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ABSTRACT
We present a high-assurance software stack for secure function
evaluation (SFE). Our stack consists of three components: i. a veri-
fied compiler (CircGen) that translates C programs into Boolean
circuits; ii. a verified implementation of Yao’s SFE protocol based on
garbled circuits and oblivious transfer; and iii. transparent applica-
tion integration and communications via FRESCO, an open-source
framework for secure multiparty computation (MPC). CircGen is a
general purpose tool that builds on CompCert, a verified optimizing
compiler for C. It can be used in arbitrary Boolean circuit-based
cryptography deployments. The security of our SFE protocol im-
plementation is formally verified using EasyCrypt, a tool-assisted
framework for building high-confidence cryptographic proofs, and
it leverages a new formalization of garbled circuits based on the
framework of Bellare, Hoang, and Rogaway (CCS 2012). We conduct
a practical evaluation of our approach, and conclude that it is com-
petitive with state-of-the-art (unverified) approaches. Our work
provides concrete evidence of the feasibility of building efficient,
verified, implementations of higher-level cryptographic systems.
All our development is publicly available.

KEYWORDS
Secure Function Evaluation, Verified Implementation, Certified
Compilation

1 INTRODUCTION
Cryptographic engineering is the domain-specific area of software
engineering that brings cryptography to practice. It encompasses
projects that maintain widely used cryptographic libraries such
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as OpenSSL,1 s2n2 and Bouncy Castle,3 as well as prototyping
frameworks such as CHARM [1] and SCAPI [31]. More recently, a
series of groundbreaking cryptographic engineering projects have
emerged, that aim to bring a new generation of cryptographic proto-
cols to real-world applications. In this new generation of protocols,
which has matured in the last two decades, secure computation
over encrypted data stands out as one of the technologies with the
highest potential to change the landscape of secure ITC, namely
by improving cloud reliability and thus opening the way for new
secure cloud-based applications. Projects that aim to bring secure
computation over encrypted data to practice include FRESCO4 [27],
TASTY [38] and Sharemind [21].

In contrast to other areas of software engineering for critical
systems, the benefits of formal verification for cryptographic en-
gineering have been very limited, with some recent and notable
exceptions [2, 3, 8, 18, 22, 33]. The reasons for this are well known:
cryptographic software is a challenge for high-assurance software
development due to the tension that arises between complex speci-
fications and the need for very high efficiency—security is supposed
to be invisible, and current verification technology comes with a
performance penalty. The exceptions mentioned above mark the
emergence of a new area of research: high-assurance cryptogra-
phy. This aims to apply formal verification to both cryptographic
security proofs and the functional correctness and security of cryp-
tographic implementations.

In this paper we demonstrate that a tight integration of high-
assurance cryptography and cryptographic engineering can deliver
the combined benefits of provable security and best cryptographic
engineering practices at a scale that significantly exceeds previous
experiments (typically carried out on core cryptographic primi-
tives). We deliver a fast and verified software stack for secure com-
putation over encrypted data. This choice is motivated by several
factors. First, as mentioned above, this technology is among the
foremost practical applications of cryptography and is a fundamen-
tal building block for making cloud computing secure. Second, it is

1
http://openssl.org

2
http://https://github.com/awslabs/s2n

3
https://www.bouncycastle.org/

4
https://github.com/aicis/fresco
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Figure 1: Verified cryptographic software stack. Blue rect-
angles identify the verified components of the stack, while
black rectangles represent part of our trusting computing
base. Dashed blue rectangles are partially verified elements
and in dashed black rectangles one can find intermediate in-
put/output items.

a tremendous challenge for high-assurance cryptography, as its se-
curity proofs are markedly distinct from prior work in formalizing
reductionist arguments.

Contributions. We present a high-assurance and high-speed soft-
ware stack for secure multi-party computation. Figure 1 presents
the overall architecture of the stack. The lowest-level component
is FRESCO [27]; an existing, practical, open-source, framework for
secure multi-party computation, which we use for communications
and input/output. The correctness of this framework (but not its
security) is part of our trusted computing base, as verifying the
correctness of a Java-based communications infrastructure is out
of the scope of high-assurance cryptography.

The intermediate component of our stack is a verified implemen-
tation of Yao’s secure function evaluation (SFE) protocol [57] based
on garbled circuits and oblivious transfer. This protocol allows
two parties P1 and P2, holding private inputs x1 and x2, to jointly
evaluate any function f (x1,x2) and learn its result, whilst being
assured that no additional information about their respective inputs
is revealed. Two-party SFE provides a general distributed solution
to the problem of computing over encrypted data in the cloud [41];
we allow for both scenarios where the function is public and both
sides provide inputs and scenarios where one party provides the
(secret albeit with leaked topology) circuit to be computed and the
other party provides the input to the computation.

Our implementation is machine-checked in EasyCrypt5 [7, 9], an
interactive proof assistant with dedicated support to perform game-
based cryptographic proofs in the computational model. Our proof
5https://www.easycrypt.info

leverages the foundational framework put forth by Bellare, Hoang
and Rogaway [12] for the security of Yao’s garbled circuits. Our
construction of SFE relies on an n-fold extension (where n is the size
of the selection string–or the circuit’s input) of the oblivious transfer
protocol by Bellare and Micali [13], in the hashed version presented
by Naor and Pinkas [47]. The implementation is proved secure
relative to standard assumptions: the Decisional Diffie-Hellman
problem, and the existence of entropy-smoothing hash functions
and pseudorandom functions.

The higher-level component of our stack is a verified optimizing
compiler from C programs to Boolean circuits that we call CircGen.
Our compiler is mechanically verified using the Coq proof assistant,
and builds on top of CompCert [43], a verified optimizing compiler
for C programs. It reuses the front- and middle-end of CompCert
(introducing an extra loop-unrolling optimization) and it provides
a new verified back-end producing Boolean circuits. The back-end
includes correctness proofs for several program transformations
that have not previously been formally verified, including the trans-
lation of RTL programs into guarded form and a memory-agnostic
static single assignment (SSA) form. Our proof of semantic preser-
vation is conditioned on the existence of an external oracle that
provides functionally correct Boolean circuits for basic operations
in the C language, such as 32-bit addition and multiplication. The
low-level circuits used in our current implementation for these
operations have not been formally verified and are hence part of
our trusted computing base. Verifying Boolean circuits for native
C operations can be done either in Coq or using other verification
techniques and it is orthogonal to the reported verification effort.

The Boolean circuits generated by CircGen compare well with
alternative unverified solutions, namely CBMC-GC6 [34], although
they are slightly less efficient (as would be expected). To widen the
applicability of CircGen to scenarios where speed is more important
than assurance, we also implement some (yet unverified) global
post-processing optimizations that make CircGen a good alternative
to CBMC-GC for high-speed applications.

Our work delivers several generic building blocks (the Boolean
circuit compiler, a verified implementation of oblivious transfer, . . . )
that can be reused by many other verified cryptographic systems.
However, the main strength of our results resides in the fact that,
for the first time, we are able to produce a joining of high-assurance
cryptography and cryptography engineering that covers all the
layers in a (passively) secure multiparty computation software
framework.

Challenges. The development of the software stack raised several
challenges, which we now highlight.

Machine-checked proofs of computational security. EasyCrypt [7,
9] is an interactive proof assistant with dedicated support to per-
form game-based cryptographic proofs. It has been used for several
emblematic examples, including signatures and encryption schemes.
Formalizing the proof of security for our SFE protocol in EasyCrypt
involved formalizing two generic proof techniques that had not pre-
viously been considered: hybrid arguments and simulation-based
security proofs.

6
http://forsyte.at/software/cbmc-gc/
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In contrast to other standard techniques, which remain within
the realm of the relational program logic that forms the core of
EasyCrypt (i.e., it is used to verify transitions between successive
games), hybrid arguments and simulation-based proofs lie at the in-
terface between this relational program logic and the higher-order
logic of EasyCrypt in which security statements are expressed and
proved. Specifically, hybrid arguments combine induction proofs
and proofs in the relational program logic. Similarly, simulation-
based security proofs intrinsically require existential quantification
over adversarial algorithms and the ability to instantiate security
models with concrete algorithms (the simulators) that serve as wit-
nesses as to the validity of the security claims. These two forms
of reasoning excercise the expressive power of EasyCrypt’s ambi-
ent logic, and are thus markedly distinct from the simple security
arguments typically addressed by other similar tools like Cryp-
toVerif [19]. Secure function evaluation is also a challenging test
case in terms of its scale. Indeed, EasyCrypt had so far been used
primarily for primitives and to a lesser extent for (components) of
protocols. While these examples can be intricate to verify, there is a
difference of scale with more complex cryptographic systems, such
as SFE, which involve several layers of cryptographic constructions.

Realizing our broader goal required several improvements to
the EasyCrypt tool. In particular, the complexity and scale of the
proof developed here guided several aspects of EasyCrypt’s devel-
opment to support compositional simulation-based proofs, and the
aim of producing executable code from machine-checked specifica-
tions served as initial motivation for EasyCrypt’s code extraction
mechanism. We contribute a generic formalization of hybrid argu-
ments that has since been included in EasyCrypt’s library of game
transformations.

High-assurance and high-speed implementations. Our implemen-
tation of Yao’s protocol can be thought of as a secure virtual ma-
chine for securely executing arbitrary computations. The challenge
is therefore dual: in addition to a verified implementation of this
virtual machine of sorts, one needs to generate correct and efficient
computation descriptions in a format that can be executed in this
virtual computational platform (in this case Boolean circuits). Gen-
erating such circuit representations by hand is not realistic, and
appropriate tool support is critical if widespread practical adop-
tion is the goal. The requirement of end-to-end verification fur-
ther imposes that compilation into circuits must itself be verified.
CircGen fills this gap from both a high-assurance cryptography
perspective—verified outputs incur a small performance penalty—
and a cryptographic engineering perspective—it supports unverified
optimizations for speed-critical applications.

Highlights of our technical contributions at this level include:
(1) the addition of a loop unrolling transformation to the CompCert
middle-end that permits converting those programs that can be
expressed as circuits into a loop-free form; (2) new intermediate
languages in CompCert with corresponding transformations se-
mantics preservation theorems that permit converting loop-free
programs gradually into a circuit representation—this includes a
new domain-specific transformation into Static Single Assignment
(SSA) form; and (3) the formalization of a new target language that
captures the semantics of Boolean circuits and permits stating and

proving a semantics preservation theorem relating the I/O behavior
of an input C program to that of a generated circuit.

Access to the development. The EasyCrypt formalisation of
Yao’s protocol, as well as its extracted code, can be found at https:
//ci.easycrypt.info/easycrypt-projects/yao. The code for CircGen
can be found at https://github.com/haslab/circgen.

