; Homomorphic Encryption; Private
Information Retrieval; Secure Computation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134107

1 INTRODUCTION
Fully homomorphic encryption (FHE) [26, 42] is commonly viewed
as a “dream tool” in cryptography, enabling one to perform arbi-
trary computations on encrypted inputs. In the context of secure
multiparty computation (MPC) [6, 17, 31, 45], FHE can be used to
minimize the communication complexity and the round complexity,
and shift the bulk of the computational work to any subset of the
participants.

However, despite exciting progress in the past few years, even
the most recent implementations of FHE [18, 24, 32] are still quite
slow and require large ciphertexts and keys. This is due in part to
the limited set of assumptions on which FHE constructions can be
based [15, 27, 44], which are all related to lattices and are therefore
susceptible to lattice reduction attacks. As a result, it is arguably
hard to find realistic application scenarios in which current FHE
implementations outperform optimized versions of classical secure
computation techniques (such as garbled circuits) when taking both
communication and computation costs into account.

Homomorphic secret sharing. An alternative approach that pro-
vides some of the functionality of FHE was introduced in the recent
work of Boyle et al. [11] and further studied in [13]. The high
level idea is that for some applications, the traditional notion of
FHE can be relaxed by allowing the homomorphic evaluation to be
distributed among two parties who do not interact with each other.

This relaxation is captured by the following natural notion of
homomorphic secret sharing (HSS). A (2-party) HSS scheme ran-
domly splits an input x into a pair of shares (x0,x1) such that:
(1) each share xb computationally hides x , and (2) there exists a
polynomial-time local evaluation algorithm Eval such that for any
“program” P (e.g., a boolean circuit, formula or branching program),
the output P (x) can be efficiently reconstructed from Eval(x0, P)
and Eval(x1, P).

As in the case of FHE, we require that the output of Eval be
compact in the sense that its length depends only on the output
length |P (x) | but not on the size of P . But in fact, a unique feature
of HSS that distinguishes it from traditional FHE is that the output
representation can be additive. That is, we require that Eval(x0, P)+
Eval(x1, P) = P (x) mod β for some positive integer β ≥ 2 that can
be chosen arbitrarily. This enables an ultimate level of compactness

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2105

https://doi.org/10.1145/3133956.3134107

and efficiency of reconstruction that is impossible to achieve via
standard FHE. For instance, if P outputs a single bit and β = 2, then
P (x) is reconstructed by taking the exclusive-or of two bits.

Themain result of [11] is an HSS scheme sfor branching programs
under the Decisional Diffie-Hellman (DDH) assumption.1 At a small
additional cost, this HSS scheme admits a public-key variant, which
enables homomorphic computations on inputs that originate from
multiple clients. In this variant, there is a common public key pk
and two secret evaluation keys (ek0, ek1). Each input xi can now
be separately encrypted using pk into a ciphertext cti , such that
cti together with a single evaluation key ekb do not reveal xi . The
homomorphic evaluation can now apply to any set of encrypted
inputs, using only the ciphertexts and one of the evaluation keys.
That is, Eval(ek0, (ct1, . . . , ctn), P) + Eval(ek1, (ct1, . . . , ctn), P) =
P (x) mod β .

The HSS scheme from [11] has been later optimized in [13],
where the security of the optimized variants relies on other discrete-
log style assumptions (including a “circular security” assumption for
ElGamal encryption). These HSS schemes for branching programs
can only satisfy a relaxed form of δ -correctness, where the (additive)
reconstruction of the output may fail with probability δ and where
the running time of Eval grows linearly with 1/δ . As negative
byproducts, the running time of Eval must grow quadratically with
the size of the branching program, and one also needs to cope
with input-dependent and key-dependent leakage introduced by
selective failure. The failure probability originates from a share
conversion procedure that locally converts multiplicative shares
into additive shares. See Section 3 for a self-contained exposition
of the HSS construction from [11] that we build on.

The main motivating observation behind this work is that unlike
standard FHE, HSS can be useful even for small computations that
involve short inputs, and even in application scenarios in which
competing approaches based on traditional secure computation
techniques do not apply at all. Coupled with the relatively simple
structure of the group-based HSS from [11] and its subsequent op-
timizations from [13], this gives rise to attractive new applications
that motivate further optimizations and refinements.

Before discussing our contribution in more detail, we would like
to highlight the key competitive advantages of HSS over alternative
approaches.
Optimally compact output. The optimal compactness feature
discussed above enables applications in which the communication
and computation costs of output reconstruction need to be mini-
mized, e.g., for the purpose of reducing power consumption. For
instance, a mobile client may wish to get quickly notified about
live news items that satisfy certain secret search criteria, receiving
a fast real-time feed that reveals only pointers to matching items.
HSS also enables applications in which the parties want to generate
large amounts of correlated randomness for the purpose of speed-
ing up an anticipated invocation of a classical secure computation
protocol. Generating such correlated randomness non-interactively
provides a good protection against traffic analysis attacks that try
to obtain information about the identity of the interacting parties,
1HSS for general circuits can be based on LWE viamulti-key FHE [23] or even threshold
FHE [10, 23]. Since these enhanced variants of FHE are even more inefficient than
standard FHE, these constructions cannot get around the efficiency bottlenecks of FHE.
We provide a brief comparison with LWE-based approaches in the full version.

the time of the interaction, and the size of the computation that is
about to be performed. This “low communication footprint” fea-
ture can be used more broadly to motivate secure computation via
FHE. However, the optimal output compactness of HSS makes it the
only available option for applications that involve computing long
outputs (or many short outputs) from short secret inputs (possibly
along with public inputs). We explore several such applications in
this work. Other advantages of group-based HSS over existing FHE
implementations include smaller keys and ciphertexts and a lower
start up cost.

Minimal interaction. HSS enables secure computation protocols
that simultaneously offer a minimal amount of interaction and
collusion resistance. For instance, following a reusable setup, such
protocols can involve a single message from each “input client” to
each server, followed by a single message from each server to each
“output client.” Alternatively, the servers can just publicize their
shares of the output if the output is to be made public. The security
of such protocols holds even against (semi-honest) adversaries who
may corrupt an arbitrary subset of parties that includes only one
of the two servers. Such protocols (a special type of 2-round MPC
protocols) cannot be obtained using classical MPC techniques and
are only known under indistinguishability obfuscation [25], special
types of fully homomorphic encryption [23, 39], or HSS [13].

1.1 Our Contribution
We make two types of contributions, extending both the efficiency
and the applicability of the recent constructions of group-based
HSS from [11, 13].

Optimizations. We introduce several new optimization ideas that
further speed up the previous optimized implementation from [13],
reduce the key and ciphertext sizes, and reduce the rate of leakage
of inputs and secret keys.

Computational optimizations.We show that a slight modification of
the share conversion procedure from [13] can reduce the expected
computational cost by a factor 16 or more, for the same failure
probability. (As in [13], the failure is of a “Las Vegas” type, namely
if there is any risk of a reconstruction error this is indicated by the
outputs of Eval.) Together with additional machine-level optimiza-
tions, we reduce the computational cost of Eval by more than a
factor of 30 compared to the optimized implementation from [13].

Improved key generation.Wedescribe a new protocol for distributing
the key generation for public-key HSS, which eliminates a factor-2
computational overhead in all HSS applications that involve inputs
from multiple clients.

Ciphertext size reduction.We suggest a method to reduce the cipher-
text size of group-based HSS by roughly a factor of 2, relying on a
new entropic discrete-log type assumption. In addition, we show
how to make HSS ciphertexts extremely succinct (at the cost of a
higher evaluation time) using bilinear maps in the full version.

Reducing leakage rate. We suggest several new methods to address
input-dependent and key-dependent failures introduced by the
share conversion procedure, mitigating the risk of leakage at a lower
concrete cost than the previous techniques suggested in [11, 13].
These include “leakage-absorbing pads” that can be used to reduce

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2106

the effective leakage probability from δ to O (δ2) at a low cost. In
particular, unlike earlier leakage reduction techniques from [11,
13], the (centralized or distributed) generation of such leakage-
absorbing pads does not require group operations.

Extensions and further optimizations.We exploit the specific struc-
ture of group-basedHSS to enrich its expressiveness, and to improve
the efficiency of homomorphic natural types of functions, including
low-degree polynomials, branching programs, and boolean formu-
las. One particularly useful extension allows an efficient evaluation
of a function that discloses a short bit-string (say, a cryptographic
key) under a condition expressed by a branching program.

Applications. As noted above, our optimizations are motivated
by the observation that there are natural application scenarios in
which HSS is useful even for simple computations. These include
small instances of general secure multiparty computation, as well
as distributed variants of private information retrieval, functional
encryption, and broadcast encryption.We demonstrate the practical
feasibility of our optimized group-based HSS implementation in
the context of such applications by providing concrete efficiency
estimates for useful choices of the parameters.

Secure MPC with minimal interaction. Using public-key HSS, a set
of clients can outsource a secure computation to two non-colluding
servers by using the following minimal interaction pattern: each
client independently sends a single message to the servers (based
on its own input and the public key), and then each server sends a
single message to each client. Alternatively, servers can just publish
shares of the output if the output is to be made public. The resulting
protocol is resilient to any (semi-honest) collusion between one
server and a subset of the clients, and minimizes the amount of
work performed by the clients. It is particularly attractive in the
case where many “simple” computations are performed on the same
inputs. In this case, each additional instance of secure computa-
tion involves just local computation by the servers, followed by a
minimal amount of communication and work by the clients.

Secure data access.We consider several different applications of HSS
in the context of secure access to distributed data. First, we use HSS
to construct a 2-server variant of attribute based encryption, in
which each client can access an encrypted file only if its (public or
encrypted) attributes satisfy an encrypted policy set up by the data
owner.We also consider a 2-server private RSS feed, in which clients
can get succinct notifications about new data that satisfies their
encrypted matching criteria, and 2-server PIR schemes with general
boolean queries. The above applications benefit from the optimal
output compactness feature of HSS discussed above, minimizing
the communication from servers to clients and the computation
required for reconstructing the output.

Unlike competing solutions based on classical secure compu-
tation techniques, our HSS-based solutions only involve minimal
interaction between clients and servers and no direct interaction
between servers. In fact, for the RSS feed and PIR applications, the
client is free to choose an arbitrary pair of servers who have access
to the data being privately searched. These servers do not need to be
aware of each other’s identity, and do not even need to know they
are participating in an HSS-based cryptographic protocol. Indeed,

each server can simply run the code provided by the client on its
local data, sending the output directly to the client.

Correlated randomness generation. HSS provides a method for non-
interactively generating sources of correlated randomness that can
be used to speed up classical protocols for secure two-party com-
putation. Concretely, following a setup phase, in which the parties
exchange HSS shares of random inputs, the parties can locally ex-
pand these shares (without any communication) into useful forms
of correlated randomness. As discussed above, the non-interactive
nature of the correlated randomness generation is useful for hiding
the identities of the parties who intend to perform secure compu-
tation, as well as the time and the size of the computation being
performed. The useful correlations we consider include bilinear
correlations (which capture “Beaver triples” as a special case) and
truth-table correlations. We also study the question of compressing
the communication in the setup phase by using local PRGs and
present different approaches for improving its asymptotic com-
putational complexity. However, despite our improvements, this
PRG-based compression is still too slow to be realized with good
concrete running time using our current implementation of group-
based HSS.

For all applications, we discuss the applicability of our general
optimization techniques, and additionally discuss specialized opti-
mization methods that target specific applications.

1.2 Related work
The first study of secret sharing homomorphisms is due to Be-
naloh [8], who presented constructions and applications of addi-
tively homomorphic secret sharing schemes.

Most closely relevant to the notion of HSS considered here is the
notion of function secret sharing (FSS) [10], which can be viewed
as a dual version of HSS. Instead of evaluating a given function
on a secret-shared input, FSS considers the goal of evaluating a
secret-shared function on a given input. For simple function classes,
such as point functions, very efficient FSS constructions that rely
only on one-way functions are known [10, 12]. However, these
constructions cannot be applied to more complex functions as the
ones we consider here except via a brute-force approach that scales
exponentially with the input length. Moreover, current efficient
FSS techniques do not apply at all to computations that involve
inputs from two or more clients, which is the case for some of the
applications considered in this work.

2 PRELIMINARIES
2.1 Homomorphic Secret Sharing
We consider homomorphic secret sharing (HSS) as introduced
in [11]. By default, in this work, the term HSS refers to a public-key
variant of HSS (known as DEHE in [11]), with a Las Vegas correct-
ness guarantee. To enable some of the optimizations we consider,
we use here a slight variation of the definition from [13] that allows
for an output to be computed even when one of the two parties
suspects an error might occur.

