
Certified Verification of Algebraic Properties on Low-
Level Mathematical Constructs in Cryptographic Programs

Ming-Hsien Tsai
Academia Sinica
Taipei, Taiwan

mhtsai208@gmail.com

Bow-Yaw Wang
Academia Sinica
Taipei, Taiwan

bywang@iis.sinica.edu.tw

Bo-Yin Yang
Academia Sinica
Taipei, Taiwan

byyang@iis.sinica.edu.tw

ABSTRACT

Mathematical constructs are necessary for computation on the
underlying algebraic structures of cryptosystems. They are often
written in assembly language and optimized manually for efficiency.
We develop a certified technique to verify low-level mathematical
constructs in X25519, the default elliptic curve Diffie-Hellman key
exchange protocol used in OpenSSH. Our technique translates an
algebraic specification of mathematical constructs into an algebraic
problem. The algebraic problem in turn is solved by the computer
algebra system Singular. The proof assistant Coq certifies the
translation and solution to algebraic problems. Specifications about
output ranges and potential program overflows are translated to
SMT problems and verified by SMT solvers. We report our case
studies on verifying arithmetic computation over a large finite field
and the Montgomery Ladderstep, a crucial loop in X25519.

CCS CONCEPTS

• Security and privacy → Logic and verification;
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1 INTRODUCTION

In order to take advantage of computer security offered by modern
cryptography, cryptosystems must be realized by cryptographic
programs where mathematical constructs are required to compute
on the underlying algebraic structures of cryptosystems. Suchmath-
ematical constructs are frequently invoked in cryptographic pro-
grams; they are often written in assembly language and manually
optimized for efficiency. Security of cryptosystems could be com-
promised should programming errors in mathematical constructs
be exploited by adversaries. Subsequently, security guarantees of
cryptographic programs depend heavily on the correctness of math-
ematical constructs. In order to build secure cryptosystems, we
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develop a certified technique to verify low-level mathematical con-
structs used in the security protocol X25519 automatically in this
paper.

X25519 is an Elliptic Curve Diffie-Hellman (ECDH) key exchange
protocol; it is a high-performance cryptosystem designed to use the
secure elliptic curve Curve25519 [8]. Curve25519 is an elliptic curve
offering 128 bits of security when used with ECDH. In addition to al-
lowing high-speed elliptic curve arithmetic, it is easier to implement
properly, not covered by any known patents, and moreover less sus-
ceptible to implementation pitfalls such as weak random-number
generators. Its parameters were also selected by easily described
mathematical principles. These characteristics make Curve25519
a preferred choice for those who are leery of curves which might
have intentionally inserted backdoors, such as those standardized
by the United States National Institute of Standards and Technol-
ogy (NIST). Indeed, Curve25519 is currently the de facto alternative
to the NIST P-256 curve. Consequently, X25519 has a wide vari-
ety of applications including the default key exchange protocol in
OpenSSH since 2014 [31].

Most of the computation in X25519, in trade parlance, is in a
“variable base point multiplication,” and the centerpiece is the Mont-
gomery Ladderstep. This is usually a large constant-time assembly
program performing the finite-field arithmetic that implements the
mathematics on Curve25519. Should the implementation of Mont-
gomery Ladderstep be incorrect, so would that of X25519. Obviously
for all its virtues, X25519 would be pointless if its implementation
is incorrect. This may be even more relevant in cryptography than
most of engineering, because cryptography is one of the few disci-
plines with the concept of an omnipresent adversary, constantly
looking for the smallest edge — and hence eager to trigger any
unlikely event. Revising a cryptosystem due to rare failures poten-
tially leading to a cryptanalysis is not unheard of [24]. Thus, it is
important for security that we can show the computations com-
prising the Montgomery Ladderstep or (even better) the X25519
protocol to be correct.

Several obstacles need be overcome for the verification of math-
ematical constructs in X25519. The key exchange protocol is based
on a group induced by Curve25519. The elliptic curve is in turn de-
fined over the Galois field GF(2255 − 19). To compute on the elliptic
curve group, arithmetic computation overGF(2255−19) needs to be
correctly implemented. Particularly, 255-bit multiplications modulo
2255 − 19 must be verified. Worse, commodity computing devices
do not support 255-bit arithmetic computation directly. Arithmetic
over the Galois field needs to be implemented by sequences of 32-
or 64-bit instructions of the underlying architectures. One has to
verify that a sequence of 32- or 64-bit instructions indeed computes,
say, a 255-bit multiplication over the finite field. Yet this is only a

Session I4:  Verifying Crypto CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1973

https://doi.org/10.1145/3133956.3134076


single step in the operation on the elliptic curve group. In order to
compute the group operation, another sequence of arithmetic com-
putation over GF(2255 − 19) is needed. Particularly, a crucial step,
the Montgomery Ladderstep, requires 18 arithmetic computations
over GF(2255 − 19) [25]. The entire Ladderstep must be verified to
ensure security guarantees offered by Curve25519.

In this paper, we focus on algebraic properties about low-level
implementations of mathematical constructs in cryptographic pro-
grams as well as range properties about program outputs. Mathe-
matical constructs by their nature perform computation on underly-
ing algebraic structures. We aim to verify whether they perform the
intended algebraic computation correctly. To this end, we propose
the domain specific language bvCryptoLine with operations on
fixed-width bit-vectors for low-level mathematical constructs. Al-
gebraic pre- and post-conditions of programs together with range
information about inputs and outputs in bvCryptoLine are speci-
fied as Hoare triples [23]. Such a specification is converted to static
single assignment form and then translated into (1) an algebraic
problem (called the modular polynomial equation entailment prob-
lem) [4, 22] via zCryptoLine with operations on Z, (2) a range
problem, and (3) the absence of program overflows/underflows.
We use the computer algebra system Singular to solve the alge-
braic problem [21]. The proof assistant Coq is used to certify the
correctness of translations, as well as solutions to algebraic prob-
lems computed by Singular [12]. As range problems are hard to
be solved automatically with proof assistants, the range problem
and the absence of program overflows/underflows are verified by
SMT (Satisfiability Modulo Theories) solvers. Correctness of the
translation to SMT formulas is again certified by Coq. The results
of SMT solvers however are not certified in our implementation.
The trusted computing base of our approach hence includes SMT
solvers and Coq. The translation to bvCryptoLine is also included
in the base if the program to be verified is not in bvCryptoLine.
A fully certified integration of SMT solvers in Coq can be used to
reduce the trusted computing base in the future [17].

We report case studies on verifying mathematical constructs
used in the X25519 ECDH key exchange protocol [9, 10]. For each
arithmetic operation (such as addition, subtraction, and multiplica-
tion) overGF(2255−19), their low-level real-world implementations
are converted to our domain specific language bvCryptoLine man-
ually. We specify algebraic properties of mathematical constructs
in Hoare triples. Mathematical constructs are then verified against
their algebraic specifications with our automatic technique. The
implementation of the Montgomery Ladderstep is verified similarly.

We have the following contributions:

• We propose a domain specific language bvCryptoLine
for modeling low-level mathematical constructs used in
cryptographic programs.

• We give a certified verification condition generator from
algebraic specifications of programs to the modular poly-
nomial equation entailment problem.

• We give a certified translation from range problems and
overflow/underflow checks to SMT formulas.

• We verify arithmetic computation over a finite field of
order 2255 − 19 and a critical program (the Montgomery
Ladderstep) automatically.

algebraic and range speci-
fications in bvCryptoLine

SSA form of algebraic and range
specification in bvCryptoLine

SSA form of algebraic spec-
ification in zCryptoLine

polynomial equation entailment

Singular

range specification

overflow/underflow check

SMT solvers

to SSA (Sec. 4.1)

to zCryptoLine (Sec. 4.2)

to entailment (Sec. 4.3)

solved by (Sec. 5.2)

solved by (Sec. 5.1)

Figure 1: The verificationflow. Except the answers fromSMT

solvers, all the translations and the answers from Singular

are certified by Coq.

• To the best of our knowledge, our work is the first au-
tomatic and certified verification on real cryptographic
programs with minimal human intervention.