Structure of the paper. In Section 2 we describe the EasyCrypt
formalization and the verified implementation of Yao’s protocol. In
Section 3 we present CircGen, our certified Boolean circuit compiler.
In each of these sections, we give micro-benchmarks for the related
software component. We then present an overall performance eval-
uation of the software stack in Section 4. In Section 5 we discuss
related work, before making some concluding remarks in Section 6.

Limitations. Our approach covers a comfortable subset of C, but
some features are excluded (see Table 2); some of these features
will be added in future work, while others are traditionally out of
reach for SFE. Moreover, some low-level optimizations have not
yet been verified; however, our experiments show that the verified
version of the compiler is already surprisingly close to the optimized
version for most examples. Finally, our Trusted Computing Base
includes the FRESCO platform, Cryptokit (used to instantiate the
hash function) and justGarble (used to instantiate the PRF); the
formal verification of these components is out of scope of this
work.

2 VERIFIED SFE IMPLEMENTATION
We first give an overview of what we prove in EasyCrypt, relating
this to established results in the field of cryptography. We do not go
into the details of the (publicly available) formalization but include
in Appendix A an example-driven presentation of its highlights. The
formalization is available online and the various files that compose
it can be easily matched to the building blocks in the high-level
description we give here. At the end of the section we describe
how we obtain our verified implementation from the EasyCrypt
formalization.

Yao’s protocol in a nutshell. Yao’s protocol is based on the
concept of garbled circuits. Informally, the idea of garbling a circuit
computing f consists of: i. expressing the circuit as a set of truth
tables (one for each gate) and meta information describing the
wiring between gates; ii. replacing the actual Boolean values in
the truth tables with random cryptographic keys, called labels; and
iii. translating the wiring relations using a system of locks: truth
tables are encrypted one label at a time so that, for each possible
combination of the input wires, the corresponding labels are used
as encryption keys that lock the label for the correct Boolean value
at the output of that gate. Then, given a garbled circuit for f and
a set of labels representing (unknown) values for the input wires
encoding x1 and x2, one can obliviously evaluate the circuit by
sequentially computing one gate after another: given the labels of
the input wires to a gate, only one entry in the corresponding truth
table will be decryptable, revealing the label of the output wire. The
output of the circuit will comprise the labels at the output wires of
the output gates.
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Figure 2: Yao’s protocol security proof by BHR [12].

To build a SFE protocol between two honest-but-curious parties,
one can use Yao’s garbled circuits as follows. Bob (holding x2)
garbles the circuit and provides this to Alice (holding x1) along
with: i. the label assignment for the input wires corresponding to
x2, and ii. all the information required to decode the Boolean values
of the output wires. In order for Alice to be able to evaluate the
circuit, she should be able to obtain the correct label assignment for
x1. Obviously, Alice cannot reveal x1 to Bob, as this would violate
the input-privacy goals of SFE. Also, Bob cannot reveal information
that would allow Alice to encode anything other than x1, since
this would reveal more than f (x1,x2). To solve this problem, Yao
proposed the use of an oblivious transfer (OT) protocol. This is a
(lower-level) SFE protocol for a very simple functionality that allows
Alice to obtain the labels that encode x1 from Bob, without revealing
anything about x1 and learning nothing more than the labels she
requires.7 The protocol is completed by Alice evaluating the circuit,
recovering the output, and providing the output value back to Bob.
Excellent descriptions of Yao’s SFE protocol with slightly different
security proofs can be found in [12, 44].

A modular proof of security. Our starting point for producing a
formally verified implementation of Yao’s protocol is to transpose
to EasyCrypt the modular security proof by Bellare, Hoang and
Rogaway [12] (BHR). The central component in this proof is a new
abstraction called a garbling scheme that captures the functionality
and security properties of the circuit garbling technique that is
central to Yao’s SFE protocol. This new abstraction was used by
BHR to make precise the different security notions that could apply
to this garbling step. This permits separating the design and analysis
of efficient garbling schemes from higher level protocols, whichmay
rely on different security properties of the garbling component.8

Figure 2 shows the structure of the proof of security for Yao’s
protocol given in [12] (we focus only on the result that is relevant
for this paper). We depict constructions as rectangles with grey
captions and primitives (i.e., cryptographic abstractions with a well-
defined syntax and security model) as rounded rectangles with
black captions. Security proofs are represented by dashed arrows
and implications between notions as solid arrows. A construction
enclosing a primitive in the diagram indicates that the primitive is
used as an abstract building block in its security proof. For example,
arrow (1) indicates that the first step in the proof is the construction
of a dual key cipher (DKC) using a standard PRF security assumption
via a construction that we call dual masking. The same primitive
is also constructed from an ideal cipher via the double encryption
construction.
7Luckily, efficient protocols for the OT functionality exist, thereby eliminating what
could otherwise be a circular dependency.
8Garbled circuits are used in Yao’s SFE protocol, but have found many other applica-
tions in cryptography.

A DKC is a tweakable deterministic encryption scheme that can
be used to lock secret keys (corresponding to gate output wire
labels) and is keyed by two other independent keys (corresponding
to gate input wire labels). Informally, the dual masking construction
applies two masks to the encrypted key, computed as PRFKi (T ) for
i = 1, 2, where T is the tweak. The DKC security model is designed
in an ad hoc way to be just strong enough for constructing garbling
schemes from a wide range of assumptions, including interesting
instantiations such as double encryption. DKC security is a real-
or-random notion, where the attacker has an unbounded number
of keys to choose from, both for posing as encryption keys and
as encrypted keys. One of these secret keys is singled out as the
challenge secret key, and it can never be encrypted nor revealed
to the attacker (who may see all the other keys). The model also
captures the fact that it is convenient to leak the least significant
bit of such keys in order to encode the topology of a circuit.

The second step in the proof (2) is to construct a garbling scheme
from a (DKC). There are two security definitions for garbling schemes:
indistinguishability-based (IND) and simulation-based (SIM). The
former is used as a stepping stone (hence its dashed presentation
in the diagram) to proving SIM-security. Indeed, the two notions
are proven to be equivalent for certain classes of garbling schemes
(this is shown as step 3 in the diagram). Proving that a concrete
construction called Garble1 achieves IND security is the most chal-
lenging part of the proof: it involves a hybrid argument over those
wires in the circuit that are not visible to an attacker (the security
model allows the attacker to observe the opening of the circuit for
one concrete input).

The final step (4) in the proof is to show that Yao’s technique
of combining an oblivious transfer protocol— two-party passively
(2PPP) secure—with a SIM-secure garbling scheme yields a 2PPP se-
cure SFE protocol. This step consists of a game-based argument with
two relatively simple transitions, but involving simulation-based
definitions and combined universal and existential quantifications
over adversarial algorithms.

Our Proof.We show in Figure 3 the structure of our EasyCrypt
formalization. It is visible in the figure that the main structure of
the proof, steps 1-4 are very close to the original proof of [12]. The
only deviation here is that we simplify the Dual Key Cipher security
game to a slightly stronger variant that is still satisfied by the dual
masking instantiation, but which has an internal structure that
makes the proof of security of the garbling scheme significantly
easier. Intuitively, the difference is that one imposes that the tweak
effectively makes encryptions of the same value indistinguishable
from each other. This excludes some secure DKC instantiations that
we do not consider in this paper. To further simplify our proofs,
our DKC security definition is also parametrized by two integer
parameters c and pos. The first parameter provides an upper-bound
on the number of keys in the game, so that they can all be sampled
at the beginning of the security experiment. The second parameter
specifies an index in the range [1..c] that will be used in oracle
queries as the index for the hidden secret key.

Figure 3 also shows three additional proof steps (5, 7 and 8, shown
in blue). These correspond to instantiation (i.e., restricted forms of
composition) steps that are often implicit in hand-written crypto-
graphic proofs. For example, suppose construction CP2

1 is proven
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Figure 3: Structure of our verified security proof of an im-
plementation of Yao’s protocol.

to be a valid instantiation for primitive P1 under the assumption
that instantiations for abstract primitive P2 exist. Suppose also that
construction CP3

2 is proven to be a valid instantiation of primitive
P2, assuming the existence of a valid instantiation for (lower level)
primitive P3. Then, this implies thatCC2

1 is also a valid instantiation
of P1 under assumption P3.

Such steps are critical in making our main Theorem (Theorem 2.1
below) apply to a concrete and efficient implementation of Yao’s
protocol that can readily be extracted in to OCaml code from its
EasyCrypt description. To obtain such a result our formalization
needs to explicitly include theorems that instantiate abstract secu-
rity results into concrete security bounds for the implementation.
More precisely, one needs to prove i. that the implementation is
functionally equivalent to the composition of a concrete oblivious
transfer and garbling schemes; and ii. that this implies that the secu-
rity bound for the generic SFE security theorem (4 in the figure) can
be instantiated into a concrete overall bound by plugging in secu-
rity bounds obtained by instantiating all intermediate results all the
way down to the PRF, DDH and entropy smoothing assumptions.

EasyCrypt enables formalizing both the complex abstract secu-
rity proofs and the instantiation steps (with very little overhead
in the case of the latter). The main theorem in our formalization
states the following, for any upper bound c on the total number of
wires in the circuit and any upper bound n on the number of input
wires in the circuit.

Theorem 2.1. For all SFE adversaries A against the EasyCrypt
implementation Impl of Yao’s protocol, there exist efficient simulator S
and adversaries BDDH, BES and Bi

PRF
for i ∈ [1..c], such that:

Adv
SFE

Impl,S (A) ≤ c · εPRF + n · Adv
DDH (BDDH) + n · Adv

ES (BES)

where εPRF = max1≤i≤c (Adv(Bi
PRF

)), and Adv
PRF, AdvDDH and

Adv
ES represent the advantages against the PRF, the Diffie-Hellman

group and entropy smoothing hash function used as primitives.

Using Generic Lemmas. In Cryptography, it is common to repeat
proof techniques in different proofs or even inside the same proof.
As a side contribution of our work, we formalize a generic hybrid
argument that is included as part of EasyCrypt’s library of veri-
fied transformations. The objective of this library is to formalize
often-used proof techniques once and for all, enabling the user to
perform proofs “by a hybrid argument”, or “by eager sampling”,
whilst formally checking that all side conditions are fulfilled at the
time the lemma is applied.