Definition 2.1 (Homomorphic Secret Sharing). A (2-party, public-
key, Las Vegas δ -failure) Homomorphic Secret Sharing (HSS) scheme

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2107

for a class of programs P consists of algorithms (Gen, Enc, Eval)
with the following syntax:
• Gen(1λ): On input a security parameter 1λ , the key genera-
tion algorithm outputs a public key pk and a pair of evalua-
tion keys (ek0, ek1).
• Enc(pk,x): Given public key pk and secret input value x ∈
{0, 1}, the encryption algorithm outputs a ciphertext ct. We
assume the input length n is included in ct.
• Eval(b, ekb , (ct1, . . . , ctn), P ,δ , β): On input party index b ∈
{0, 1}, evaluation key ekb , vector of n ciphertexts, a program
P ∈ P with n input bits andm output bits, failure probability
bound δ > 0, and an integer β ≥ 2, the homomorphic eval-
uation algorithm outputs yb ∈ Zmβ , constituting party b’s
share of an output y ∈ {0, 1}m , as well as a confidence flag
γb ∈ {⊥,⊤} to indicate full confidence (⊤) or a possibility of
failure (⊥). When β is omitted it is understood to be β = 2.

The algorithms Gen, Enc are PPT algorithms, whereas Eval can
run in time polynomial in its input length and in 1/δ . The algo-
rithms (Gen, Enc, Eval) should satisfy the following correctness
and security requirements:
• Correctness: For every polynomial p there is a negligible
ν such that for every positive integer λ, input x ∈ {0, 1}n ,
program P ∈ P with input length n, failure bound δ > 0 and
integer β ≥ 2, where |P |, 1/δ ≤ p (λ), we have:

Pr[(γ0 = ⊥) ∧ (γ1 = ⊥)] ≤ δ + ν (λ),

and

Pr[((γ0 = ⊤) ∨ (γ1 = ⊤)) ∧ y0 + y1 , P (x1, . . . ,xn)] ≤ ν (λ),

where probability is taken over

(pk, (ek0, ek1)) ← Gen(1λ); cti ← Enc(pk,xi), i ∈ [n];

(yb ,γb) ← Eval(b, ekb , (ct1, . . . , ctn), P ,δ , β), b ∈ {0, 1},
and where addition of y0 and y1 is carried out modulo β .
• Security: For b = 0, 1, the distribution ensembles Cb (λ, 0)
and Cb (λ, 1) are computationally indistinguishable, where
Cb (λ,x) is obtained by sampling (pk, (ek0, ek1)) ← Gen(1λ),
sampling ctx ← Enc(pk,x), and outputting (pk, ekb , ctx).

We implicitly assume each execution of Eval to take an additional
nonce input, which enables different invocations to have (pseudo)-
independent failure probabilities. (See [11] for discussion.)

Remark 2.2 (Variant HSS Notions). Within applications, we
additionally consider the following HSS variants:

(1) Secret-Key HSS: a weaker notion where the role of the public key
pk is replaced by a secret key sk, and where security requires
indistinguishability of (ekb , Enc(sk,x1) . . . Enc(sk,xn)) from
(ekb , Enc(sk,x

′
1) . . . Enc(sk,x

′
n)) for any pair of inputs x =

(x1, . . . ,xn) and x ′ = (x ′1, . . . ,x
′
n). Here we also allow Enc to

produce a pair of shares of x , where each share is sent to one
of the parties. This variant provides better efficiency when all
inputs originate from a single client.

(2) Non-binary values: in some applications it is useful to evalu-
ate programs with non-binary inputs and outputs, typically
integers from a bounded range [0..M] or [−M ..M]. The above
definition can be easily modified to capture this case.

2.2 Computational Models
The main HSS scheme we optimize and implement naturally ap-
plies to programs P in a computational model known as Restricted
Multiplication Straight-line (RMS) program [11, 20].

Definition 2.3 (RMS programs). An RMS program consists of a
magnitude bound 1M and an arbitrary sequence of the four follow-
ing instructions, sorted according to a unique identifier id:
• Load an input into memory: (id, ŷj ← x̂i).
• Add values in memory: (id, ŷk ← ŷi + ŷj).
• Multiply memory value by input: (id, ŷk ← x̂i · ŷj).
• Output from memory, as Zβ element: (id, β , Ô j ← ŷi).

If at any step of execution the size of a memory value exceeds the
boundM , the output of the program on the corresponding input is
defined to be ⊥. Otherwise the output is the sequence of Ô j values
modulo β , sorted by id. We define the size (resp., multiplicative
size) of an RMS program P as the number of instructions (resp.,
multiplication and load input instructions).

RMS programs with M = 2 are powerful enough to efficiently
simulate boolean formulas, logarithmic-depth boolean circuits, and
deterministic branching programs (capturing logarithmic-space
computations) [11]. For concrete efficiency purposes, their ability to
perform arithmetic computations on larger inputs can also be useful.
We present an optimized simulation of formulas and branching
programs by RMS programs in Section 4.5.

3 OVERVIEW OF GROUP-BASED HSS
In this sectionwe give a simplified overview of the HSS construction
from [11]. For efficiency reasons, we assume circular security of
ElGamal encryption with a 160-bit secret key. This assumption can
be replaced by standard DDH, but at a significant concrete cost.

3.1 Encoding Zq Elements
Let H be a prime order group, with a subgroup G of prime order
q. Let д denote a generator of G. For any x ∈ Zq , we consider the
following 3 types of two-party encodings:

Level 1: “Encryption.” For x ∈ Zq , we let [x] denote дx , and JxKc
denote ([r] , [r · c + x]) for a uniformly random r ∈ Zq , which
corresponds to an ElGamal encryption of x with a secret key c ∈ Zq .
(With short-exponent ElGamal, c is a 160-bit integer.) We assume
that c is represented in base B (B = 2 by default) as a sequence
of digits (ci)1≤i≤s (where s = ⌈160/ log2 B⌉). We let [[[x]]]c denote
(JxKc , (Jx · ci Kc)1≤i≤s). All level-1 encodings are known to both
parties.

Level 2: “Additive shares.” Let ⟨x⟩ denote a pair of shares x0,x1 ∈
Zq such that x0 = x1 + x , where each share is held by a different
party. We let ⎷x⌄c denote (⟨x⟩ , ⟨x · c⟩) ∈ (Z2

q)
2, namely each party

holds one share of ⟨x⟩ and one share of ⟨x · c⟩. Note that both
types of encodings are additively homomorphic over Zq , namely
given encodings of x and x ′ the parties can locally compute a valid
encoding of x + x ′.

Level 3: “Multiplicative shares.” Let {x } denote a pair of shares
x0,x1 ∈ G such that the difference between their discrete loga-
rithms is x . That is, x0 = x1 · дx .

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2108

3.2 Operations on Encodings
We manipulate the above encodings via the following two types of
operations, performed locally by the two parties:

(1) Pair(JxKc ,⎷y⌄c) 7→
{
xy

}. This pairing operation exploits
the fact that [a] and ⟨b⟩ can be locally converted to {ab} via
exponentiation.

(2) Convert({z} ,δ) 7→ ⟨z⟩, with failure bound δ . The implemen-
tation of Convert is also given an upper bound M on the
“payload” z (M = 1 by default), and its expected running time
grows linearly with M/δ . We omit M from the following
notation.

The Convert algorithm works as follows. Each party, on input
h ∈ G, outputs the minimal integer i ≥ 0 such that h · дi is “dis-
tinguished,” where roughly a δ -fraction of the group elements are
distinguished. Distinguished elements were picked in [11] by ap-
plying a pseudo-random function to the description of the group
element. An optimized conversion procedure from [13] (using spe-
cial “conversion-friendly” choices of G ⊂ Z∗p and д = 2) applies
the heuristic of defining a group element to be distinguished if its
bit-representation starts with d ≈ log2 (M/δ) leading 0’s. Note that
this heuristic only affects the running time and not security, and
thus it can be validated empirically. Correctness of Convert holds if
no group element between the two shares {z} ∈ G2 is distinguished.
Finally, Convert signals that there is a potential failure if there is
a distinguished point in the “danger zone.” Namely, Party b = 0
(resp., b = 1) raises a potential error flag if h · д−i (resp., h · дi−1) is
distinguished for some i = 1, . . . ,M . Note that we used the notation
M both for the payload upper bound in Convert and for the bound
on the memory values in the definition of RMS programs (Defi-
nition 2.3). In the default case of RMS program evaluation using
base 2 for the secret key c in level 1 encodings, both values are
indeed the same; however, when using larger basis, they will differ.
To avoid confusion, in the following we will denote byMRMS the
bound on the memory values, and byM the bound on the payload.

Let PairConv be an algorithm that sequentially executes Pair
and Convert: PairConv(JxKc ,⎷y⌄c ,δ) 7→

〈
xy

〉, with error δ . We
denote by Mult the following algorithm:
• Functionality: Mult([[[x]]]c ,⎷y⌄c ,δ) 7→ ⎷xy⌄c
– Parse [[[x]]]c as (JxKc , (Jx · ci Kc)1≤i≤s).
– Let 〈xy〉← PairConv(JxK ,⎷y⌄c ,δ ′) for δ ′ = δ/(s + 1).
– For i = 1 to s , let 〈xy · ci 〉← PairConv(Jxci Kc ,⎷y⌄c ,δ ′).
– Let 〈xy · c〉← ∑s

i=1 B
i−1 〈

xy · ci
〉.

– Return (
〈
xy

〉
,
〈
xy · c

〉
).

3.3 HSS for RMS programs
Given the above operations, an HSS for RMS programs is obtained
as follows.
• Key generation: Gen(1λ) picks a group G of order q with
λ bits of security, generator д, and secret ElGamal key c ∈
Zq . It output pk = (G,д,h, Jci Kc)1≤i≤s , where h = дc , and
(ek0, ek1) ← ⟨c⟩, a random additive sharing of c .

• Encryption: Enc(pk,x) uses the homomorphism of ElGamal
to compute and output [[[x]]]c .
• RMS program evaluation: For an RMS program P of multi-
plicative size S , the algorithm Eval(b, ekb , (ct1, . . . , ctn), P ,

δ , β) processes the instructions of P , sorted according to
id, as follows. We describe the algorithm for both parties
b jointly, maintaining the invariant that whenever a mem-
ory variable ŷ is assigned a value y, the parties hold level-2
shares Y = ⎷y⌄c .
– ŷj ← x̂i : Let Yj ← Mult([[[xi]]]c ,⎷1⌄c ,δ/S), where ⎷1⌄c
is locally computed from (ek0, ek1) using ⟨1⟩ = (1, 0).

– ŷk ← ŷi + ŷj : Let Yk ← Yi + Yj .
– ŷk ← x̂i · ŷj : Let Yk ← Mult([[[xi]]]c ,Yj ,δ/S).
– (β , Ô j ← ŷi): Parse Yi as (

〈
yi

〉
,
〈
yi · c

〉
) and output O j =〈

yi
〉
+ (r , r) mod β for a fresh (pseudo-)random r ∈ Zq .

The confidence flag is ⊥ if any of the invocations of Convert
raises a potential error flag, otherwise it is ⊤.

The pseudorandomness required for generating the outputs and for
Convert is obtained by using a common pseudorandom function
key that is (implicitly) given as part of each ekb , and using a unique
nonce as an input to ensure that different invocations of Eval are
indistinguishable from being independent.

The secret-key HSS variant is simpler in two ways. First, Enc can
directly generate [[[x]]]c from the secret key c . More significantly,
an input loading instruction ŷj ← x̂i can be processed directly,
without invoking Mult, by letting Enc compute Yj ← ⎷xi⌄c and
distribute Yj as shares to the two parties. Note that in this variant,
unlike our main public key variant, the size of the secret information
distributed to each party grows with the input size.

Performance. The cost of each RMS multiplication or input load-
ing is dominated by s + 1 invocations of PairConv, where each
invocation consists of Pair and Convert. The cost of Pair is domi-
nated by one group exponentiation with roughly 200-bit exponent.
(The basis of the exponent depends only on the key and the in-
put, which allows for optimized fixed-basis exponentiations when
the same input is involved in many RMS multiplications.) When
the RMS multiplications apply to 0/1 values (this is the case when
evaluating branching programs), the cost of Convert is linear in
BS/δ , where the B factor comes from the fact that the payload z of
Convert is bounded by the size of the basis. When δ is sufficiently
small, the overall cost is dominated by the O (BS2s/δ) conversion
steps, where each step consists of multiplying by д and testing
whether the result is a distinguished group element.

4 OPTIMIZATIONS
4.1 Optimizing Share Conversion
In [13], the share conversion algorithm Convert (see Section 3.2)
was heuristically improved by changing the way in which dis-
tinguished group elements are defined. Instead of independently
deciding whether a group element is distinguished by applying a
PRF to its description, as originally proposed in [11], the method
proposed in [13] considers the sequence stream of most significant
bits of the group elements h,hд,hд2,hд3, . . ., where h is the given
starting point, and looks for the first occurrence of the pattern 0d
in stream.

The advantage of this approach is that stream can be computed
very efficiently for a suitable choice of “conversion-friendly” group.
Concretely, the groups proposed in [13] are of the form G ⊆ Z∗p ,
where p is close to a power of 2 and д = 2 is a generator. Combined

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2109

with an efficient implementation of searching for the pattern 0d in
stream, a single conversion step can be implemented at an amor-
tized cost of less than one machine word operation per step. This
provides several orders of magnitude improvement over a generic
implementation of the original conversion algorithm from [11],
which requires a full group multiplication and PRF evaluation per
step.

