
Authenticated Garbling and Efficient Maliciously Secure
Two-Party Computation

Xiao Wang

University of Maryland

wangxiao@cs.umd.edu

Samuel Ranellucci

University of Maryland

George Mason University

samuel@umd.edu

Jonathan Katz

University of Maryland

jkatz@cs.umd.edu

ABSTRACT
We propose a simple and efficient framework for obtaining efficient

constant-round protocols for maliciously secure two-party compu-

tation. Our framework uses a function-independent preprocessing

phase to generate authenticated information for the two parties;

this information is then used to construct a single “authenticated”
garbled circuit which is transmitted and evaluated. We also show

how to efficiently instantiate the preprocessing phase with a new,

highly optimized version of the TinyOT protocol by Nielsen et al.

Our protocol outperforms existing work in both the single-

execution and amortized settings, with or without preprocessing:

• In the single-execution setting, our protocol evaluates an

AES circuit with malicious security in 37 ms with an online

time of 1 ms. Previous work with the best overall time re-

quires 62 ms (with 14 ms online time); previous work with

the best online time (also 1 ms) requires 124 ms overall.

• If we amortize over 1024 executions, each AES computation

requires just 6.7 ms with roughly the same online time as

above. The best previous work in the amortized setting has

roughly the same total time but does not support function-

independent preprocessing.

Our work shows that the performance penalty for maliciously se-

cure two-party computation (as compared to semi-honest security)

is much smaller than previously believed.

CCS CONCEPTS
• Theory of computation → Cryptographic protocols;

KEYWORDS
Two-party Computation; Secure Computation; Garbled Circuit

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134053

1 INTRODUCTION
Protocols for secure two-party computation (2PC) allow two par-

ties to compute an agreed-upon function of their inputs with-

out revealing anything additional to each other. Although orig-

inally viewed as impractical, protocols for generic 2PC in the semi-

honest setting based on Yao’s garbled-circuit protocol [49] have

seen tremendous efficiency improvements over the past several

years [2, 5, 17, 25, 27, 36, 42, 50].

While these results are impressive, semi-honest security—which

assumes that both parties follow the protocol honestly yet may

try to learn additional information from the execution—is clearly

not sufficient for all applications. This has motivated researchers

to construct protocols achieving the stronger notion of malicious
security. One popular approach for designing constant-round ma-

liciously secure protocols is to apply the “cut-and-choose” tech-

nique [1, 6, 18, 28–31, 44, 45, 47] to Yao’s garbled-circuit protocol.

For statistical security 2
−ρ

, the best approaches using this paradigm

require ρ garbled circuits (which is optimal); the most efficient in-

stantiation of this approach, by Wang et al. [47], securely evaluates

an AES circuit in 62 ms.

The cut-and-choose approach incurs significant overhead when

large circuits are evaluated precisely because ρ garbled circuits

need to be transmitted (typically, ρ ≥ 40). In order to mitigate this,

recent works have explored secure computation in an amortized
setting where the same function is evaluated multiple times (on

different inputs) [19, 33, 34, 43]. When amortizing over τ executions,
only O (

ρ
log τ) garbled circuits are needed per execution. Rindal

and Rosulek [43] report an amortized time of 6.4 ms to evaluate

an AES circuit, where amortization is over 1024 executions. More

recently, Nielsen and Orlandi [41] proposed a protocol with constant
amortized overhead, but only when τ is at least the number of

gates in the circuit. Also, their protocol allows for amortization

only over parallel executions, whereas the works cited above allow

amortization even over sequential executions, where inputs to the

different executions need not be known all at once.

Other techniques for constant-round, maliciously secure two-

party computation, with asymptotically better performance than

cut-and-choose in the single-execution setting, have also been ex-

plored. The LEGO protocol [40] and subsequent optimizations [13,

14, 26, 38] are based on a gate-level cut-and-choose subroutine that

can be carried out during a preprocessing phase before the circuit to

be evaluated is known. This class of protocols has good asymptotic

performance and small online time; however, the best reported

LEGO implementation [38] still has a higher end-to-end running

time than the best protocol based on the cut-and-choose approach

applied at the garbled-circuit level.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

21

https://doi.org/10.1145/3133956.3134053

AES Evaluation (2.1 ms in the semi-honest setting)

Single-Execution Setting Amortized Setting (1024 executions)

[38] [47] This paper [34] [43] [38] This paper

Function-ind. phase 89.6 ms - 10.9 ms - - 13.84 ms 4.9 ms

Function-dep. phase 13.2 ms 28 ms 4.78 ms 74 ms 5.1 ms 0.74 ms 0.53 ms

Online 1.46 ms 14 ms 0.93 ms 7 ms 1.3 ms 1.13 ms 1.23 ms

Total 104.26 ms 42 ms 16.61 ms 81 ms 6.4 ms 15.71 ms 6.66 ms

SHA-256 Evaluation (9.6 ms in the semi-honest setting)

Single-Execution Setting Amortized Setting (1024 executions)

[38] [47] This paper [34] [43] [38] This paper

Function-ind. phase 478.5 ms - 96 ms - - 183.5 ms 64.8 ms

Function-dep. phase 164.4 ms 350 ms 51.7 ms 206 ms 48 ms 11.7 ms 8.7 ms

Online 11.2 ms 84 ms 9.3 ms 33 ms 8.4 ms 9.6 ms 11.3 ms

Total 654.1 ms 434 ms 157 ms 239 ms 56.4 ms 204.8 ms 84.8 ms

Table 1: Constant-round 2PC protocols withmalicious security. All timings are based on statistical security 2
−40

and are benchmarked

using Amazon EC2 c4.8xlarge instances over a LAN, averaged over 10 executions. Single-execution times do not include the base-OTs,

which require the same time (∼20 ms) for all protocols. Timings for the semi-honest protocol are based on the same garbling code used in

our protocol, and also do not include the base-OTs. See Section 8 for more details.

The Beaver-Micali-Rogaway compiler [4] provides yet another

way to construct constant-round protocols with malicious secu-

rity [7, 9]. This compiler uses an “outer” secure-computation proto-

col to generate a garbled circuit that is then evaluated. Lindell et

al. [32, 35] suggested applying this idea using SPDZ [12] (based on

somewhat homomorphic encryption) as the outer protocol, but did

not provide an implementation of the resulting scheme.

There are also protocols whose round complexity is linear in

the depth of the circuit being evaluated. The TinyOT protocol [39]

extends the classical GMW protocol [15] by adding information-

theoretic MACs to shares held by the parties; The IPS protocol [21]

has excellent asymptotic complexity, but its concrete complexity

is unclear since it has never been implemented (and appears quite

difficult to implement). We remark that the end-to-end times of

these protocols suffer significantly due to the large round com-

plexity: even over a LAN, each communication round requires at

least 0.5 ms; for evaluating an AES circuit (with a depth of about 50),

this means that the time for any linear-round protocol will be at

least 25 ms. The situation will be even worse over a WAN.

In Tables 1 and 2, we summarize the efficiency of various constant-

round 2PC protocols with malicious security. Table 1 gives the

performance of state-of-the-art implementations under fixed hard-

ware and network conditions, while Table 2 reports the asymptotic

complexity of various approaches. Following [38], we consider exe-

cutions that take place in three phases:

• Function-independent preprocessing. In this phase, the

parties need not know their inputs or the function to be

computed (beyond an upper bound on the number of gates).

• Function-dependent preprocessing. In this phase, the

parties know what function they will compute, but do not

need to know their inputs.

Often, the first two phases are combined and referred to

simply as the offline or preprocessing phase.

• Online phase. In this phase, the parties evaluate the agreed-

upon function on their respective inputs.

1.1 Our Contributions
We propose a new approach for constructing constant-round, mali-

ciously secure 2PC protocols with extremely high efficiency. At a

high level (further details are in Section 3), and following ideas of

Nielsen et al. [39], our protocol uses a function-independent pre-

processing phase to realize an ideal functionality that we call FPre.

This preprocessing phase is used to set up correlated randomness

between the two parties that they can use during the online phase

for information-theoretic authentication of different values. In con-

trast to prior work, however, the parties in our protocol use this

information in the online phase to generate a single “authenticated”
garbled circuit. As in the semi-honest case, this garbled circuit can

then be transmitted and evaluated in just one additional round.

Regardless of how we realize FPre, our protocol is extremely

efficient in the function-dependent preprocessing phase and the

online phase. Specifically, compared to Yao’s semi-honest garbled-
circuit protocol, the cost of the function-dependent preprocessing

phase of our protocol is only about 2× higher (assuming 128-bit

computational security and 40-bit statistical security), and the cost

of the online phase is essentially unchanged.

We show how to instantiate FPre efficiently by developing a

highly optimized version of the TinyOT protocol (adapting [39]),

described in Section 5. Instantiating our framework in this way, we

obtain a protocol with the same asymptotic communication com-

plexity as recent protocols based on LEGO, but with two advantages.

First, our protocol has much better concrete efficiency (see Table 1

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

22

Protocol

Function-ind. Function-dep. Online Online (Comp.)

(Comm./Comp.) (Comm./Comp.) (Comm.) / Storage

Cut-and-choose [1, 29, 47] — O (|C |ρ) O (|I |ρ) O (|C |ρ)

Amortized [19, 33] — O
(
|C|ρ
log τ

)
O
(
|I |ρ
log τ

)
O
(
|C|ρ
log τ

)
LEGO [13, 40] O

(
|C|ρ

log τ+log |C|

)
O (|C |) O (|I | + |O |) O

(
|C|ρ

log τ+log |C|

)
SPDZ-BMR [24, 32]

∗ O (|C |κ) O (|C |) O (|I | + |O |) O (|C |)

This paper (with Section 5) O
(

|C|ρ
log τ+log |C|

)
O (|C |) |I | + |O | O (|C |)

This paper (with [21]) O (|C |)

Table 2: Asymptotic complexity of constant-round 2PC protocols with malicious security. |C|, |I |, and |O| are the circuit size,

input size, and output size respectively; low-order terms independent of these parameters are ignored. The statistical security parameter is ρ,
the computational security parameter is κ, and τ is the number of protocol executions in the amortized setting. Communication (Comm.) is

measured as the number of symmetric-key ciphertexts, and computation (Comp.) is measured as the number of symmetric-key operations.

“Storage” is the number of symmetric-key ciphertexts generated by the offline stage.

∗
Although the complexity of function-independent preprocessing can be reduced to O (|C|) using somewhat homomorphic encryption [12],

doing so requires a number of public-key operations proportional to |C|.

Functionality FPre
• Upon receiving ∆A from PA and init from PB, and assuming no values ∆A, ∆B are currently stored, choose uniform ∆B ∈ {0, 1}

ρ
and store

∆A, ∆B. Send ∆B to PB.
• Upon receiving (random, r, M[r], K[s]) from PA and random from PB, sample uniform s ∈ {0, 1} and set K[r] := M[r] ⊕ r∆B and M[s] :=
K[s] ⊕ s∆A. Send (s, M[s], K[r]) to PB.
• Upon receiving (AND, (r1, M[r1], K[s1]), (r2, M[r2], K[s2]), r3, M[r3], K[s3]) from PA and (AND, (s1, M[s1], K[r1]), (s2, M[s2], K[r2])) from PB,
verify that M[ri] = K[ri] ⊕ ri∆B and that M[si] = K[si] ⊕ si∆A for i ∈ {1, 2} and send cheat to PB if not. Otherwise, set s3 := r3 ⊕
((r1 ⊕ s1) ∧ (r2 ⊕ s2)), set K[r3] := M[r3] ⊕ r3∆B, and set M[s3] := K[s3] ⊕ s3∆A. Send (s3, M[s3], K[r3]) to PB.

Figure 1: The preprocessing functionality, assuming PA is corrupted. (If PB is corrupted, the functionality is defined symmet-
rically. If neither party is corrupted, the functionality is adapted in the obvious way.)

and Section 8). For example, it requires only 16.6 ms total to evalu-

ate AES, a 6× improvement compared to a recent implementation

of a LEGO-style approach [38]. Furthermore, the storage needed

by our protocol is asymptotically smaller (see Table 2), something

that is especially important when very large circuits are evaluated.