We now describe the generic hybrid argument.

type input, output, inleaks, outleaks.

module type Orcl = { proc o(_:input) : output }.

module type Orclb = {

proc leaks(_:inleaks): outleaks

proc oL (_:input) : output
proc oR (_:input) : output

}.

module type AdvHy (Ob :Orclb , O:Orcl) = {

proc main () : bool
}.

module Ln (Ob :Orclb , A:Adv
Hy

) = {

module O: Orcl = {

(∗ increment C.c and call Ob .oL ∗)
}

module A ' = A(Ob , O);
proc main () : bool = {

C.c = 0; return A '.main();
}

}.

module Rn (Ob :Orclb , A:Adv) = {

(∗ Same as Ln but use Ob .oR ∗)
}.

op q : int.

module B(A:Adv
Hy

, Ob :Orclb, O:Orcl) = {

module LR = {

var l, l0 : int
proc orcl(m:input):output = {

var r : output;
if (l0 < l) r = Ob .oL (m);

else if (l0 = l) r = O.orcl(m);

else r = Ob .oR (m);

l = l + 1; return r;

}

}

module A ' = A(Ob ,LR)
proc main():outputA = {

var r:outputA;
LRB.l0 ←$

[0..q−1]; LRB.l = 0;

return A '.main();
}

}.

lemma Hybrid: ∀ (Ob :Orclb {C,B}) (A:Adv
Hy

{C,B,Ob }),
Pr[Ln(Ob ,A): res∧ C.c ≤ n] − Pr[Rn(Ob ,A): res∧ C.c ≤ n] =

q ∗ (Pr[Ln(Ob ,B(A)): res∧ B.l ≤ n ∧ C.c ≤ 1] −

Pr[Rn(Ob ,B(A)): res∧ B.l ≤ n ∧ C.c ≤ 1]).

Figure 4: Hybrid argument lemma.

As described in Figure 4, consider an adversary parameterized
by two modules. The first parameter Ob , implementing the module
type Orclb , provides a leakage oracle, a left oracle oL and right oR .
The second parameter O, implementing module type Orcl, provides
a single oracle o. The goal of an adversary implementing typeAdvHy
is to guess, in at most n queries to O.o, if it is implementing the left
oracle Ob .oL or the right oracle Ob .oR . To express the advantage of
such an adversary, we write two modules: the first one, Ln , defines
a game where the adversary is called with O.o equal to Ob .oL , the
second one, Rn , usesOb .oR instead. Both Ln and Rn use a variableC.c
to count the number of queries made to their oracle by the adversary.
We define the advantage of an adversaryA in distinguishing Ob .oL
from Ob .oR as the difference of the probability of games Ln (Ob ,A)

and Rn (Ob ,A) returning 0. Given any distinguishing adversary A,
we construct a distinguishing adversary B that may use A but
always makes at most one query to oracle O.o.

The Hybrid lemma relates the advantages of any adversary A
with the advantage of its constructed adversaryB whenA is known
to make at most q queries to O.o. Note that the validity of the
Hybrid lemma is restricted to adversaries that do not have a direct
access to the counter C.c, or to the memories of B and Ob ; this
is denoted by the notation Adv

Hy
{C,B,Ob } in the EasyCrypt code.

Other lemmas shown in this paper also have such restrictions in
their formalizations, but they are as expected (that is, they simply
enforce a strict separation of the various protocols’, simulators’
and adversaries’ memory spaces) and we omit them for clarity.
The construction of B is generic in the underlying adversary A,
which can remain completely abstract. We underline that, for all
A implementing module type AdvHy, the partially-applied module
B (A) implements AdvHy as well and can therefore be plugged
in anywhere a module of type AdvHy is expected. This ability to
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generically construct over abstract schemes or adversaries is central
to handling modularity in EasyCrypt.

Finally, we observe that the Hybrid lemma applies even to an
adversary that may place queries to the individual Ob .oL and Ob .oR
oracles. It is of course applicable (and is in fact often applied) to
adversaries that do not place such queries.

An application example of the generic hybrid argument is our
proof of security of the oblivious transfer protocol. In Figure 5, we
describe the concrete two-party OT protocol in a purely functional
manner, making explicit local state shared between the various
stages of each party. For example, step1 outputs the sender’s local
state sts , later used by step3.

op step1 (m :(msg ∗ msg) array) (r:int array ∗ G) =
let (c ,hkey) = r in

let sts = (m ,дc ,hkey) in
let m1 = (hkey,дc ) in
(sts ,m1).

op step2 (b :bool array) (r :G array) m1 =

let (hkey,gc) = m1 in

let stc = (b ,hkey,r) in
letm2 = if b then gc / дr else дr in

(stc ,m2).

op step3 sts (r:G)m2 =

let (m ,gc ,hkey) = sts in

let e = (H(hkey,m2r) ⊕ m0 ,
H(hkey,(gc/m2)r) ⊕ m1) in

let m3 = (дr ,e) in
m3 .

op finalize stc m3 =

let (b ,hkey,x) = stc in

let (gr ,e) = m3 in

let res = H(hkey,grx ) ⊕ eb in

res.

clone OTProt as SomeOT with
type rand1 = G array,
type rand2 = (G array ∗ G) ∗ G,
op prot (b :input1) (rc :rand1) (m :input2) (rs :rand2) =
let (sts ,m1) = step1m (fst rs ) in
let (stc ,m2) = step2 b rc m1 in

let m3 = step3 sts (snd rs )m2 in

let res = finalize stc m3 in

let conv = (m1 ,m2 ,m3) in
(conv,(res,())).

Figure 5: A Concrete Oblivious Transfer Protocol.

We prove this protocol secure in the standard model via a reduc-
tion to the decisional Diffie-Hellman assumption and an entropy-
smoothing assumption on the hash function. We let AdvDDH (A)

and Adv
ES (A) be the advantage of an adversary A breaking the

DDH and the Entropy Smoothing assumptions, respectively.

Theorem 2.2 (OT-security of SomeOT). For all i ∈ {1, 2} and
OTi adversary Ai of type AdvOTi against the SomeOT protocol, we
can construct two efficient adversariesDDDH andDES, and a efficient
simulator S such that

Adv
OTi
SomeOT,S

(Ai ) ≤ n · AdvDDH (DDDH) + n · AdvES (DES).

In the proof of Theorem 2.2, both reductions first go to n-ary
versions of the DDH and Entropy-Smoothing hypotheses before
reducing these further to standard assumptions using the generic
hybrid argument lemma.

Extraction and Micro Benchmarks. Our verified implementa-
tion of Yao’s protocol is obtained via the extraction mechanism
included in recent versions of EasyCrypt. The only exceptions to
this are the low-level operations left abstract in the formalisation,
namely: i. abstract core libraries for randomness generation, the
cyclic group algebraic structure, a PRF relying on AES and the
entropy-smoothing hash of SomeOT. These are implemented using

Table 1: Timings (ms): P1 and P2 denote the parties, S1 and
S2 the SFE protocol stage; TTime denotes total time, OT the
time for OT computation, GT the garbling time and ET the
evaluation time.

Circuit NGatesTTimeP2 S1 GTP2 S1 OTP1 S1 OTP2 S2 OTP1 S2 OTP1 S2 ET

COMP32 301 272 1 54 53 109 53 0.3

ADD32 408 275 1 55 54 112 53 0.5

ADD64 824 545 3 109 107 217 106 1

MUL32 12438 329 44 98 54 111 54 10

AES 33744 1233 118 345 216 435 215 24

SHA1 106761 2638 349 780 431 868 430 77

the CryptoKit library;9 and ii. a wrapper that handles parameter
passing (circuits, messages and input/output) and calls the extracted
SFE code. We fix the bound c on circuit sizes to be the largest OCaml
integer (2k-1- 1 on a k-bit machine) allowing us to represent cir-
cuits without having to use arbitrary precision arithmetic whilst
remaining large enough to encode all practical circuits. We use this
same value to instantiate n.

We conclude this section with microbenchmarking results focus-
ing only on the extracted OCaml implementation. Our results show
that, whilst being slower than (unverified) optimized implementa-
tions of SFE that use similar cryptographic techniques [11, 35, 40,
56], the performance of the extracted program is compatible with
real-world deployment, providing evidence that the (unavoidable)
overhead implied by our code extraction approach is not prohibi-
tive. The overhead of our solution is not intrinsic to the verification
and extraction methodology. Indeed, the more modern (unverified)
implementations showing significant improvements rely on either
cryptographic optimizations [35] or on new SFE protocols [56].
Moreover, although these changes have implications on the se-
curity proofs, these can be addressed using the same techniques
presented here to obtain a verified implementation that benefits
from these recent cryptographic advances.

In addition to the overall execution time of the SFE protocol
and the splitting of the processing load between the two involved
parties, we also measure various speed parameters that permit
determining the weight of the underlying components: the time
spent in executing the OT protocol, and the garbling and evaluation
speeds for the garbling scheme. Our measured execution times do
not include serialization and communication overheads nor do they
include the time to sample the randomness, all of which we account
for in Section 4.

Our measurements are conducted over circuits made publicly
available by the cryptography group at the University of Bristol,10
precisely for the purpose of enabling the testing and benchmarking
of multiparty-computation and homomorphic encryption imple-
mentations. A simple conversion of the circuit format is carried out
to ensure that the representation matches the conventions adopted
in the formalization. We run our experiments on an x86-64 Intel
Core i5 clocked at 2.4 GHz with 256KB L2 cache per core. The ex-
tracted code and parser are compiled with ocamlopt version 4.02.3.
The tests are run in isolation, using the OCamlSys.time operator
for time readings. We run tests in batches of 100 runs each, noting
the median of the times recorded in the runs.

9See http://forge.ocamlcore.org/projects/cryptokit/

10
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
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A subset of our results is presented in Table 1, for circuitsCOMP32

(32-bit signed number less-than comparison), ADD32 (32-bit num-
ber addition), ADD64 (64-bit number addition),MUL32 (32-bit num-
ber multiplication), AES (AES block cipher), SHA1 (SHA-1 hash al-
gorithm). The semantics of the evaluation of the arithmetic circuits
is that each party holds one of the operands. In the AES evaluation
we have that P1 holds the 128-bit input block, whereas P2 holds
the 128-bit secret key. Finally, in the SHA1 example we model the
(perhaps artificial) scenario where each party holds half of a 512-bit
input string. We present the number of gates for each circuit as well
as the execution times in milliseconds. A rough comparison with
results for unverified implementations of the same protocol such
as, say, that in [40] where an execution of the AES circuit takes
roughly 1.6 seconds (albeit including communications overhead and
randomness generation time), allows us to conclude that real-world
applications are within the reach of the implementations our ap-
proach generates. Furthermore, additional optimization effort can
lead to significant performance gains, e.g., by resorting to hardware
support for low-level cryptographic implementations as in [11, 56],
or implementing garbled-circuit optimizations such as those al-
lowed by XOR gates or component based garbled-circuits [35, 42].
Indeed, we do not aim or claim to produce the fastest implemen-
tation of Yao’s protocol, but simply to demonstrate that the new
formal verification techniques that we introduce open the way to
verifying a whole new class of provable security arguments, where
modularity, abstraction, and composition (e.g., hybrid arguments)
mechanisms are essential to dealing with scale and complexity.

3 CERTIFIED BOOLEAN CIRCUIT COMPILER
In this section we describe a new certified compiler called CircGen
that can convert (a large subset of) C programs into Boolean circuit
descriptions. This is a self-contained, standalone tool that can be
used in arbitrary contexts where computation needs to be specified
as Boolean circuits. By a certified compiler we mean a compiler that
is coupled with a formal proof asserting that the semantics of the
source program is preserved through the compilation process. In
other words, whenever the source program exhibits a well-defined
behavior on some input, the behavior of the target program will
match it. The tool is based on the CompCert certified compiler [43],
ensuring the adoption of a widely accepted formal semantics for
the C language.