In this section, we describe two simple modifications that allow
us to further improve over this method. In the context of RMS
multiplications, the improvement is by at least a factor of 16.

4.1.1 Separating Distinguished Points. The first optimization
ensures that an actual failure happens in the computation if and
only if the two parties raise a flag. This is done simply by declar-
ing any point in the danger zone (which corresponds to M points
forward for the first party, and M points backward for the second
party, where M is the payload bound) to be non-distinguished if
it is located less than 2M steps after a distinguished point. This
modification has only a marginal impact on the running time as it
only affects the start of the Convert algorithm, where the parties
search for distinguished points in the danger zone. Before starting
the conversion, we also let both parties multiply their local share
by дM (this avoids having to compute inversions when looking for
distinguished points backward). This is to be compared with [13],
where roughly half of the distinguished points are immediately
followed by another distinguished point (this happens if the bit fol-
lowing the 0d pattern is 0). Hence, the event of two parties raising
a flag was highly correlated with the event of the first party raising
a flag, even when the actual payload is 0 (which corresponds to a
case where no actual failure can occur).

4.1.2 Changing the Pattern. We suggest a second, seemingly
trivial, modification of the Convert algorithm: searching for the
pattern 10d instead of 0d . We explain below how this improves the
construction.

First, recall that the conversion algorithm proceeds by looking
for the first distinguished point in a sequence stream defined by the
most significant bits of the group elements h,hд,hд2, Searching
for the modified pattern is almost the same: as before, we search for
the first occurrence of 0d in the sequence; when this sub-sequence
is found, it necessarily holds that the bit that precedes it is 1. The
only actual change is in the initial check, which ignores an initial
sequence of 0’s and searches the danger zone for the pattern 10m
(instead of 0m) when deciding whether to raise a potential error flag.
Changing the pattern 0d to 10d improves the failure probability by
a factor of 2 (since it reduces the probability of a distinguished point
in the danger zone by a factor of 2) without significantly changing
the running time. Thus, it effectively reduces the expected running
time required for achieving a given failure probability by a factor
of 2.

We now formally describe and analyze the optimized conversion
algorithm that incorporates the above two modifications.

Referring by “failure” to the event of both parties outputting ⊥,
we can therefore state the following lemma, which corresponds to a
factor-(2M/z) improvement over the conversion algorithm of [13]
for a payload z and payload boundM :

Convert∗ ({z} ,M,d) 7→ ⟨z⟩. Let Convert∗ denote the Convert
algorithm from [13] (see Section 3.2) modified as follows: given a
payload boundM and failure parameter d , the algorithm searches
for the pattern 10d instead of 0d , and points in the danger zone

within 2M steps backward of a distinguished point are considered
to be non-distinguished.

Lemma 4.1. If Convert∗ is run on a random stream with payload
z, payload boundM , and failure parameter d , the expected number
of steps performed by each party is T ≤ 2d+1 + 2M and the failure
probability is ε ≤ z · 2−(d+1) .

A proof of Lemma 4.1 is given in the full version.For comparison,
in the Las Vegas variant of the optimized conversion algorithm
from [13], the expected running time is the same, whereas the
failure probability bound is ε ≤ M · 2−d .

Note that our heuristic assumption that stream is uniformly ran-
domhas no impact on security, it only affects efficiency and has been
empirically validated by our implementation. Given Lemma 4.1,
and denoting Mult∗ the Mult algorithm using Convert∗ instead
of Convert, we can now bound the failure probability in an RMS
multiplication:

Lemma 4.2. If Mult∗ is run with base B, length s for the secret
key c , payload bound M , and outputs y, the expected number of
conversion steps performed by each party is T ≤ (s + 1) · 2d+1, the
failure probability ε , expected over the randomness of the secret key c ,
satisfies

ε ≤ y ·
1 + s (B−1)

2
2d+1 +

(s + 1
2d+1

)2
.

A proof of Lemma 4.2 is given in the full version.Note that the
payload in the first Convert∗ algorithm is y and the average pay-
load in the s last Convert∗ invocations is (B − 1)y/2; the failure
probability is also taken over the random choice of the secret key.

4.1.3 Randomizing the Conversion of Bit Inputs. Using the above
method, the two parties raise a flag if a failure actually occurs or
if both parties raise a flag in different executions of Convert∗; the
latter situation occurs only with quadratically smaller probability
((s + 1)/2d+1)2. In addition, let z be a payload used in a conversion
step with failure parameter δ . Observe that the actual probability of
a failure occurring is δz. In [11], the failure probability was analyzed
by using a bound on the maximal size of the shared value. A typical
conversion occurs after a pairing between an encryption of a value
x ·ci , where x is an input and ci is a component of the secret key (in
some base B), and a level 2 share of a valuey; in most applications, x
and y are bits (this corresponds to using memory boundMRMS = 1
for the RMS program), hence the maximum value of xyci is B−1. As
the secret key is random, we previously observed that the average
size of ci is (B − 1)/2.

In addition, we will show in this section that we can randomize
the conversion algorithm, so as to ensure that each of x and y is
equal to 0 with probability 1/2. This ensures that the average size
of z = xyci in a typical conversion step is (B − 1)/8, hence that the
event of a failure occurring is on average δ (B − 1)/8, independently
of the actual distribution of the inputs. Because of our previous
optimization, which ensures that a failure occurs if and only if

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2110

two flags are raised, this allows to set the parameter δ to be 8
times bigger to reach a fixed failure probability, effectively reducing
the number of steps in a conversion algorithm by a factor of 8.
Therefore, cumulated with the previous optimization, this improves
the computational efficiency of conversions in most applications
by a factor 16.

We now describe our randomization technique. First, we modify
the key generation algorithm as follows: we set the evaluation keys
(ek0, ek1) to be (⟨ci ⟩)i≤s (the parties hold shares of each bit of c over
the integers, rather than holding integer shares of c). Second, we
assume that the parties have access to a stream of common random
bits (which can be heuristically produced by a PRG), and that they
hold level 2 shares of each input bit. In the case of secret key HSS,
these level two shares can be part of the encryption algorithm of
the HSS; for public key HSS, they can be computed (with some
failure probability) from level 1 shares and the shares of the secret
key. Let PairConv∗ be the PairConv algorithm modified to use the
new Convert∗ algorithm.

Functionality: RandMult(pk, [[[x]]]c ,⎷x⌄c ,⎷y⌄c ,δ ,b0,b1) 7→
⎷xy⌄c

Description: Parse [[[x]]]c as (JxKc , (Jxci Kc)i≤s), and use the
public values (b0,b1) to compute

Jb0 ⊕ xKc , (J(b0 ⊕ x)ci Kc)i≤s ,⎷b1 ⊕ y⌄c .
Let c0 = 1. For i = 0 to s , call

PairConv∗ (J(b0 ⊕ x)ci Kc ,⎷b1 ⊕ y⌄c ,δ),
which returns 〈

(b0 ⊕ x) (b1 ⊕ y)ci
〉. Compute〈

xyci
〉
← (−1)b0+b1 (

〈
(b0 ⊕ x) (b1 ⊕ y)ci

〉
− b0b1 ⟨ci ⟩ − b0 (−1)b1 〈

yci
〉
− b1 (−1)b0 ⟨xci ⟩).

Reconstruct ⎷xy⌄c ← (
〈
xyc0

〉
,
∑
i 2i−1 〈

xyci
〉
).

The correctness immediately follows from the fact thatb0⊕x and
b1 ⊕ y are uniform over {0, 1} if (b0,b1) are random bits. Therefore,
we get the following corollary to Lemma 4.2:

Corollary 4.3. The (Las Vegas) probability ε of a failure event
occurring in an RMS multiplication on bit inputs using base B and
length s for the secret key is

ε ≤
1 + s (B−1)

2
2d+3 +

(s + 1
2d+1

)2
.

Remark 4.4. The above method should be avoided when there
is an a-priori knowledge that the RMS values are biased towards 0
(or 1). In this case, one can gain better error reduction by applying
our optimized conversion directly without any randomization. We
also note that the above method does not generalize immediately
to MRMS > 1: while xoring with a public value can be done homo-
morphically in the case MRMS = 1, this does not extend to general
modular addition. However, a weaker version of the result can be

achieved, using (r0, r1)
$
← {0, · · · ,MRMS − 1}2 and randomizing

(x ,y) as (x ′,y′) = (x − r0,y − r1). While (x ′,y′) are not uniformly
distributed and belong to a larger set {1−MRMS, · · · ,MRMS − 1}, we
can lower bound the probability of x ′y′ = 0 as

Pr[x ′y′ = 0] ≥ 1 −
(
MRMS − 1
MRMS

)2
,

which is sufficient to improve over the basic Convert algorithm.

4.2 Distributed Protocols
In this section, we suggest new protocols to improve the key gener-
ation, and to distributively generate level 2 shares of inputs under
a shared key. The former protocol allows to save a factor two com-
pared to the solution outlined in [13], while the latter is extremely
useful for computation of degree-two polynomials (intuitively, this
allows to avoid encoding each input with a number of group el-
ements proportional to the size of the secret key – see e.g. Sec-
tion 5.3.1).

4.2.1 Distributed Key Generation. When using HSS within se-
cure computation applications, the parties must generate an HSS
public key in a secure distributed fashion. Applying general-purpose
secure computation to do so has poor concrete efficiency and re-
quires non-black-box access to the underlying group. A targeted
group-based key generation protocol was given in [13], where each
party samples an independent ElGamal key, and the system key is
generated homomorphically in a threshold ElGamal fashion. How-
ever, a negative side-effect of this procedure is that encryptions
of key bits from different parties combine to encrypted values in
{0, 1, 2} instead of {0, 1} (since homomorphism is over Zq , not Z2),
and these larger payloads incur a factor of 2 greater runtime in
homomorphic multiplications to maintain the same failure proba-
bility.

We present an alternative distributed key generation procedure
which avoids this factor of 2 overhead, while maintaining black-box
use of the group, at the expense of slightly greater (one-time) setup
computation and communication. We focus here on the primary
challenge of generating encryptions of the bits of a shared ElGamal
secret key c . We use a binary basis for concreteness, but the protocol
can be easily generalized to an arbitrary basis. Roughly the idea is to
run an underlying (standard) secure protocol to sample exponents
of the desired ElGamal ciphertext group elements, but which reveals
the exponents masked by a random value (ai or bi) generated by
the other party. The parties then exchange дai and дbi , which
enables each to locally reconstruct the ElGamal ciphertext, while
computationally hiding the final exponents. Most importantly, the
resulting protocol requires only black-box operations in the group.

Proposition 4.5. The protocol ΠGen in Figure 1 securely evaluates
the group-based HSS Gen algorithm (from Section 3.3).

Proof Sketch. By construction (and correctness of the under-
lying 2PC), both parties will correctly output ElGamal ciphertexts
(дri ,дxi)i ∈[s] of each bit ci of the generated secret key, as desired.
Regarding security, the view of each party consists of a collection
of random group elements (received from the other party) together
with the exponent offsets from each value and its target. This can
be directly simulated given freshly sampled target ciphertexts, by
choosing a random offset and computing the group elements in the
first step accordingly. □

Observe that it is immediate to modify the protocol ΠGen to
additionally output additive shares (cA, cB) of the secret key c .
Comparison to [13]. ΠGen requires the additional 2PC execution
and 2s additional exponentiations per party (from Step 3) over

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2111

HSS Distributed Key Generation ΠGen

(1) For each i ∈ [s]:
A samples ai ,a′i

$
← Zq , sends дai ,дa

′
i to B; B samples

bi ,b
′
i

$
← Zq , sends дbi ,дb

′
i to A.

(2) Execute secure 2PC for (randomized) functionality:
Input: A inputs (ai ,a′i)i ∈[s]. B inputs (bi ,b ′i)i ∈[s].
Compute:
Sample s random key bits: ∀i ∈ [s], ci ← {0, 1}.
Let c = ∑s

i=1 2i−1ci ∈ Zq .
For each i ∈ [s]:

(a) Sample encryption randomness ri ← Zq .
(b) Compute xi = ric + ci ∈ Zq .
Output: A receives (ri − bi ,xi − b ′i)i ∈[s]; B receives
(ri − ai ,xi − a

′
i)i ∈[s].

(3) A outputs
(
(дbi)д(ri−bi) , (дb

′
i)д(xi−b

′
i)
)
i ∈[s], B outputs(

(дai)д(ri−ai) , (дa
′
i)д(xi−a

′
i)
)
i ∈[s].

Figure 1: 2-party protocol ΠGen for distributed HSS public
key generation.

the [13] solution. The 2PC is composed of s linear operations over
Z2, and s multiplications and 2s additions over Zq . In exchange,
ΠGen guarantees the encrypted system key bits ci remain in {0, 1},
whereas in [13] the corresponding terms ci will take values in
{0, 1, 2}, yielding x2 speedup in homomorphic evaluation of RMS
multiplications.