Related Work. Low-level implementations of mathematical con-
structs have been formalized and manually proved in proof assis-
tants [1–3, 26, 27]. A semi-automatic approach [14] has successfully
verified a hand-optimized assembly implementation of the Mont-
gomery Ladderstep with SMT solvers, manual program annotation,
and a few Coq proofs. A C implementation of the Montgomery Lad-
derstep has been automatically verified with gfverif [11], which
implements a specialized range analysis and translates verifica-
tion problems to polynomial equations later solved by the Sage
computer-algebra system [16]. Both the range analysis and the
translation in gfverif are uncertified. Re-implementations of math-
ematical constructs in F* [18] have been verified using a combi-
nation of SMT solving and manual proofs. Vale [13] provides a
meta language for defining syntax and semantics of assembly code.
Several algorithms have been implemented in Vale and verified
using SMT solvers with the help of manually constructed lemmas.
Several cryptographic implementations in C and Java have been
automatically verified by SAW to be equivalent to their reference
implementations written in Cryptol [30] but the correctness of ref-
erence implementations is not proven and the verification results
are not certified. The OpenSSL implementations of SHA-256 and
HMAC have been formalized and manually proved in Coq [5, 6].
Synthesis of assembly codes for mathematical constructs has been
proposed in [19]. Although the synthesized codes are correct by
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construction, they are not as efficient as hand-optimized assembly
implementations.

This paper is organized as follows. After preliminaries (Section 2),
our domain specific language is described in Section 3. Section 4
presents the translation to the algebraic problem. A certified trans-
lation from range and overflow/underflow checks to SMT formulas
plus a certified solver for the algebraic problem are discussed in
Section 5. Section 6 contains experimental results. It is followed by
conclusions.

2 PRELIMINARIES

We write B = {ff ,tt} for the Boolean domain. Let N and Z denote
all natural numbers and all integers respectively. We use [n] to
denote the set {0, 1, . . . ,n} for n ∈ N.

A monoidM = (M, ϵ, ·) consists of a set M and an associative
binary operator · on M with the identity ϵ ∈ M . That is, ϵ ·m =
m · ϵ = m for everym ∈ M . A group G = (G, 0,+) is an algebraic
structure where (G, 0,+) is a monoid and there is a −a ∈ G such
that (−a) + a = a + (−a) = 0 for every a ∈ G. The element −a is
called the inverse of a. G is Abelian if the operator + is commutative.
A ring R = (R, 0, 1,+,×) with 0 , 1 is an algebraic structure such
that

• (R, 0,+) is an Abelian group;
• (R, 1,×) is a monoid; and
• × is distributive over +: a × (b +c ) = a ×b +a ×c for every

a,b, c ∈ R.

If × is commutative, R is a commutative ring. A field F = (F , 0,
1, +, ×) is a commutative ring where (F \{0}, 1,×) is also a group.
(N, 1,×) is a monoid. (Z, 0, 1,+,×) is a commutative ring but not
a field. For any prime number ϱ, the set {0, . . . , ϱ − 1} with the
addition and multiplication modulo ϱ forms a Galois field of order
ϱ (written GF(ϱ)). We focus on Galois fields of very large orders,
in particular, ϱ = 2255 − 19.

Fix a set of variables x⃗ . R[x⃗] is the set of polynomials over x⃗
with coefficients in the ring R. R[x⃗] is a ring. A set I ⊆ R[x⃗] is an
ideal if

• f + д ∈ I for every f ,д ∈ I ; and
• h × f ∈ I for every h ∈ R[x⃗] and f ∈ I .

Given G ⊆ R[x⃗], ⟨G⟩ is the minimal ideal containing G; G are the
generators of ⟨G⟩. The ideal membership problem is to decide if
f ∈ I for a given ideal I and f ∈ R[x⃗].

Let Vw be the set of all bit-vectors with a bit-width w . The
unsigned value of b ∈ Vw is denoted by |b |. For a natural number
or an integer n, let bvw (n) be the two’s complement representation
of n in a bit-width w . We use the following common operators
for fixed-width bit-vectors: Vw +V Vw : Vw for addition, Vw −V
Vw : Vw for subtraction, Vw ×V Vw : Vw for multiplication,
Vw1 .VV

w2 : Vw1+w2 for concatenation, Vw#Vn : Vw+n for zero
extension, Vw ≪V n : Vw for left-shifting, Vw ≫V n : Vw for
logical right-shifting, and Vw [i, j] : Vi−j+1 with 0 ≤ j ≤ i < w for
bits extraction. We also assume comparison operators <V and ≤V
between unsigned values of bit-vectors.

Given a bit-vector b ∈ V2w , define hiV (b) ≜ b[2w − 1,w] for
the extraction of higher w bits, and loV (b) ≜ b[w − 1, 0] for the
extraction of lower w bits. For operations • ∈ {+V,−V,×V}, we

define their extended version •# which performs the original opera-
tion after doubling the width of operands by zero extension. In the
extended operations, the width of operands is doubled only once.
For example, given b1,b2,b3 ∈ Vw , we have b1 +#V b1 ≜ (b1 #V w )

+V (b2 #V w ) and b1 +#V b2 +#V b3 ≜ (b1 #V w ) +V (b2 #V w ) +V
(b3 #V w ).

3 DOMAIN SPECIFIC LANGUAGE –

BVCRYPTOLINE

One of the big issues with modern cryptography is how the as-
sumptions match up with reality. In many situations, unexpected
channels through which information can leak to the attacker may
cause the cryptosystem to be broken. Typically this is about timing
or electric power used. In side-channel resilient implementations,
the execution time is kept constant (as much as possible) to prevent
unexpected information leakage. Constant execution time however
is harder to achieve than one would imagine. Modern processors
have caches and multitasking. This makes it possible for one ex-
ecution thread, even when no privilege is conferred, to affect the
running time of another – simply by caching a sufficient amount
of its own data in correct locations through repeated accesses, and
then observing the running time of the other thread. The instruc-
tions in the other thread which use the “evicted” data (to make
room for the data of the eavesdropping thread) then have to take
more time getting its data back to the cache [7].

Thus, the innocuous actions of executing (a) a conditional branch
instruction dependent on a secret bit, and (b) an indirect load in-
struction using a secret value in the register as the address, are both
potentially dangerous leaks of information. Consequently, we are
not often facedwith secret-dependent branching or table-lookups in
the assembly instructions, but a language describing cryptographic
code might include pseudo-instructions to cover instruction se-
quences, phrases in the language if you will, that is used to achieve
the same effect. The domain specific language bvCryptoLine is
designed based on the same principles. Conditional branches and
indirect memory accesses are not admitted in bvCryptoLine.

Assume some machine architecture with a positive wordsize w.
A program is a straight line of instructions over bit-vectors with
bit-width w.

Var ::= x | y | z | · · ·
bAtom ::= Var | Vw

bStmt ::= Var ← bAtom

| Var ← bAtom + bAtom

| Var Var ← bAtom + bAtom

| Var ← bAtom + bAtom + Var

| Var Var ← bAtom + bAtom + Var

| Var ← bAtom − bAtom

| Var ← bAtom × bAtom

| Var Var ← bAtom × bAtom

| Var ← bAtom≪ Vw

| Var Var ← bAtom@Vw
| Var Var ← (bAtom.bAtom) ≪ Vw

Let bSt ≜ Var → Vw and ν ∈ bSt be a state (or valuation).
That is, a state ν is a mapping from variables to bit-vectors in Vw .
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ν
v←a1+a2
=⇒ ν[v ← [[a1]]V (ν ) +V [[a2]]V (ν )]

ν
c v←a1+a2
=⇒ ν[v ← loV ([[a1]]V (ν ) +#V [[a2]]V (ν ))][c ← hiV ([[a1]]V (ν ) +#V [[a2]]V (ν ))]

ν
v←a1+a2+y
=⇒ ν[v ← loV ([[a1]]V (ν ) +#V [[a2]]V (ν ) +#V [[y]]V (ν ))]

ν
c v←a1+a2+y
=⇒ ν[v ← loV ([[a1]]V (ν ) +#V [[a2]]V (ν ) +#V [[y]]V (ν ))][c ← hiV ([[a1]]V (ν ) +#V [[a2]]V (ν ) +#V [[y]]V (ν ))]

ν
v←a1−a2
=⇒ ν[v ← [[a1]]V (ν ) −V [[a2]]V (ν )]

ν
v←a1×a2
=⇒ ν[v ← [[a1]]V (ν ) ×V [[a2]]V (ν )]

ν
vh vl←a1×a2
=⇒ ν[vh ← hiV ([[a1]]V (ν ) ×#V [[a2]]V (ν ))][vl ← loV ([[a1]]V (ν ) ×#V [[a2]]V (ν ))]

ν
v←a≪n
=⇒ ν[v ← [[a]]V (ν ) ≪V |n |]

ν
vh vl←a@n
=⇒ ν[vh ← [[a]]V (ν ) ≫V |n |][vl ← ([[a]]V (ν ) ≪V (w −N |n |)) ≫V (w −N |n |)]

ν
vh vl←(a1 .a2 )≪n

=⇒ ν[vh ← hiV (([[a1]]V (ν ).V[[a2]]V (ν )) ≪V |n |)][vl ← (loV (([[a1]]V (ν ).V[[a2]]V (ν )) ≪V |n |)) ≫V |n |]

Figure 2: Transition relation bTr for bvCryptoLine.