Instantiating our framework with the realization of FPre de-

scribed in Section 5 yields a protocol with the best concrete effi-

ciency, and is the main focus of this paper. However, we note that

our framework can also be instantiated in other ways:

• When FPre is instantiated using the IPS compiler [21] and the

bit-OT protocol by Ishai et al. [20], we obtain a maliciously

secure constant-round 2PC protocol with total communica-

tion complexityO (|C|κ). Up to constant factors, this matches

the complexity of semi-honest 2PC based on garbled circuits.

The only previous work that achieves similar communication

complexity [22] requires a constant number of public-key

operations per gate of the circuit, and would have concrete

performance much worse than our protocol.

• We can also realize FPre using an offline, (semi-)trusted

server. In that case we obtain a constant-round protocol for

server-aided 2PC with complexity O (|C|κ). Previous work
in the same model [37] achieves the same complexity but

with number of rounds proportional to the circuit depth.

The results described in this paper—both the idea of constructing

an “authenticated” garbled circuit as well as the efficient TinyOT

protocol we developed—have already found application in subse-

quent work [16, 48] on constant-round multiparty computation

with malicious security.

2 NOTATION AND PRELIMINARIES
We use κ to denote the computational security parameter (i.e., se-

curity should hold against attackers running in time ≈ 2
κ
), and

ρ for the statistical security parameter (i.e., an adversary should

succeed in cheating with probability at most 2
−ρ

). We use = to

denote equality and := to denote assignment. We denote the parties

running the 2PC protocol by PA and PB.
A circuit is represented as a list of gates having the format

(α , β,γ ,T), where α and β denote the indices of the input wires of

the gate,γ is the index of the output wire of the gate, andT ∈ {⊕,∧}
is the type of the gate. We use I1 to denote the set of indices of PA’s
input wires, I2 to denote the set of indices of PB’s input wires,W
to denote the set of indices of the output wires of all AND gates,

and O to denote the set of indices of the output wires of the circuit.

2.1 Information-theoretic MACs
We use the information-theoretic message authentication codes

(IT-MACs) of [39], which we briefly recall. PA holds a uniform

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

23

global key ∆A ∈ {0, 1}
κ
. A bit b known by PB is authenticated

by having PA hold a uniform key K[b] and having PB hold the

corresponding tagM[b] := K[b]⊕b∆A. Symmetrically, PB holds an

independent global key ∆B; a bit b known by PA is authenticated

by having PB hold a uniform key K[b] and having PA hold the

tag M[b] := K[b] ⊕ b∆B. We use [b]A to denote an authenticated

bit known to PA (i.e., [b]A means PA holds (b,M[b]) and PB holds

K[b]), and define [b]B symmetrically.

Observe that this MAC is XOR-homomorphic: given [b]A and

[c]A, the parties can (locally) compute [b ⊕ c]A by having PA com-

puteM[b⊕c] := M[b]⊕M[c] and PB computeK[b⊕c] := K[b]⊕K[c].
It is possible to extend the above idea to authenticate secret

values by using XOR-based secret sharing and authenticating each

party’s share. That is, we can authenticate a bit λ, known to neither

party, by letting r , s be uniform subject to λ = r ⊕ s , and then

having PA hold (r ,M[r],K[s]) and PB hold (s,M[s],K[r]). It can be

observed that this scheme is also XOR-homomorphic.

As described in the previous section, we use a preprocessing

phase that realizes a stateful functionality FPre defined in Figure 1.

This functionality is used to set up correlated values between the

parties along with their corresponding IT-MACs. The functionality

chooses uniform global keys for each party, with the malicious

party being allowed to choose its global key. Then, when the parties

request a random authenticated bit, the functionality generates an

authenticated secret sharing of the random bit λ = r ⊕ s . (The
adversary may choose the “random values” it receives, but this does

not reveal anything about r ⊕s or the other party’s global key to the
adversary.) Finally, the parties may also submit authenticated shares

of two bits; the functionality then computes a (fresh) authenticated

share of the AND of those bits. In the next section we describe

our protocol assuming some way of realizing FPre; we defer until

Section 5 a discussion of how FPre can be realized.

3 PROTOCOL INTUITION
We give a high-level overview of our protocol in the FPre-hybrid

model. Our protocol has the parties compute a garbled circuit in

a distributed fashion, where the garbled circuit is “authenticated”

in the sense that the circuit generator (PA in our case) cannot

change the logic of the circuit. We describe the intuition behind

our construction in several steps.

We begin by reviewing standard garbled circuits. Each wire α of

a circuit is associated with a random “mask” λα ∈ {0, 1} known to

PA. If the actual value of that wire (i.e., the value when the circuit

is evaluated on the parties’ inputs) is x , then the masked value

observed by the circuit evaluator (namely, PB) on that wire will be

x̂ = x ⊕ λα . Using the free-XOR technique [27], each wire α is also

associated with two labels Lα,0 and Lα,1 := Lα,0 ⊕ ∆ known to PA.
If the masked bit on that wire is x̂ , then PB learns Lα, x̂ .

LetH be a hash functionmodeled as a random oracle. The garbled

table for, e.g., an AND gate (α , β,γ ,∧) with wires α , β ,γ having

values x ,y, z, respectively, is given by:

x̂ ŷ truth table garbled table

0 0 ẑ00 = (λα ∧ λβ) ⊕ λγ H (Lα ,0, Lβ ,0, γ , 00) ⊕ (ẑ00, Lγ , ẑ
00
)

0 1 ẑ01 = (λα ∧ λβ) ⊕ λγ H (Lα ,0, Lβ ,1, γ , 01) ⊕ (ẑ01, Lγ , ẑ
01
)

1 0 ẑ10 = (λα ∧ λβ) ⊕ λγ H (Lα ,1, Lβ ,0, γ , 10) ⊕ (ẑ10, Lγ , ẑ
10
)

1 1 ẑ11 = (λα ∧ λβ) ⊕ λγ H (Lα ,1, Lβ ,1, γ , 11) ⊕ (ẑ11, Lγ , ẑ
11
)

PB, holding (x̂ , Lα, x̂) and (ŷ, Lβ,ŷ), evaluates this garbled gate by

picking the (x̂ , ŷ)-th row and decrypting using the garbled labels it

holds, thus obtaining (ẑ, Lγ , ẑ).
The standard garbled circuit just described ensures security

against a malicious PB, since (intuitively) PB learns no information

about the true values on any of the wires. Unfortunately, it provides

no security against a malicious PA who can potentially cheat by

corrupting rows in the various garbled tables. One particular attack

PA can carry out is a selective-failure attack. Say, for example, that a

malicious PA corrupts only the (0, 0)-th row of the garbled table for

the gate above, and assume PB aborts if it detects an error during

evaluation. If PB aborts, then PA learns that the masked values on

the input wires of the gate above were x̂ = ŷ = 0, from which it

learns that the true values on those wires were λα and λβ .
The selective-failure attack just mentioned can be prevented

if the masks are hidden from PA. (In that case, even if PB aborts

and PA learns the masked wire values, PA learns nothing about

the true wire values.) Since knowledge of the garbled table would

leak information about the masks to PA, the garbled table must be

hidden from PA as well. That is, we nowwant to set up a situation in

which PA and PB hold secret shares of the garbled table, as follows:

x̂ ŷ PA ’s share of garbled table PB ’s share of garbled table

0 0 H (Lα ,0, Lβ ,0, γ , 00) ⊕ (r00, LAγ ,00) (s00 = ẑ00 ⊕ r00, LBγ ,00)

0 1 H (Lα ,0, Lβ ,1, γ , 01) ⊕ (r01, LAγ ,01) (s01 = ẑ01 ⊕ r01, LBγ ,01)

1 0 H (Lα ,1, Lβ ,0, γ , 10) ⊕ (r10, LAγ ,10) (s10 = ẑ10 ⊕ r10, LBγ ,10)

1 1 H (Lα ,1, Lβ ,1, γ , 11) ⊕ (r11, LAγ ,11) (s11 = ẑ11 ⊕ r11, LBγ ,11)

(Here, e.g., LAγ ,00, L
B
γ ,00 represent abstract XOR-shares of Lγ , ẑ00 , i.e.,

Lγ , ẑ00 = LAγ ,00 ⊕ LBγ ,00.) Once PA sends its shares of all the garbled

gates, PB can XOR those shares with its own and then evaluate the

garbled circuit as before.

Informally, the above ensures privacy against a malicious PA
since (intuitively) the results of any changes PA makes to the garbled

circuit are independent of PB’s inputs. However, PA can still affect

correctness by, e.g., flipping the masked value in a row. This can be

addressed by adding an information-theoretic MAC on PA’s share
of the masked bit. The shares of the garbled table now take the

following form:

x̂ ŷ PA ’s share of garbled table PB ’s share of garbled table

0 0 H (Lα ,0, Lβ ,0, γ , 00) ⊕ (r00, M[r00], LAγ ,00) (s00 = ẑ00 ⊕ r00, K[r00], LBγ ,00)

0 1 H (Lα ,0, Lβ ,1, γ , 01) ⊕ (r01, M[r01], LAγ ,01) (s01 = ẑ01 ⊕ r01, K[r01], LBγ ,01)

1 0 H (Lα ,1, Lβ ,0, γ , 10) ⊕ (r10, M[r10], LAγ ,10) (s10 = ẑ10 ⊕ r10, K[r10], LBγ ,10)

1 1 H (Lα ,1, Lβ ,1, γ , 11) ⊕ (r11, M[r11], LAγ ,11) (s11 = ẑ11 ⊕ r11, K[r11], LBγ ,11)

Once PA sends its shares of the garbled circuit to PB, the garbled
circuit can be evaluated as before. Now, however, PB will verify the

MAC on PA’s share of each masked bit that it learns. This limits PA
to only being able to cause PB to abort; as before, though, any such

abort will occur independently of PB’s actual input.
Note that PA’s shares of the wire labels need not be authenticated,

since a corruptedwire label can only cause input-independent abort;

if PB does not abort, the MACs on the masked bits ensure that PB
learns the correct masked wire value, i.e., ẑ.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

24

x ⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H (Lα ,0, Lβ ,0, γ , 00) ⊕ (r00, M[r00], Lγ ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = ẑ00 ⊕ r00, K[r00], M[s00])
0 1 H (Lα ,0, Lβ ,1, γ , 01) ⊕ (r01, M[r01], Lγ ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = ẑ01 ⊕ r01, K[r01], M[s01])
1 0 H (Lα ,1, Lβ ,0, γ , 10) ⊕ (r10, M[r10], Lγ ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = ẑ10 ⊕ r10, K[r10], M[s10])
1 1 H (Lα ,1, Lβ ,1, γ , 11) ⊕ (r11, M[r11], Lγ ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = ẑ11 ⊕ r11, K[r11], M[s11])

Table 3: Our final construction of an authenticated garbled table for an AND gate.

Efficient realization. Although the above idea is powerful, it still

remains to design an efficient protocol that allows the parties to

distributively compute shares of a garbled table of the above form

even when one of the parties is malicious.

One important observation is that if we set ∆ = ∆A then we can

secret share, e.g., Lγ , ẑ00 as

Lγ , ẑ00 = Lγ ,0 ⊕ ẑ00∆A

= Lγ ,0 ⊕ (r00 ⊕ s00)∆A

= Lγ ,0 ⊕ r00∆A ⊕ s00∆A

=
(
Lγ ,0 ⊕ r00∆A ⊕ K[s00]

)︸ ︷︷ ︸
LAγ ,00

⊕ (K[s00] ⊕ s00∆A)︸ ︷︷ ︸
LBγ ,00

.

In our construction thus far, PA knows Lγ ,0 and r00 (in addition

to knowing ∆A). Our key insight is that if s00 is an authenticated

bit known to PB, then PA can locally compute the share LAγ ,00 :=

Lγ ,0 ⊕ r00∆A ⊕ K[s00] from the information it has, and then the

other share LBγ ,00 = K[s00]⊕ s00∆A is equal to the valueM[s00] that

PB holds! So if we rewrite the garbled table as in Table 3, shares of

the table become easy to compute in a distributed fashion.

Another final optimization is based on the observation that the

masked output values take the following form:

ẑ00 = (λα ∧ λβ) ⊕ λγ

ẑ01 = (λα ∧ λβ) ⊕ λγ = ẑ00 ⊕ λα

ẑ10 = (λα ∧ λβ) ⊕ λγ = ẑ00 ⊕ λβ
ẑ11 = (λα ∧ λβ) ⊕ λγ = ẑ01 ⊕ λβ ⊕ 1.

Thus, the parties can locally compute authenticated shares {ri j , si j }
of the {ẑi, j } from authenticated shares of λα , λβ , λγ , and λα ∧ λβ .