We remark that while one may be able to effectively address
this larger payload in specific cases (e.g., leveraging that the value
ci ∈ {0, 1, 2} is 1 with probability 1/2), such fixes will not extend
to general usage settings, or when implementing further HSS opti-
mizations, such as using a larger basis for the key.

4.2.2 Distributed Generation of Level 2 Shares. In this section,
we present a simple distributed protocol for generation of level 2
shares (additive shares) of a secret input under a shared key. Namely,
we consider two parties,A and B, holding additive shares cA and cB
of the secret key c (where addition is in Zq). We assume that each
share statistically masks c over the integers (for 80 bits of security,
each share can be 240 bits long, instead of requiring 1536 bits to
describe a truly random element in Zq). The protocol is represented
in Figure 2; it assumes access to an oblivious transfer primitive.

Distributed Level 2 Shares Generation ΠL2S

(1) A’s input is (x , cA), with x ∈ {0, 1}, and B’s input is cB ,
such that cA + cB = c . Let t be the bitlength of cA and cB .

(2) B picks r $
← Z2t+λ and runs as sender in an oblivious

transfer protocol with input (r , r +cB).A runs as receiver
with selection bit x and get an output r ′.

(3) A outputs (x , r ′ + x · cA). B outputs (0,−r).

Figure 2: 2-party protocol ΠL2S for distributed level 2 shares
generation.

Proposition 4.6. The protocol ΠL2S in Figure 2 securely generates
level 2 shares ⎷x⌄c of the input x .

Correctness follows easily by inspection, and the (statistical)
privacy of the inputs directly reduces to the security properties of
the oblivious transfer (OT).

For each input bit x encoded in this fashion, the required commu-
nication corresponds to a single 1-out-of-2 string OT, with string
length ℓ = 240 bits and security parameter λ = 80. Leveraging
OT extension techniques, n input bits can then be encoded with
2n(λ + ℓ) = 640n bits of communication.

4.3 Generic Ciphertext Compression for
Public-Key HSS

In [11], a heuristic method to compress the ciphertext size by a
factor two was suggested, by generating all first components дr
of ciphertexts using a PRG; however, this method only applies to
secret-key HSS. In this section, we sketch a method to achieve
a comparable trade-off (ciphertexts size reduced by a factor two
in exchange for a larger key) for public-key HSS, under a new
assumption. Formal details are given in the full version.
Entropic Span Diffie-Hellman Assumption over Zq . Let • de-
note the inner product operation, and B denote any basis. Intuitively,
the entropic span Diffie-Hellman assumption (ESDH) states that,
given k vectors (v1, . . . ,vk) of size t , the two distributions

D0 = {v1, · · · ,vk ,д,д
v1•c , · · · ,дvk •c | c ← {0, · · · ,B − 1}t }

D1 = {v1, · · · ,vk ,д,д1, · · · ,дk | (д1, · · · ,дk)
$
← Gk }

are indistinguishable, provided that any non-trivial linear com-
bination (

∑
i λivi) • c of the vi • c is sufficiently random, upon

random choice of the vector c (whose components are in base B).
Note that a necessary condition for this assumption to hold is that

all non-zero vectors in the span of (v1, · · · ,vk) must have ω (log λ)
exponentially large non-zero entries. If s denotes the length of a
standard ElGamal secret key (e.g. using base 2, s = 160 for 80 bits
of security), natural parameters for the ESDH assumption are t ≈
s+
√
s , λ = s , and k ≈

√
s , and each component of each vector is s-bit

long: with overwhelming probability, the vector with the smallest
Hamming weight in the span of random vectors (v1, · · · ,vk) has s
large coefficients.

Lemma 4.7. (Generic Security of ESDH) The entropic-span Diffie-
Hellman assumption holds in the generic group model.

A proof of Lemma 4.7 is given in the full version.
Randomness Reuse under ESDH. Under the above assumption,
we get the following lemma:

Lemma 4.8. Let G be a group and (t ,k) be two integers such that
the ElGamal encryption scheme is circularly secure, and the ESDH
assumption with parameters (t ,k) holds over G. Then there exists an
HSS scheme with the following parameters:
• The public key pk consists of k + 1 elements of G, and a short
PRG seed;
• The ciphertexts consist of t + ⌈t/k⌉ + 1 group elements.

Sketch. The HSS scheme is constructed as previously, with the
following modifications: the secret key is a vector c = (ci)i≤t . The

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2112

public key now contains k vectors (v1, · · · ,vk) ∈ (Ztq)
k (which can

be compressed using a PRG) and group elements (h1, · · · ,hk) ←
(дv1•c , · · · ,дvk •c). Encryption is done with the standard random-
ness reuse method, using a single random coin and the k public keys
to encrypt k consecutive values of (x , (x · ci)i≤t). We modify level
2 shares to be of the form (

〈
y
〉
, (

〈
ci · y

〉
)i≤t) (which simply means

that the reconstruction with powers of 2 is not executed at the end
of theMult algorithm). To evaluate the pairing algorithm Pair on
an input (JxKc ,⎷y⌄c), the parties compute

〈
vj • c

〉
j≤q

and use the
jth share to decrypt components of level 1 shares encrypted with
the key hj . Using the natural parameters previously mentioned, this
optimization reduces the ciphertext size from 2s + 1 group elements
to s + 2⌈

√
s⌉ + 1 group elements. For s = 160, this corresponds to

a reduction from 321 to 187 group elements, whereas for s = 40
(obtained by using a base-16 representation) this corresponds to a
reduction from 81 to 55 group elements. □

4.4 Reducing Leakage Rate
A crucial issue with current group-based HSS schemes is that the
failure event is correlated which secret information that may de-
pend both on the inputs and the secret key. Therefore, in scenarios
where the evaluating parties get to know whether the computation
failed, the secrecy of the inputs and the key can be compromised.
The amount of secret information that leaks during a computa-
tion is directly proportional to the failure probability δ . We discuss
methods to mitigate the leakage in this section.

4.4.1 Leakage-Absorbing Pads. In this section, we introduce a
new technique of using “leakage-absorbing pads” to reduce the
leakage rate from linear in the failure probability to quadratic. This
technique is incomparable to the previous approach from [13] of us-
ing leakage resilient circuits. While the technique from [13] can be
used tomake the leakage rate negligible, this comes at a high compu-
tational overhead that involves many additional group operations.
In contrast, our technique only yields a quadratic improvement in
the leakage rate but is computationally cheaper and requires no
additional group operations.

Masked Pairing Algorithm. To handle the leakage more efficiently,
we introduce a masked pairing algorithm, which takes in addition
some level 2 share of a pseudorandom bit b, which we call leakage-
absorbing pad, so that any value that can leak during a conversion
is XOR-masked with b. This ensures that failures do not leak private
information, unless two failure events occur on computation involv-
ing the same pad. In various scenarios, this allows us to make the
amount of leakage quadratically smaller than the failure probability.

Functionality. MPair(JxKc ,⎷b⌄c ,⎷y ⊕ b⌄c) 7→
〈
xy ⊕ b

〉
Description. Compute J1 − xKc from JxKc homomorphically.

Compute Pair(JxKc ,⎷b⌄c)×Pair(J1 − xKc ,⎷y ⊕ b⌄c) to get{
x (y ⊕ b)

}
× {(1 − x)b} = {

xy ⊕ b
}, and compute〈

xy ⊕ b
〉
= Convert(

{
xy ⊕ b

}
).

We extend this masked pairing algorithm to a masked multi-
plication algorithm, that returns ⎷xy ⊕ b⌄c . However, the latter is
more involved, as we must compute 〈

c (b ⊕ xy)
〉 using only MPair

to avoid non-masked leakage. In addition to pk, we assume that the
parties hold shares (⟨ci ⟩)i≤s of the coordinates of c .

Functionality. MMultpk ([[[x]]]c ,⎷b⌄c ,⎷y ⊕ b⌄c) 7→ ⎷xy ⊕ b⌄c
Description. Compute for i = 1 to s

⟨b ⊕ ci ⟩ ← MPair(Jci Kc ,⎷b⌄c ,⎷1 ⊕ b⌄c)
This part correspond to a precomputation phase, which de-
pends only on the pad b and can be reused in any execution
of MMult with the same pad. Parse [[[x]]]c as

(JxKc , (Jx · ci Kc)i≤s)

and perform the following operations:
(1) 〈

b ⊕ xy
〉
← MPair(JxKc ,⎷b⌄c ,⎷y ⊕ b⌄c)

(2) 〈
b ⊕ cixy

〉
← MPair(Jxci Kc ,⎷b⌄c ,⎷y ⊕ b⌄c) for i = 1 to

s
(3) 2 〈

ci (b ⊕ xy)
〉
← 2 · 〈b ⊕ xyci 〉+ ⟨ci ⟩ − (⟨b⟩+ ⟨b ⊕ ci ⟩) for

i = 1 to s
(4) 〈

c (b ⊕ xy)
〉
←

∑s
i=1 2i−1 〈

ci (b ⊕ xy)
〉

(5) Return (
〈
b ⊕ xy

〉
,
〈
(b ⊕ xy) · c

〉
).

Masked Evaluation of an RMS Program. Let P be an RMS program
with d inputs, which we assume to be a circuit with XOR gates and
restricted AND gates. We denote byMaskedEval an algorithm that
takes as input pk, a bit t , an evaluation key ek, a failure parameter δ ,
an RMS program P , a leakage-absorbing pad ⎷b⌄c , and d encoded
inputs ([[[xi]]]c)i≤d , which outputs a level-2 share of P (x1, · · · ,xd):

MaskedEval(t ,⎷b⌄c , ([[[xi]]]c)i≤d , P ,δ) 7→ ⎷P (x1, · · · ,xd)⌄c
The algorithm MaskedEval proceeds as follows: each masked

monomial is computed using theMMult algorithm for each product
of the monomial. To compute a masked XOR of two intermediate
valuesM1 andM2,

(1) Compute ⎷b ⊕ M1⌄c , ⎷b ⊕ M2⌄c , and ⎷b ⊕ M1M2⌄c using
several invocations of the MMult algorithm

(2) Compute ⎷b ⊕ (M1 ⊕ M2)⌄c as
⎷b⌄c + ⎷b ⊕ M1⌄c + ⎷b ⊕ M2⌄c − 2⎷b ⊕ M1M2⌄c .

Generating the Pads. In scenarios where secret-key HSS is sufficient,
the leakage absorbing pads can simply be generated as part of
any HSS ciphertext. For scenarios that require public-key HSS, a
number of leakage-absorbing pads can be generated as part of the
key distribution protocol, and re-generated later on if too many
pads have been compromised. Generating a pad can be done using
two oblivious transfers: the two parties (P0, P1) hold shares (c0, c1)
of the secret key c , and pick respective random bits (b0,b1). With
one OT, P0 transmits r0 − 2b0b1 and (c0 − 2b0c0)b1 + r ′0 to P1, for
random (r0, r ′0) ∈ Z

2
q , by letting P1 choose between the pairs (r0, r ′0)

and (−2b0+r0, c0 (1−2b0)+r ′0) with selection bit b1. Conversely, P1
transmits c1 (1 − 2b1)b0 + r1 to P0, for a random r1 ∈ Zq , using one
OT. Note that (r0+b0,b1+r0−2b0b1) form additive shares of b0⊕b1,
and (b0c0 − r ′0 + c1 (1 − 2b1)b0 + r1,b1c1 − r1 + c0 (1 − 2b0)b1 + r ′0)
form additive shares of c · (b0 ⊕ b1). Therefore, the two players
obtain level 2 shares of a random bit.

4.4.2 Protecting the Secret Key. Leakage pads can be used to
equally reduce the leakage rate of both input bits and secret key
bits. However, protecting key bits is more important for two reasons.
First, key bits are typically involved in a much larger number of
conversions than input bits. Second, in applications that involve

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2113

distributed key generation, replacing a compromised key requires
additional interaction. A natural approach suggested in [13] for
protecting the secret key c is to split it into k random additive shares
ci ∈ Zq such that c = ∑k

i=1 c
i , and modify the level 1 share of an

input x to include encryptions of x · cij for i ∈ [k] and j ∈ [s]. This
ensures that the jth component of c remains unknown unless the
k components at the jth positions of the (cij)i≤k are compromised.
However, this increases the ciphertext size and the evaluation time
by a factor k . In this section, we discuss more efficient sharing
methods to protect the secret key, that offer comparable security at
a cost which is only additive in k .
Computational Approach. The simplest method is to increase the
size of the secret key, and to rely on entropic variants of the Diffie-
Hellman assumption, stating that indistinguishability holds as long
as the secret exponent has sufficient min-entropy (see [14, 16]).
Assume for simplicity that the secret key is written in base 2; let
s be the key length corresponding to the desired security level.
Extending the key to be of size s + k ensures, under an appropriate
variant of the Diffie-Hellman assumption, that a leakage of up to k
bits of the secret key does not compromise the security.
Information Theoretic Approach. The above method becomes inef-
ficient if one wants to be able to handle a very large amount of
leakage. We outline a better approach to protect the secret key c
against an amount of leakage bounded by k . Let ℓ ← ⌈logq⌉ +
k + 2⌈log(1/ε)⌉, where ε denotes a bound on the statistical dis-
tance between the distribution of the secret key and the uniform
distribution from the view of an adversary getting up to k bits of
information. In the key setup, a large vector (vi)i≤ℓ of elements of
Zq is added to the public key (it can be heuristically compressed to
a short seed using a PRG), as well as encryptions of random bits
(c ′i)i≤ℓ satisfying

∑
i c
′
ivi = c mod q. An HSS ciphertext for an in-

put x now encrypts (x , (xc ′i)i). After an invocation of Convertwith
input y, 〈yc〉 can be reconstructed as ∑

i vi
〈
yc ′i

〉
. By the leftover

hash lemma, an arbitrary leakage of up to k bits of information
on the c ′i can be allowed, without compromising the key c . This
method is more efficient than the previous one for large values of
k and offers unconditional security.