Define ν[v ← d](u) ≜
{

d if u = v
ν (u) otherwise . Define the semantic

function [[·]]V (ν ) for variables and atoms as follows.

[[v]]V (ν ) ≜ ν (v ) for v ∈ Var

[[a]]V (ν ) ≜

{
ν (v ) if a is a variable v
b if a is a bit-vector b

Consider the transition relation bTr ⊆ bSt × bStmt × bSt defined
in Figure 2 where ν

s
=⇒ ν ′ denotes (ν , s,ν ′) ∈ bTr for ν ,ν ′ ∈ bSt

and s ∈ bStmt. Basically, v ← a1 + a2 is addition, c v ← a1 + a2 is
addition with carry bit placed in c , v ← a1 + a2 + y is addition of
atoms plus a variable y, c v ← a1 + a2 +y is addition of atoms plus
a variable y with carry bit placed in c , v ← a1 − a2 is subtraction,
v ← a1 ×a2 is multiplication,vh vl ← a1 ×a2 is full multiplication,
v ← a ≪ n is left-shifting, vh vl ← a@n is splitting at position n,
and vh vl ← (a1.a2) ≪ n is left-shifting of higher n bits from a2
to a1. The variable y in v ← a1 + a2 + y and c v ← a1 + a2 + y is
intended but not restricted to be carry bits.

A program is a sequence of statements. We denote the empty
program by ϵ .

bProg ::= ϵ | bStmt; bProg

Observe that conditional branches are not allowed in our domain
specific language to prevent timing attacks. The semantics of a
program is defined by the relation bTr

∗ ⊆ bSt × bProg × bSt where
(ν , ϵ,ν ) ∈ bTr∗ and (ν , s ;p,ν ′′) ∈ bTr∗ if there is aν ′with (ν , s,ν ′) ∈

bTr and (ν ′,p,ν ′′) ∈ bTr∗. We write ν
p
=⇒ ν ′ when (ν ,p,ν ′) ∈ bTr∗.

For specifications, ⊤ denotes the Boolean value tt. We allow two
kinds of specifications, namely algebraic specifications evaluated
on domain Z and range specifications evaluated on domain Vw .
Atomic predicates in an algebraic specification include polynomial
equations e1 = e2 and modular polynomial equations e1 ≡ e2mode3
where ei ∈ bExpa is a polynomial expression for i ∈ {1, 2, 3}. An
algebraic predicate qa ∈ bPreda is then a conjunction of atomic
algebraic predicates.

bExpa ::= Z | Var | − bExpa | bExpa + bExpa
| bExpa − bExpa | bExpa × bExpa

bPreda ::= ⊤ | bExpa = bExpa | bExpa ≡ bExpa mod bExpa
| bPreda ∧ bPreda

Given a state ν ∈ bSt and an expression e ∈ bExpa, [[e]]Z (ν ) denotes
the value of e on ν .

[[n]]Z (ν ) ≜ n for n ∈ Z
[[v]]Z (ν ) ≜ |ν (v ) | for v ∈ Var

[[−e]]Z (ν ) ≜ −Z[[e]]Z (ν )
[[e1 + e2]]Z (ν ) ≜ [[e1]]Z (ν ) +Z [[e2]]Z (ν )
[[e1 − e2]]Z (ν ) ≜ [[e1]]Z (ν ) −Z [[e2]]Z (ν )
[[e1 × e2]]Z (ν ) ≜ [[e1]]Z (ν ) ×Z [[e2]]Z (ν )

For an algebraic predicate qa ∈ bPreda, we write Vw |= qa[ν] if
qa evaluates to tt using the evaluation function [[e]]Z (ν ) for every
subexpression e in q.

We admit comparison between atoms in range specifications
as atomic range predicates1. A range predicate qr ∈ bPredr is a
conjunction of atomic range predicates.

bPredr ::= ⊤ | bAtom < bAtom | bAtom ≤ bAtom

| bPredr ∧ bPredr

We use al ◦ a1,a2, . . . ,an • ar as a shorthand of the conjunction of
al ◦a1∧al ◦a2∧· · ·∧al ◦an and a1•ar ∧a2•ar ∧· · ·∧an •ar where
◦, • ∈ {<, ≤}. For qr ∈ bPredr and ν ∈ bSt, we write Vw |= qr [ν] if
one of the following holds.

• q is ⊤.
• q is a1 < a2 and [[a1]]V (ν ) <V [[a2]]V (ν ).
• q is a1 ≤ a2 and [[a1]]V (ν ) ≤V [[a2]]V (ν ).
• q is q1 ∧ q2, Vw |= q1[ν], and Vw |= q2[ν].

A predicate q ∈ bPred consists of an algebraic predicate and a
range predicate.

bPred ::= bPreda 99bPredr
bSpec ::= (|bPred |)bProg(|bPred |)

For ν ∈ bSt and q ∈ bPred, we write Vw |= q[ν] if q evaluates to tt;
ν is called a q-state. We follow Hoare’s formalism in specifications
of mathematical constructs [23] and call (|q |) p (|q′ |) a specification
if q,q′ ∈ bPred, an algebraic specification if q,q′ ∈ bPreda, and
a range specification if q,q′ ∈ bPredr . In (|q |) p (|q′ |), q and q′ are
the pre- and post-conditions of p respectively. Given q,q′ ∈ bPred
(q,q′ ∈ bPreda, or q,q′ ∈ bPredr ) and p ∈ bProg, (|q |) p (|q′ |) is
1In our implementation, comparison between bit-vector expressions is allowed, not
only between atoms.

Session I4:  Verifying Crypto CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1976



1: r0 ← x0;
2: r1 ← x1;
3: r2 ← x2;
4: r3 ← x3;
5: r5 ← x4;

6: r0 ← r0 + 0xFFFFFFFFFFFDA;
7: r1 ← r1 + 0xFFFFFFFFFFFFE;
8: r2 ← r2 + 0xFFFFFFFFFFFFE;
9: r3 ← r3 + 0xFFFFFFFFFFFFE;
10: r4 ← r4 + 0xFFFFFFFFFFFFE;

11: r0 ← r0 − y0;
12: r1 ← r1 − y1;
13: r2 ← r2 − y2;
14: r3 ← r3 − y3;
15: r4 ← r4 − y4;

Figure 3: Subtraction bSub

valid (written |= (|q |) p (|q′ |)) if for every ν ,ν ′ ∈ bSt, Vw |= q[ν]

and ν
p
=⇒ ν ′ imply Vw |= q′[ν ′]. Less formally, |= (|q |) p (|q′ |) if

executing p from a q-state always results in a q′-state.
Given a statement s ∈ bStmt and a state ν ∈ bSt, the function

StmtSafe (Algorithm 1) checks if executing s from ν neither over-
flows nor underflows. We call a statement s safe at a state ν if
StmtSafe(s , ν ) evaluates to tt. A program p is safe at a state ν ,
denote by ProgSafe(p, ν ), if (1) p = ϵ , or (2) p = s;pp, StmtSafe(s ,
ν ) = tt, and for all ν ′ ∈ bSt, ν

s
=⇒ ν ′ implies ProgSafe(pp, ν ′). A

program is safe if it is safe at every state.