Finally, our actual protocol pushes as much of the garbled-circuit

generation as possible into the preprocessing phase.

4 OUR MAIN FRAMEWORK
In Figure 2, we give the complete description of our main protocol

in the FPre-hybrid model. For clarity we set ρ = κ, but in Sec-

tion 7 we describe how arbitrary values of ρ can be supported. Note

that the calls to FPre can be performed in parallel, so the protocol

runs in constant rounds. Moreover, we show later that FPre can be

instantiated efficiently in constant rounds.

Although our protocol, as described, calls FPre in the function-

dependent preprocessing phase, it is easy to push this to the function-

independent phase using standard techniques similar to those used

with multiplication triples [3].

4.1 Proof of Security
We prove security of our protocol in the FPre-hybrid model.

Theorem 4.1. If H is modeled as a random oracle, the protocol
in Figure 2 securely computes f against malicious adversaries with
statistical security 2

−ρ in the FPre-hybrid model.

Proof. We consider separately a malicious PA and PB.

Malicious PA. LetA be an adversary corrupting PA. We construct

a simulator S that runs A as a subroutine and plays the role of PA
in the ideal world involving an ideal functionality F evaluating f .
S is defined as follows.

1–4 S, acting as an honest PB, interacts with A . The simulator

also plays the role of FPre, recording all values received from

and sent to A , as well as all values that would have been

sent to PB.
5 S interacts withA while acting as an honest PB using input

y equal to the 0-string.

6 For each wire w ∈ I1, S receives x̂w and computes xw :=

x̂w ⊕ rw ⊕ sw , where rw , sw are the values used by FPre in

the previous steps. S sends x = {xw }w ∈I1 to F .

7–8 S, acting as an honest PB, interacts with A . If PB would

abort, S sends abort to F ; otherwise, it sends continue to F .

Finally, it outputs whatever A outputs.

We show that the joint distribution of the outputs of A and the

honest PB in the real world is indistinguishable from the joint

distribution of the outputs of S and PB in the ideal world. We

prove this by considering a sequence of experiments, the first of

which corresponds to the execution of our protocol and the last of

which corresponds to execution in the ideal world, and showing

that successive experiments are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where we imagine S

playing the role of an honest PB using PB’s actual input y,
while also playing the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire

w ∈ I1 the simulator S receives x̂w and computes xw :=

x̂w ⊕ rw ⊕ sw , where rw , sw are the values used by FPre; it

then sends x = {xw }w ∈I1 to F . In steps 7–8, if an honest

PB would abort, S sends abort to F ; otherwise, it sends

continue to F (and so PB outputs f (x ,y)).
The distributions on the view ofA in Hybrid1 and Hybrid2
are identical. Lemma 4.2 shows that PB generates the same

output in both experiments exceptwith probability atmost 2
−ρ

.

Hybrid3. Same as Hybrid2, except that S sets y equal to the 0-

string throughout the protocol.

The distributions on the view ofA in Hybrid3 and Hybrid2
are again identical (since the {sw }w ∈I2 are uniform). More-

over, if S does not abort (when running the protocol as PB),
the distribution on the output of PB is the same in Hybrid3
and Hybrid2. So it only remains to show that PB aborts with

the same probability in both experiments.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

25

Protocol Π2pc

Inputs: In the function-dependent phase, the parties agree on a circuit for a function f : {0, 1} |I1 | × {0, 1} |I2 | → {0, 1} |O| .

In the input-processing phase, PA holds x ∈ {0, 1} |I1 | and PB holds y ∈ {0, 1} |I2 | .
Function-independent preprocessing:

(1) PA and PB send init to FPre, which sends ∆A to PA and ∆B to PB.
(2) For each wirew ∈ I1∪I2∪W , parties PA and PB send random to FPre. In return, FPre sends (rw , M[rw], K[sw]) to PA and (sw , M[sw], K[rw])

to PB. Define λw = sw ⊕ rw . PA also picks a uniform κ-bit string Lw,0 and sets Lw,1 := Lw,0 ⊕ ∆A.

Function-dependent preprocessing:
(3) For each gate G = (α, β, γ , ⊕), PA computes (rγ , M[rγ], K[sγ]) := (rα ⊕ rβ , M[rα] ⊕M[rβ], K[sα] ⊕ K[sβ]), and sets Lγ ,0 := Lα ,0 ⊕ Lβ ,0

and Lγ ,1 := Lγ ,0 ⊕ ∆A. Similarly, PB computes (sγ , M[sγ], K[rγ]) := (sα ⊕ sβ , M[rβ] ⊕M[rβ], K[rα] ⊕ K[rβ]). Define λγ = λα ⊕ λβ .
(4) For each gate G = (α, β, γ , ∧):

(a) PA (resp., PB) sends (and, (rα , M[rα], K[sα]), (rβ , M[rβ], K[sβ])) (resp., (and, (sα , M[sα], K[rα]), (sβ ,M[sβ], K[rβ]))) to FPre. In return,

FPre sends (rσ , M[rσ], K[sσ]) to PA and (sσ , M[sσ], K[rσ]) to PB, where sσ ⊕ rσ = λα ∧ λβ .
(b) PA computes the following locally:

(rγ ,0, M[rγ ,0], K[sγ ,0]) := (rσ ⊕ rγ , M[rσ] ⊕M[rγ], K[sσ] ⊕ K[sγ])

(rγ ,1, M[rγ ,1], K[sγ ,1]) := (rσ ⊕ rγ ⊕ rα , M[rσ] ⊕M[rγ] ⊕M[rα], K[sσ] ⊕ K[sγ] ⊕ K[sα])

(rγ ,2, M[rγ ,2], K[sγ ,2]) := (rσ ⊕ rγ ⊕ rβ , M[rσ] ⊕M[rγ] ⊕M[rβ], K[sσ] ⊕ K[sγ] ⊕ K[sβ])

(rγ ,3, M[rγ ,3], K[sγ ,3]) := (rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ] ⊕M[rγ] ⊕M[rα] ⊕M[rβ], K[sσ] ⊕ K[sγ] ⊕ K[sα] ⊕ K[sβ] ⊕ ∆A)

(c) PB computes the following locally:

(sγ ,0, M[sγ ,0], K[rγ ,0]) := (sσ ⊕ sγ , M[sσ] ⊕M[sγ], K[rσ] ⊕ K[rγ])

(sγ ,1, M[sγ ,1], K[rγ ,1]) := (sσ ⊕ sγ ⊕ sα , M[sσ] ⊕M[sγ] ⊕M[sα], K[rσ] ⊕ K[rγ] ⊕ K[rα])

(sγ ,2, M[sγ ,2], K[rγ ,2]) := (sσ ⊕ sγ ⊕ sβ , M[sσ] ⊕M[sγ] ⊕M[sβ], K[rσ] ⊕ K[rγ] ⊕ K[rβ])

(sγ ,3, M[sγ ,3], K[rγ ,3]) := (sσ ⊕ sγ ⊕ sα ⊕ sβ ⊕ 1, M[sσ] ⊕M[sγ] ⊕M[sα] ⊕M[sβ], K[rσ] ⊕ K[rγ] ⊕ K[rα] ⊕ K[rβ])
(d) PA computes Lα ,1 := Lα ,0 ⊕ ∆A and Lβ ,1 := Lβ ,0 ⊕ ∆A, and then sends the following to PB:
Gγ ,0 := H (Lα ,0, Lβ ,0, γ , 0) ⊕ (rγ ,0, M[rγ ,0], Lγ ,0 ⊕ K[sγ ,0] ⊕ rγ ,0∆A)
Gγ ,1 := H (Lα ,0, Lβ ,1, γ , 1) ⊕ (rγ ,1, M[rγ ,1], Lγ ,0 ⊕ K[sγ ,1] ⊕ rγ ,1∆A)
Gγ ,2 := H (Lα ,1, Lβ ,0, γ , 2) ⊕ (rγ ,2, M[rγ ,2], Lγ ,0 ⊕ K[sγ ,2] ⊕ rγ ,2∆A)
Gγ ,3 := H (Lα ,1, Lβ ,1, γ , 3) ⊕ (rγ ,3, M[rγ ,3], Lγ ,0 ⊕ K[sγ ,3] ⊕ rγ ,3∆A)

Input processing:
(5) For each w ∈ I2, PA sends (rw , M[rw]) to PB, who checks that (rw , K[rw], M[rw]) is valid. If so, PB computes λw := rw ⊕ sw and sends

yw ⊕ λw to PA. Finally, PA sends Lw,yw ⊕λw to PB.
(6) For each w ∈ I1, PB sends (sw , M[sw]) to PA, who checks that (sw , K[sw], M[sw]) is valid. PA computes λw := rw ⊕ sw and sends xw ⊕ λw

and Lw,xw ⊕λw to PB.

Circuit evaluation:

(7) PB evaluates the circuit in topological order. For each gate G = (α, β, γ , T), PB initially holds (zα ⊕ λα , Lα ,zα ⊕λα) and (zβ ⊕ λβ , Lβ ,zβ ⊕λβ),
where zα , zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα) ⊕ (zβ ⊕ λβ) and Lγ ,zγ ⊕λγ := Lα ,zα ⊕λα ⊕ Lβ ,zβ ⊕λβ .
(b) If T = ∧, PB computes i := 2(zα ⊕ λα) + (zβ ⊕ λβ) followed by (rγ ,i , M[rγ ,i], Lγ ,0 ⊕ K[sγ ,i] ⊕ rγ ,i∆A) := Gγ ,i ⊕

H (Lα ,zα ⊕λα , Lβ ,zβ ⊕λβ , γ , i). Then PB checks that (rγ ,i , K[rγ ,i], M[rγ ,i]) is valid and, if so, computes zγ ⊕ λγ := (sγ ,i ⊕ rγ ,i) and
Lγ ,zγ ⊕λγ := (Lγ ,0 ⊕ K[sγ ,i] ⊕ rγ ,i∆A) ⊕M[sγ ,i].

Output determination:
(8) For each w ∈ O, PA sends (rw , M[rw]) to PB, who checks that (rw , K[rw], M[rw]) is valid. If so, PB outputs zw := (zw ⊕ λw) ⊕ rw ⊕ sw .

Figure 2: Our protocol in the FPre-hybrid model. Here ρ = κ for clarity, but this is not necessary (cf. Section 7).

The only place where PB’s abort can depend on y is in

steps 7(b) and 8. However, these aborts depend on which

row of a garbled gate is selected to decrypt. This selection, in

turn, depends on λα ⊕ zα and λβ ⊕ zβ , which are uniformly

distributed in both experiments.

Note that Hybrid3 corresponds to the ideal-world execution de-

scribed earlier. This completes the proof for a malicious PA.

Malicious PB. LetA be an adversary corrupting PB. We construct

a simulator S that runs A as a subroutine and plays the role of PB
in the ideal world involving an ideal functionality F evaluating f .
S is defined as follows.

1–4 S, acting as an honest PA, interacts with A and also plays

the role of FPre.

5 For each wire w ∈ I2, S receives ŷw and computes yw :=

ŷw ⊕rw ⊕sw , where rw , sw are the values used by FPre in the

previous steps. S sends y = {yw }w ∈I2 to F , which responds

with z = f (x ,y).
6–7 S interacts withA while acting as an honest PA using input

x equal to the 0-string.

8 For eachw ∈ O, if z′w = zw , thenS sends (rw ,M[rw]); other-
wise, S sends (rw ,M[rw] ⊕ ∆B), where ∆B is the value used

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

26

by FPre in the previous steps. Finally, S outputs whatever

A outputs.

We now show that the distribution on the view of A in the real

world is indistinguishable from the distribution on the view of A

in the ideal world. (Note PA has no output.)

Hybrid1. This is the hybrid-world protocol, where we imagine S

playing the role of an honest PA using PA’s actual input x ,
while also playing the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 5, S receives ŷw
and computes yw := ŷw ⊕ rw ⊕ sw , where rw , sw are the

values used by FPre. Then S performs the same computation

that PB would in step 7, to obtain a value ẑw for eachw ∈ O.
Finally, for each w ∈ O, S computes r ′w := ẑw ⊕ sw ⊕ zw
and sends (r ′w ,K[r

′
w] ⊕ r ′w∆B) to A , where K[r ′w],∆B are

the values used by FPre.