4.5 Extending and Optimizing RMS Programs
In this section, we describe optimizations that take advantage of the
specificities of group-based HSS schemes when evaluating RMS pro-
grams, to allow for richer semantics and efficiency improvements
for certain types of computation.

4.5.1 Terminal Multiplications. TheMult algorithm, which al-
lows to multiply a level 1 share of x with a level 2 share of y and
produces a level 2 share of xy, involves s + 1 calls to PairConv: one
to generate 〈

xy
〉, and s to generate 〈

xy · c
〉. We make the follow-

ing very simple observation: let us call terminal multiplication a
multiplication between values that will not be involved in further
multiplications afterward. Then for such multiplications, it is suf-
ficient to call PairConv a single time, as the second part 〈

xy · c
〉

of a level 2 share is only necessary to evaluate further multiplica-
tions. For low depth computation with a large number of outputs,
this results in large savings (in particular, it reduces the amount
of computation required to evaluate degree-two polynomials with

some fixed failure probability by a factor (s + 1)2). Moreover, termi-
nal multiplications have additional benefits that we outline below,
which provides further motivation for treating them separately.

Short Ciphertexts for Evaluation of Degree-Two Poynomial with Secret-
Key HSS. Unlike public-key HSS, a ciphertext in a secret-key HSS
scheme can be directly generated together with a level 2 share of
its plaintext. This implies that it is not necessary to “download”
the inputs at all to construct such level 2 shares. Therefore, when
computing degree-two polynomials with secret-key HSS, which
involves only terminal multiplications, it is not necessary anymore
to encrypt the products between the bits of the secret key and the
input: a single ElGamal encryption of the input is sufficient.

For public-key HSS, level 2 shares of secret inputs cannot be
generated by a party directly, as no party knows the HSS secret key.
However, if we are in a setting with two parties who hold shares of
the secret key, then the parties can jointly generate level 2 shares
of their input by the protocol described in Section 4.2.2.

Handling Large Inputs in Terminal Multiplications. In general, all
inputs manipulated in RMS programs must be small, as the running
time of conversion steps depend on the size of the inputs. However,
the semantics of RMS programs can be extended to allow for a
terminal multiplication where one of the inputs can be large, by
outputting the result of the pairing operation without executing
the final conversion step. This simple observation has interesting
applications: it allows to design RMS programs in which a large
secret key will be revealed if and only if some predicate is satisfied.
More specifically, it allows to evaluate programs with outputs of
the form KF (x1, · · · ,xn) where K is a large input, and (x1, · · · ,xn)
are short input: the key K will be revealed if and only if F evaluates
to 1 on (x1, · · · ,xn).

Reduced Failure Probability in Terminal Multiplications. Consider ter-
minal multiplications in the evaluation of an RMS program where
the output is computed modulo β . If a party detects a risk of failure,
he must return a flag⊥. However, observe that such a failure occurs
when the two parties end up on different distinguished points in
a conversion step; but if the distance between the two possible
distinguished points happens to be a multiple of β in a terminal
multiplication, then the reduction modulo β of the result will can-
cel this failure. In this case, the party can simply ignore the risk
of failure. For the most commonly used special case of computa-
tion modulo 2, this observation reduces the number of failures in
terminal multiplication by a factor 2.

4.5.2 Evaluating Branching Programs and Formulas. As pointed
out in [11], a branching program can be evaluated using two RMS
multiplications for each node. A simple observation shows that in
fact, a single RMS multiplication per node is sufficient. Each node N
is computed as x ·N0 +y ·N1, where (N0,N1) are values on the two
parent nodes, and (x ,y) are multipliers on the edges (N0,N) and
(N1,N). Observe that the two edges leaving N0 carry the values x
and x̄ , and that given (N0,x ·N0), the value x̄ ·N0 can be computed
as N0 − x · N0 at no cost. Therefore, the two RMS multiplications
used to compute N can be reused in the computation of two other
nodes, saving a factor two on average compared to the simulation
of a branching program by an RMS program given in Claim A.2
of [11].

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2114

As boolean formulas can be efficiently simulated by branching
programs, a fan-in-2 boolean formula with n internal AND and OR
gates can be evaluated using exactly n RMS multiplication in the
setting of secret-key HSS. In the setting of public-key HSS, where
the encryption of the inputs must be converted to level 2 shares,
and additional RMS multiplication per input is required. In both
cases, NOT gates incur no additional cost.

4.5.3 Evaluating Threshold Formulas. Threshold functions (that
return 1 if at least some number n of inputs, out of N , are equal to 1)
are useful in many applications. An n-out-of-N threshold function
can be evaluated using (N −n+ 1) ·n non-terminal RMS multiplica-
tions, and 1 terminal RMS multiplication (for example, the majority
function requires essentially (N + 1)2/4 − 1 RMS multiplications),
using their natural branching program representation. Applying an
n-out-of-N threshold function to the N outputs of N size-k boolean
formulas requires k (N −n+1) ·n non-terminal RMS multiplications.
This class of functions captures a large number of interesting appli-
cations, such as evaluating policies on encrypted data, or searching
for fuzzy matches with encrypted queries.

5 APPLICATIONS
In this section, we outline a number of natural scenarios in which
group-based HSS seems particularly attractive, and describe how
our the optimizations from the previous section apply in these sce-
narios. The efficiency estimates given in this section are based on
the running time of our implementation, described Section 6 (see
Remark 6.1), using a single thread of an Intel Core i7 CPU. Our
implementation could perform roughly 5×109 conversion steps per
second on average, and 6.4×105 modular multiplications per second,
on a conversion-friendly group with a pseudo-Mersenne modulus
p = 21536 − 11510609, which is estimated to provide roughly 80 bits
of security. We summarize in Table 1 the optimizations of Section 4
that apply to each application described in this section. Some of
the subsections of Section 4 refer to several distinct possible opti-
mizations; a ✓ mark indicates that at least one of the optimizations
apply to the application. Note also that leakage-absorbing pads
(Section 4.4.1) and ciphertext compression (Section 4.3) cannot be
used simultaneously; for applications where both optimizations
possibly apply, only one of the two optimizations can be used in a
given instantiation. Finally, for some applications, there are opti-
mizations that are not relevant in general, but could be applied in
some specific scenario; those optimizations are still marked with a
✗ for simplicity.

5.1 Secure MPC with Minimal Interaction
Suppose that a set of clients wish to outsource some simple MPC
computation to two servers, with a simple interaction pattern that
involves a message from each input client to each server and a
message from each server to each output client. Security should
hold as long as the two servers do not collude, and should hold even
if when an arbitrary set of clients colludes with one server. HSS
provides a natural solution in this scenario. Before the set of clients
or their inputs are known, the two servers Sb obtain a common
public key pk and local secret evaluation keys ekb . This (reusable)
setup can be implemented via a trusted dealer or via an interactive
protocol between the servers or another set of parties. (When the

MPC File System RSS Feed PIR Correl.
(5.1) (5.2) (5.2) (5.2) (5.3)

Share Conversion (4.1) ✓ ✓ ✓ ✓ ✓

Rand. Conversion (4.1) ✓ ✓ ✓ ✓ ✓

Key Generation (4.2) ✓ ✗ ✗ ✗ ✓

Compression (4.3) ✓ ✓ ✗ ✗ ✗

Leakage (4.4) ✓ ✓ ✗ ✓ ✗

Terminal Mult. (4.5) ✓ ✓ ✓ ✓ ✓

Large Inputs (4.5) ✓ ✓ ✗ ✗ ✗

Table 1: Summary of the optimizations of Section 4 that ap-
ply to the applications of Section 5.

setup is implemented using external parties, the servers do not ever
need to interact or know each other’s identity.) The clients, who
do not need to know which or how many other clients participate
in the protocol, can compute a program P on their inputs xi in the
following way.
• Upload inputs. Each clientCi with input xi computes cti ←
Enc(pk,xi) and sends cti to both servers. (Alternatively, the
encrypted inputs cti can be posted in a public repository and
downloaded by the servers.)
• Local evaluation. Each server Sb , given encrypted inputs
(ct1, · · · , ctn) and a program P , locally computes zb ←
Eval(b, ekb , (ct1, · · · , ctn), P ,δ), where δ is a given failure
probability bound.
• Download output. Each server Sb sends zb to each output
client. (Alternatively, zb can be made public if the output is
public.) The output P (x1, . . . ,xn) is recovered, except with
δ failure probability, by computing z ← z0 ⊕ z1.

A simple example for this kind of secure computation can be
a small-scale vote: multiple clients encrypt their vote and upload
them on a public repository. The two servers retrieve the encrypted
votes and evaluate the voting function (say, majority, conjunction,
or another threshold function), without having to interact. The
local nature of this computation mitigates risks of collusions and
reduces latency. Shares of the result of the vote are then sent to
the clients, who can reconstruct the result by performing a simple
XOR. In case of a failure, the vote can be recomputed using the
same encrypted inputs.
Managing the Leakage. Note that the event of a failure in our group-
basedHSS constructions is correlatedwith both the private inputs of
the clients and the secret evaluation keys. In some cases, this might
not be an issue: the private inputs are compromised only when a
leakage occurs while a server is corrupted. In scenarios where a
server has a low probability of being corrupted, this conjunction of
events can be acceptably rare.

To further mitigate the risk associated with such leakage, the
parties can use the techniques described in Section 4.4.1 to reduce
the dependency between a failure event and a leakage event. The
key randomization techniques can be used to ensure that the same
setup can be used for many computations without compromising
the secret key. Moreover, leakage-absorbing pads can be generated
as part of the distributed key setup to protect inputs encrypted

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2115

5 10 15 20 25
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

Number of inputs n

Ti
m
e
in

se
co
nd

s

Using leakage pads
no leakage pads

Figure 3: Time to compute majority of n inputs with 10−4

leakage probability, with and without leakage-absorbing
pads, on a single thread of an Intel Core i7 CPU. See Re-
mark 6.1 for further implementation details.

with this setup, where Eval is replaced by the MaskedEval algo-
rithm. To minimize the number of pads, the same pad can be used
in each computation until one of the servers detects possible failure;
when this happens, the compromised pad is replaced by a new pad
in subsequent computations. This makes the leakage probability
quadratically smaller than the failure probability. Note that while
communication between the servers may still be occasionally re-
quired for generating new leakage pads, such an interaction will
typically be very infrequent and has a small amortized cost.

Efficiency Estimations. Consider for example the case of n clients
who want to compute the majority of their private inputs. The
majority function can be implemented using an RMS program with
(n + 1)2/4 − 1 non-terminal multiplications. Each client sends one
ciphertext encrypting his input, with basis B = 2 if using leakage-
absorbing pads (for XOR-masking), and B = 16 otherwise. Figure 3
shows the time required to compute the majority function on n
inputs, using either Eval directly, or using leakage-absorbing pads
andMaskedEval. Without leakage-absorbing pads, a ciphertext is
of size 10.6kB. With leakage-absorbing pads, a ciphertext is of size
35.9kB. The parameters are chosen to ensure a 10−4 leakage proba-
bility, and allow for the evaluation of about 104 functions before
refreshing the key. In the setting with leakage-absorbing pads, this
requires generating a number N = 100 of pads during the setup.
Note that the failure probability corresponding to a 10−4 leakage
probability is 1% with leakage pads, and 0.01% without leakage pads.
However, one can easily mitigate this issue by setting the leakage
probability of the pad-based protocol to 10−4/2 and re-running it
when a failure occurs, which allows to maintain a 10−4 leakage
probability while making the failure probability comparable to that
of the protocol without pads, at essentially no cost in efficiency (as
the protocol is re-run only when a failure actually occurs).

Advantage over alternative approaches. This HSS-based approach
has the advantage of being particularly efficient for the clients,
without requiring interaction between the servers (or requiring

infrequent interaction for refreshing secret key or leakage absorb-
ing pads). Standard alternative techniques for performing secure
computation in this setting break down if a client colludes with one
of the servers. For instance, this applies to solutions where one of
the servers generates a garbled circuit, or to solutions that employ
a standard FHE scheme whose secret key is known to all clients.

5.2 Secure Data Access
In this section, we discuss three natural applications of HSS to
secure data access: policy-based file systems, private RSS feeds, and
private information retrieval.