Relevant CompCert features. CompCert is in fact a family of
compilers for implementations of the C programming language
for various architectures (PowerPC, ARM, x86). It is moderately
optimizing, sometimes compared to GCC at optimization level 1
or 2. It is formally verified: the semantics of the programming lan-
guages involved in the compiler (in particular C and the assembly
languages) are formally specified; and correctness theorems are
proved. The correctness of a compiler is stated as a behavior inclu-
sion property: each possible behavior of the target program is a
possible behavior of the source program. A behavior of a program is
a (maybe infinite) sequence of events that describe the interactions
of the program with its environment. For the current prototype we
have adapted the 2.5 distribution of CompCert.11

11
http://compcert.inria.fr/

Figure 6: Architecture of the certified compiler CircGen

3.1 CircGen architecture
The meaning of a C program is normally specified as a set of traces
that captures the interactions with the execution environment trig-
gered by the execution of the program (I/O of data, calls to the
operating system, . . . ). In order to match it with the behavior of
evaluating a Boolean circuit, we need to be somewhat more strict
on the semantics of programs and, consequently, on the class of
programs deemed acceptable to be translated by the tool. The over-
arching assumption underlying CircGen is that the input C program
is coupled with a specification of two memory regions (an input
region and an output region) and that we are able to identify the
meaning of the C program with a Boolean function acting on those
memory regions. The tool should then generate a circuit imple-
menting that specific Boolean function, thus capturing the meaning
of the source program.

The CircGen architecture is shown in Figure 6. It is split in two
components: i. the front-end, whose task is to convert the source
program into an intermediate language that has been tailored to
already admit a Boolean circuit interpretation; and ii. the back-
end, that formalises the intended Boolean circuit interpretation of
programs, and carries out the (certified) transformations up to an
explicit Boolean circuit. In other words, the front-end will reject
programs for which it cannot determine that there exists a valid
Boolean circuit interpretation; whereas the back-end will make
explicit the Boolean circuit interpretation.

The front-end follows closely the first few compilation passes of
CompCert, adapting and extending it to meet the specific require-
ments imposed by our domain. We develop and verify the back-end
from scratch.

3.2 C features/usage restrictions
The driving goal in our design is to let the programmer use most of
the C language constructs (memory, functions, control structures
such as loops and conditional branches, . . . ) that are convenient to
program complex, large circuits. However, in our presentation we
will use a very simple running example. The circuit that compares
its two inputs to decide which is the largest can be described by
the C program shown in Figure 7 (function millionaires). In order
to be correctly handled by the compiler, the program specifying
the circuit must be wrapped in a main function that declares what
are the inputs and the outputs of the circuit. The declaration of
inputs and outputs also allows us to state the correctness of the
compiler; intuitively, the trace of this program will include the
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Table 2: CircGen features/restrictions

Features

Recursion ×

GOTO’s ×

Dynamic memory ×

Static memory ✓
Loop unfolding ✓
Integer computations ✓
Non-integer computation ×

incoming inputs and the outgoing outputs of the produced circuit.
The dedicated header file provides convenient macros. Note that
boolean circuits produced by our compiler are “party-agnostic”. In
the workflow, one specifies which input bits correspond to each
party only when providing the circuit to underlying frameworks.

#include "circgen.h"

int millionaires(int x, int y) {

if (x < y) return 1;

else return 0;

}

int main(void) {

static int a, b, result;

AddInput(a);

AddInput(b);

BeginCirc();

result = millionaires(a, b);

EndCirc();

AddOutput(result);

return 0;

}

Figure 7: Example C program

Assumptions on Input Programs. We start by enumerating natu-
ral high-level restrictions imposed on input programs: i. the pro-
gram must consist of a single compilation unit; ii. input and output
memory regions must be properly identified; iii. any feature that
produces observable events under CompCert’s semantics is disal-
lowed (e.g. volatile memory accesses; external calls; inline assembly;
etc); and iv. so far, only integral types are allowed. A summary of
the most relevant features and restrictions of CircGen can be found
in Table 2. The fragment of C that we support is aligned with
similar tools. Most of the limitations at this level are inherent to
the problem of describing programs as (relatively small) Boolean
circuits.

Functions. The source C program can be structured in different
functions, but the tool will force all function calls to be inlined
(independently of the presence of the inline keyword in function
headers). As a consequence, we exclude any form of recursion in
source programs (either direct or indirect). In practical terms, we
adapt the function inlining pass of CompCert, which refuses to
inline any kind of recursive function (each time it inlines a function
f, it removes f from the context). Therefore, this restriction amounts
to enforcing that, after inlining, the program entry point does not
include function calls.

Control structure and termination. In order to extract a
Boolean function from a C program we need to enforce termination
on all possible inputs. Since recursion has already been excluded,
possible non-terminating behavior can only be caused by C loop
statements or unstructured use of gotos. For loops, we consider a

main() {

x18 = volatile load int8u(&__circgen_io)

int8u[a] = x18

x18 = volatile load int8u(&__circgen_io)

int8u[a + 1] = x18

. . .
int8u[b + 3] = x335

x9 = __circgen_fence()

–: x7 = int32[a]

x8 = int32[b]

if (x7 <s x8) goto 14 else goto 13

14: x332 = 1; goto 12 13: x332 = 0

12: int32[result] = x332

x6 = __circgen_fence()

x329 = int8u[result]

_ = volatile store int8u(&__circgen_io, x329)

. . .
x323 = int8u[result + 3]

_ = volatile store int8u(&__circgen_io, x323)

x2 = 0

return x2

}

Figure 8: Front-end RTL output

specific compiler pass that attempts to remove them by a suitable
number of unfoldings (detailed below). We choose not to support
gotos in the tool; in particular, any attempt to build a loop using
gotos will cause the program to be rejected.

Variables and memory. During the conversion of C programs
into Boolean circuits, variables need to be converted into wires
connecting gates. Specifically, each live range of a variable gives
rise to a set of wires (with the number of wires matching the number
of bits stored in the variable)—writing to a variable means that the
wires corresponding to that variable originate in the output ports of
some gate that produces the value to be stored; and reading from a
variable means that the associated wires are connected to the input
wires of some gate that is consuming the variable value to perform
an operation. Memory accesses to fixed locations behave (in this
respect) similarly to variables: a store and load to a fixed location
correspond to a write and read of a specific variable, respectively.

Memory accesses can, however, be subtler when the location of
the access (address) depends on additional data, as in the case of
indexed memory accesses (e.g., array operations). When reading
from such a composite address, one is led to a selection of specific
wires from a much larger pool of wires, which amounts to a multi-
plexing operation in Boolean circuit jargon. Conversely, storing to
an indexed address is akin to a demultiplexer gate. The problem lies
in the fact that these (meta-)gates are very expensive if built from
elementary logic operations, leading to exponential circuit sizes on
the number of selection bits. This clearly makes unrestricted (32-bit)
indices out of reach, leading to the necessity of adopting a strategy
to bound them to reasonable limits. We therefore exclude any form
of dynamic memory allocation (both in the heap and in the stack)
and consider only programs that i. allocate memory statically; and
ii. for which memory usage is determined at compile-time.

3.3 Front-end compiler passes
The front-end of CompCert, for the most part unchanged, is used
to parse, unroll loops, inline functions, and perform general opti-
mizations at the Register Transfer Language (RTL) level (constant
propagation, common subexpression elimination, and redundancy
elimination). The RTL intermediate representation produced by the
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front-end for the example input program of Figure 7 is given in
Figure 8. We can observe that, because of inlining, only the main
function is left. It starts with a sequence of volatile loads that take
the circuit inputs from the environment into the designated global
variables, one octet at a time. Then, following the code of the circuit
(between the lines marked ‘–’ and ‘12’, in red on the Figure), comes
a final sequence of volatile stores that sends the circuit outputs
to the environment, one octet at a time. These three sections of
the RTL program are delimited by dummy external calls (to __circ-

gen_fence); they block any optimization across these boundaries that
could prevent the correct recognition of inputs and outputs in the
next compilation pass.

Loop unroll. The loop-elimination pass is split into two elemen-
tary transformations: i. one that unrolls the loop by an arbitrary
number of iterations, but leaves the loop unchanged at the end; and
ii. one that establishes that the loop kept after all the unrollings
is indeed redundant (i.e., that it is unreachable). By doing this, we
simplify significantly the semantic preservation proof, since the
first transformation follows directly from the operational semantics
of loops and is always sound, independently of the number of un-
rolls. The second transformation can be seen as a specific instance
of dead-code elimination.

We implement the first transformation as a new compiler pass in
CompCert and prove its semantic preservation theorem. This pass
is performed at the Cminor intermediate language since it has a
unified treatment for all C loop constructors, but still retains enough
structure in the loops to support a simple semantic preservation
proof. The number of unfolds for each loop is received by the tool
as external advice. For the second transformation we rely on the
pre-existing dead code elimination pass of CompCert to remove the
remaining loops that are kept after the unfolds. Note that dead code
elimination is performed after loop unrolling, function inlining and
constant propagation passes, which ensures that loops with simple
control structure are successfully eliminated as dead-code (provided
that sufficient large unroll estimates are given at the loop unroll
pass; otherwise compilation will fail). To make this transformation
more effective, we had to slightly improve the abstract domain
used in CompCert’s value analysis to improve the accuracy of the
constant-propagation pass.

3.4 Back-End compiler passes

RTL Circuits. The first intermediate language of the back-end is
a variant of RTL that we have called RTLC (RTL Circuits). The
language is itself very similar to RTL, with the exception that the
control-flow is enforced by conditional execution. Specifically, each
conditional test is assigned to a propositional variable. These propo-
sitional variables are then used to build path-condition formulas
that are assigned to each instruction; the execution of each instruc-
tion is conditioned on the validity of a path condition that encodes
the combination of branches that can possibly lead to it. Note that
RTLC retains all the memory accesses from RTL, that is, writes and
reads to and from global variables and stack data.

The semantics of RTLC is sequential (each and every instruction
is evaluated following the order of appearance in the program), but
the execution of an instruction is guarded by the corresponding

INPUTS: a[0..3] b[0..3]

OUTPUTS: result[0..3]

x6 = int32[a] | T

x7 = int32[b] | T

test b14 = x6 <s x7 | T

x16 = 1 | b14

x16 = 0 | ¬b14

int32[result] = x16 | T

INPUTS: a[0..3] b[0..3]

OUTPUTS: result[0..3]

0: int32[a] |

1: int32[b] |

2: w0 <s w1 | T

3: 1 |

4: 0 |

5: (w2?w3:w4) |

6: int32[result] := w5 | T

Figure 9: Guarded instructions instead of control-flow (left)
and corresponding SSA conversion (right).

path condition. We have adopted Ordered-Reduced Binary Decision
Trees [23] as canonical representatives of path-conditions, where
nodes are tagged with propositional variables (branching points)
and leaves are Boolean values. Figure 9 (left) shows the test program
after the path-condition computation pass. Path-conditions are the
guards shown at the end of each line (propositional variables are
denoted by their index).