Algorithm 1 Safety Test for Statements

1: function StmtSafe(s , ν )
2: match s with

3: case v ← a: return tt

4: case v ← a1 + a2:
5: return hiV ([[a1]]V (ν ) +#V [[a2]]V (ν )) = bv

w (0)
6: case c v ← a1 + a2: return tt

7: case v ← a1 + a2 + y:
8: return hiV ([[a1]]V (ν ) +#V [[a2]]V (ν ) +#V [[y]]V (ν ))

= bv
w (0)

9: case c v ← a1 + a2 + y: return tt

10: case v ← a1 − a2:
11: return hiV ([[a1]]V (ν ) −#V [[a2]]V (ν )) = bv

w (0)
12: case v ← a1 × a2:
13: return hiV ([[a1]]V (ν ) ×#V [[a2]]V (ν )) = bv

w (0)
14: case vh vl ← a1 × a2: return tt

15: case v ← a ≪ n:
16: return [[a]]V (ν ) <V (bvw (1) ≪V (w −N |n |))

17: case vh vl ← a@n: return tt

18: case vh vl ← (a1.a2) ≪ n:
19: return [[a1]]V (ν ) <V (bvw (1) ≪V (w −N |n |))∧

|n | ≤N w

20: end function

Figure 3 gives a simple yet real implementation of subtraction
over GF(ϱ) with a bit-width 64. In the figure, a constant bit-vector
is written in hexadecimal format starting with the prefix 0x and a
number in GF(ϱ) is represented by five bit-vectors each with value
less than or equal to 251+Z 215. The variables x0,x1,x2,x3,x4 for in-
stance represent radix51(x4,x3,x2,x1,x0) ≜ (251×4)x4+(251×3)x3+
(251×2)x2+ (251×1)x1+ (251×0)x0. The result of subtraction is stored
in the variables r0, r1, r2, r3, r4, which are all required to be in the
range from 0 to 254. Let radix51V (x4,x3,x2,x1,x0) denote the rep-
resentation of radix51(x4,x3,x2,x1,x0) in bExpa. Let qa ≜ ⊤, qr

≜ 0 ≤ x0, x1, x2, x3, x4, y0, y1, y2, y3, y4 ≤ bv
64 (251 +Z 215),

q′a ≜ radix51V (x4,x3,x2,x1,x0) − radix51V (y4, y3, y2, y1, y0) ≡
radix51V (r4, r3, r2, r1, r0) mod ϱ, and q′r ≜ 0 ≤ r0, r1, r2, r3, r4 <
bv

64 (254). The specification of the mathematical construct is there-
fore

(|qa ∧ qr |) bSub (|q′a ∧ q
′
r |).

Note that the variables ri ’s are added with constants after they
are initialized with xi ’s but before yi ’s are subtracted from them. It
is not hard to see that

2ϱ = radix51( |0xFFFFFFFFFFFFE |, |0xFFFFFFFFFFFFE |,
|0xFFFFFFFFFFFFE |, |0xFFFFFFFFFFFFE |,
|0xFFFFFFFFFFFDA|)

after tedious computation. Hence

radix51(r4, r3, r2, r1, r0)

=radix51(x4,x3,x2,x1,x0) + 2ϱ − radix51(y4,y3,y2,y1,y0)
≡radix51(x4,x3,x2,x1,x0) − radix51(y4,y3,y2,y1,y0) mod ϱ .

The program in Figure 3 is correct assuming that it is safe. Character-
istics of large Galois fields are regularly exploited in mathematical
constructs for correctness and efficiency. Our domain specific lan-
guage can easily model such specialized programming techniques.
Indeed, the reason for adding constants is to prevent underflow.
If the constants were not added, the subtraction in lines 11 to 15
could give negative and hence incorrect results. We will show how
to prove that the program is safe later.

4 TRANSFORMATION OF SPECIFICATIONS

Given qa ,q
′
a ∈ bPreda, qr ,q′r ∈ bPredr , and p ∈ bProg, we reduce

the problem of checking |= (|qa 99qr |) p (|q′a 99q
′
r |) to (1) the entailment

problem of modular polynomial equations over integer variables
proving |= (|qa |) p (|q′a |) via an intermediate language zCrypto-
Line, (2) a range problem |= (|qr |) p (|q′r |), and (3) a safety check
of program p. The reduction is carried out by the following three
transformations:

(1) Static single assignments. The program is transformed
into static single assignments. Variables in pre- and post-
conditions are also renamed (Section 4.1) [4].

(2) zCryptoLine. The algebraic specification (|qa |) p (|q′a |) in
bvCryptoLine is transformed to a specification in zCryp-
toLine so that the validity of the specification in zCrypto-
Line implies the validity of (|qa |) p (|q′a |) in bvCryptoLine
if the program p is safe. (Section 4.2).

(3) Modular polynomial equations. Validity of algebraic speci-
fications in zCryptoLine is reduced to the entailment of
modular polynomial equations (Section 4.3) [22].
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For each transformation, we give an algorithm and establish the
correctness of the algorithm in Coq [12]. Specifically, semantics
for zCryptoLine and validity of specifications in zCryptoLine are
formalized. The correctness of transformations is then certified by
the proof assistant Coq. For static single assignments, we construct
machine-checkable proofs for the soundness and completeness of
the transformation. For modular polynomial equations, another
Coq-certified proof shows the soundness of the transformation
from the validity of the algebraic specification to the entailment
of modular polynomial equations. In the following subsections,
transformations and their correctness are elaborated in details.

4.1 Static Single Assignments

A program is in static single assignment form if every non-input vari-
able is assigned at most once and no input variable is assigned [4].
Our next task is to transform any specification (|q |) p (|q′ |) to a spec-
ification of p in static single assignment form for any q,q′ ∈ bPred
and p ∈ bProg. To avoid ambiguity, we consider well-formed pro-
grams where

• for every statement in the program with two lvalues such
as c v ← a1 + a2 + y with lvalues c and v , the two lvalues
are different variables; and

• every non-input program variable must be assigned to a
value before being used.

Our transformation maintains a finite mapping θ from variables
to non-negative integers. For any variable v , vθ (v ) is the most re-
cently assigned copy of v . For any atom a, aθ is vθ (v ) when a is
a variable v , and otherwise is b when a is a constant bit-vector b.
Only the most recent copies of variables are referred in expressions.
Algorithm 2 transforms algebraic expressions with the finite map-
ping θ by structural induction. Integers are unchanged. For each
variable, its most recent copy is returned by looking up the mapping
θ . Other algebraic expressions are transformed recursively.

Algorithm 2 Static Single Assignment Transformation for Alge-
braic Expressions

1: function SSAExpra(θ , e)
2: match e with

3: case i: return i
4: case v : return vθ (v )

5: case −e ′: return −SSAExpra(θ , e ′)
6: case e1 + e2:
7: return SSAExpra(θ , e1) + SSAExpra(θ , e2)
8: case e1 − e2:
9: return SSAExpra(θ , e1) − SSAExpra(θ , e2)
10: case e1 × e2:
11: return SSAExpra(θ , e1) × SSAExpra(θ , e2)
12: end function

Similarly, algebraic and range predicates must refer to most re-
cent copies of variables. They are transformed according to the finite
mapping θ . Thanks to the formalization of finite mappings in Coq.
Both algorithms are easily specified in Gallina. Let SSAPreda and
SSAPredr denote the transformations for bPreda and bPredr respec-
tively. The function SSAPred then transforms the algebraic part

and the range part of a predicate separatedly with SSAPreda and
SSAPredr, that is, given qa ∈ bPreda, qr ∈ bPredr , and a mapping
θ , SSAPred(θ ,qa 99qr ) ≜ SSAPreda(θ ,qa ) 99SSAPredr(θ ,qr ).

Algorithm 3 Static Single Assignment Transformation for State-
ments
1: function SSAStmt(θ , s)
2: match s with

3: case v ← a:
4: θ ′ ← θ[v ← θ (v ) + 1]
5: return ⟨θ ′, vθ

′ (v ) ← aθ ⟩

6: case v ← a1 + a2:
7: θ ′ ← θ[v ← θ (v ) + 1]
8: return ⟨θ ′, vθ

′ (v ) ← aθ1 + a
θ
2 ⟩

9: case c v ← a1 + a2:
10: θ ′ ← θ[c ← θ (c ) + 1]
11: θ ′′ ← θ ′[v ← θ (v ) + 1]
12: return ⟨θ ′′, cθ

′ (c ) vθ
′′ (v ) ← aθ1 + a

θ
2 ⟩

13: case v ← a1 + a2 + y:
14: θ ′ ← θ[v ← θ (v ) + 1]
15: return ⟨θ ′, vθ

′ (v ) ← aθ1 + a
θ
2 + y

θ (y )⟩

16: case c v ← a1 + a2 + y:
17: θ ′ ← θ[c ← θ (c ) + 1]
18: θ ′′ ← θ ′[v ← θ (v ) + 1]
19: return ⟨θ ′′, cθ

′ (c ) vθ
′′ (v ) ← aθ1 + a

θ
2 + y

θ (y )⟩

20: case v ← a1 − a2:
21: θ ′ ← θ[v ← θ (v ) + 1]
22: return ⟨θ ′, vθ

′ (v ) ← aθ1 − a
θ
2 ⟩

23: case v ← a1 × a2:
24: θ ′ ← θ[v ← θ (v ) + 1]
25: return ⟨θ ′, vθ

′ (v ) ← aθ1 × a
θ
2 ⟩

26: case vh vl ← a1 × a2:
27: θ ′ ← θ[vh ← θ (vh ) + 1]
28: θ ′′ ← θ ′[vl ← θ (vl ) + 1]
29: return ⟨θ ′′, vθ