Noting that ẑw = zw ⊕ λw , we see that the distributions on

the view of A in Hybrid2 and Hybrid1 are identical.
Hybrid3. Same as Hybrid2, except that in step 6, S uses x equal

to the 0-string.

It follows from the security of garbling with H modeled as a

random oracle that the distributions on the views of A in

Hybrid2 andHybrid1 are computationally indistinguishable.

Note that Hybrid3 is identical to the ideal-world execution. □

Lemma 4.2. Let PB have input y. Consider an A corrupting PA
and let xw := x̂w ⊕ sw ⊕ rw , where x̂w is the valueA sends to PB in
step 6 and sw , rw are the values used by FPre. Except with probability
at most 2−ρ , either PB aborts or PB outputs z∗ = f (x ,y).

Proof. For a wirew , let ẑw be the masked value computed by

PB on that wire during the protocol, and let z∗w be the value on

that wire when f (x ,y) is computed with x defined as in the lemma.

For w ∈ I1 ∪ I2 ∪ W , define λw = rw ⊕ sw , where rw , sw are

the values used by FPre; for each XOR gate (α , β ,γ , ⊕), inductively
define λw = λα ⊕ λβ .

We prove by induction that, except with probability at most 2
−ρ

,

if PB does not abort then z∗w = ẑw ⊕ λw for allw .

Base step: It is obvious that z∗w = ẑw ⊕ λw for all w ∈ I1 ∪ I2,
unless A is able to forge an IT-MAC.

Induction step: Consider a gate (α , β ,γ ,T), where the stated in-

variant holds for wires α , β . We show that z∗γ = ẑγ ⊕ λw .

• T = ⊕: Here we have ẑγ = ẑα ⊕ ẑβ and z∗γ = z∗α ⊕ z
∗
β . Since

λγ = λα ⊕ λβ , the invariant trivially holds for γ .
• T = ∧: Here z∗γ = z∗α ∧ z

∗
β . Assuming PB does not abort, the

only way PB can compute ẑγ , z∗γ ⊕ λγ is if A forges an

IT-MAC.

In particular, except with probability at most 2
−ρ

, we have ẑw =
z∗w ⊕λw for allw ∈ O. It follows that if PB does not abort, it outputs

z∗ unless A forges an IT-MAC. □

5 EFFICIENTLY REALIZING FPRE
Here we show how to realize FPre efficiently using an optimized

version of the TinyOT protocol.

Our protocol relies on a stateful ideal functionality Fabit (cf.

Figure 3) for generating authenticated bits using uniform values

of ∆A,∆B ∈ {0, 1}
κ
that are preserved across executions [38, 39].

Functionality Fabit
Honest case:

(1) Upon receiving init from both parties the first time, choose

uniform ∆A, ∆B ∈ {0, 1}
ρ
and send ∆A to PA and ∆B to PB.

(2) Upon receiving (random, A) from both parties, choose uni-

form x ∈ {0, 1} and M[x], K[x] ∈ {0, 1}ρ with M[x] =
K[x] ⊕ x∆B . Then send (x, M[x]) to PA and K[x] to PB.

(3) Upon receiving (random, B) from both parties, generate an

authenticated bit for PB in a manner symmetric to the above.

Corrupted parties:A corrupted party gets to specify the randomness

used on its behalf by the functionality.

Figure 3: The authenticated-bit functionality.

Technically, the functionality also allows the adversary to make

“global-key queries” that correspond to a guess about the honest

party’s value of ∆. Both these features are preserved in all our ideal

functionalities (including FPre), but we suppress explicit mention

of them in our descriptions. (Note that the global-key queries have

little effect on security, since the probability that the attacker can

correctly guess the honest party’s value of ∆ using polynomially

many queries is negligible. One can also verify that they can be

easily incorporated into our security proofs.)

Recall that FPre can be used to generate authenticated values

[x1]A, [y1]A, [z1]A, [x2]B, [y2]B, and [z2]B such that z1 ⊕z2 = (x1 ⊕
x2)∧ (y1 ⊕y2); we refer to these collectively as an AND triple. In the

original TinyOT protocol, the four terms that result from expanding

(x1 ⊕ x2) ∧ (y1 ⊕ y2) for an AND triple (namely, x1y1,x1y2,x2y1,
and x2y2) are computed individually and then combined. In our

new approach, we instead compute AND triples directly.

At a high level, we use three steps to compute an AND triple.

(1) The parties jointly compute [x1]A, [y1]A, [z1]A, [x2]B, [y2]B,
[z2]B, such that if both parties are honest, these are a correct

AND triple. If a party cheats, that party can modify z2 but
cannot learn the other party’s bits.

(2) The parties perform a checking protocol that ensures the

correctness of every AND triple, while letting the malicious

party guess the value of x1 (resp., x2). Each such guess is cor-

rect with probability 1/2, but an incorrect guess is detected

and will cause the other party to abort.

As a consequence, we can argue that (conditioned on no

abort) the malicious party obtains information on at most ρ
AND triples except with probability at most 2

−ρ
.

(3) So far we have described a way for the parties to generate

many “leaky” AND triples such that the attacker may have

disallowed information on at most ρ of them. We then show

how to distill these into a smaller number of “private” AND

triples, about which the attacker is guaranteed to have no

disallowed information.

Overall, when using bucket size B (see Section 5.2) our new TinyOT

protocol requires only (5κ + 3ρ)B bits of communication per AND

triple, while the original TinyOT protocol requires (14κ + 8ρ)B
bits of communication even taking optimizations into account. For

κ = 128 and ρ = 40, this is an improvement of 2.78×.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

27

5.1 Half-Authenticated AND Triples
We first show a protocol that realizes a functionality in which only

the x ’s in an AND triple are authenticated. This will serve as a

building block in the following sections. This functionality, called

FHaAND, is described in Figure 4. It outputs authenticated bits [x1]A
and [x2]B to the two parties. It also takes y1 from PA and y2 from
PB, and outputs shares of x1y2 ⊕ x2y1. (Note that the parties can
then locally compute x1y1 and x2y2, respectively, and thus generate
shares of (x1 ⊕ x2) ∧ (y1 ⊕y2).) In Figure 5 we show a protocol that

realizes FHaAND in the Fabit-hybrid model.

Lemma 5.1. If H is modeled as a random oracle, the protocol in
Figure 5 securely implements FHaAND in the Fabit-hybrid model.

Proof. We first show correctness. Note that s2 = s1 ⊕ x2y1, so
s1 ⊕ s2 = x2y1. Similarly, t1 ⊕ t2 = x1y2. Thus, v1 and v2 are shares
of x1y2 ⊕ x2y1. Moreover, when both parties are honest v1 and v2
are individually uniform.

We next prove security. We consider the case of a malicious PA;
the case of a malicious PB is symmetric (and is, in fact, easier since

PB sends (H0,H1) before PA). The simulator S works as follows:

(1) S plays the role of Fabit, and stores all shares of [x1]A and

[x2]B, as well as global keys ∆A, ∆B.

(2) S chooses uniform H0,H1 and sends them to A . Let t ′
1
:=

Hx1 ⊕ H (M[x1]).
(3) S receives (H ′

0
,H ′

1
) from A , and computes s ′

0
:= H ′

0
⊕

H (K[x2]), s ′
1
:= H ′

1
⊕ H (K[x2] ⊕ ∆A), and y1 := s ′

0
⊕ s ′

1
.

It sets v1 := s ′
0
⊕ t ′

1
, and sends y1,v1 to FHaAND on behalf

of PA. It then outputs whatever A does.

It is not hard to see that, if H is modeled as a random oracle, the

distribution on the view ofA in the ideal-world execution described

above is computationally indistinguishable from the view of A

in the real-world execution of the protocol. Let x2,y2 denote the
authenticated bit PB received and PB’s input, respectively. In a real-

world execution of the protocol with transcript (H0,H1,H
′
0
,H ′

1
),

the value output by PB would be

s2 ⊕ t1 = s ′x2 ⊕ (t ′
1
⊕ x1y2)

= (1 ⊕ x2)s
′
0
⊕ x2s

′
1
⊕ t ′

1
⊕ x1y2

= s ′
0
⊕ x2 (s

′
0
⊕ s ′

1
) ⊕ t ′

1
⊕ x1y2,

which matches the value

v1 ⊕ (x1y2 ⊕ x2y1) = (s ′
0
⊕ t ′

1
) ⊕ x1y2 ⊕ x2 (s

′
0
⊕ s ′

1
)

that PB outputs in the ideal-world execution. □

5.2 Leaky AND Triples
The leaky-AND functionality FLaAND is described in Figure 6. This

functionality generates authenticated values [x1]A, [y1]A, [z1]A,
[x2]B, [y2]B, and [z2]B such that z1 ⊕ z2 = (x1 ⊕x2)∧ (y1 ⊕y2), but
allows a malicious PA (resp., PB) to guess x2 (resp., x1). This guess
is correct with probability 1/2, but an incorrect guess is revealed to

the other party (who can then abort).

To realize this functionality, we begin by having the parties gen-

erate authenticated bits [y1]A, [z1]A, [y2]B, and then use FHaAND
to generate [x1]A, [x2]B and shares of x1y2 ⊕ x2y1. The parties can
then locally compute shares of (x1 ⊕ x2) ∧ (y1 ⊕ y2). Note that

Functionality FHaAND

Honest case:
(1) Generate uniform [x1]A and [x2]B and send the respective

shares to the two parties.

(2) Upon receiving y1 from PA and y2 from PB, choose uniform
v1 and send v1 to PA and v2 := v1 ⊕ (x1y2 ⊕ x2y1) to PB.

Corrupted parties:A corrupted party gets to specify the randomness

used on its behalf by the functionality.

Figure 4: Functionality FHaAND for computing a half-
authenticated AND triple.

Protocol ΠHaAND

PA and PB have input y1 and y2, respectively.
Protocol:

(1) PA and PB call Fabit to obtain [x1]A and [x2]B, i.e., PA receives

(x1, M[x1], K[x2]) and PB receives (x2, M[x2], K[x1]).
(2) PB chooses uniform t1 ∈ {0, 1} and computes H0 :=

H (K[x1]) ⊕ t1, H1 := H (K[x1] ⊕ ∆B) ⊕ t1 ⊕ y2. PB sends

(H0, H1) to PA, who computes t2 := Hx1 ⊕ H (M[x1]).
(3) PA chooses uniform s1 ∈ {0, 1} and then computes H ′

0
:=

H (K[x2]) ⊕ s1, H ′
1
:= H (K[x2] ⊕ ∆A) ⊕ s1 ⊕ y1. PA sends

(H ′
0
, H ′

1
) to PB, who computes s2 := H ′x2 ⊕ H (M[x2]).

(4) PA outputs v1 := s1 ⊕ t2, and PB outputs v2 := s2 ⊕ t1.

Figure 5: Protocol ΠHaAND realizing FHaAND.

PA (resp., PB) can easily misbehave by, for example, sending an

incorrect value of y1 (resp., y2) to FHaAND. We address this in the

next step. Looking ahead, however, we note that the way we ad-

dress this issue introduces a selective-failure attack that can leak

information to the attacker: if the attacker flips a y-value but the
checking step described next does not abort, then it must be the

case that x1 ⊕ x2 = 0.

Checking correctness. Now both parties check correctness of the

AND triples generated in the previous step. If x2 ⊕ x1 = 0, then

we want to check that z2 = z1; if x2 ⊕ x1 = 1, then we want to to

check that y1 ⊕ z1 = y2 ⊕ z2. However, an obvious problem is that

neither party knows the value of x1 ⊕ x2; therefore there is no way

to know which relationship should be checked. We thus need to

construct a checking procedure such that the computation of PA is

oblivious to x2, while the computation of PB is oblivious to x1.
We describe the intuition from the point of view of an honest PB

holding x2 = 0. Abstractly, the first step is for PB to compute values

T0 andU0 and to send U0 to PA; PA will then compute V0 such that

if x1 = 0 then V0 = T0, but if x1 = 1 then V0 ⊕ U0 = T0. We set

things up such that if the AND triple is incorrect, then PA cannot

compute V0 correctly. Similar constructs (namely V1, U1, and T1)
are computed if x2 = 1. Now, depending on the value of x1 and x2,
parties need to perform an equality comparison between different

values, as summarized below.

x1 = 0 x1 = 1

x2 = 0 V0 = T0 V0 ⊕ U0 = T0
x2 = 1 V1 = T1 V1 ⊕ U1 = T1

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

28

Functionality FLaAND

Honest case:
(1) Generate uniform [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, [z2]B such that z1 ⊕ z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2), and send the respective shares to the two

parties.