From RTL to RTLC. The translation from RTL to RTLC amounts
essentially to the computation of path-conditions for every instruc-
tion in the program. This computation is part of the RTL structural
validation that occurs as the final pass of the compiler front-end
component. This validation ensures that a Boolean circuit inter-
pretation can be assigned to the RTL program, making it ready to
be processed by the CircGen back-end. This is accomplished by a
traversal of the control-flow graph in topological order that: i. iden-
tifies boundaries of the three segments of the program (sequence of
inputs, body, and sequence of outputs); ii. checks that the body only
includes forward jumps; and iii. checks that it does not execute any
unsupported instruction (function call, volatile memory access, etc.).
Note that check ii. ensures that the control-flow graph is acyclic,
which in particular validates that every loop was discharged by the
redundancy elimination pass.

Path conditions for the instructions of the body are also con-
structed during this traversal by applying the following rules: i. ini-
tially, all instructions have the ⊥ path condition (unreachable in-
struction), except for the first instruction of the body that is assigned
the ⊤ path condition (unconditionally executed); ii. when a non-
branching instruction is visited, its path condition is propagated to
its successor (joining it with any previously computed path condi-
tion for that program point); and iii. when a branching instruction
(condition test) is visited, the corresponding propositional vari-
able (resp. its negation) is added to the path condition which gets
propagated to the then successor (resp. the else successor).

Constant Expansion. The guarded execution model of RTLC is
particularly well-suited to perform an optimization with significant
impact on the size of the resulting circuit for certain classes of C
programs: for some operations it is possible to determine that their
arguments will be constant once the execution path is fixed. For
those operations we expand the associated instruction into multiple
instances with constant arguments, and use the associated path-
conditions to differentiate between the paths. In our implementation
we have instrumented this optimization exclusively for memory
operations; the impact for algorithms that rely on array indexing
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1 : 64-wire INPUT

2 : 0-bit GLOBAL = []

3 : 32-bit GLOBAL = [0,0,0,0]

4 : 32-bit GLOBAL = [0,0,0,0]

5 : 32-bit GLOBAL = [0,0,0,0]

6 : selk(32,32,0)[32]← [(1,0..31)]

7 : id(32)[32]← [(6,0..31)]

8 : selk(32,32,0)[32]← [(1,32..63)]

9 : id(32)[32]← [(8,0..31)]

10: id(32)[32]← [(9,0..31)]

11: id(32)[32]← [(7,0..31)] 12 : slt32[1]← [(11,0..31);(10,0..31)]

13: const32(0)[32]← []

14: const32(1)[32]← []

15: guard(¬12)[1]← [(12,0)]

16: barrierN(32)[32]← [(15,0);(13,0..31)]

17: guard(12)[1]← [(12,0)]

18: barrierN(32)[32]← [(17,0);(14,0..31)]

19: xorN(32)[32]← [(16,0..31);(18,0..31)]

20: updk(32,32,0)[32]← [TT;(19,0..31);(5,0..31)]

OUTPUT = [(20,0..31)]

Figure 10: High-level circuit for the example program.

(e.g., sorting) is dramatic, as we show in the micro-benchmarking
that we present at the end of the section.

Static Single Assignment (SSA). Presenting RTLC programs in
Static Single Assignment form allows for a neat correspondence
between program variables (register variables in RTLC) and their
intended view as wire buses in a Boolean circuit. More importantly,
explicit information on the discrimination conditions for variable
aggregation performed at the control-flow join points (ϕ-nodes) is
easily accessible by looking at path-conditions from the incoming
nodes. Indeed, during the translation into SSA, we add a rich variant
of ϕ-nodes describing not only the variables that are merged in
the node, but also the conditions that discriminate between the
different incoming paths.

At this stage, we also take the opportunity to remove most of
the path-condition guards on instructions, replacing them with an
implicit ⊤ path-condition, but keeping those whose presence is
required by the semantic preservation result (namely, the guards
on tests and memory writes). This simplification is justified by:
i. the fact that SSA-form ensures enabled instructions never destroy
previously computed data; and ii. the fact that ϕ-nodes already
have explicit information on incoming condition guards. Figure 9
(right) illustrates the effect of the SSA pass on the running example.
The SSA property is enforced by the program syntax: registers are
named according to the line at which they are defined (e.g., w2
holds the value resulting from the evaluation of line 2).

High-Level Circuits.We call HLcirc a language describing Boolean
circuits with complex gates. This is the next intermediate language
used by the CircGen back-end. Each of these gates has a specified
number of input and output wires, and behaves in accordance with
a predefined Boolean function evalG : 2in → 2out. Circuits are
specified by a sequence (array) of wire-buses (sets of wires) that are
fed into and collected from these complex gates. Specifically, the
circuit description starts with a (nonempty) set of input wire-buses
that collectively constitute the input wires of the circuit. This is
followed by a topological description of the circuit, describing the
gates and how they connect to each other: each line in the program
specifies a wire-bus matching the out-arity of the gate. Inputs to the
gate are specified by connectors that select which wires from the

incoming bus are plugged to the gate’s input. An obvious topologi-
cal constraint is imposed: the connector for a gate can only refer
to wires appearing earlier in the circuit. Finally, we have a descrip-
tion of the outputs of the circuit (again, described by a connector).
Figure 10 presents a circuit description for the example program.

Handling of RTLC Memory Accesses. The main abstraction gap
between SSA-RTLC and HLcirc is the use of memory. Recall that
RTLC retains memory operations to access/update global variables
and data stored on the stack. Hence, the translation into high-level
circuits must keep track, at each program point, of whichwires store
the data for the relevant memory regions. To this end, we treat every
memory region as a pool of wires, initialized in accordance with
the original C program (lines 2-5 in Figure 10, which hold the initial
data of stack, a, b and result respectively). These initial pools are
possibly updated by input declarations (e.g. declaring a as an input
redirects its wires to some of the wires in entry 1 – the input wires of
the circuit). Read and store operations consist in either reading from
or replacing (some of the) wires in the bus. Concretely, we consider
four distinct gates to handle memory read/write operations, all
parameterized by the bit-width of the elements and the memory
region size:

• selk-w-n-k : takes n data wires and outputs the wires for aw-bit
word corresponding to the k-th element (k is a constant).

• sel-w-n: takes n data wires and log(n/w ) index wires and outputs
the wires for aw-bit word corresponding to the indexed element.

• updk-w-n-k : takes a condition guard (1 bit), n data wires andw
wires holding the value to store; it outputs the resulting n data
wires (updated at position k).

• upd-w-n: takes a condition guard, n data wires, w value wires,
and log(n/w ) index wires; it outputs the updated n data wires.

Note that updates are always guarded by a guard condition. In
fact, for memory writes, we retain the guarded sequential execution
semantics of RTLC. By lazily keeping guards at the update gates we
are able to later remove them with very small overhead (due to con-
stant propagation) and hence obtain much better generated circuits
(in terms of gate counts). Moreover, observe the distinction between
arbitrary and constant indexed variants of both operations—while,
in the former, the index is provided as an input to the gate, in the
latter the index is a (constant) parameter. The reason for the distinc-
tion is the huge difference between the gate-complexity of those
variants, since constant-index operations amount essentially to a
simple rewiring, while the arbitrary indices impose heavy decoding
and multiplexing operations. This is indeed the main motivation for
the constant-expansion pass mentioned earlier: memory accesses
constitute the best example where the impact of unfolding constant
alternatives can be significant.

Reg-to-Wire Mapping and ϕ-node Placement. To finalize the
translation from SSA-RTLC to HLcirc it now suffices to associate
to each RTLC variable the correct number of wires and to insert
explicit code to resolve ϕ-nodes. This transformation is justified
via the facts that i. the SSA form ensures no cyclic dependencies in
the wire definitions; and ii. that the explicit guards provided with
ϕ-nodes naturally lead to aw-bit multiplexer (w being the bit-width
of joined variables). This is clearly noted in lines 15–19 of Figure 10.
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Circuit generation. From a high-level circuit, the CircGen back-
end generates a Boolean circuit by obtaining instantiations of the
high-level complex gates used in the HLcirc language from an ex-
ternal oracle, and expanding the entire circuit into Boolean gates.
This external oracle is part of the trusted base of CircGen. If this
is constructed using formally verified instantiations—for example
one can have a formally verified library of Boolean circuits for all C
native operations— then our semantic preservation theorem states
that the generated circuit is correct with respect to the input C
program. In our implementation, the high-level gate instantiation
oracle produces optimized gates, tailored for multiparty computa-
tion applications similar to those used by CBMC-GC, and which we
assume to be correct down to extensive testing. Formally verifying
the implementations of these gates can be done, e.g., by using the
approach in [58]. We leave this for future work.

Unverified optimizations. During the gate expansion, we have
implemented some straightforward circuit minimization techniques,
such as memoization to reuse previously computed gates and the
removal of entries not contributing to the output. These global opti-
mizations are (for now) unverified, and so we report benchmarking
results both when they are turned on and off. When we refer to
optimized CircGen we mean that these optimizations are turned
on, and so the semantics preservation proof does not cover the
results. When we refer simply to CircGen we mean the semantics-
preserving certified tool that excludes these post-processing opti-
mizations.

3.5 Micro Benchmarks
In this section we give a detailed three-way comparison, in terms
of gate count in the output circuit, of both our optimized (partly
unverified) and verified CircGen and the latest version of CBMC-
GC12 (v0.9.3). The gate counts for various micro-benchmarks are
given in Table 3. An important caveat should be highlighted at this
point. In collecting results for CBMC-GC, we have truncated its
execution time to be comparable (or at least not too much higher
than that of CircGen).13 It is possible that, by allowing the tool to
run for more time, it would have produced better results. Therefore,
our claim here is not that we have a better tool overall, but that
the optimized version of CircGen is a competitive alternative to
CBMC-GC. The exception are applications where the computation
heavily relies on array accesses. As can be seen in the table, the
constant expansion optimization that we introduced for static array
access optimization allows us to obtain very significant reductions
in gate counts, even in the verified version of CircGen, which we
do not believe could be resolved via automatic optimization by
CBMC-GC: this is because these optimizations heavily depend on
the high-level semantics of the program.

We give counts for both the total number of gates and the total
number of non-XOR gates (AND or OR gates). The latter can be sig-
nificantly more costly to evaluate in some protocols than XOR gates,
for which very effective optimizations exist. The chosen bench-
marks include examples provided in the CBMC-GC distribution,
namely those for arithmetic computation of different complexities,

12
http://forsyte.at/software/cbmc-gc/

13All data was collected with a timeout of 600.