′ (vh )
h v

θ ′′ (vl )
l ← aθ1 × a

θ
2 ⟩

30: case v ← a ≪ n:
31: θ ′ ← θ[v ← θ (v ) + 1]
32: return ⟨θ ′, vθ

′ (v ) ← aθ ≪ n⟩

33: case vh vl ← a@n:
34: θ ′ ← θ[vh ← θ (vh ) + 1]
35: θ ′′ ← θ ′[vl ← θ (vl ) + 1]
36: return ⟨θ ′′, vθ

′ (vh )
h v

θ ′′ (vl )
l ← aθ @ n⟩

37: case vh vl ← (a1.a2) ≪ n:
38: θ ′ ← θ[vh ← θ (vh ) + 1]
39: θ ′′ ← θ ′[vl ← θ (vl ) + 1]
40: return ⟨θ ′′, vθ

′ (vh )
h v

θ ′′ (vl )
l ← (aθ1 . a

θ
2 ) @ n⟩

41: end function

Statement transformation is slightly more complicated (Algo-
rithm 3). For atoms and variables on the right hand side, they are
transformed by the given finite mapping θ . The algorithm of state-
ment transformation then updates θ and replaces assigned variables
with their latest copies.
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1: r10 ← x00 ;
2: r11 ← x01 ;
3: r12 ← x02 ;
4: r13 ← x03 ;
5: r14 ← x04 ;

6: r20 ← r10 + 0xFFFFFFFFFFFDA;
7: r21 ← r11 + 0xFFFFFFFFFFFFE;
8: r22 ← r12 + 0xFFFFFFFFFFFFE;
9: r23 ← r13 + 0xFFFFFFFFFFFFE;
10: r24 ← r14 + 0xFFFFFFFFFFFFE;

11: r30 ← r20 − y
0
0 ;

12: r31 ← r21 − y
0
1 ;

13: r32 ← r22 − y
0
2 ;

14: r33 ← r23 − y
0
3 ;

15: r34 ← r24 − y
0
4 ;

Figure 4: Subtraction bSubSSA in Static Single Assignment Form

It is straightforward to transform programs to static single as-
signment form (Algorithm 4). Using the initial mapping θ0 from
variables to 0, the algorithm starts from the first statement and
obtains an updated mapping with the statement in static single
assignment form. It continues to transform the next statement with
the updated mapping. Note that our algorithm works for any initial
mapping but we choose θ0 to simplify our Coq proof.

Algorithm 4 Static Single Assignment for Programs

1: function SSAProg(θ , p)
2: match p with

3: case ϵ : return ⟨θ , ϵ⟩
4: case s;pp:
5: ⟨θ ′, s ′⟩ ← SSAStmt(θ , s)
6: ⟨θ ′′, pp′′⟩ ← SSAProg(θ ′, pp)
7: return ⟨θ ′′, s ′;pp′′⟩
8: end function

Using the specifications of Algorithm 3 and 4 in Gallina, prop-
erties of these algorithms are formally proven in Coq. We first
show that Algorithm 4 preserves well-formedness and produces a
program in static single assignment form.

Lemma 4.1. Let θ0 (v ) = 0 for everyv ∈ Var and p ∈ bProg a well-

formed program. If ⟨θ̂ , p̂⟩ = SSAProg(θ0,p), then p̂ is well-formed

and in static single assignment form.

The next theorem shows that our transformation is both sound
and complete. That is, a specification is valid if and only if its
corresponding specification in static single assignment form is
valid.

Theorem 4.2. Let θ0 (v ) = 0 for every v ∈ Var. For every q,q′ ∈
bPred and p ∈ bProg,

|= (|q |) p (|q′ |) if and only if |= (|SSAPred(θ0,q) |) p̂ (|SSAPred(θ̂ ,q′) |)

where ⟨θ̂ , p̂⟩ = SSAProg(θ0,p).

Example. Figure 4 gives the subtraction program bSub in static
single assignment form. Starting from 0, the index of a variable is
incremented when the variable is assigned to an expression. After
the static single assignment translation, the variables xi ’s, yi ’s are
indexed by 0 and ri ’s are indexed by 3 for 0 ≤ i ≤ 4. Subsequently,
variables in pre- and post-conditions of the specification for subtrac-
tion need to be indexed. Let q̂a ≜ ⊤, q̂r ≜ 0 ≤ x00 , x

0
1 , x

0
2 , x

0
3 , x

0
4 , y

0
0,

y01,y
0
2,y

0
3,y

0
4 ≤ bv

64 (251+Z215), q̂′a ≜ radix51V (x
0
4 ,x

0
3 ,x

0
2 ,x

0
1 ,x

0
0 ) −

radix51V (y
0
4,y

0
3,y

0
2,y

0
1,y

0
0 ) ≡ radix51V (r

3
4 , r

3
3 , r

3
2 , r

3
1 , r

3
0 ) mod ϱ, and

q′r ≜ 0 ≤ r30 , r
3
1 , r

3
2 , r

3
3 , r

3
4 < bv

64 (254). The corresponding specifi-
cation of in static single assignment form is then

(|q̂a ∧ q̂r |)bSubSSA(|q̂′a ∧ q̂
′
r |).

4.2 zCryptoLine

Algebraic specifications in bvCryptoLine are transformed to mod-
ular polynomial equation entailment problems via an intermediate
language zCryptoLine. A program in zCryptoLine is but a straight
line of variable assignments on expressions. Consider the following
syntactic classes:

zExpr ::= Z | Var | −zExpr | zExpr+zExpr | zExpr−zExpr
| zExpr×zExpr | Pow(zExpr,N)

We allow exact integers as constants in zCryptoLine. Variables
are thus integer variables. An expression can be a constant, a vari-
able, or a negative expression. Additions, subtractions, and multi-
plications of expressions are available. The expression Pow(e,n)
denotes en for any expression e and natural number n. More for-
mally, let zSt ≜ Var → Z and µ ∈ zSt be a state. That is, a state µ in
zCryptoLine is a mapping from variables to integers. Define the
semantic function [[e]]Z (µ ) as follows.

[[i]]Z (µ ) ≜ i for i ∈ Z
[[v]]Z (µ ) ≜ µ (v ) for v ∈ Var

[[−e]]Z (µ ) ≜ −Z[[e]]Z (µ )
[[e0 + e1]]Z (µ ) ≜ [[e0]]Z (µ ) +Z [[e1]]Z (µ )
[[e0 − e1]]Z (µ ) ≜ [[e0]]Z (µ ) −Z [[e1]]Z (µ )
[[e0 × e1]]Z (µ ) ≜ [[e0]]Z (µ ) ×Z [[e1]]Z (µ )

[[Pow(e,n)]]Z (µ ) ≜ ([[e]]Z (µ ))n

In zCryptoLine, only assignments are allowed. The statement
v ← e assigns the value of e to the variablev . For bounded additions,
multiplications, and right shifting, they are modeled by the con-
struct Split in zCryptoLine. The statement [vh ,vl ]← Split(e,n)
splits the value of e into two parts; the lowest n bits are stored in vl
and the remaining higher bits are stored invh . Consider the relation
zTr ⊆ zSt × zStmt × zSt defined by (µ,v ← e, µ[v ← [[e]]Z (µ )]) ∈
zTr , and (µ, [vh ,vl ] ← Split(e,n), µ[vh ← hi][vl ← lo]) ∈ zTr

where hi = ([[e]]Z (µ ) − lo) ÷ 2n and lo = [[e]]Z (µ ) mod 2n . Intu-
itively, (µ, s, µ ′) ∈ zTr denotes that the state µ transits to the state
µ ′ after executing the statement s .

zStmt ::= Var ← zExpr | [Var,Var]← Split(zExpr,N)

zProg ::= ϵ | zStmt; zProg

A program is a sequence of statements. Again, we denote the empty
program by ϵ . The semantics of a program is defined by the relation
zTr
∗ ⊆ zSt × zProg × zSt where (µ, ϵ, µ ) ∈ zTr∗ and (µ, s;p, µ ′′) ∈

zTr
∗ if there is a µ ′ with (µ, s, µ ′) ∈ zTr and (µ ′,p, µ ′′) ∈ zTr∗. We

write µ
p
=⇒ µ ′ when (µ,p, µ ′) ∈ zTr∗.