5.2.1 Policy-Based File Systems. Consider the following sce-
nario: a data owner wants to maintain a file system where users,
identified by a set of attributes, can access encrypted files according
to some policy. Let us outline a brief intuition of an HSS-based
solution: the data owner D generates the keys of a secret-key Las
Vegas HSS and sends them to two servers (S0, S1), together with
some encrypted vectors that indicates how permissions to access
the files should be granted given the vector of attributes of some
client. A public repository contains encrypted files EK (m), where
the key K is derived from a large value r encrypted by the data
owner. An RMS program P determines whether access should be
granted to a client. We use the enhanced semantic of section 4.5.1
to allow the program P to handle the large input r in a terminal
multiplication. We discuss this application in more details in the
full version.

5.2.2 Private RSS Feed. Consider the following scenario: a client
has subscribed to a (potentially large) number of RSS feeds, and
would like to receive regular updates on whether new data might
interest him. Typical examples could be getting newspapers relevant
to his center of interest, or job offers corresponding to his abilities.
Each data is categorized by a set of tags, and the client wishes
to retrieve data containing specific tags (one can also envision
retrieving data according to more complex predicates on the tags)
in a private way (without revealing to the servers his topics of
interest, or his curriculum vitae).

The trivial solution in this scenario would be to let the servers
send regular digests to the client, containing the list of all tags
attached to each newly arrived data, so as to let the client determine
which data interest him. But with the potentially large number of
tags associated to each data, and the large quantity of new data,
the client would have to receive a large volume of essentially non-
relevant information, which consumes bandwidth and power.

In this section, we show how homomorphic secret sharing can
be used to optimally compress such digest while maintaining the
privacy of the client. After a setup phase, in which the client en-
crypts a query that indicates his area of interests, he will receive
on average a two bits from each of two servers maintaining the
database, from which he can learn whether a new record is likely
to interest him.

Basic Setting.Adatabase publiclymaintained by two servers (S0, S1),
who hold respective evaluation keys (ek0, ek1) for a secret-key
Las Vegas HSS scheme, is regularly updated with new records
R. Each record comes with a size-n string of bits, indicating for
each possible tag whether it is relevant to this record. In the most

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2116

basic scenario, the client sends an encryption of the list of bits
indicating all tags that interest him in a setup phase. For each new
record, the client wants to know whether the record contains all
tags that interest him. The protocol is represented Figure 4. Each
string (ri)i≤n associated to a record contains typically a very large
number of zeros, and the corresponding RMS program P[r1, · · · , rn]
is essentially a conjunction of n′ inputs, where n′ is close to n.

A nice feature of this private RSS feed protocol is that the servers
do not need to interact at all – they do not even need to know each
other, which strongly reduces the risk of collusions and can be used
in the setup phase to mitigate hacking, by secretly choosing the
two servers.
Enhanced Scenario.Once he finds out that a new record interests him,
the client will likely want to retrieve it privately. This can be done
very efficiently using the two-server PIR protocol of [30] that relies
on distributed point functions (which can be built from any one-
way function). The servers can also apply more complex permission
policy functions, such as a disjunction of conjunctions, which can
be easily translated to RMS programs. The group-based public-
key HSS scheme also easily supports inputs from multiple clients,
which allows to append for example an encrypted permission string,
coming from e.g. the news provider, to the encrypted query of the
client. The RMS program would then indicate to the client that a
record is likely to interest him only if his permission data indicates
that he is authorized to get this record.

Private RSS feed for two servers S0, S1 and one client C:
Global Setup: Let (pk, ek0, ek1)

$
← Gen(1λ). S0 gets (pk, ek0),

S1 gets (pk, ek1), and C gets pk.
Client Setup: For each of n possible tags, C computes cti ←

Enc(pk,wi) wherewi = 1 if the ith tag matches the interests
of C , andwi = 0 otherwise. C sends (cti)i≤n to (S0, S1).

Digest Generation: For each new record Rj added to the
database, associated to a list of n bits (ri)i≤n identi-
fying the tags of the record, each server Sb computes
(xbj ,γ

b
j) ← Eval(b, ekb , (ct1, . . . , ctn), P[r1, · · · , rn],δ)

where P[r1, · · · , rn] is an RMS program with (ri)i≤n hard-
coded that returns 1 iff it holds that ri = 1 for all j such that
wi = 1. Once N new records have been added, each server
Sb sends (I , (xbj ,γ

b
j)j≤N) toC , where I is a unique identifier

of the digest.
Parsing the Digest: C computes x j ← x0

j ⊕x
1
j for each j such

that (γ 0
j ,γ

1
j) , (⊥,⊥).

Figure 4: Private RSS Feed Protocol.

Efficiency Estimations. Using the algorithmic optimizations of Sec-
tion 4 together with our optimized implementation, an RMS pro-
gram with 50 non-terminal multiplicative gates (e.g. a conjunction
of 51 inputs, a majority of 13 inputs, or any branching program or
boolean formula with 51 gates) can be evaluated with a 1% failure
probability on an encrypted query in less than 0.1 second on a
single thread of an Intel Core i7 CPU, using B = 16 as the basis for
the ElGamal secret key. An encrypted bit amounts to about 10kB,
using the generic ciphertext compression method of section 4.3.

Comparison with Alternative Approaches. A number of alternative
approaches can be envisioned for the above application. An at-
tractive approach for small values of n is to use distributed point
functions [30] (DPF), which can be implemented very efficiently
using block ciphers such as AES [12], by letting the servers match
the private query with all 2n possible vectors of length n. This
solution becomes clearly impractical as soon as n becomes large,
while our HSS-based solution can handle values of n ranging from
a few dozens to a few hundreds.

5.2.3 Private Information Retrieval. Private Information Retrieval
(PIR) allows a client to query items in a database held by one or
more servers, while hiding his query from each server. This prob-
lem has been extensively studied in the cryptographic community,
see [19, 38]. In this section, we outline how homomorphic secret
sharing can be used to construct efficient 2-server PIR schemes
supporting rich queries that can be expressed by general formulas
or branching programs.

The setting is comparable to the setting of the private RSS feed
protocol described in Section 5.2.2: the client applies the HSS shar-
ing algorithm to split the query q between the servers. (Here the
more efficient secret-key variant of HSS suffices.) The servers use
the HSS evaluation algorithm to non-interactively compute, for
each attribute vector of database item, a secret-sharing of 0 (for no
match) or 1 (match). The main challenge is for the servers to send a
single succinct answer to the client, from which he can retrieve all
items that matched his query (possibly with some additional items).
We describe below a method to achieve this.

Retrieving a Bounded Number of Items.We start by assuming that
the client wishes to retrieve items matching his query, up to some
public boundn on the number of matching items. letN be the size of
the database, and let (mb

i)i≤N be the output shares of each server
Sb obtained by matching the encrypted query with each vector
of attribute ai of the database. Let (mi)i≤N be the corresponding
outputs. Each server Sb interprets his shares (mb

i)i≤N as a vector
over (F2k)

N , for some large enough k (e.g. k = 40). Both servers
replace each share for which they raised a flag, indicating a potential
failure, by a uniformly random value over F2k . This ensures that
the elements of (mi)i≤N for which a failure occurred will not be
equal to 0, with very high probability.

Then, the servers can non-interactively reconstruct shares of
the database entries Di for with mi , 0, up to the bound n of
the number of such entries, using a syndrome of a linear error-
correcting codes (interpreting the vector (mi)i≤N with failures
as a noisy codeword), and send the resulting vectors (vbi)i≤n for
b ∈ {0, 1} to the client. Eventually, the requirement of a bound
n on the number of matches can be removed by repeating the
above procedure using successive powers of 2 as guesses for the
bound. Concretely, forn = 1, 2, 4, 8, ...,N , the servers use a common
(pseudo-)randomness to replace each entry in the vector by 0 except
with 1/n probability, repeating several times to reduce the failure
probability (see, e.g., [41]).

5.3 Generating Correlated Randomness
Special forms of correlated randomness serve as useful resources
for speeding up cryptographic protocols. HSS techniques provide a

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2117

promising means for generating large instances of certain correla-
tions while requiring only a small amount of communication. This
approach is particularly effective for correlations evaluable in low
depth, and with long output, by homomorphically “expanding” out
encoded input values into shares of the output.

In this section, we discuss a few sample correlation classes that
are HSS amenable. In each case, when generating the correlation,
we assume the parties have run a (one-time) distributed HSS key
generation (as in Section 4.2), yielding keys (pk, ek0, ek1).

5.3.1 Bilinear FormCorrelations. Consider the following 2-party
“bilinear form” correlation, parameterized by abelian groupsGx ,Gy ,Gz
and a bilinear mapM : Gx ×Gy → Gz . In the correlation, Party A
holds a random x ∈ Gx , party B holds a randomy ∈ Gy , and the par-
ties hold additive secret shares (overGz) of the imageM (x ,y) ∈ Gz .

Generating Bilinear Form Correlations via HSS. Consider for
simplicityGx = Gy = G (the protocol extends straightforwardly).
The parties will begin with random bit-strings a,b ∈ {0, 1}m , form
somewhat larger than log |G |, and generate the correlation via two
primary steps.

First: Shares of pairwise the aibj products can be computed via
m2 terminal RMS multiplications, using the procedure described in
Section 4.2.2 for “loading” the inputs bj as level 2 HSS shares via an
OT-based protocol (avoiding the need for an additional homomor-
phic multiplication to do so). As described in Section 4.5 (Terminal
Multiplication discussion), this means just a single pairing and con-
version is required per multiplication, and the HSS encoding of each
bit can be given by a single ElGamal ciphertext. More specifically,
it suffices to send ElGamal encryptions of Party A’s bits and to
perform the OT-based protocol for encoding the bits of Party B.

For correctness, after the first step, the parties exchange and
discard indices i, j ∈ [m] with error. However, this may leak infor-
mation on a subset of non-discarded values ai ,bj .

Second: The (partly leaked) a,b ∈ {0, 1}m bits are converted
to random G elements x ,y, while removing the effects of leakage,
by taking the corresponding subset sums of fixed public random
G elements. The output shares of M (x ,y) can then be computed
locally from shares of the {aibj }, relying on bilinearity ofM .

More explicitly, consider the following protocol, form = ⌈log |G |⌉+
4σ + E + L, where σ = 40 is statistical security parameter, L,E are
chosen parameters, and (ri)i ∈[m], (sj)j ∈[m] ∈ G are randomly cho-
sen public parameters.

(1) Each party samples a respective vector, a,b ← {0, 1}m .
(2) Party A encodes his input a bitwise using HSS: i.e., ∀i ∈

[m], ctai ← Enc(pk,ai), and sends the resulting ciphertexts
(ctaii)i ∈[m] to Party B.

(3) The parties run the OT-based protocol described in Sec-
tion 4.2.2 (Figure 2) to load Party B’s input b bitwise into
HSS memory as level 2 encodings.

(4) Locally, each party runs Las Vegas homomorphic evaluation
of the RMS program Pbilin that computesm2 RMS multiplica-
tions between input value ai and memory value bj , for each
i, j ∈ [m], and outputs the value modulo β = q (DDH group
modulus). The error for each multiplication is set to E/m2.
Each result is sharei, j ∈ Zq ∪ {⊥}.

(5) Party B: Let Err = {(i, j) : shareBi, j = ⊥}. Send Err to party A.
Let Erra , Errb be the respective projections of Err onto the
1st and 2nd coordinate.

(6) (Discard errs): Locally, for every i ∈ Erra and j ∈ Errb : Party
A sets ai = 0, shareAi, j = 0, Party B sets bj = 0, shareBi, j = 0.

(7) Party A: Output x = ∑
i ∈[m] airi ∈ G and (M (x ,y))A =∑

i, j ∈[m] M (ri , sj) (shareAi, j) ∈ Gz (in Gz as Z-module).
Party B: Output y = ∑

j ∈[m] bjsj ∈ G, and corresponding
(M (x ,y))B ∈ Gz . Note eachM (ri , sj) is publicly computable.

Correctness: By Las Vegas correctness (Definition 2.1), with over-
whelming probability (1/q) the HSS shares of aibj for all kept posi-
tions i < Erra , j < Errb each satisfy shareAi, j = shareBi, j + aibj over
the integers Z (instead of just Zq). Suppose this is the case. Then
we have M (x ,y) = M (

∑
i airi ,

∑
j bjsj) =

∑
i, j aibjM (ri , sj) (over

Gz) =
∑
i, j (share

A
i, j − share

B
i, j)M (risj) = (M (x ,y))A − (M (x ,y))B .

Secrecy: Entropy loss in a,b comes from (i) discarding erred
positions (Step 6), and (ii) leakage on non-discarded bj values from
learning Err. For (i): HSS correctness gives |Err| ≤ E + σ except
with probability ∼ 2−σ . For (ii): leaked values are restricted to bj
for which j < Errb but shareAi, j = ⊥ for some i ∈ [m] (“danger zone”
but no error), also bounded in number by L + σ (= E + σ) with
probability ∼ 2−σ . So, conditioned on Party A’s view, b maintains
min-entropy ⌈log |G |⌉ + 2σ (and vice versa for a). Thus, the linear
combinations x = ∑

i airi andy =
∑
j bjsj are 2−σ -close to uniform

over G, conditioned on the public ri , sj values and view.
Communication: 640 ×m bits for the input-encoding OTs for

Party B (see Section 4.2.2), plusm ElGamal ciphertexts for Party A,
which correspond to 2m group elements (each 1536 bits). In total,
640×m + 1536× 2m = 3712m bits. (Note that the random elements
ri , sj ∈ Gz can be generated pseudorandomly from a short shared
seed and need not be directly communicated.)