Table 3: CBMC-GC/CircGen/Optim. CircGen: Gate Counts

CBMC-GC CircGen CircGen Opt.

Computation Non XOR Total Non XOR Total Non XOR Total

arith100 16’143 46’215 16’952 63’005 12’657 43’361

arith1000 160’269 465’470 166’080 616’678 126’709 431’413

arith2000 319’584 936’754 332’257 1’231’845 253’996 863’103

arith3000 479’463 1’442’320 497’014 1’842’778 381’382 1’294’251

hamming160 386 1’610 2’616 10’311 650 3’086

hamming320 784 3’260 5’261 20’801 1’355 6’316

hamming800 1’997 8’248 13’196 52’271 3’470 16’006

hamming1600 5’494 22’796 26’421 104’721 6’995 32’156

median11 10’560 17’850 3’309 14’052 2’880 12’674

median21 40’320 67’050 11’429 49’852 10’560 46’914

median31 89’280 147’600 24’424 107’627 23’040 102’754

median41 902’923 1’100’674 42’294 187’377 40’320 180’194

median51 3’520’577 3’871’968 65’039 289’102 62’400 279’234

median61 7’410’852 7’994’102 92’659 412’802 89’280 399’874

matrix3x3 32’868 85’986 28’494 86’898 27’369 79’310

matrix5x5 148’650 398’750 131’900 402’778 127’225 369’202

matrix8x8 3’641’472 7’286’912 540’224 1’650’883 522’304 1’516’930

aes128-opt 6’400 30’828 90’834 387’042 6’400 31’338

aes128-sbox 504’000 719’050 164’179 664’871 50’800 310’554

aes128-tab 865’152 1’261’780 168’069 1’033’945 50’800 490’586

sha256 28’571 114’169 42’677 201’626 25’667 116’181

Hamming distance for strings of different lengths, median compu-
tation via sorting and matrix multiplication (we believe that these
examples were used to collect the results in [34]), Additionally we
include an implementation of the SHA-256 compression function,
taken from the NaCl library,14 and three different implementations
of AES128: aes128-tab32 corresponds to the public-domain opti-
mized table-based implementation put forth by Rijmen, Bosselaers
and Barreto.15 aes128-sbox corresponds to the tabled implementa-
tion of AES included in the Tiny AES in C library,16 which, unlike
the previous implementation, stores tables using 8-bit rather than
32-bit words; this greatly reduces the book-keeping required to ex-
tract values from tables. aes128-opt corresponds to an optimized
version of aes128-sbox which we developed by modifying aes128-

box to make table accesses more Boolean-circuit-friendly, taking
advantage of our knowledge of the Boolean circuits used to instanti-
ate native C operators by the back-end, as well as the global cleanup
optimizations. This allows us to obtain a relatively efficient circuit
implementation from both CBMC-GC and optimized CircGen.

The verified version of CircGen is surprisingly close to the opti-
mized version in all circuits except those corresponding to the Ham-
ming distance and the optimized AES implementation we described
above (aes128-opt), for which global, circuit-wide, optimizations
give the greatest benefit. A comparison of optimized CircGen with
CBMC-GC shows that the two are relatively close for arithmetic
operations, CMBC-GC is better in Hamming distance computations,
and our tool is better in all programs that use arrays heavily, in-
cluding the vanilla versions of tabled AES implementations. The
global optimization passes are the subject of ongoing work. We
do not envision any conceptual difficulty in verifying them, but
they do imply reasonable effort to express cross-gate optimizations
such as memoization and simplification. Indeed, early experiments
reveal that these passes do exacerbate the memory usage of the
compiler. The means that we likely will not be able to rely on the
data structures made available by CompCert’s infrastructure as we
do in other passes (specifically, for Maps).

14
https://nacl.cr.yp.to

15Google “rijndael-alg-fst.c”
16
https://github.com/kokke/tiny-AES128-C
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4 SFE SOFTWARE STACK EVALUATION
In this sectionwe present a performance evaluation of the entire SFE
software stack based on FRESCO. The FRESCO framework is able
to read circuit descriptions in the format produced by CircGen. We
thus use the Boolean circuits generated in the micro-benchmarks re-
ported in the previous section to feed two protocol suites supported
by this framework.17 The results are given in Table 4.

The first protocol we test is the verified implementation of Yao’s
protocol described in Section 2, which has been integrated into
FRESCO as a new protocol suite (shown in the table as Yao). The
second is the Tiny Tables protocol of [29], which is provided in
the vanilla distribution of FRESCO; this protocol operates in the
preprocessing model, and includes XOR-specific optimizations. An
interesting feature of FRESCO is the ability to run the same circuit
transparently in either protocol, simply by changing the configured
suite. The times shown are the longest execution time for a party
participating in the protocol, using the host-local communications
infrastructure that is used for testing the FRESCO framework. The
linear evaluation time of our verified implementation of Yao’s gar-
bled circuit protocol verified implementation is visible in the data.
The amortized execution time per gate is just under 100 µs (this
ratio is not shown in the table; it is essentially a constant for all
circuits). For the Tiny Tables protocol we present the online compu-
tation time (TT onl) and the amortized execution time per gate (AT
pg). Here variations are caused by the optimizations that make the
evaluation on non-XOR gates less costly. To make this evident, we
also include in the table the ratio between the number of non-XOR
gates and the total number of gates (¬XOR). Indeed, in addition to
faster overall execution times due to the preprocessing trade-offs
allowed by this protocol, one can see that for circuits with a lower
percentage of non-XOR gates the amortized execution time per
gate drops to as little as 40 µs per gate.

We stress that the goal here is not to compare the speed of Yao’s
protocol with Tiny Tables: this would be meaningless not only be-
cause these protocols offer incomparable security guarantees, but
also because the two implementations have significantly different
characteristics. Indeed, the fact that FRESCO operates over Java
has obvious performance costs. These are somewhat mitigated for
our verified implementation of Yao’s protocol, which is running na-
tively. However, this is not the case for the pre-existing Tiny Tables
implementation, and so it is most likely that even faster execution
times could be achieved for the same circuits in other MPC frame-
works. Our true goal by presenting these results is to demonstrate
integration of the software artifacts that we have developed into a
pre-existing open-source framework, and to illustrate the relative
benefits of the verified and optimized Boolean circuits produced by
our compiler.

5 RELATEDWORK
There have been significant advances towards the development
of computer-aided tools for cryptography. These tools fall into
two loosely related categories. The first category covers a broad
spectrum of high-assurance tools, which use formal methods to

17For CBMC-GC outputs we implement a circuit translator that preserves gate counts
modulo the introduction of a small number of output gates, which are required by the
FRESCO input format.

deliver strong correctness or security guarantees on models or
(more rarely) on implementations. The second category comprises
many cryptographic engineering tools, whose goal is to facilitate
the development and rapid deployment of high-speed, high-quality
software. We review some of the main tools from both families.
For the sake of focus, we limit our review to prior work that ei-
ther delivers verified security proofs in the computational model,
targets verified implementations, or is directly relevant to secure
multi-party computation. We refer the reader to [20] for a more
extensive account of the use of formal methods in (symbolic and
computational) cryptography, and to [14, 36] for motivations on
computer-aided cryptographic proofs.

5.1 High-assurance cryptography

General-purpose tools. CryptoVerif [19] was among the first
tools to support cryptographic security proofs in the computational
model and it has been used for verifying primitives as well as pro-
tocols. More recently, Cadé and Blanchet [24] have complemented
the work on CryptoVerif with a mechanism to generate functional
code from CryptoVerif models and use it to generate a verified
implementation of SSH.

Swamy et al. [55] build a type-based approach for reasoning
about programs written in the typed functional programming lan-
guage F⋆. Bhargavan et al. [18] subsequently use F⋆ to develop high-
assurance implementations of TLS. Rastogi, Swamy and Hicks [54]
also use F⋆ as a host language for embeddingWysteria, a domain-
specific language for multi-party computation.

Appel [5] uses VST (Verified Software Toolchain) [4] to prove
the functional correctness of a machine-level implementation of
SHA-256. In a companion effort, Beringer et al. [17] connect VST
with FCF (Foundational Cryptographic Framework) of Petcher and
Morrisett [51], in order to provide a machine-checked proof of
reductionist security for a realistic implementation of HMAC.

High-assurance MPC. There have been many works that develop
or apply formal methods for secure multi-party computation.

Backes et al. [6] develop computationally sound methods for
protocols that use secure multi-party computation as a primitive.
However, they do not consider verified implementations.Wyste-
ria [53] is a new programming language formixed-modemultiparty
computations. Its design is supported by a rigorous pen-and-paper
proof that typable programs do not leak information in unintended
ways. Dahl and Damgård [26] consider the symbolic analysis of
specifications extracted from two-party SFE protocol descriptions,
and show that the symbolic proofs of security are computationally
sound in the sense that they imply security in the standard UC
model for the original protocols. Pettai and Laud [52] develop a
static analysis for proving that Sharemind applications are secure
against active adversaries.

Fournet, Keller and Laporte [32] propose a certified compiler
from C to quadratic arithmetic circuits (QAP) compatible with the
domain of SNARKs. However, the underlying cryptographic system
does not come with a verified implementation.

Carmer and Rosulek [25] introduce LiniCrypt, a core language
for writing programs that perform linear operations on a finite field
and calls to random oracles. They prove that the equivalence of
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Table 4: CBMC-GC vs CircGen vs Optimized CircGen: Timings (ms) for two FRESCO suites.

CBMC-GC CircGen CircGen Opt.

Computation Yao ¬XOR TT onl AT pg Yao ¬XOR TT onl AT pg Yao ¬XOR TT onl AT pg

arith100 5590 35% 3260 0,071 6710 27% 3390 0,054 5196 29% 2549 0,059

hamming1600 5533 24% 1411 0,062 12038 25% 4997 0,048 6252 22% 1649 0,051

median21 6204 60% 6756 0,101 4801 23% 2367 0,047 4540 23% 2057 0,044

matrix3x3 7689 38% 5712 0,066 7700 33% 5297 0,061 7067 35% 4882 0,062

aes-opt 2836 21% 1543 0,050 32935 23% 15997 0,041 2901 20% 1182 0,038

sha256 9943 25% 5157 0,045 17309 21% 7642 0,038 9879 22% 4772 0,041

LiniCrypt programs can be decided efficiently, and leverage this
result to build a tool for SMT-based synthesis of garbled circuits.

5.2 Engineering of MPC protocols
FRESCO [27] is a Java framework for efficient secure computa-
tion. In FRESCO, functions to be securely evaluated are described
as circuits; we equip our certified compiler with a back-end that
integrates seamlessly into this framework. Run-time systems in
FRESCO specify how circuits are evaluated, and are thus highly
dependent on the supported protocols for secure computation. In
addition to our formally verified implementation of Yao’s protocol
and the Tiny Tables protocol we use as benchmark, run-time sys-
tems in FRESCO include support for several protocols for secure
computation, including the TinyOT protocol [48] for actively se-
cure two-party computation based on Boolean circuits; the actively
secure multi-party computation protocol based on arithmetic cir-
cuits [16]; and the SPDZ protocol [28, 30] for actively and covertly
secure multi-party computation based on arithmetic circuits.