The predicates zPred in zCryptoLine share the same syntax as
the algebraic predicates in bvCryptoLine but are evaluated on zSt

Session I4:  Verifying Crypto CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1979



1: r10 ← x00 ;
2: r11 ← x01 ;
3: r12 ← x02 ;
4: r13 ← x03 ;
5: r14 ← x04 ;

6: r20 ← r10 + 4503599627370458;
7: r21 ← r11 + 4503599627370494;
8: r22 ← r12 + 4503599627370494;
9: r23 ← r13 + 4503599627370494;
10: r24 ← r14 + 4503599627370494;

11: r30 ← r20 − y
0
0 ;

12: r31 ← r21 − y
0
1 ;

13: r32 ← r22 − y
0
2 ;

14: r33 ← r23 − y
0
3 ;

15: r34 ← r24 − y
0
4 ;

Figure 5: Subtraction BV2ZProg(bSubSSA)

rather than on bSt.
zPred ::= ⊤ | zExpr = zExpr | zExpr ≡ zExpr mod zExpr

| zPred ∧ zPred

For µ ∈ zSt and q ∈ bPreda, write Z |= q[µ] if q evaluates to tt

using the evaluation function [[e]]Z (µ ) for every subexpression e
in q. Given q,q′ ∈ zPred and p ∈ zProg, (|q |) p (|q′ |) is valid (written

|= (|q |) p (|q′ |)) if for every µ, µ ′ ∈ zSt, Z |= q[µ] and µ
p
=⇒ µ ′ imply

Z |= q′[µ ′].
Now we are ready to describe the transformation from an alge-

braic specification in bvCryptoLine to a specification in zCryp-
toLine. Given ν ∈ bSt and µ ∈ zSt, write ν ≃ µ when |ν (v ) | =
µ (v ) for all variable v ∈ Var . For algebraic expressions, since
zExpr subsumes bExpa, we can easily define a function BV2ZExpr
that converts an algebraic expression ea ∈ bExpa to zExpr such
that for every ν ∈ bSt and µ ∈ zSt with ν ≃ µ, [[ea]]Z (ν ) =
[[BV2ZExpr(ea )]]Z (µ ). Similarly, we can define a function BV2ZPred
such that for every qa ∈ bPreda, ν ∈ bSt, and µ ∈ zSt with ν ≃ µ,
Vw |= qa[ν] if and only if Z |= BV2ZPred(qa )[µ]. Atoms are trans-
lated by the function BV2ZAtom.

BV2ZAtom(a) =
{

v if a is a variable v
|b | if a is a bit-vector b

Let ã denote BV2ZAtom(a) for a ∈ bAtom. The function BV2ZStmt
(Algorithm 5) is defined to transform a statement in bvCrypto-
Line to a statement in zCryptoLine. Define a function BV2ZProg
recursively such that BV2ZProg(ϵ ) ≜ ϵ and BV2ZProg(s;p) ≜
BV2ZStmt(s ); BV2ZProg(p). With these translation functions, the
following soundness theorem holds.

Theorem 4.3. For every qa ,q
′
a ∈ bPreda, qr ,q

′
r ∈ bPredr , and

p ∈ bProg, |= (|qa 99qr |) p (|q′a 99q
′
r |) if all the following conditions hold.

C1 Vw |= qr [ν] implies ProgSafe(p,ν ) = tt for all ν ∈ bSt.
C2 |= (|qr |) p (|q′r |).
C3 |= (|BV2ZPred(qa ) |) BV2ZProg(p) (|BV2ZPred(q

′
a ) |).

As conditions C1 and C2 involve only bit-vector operations, both
conditions can be verified by translations to the QF_BV fragment
(quantifier-free formulas over the theory of fixed-size bit-vectors)
of SMT (Section 5.1). Condition C3 is verified by a transformation to
polynomial equation entailment (Section 5.2). Note that the inverse
implication of Theorem 4.3 does not hold because for example, prov-
ing |= (|qr |) p (|q′r |) may require that qa holds initally but we do not
consider any algebraic predicates in verifying range specifications.

The function BV2ZProg preserves well-formedness and static
single assignment form. This is showed by the following lemma.

Lemma 4.4. Given a well-formed program p ∈ bProg in static

single assignment form, BV2ZProg(p) ∈ zProg is well-formed and in

static single assignment form.

Algorithm 5 Transformation from bStmt to zStmt (w is the as-
sumed wordsize)
1: function BV2ZStmt(s)
2: match s with

3: case v ← a: return v ← ã
4: case v ← a1 + a2: return v ← ã1 + ã2
5: case c v ← a1 + a2:
6: return [c,v]← Split(ã1 + ã2,w )

7: case v ← a1 + a2 + y: return v ← ã1 + ã2 + y

8: case c v ← a1 + a2 + y:
9: return [c,v]← Split(ã1 + ã2 + y,w )

10: case v ← a1 − a2: return v ← ã1 − ã2
11: case v ← a1 × a2: return v ← ã1 × ã2
12: case vh vl ← a1 × a2:
13: return [vh ,vl ]← Split(ã1 × ã2,w )

14: case v ← a ≪ n: return v ← ã × Pow(2, |n |)
15: case vh vl ← a@n: return [vh ,vl ]← Split(ã, |n |)

16: case vh vl ← (a1.a2) ≪ n:
17: return [vh ,vl ]← Split(ã1×Pow(2,w )+ã2,w−|n |)

18: end function

Figure 5 shows the result of transforming the subtraction pro-
gram bSubSSA to zCryptoLine.

4.3 Modular Polynomial Equation Entailment

The last step transforms any algebraic program specification in
zCryptoLine to the modular polynomial equation entailment prob-
lem. For q ∈ zPred, we write q(x⃗ ) to signify the free variables x⃗
occurring in q. Given q(x⃗ ),q′(x⃗ ) ∈ zPred, the modular polynomial

equation entailment problem decides whether q(x⃗ ) =⇒ q′(x⃗ )
holds when x⃗ are substituted for arbitrary integers. That is, we
want to check if for every valuation µ ∈ zSt, q(x⃗ ) evaluates to tt

implies q′(x⃗ ) evaluates to tt after each variable x is replaced by
µ (x ). We write Z |= ∀x⃗ .q(x⃗ ) =⇒ q′(x⃗ ) if it is indeed the case.

Programs in static single assignment form can easily be trans-
formed to conjunctions of polynomial equations. The function
StmtToPolyEq (Algorithm 6) translates (1) an assignment state-
ment to a polynomial equation with a variable on the left hand
side and (2) a Split statement to an equation with a linear ex-
pression of the assigned variables on the left hand side. A pro-
gram in static single assignment form is then transformed to the
conjunction of polynomial equations corresponding to its state-
ments by the function ProgToPolyEq, which is recursively de-
fined such that ProgToPolyEq(ϵ ) ≜ ⊤ and ProgToPolyEq(s ;p) ≜
StmtToPolyEq(s ) ∧ ProgToPolyEq(p).

Session I4:  Verifying Crypto CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1980



⊤ ∧

*......
,

r10 = x00 ∧

r11 = x01 ∧

r12 = x02 ∧

r13 = x03 ∧

r14 = x04 ∧

r20 = r10 + 4503599627370458 ∧

r21 = r11 + 4503599627370494 ∧

r22 = r12 + 4503599627370494 ∧

r23 = r13 + 4503599627370494 ∧

r24 = r14 + 4503599627370494 ∧

r30 = r20 − y
0
0 ∧

r31 = r21 − y
0
1 ∧

r32 = r22 − y
0
2 ∧

r33 = r23 − y
0
3 ∧

r34 = r24 − y
0
4

+//////
-

=⇒

radix51Z (x
0
4 ,x

0
3 ,x

0
2 ,x

0
1 ,x

0
0 ) − radix51Z (y

0
4,y

0
3,y

0
2,y

0
1,y

0
0 ) ≡ radix51Z (r

3
4 , r

3
3 , r

3
2 , r

3
1 , r

3
0 ) mod ϱ

Figure 6: Modular Polynomial Equation Entailment for BV2ZProg(bSubSSA)

Algorithm 6 Polynomial Equation Transformation for Statements

1: function StmtToPolyEQ(s)
2: match s with

3: case v ← e: return v = e
4: case [vh ,vl ]← Split(e,n):
5: return vl + Pow(2,n) ×vh = e

6: end function

The functions StmtToPolyEq and ProgToPolyEq are specified
straightforwardly in Gallina. We use the proof assistant Coq to
prove properties about the functions. Note that ProgToPolyEQ(p)
∈ zPred for every p ∈ zProg. The following theorem shows that any
behavior of the program p is a solution to the system of polynomial
equations ProgToPolyEQ(p). In other words, ProgToPolyEQ(p)
gives an abstraction of the program p.

Theorem 4.5. Let p ∈ zProg be a well-formed program in static

single assignment form. For every µ, µ ′ ∈ zSt with µ
p
=⇒ µ ′, we have

Z |= ProgToPolyEQ(p)[µ ′].