Computation: We focus on the required cryptographic opera-
tions (e.g., dominating the subset sums over G). The local HSS
evaluation runtime corresponds to m2 terminal RMS multiplica-
tions, i.e. m2 total exponentiations and share conversions. Each
terminal multiplication is performed with failure probability E/m2.

Applications of Bilinear Form Correlations. This bilinear cor-
relation distribution can aid the following sample applications.

Generating Beaver triples over rings. Beaver triple correlations [5]
over a ring R are comprised of a pair of random elements x ,y ∈ R
where each element is known by one party, as well as additive secret
shares of their product xy ∈ R (where addition and multiplication
are over the ring). Given such multiplication triples, one can obtain
secure computation protocols for computations over R with near-
optimal computational complexity (e.g., [4, 9, 22, 36]).

Beaver triples over R are exactly bilinear correlations withGx =

Gy = Gz = R and bilinear map M multiplication over the ring,
thus generating a triple from HSS can be achieved with costs as
described above. Let n = ⌈log |R |⌉, and consider for instance L =
E = n/8 in the parameters above. Then the HSS approach requires
3712(5n/4 + 160) bits of communication.

For n ≥ 128, required computation is less than (9n/4)2 terminal
RMS multiplications, each with failure (n/8)/(9n/4)2 = 2/(81n).
In this regime, the RMS multiplications are dominated by conver-
sions. Estimating a baseline of 5 × 109 conversion steps per second

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2118

(see Section 6), together with effective ×8 speedup from the rele-
vant optimizations in Section 4 (×4 for expected payloads, ×2 for
10d−1 distinguished points),2 to generate an m-bit Beaver triple
∼ m3/226.5 seconds; for example, for 128-bit inputs (i.e., n = 27)
this is roughly 135kB communication and 22ms computation time.

Consider the following alternative Beaver triple approaches.
• Paillier based. Beaver triples can be generated using an en-
cryption scheme that supports homomorphic addition and
multiplication by scalars, such as the Paillier cryptosystem.3
This approach requires notably less communication than
the HSS-based approach, as only 2 ciphertexts are required
as opposed to one ciphertext per input bit (where Paillier
ciphertexts with 80 bits of security are comparable size to
ours), and computationally requires a small constant number
of group operations.
However, this approach does not fully subsume HSS tech-
niques (and may be less preferred in some applications), as
it yields a qualitatively different protocol structure. In this
approach, the parties must exchange information, perform a
heavy “public key” computation (homomorphic evaluation),
exchange information once again, and then perform another
heavy computation (ciphertexts to be locally decrypted). In
particular, the computation and second exchange must be
performed if there is a chance the parties will wish to engage
in secure computation in the future.
In contrast, using HSS, the parties need only exchange infor-
mation once; this means a party can exchange HSS shares
with many others, and only later decide which from among
these he wishes to expend the computation to “expand” the
shares into correlated randomness. The expansion of shares
only involves local computation without communication,
which can be useful for mitigating traffic analysis attacks.
Another advantage of the HSS-based approach is that it can
use the same setup for generating correlations over different
rings. This can be useful, for instance, for secure computa-
tion over the integers where the bit-length of the inputs is
not known in advance.
• Coding based. Assuming coding-based intractability assump-
tions such as the pseudo-randomness of noisy Reed-Solomon
codes, there are protocols for generating Beaver triples of
n-bit field elements at an amortized cost of O (n) bits per
triple [2, 28, 35, 40]. These constructions rely on relatively
nonstandard assumptions whose choice of parameters may
require further scrutiny. Moreover, amortization only kicks
in when the number of instances is large (at least a few hun-
dreds). In contrast, the HSS-based approach can apply to a
small number of instances and, as noted before, can use the
same setup for generating correlations over different fields.
• OT based. Perhaps the best comparison approach for generat-
ing Beaver triples of n-bit ring elements (without requiring

2Note we cannot take advantage of the ×2 speedup for even/odd failure recovery since
this requires shares in a field of characteristic 2 whereas here shares are over Zq .
3For example, a Beaver triple can be generated from 2 executions of oblivious linear
evaluation (OLE), each of which achieved as: Party A generates a key pair (pk, sk) ←
GenEnc (1λ) and sends an encryption Enc(x) of x ∈ R to Party B , who replies with
the homomorphic evaluation Enc(ax + b) for his a, b ∈ R , back to Party A who can
decrypt and learn ax + b .

amortization across a very large number of instances) is
achieved by evaluating n 1-out-of-2 OTs of n-bit strings [29,
36]. While this computation can be heavily optimized for
large n using OT extension, it requires communication of
2n(λ + ℓ) bits per such OT, for λ = 80 and ℓ = n. For
n ≥ 4096 = 212 this is greater communication than our
approach (and we expect this crossover to drop substantially
with future optimizations); note in our current implementa-
tion (on a single core of a standard laptop), a 212-bit Beaver
triple correlation can be generated via HSS in ∼ 12.1 minutes.
We remark that the crossover point is lower when instan-
tiating the HSS using ElGamal over elliptic-curve groups.
As discussed in Section 6.2, homomorphic evaluation over
an elliptic-curve group presently runs slower than over a
conversion-friendly group by roughly a factor of 5 × 103

(approx 106 conversions per second as opposed to 5 × 109),
but the corresponding ciphertext size is approximately 8
times smaller. In this setting, the HSS-based solution requires
1504n bits of communication (in the place of 3712n), yielding
a crossover ofn = 672 ≈ 29.4. The current implementation of
HSS over elliptic curves would run notably longer at this size
(∼ 4.5 hours), but discovery of “conversion-friendly” elliptic
curve techniques may make this approach more competitive.

Universal bilinear forms. An appealing property of the HSS-based
generation procedure that sets it apart from competing techniques
is its universality: The same fixed communication and computation
can be used to speed up online evaluation of any collection of bilinear
maps on a set of inputs, and the identity of the maps need not be
known during the preprocessing phase.

For example, suppose parties hold respective inputsx ,y ∈ {0, 1}n ,
and wish to securely evaluate xTAy for a collection of many dif-
ferent matrices A ∈ {0, 1}n×n , possibly not known at setup time.
For instance, each A may be an adjacency matrix representing
possible connectivity structures between n locations, so that the
above product computes correlation information along the graph
between the resource distribution of the two parties (encoded by x
and y). Given an instance of the bilinear form correlation (shares
of rx , ry ∈ {0, 1}n and each rxi r

y
j ∈ {0, 1}), then for each desired

A = (ai j) the parties can take the appropriate linear combination
of their rxi r

y
j shares (with coefficients ai j) to yield a corresponding

“bilinear Beaver triple.” This can be done even if the identity of
matrices A is not determined until runtime.

To the best of our knowledge, in this regime of universality, the
best competition is generic Yao/GMW for securely evaluating all n2

products. Even utilizing optimized OT extension techniques [37],
this will require more than 100n2 bits of communication, indicating
that an HSS-based approach wins in communication already forn ≥
84. The computation required for a 84-bit Beaver triple correlation
can be generated via HSS in ∼ 6.3ms.

5.3.2 Truth Table Correlations. Given access to a preprocessed
“one-time truth-table” correlation, one can securely evaluate any
function with polynomial-size domain by a single memory lookup
and short message exchange [21, 33], or provide speedups by run-
ning on sub-computations of a larger secure computation [21]. In
the full version, we describe a means for generating one-time truth-
table correlations via HSS techniques.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2119

5.4 Cryptographic Capsules
As a direction of future research, we propose HSS as a promising
approach for generating many (pseudo-)independent instances of
useful correlations given a short, one-time communication. The
idea is for parties to exchange a single short “capsule”4 of HSS-
encoded randomness, then locally apply HSS evaluation of the
computation that first expands the seed into a long sequence of
pseudo-random bits and then uses the resulting bits within the
sampling algorithm for the desired correlation. Combinedwith high-
stretch local PRGs [1, 3, 34], this may yield compression schemes
for many useful types of correlations. A natural application of
cryptographic capsules is to execute the preprocessing phase of a
multiparty computation protocol, using short communication (of
size O (C1/k) for generating the material for evaluating a circuit
of size C , where k is the locality parameter of the high-stretch
local PRG; all known protocols for generating such preprocessing
material have communication O (C)).

Additional challenges arise in this setting when dealing with
HSS error, as the number of homomorphic multiplications is much
greater than the size of the HSS-encoded seed. We introduce two
new techniques for addressing the effects of leakage. The first is
a method of “bootstrapping” leakage pads (as in Section 4.4.1),
enabling the parties to homomorphically generate fresh pseudo-
random pads from a small starting set via homomorphic evalua-
tion. The second is a more sophisticated variant of punctured OT
from [13], making use of prefix-punctured PRFs. Combined, we are
able to drop the cost of expanding an n-bit seed tom bits of corre-
lation (form ≫ n) from O (m/n) per output using [13] to O (

√
m/n)

using our new techniques. We devote a section to the study of such
cryptographic capsules in the full version.

6 CONCRETE EFFICIENCY
In this section we discuss the concrete performance of our HSS
implementation, providing both analytical predictions and empiri-
cal data. Our implementation builds on the optimized conversion
algorithm from [13], but incorporates additional optimizations that
significantly improve the system’s performance. The optimizations
include the algorithmic improvements discussed in Section 4 and
some additional machine-level optimizations we describe in this
section.

We assume RMS multiplications are performed in the context of
an application which specifies a target error probability ε for each
multiplication. The performance of an RMS multiplication given ε
is determined by the performance of its two main components, ex-
ponentiations in the underlying groupG (we will use multiplicative
notation for the group operation) and multiplicative-to-additive
share conversions in this group.

Similarly to [13], we take G to be a large sub-group of Z∗p for
a prime p that is pseudo-Mersenne, safe and ±1 mod 8. That is,
p = 2n − γ for a small γ and p = 2q + 1 for a prime q. If p is such a
prime then 2 is a generator of a group of size q in which the DDH
problem is assumed to be hard. One specific prime of this type on
which we ran our measurements is 21536 − 11510609.

4Our notion of cryptographic capsules is unrelated to the previous notion of crypto-
graphic capsules from [7].

The optimized implementation from [13] viewed any element
with d leading zeros, i.e. an integer in the range 0, . . . , 2n−d −1, as a
distinguished point. The problem of locating a distinguished point
in the sequence h, 2h, . . . , 2w−1h, wherew is the word size of the
underlying computer architecture, is reduced to searching for the
pattern 0d in the first word of the representation of h. Computing
h2w from h requires with high probability only one multiplication
and one addition, if γ < 2w .

As discussed in Section 4.1, we improve on the approach of [13]
for conversion in several ways. First a distinguished point be-
gins with the pattern 10d , i.e. all integers in the range 2n−1, . . . ,
2n−12n−d − 1. By Lemma 4.1 the probability of error is z · 2−d−1

for a payload z while the expected running time is 2d+1. Based on
this lemma and on Corollary 4.3 the average probability of error in
a single conversion on bit inputs is (B − 1)/16. This is a factor 16
improvement over the worst-case analysis of [13]. In fact, replacing
the pattern 0d by 10d is necessary for this improvement. Finally,
some machine level optimizations, described in Section 6.1, reduce
the running time by another factor of two. Altogether, we improve
the running time of the conversion procedure for a given failure
probability by a factor of 30 or more over the conversion procedure
of [13].

Three optimizations that were introduced in [11, 13] and which
we use are short-keys, time-memory trade-off for fixed-base expo-
nentiation and large-basis for key representation. The secret key
c which we used for ElGamal encryption is short, 160 bits in our
implementation, which is sufficiently secure given known cryptana-
lytic attacks. Trading memory for time in fixed base exponentiation
for base h, and maximum exponent length e is possible for a param-
eter R by storing h2Ri+j for i = 0, . . . , ⌈e/R⌉ − 1, j = 0, . . . ,R − 1.
Exponentiation can be computed by roughly ⌈e/R⌉ − 1 modular
multiplications of stored elements. The secret key c can be rep-
resented in base B instead of in binary, reducing the number of
ElGamal ciphertexts encrypting integers of the form xc (i) from 160
per input bit to 160/ logB. This optimization reduces the storage
and the number of exponentiations at the expense of increasing the
number of conversion steps required for the same error probability
δ by a factor of B.

Table 2 sums up the parameters of a single RMS multiplication.

6.1 Low Level Optimizations
We were able to obtain substantial - more than double - improve-
ments in the implementation of the conversion algorithm compared
to the method described in [13]. Boyle et al. [13] look for the dis-
tinguishing pattern by considering “windows” of sizew = 32 bits
in the binary representation of the group element. Each window,
once fixed, is divided into strips of length d/2. The implementation
looks first for a zero-strip of length d/2, and then incrementally
counts zeros on the left and on the right.