(2) PA can choose to send a bit b . If b = x2, the functionality sends correct to PA. If b , x2, the functionality sends fail to both parties and abort.

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by the functionality.

Figure 6: Functionality FLaAND for computing a leaky AND triple.

Protocol ΠLaAND

Protocol:
(1) PA and PB obtain random authenticated bits [y1]A, [z1]A, [y2]B, [r]B. PA and PB also calls FHaAND, receiving [x1]A and [x2]B.
(2) PA picks a random bit v1 and sends (y1, v1) to FHaAND; PB sends y2 to FHaAND, which sends v2 to PB.
(3) PA computes u = v1 ⊕ x1y1 ⊕ z1 and sends to PB. PB computes z2 := u ⊕ x2y2 ⊕ v2 and sends d := r ⊕ z2 to PA. Two parties compute

[z2]B = [r]B ⊕ d .
(4) PB checks correctness as follows:

(a) PB computes:

T0 := H (K[x1], K[z1] ⊕ z2∆B)
U0 := T0 ⊕ H (K[x1] ⊕ ∆B, K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B)
T1 := H (K[x1], K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B)
U1 := T1 ⊕ H (K[x1] ⊕ ∆B, K[z1] ⊕ z2∆B)

(b) PB sends Ux2 to PA.
(c) PA chooses a uniform κ-bit string R and computes:

V0 := H (M[x1], M[z1]) V1 := H (M[x1], M[z1] ⊕M[y1])
W0,0 := H (K[x2]) ⊕ V0 ⊕ R W0,1 := H (K[x2] ⊕ ∆A) ⊕ V1 ⊕ R
W1,0 := H (K[x2]) ⊕ V1 ⊕ U0 ⊕ R W1,1 := H (K[x2] ⊕ ∆A) ⊕ V0 ⊕ U1 ⊕ R

(d) PA sendsWx1,0,Wx1,1 to PB and sends R to FEQ .

(e) PB computes R′ :=Wx1,x2 ⊕ H (M[x2]) ⊕ Tx2 and sends R′ to FEQ .
(5) PA checks correctness as follows:

(a) PA computes:

T0 := H (K[x2], K[z2] ⊕ z1∆A)
U0 := T0 ⊕ H (K[x2] ⊕ ∆A, K[y2] ⊕ K[z2] ⊕ (y1 ⊕ z1)∆A)
T1 := H (K[x2], K[y2] ⊕ K[z2] ⊕ (y1 ⊕ z1)∆A)
U1 := T1 ⊕ H (K[x2] ⊕ ∆A, K[z2] ⊕ z1∆A)

(b) PA sends Ux1 to PB.
(c) PB chooses a uniform κ-bit string R and computes:

V0 := H (M[x2], M[z2]) V1 := H (M[x2], M[z2] ⊕M[y2])
W0,0 := H (K[x1]) ⊕ V0 ⊕ R W0,1 := H (K[x1] ⊕ ∆B) ⊕ V1 ⊕ R
W1,0 := H (K[x1]) ⊕ V1 ⊕ U0 ⊕ R W1,1 := H (K[x1] ⊕ ∆B) ⊕ V0 ⊕ U1 ⊕ R

(d) PB sendsWx2,0,Wx2,1 to PA and sends R to FEQ ,

(e) PA computes R′ :=Wx2,x1 ⊕ H (M[x1]) ⊕ Tx1 and sends R′ to FEQ .

Figure 7: Protocol ΠLaAND realizing FLaAND.

Unfortunately, a direct comparison is not possible since PA does

not know the value of x2 and therefore does not know which com-

parison to perform. Our idea is to transform PA’s computation such

that it is oblivious to x2. In detail: if x1 = 0, then PA computesV0 as
if x2 = 0 and computes V1 as if x2 = 1. Then PA “encrypts” V0 and
V1 such that PB can only decrypt Vx2 . PB can then locally check

whether Vx2 = Tx2 . In the case when x1 = 1, PA computes and

encrypts V0 ⊕ U0 and V1 ⊕ U1 in a similar manner.

A problem is that although a malicious PA cannot cheat, a mali-

cious PB will not be caught on an incorrect AND triple because PB
compares the results locally and PA does not learn the result of the

comparison! To solve this, we let PA instead send the encrypted

values V0 ⊕ R and V1 ⊕ R, for a uniform R, such that PB can obtain

Vx2 ⊕ R, and learn R from it. Now PA and PB can check the equality

on R using the FEQ functionality that allows both parties get the

outcome. (If a party aborts, that is also detected as cheating.) Finally,

the same check is performed in the opposite direction to convince

both parties of the correctness of the triples.

A complete description of the protocol is shown in Figure 7; the

proof of security is in Appendix A.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

29

Functionality FaAND
Honest case: Generate uniform [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1 ⊕ x2) ∧ (y1 ⊕ y2) = z1 ⊕ z2.
Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by the functionality.

Figure 8: Functionality FaAND for generating AND triples

Protocol ΠaAND

Protocol:
(1) PA and PB call FLaAND a total of ℓ′ = ℓB times to obtain {[x i

1
]A, [yi

1
]A, [zi

1
]A, [x i

2
]B, [yi

2
]B, [zi

2
]B }

ℓ′

i=1.

(2) PA and PB use coin tossing to randomly partition the results into ℓ buckets, each containing B AND triples.

(3) For each bucket, the parties combine B leaky ANDs into one non-leaky AND. To combine two leaky ANDs

([x ′
1
]A, [y′

1
]A, [z′

1
]A, [x ′

2
]B, [y′

2
]B, [z′

2
]B) and ([x ′′

1
]A, [y′′

1
]A, [z′′

1
]A, [x ′′

2
]B, [y′′

2
]B, [z′′

2
]B) do:

(a) The parties reveal d ′ := y′
1
⊕ y′′

1
, d ′′ = y′

2
⊕ y′′

2
along with their MACs, and compute d := d ′ ⊕ d ′′ if the MACs verify.

(b) Set [x1]A := [x ′
1
]A ⊕ [x ′′

1
]A, [x2]B := [x ′

2
]B ⊕ [x ′′

2
]B, [y1]A := [y′

1
]A, [y2]B := [y′

2
]B, [z1]A := [z′

1
]A ⊕ [z′′

1
]A ⊕ d[x ′′

1
]A, [z2]B := [z′

2
]B ⊕

[z′′
2
]B ⊕ d[x ′′

2
]B.

The parties iterate over all B leaky AND triples one-by-one, taking the resulting triple and combining it with the next one.

Figure 9: Protocol ΠaAND realizing FaAND.

5.3 Combining Leaky AND Triples
The above check is vulnerable to a selective-failure attack, from

which a malicious party can learn the value of x1 or x2 with one-half
probability of not being caught. In order to get rid of the leakage,

bucketing is performed analogously to (but different from) what is

done by Nielsen et al. [39]. Given two potentially leaky AND triples(
[x ′

1
]A, [y

′
1
]A, [z

′
1
]A, [x

′
2
]B, [y

′
2
]B, [z

′
2
]B
)

and (
[x ′′

1
]A, [y

′′
1
]A, [z

′′
1
]A, [x

′′
2
]B, [y

′′
2
]B, [z

′′
2
]B
)
,

we set [x1]A := [x ′
1
]A⊕ [x

′′
1
]A, [x2]B := [x ′

2
]B⊕ [x

′′
2
]B. Note that the

result is non-leaky as long as one of the original triples is non-leaky.

We can also set [y1]A := [y′
1
]A, [y2]B := [y′

2
]B and reveal the bit

d := y′
1
⊕ y′

2
⊕ y′′

1
⊕ y′′

2
, since y’s bits are all private. Observe that

(x1 ⊕ x2) (y1 ⊕ y2) = (x ′
1
⊕ x ′

2
⊕ x ′′

1
⊕ x ′′

2
) (y′

1
⊕ y′

2
)

= (x ′
1
⊕ x ′

2
) (y′

1
⊕ y′

2
) ⊕ (x ′′

1
⊕ x ′′

2
) (y′

1
⊕ y′

2
)

= (x ′
1
⊕ x ′

2
) (y′

1
⊕ y′

2
) ⊕ (x ′′

1
⊕ x ′′

2
) (y′′

1
⊕ y′′

2
)

⊕ (x ′′
1
⊕ x ′′

2
) (y′

1
⊕ y′

2
⊕ y′′

1
⊕ y′′

2
)

= (z′
1
⊕ z′

2
) ⊕ (z′′

1
⊕ z′′

2
) ⊕ d (x ′′

1
⊕ x ′′

2
)

= (z′
1
⊕ z′′

1
⊕ dx ′′

1
) ⊕ (z′

2
⊕ z′′

2
⊕ dx ′′

2
).

Therefore, we can just set [z1]A := [z′
1
]A ⊕ [z′′

1
]A ⊕ d[x ′′

1
]A and

[z2]B := [z′
2
]B ⊕ [z

′′
2
]B ⊕ d[x

′′
2
]B. (This corresponds to the protocol

in Figure 9.)

6 OTHERWAYS TO INSTANTIATE FPRE
We briefly note other ways FPre can be instantiated.

IPS-based instantiation. We can obtain better asymptotic per-

formance by instantiating FPre using the protocol of Ishai, Prab-

hakaran, and Sahai [21]. In the function-dependent preprocessing

phase, we need to generate an authenticated sharing of λw for each

wirew , and an authenticated sharing of λσ = (λα ∧ λβ) ⊕ λγ for

each AND gate (α , β ,γ ,∧). These can be computed by a constant-

depth circuit of size O (|C |κ). For evaluating a circuit of depth d
and size ℓ, the IPS protocol usesO (d) rounds and a communication

complexity ofO (ℓ) + poly (κ,d, log ℓ) bits. In our setting, this trans-

lates to a communication complexity of O (|C |κ) + poly (κ, log |C |)
bits or, for sufficiently large circuits, O (|C |κ) bits.

Using a (semi-)trusted server. It is straightforward to instantiate
FPre using a (semi-)trusted server. By applying the techniques of

Mohassel et al. [37], the offline phase can also be done without

having to know the identity of the party with whom the online

phase will be executed; we refer to their paper for further details.

7 EXTENSIONS AND OPTIMIZATIONS

Handling κ , ρ. In Figure 2 step 4d, all MACs that PA sends are

κ bits long. For ρ-bit statistical security, the valueM[r00] used in
step 4(d) only needs to have length ρ. Similarly, the MACs in step 5,

step 6 and step 8 can be shortened to ρ bits.

Reducing the size of the garbled tables. Observe that the bits
rγ ,i need not be included in the garbled table, since M[rγ ,i] is
sufficient for PB to determine (and verify) that value. Furthermore,

the value Lγ ,0 is uniform and so we can further reduce the size of

garbled tables using ideas similar to garbled row reduction [42].

That is, instead of choosing a uniform Lγ ,0, we instead let Lγ ,0
be equal to the κ least-significant bits of H (Lα,0, Lβ,0,γ , 0). This
reduces the size of a garbled table to 3κ + 4ρ bits.

Pushing computation to earlier phases. For clarity, in our de-

scription of the protocol we send the values {rw ,M[rw]}w ∈I1 and

{sw ,M[sw]}w ∈I2 in steps 5 and 6. However, these values can be

sent in step 4 before the inputs are known, which reduces the online

communication to |I |κ + |O|ρ.

Further optimization of our TinyOT protocol. We aimed for

simplicity in Figure 7, but we note here several optimizations:

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

30

Bucket size 3 4 5

ρ = 40 280K 3.1K 320

ρ = 64 1.2B 780K 21K

ρ = 80 300B 32M 330K

Table 4: Fewest AND gates needed for bucketing, for differ-
ent bucket sizes and statistical security parameters.

Circuit I1 I2 O |C |

AES 128 128 128 6800

SHA-128 256 256 160 37300

SHA-256 256 256 256 90825

Hamming Dist. 1048K 1048K 22 2097K

Integer Mult. 2048 2048 2048 4192K

Sorting 131072 131072 131072 10223K

Table 5: Circuits used in our evaluation.

(1) For clarity, in Figure 7 step4c, the value R was chosen uni-

formly. To reduce the communication,Wx1,0 can be set to 0,

which defines R := H (K[x2])⊕V0. This saves two ciphertexts
per leaky AND triple.