Fairplay, Sharemind and TASTY areMPC frameworks alternative
to FRESCO. Fairplay is a system originally developed to support
two-party computation [46] and then extended to multiparty com-
putation as FairplayMP [15]: Fairplay implements a two party com-
putation protocol in the manner suggested by Yao; FairplayMP is
based on the Beaver-Micali-Rogaway protocol [10]. Sharemind [21]
is a secure service platform for data collection and analysis, employ-
ing a 3-party additive secret sharing scheme and provably secure
protocols in the honest-but-curious security model with no more
than one passively corrupted party. TASTY (Tool for Automating
Secure Two-partY computations) is a tool suite addressing secure
two-party computation in the semi-honest model [37] whose main
feature is to allow the compilation and evaluation of functions using
both garbled circuits and homomorphic encryption.

Holzer et al. [39] present a compiler that uses the boundedmodel-
checker CBMC to translate ANSI C programs into Boolean circuits.
The circuits can be used as inputs to the secure computation frame-
work of Huang et al. [40]. This compiler, CBMC-GC, can also be
used as a front-end to our verified implementation of Yao’s proto-
col. However, as we show in Section 4, not only does our approach
deliver higher assurance but also, if one activates all optimizations,
the circuits generated by our compiler can offer, for some classes of
circuits, better performace in comparison with the current version
of CBMC-GC (v0.9.3).

Recently, Amy et al. [45] built a compiler that renders Revs [49]
programs into space-efficient reversible circuits. The work focused
on the usage of such circuits in large quantum computations and
was fully developed and verified using F⋆.

6 CONCLUSIONS AND FUTUREWORK
We have presented a fast and efficient software stack for secure
function evaluation. Possible further steps include adapting our ap-
proach to recent developments in multi-party and verifiable compu-
tation, for instance [50], and to achieve tighter integration between
prototyping tools, verification tools, and verified compilers.
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type leak1 , leak2 .
op ϕ1 : input1 → leak1 .
op ϕ2 : input2 → leak2 .
type view1 = rand1 ∗ conv.

type view2 = rand2 ∗ conv.

module type Sim = {

proc sim1(i1 : input1 , o1 : output1 , l2 : leak2) : view1
proc sim2(i2 : input2 , o2 : output2 , l1 : leak1) : view2

}.

module type Simi = {

proc simi (ii : inputi , oi : outputi , l3−i : leak3−i ) : viewi
}.

module type AdvProti = {

proc choose(): input1 ∗ input2
proc distinguish(v: viewi ) : bool

}.

module Sec1(R1 : Rand1 , R2 : Rand2 , S: Sim1 , A1 : AdvProt1 ) = {

proc main() : bool = {

var real, adv, view1 , o1 , r1 , r2 , i1 , i2 ;
(i1 ,i2) = A1 .choose();
real←$ {0,1};

if (!validInputs i1 i2)
adv←$ {0,1};

else {

if (real) {
r1 = R1 .gen(ϕ1 i1);
r2 = R2 .gen(ϕ2 i2);
(conv,_) = prot i1 r1 i2 r2 ;
view1 = (r1 , conv);

} else {

(o1,_) = f i1 i2 ;
view1 = S.sim1(i1 , o1 , ϕ2 i2);

}

adv = A1 .distinguish(view1);
}

return (adv = real);
}

}.

Figure 12: Security of a two-party protocol protocol.

A DETAILS OF EASYCRYPT FORMALIZATION
The top-level abstraction in our formalization is a high-level view
of two-party protocols, which is later independently refined to
derive formalizations of both oblivious transfer and secure function
evaluation. We introduce these concepts by focusing on a classic
oblivious transfer protocol [13, 47] and discussing its security proof.
Its small size and relative simplicity make it a good introductory
example to EasyCrypt formalization. We also introduce our general
framework for dealing with hybrid arguments in EasyCrypt.

Two-Party Protocols. In EasyCrypt, declarations pertaining to
abstract concepts meant to later be refined can be grouped into
named theories such as the one shown in Figure 11. Any lemma
proved in such a theory is also a lemma of any implementation (or
instantiation) where the theory axioms hold.

theory Protocol.

type input1 , output1 .
type input2 , output2 .
op validInputs: input1 → input2 → bool.
op f: input1 → input2 → output1 ∗ output2 .

type rand1 , rand2 , conv.
op prot: input1→ rand1→ input2→ rand2→ conv ∗ output1 ∗ output2 .
. . .

end Protocol.

Figure 11: Abstract Two-Party Protocol.

The top level abstraction that represents two-party protocols is
given in Figure 11. Two parties want to compute a functionality
f on their joint inputs, each obtaining their share of the output.
This may be done interactively via a protocol prot that may make
use of additional randomness (passed in explicitly for each of the
parties) and produces, in addition to the result, a conversation trace
of type conv that describes the messages publicly exchanged by the
parties during the protocol execution. In addition, the input space
may be restricted by a validity predicate validInputs. This predicate
expresses restrictions on the adversary-provided values, typically
used to exclude trivial attacks not encompassed by the security
definition.

Simulation-based security. Following the standard approach for
secure multi-party computation protocols, security is defined using
simulation-based definitions. In this case we capture honest-but-
curious (or semi-honest, or passive) adversaries. We consider each
party’s view of the protocol (typically containing its randomness
and the list of messages exchanged during a run), and a notion of
leakage for each party, modelling how much of that party’s input
may be leaked by the protocol execution (for example, its length).
Informally, we say that such a protocol is secure if each party’s
view can be efficiently simulated using only its inputs, its outputs
and precisely defined leakage about the other party’s input.

Formally, we express this security notion using two games (one
for each party). We display one of them in Figure 12, in the form of
an EasyCrypt module. Note that modules are used to model games
and experiments, but also schemes, oracles and adversaries.18

18Our formalisation accommodates generic protocols (e.g., oblivious transfer of an
arbitrary, albeit polynomial, number of messages) which justifies the technicality

Modules are composed of a memory (a set of global variables,
here empty) and a set of procedures. Note that procedures in the
same module may share state; it is therefore not necessary to explic-
itly add state to the module signature. In addition, modules can be
parameterized by other modules (in which case, we often call them
functors) whose procedures they can query like oracles. Which ora-
cles may be accessed by which procedure is specified using module
types. A module is said to fulfill a module type if it implements all
the procedures declared in that type. Any procedures implemented
in addition to those appearing in the module type are not accessible
as oracles. For example, even if a module that implements module
type Sim is used to instantiate the S parameter of the Sec1 module,
none of the procedures in Sec1 may call the sim2 oracle.

Module type AdvProti (i ∈ {1, 2}) tells us that an adversary imper-
sonating Party i is defined by two procedures: i. choose that takes
no argument and chooses a full input pair for the functionality; and
ii. distinguish, that uses Party i’s view of the protocol execution to
produce a Boolean guess as to whether it was produced by the real
system or the simulator. Since the module type is not parameter-
ized, the adversary is not given access to any oracles (modelling a

of parametrising the randomness generation procedures with public information
associated with the protocol inputs.
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clone Protocol as OT with
type input1 = bool array,
type output1 = msg array,
type leak1 = int,
type input2 = (msg ∗ msg) array,
type output2 = unit,
type leak2 = int,
op ϕ1 (i1 : bool array) = length i1 ,
op ϕ2 (i2 : (msg ∗ msg) array) = length i2 ,
op f (i1 : bool array) (i2 : (msg ∗ msg) array) = i1 i2 .
op validInputs(i1 : bool array) (i2 : (msg ∗ msg) array) =

0 < length i1 ≤ nmax ∧ length i1 = length i2 ,
. . .

Figure 13: Instantiating Two-Party Protocols.

non-adaptive adversary). We omit module types for the random-
ness generators R1 and R2, as they only provide a single procedure
gen taking some leakage and producing some randomness. We also
omit the dual security game for Party 2.

The security game, modelled as module Sec1, is explicitly pa-
rameterized by two randomness-producing modules R1 and R2, a
simulator S1 and an adversary A1. This enables the code of proce-
dures defined in Sec1 to make queries to any procedure that appears
in the module types of its parameters. However, they may not di-
rectly access the internal state or procedures that are implemented
by concrete instances of the module parameters, when these are
hidden by the module type. We omit the indices representing ran-
domness generators whenever they are clear from the context.

The game implements, in a single experiment, both the real
and ideal worlds. In the real world, the protocol prot is used with
adversary-provided inputs to construct the adversary’s view of the
protocol execution. In the ideal world, the functionality is used to
compute Party 1’s output, which is then passed along with Party
1’s input and Party 2’s leakage to the simulator, which produces
the adversary’s view of the system. We prevent the adversary from
trivially winning by denying it any advantage when it chooses
invalid inputs.

A two-party protocol prot (parameterized by its randomness-
producing modules) is said to be secure with leakage Φ = (ϕ1,ϕ2)
whenever, for any adversary Ai implementing AdvProti (i ∈ {1, 2}),
there exists a simulator Si implementing Simi such that

Adv

Proti,Φ
prot,Si ,R1,R2

(Ai ) = |2 · Pr[Seci (R1, R2, Si , Ai ) : res] − 1 |

is small, where res denotes the Boolean output of procedure main.
Intuitively, the existence of such a simulator Si implies that the

protocol conversation and output cannot reveal any more informa-
tion than the information revealed by the simulator’s input.

Oblivious Transfer Protocols. We can now define oblivious
transfer, restricting our attention to a specific notion useful for
constructing general SFE functionalities. To do so, we clone the
Protocol theory, which makes a literal copy of it and allows us to
instantiate its abstract declarations with concrete definitions. When
cloning a theory, everything it declares or defines is part of the
clone, including axioms and lemmas. Note that lemmas proved
in the original theory are also lemmas in the clone. The partial
instantiation is shown in Figure 13.

We restrict the input, output and leakage types for the parties, as
well as the leakage functions and the functionality f. The chooser
(Party 1) takes as input a list of Boolean values (i.e., a bit-string)
she needs to encode, and the sender (Party 2), takes as input a
list of pairs of messages (which can also be seen as alternative
encodings for the Boolean values in Party 1’s inputs). Together, they
compute the array encoding the chooser’s input, revealing only
the lengths of each other’s inputs. We declare an abstract constant
n that bounds the size of the chooser’s input. This introduces an
implicit quantification on the bound n in all results we prove.

Defining OT security is then simply a matter of instantiating
the general notion of security for two-party protocols via cloning.
Looking ahead, we use Adv

OTi to denote the resulting instance
of AdvProti,Φ , where Φ = (length, length), and similarly we write
Adv

OT

i the types for adversaries against the OT instantiation.