Definition 4.6 gives the modular polynomial equation entailment
problem corresponding to an algebraic program specification.

Definition 4.6. For q,q′ ∈ zPred and p ∈ zProg in static single
assignment form, define

Π((|q |) p (|q′ |)) ≜ q(x⃗ ) ∧ φ (x⃗ ) =⇒ q′(x⃗ )

where φ (x⃗ ) = ProgToPolyEQ(p).

Example. The modular polynomial equation entailment problem
corresponding to the algebraic specification of subtraction is shown
in Figure 6. The problem has 15 polynomial equality constraints
with 25 variables. Define radix51Z (x4,x3,x2,x1,x0) ≜ Pow(2, 51×Z
4)×x4 +Pow(2, 51×Z 3)×x3 +Pow(2, 51×Z 2)×x2 +Pow(2, 51×Z
1) × x1 + Pow(2, 51 ×Z 0) × x0 for x0,x1,x2,x3,x4 ∈ Var . We
want to know if radix51Z (r34 , r

3
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3
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3
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3
0 ) is the difference between
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0
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0
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0
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0
0 ) inGF(ϱ)

under the constraints.
The soundness of ProgToPolyEq is certified in Coq (Theo-

rem 4.7). It is not complete because in the transformation of the
statement [vh ,vl ] ← Split(e,n), the polynomial equation vl +
Pow(2,n) × vh = e does not guarantee that vl exactly represents
the lower n bits of e .

Theorem 4.7. Let q,q′ ∈ zPred be predicates, and p ∈ zProg

a well-formed program in static single assignment form. If Z |=
∀x⃗ .Π((|q |) p (|q′ |)), then |= (|q |) p (|q′ |).

|= (|qa 99qr |) p (|q′a 99q
′
r |)

⇔ |= (|q̂a 99q̂r |) p̂ (|q̂′a 99q̂
′
r |) (Theorem 4.2)

where ⟨θ̂ , p̂⟩ = SSAProg(θ0,p),
q̂a = SSAPreda(θ0,qa ),
q̂r = SSAPredr(θ0,ar ),
q̂′a = SSAPreda(θ̂ ,q′a ), and
q̂′r = SSAPredr(θ̂ ,q′r )

⇐ Vw |= q̂r [ν] implies ProgSafe(p̂) = tt for all ν ∈ bSt,
|= (|q̂r |) p̂ (|q̂′r |), and
|= (|q̃a |) p̃ (|q̃′a |) (Theorem 4.3)
where p̃ = BV2ZProg(p̂),
q̃a = BV2ZPred(q̂a ), and
q̃′a = BV2ZPred(q̂′a )

⇐ Vw |= q̂r [ν] implies ProgSafe(p̂) = tt for all ν ∈ bSt,
|= (|q̂r |) p̂ (|q̂′r |), and
Z |= ∀x⃗ .Π((|q̃a |) p̃ (|q̃′a |)) (Theorem 4.7)

Figure 7: Summary of Translations

Summary of Translation. Consider any algebraic predicates qa ,
q′a ∈ bPreda, range predicates qr , q′r ∈ bPredr , and well-formed
program p ∈ bProg. Let θ0 (v ) = 0 for every v ∈ Var . By Theo-
rem 4.2, 4.3, and 4.7, we have a summary of translation in Figure 7.
Observe that p̃ in Figure 7 is well-formed and in static single as-
signment form (Lemma 4.1 and 4.4). Theorem 4.7 is applicable in
the last deduction. After the translations, a safety check, a range
problem, and an instance of the modular polynomial equation en-
tailment problem are obtained from the given specification of a
well-formed program in bvCryptoLine. To verify mathematical
constructs against their specifications, we will solve all the three
problems in the next section.

5 VERIFICATION OF SPECIFICATIONS

We show how to solve a range problem, check if a program is safe,
and solve modular polynomial equation entailment problem in this
section. The first two problems are reduced to QF_BV formulas and
solved by an SMT solver. The last problem is reduced to an ideal
membership problem and solve by the computer algebra system
Singular.

5.1 Solving Range and Overflow Checks

First define the syntax of a fragment of QF_BV with function names
taken from the standard format SMTLIB2. In this fragment, a vari-
able always represents a bit-vector of width w (the assumed word-
size). Let qExp and qPred respectively denote the expressions and
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the predicates in QF_BV. An expression e ∈ qExp can be a con-
stant bvconst(n,b), a variiable v ∈ Var , an addition bvadd(e1, e2),
a subtraction bvsub(e1, e2), a multiplication bvmul(e1, e2), a con-
catenation concat(e1, e2), a zero extension zero_extend(e ′, i ), a left-
shifting bvshl(e1, e2), a logical right-shifting bvlshr(e1, e2), or an ex-
traction bvextract(e ′, i, j ) where n, i, j ∈ N, b ∈ Vn , and e1, e2, e ′ ∈
qExp. A predicate q ∈ qPred can be ⊤, an equality e1 = e2, a less-
than bvult(e1, e2), a less-then-or-equal bvule(e1, e2), a negation ¬q′,
a conjunction q1 ∧ q2, or a disjunction q1 ∨ q2 where e1, e2 ∈ qExp
andq′,q1,q2 ∈ qPred. An implicationq1 ⇒ q2 is defined as¬q1∨q2.

Based on the basic expressions, we define two shorthands for
extracting the higher bits and the lower bits of an expression.

bvhigh(e ) ≜ bvextract(e, 2w − 1,n)
bvlow(e ) ≜ bvextract(e,w − 1, 0)

Similar to the bit-vector operations +V, −V, and ×V extended
with zero extension in Section 2, for • ∈ {bvadd, bvsub, bvmul},
we define their extended versions •#. For example, bvadd# (e1, e2)
≜ bvadd(zero_extend(e1,w), zero_extend(e2,w)) and bvadd# (e1,
e2, e3) ≜ bvadd(bvadd(zero_extend(e1, w), zero_extend(e2,w)),
zero_extend(e3, w)).

Let max(n,m) return the maximal number in n andm. Given an
expression e ∈ qExp, width(e ) denotes the maximal bit-width of e .

width(bvconst(n,b)) = n
width(v ) = w

width(bvadd(e1, e2)) = max (width(e1),width(e2))
width(bvsub(e1, e2)) = max (width(e1),width(e2))
width(bvmul(e1, e2)) = max (width(e1),width(e2))
width(concat(e1, e2)) = width(e1) +N width(e2)

width(zero_extend(e, i )) = width(e ) +N i
width(bvshl(e1, e2)) = width(e1)
width(bvlshr(e1, e2)) = width(e1)

width(bvextract(e, i, j )) = i −N j +N 1

The expression e is calledwell-formed if e is (1) a constant, a variable,
a concatenation, a zero extension, a left-shifting, or a logical right-
shifting, (2) an addition bvadd(e1, e2), a subtraction bvsub(e1, e2), or
a multiplication bvmul(e1, e2) with width(e1) = width(e2) and both
e1 and e2 well-formed, or (3) an extraction bvextract(e ′, i, j ) with
0 ≤ j ≤ i < width(e ′) and e ′ well-formed. A predicate q ∈ qPred is
well-formed if all subexpressions are well-formed.

Let ν ∈ bSt be a state. Define the semantic function [[e]]V (ν ) for
well-formed expressions e ∈ qExp. For a predicate q ∈ qPred, we
write Vw |= q[ν] if q evaluates to tt using the evaluation function
[[e]]V (ν ) for every subexpression e in q, using <V for bvult, and
using ≤V for bvule.

[[bvconst(n,b)]]V (ν ) ≜ b

[[v]]V (ν ) ≜ [[v]]Z (ν )
[[bvadd(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ) +V [[e2]]V (ν )
[[bvsub(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ) −V [[e2]]V (ν )
[[bvmul(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ) ×V [[e2]]V (ν )
[[concat(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ).V[[e2]]V (ν )

[[zero_extend(e, i )]]V (ν ) ≜ [[e]]V (ν )#Vi
[[bvshl(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ) ≪V |[[e2]]V (ν ) |
[[bvlshr(e1, e2)]]V (ν ) ≜ [[e1]]V (ν ) ≫V |[[e2]]V (ν ) |

[[bvextract(e, i, j )]]V (ν ) ≜ [[e]]V (ν )[i, j]

Let qr ,q′r ∈ bPredr be two range predicates and p ∈ bProg a well-
formed program in static single assignment form. Both an safety
check (Vw |= qr [ν] implies ProgSafe(p,ν ) = tt for all ν ∈ bSt) and
a range problem (|= (|qr |) p (|q′r |)) involve only bit-vector operations
and can be modeled by QF_BV expressions. To show that, we first
define functions to transform the program p, the predicates qr and
q′r , and the safety check to QF_BV formulas.