(2) Since efficiency depends on the bucket size B = ρ/ log |C|,
we calculated the smallest circuit size needed for each bucket

size based on the exact formula, so that the bucket size can

be minimized. Table 4 shows the fewest AND gates needed

in order to use different bucket sizes (B), for different values
of ρ.

8 EVALUATION
8.1 Implementation and Evaluation Setup
Our implementation uses the EMP-toolkit [46], and is publicly

available as a part of it.

In our evaluation, we set the computational security parameter

to κ = 128 and the statistical security parameter to ρ = 40. In Fig-

ure 2 we describe garbling as relying on a random oracle, but in fact

it can be done using any encryption scheme; in our implementation

we use the JustGarble approach of Bellare et al. [5]. We use Multi-

threading, Streaming SIMD Extensions (SSE), and Advanced Vector

Extensions (AVX) to improve performance whenever possible.

Our implementation consists mainly of three parts:

(1) Authenticated bits. Authenticated bits can be generated

using OT extension [39]. In our implementation we adopt

the OT-extension protocol of Keller et al. [23] along with the

optimizations of Nielsen et al. [38]. The resulting protocol

requires κ + ρ bits of communication per authenticated bit.

(2) FPre functionality. To improve the efficiency, we spawn

multiple threads that each generate a set of leakyAND triples.

After these are all generated, bucketing and combining are

done in a single thread.

(3) Our protocol. The function-independent phase invokes the
above two sub-routines to generate randomAND triples with

IT-MACs. In the function-dependent phase, these random

AND triples are used to construct a single garbled circuit. In

the single-execution setting, we use one thread to construct

the garbled circuit; in the amortized setting we use multiple

threads, each constructing a different garbled circuit. (This

matches what was done in prior work.) The online phase is

always done using a single thread.

Evaluation setup. Our evaluation focuses on two settings:

• LAN setting: Here we use two Amazon EC2 c4.8xlarge
machines, both in the North Virginia region, with the link

between them having 10 Gbps bandwidth and less than 1ms

roundtrip time.

• WAN setting: Here we use two Amazon EC2 c4.8xlarge
machines, one in North Virginia and one in Ireland. Single-

thread communication bandwidth is about 224 Mbps; the

maximum total bandwidth is about 3 Gbps when using mul-

tiple threads.

In Section 8.2, we first compare the performance of our proto-

col with previous protocols in similar settings, focusing on three

circuits (AES, SHA-1, and SHA-256) commonly used in prior work.

Our results show that these circuits are no longer large enough to

serve as benchmark circuits for malicious 2PC. Therefore, in Sec-

tion 8.3 we also explore the performance of our protocol on some

larger circuits. (These circuits are available in [46].) Parameters for

all the circuits we study are given in Table 5. In Sections 8.4 and 8.5,

we study the scalability of our protocol and compare its concrete

communication complexity with prior work.

8.2 Comparison with Previous Work

Single-execution setting. First we compare the performance of

our protocol to state-of-the-art 2PC protocols in the single-execution

setting. In particular, we compare with the protocol of Wang et

al. [47], which is based on circuit-level cut-and-choose and is tai-

lored for the single-execution setting, as well as the protocol of

Nielsen et al. [38], which is based on gate-level cut-and-choose and

is able to utilize function-independent preprocessing. For a fair com-

parison, all numbers are based on the same hardware configuration

as we used. Our reported timings do not include the time for the

base-OTs for the same reason as in [38]: the time for the base-OTs

is constant across all protocols and is not the focus of our work. For

completeness, though, we note that our base-OT implementation

(based on the protocol by Chou and Orlandi [8]) takes about 20 ms

in the LAN setting and 240 ms in the WAN setting.

As shown in Table 6, our protocol performs better than previous

protocols in terms of both overall time and online time. Compared

with the protocol by Wang et al., we achieve a speedup of 2.7×

overall and an improvement of about 10× for the online time. Com-

pared with the protocol by Nielsen et al., the online time is roughly

the same but our offline time is 4–7× better in the LAN setting, and

1.3-1.5× better in the WAN setting.

Compared to the recent (unimplemented) work of Lindell et

al. [32], our protocol is asymptotically more efficient in the function-

independent preprocessing phase. More importantly, the concrete

efficiency of our protocol is much better for several reasons: (1) our

work is compatible with free-XOR and we do not suffer from any

blowup in the size of the circuit being evaluated; (2) Lindell et

al. require five SPDZ-style multiplications per AND gate of the

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

31

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

AES [47] - 28 ms 14 ms 42 ms - 425 ms 416 ms 841 ms

AES [38] 89.6 ms 13.2 ms 1.46 ms 104.3 ms 1882 ms 96.7 ms 83.2 ms 2061.9 ms

AES (here) 10.9 ms 4.78 ms 0.93 ms 16.6 ms 821 ms 461 ms 77.2 ms 1359.2 ms

SHA1 [47] - 139 ms 41 ms 180 ms - 1414 ms 472 ms 1886 ms

SHA1 (here) 41.4 ms 21.3 ms 3.6 ms 66.3 ms 1288 ms 603 ms 78.4 ms 1969.4 ms

SHA256 [47] - 350 ms 84 ms 434 ms - 2997 ms 514 ms 3511 ms

SHA256 [38] 478.5 ms 164.4 ms 11.2 ms 654.1 ms 2738 ms 350 ms 93.9 ms 3182 ms

SHA256 (here) 96 ms 51.7 ms 9.3 ms 157 ms 1516 ms 772 ms 88 ms 2376 ms

Table 6: Comparison in the single-execution setting

LAN WAN

τ Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

32 - 45 ms 1.7ms 46.7 ms - 282 ms 190 ms 472 ms

[43] 128 - 16 ms 1.5 ms 17.5 ms - 71 ms 191 ms 262 ms

1024 - 5.1 ms 1.3 ms 6.4 ms - 34 ms 189 ms 223 ms

32 54.5 ms 0.85 ms 1.23 ms 56.6 ms 235.8 ms 5.2 ms 83.2 ms 324.2 ms

[38] 128 21.5 ms 0.7 ms 1.2 ms 23.4 ms 95.8 ms 3.9 ms 83.7 ms 183.4 ms

1024 14.7 ms 0.74 ms 1.13 ms 16.6 ms 42.1 ms 2.1 ms 83.2 ms 127.4 ms

32 8.9 ms 0.6 ms 0.97 ms 10.47 ms 75.2 ms 8.7 ms 76 ms 160 ms

Here 128 5.4 ms 0.54 ms 0.99 ms 6.93 ms 36.6 ms 8.4 ms 75 ms 120 ms

1024 4.9 ms 0.53 ms 1.23 ms 6.66 ms 30.0 ms 7.5 ms 76 ms 113.5 ms

Table 7: Comparison in the amortized setting. All experiments evaluate AES, with τ the number of executions being amortized over.

LAN WAN

Ind. Phase Dep. Phase Online Total Ind. Phase Dep. Phase Online Total

Hamming Dist. 1867 ms 1226 ms 74 ms 3167 ms 11531 ms 6592 ms 133 ms 18256 ms

Integer Mult. 2860 ms 1921 ms 301 ms 5081 ms 20218 ms 9843 ms 376 ms 30437 ms

Sorting 7096 ms 5508 ms 1021 ms 13625 ms 45155 ms 25582 ms 1918 ms 72655 ms

Table 8: Experimental results for larger circuits.

underlying circuit, while we need only one TinyOT-style AND

computation per AND gate.

We perform a back-of-the-envelope calculation to compare the

relative efficiency of our protocol and that of Lindell et al. [32].

Over a 10 Gbps network, the recent work of Keller et al. [24] can

generate 55,000 SPDZ multiplication triples per second using an

ideal implementation that fully saturates the network. The protocol

of Lindell et al. requires 5 SPDZ multiplications per AND gate, and

so the best possible end-to-end speed of their protocol is 11,000 AND

gates per second. On the other hand, our actual implementation

computes 833,333 AND gates per second (as shown by the scalability

evaluation in Section 8.4). Therefore, our protocol is at least 75×

better than the best possible implementation of their protocol.

Comparison with linear-round protocols. The AES circuit has
depth 50 [34]. Therefore, even in the LAN setting with 0.5 ms

roundtrip time, and ignoring all computation and communication,

any linear-round protocol for securely computing AES would re-

quire at least 25 ms in total, which is 1.5× slower than our protocol.

The protocol by Damgård et al. [10] has the best end-to-end

running time among all linear-round protocols. Their protocol only

supports amortization for parallel executions (where inputs to all

executions are known at the outset). They report an amortized

time for evaluating AES of 14.65 ms per execution, amortized over

680 executions. This is roughly on par with our single-execution
performance without any preprocessing. When comparing their

results to our amortized performance, we are more than 2× faster,

and we are not limited to parallel execution.

A more recent work by Damgård et al. [11] proposes a protocol

with a very efficient online phase. In the LAN setting with similar

hardware, it has an online time of 1.09 ms to evaluate AES, which

is similar to our reported time (0.93 ms). They also report 0.47µs
online time in the parallel execution setting, which is different from

our amortized setting as discussed above. We cannot compare end-

to-end running times since they do not report the preprocessing

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

32

... 221 222 223 224

Number of Bits in P1’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30
R

un
ni

ng
T

im
e

(s
ec

on
d)

WAN, 1.56µs / bit
LAN, 0.35µs / bit

(a) Increasing PA’s input size (I1).

... 221 222 223 224

Number of Bits in P2’s Input

0 0

5 5

10 10

15 15

20 20

25 25

30 30

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 1.57µs / bit
LAN, 0.35µs / bit

(b) Increasing PB’s input size (I2).

... 221 222 223 224

Number of Bits in the Output

0.0 0.0

0.5 0.5

1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0

3.5 3.5

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 0.13µs / bit
LAN, 0.03µs / bit

(c) Increasing output size (O).

... 221 222 223 224

Number of AND Gates

0 0

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 4.48µs / gate
LAN, 1.19µs / gate

(d) Increasing circuit size (|C |).

Figure 10: Scalability of our protocol. Initially |I1 | = |I2 | = |O| = 128 and |C| = 1024, and then one of those parameters is allowed to

grow while the others remain fixed. The total running time is reported.

time. However, we note that they use TinyOT for preprocessing,

and our optimized TinyOT protocol is more efficient. (On the other

hand, our new TinyOT protocol could be plugged into their work

to improve the running time of the preprocessing phase in their

work as well.)

Amortized setting. It is somewhat difficult to compare protocols

in the amortized setting, since relative performance depends on the

setting (LAN or WAN), the number of executions being amortized

over, and whether one chooses to focus on the total time or the

online time. Nevertheless, as shown in Table 7, our protocol offers

a consistent improvement as compared to the best prior work of

Nielsen et al. [38] and Rindal and Rosulek [43].

8.3 Larger Circuits
The results of the previous section show that evaluating the AES

circuit using our protocol takes less time than generating the base-

OTs. Thus, our work implies that AES and other existing benchmark

circuits are no longer large enough for a meaningful performance

evaluation of malicious 2PC protocols. We propose three new ex-

ample computations and evaluate our protocol on these examples:

• Hamming distance:Here we consider computing the Ham-

ming distance between two n-bit strings using an O (n)-size

circuit. For our concrete experiments, we set n = 1048576;

the output is a 22-bit integer.

• Integer multiplication: Here we consider computing the

least-significant n bits of the product of two n-bit integers
using a nO (n2)-size circuit. For our concrete experiments,

we use n = 2048.

• Sorting: Here we consider sorting n integers, each ℓ bits

long, that are XOR-shared between two parties, using a cir-

cuit of size O (nℓ log2 n). For our concrete experiments, we

use n = 4096 and ℓ = 32.

The parameters of the concrete circuits we use in our experiments

are given in Table 5.

In Table 8 we show the performance of our protocol on the above

examples. We observe that the difference in the online time between

the LAN and WAN settings is about 75 ms, which is roughly the

roundtrip time of the WAN network we used. This is also consistent

with the fact that our protocol requires only one round of online

communication (one message from each party). To compare our re-

sults with state-of-the-art semi-honest protocols, note that garbling
can be done at the rate of about 20 million AND gates per second.