Garbling schemes.Garbling schemes [12] (Figure 14) are operators
on functionalities of type func. Such functionalities can be evaluated
on some input using an eval operator. In addition, a functionality can
be garbled using three operators (all of whichmay consume random-
ness). funG produces the garbled functionality, inputK produces an
input-encoding key, and outputK produces an output-encoding key.
The garbled evaluation evalG takes a garbled functionality and some
encoded input and produces the corresponding encoded output. The
input-encoding and output-decoding functions are self-explanatory.
In practice, we are interested in garbling functionalities encoded as

type func, input, output.

op eval : func→ input→ output.

op valid: func→ input→ bool.

type rand, funcG, inputK, outputK.

op funcG : func→ rand→ funcG.

op inputK : func→ rand→ inputK.

op outputK: func→ rand→ outputK.

type inputG, outputG.

op evalG : funcG→ inputG→ outputG.

op encode: inputK→ input→ inputG.

op decode: outputK→ outputG→ output.

Figure 14: Abstract Garbling Scheme.

Boolean circuits and therefore fix the func and input types and the
eval function. Circuits themselves are represented by their topology
and their gates. A topology is a tuple (n,m,q,A,B), where n is the
number of input wires,m is the number of output wires, q is the
number of gates, and A and B map to each gate its first and second
input wire respectively. A circuit’s gates are modelled as a map
G associating output values to a triple containing a gate number
and the values of the input wires. Gates are modelled polymor-
phically, allowing us to use the same notion of circuit for Boolean
circuits and their garbled counterparts. We only consider projective
schemes [12], where Boolean values on each wire are encoded using
a fixed-length random token. This fixes the type funcG of garbling
schemes, and the outputK and decode operators.

Following the Garble1 construction of Bellare et al. [12], we con-
struct our garbling scheme using a variant of Yao’s garbled circuits
based on a pseudo-random permutation, via an intermediate Dual-
Key Cipher (DKC) construction. We denote the DKC encryption
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type leak.

op Φ: func→ leak.

module type Sim = {

fun sim(x: output, l: leak): funcG ∗ inputG

}.

module type AdvGb = {

fun choose(): func ∗ input

fun distinguish(F: funcG, X: inputG) : bool
}.

module SIM(R: Rand, S: Sim, A: Adv
Gb

) = {

fun main() : bool = {

var real, adv, f, x, F, X;
(f,x) = A.gen_query();

real←$ {0,1};

if (!valid f x)

adv←$ {0,1};

else {

if (real) {
r = R.gen(Φ f);

F = funcG f r;

X = encode (inputK f r) x;

} else {

(F,X) = S.sim(f(x),Φ f);

}

adv = A.dist(F,X);

}

return (adv = real);
}

}.

Figure 16: Security of garbling schemes.

with E, and DKC decryption with D. Both take four tokens as ar-
gument: a tweak that we generate with an injective function and
use as unique IV, two keys, and a plaintext (or ciphertext). We give
functional specifications to the garbling algorithms in Figure 15.
For clarity, we denote functional folds using stateful for loops.

type topo = int ∗ int ∗ int ∗ int array ∗ int array.
type α circuit = topo ∗ (int ∗ α ∗ α ,α ) map.

type leak = topo.

type input, output = bool array.
type func = bool circuit.

type funcG = token circuit.

type inputG, outputG = token array.
op evalG f i =

let ((n,m,q,A,B),G) = f in

let evalGate = λ g x1 x2 ,
let x1,0 = lsb x1 and x2,0 = lsb x2 in

D (tweak g x1,0 x2,0) x1 x2 G[g,x1,0 ,x2,0] in
let wires = extend i q in (∗ extend the array with q zeroes ∗)
let wires = map (λ g, evalGate g A[g] B[g]) wires in (∗ decrypt wires ∗)
sub wires (n + q − m) m.

type rand, inputK = ((int ∗ bool),token) map.

op encode iK x = init (length x) (λ k, iK[k,x[k]]).

op inputK (f:func) (r:((int ∗ bool),token) map) =

let ((n,_,_,_,_),_) = f in filter (λ x y, 0 ≤fst x < n) r.

op funcG (f:func) (r:rand) =

let ((n,m,q,A,B),G) = f in

for (g,xa ,xb
) ∈ [0..q] ∗ bool ∗ bool

let a = A[g] and b = B[g] in

let ta = r[a,xa] and t
b
= r[b,x

b
] in

G̃[g,ta ,tb] = E (tweak g ta t
b
) ta t

b
r[g,G[g,xa ,xb]]

((n,m,q,A,B),G̃).

Figure 15: SomeGarble: our Concrete Garbling Scheme.

Security of Garbling Schemes. The privacy property of garbling
schemes required by Yao’s SFE protocol is more conveniently cap-
tured using a simulation-based definition. Like the security notions
for protocols, the privacy definition for garbling schemes is param-
eterized by a leakage function upper-bounding the information
about the functionality that may be leaked to the adversary. (We
consider only schemes that leak at most the topology of the circuit.)
Consider efficient non-adaptive adversaries that provide two pro-
cedures: i. choose takes no input and outputs a pair (f,x) composed
of a functionality and some input to that functionality; ii. on input
a garbled circuit and garbled input pair (F,X), distinguish outputs
a bit b representing the adversary’s guess as to whether he is in-
teracting with the real or ideal functionality. Formally, we define
the SIM-CPAΦ advantage of an adversaryA of type AdvGb against
garbling scheme Gb = (funcG,inputK,outputK) and simulator S as

Adv
SIM-CPAΦ

Gb,R,S
(A) = |2 · Pr[SIM(R, S,A) : res] − 1| .

A garbling scheme Gb using randomness generator R is SIM-CPAΦ-
secure if, for all adversaryA of type AdvGb, there exists an efficient
simulator S of type Sim such that AdvSIM-CPAΦ

Gb,R,S
(A) is small.

Following [12], we establish simulation-based security via a gen-
eral result that leverages a more convenient indistinguishability-
based security notion denoted IND-CPAΦtopo

: we formalize a gen-
eral theorem stating that, under certain restrictions on the leakage
function Φ, IND-CPAΦ-security implies SIM-CPAΦ security. This
result is discussed below as Lemma A.1.

Amodular proof.The general lemma stating that IND-CPA-security
implies SIM-CPA-security is easily proved in a very abstract model,
and is then as easily instantiated to our concrete garbling setting.
We describe the abstract setting to illustrate the proof methodology
enabled by EasyCrypt modules on this easy example.

module type AdvIND = {

fun choose(): ptxt ∗ ptxt

fun distinguish(c:ctxt): bool
}.

module IND (R:Rand, A:Adv
IND

) = {

fun main(): bool = {

var p0 , p1 , p, c, b, b', ret, r;
(p0 ,p1) = A.choose();

if (valid p0 ∧ valid p1 ∧ Φ p0 = Φ p1) {
b←$ {0,1};

p = if b then p1 else p0 ;
r = R.gen(|p|);

c = enc p r;

b' = A.distinguish(c);

ret = (b = adv);

}

else ret←$ {0,1};

return ret;

}

}.

Figure 17: Indistinguishability-based Security for Garbling
Schemes.
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The module shown in Figure 17 is a slight generalization of the stan-
dard IND-CPA security notions for symmetric encryption, where
some abstract leakage operator Φ replaces the more usual check
that the two adversary-provided plaintexts have the same length.We
formally prove an abstract result that is applicable to any circum-
stances where indistinguishability-based and simulation-based no-
tions of security interact. We define the IND-CPA advantage of an
adversary A of type AdvIND against the encryption operator enc
using randomness generator R with leakage Φ as

Adv
IND-CPAΦ

enc,R
(A) = |2 · Pr[Game_IND(R,A): res] − 1|

where R is the randomness generator used in the concrete theory.
In the rest of this subsection, we use the following notion of in-

vertibility. A leakage function Φ on plaintexts (when we instantiate
this notion on garbling schemes these plaintexts are circuits and
their inputs) is efficiently invertible if there exists an efficient algo-
rithm that, given the leakage corresponding to a given plaintext,
can find a plaintext consistent with that leakage.

Lemma A.1 (IND-CPA-security implies SIM-CPA-security). If
Φ is efficiently invertible, then for every efficient SIM-CPA adversary
A of type AdvGb, one can build an efficient IND-CPA adversary B
and an efficient simulator S such that

Adv
SIM-CPAΦ
enc,S

(A) = Adv
IND-CPAΦ
enc

(B).

Proof (Sketch). Using the inverter for Φ, B computes a second
plaintext from the leakage of the one provided by A and uses this
as the second part of her query in the IND-CPA game. Similarly,
simulator S generates a simulated view by taking the leakage it
receives and computing a plaintext consistent with it using the
Φ-inverter. The proof consists in establishing that A is called by B
in a way that coincides with the SIM-CPA experiment when S is
used in the ideal world, and is performed by code motion. □

Finishing the proof. We reduce the IND-CPAΦtopo-security of
SomeGarble to the DKC-security of the underlying DKC primitive

(see [12]). In the lemma statement, c is an abstract upper bound on
the size of circuits (in number of gates) that are considered valid.
The lemma holds for all values of c that can be encoded in a token
minus two bits.

Lemma A.2 (SomeGarble is IND-CPAΦtopo
-secure). For every

efficient IND-CPA adversaryA of type AdvGb−IND, we can construct
a efficient DKC adversary B such that

Adv

IND-CPAΦtopo

SomeGarble
(A) ≤ (c + 1) · AdvDKC

SomeGarble
(B).

Proof (Sketch). The constructed adversary B, to simulate the
garbling scheme’s oracle, samples a wire ℓ0 which is used as pivot
in a hybrid construction where: i. all tokens that are revealed by
the garbled evaluation on the adversary-chosen inputs are garbled
normally, using the real DKC scheme; otherwise ii. all tokens for
wires less than ℓ0 are garbled using encryptions of random tokens
(instead of the real tokens representing the gates’ outputs); iii. to-
kens for wire ℓ0 uses the real-or-random DKC oracle; and iv. all
tokens for wires greater than ℓ0 are garbled normally.

Here again, the generic hybrid argument (Figure 4) can be in-
stantiated and applied without having to be proved again, yielding
a reduction to an adaptive DKC adversary. A further reduction
allows us to then build a non-adaptive DKC adversary, since all
DKC queries made by B are in fact random and independent. □

From Lemmas A.1 and A.2, we can conclude with a security
theorem for our garbling scheme.

Theorem A.3 (SomeGarble is SIM-CPAΦtopo
-secure). For every

SIM-CPA adversaryA that implements AdvGb, one can construct an
efficient simulator S and a DKC adversary B such that

Adv

SIM-CPAΦtopo

SomeGarble,S
(A) ≤ (c + 1) · AdvDKC

SomeGarble
(B).

Proof (Sketch). Lemma A.1 allows us to construct from A
the simulator S and an IND-CPAadversary C. From C, Lemma A.2
allows us to construct B and conclude. □
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