One improvement over the reported implementation of [13] is
to extend the window size tow = 64, and use the 64-bit arithmetic
operations offered by the CPU. Furthermore, with the aid of a partial
match lookup table, we were able to avoid counting zeros on the
left and on the right.

For an integer i , let l (i) be the number of trailing zeros in the
binary representation of i . Consider a tableT of 2d/2 elements such

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2120

Parameter Analytic expression

Failure probability (1 + s (B − 1)/2)/2d+3

Group operations (s + 1) ℓ+2d
R

Expected conv. steps (s + 1)2d+1

Public key size (DEHE) s + 3⌈
√
s⌉ + 2

Share size per input (HSS) s + 2
Ciphertext size per input (DEHE) s + 2⌈

√
s⌉ + 1

Preprocessing memory (s + 1) (ℓ + 2d) (2R − 1)/R

Table 2: Parameters of a single RMSmultiplication of binary
values as a function of B (basis size for representing secret
key), s = ⌈160/ logB⌉ (for 160-bit ElGamal secret key), R (mod-
ular exponentiation preprocessing parameter), and d (zero-
sequence length for the conversion algorithm). All sizes are
measured in group elements.

thatT (i) = 2l (i) − 1 for all 0 ≤ i < 2d/2. If the j-th strip is 0d/2, the
value of the preceding strip is i and the value of the subsequent
strip is k then a strip of d zero occurs if and only if k < T (i), as
the binary representation k of the next strip has at least d/2 − l (i)
leading zeros. The above optimization can be implemented to use
only 1 CPU cycle (8 uOPs). Globally, using the above optimization
and an extended window ofw = 64 bits, we were able to process
each window with 129 uOPs (approx. 30 cycles), when the code was
compiled for d = 16. (We recall that since d is known at compile
time, the compiler will unroll iterations over half strips and the
final program will perform less micro-operations for increasing
ds.) All remaining arithmetic operations were based on the GNU
Multiple Precision library.5

Basic HSS operations, such as conversions and fixed-base group
operations, add up to less than 150 lines of code and run on a single
thread, meaning that all the following results can be easily scaled
linearly with the number of available processors.

6.2 Measured Results
Using our optimized implementation for modular multiplication,
we were able to report about 106 modular multiplications per sec-
ond. In order to obtain time estimates for conversions on elliptic-
curve groups, we benchmarkedOpenSSL’s implementation of SECG
curves secp160k1 and secp160r1[43], both providing 80 bits of se-
curity. In both cases, we were able to measure about 4.1 · 106 group
operations per second. This is three orders of magnitude slower
than what can be achieved on conversion-friendly groups; in the
low-error regime, where conversions dominate, elliptic-curve based
HSS should therefore be about a thousand times slower that their
counterpart based on conversion-friendly groups. On the other
hand, it is worth noting that the size of the HSS ciphertexts in the
elliptic curve implementation are smaller by roughly a factor of 10
(1.1kB vs. 10.6kB).

Remark 6.1. We summarize below the parameters and assump-
tions on which our concrete efficiency analysis is based.

Processor: Benchmarks have been performed on an Intel Core
i7-3537U @ 2.00GHz processor running Debian stretch -
Linux 4.9 patched with Grsecurity.

5 https://gmplib.org/

2−192−172−152−132−112−92−72−5

1
2
6

10
20
60

100
200
600

1,000

Failure probability per RMS mult

RM
S
m
ul
ts
pe
rs

ec
on

d

B = 16
B = 4

B = 16, [13] version

Figure 5: Number of RMS multiplication per second given
the failure probability per RMS multiplication with R = 8.
The ciphertext size for B = 4 (resp., B = 16) is 18.8kB (resp.,
10.6kB). See Remark 6.1 for implementation details. The ver-
sion of [13] assumes 2 × 109 conversion steps per second.

Group: We used a conversion-friendly group with a pseudo-
Mersenne modulusp = 21536−11510609 (hence group elements
are 1536 bits long).

Cost of operations: With the above settings, we were able to
perform roughly 5 · 109 conversion steps per second6 and 106

mod-p multiplications per second on average.
Optimizations: Improvements from Section 4 where assumed

when relevant, such as ciphertext size reduction under the
ESDH assumption, and randomized conversions.

Parameters: Experiments were run for bases B = 2, 4, 16 for the
secret key, and with precomputation parameter R = 1, 8, 12 for
exponentiations.

Compared to the previous implementation of [13], our imple-
mentation for the distributed descrete log achieves a factor 3 of
improvement in performing distributed discrete log.

Figure 5 shows the number of full RMS multiplications that
can be performed in one second for a given failure probability per
RMS multiplication. The curves are based on an analytical formula
derived from the data obtained in the previous experiment. Ad-
ditional analysis, graphs, and benchmarks, and source code are
publicly available at https://www.di.ens.fr/~orru/hss/. Some con-
crete numbers are also given in Table 3.

ACKNOWLEDGMENTS
We thank Josh Benaloh, Florian Bourse, Ilaria Chillotti, Henry
Corrigan-Gibbs, Ranjit Kumaresan, Pierrick Meaux, and Victor
Shoup for helpful discussions, comments, and pointers.

First author supported by ISF grant 1861/16, AFOSR Award
FA9550-17-1-0069, and ERC grant 307952. Second author supported
by ERC grant 339563 (project CryptoCloud). Third author supported
by ISF grant 1638/15, a grant by the BGU Cyber Center, and by the
European Union’s Horizon 2020 ICT program (Mikelangelo project).
6We note that the number of conversion steps per second remains essentially the same
even if one chooses a larger prime p for better security.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2121

https://gmplib.org/
https://www.di.ens.fr/~orru/hss/

Failure Base Tradeoff Length of Share RMS mult.
param. dist. point (kB) per second

ϵ = 2−5

B = 4 R = 1 d = 9 18.8 55
B = 4 R = 8 d = 9 18.8 438
B = 16 R = 1 d = 11 10.6 109
B = 16 R = 8 d = 11 10.6 856

ϵ = 2−10

B = 4 R = 1 d = 14 18.8 54
B = 4 R = 8 d = 14 18.8 361
B = 16 R = 1 d = 16 10.6 101
B = 16 R = 8 d = 16 10.6 562

ϵ = 2−15

B = 4 R = 1 d = 19 18.8 29
B = 4 R = 8 d = 19 18.8 55
B = 16 R = 1 d = 21 10.6 34
B = 16 R = 8 d = 21 10.6 47

Table 3: Performance of RMS multiplications, see Re-
mark 6.1 for implementation details.

Fourth author was supported by a DARPA/ARL SAFEWARE award,
DARPA Brandeis program under Contract N66001-15-C-4065, NSF
Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174,
and 1065276, ERC grant 742754, NSF-BSF grant 2015782, ISF grant
1709/14, BSF grant 2012378, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel,
and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. Fifth
author supported by ERC grant 639554 (project aSCEND).

REFERENCES
[1] Benny Applebaum. 2013. Pseudorandom Generators with Long Stretch and Low

Locality from Random Local One-Way Functions. SIAM J. Comput. 42, 5 (2013),
2008–2037.

[2] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
2017. Secure Arithmetic Computation with Constant Computational Overhead.
In Crypto’17. 223–254.

[3] Benny Applebaum and Shachar Lovett. 2016. Algebraic attacks against random
local functions and their countermeasures. In STOC. 1087–1100.

[4] Donald Beaver. 1992. Foundations of Secure Interactive Computing. In
CRYPTO’91, Vol. 576. 377–391.

[5] Donald Beaver. 1995. Precomputing Oblivious Transfer. In CRYPTO’95, Vol. 963.
97–109.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In STOC. 1–10.

[7] Josh Cohen Benaloh. 1986. Cryptographic Capsules: A Disjunctive Primative for
Interactive Protocols. In CRYPTO. 213–222.

[8] Josh Cohen Benaloh. 1986. Secret Sharing Homomorphisms: Keeping Shares of
A Secret Sharing. In CRYPTO. 251–260.

[9] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-
homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011,
Vol. 6632. 169–188.

[10] E. Boyle, N. Gilboa, and Y. Ishai. 2015. Function Secret Sharing. In EUROCRYPT.
337–367.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Breaking the Circuit Size Barrier
for Secure Computation Under DDH. In CRYPTO. 509–539. Full version: IACR
Cryptology ePrint Archive 2016: 585 (2016).

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-
ments and Extensions. In ACM CCS. 1292–1303.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2017. Group-Based Secure Computation:
Optimizing Rounds, Communication, and Computation. In Eurocrypt’17. 163–
193.

[14] Zvika Brakerski and Guy N. Rothblum. 2013. Obfuscating Conjunctions. In
CRYPTO 2013, Part II, Vol. 8043. 416–434.

[15] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Efficient Fully Homomorphic
Encryption from (Standard) LWE. SIAM J. Comput. 43, 2 (2014),
831–871.

[16] Ran Canetti. 1997. Towards Realizing Random Oracles: Hash Functions That
Hide All Partial Information. In CRYPTO’97, Vol. 1294. 455–469.

[17] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-
tionally Secure Protocols (Extended Abstract). In STOC. 11–19.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
Asiacrypt’16. 3–33.

[19] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
information retrieval. In FOCS’95. 41–50.

[20] Richard Cleve. 1991. Towards Optimal Simulations of Formulas by Bounded-
Width Programs. Computational Complexity 1 (1991), 91–105.

[21] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.
2017. Gate-scrambling Revisited - or: The TinyTable protocol for 2-Party Secure
Computation. Crypto’17 (2017).

[22] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-
party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012,
Vol. 7417. 643–662.

[23] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. 2016. Spooky
Encryption and Its Applications. In CRYPTO. 93–122.

[24] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In EUROCRYPT. 617–640.

[25] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. 2014. Two-Round
Secure MPC from Indistinguishability Obfuscation. In TCC. 74–94.

[26] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC.
169–178.

[27] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-
tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Crypto’13. 75–92.

[28] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. 2017. Maliciously Secure
Oblivious Linear Function Evaluation with Constant Overhead. IACR Cryptology
ePrint Archive (2017), 409.

[29] Niv Gilboa. 1999. Two Party RSA Key Generation. In CRYPTO’99, Vol. 1666.
116–129.

[30] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-
tions. In EUROCRYPT 2014, Vol. 8441. 640–658.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In STOC.
218–229.

[32] Shai Halevi and Victor Shoup. 2015. Bootstrapping for HElib. In EUROCRYPT.
641–670. https://doi.org/10.1007/978-3-662-46800-5_25

[33] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. 2013. On the Power of Correlated Randomness in Secure
Computation. In TCC 2013, Vol. 7785. 600–620.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2008. Cryptog-
raphy with constant computational overhead. In 40th ACM STOC, Richard E.
Ladner and Cynthia Dwork (Eds.). ACM Press, 433–442.

[35] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2009. Secure Arithmetic Com-
putation with No Honest Majority. In TCC’09. 294–314.

[36] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
830–842.

[37] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT Extension for
Transferring Short Secrets. In CRYPTO 2013, Part II, Vol. 8043. 54–70.

[38] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOT Needed: SINGLE
Database, Computationally-Private Information Retrieval. In 38th FOCS. 364–373.

[39] Pratyay Mukherjee and Daniel Wichs. 2016. Two Round Multiparty Computation
via Multi-key FHE. In Proc. EUROCRYPT 2016. 735–763. https://doi.org/10.1007/
978-3-662-49896-5_26

[40] Moni Naor and Benny Pinkas. 2006. Oblivious Polynomial Evaluation. SIAM J.
Comput. 35, 5 (2006), 1254–1281.

[41] Rafail Ostrovsky and William E. Skeith III. 2005. Private Searching on Streaming
Data. In Proc. CRYPTO 2005. 223–240.

[42] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On data banks
and privacy homomorphisms. In Foundations of secure computation (Workshop,
Georgia Inst. Tech., Atlanta, Ga., 1977). Academic, New York, 169–179.

[43] SECG. 2010. SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.
http://www.secg.org. (2010).

[44] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010.
Fully Homomorphic Encryption over the Integers. In Proc. EUROCRYPT 2010.
24–43.

[45] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In FOCS. 162–167.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2122

https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
http://www.secg.org

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related work

	2 Preliminaries
	2.1 Homomorphic Secret Sharing
	2.2 Computational Models

	3 Overview of Group-Based HSS
	3.1 Encoding Zq Elements
	3.2 Operations on Encodings
	3.3 HSS for RMS programs

	4 Optimizations
	4.1 Optimizing Share Conversion
	4.2 Distributed Protocols
	4.3 Generic Ciphertext Compression for Public-Key HSS
	4.4 Reducing Leakage Rate
	4.5 Extending and Optimizing RMS Programs

	5 Applications
	5.1 Secure MPC with Minimal Interaction
	5.2 Secure Data Access
	5.3 Generating Correlated Randomness
	5.4 Cryptographic Capsules

	6 Concrete Efficiency
	6.1 Low Level Optimizations
	6.2 Measured Results

	Acknowledgments
	References