So, for example, sorting could be done with an online time of about

0.5 seconds in the semi-honest setting.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

33

Protocol τ Ind. Phase Dep. Phase Online

[43]

302 - 3.8 MB 25.8 KB

128 - 2.5 MB 21.3 KB

1024 - 1.6 MB 17.0 KB

[38]

1 14.9 MB 0.22 MB 16.1 KB

32 8.7 MB 0.22 MB 16.1 KB

128 7.2 MB 0.22 MB 16.1 KB

1024 6.4 MB 0.22 MB 16.1 KB

1 2.86 MB 0.57 MB 4.86 KB

This 32 2.64 MB 0.57 MB 4.86 KB

Paper 128 2.0 MB 0.57 MB 4.86 KB

1024 2.0 MB 0.57 MB 4.86 KB

Table 9: Communication per execution for evaluating an
AES circuit. Numbers presented are for the amount of data sent

from garbler to evaluator; this reflects the speed in a duplex net-

work. For a simplex network, the communication reported here and

by Rindal and Rosulek [43] should be doubled for a fair comparison.

8.4 Scalability
To explore the concrete performance of our protocol for circuits

with different input, output, and circuit sizes, we study the effect

on the total running time as each of these parameters is varied.

The results are reported in Figure 10. Trend lines are also included

to show the marginal effect (i.e., the slope) of each parameter. Al-

though the optimal bucket size in our protocol becomes smaller as

the circuit size increases, we fix the bucket size to 3 in Figure 10(d).

Our results show that the performance of our protocol scales

linearly in the input, output, and circuit sizes, as expected. In the

LAN setting, our protocol requires only 0.35 µs to process each

input bit and 0.03 µs per output bit. Note that this is much better

than circuit-level cut-and-choose protocols, mainly for two reasons:

(1) Since we construct only one garbled circuit, only one set of

garbled labels needs to be transferred; this is an improvement of

ρ×. (2) We do not need to use an XOR-Tree or a ρ-probe matrix

(which can incur a huge cost when the input is large [47]) to prevent

selective-failure attacks.

Our results also show that the marginal performance (for all the

parameters considered) is about 3–4× slower in the WAN setting

than in the LAN setting, which roughlymatches the ratio of network

bandwidth between the two settings.

8.5 Communication Complexity
In Table 9, we compare the communication complexity (measured in

terms of the amount of data sent from the garbler to the evaluator)

of our protocol to that of other work, focusing on the amortized

evaluation of AES. The communication complexity of our protocol

is 3−−5× less than in the protocol of Nielsen et al.. Furthermore, the

communication complexity of our protocol in the single-execution
setting is only half the communication complexity of their protocol

even when amortized over 1024 executions. Note that for protocols

based on cut-and-choose, the total communication required to send

40 garbled AES circuits is 8.7 MB, which is already higher than

the total communication of our protocol in the single-execution

setting.

We also observe that the communication complexity of our pro-

tocol in the function-dependent preprocessing phase is higher than

that of the protocol of Nielsen et al.; this is due to the fact that we

need to send 3κ + 4ρ bits per gate while they only need to send

2κ bits per gate. On the other hand, our online communication

is extremely small: it is about 3× smaller than in the protocol of

Nielsen et al. and 3.5–5.3× smaller than in the protocol of Rindal

and Rosulek.

ACKNOWLEDGMENTS
This material is based on work supported by NSF awards #1111599,

#1563722, and #1564088. The authors would like to thank Roberto

Trifiletti, Yan Huang, and Ruiyu Zhu for their helpful comments.

REFERENCES
[1] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In Eurocrypt 2014
(LNCS), Vol. 8441. 387–404.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In ACM CCS 2013. 535–548.
[3] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.

In Crypto’91 (LNCS), Vol. 576. 420–432.
[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The Round Complexity

of Secure Protocols. In ACM STOC. 503–513.
[5] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient Garbling from a Fixed-Key Blockcipher. In IEEE Symposium on Security
& Privacy. 478–492.

[6] Luís T. A. N. Brandão. 2013. Secure Two-Party Computation with Reusable

Bit-Commitments, via a Cut-and-Choose with Forge-and-Lose Technique. In

ASIACRYPT 2013, Part II (LNCS), Vol. 8270. 441–463.
[7] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. 2014.

Efficient Three-Party Computation from Cut-and-Choose. In Crypto 2014, Part II
(LNCS), Vol. 8617. 513–530.

[8] Tung Chou and Claudio Orlandi. 2015. The Simplest Protocol for Oblivious

Transfer. In LATINCRYPT 2015 (LNCS), Vol. 9230. 40–58.
[9] Ivan Damgård and Yuval Ishai. 2005. Constant-Round Multiparty Computation

Using a Black-Box Pseudorandom Generator. In Crypto 2005 (LNCS), Vol. 3621.
378–394.

[10] Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. 2014. An Empirical Study and

Some Improvements of the MiniMac Protocol for Secure Computation. In Intl.
Conf. on Security and Cryptography for Networks (LNCS), Vol. 8642. 398–415.

[11] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. 2017.

The TinyTable protocol for 2-Party Secure Computation, or: Gate-scrambling

Revisited. In Crypto 2017, Part I (LNCS), Vol. 10401. 167–187.
[12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In Crypto 2012
(LNCS), Vol. 7417. 643–662.

[13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper BuusNielsen, Peter Sebas-

tian Nordholt, and Claudio Orlandi. 2013. MiniLEGO: Efficient Secure Two-Party

Computation from General Assumptions. In Eurocrypt 2013 (LNCS), Vol. 7881.
537–556.

[14] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto

Trifiletti. 2015. TinyLEGO: An Interactive Garbling Scheme for Maliciously

Secure Two-Party Computation. Cryptology ePrint Archive, Report 2015/309.

(2015). http://eprint.iacr.org/2015/309.

[15] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game, or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC. 218–229.

[16] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low Cost Constant

Round MPC Combining BMR and Oblivious Transfer. Cryptology ePrint Archive,

Report 2017/214. (2017). To appear in Asiacrypt 2017.

[17] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure

Two-Party Computation Using Garbled Circuits. In USENIX Security 2011.
[18] Yan Huang, Jonathan Katz, and David Evans. 2013. Efficient Secure Two-Party

Computation Using Symmetric Cut-and-Choose. In Crypto 2013, Part II (LNCS),
Vol. 8043. 18–35.

[19] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.

Malozemoff. 2014. Amortizing Garbled Circuits. In Crypto 2014, Part II (LNCS),

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

34

http://eprint.iacr.org/2015/309

Vol. 8617. 458–475.

[20] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2009. Extracting

Correlations. In IEEE FOCS. 261–270.
[21] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding Cryptography

on Oblivious Transfer - Efficiently. In Crypto 2008 (LNCS), Vol. 5157. 572–591.
[22] Stanislaw Jarecki and Vitaly Shmatikov. 2007. Efficient Two-Party Secure Com-

putation on Committed Inputs. In Eurocrypt 2007 (LNCS), Vol. 4515. 97–114.
[23] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively Secure OT

Extension with Optimal Overhead. In Crypto 2015, Part I (LNCS), Vol. 9215. 724–
741.

[24] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In ACM CCS
2016. 830–842.

[25] Vladimir Kolesnikov, PaymanMohassel, andMike Rosulek. 2014. FleXOR: Flexible

Garbling for XOR Gates That Beats Free-XOR. In Crypto 2014, Part II (LNCS),
Vol. 8617. 440–457.

[26] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto

Trifiletti. 2017. DUPLO: Unifying Cut-and-Choose for Garbled Circuits. In ACM
CCS 2017.

[27] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit: Free

XOR Gates and Applications. In ICALP 2008, Part II (LNCS), Vol. 5126. 486–498.
[28] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure

Computation with Malicious Adversaries. In USENIX Security 2012.
[29] Yehuda Lindell. 2013. Fast Cut-and-Choose Based Protocols for Malicious and

Covert Adversaries. In Crypto 2013, Part II (LNCS), Vol. 8043. 1–17.
[30] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-

Party Computation in the Presence of Malicious Adversaries. In Eurocrypt 2007
(LNCS), Vol. 4515. 52–78.

[31] Yehuda Lindell and Benny Pinkas. 2011. Secure Two-Party Computation via

Cut-and-Choose Oblivious Transfer. In TCC 2011 (LNCS), Vol. 6597. 329–346.
[32] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2015. Effi-

cient Constant Round Multi-party Computation Combining BMR and SPDZ. In

Crypto 2015, Part II (LNCS), Vol. 9216. 319–338.
[33] Yehuda Lindell and Ben Riva. 2014. Cut-and-Choose Yao-Based Secure Compu-

tation in the Online/Offline and Batch Settings. In Crypto 2014, Part II (LNCS),
Vol. 8617. 476–494.

[34] Yehuda Lindell and Ben Riva. 2015. Blazing Fast 2PC in the Offline/Online Setting

with Security for Malicious Adversaries. In ACM CCS 2015. 579–590.
[35] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. 2016. More Efficient

Constant-Round Multi-party Computation from BMR and SHE. In TCC 2016-B,
Part I (LNCS), Vol. 9985. 554–581.

[36] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay—A

Secure Two-Party Computation System. In USENIX Security 2004.
[37] Payman Mohassel, Ostap Orobets, and Ben Riva. 2016. Efficient Server-Aided

2PC for Mobile Phones. Proc. Privacy Enhancing Technologies 2 (2016), 82–99.
[38] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant-Round

Maliciously Secure 2PC with Function-Independent Preprocessing Using LEGO.

In Network and Distributed System Security Symposium (NDSS).
[39] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.

In Crypto 2012 (LNCS), Vol. 7417. 681–700.
[40] Jesper Buus Nielsen and Claudio Orlandi. 2009. LEGO for Two-Party Secure

Computation. In TCC 2009 (LNCS), Vol. 5444. 368–386.
[41] Jesper Buus Nielsen and Claudio Orlandi. 2016. Cross and Clean: Amortized

Garbled Circuits with Constant Overhead. In TCC 2016-B, Part I (LNCS), Vol. 9985.
582–603.

[42] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. 2009.

Secure Two-Party Computation Is Practical. In ASIACRYPT 2009 (LNCS), Vol. 5912.
250–267.

[43] Peter Rindal and Mike Rosulek. 2016. Faster Malicious 2-Party Secure Computa-

tion with Online/Offline Dual Execution. In USENIX Security 2016.
[44] Abhi Shelat and Chih-Hao Shen. 2011. Two-Output Secure Computation with

Malicious Adversaries. In Eurocrypt 2011 (LNCS), Vol. 6632. 386–405.
[45] Abhi Shelat and Chih-Hao Shen. 2013. Fast Two-Party Secure Computation with

Minimal Assumptions. In ACM CCS 2013. 523–534.
[46] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-Toolkit: Efficient

Multiparty Computation Toolkit. https://github.com/emp-toolkit. (2016).

[47] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2017. Faster Secure Two-

Party Computation in the Single-Execution Setting. In Eurocrypt 2017, Part II
(LNCS), Vol. 10211. 399–424.

[48] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In ACM CCS 2017.
[49] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In IEEE

FOCS. 162–167.
[50] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole—

Reducing Data Transfer in Garbled Circuits Using Half Gates. In Eurocrypt 2015,
Part II (LNCS), Vol. 9057. 220–250.

A PROOF FOR THE LEAKY-AND PROTOCOL
In the following, we will discuss at a high-level how the proof works

for the new TinyOT protocol. We will focus on the security of the

ΠLaAND protocol, since the security of the ΠaAND protocol is fairly

straightforward given the proof in the original paper [39].

Correctness. We want to show that if both parties follow the

protocol then in step 4.eWx1,x2 ⊕M[x2] ⊕ Tx2 = R. The checks in
step 5 are symmetric to those in step 4. We proceed on a case-by-

case basis.

Case 1: x1 = 0,x2 = 0.
Here we haveM[x1] = K[x1] andM[x2] = K[x2]. Since x1 ⊕ x2 = 0,

we know that z1 = z2, which further implies that

M[z1] = K[z1] ⊕ z1∆B = K[z1] ⊕ z2∆B

. The desired equation thus holds because:

Wx1,x2 ⊕ H (M[x2]) ⊕ Tx2

= H (K[x2]) ⊕ V0 ⊕ R ⊕ H (M[x2]) ⊕ H (K[x1],K[z1] ⊕ z2∆B)

= V0 ⊕ T0 ⊕ R

= H (M[x1],M[z1]) ⊕ H (K[x1],K[z1] ⊕ z2∆B) ⊕ R

= R.

Case 2: x1 = 0,x2 = 1.

Similar to the previous case, we know that M[x1] = K[x1] and that

M[x2] = K[x2] ⊕ ∆B. Then x1 ⊕ x2 = 1 implies

M[z1] ⊕M[y1]

= K[y1] ⊕ K[z1] ⊕ (y1 ⊕ z1)∆B

= K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B.

The desired equation thus holds because:

Wx1,x2 ⊕ H (M[x2]) ⊕ Tx2

=Wx1,x2 ⊕ H (M[x2]) ⊕ T1

= H (K[x2] ⊕ ∆A) ⊕ V1 ⊕ R ⊕ H (M[x2]) ⊕ T1

= V1 ⊕ T1 ⊕ R

= H (M[x1],M[z1] ⊕M[y1])

⊕ H (K[x1],K[z1] ⊕ z2∆B ⊕ K[y1] ⊕ y2∆B) ⊕ R

= R.

Case 3: x1 = 1,x2 = 0.

Similar to the previous cases, we know thatM[x1] = K[x1] ⊕ ∆B,

M[x2] = K[x2], andM[z1] ⊕M[y1] = K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B.

Therefore:

Wx1,x2 ⊕ H (M[x2]) ⊕ Tx2

=Wx1,x2 ⊕ H (M[x2]) ⊕ T0

= H (K[x2]) ⊕ V1 ⊕ U0 ⊕ R ⊕ H (M[x2]) ⊕ T0

= V1 ⊕ U0 ⊕ R ⊕ T0

= H (M[x1],M[z1] ⊕M[y1]) ⊕ R ⊕ T0

⊕ T0 ⊕ H (K[x1] ⊕ ∆B,K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B)

= R.

Case 4: x1 = 1,x2 = 1.

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

35

https://github.com/emp-toolkit

Similar to the previous cases, we know thatM[x1] = K[x1] ⊕ ∆B,

M[x2] = K[x2] ⊕ ∆B, and M[z1] = K[z1] ⊕ z2∆B. Therefore:

Wx1,x2 ⊕ H (M[x2]) ⊕ Tx2

=Wx1,x2 ⊕ H (M[x2]) ⊕ T1

= H (K[x2] ⊕ ∆A) ⊕ V0 ⊕ U1 ⊕ R ⊕ H (M[x2]) ⊕ T1

= V0 ⊕ U1 ⊕ R ⊕ T1

= H (M[x1],M[z1]) ⊕ R ⊕ T1

⊕ T1 ⊕ H (K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B)

= R.

We next prove security.

Lemma A.1. If (x1 ⊕ x2) ∧ (y1 ⊕ y2) , (z1 ⊕ z2) then the protocol
will result in an abort except with negligible probability.

We will proceed on a case-by-case basis. Without loss of gener-

ality, we assume PB is honest and PA is corrupted.

Case 1: x1 = 0,x2 = 0.
To pass the test, the adversary would have to produce a pair R

andW0,0 such that:

W0,0 = H (M[x2]) ⊕ Tx2 ⊕ R

W0,0 = H (M[x2]) ⊕ R

⊕ H (K[x1],K[z1] ⊕ z2∆B).

Since z1 ⊕ z2 = 1, this means the adversary must compute K[z1] ⊕
z2∆B = M[z1] ⊕ ∆B. This requires guessing a κ-bit MAC and is

thus computationally infeasible. Alternatively, the adversary could

try to compute T0 from U0 = T0 ⊕ H (K[x1] ⊕ ∆B,K[y1] ⊕ K[z1] ⊕
(y2 ⊕ z2)∆B). Fortunately, since K[x1] ⊕ ∆B = M[x1] ⊕ ∆B, this is

also infeasible.

Case 2: x1 = 0,x2 = 1.
To pass the test, the adversary would have to produce a pair R

andW0,1 such that:

W0,1 = H (M[x2]) ⊕ Tx2 ⊕ R

W0,1 = H (M[x2]) ⊕ R

⊕ H (K[x1],K[z1] ⊕ z2∆B ⊕ K[y1] ⊕ y2∆B).

However, since z1 ⊕ z2 ⊕ y1 ⊕ y2 = 1, the last line requires the

adversary to computeK[y1]⊕K[z1]⊕ (z2⊕y2)∆B = M[y1]⊕M[z1]⊕
∆B. This requires guessing a κ-bit MAC and is thus computationally

infeasible. Alternatively, the adversary could try to compute T1
from U1 = T1 ⊕ H (K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B). Fortunately, since
K[x1] ⊕ ∆B = M[x1] ⊕ ∆B, this is also infeasible.

Case 3: x1 = 1,x2 = 0.
To pass the test, the adversary would have to produce R,W1,0

such that:

W1,0 = H (M[x2]) ⊕ Tx2 ⊕ R

W1,0 = H (M[x2]) ⊕ R

⊕ H (K[x1],K[z1] ⊕ z2∆B).

Since x1 = 1, the last line requires the adversary to compute

K[x1] = M[x1] ⊕ ∆B. This requires guessing a κ-bit MAC and is

thus computationally infeasible. Alternatively, the adversary could

try to compute T0 from U0 = T0 ⊕ H (K[x1] ⊕ ∆B,K[y1] ⊕ K[z1] ⊕
(y2 ⊕ z2)∆B). Fortunately, since y1 ⊕ y2 ⊕ z1 ⊕ z2 = 1 we have

K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B = M[y1] ⊕M[z1] ⊕ ∆B, and so this is

also infeasible.

Case 4: x1 = 1,x2 = 1.
To pass the test, the adversary would have to produce R andW1,1

such that:

W1,1 = H (M[x2]) ⊕ Tx2 ⊕ R

W1,1 = H (M[x2]) ⊕ R

⊕ H (K[x1],K[z1] ⊕ z2∆B ⊕ K[y1] ⊕ y2∆B).

Since x1 = 1, the last line requires the adversary to compute

K[x1] = M[x1] ⊕ ∆B. This requires guessing a κ-bit MAC and is

thus computationally infeasible. Alternatively, the adversary could

try to compute T1 from U1 = T1 ⊕ H (K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B).
Fortunately, since z1 ⊕ z2 = 1 we have K[z1] ⊕ z2∆B = M[z1] ⊕ ∆B,

and so this is also infeasible.

Lemma A.2. The protocol in Figure 7 securely realizes FLaAND in
the (Fabit,FHaAND,FEQ)-hybrid model.

Proof. We consider separately the case of a malicious PA and a

malicious PB.

Malicious PA. We construct a simulator S as follows:

1 S receives (x1,M[x1]), (y1,M[y1]), (z1,M[z1]), K[x2], K[y2],
K[r], and ∆A that A sends to Fabit. Then S picks a uni-

form bit s , sets K[z2] := K[r] ⊕ s∆A, and sends (x1,M[x1]),
(y1,M[y1]), (z1,M[z1]),K[x2],K[y2],K[z2], and∆A toFLaAND.

Functionality FLaAND then sends (x2,M[x2]), (y2,M[y2]),
(z2,M[z2]), K[x1], K[y1], K[z1], and ∆B to PB.

2–3 S plays the role of FHaAND obtaining the inputs from A ,

namely y′
1
and the value A sent, namely u ′. S uses y1 and

u to denote the value that an honest PB would use. If y′
1
,

y1,u
′ , u, S sets д0 = 1 ⊕ x1, if y

′
1
, y1,u

′ = u, S sets

д0 = x1.
4 S sends a random U ∗ to A , and receives someW0,W1 and

computes some R0,R1, such that, if x1 = 0,W0 := H (K[x2])⊕
V0 ⊕ R0,W1 := H (K[x2] ⊕ ∆A) ⊕ V1 ⊕ R1; otherwise,W0 :=

H (K[x2]) ⊕ V1 ⊕ U ∗ ⊕ R0 andW1 := H (K[x2] ⊕ ∆A) ⊕ V0 ⊕
U ∗ ⊕ R1.
S also obtains R that A sent to FEQ . If R does not equal to

either R0 or R1, S aborts; otherwise S computes д1 such that

R , Rд1 for some д1 ∈ {0, 1} .
5 S receives U , picks randomW ∗

0
,W ∗

1
and sends them to A .

S obtains R′ that A sent to FEQ .

• If bothU ,R′ are honestly computed,S proceeds as normal.

• IfU is not honestly computed and thatR′ =W ∗x1⊕H (M[x1])⊕
Tx1 is honestly computed, S set д2 = 0

• If either of the following is true: 1) x1 = 0 and R′ =
W ∗x1 ⊕H (M[x1])⊕U ⊕H (K[x1]⊕∆B,K[y1]⊕ (y2⊕z2)∆B);
2) x1 = 1 and R′ = W ∗x1 ⊕ H (M[x1]) ⊕ U ⊕ H (K[x1] ⊕
∆B,K[z1] ⊕ z2∆B), S sets д2 = 1.

• Otherwise S aborts.

6 For each value д ∈ {д0,д1,д2}, if д , ⊥, S sends д to FLaAND.

If FLaAND abort after any guess, S aborts.

Note that the first 3 steps are perfect simulations. However, a ma-

licious PA can flip the value of y1 and/or u used. According to

the unforgeability proof, the protocol will abort if the relationship

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

36

(x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ (z1 ⊕ z2) = 0 does not hold. Therefore, ifA

flip y1, it is essentially guessing that x1 ⊕ x2 = 0; if A flip both y1
and u, it is guessing that x1 ⊕ x2 = 1. Such selective failure attack

is extracted by S and answered accordingly.

In step 4,U ∗ is sent in the simulation, whileUx2 is sent. This is a
perfect simulation unless both of the input to random oracle inUx2
get queried. This does not happen during the protocol, since ∆B in

not known toA . In step 5,W ∗
0
,W ∗

1
are sent in the simulation, while

Wx2,0,Wx2,0 are sent in the real protocol. This is also a perfect

simulation unless PA gets ∆B: both R and one of H (K[x1]) and
H (K[x1] ⊕ ∆B) are random.

Another difference is that PB always aborts in the simulation if

Gx2,y2 is not honestly computed. This is also the case in the real

protocol unless A learns ∆B.

Malicious PB.We construct a simulator S as follows:

(1) S receives (x2,M[x2]), (y2,M[y2]), (r ,M[r]), K[x1], K[y1],
K[z1], ∆B that A sends to Fabit. Then S picks a random bit

s , sets

(z2,M[z2]) := (r ⊕ s,M[z2] ⊕ s∆B),

and sends (x2,M[x2]), (y2,M[y2]), (z2,M[z2]), K[x1], K[y1],
K[z1]) toFLaAND. FunctionalityFLaAND then sends (x1,M[x1]),
(y1,M[y1]), (z1,M[z1]),K[x2], K[y2],K[z2]) to PB.

2-3 S plays the role of FHaAND and obtains y′
2
A sent. S also

obtains d ′ sent by PB. Denoting y′
2
,d as values an honest

PB would use, if y′
2
, y2,d

′ , d , S sets д0 = 1 ⊕ x2, if
y′
2
, y2,d

′ = d , S sets д0 = x2.
4-6 Note that step 4 and step 5 of the protocol are the same with

the exception that the roles of PA and PB are switched. We

denote S ′ the simulator that was defined for the case where

PA is corrupted. S will employ in step 4 the same strategy

that was employed by S ′ in step 5. S will employ in step 5,

the same strategy that was employed by S ′ in step 4.

The first three steps are perfect simulation, with a malicious PB
having a chance to perform a selective failure attack similar to

when PA is malicious. If PB flip y2, it is guessing that x1 ⊕ x2 = 0;

if PB flip y2 and d , PB is guessing x1 ⊕ x2 = 1. The proof for step

4 and 5 are the same as the proof for malicious PA (with order of

steps switched). □

Session A1: Multi-Party Computation 1 CCS’17, October 30-November 3, 2017, Dallas, TX, USA

37

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Notation and Preliminaries
	2.1 Information-theoretic MACs

	3 Protocol Intuition
	4 Our Main Framework
	4.1 Proof of Security

	5 Efficiently Realizing [Pre]
	5.1 Half-Authenticated AND Triples
	5.2 Leaky AND Triples
	5.3 Combining Leaky AND Triples

	6 Other Ways to Instantiate [Pre]
	7 Extensions and Optimizations
	8 Evaluation
	8.1 Implementation and Evaluation Setup
	8.2 Comparison with Previous Work
	8.3 Larger Circuits
	8.4 Scalability
	8.5 Communication Complexity

	References
	A Proof for the Leaky-AND protocol