Define a as v when the atom a is a variable v and otherwise
bvconst(w,b) when a is a constant b. The function StmtQFBV (Al-
gorithm 7) transforms a statement in bStmt to a QF_BV formula.
Recursively define the function ProgQFBV for programs in bProg

such that ProgQFBV(ϵ )≜⊤ and ProgQFBV(s ;p)≜ StmtQFBV(s )
∧ ProgQFBV(p). Note that the formulas returned by StmtQFBV
and ProgQFBV are well-formed QF_BV formulas. The following
theorem states that ProgQFBV(p) gives an abstraction of the pro-
gram p.

Theorem 5.1. Let p ∈ bProg be a well-formed program in static

single assignment form. Then, for all ν ,ν ′ ∈ bSt, ν
p
=⇒ ν ′ implies

Vw |= ProgQFBV(p)[ν ′].

Algorithm 7 Transformation from bStmt to qPred

1: function StmtQFBV(s)
2: match s with

3: case v ← a: return v = a
4: case v ← a1 + a2: return v = bvadd(a1,a2)
5: case c v ← a1 + a2:
6: r ← bvadd# (a1,a2)
7: return c = bvhigh(r ) ∧v = bvlow(r )

8: case v ← a1 + a2 + y:
9: return v = bvadd(bvadd(a1,a2),y)

10: case c v ← a1 + a2 + y:
11: r ← bvadd# (bvadd# (a1,a2),y)
12: return c = bvhigh(r ) ∧v = bvlow(r )

13: case v ← a1 − a2: return v = bvsub(a1,a2)
14: case v ← a1 × a2: return v = bvmul(a1,a2)
15: case vh vl ← a1 × a2:
16: r ← bvmul# (a1,a2)
17: return vh = bvhigh(r ) ∧vl = bvlow(r )

18: case v ← a ≪ n: return v = bvshl(a, bvconst(w,n))
19: case vh vl ← a@n:
20: mh ← bvconst(w,n)
21: ml ← bvconst(w, bvw (w − |n |))
22: return vh = bvlshr(a,mh )∧

vl = bvlshr(bvshl(a,ml ),ml )

23: case vh vl ← (a1.a2) ≪ n:
24: mn ← bvconst(w,n)
25: r ← bvshl(concat(a1,a2),mn )
26: return vh = bvhigh(r )∧

vl = bvlshr(bvlow(r ),mn )

27: end function

For the transformation from range predicates to QF_BV formulas,
recursively define a function PredrQFBV such that PredrQFBV(⊤)
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≜ ⊤, PredrQFBV(a1 < a2) ≜ bvult(a1, a2), PredrQFBV(a1 ≤ a2)
≜ bvule(a1, a2), and PredrQFBV(p1 ∧ p2) ≜ PredrQFBV(p1) ∧
PredrQFBV(p2). We have the following theorem for the transfor-
mation of range predicates.

Theorem 5.2. Let q ∈ bPredr be a range predicate. Then, for all
ν ∈ bSt, Vw |= q[ν] if and only if Vw |= PredrQFBV(q)[ν].

Define a function StmtSafeQFBV (Algorithm 8) which trans-
forms safety checks for statements to QF_BV. Recursively define
a function ProgSafeQFBV such that ProgSafeQFBV(ϵ ) ≜ ⊤ and
ProgSafeQFBV(s;p) ≜ StmtSafeQFBV(s ) ∧ ProgSafeQFBV(p).
The following theorem states the soundness of our translation from
range problems and safety checks to QF_BV.

Theorem 5.3. Given two range predicates qr ,q
′
r ∈ bPredr and a

well-formed program p ∈ bProg in static single assignment form,

• Vw |= qr [ν] implies ProgSafe(p,ν ) = tt for all ν ∈ bSt if,

(PredrQFBV(qr )∧ProgQFBV(p)) ⇒ ProgSafeQFBV(p) is
valid, and

• |= (|qr |) p (|q′r |) if the QF_BV formula PredrQFBV(qr ) ∧
ProgQFBV(p) ⇒ PredrQFBV(q′r ) is valid.

Algorithm 8 Transformation from Safety Checks to QF_BV

1: function StmtSafeQFBV(s)
2: o ← bvconst(w, bvw (0))
3: match s with

4: case v ← a: return ⊤
5: case v ← a1 + a2: return bvhigh(bvadd# (a1,a2)) = o

6: case c v ← a1 + a2: return ⊤
7: case v ← a1 + a2 + y:
8: return bvhigh(bvadd# (a1,a2)) = o∧

bvhigh(bvadd# (bvadd# (a1,a2)),y) = o

9: case c v ← a1 + a2 + y: return ⊤
10: case v ← a1 − a2: return bvhigh(bvsub# (a1,a2)) = o

11: case v ← a1 × a2: return bvhigh(bvmul# (a1,a2)) = o

12: case vh vl ← a1 × a2: return ⊤
13: case v ← a ≪ n:
14: one ← bvconst(w, bvw (1))
15: m ← bvconst(w, bvw (w − |n |))
16: return bvult(a, bvshl(one,m))

17: case vh vl ← a@n: return ⊤
18: case vh vl ← (a1.a2) ≪ n:
19: one ← bvconst(w, bvw (1))
20: m ← bvconst(w, bvw (w − |n |))
21: return bvult(a1, bvshl(one,m))∧

bvule(bvconst(w,n), bvconst(w, bvw (w)))

22: end function

5.2 Solving Modular Polynomial Equation

Entailment Problem

To solve a modular polynomial equation entailment problem Z |=
∀x⃗ .Π((|q̃a |) p̃ (|q̃′a |)), it remains to show

Z |=∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) ∧
∧
j ∈[J ]

fj (x⃗ ) ≡ f ′j (x⃗ ) mod nj (x⃗ )

=⇒
∧

k ∈[K ]
дk (x⃗ ) = д

′
k (x⃗ ) ∧

∧
l ∈[L]

hl (x⃗ ) ≡ h′l (x⃗ ) modml (x⃗ )

where ei (x⃗ ), e ′i (x⃗ ), fj (x⃗ ), f
′
j (x⃗ ), nj (x⃗ ), дk (x⃗ ), д

′
k (x⃗ ), hl (x⃗ ), h

′
l (x⃗ ),

ml (x⃗ ) ∈ Z[x⃗] for i ∈ [I ], j ∈ [J ], k ∈ [K], and l ∈ [L]. Since the
consequence is a conjunction of (modular) equations, it suffices to
prove one conjunct at a time. That is, we aim to show

Z |=∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) ∧
∧
j ∈[J ]

fj (x⃗ ) ≡ f ′j (x⃗ ) mod nj (x⃗ )

=⇒ д(x⃗ ) = д′(x⃗ ); or

Z |=∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) ∧
∧
j ∈[J ]

fj (x⃗ ) ≡ f ′j (x⃗ ) mod nj (x⃗ )

=⇒ h(x⃗ ) ≡ h′(x⃗ ) modm(x⃗ )

where ei (x⃗ ), e ′i (x⃗ ), fj (x⃗ ), f
′
j (x⃗ ),nj (x⃗ ),д(x⃗ ),д

′(x⃗ ),h(x⃗ ),h′(x⃗ ),m(x⃗ )

∈ Z[x⃗] for i ∈ [I ], j ∈ [J ].
It is not hard to rewrite modular polynomial equations in an-

tecedents of the above implications. For instance, the first implica-
tion is equivalent to

Z |=∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) ∧
∧
j ∈[J ]

[∃dj . fj (x⃗ ) = f ′j (x⃗ ) + dj · nj (x⃗ )]

=⇒ д(x⃗ ) = д′(x⃗ ),

which in turn is equivalent to

Z |=∀x⃗∀d⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) ∧
∧
j ∈[J ]

fj (x⃗ ) = f ′j (x⃗ ) + dj · nj (x⃗ )

=⇒ д(x⃗ ) = д′(x⃗ ).

It hence suffices to consider the following polynomial equation

entailment problem:

Z |= ∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) =⇒ д(x⃗ ) = д′(x⃗ ); or (1)

Z |= ∀x⃗ .
∧
i ∈[I ]

ei (x⃗ ) = e ′i (x⃗ ) =⇒ h(x⃗ ) ≡ h′(x⃗ ) modm(x⃗ ) (2)

where ei (x⃗ ), e
′
i (x⃗ ), д(x⃗ ), д

′(x⃗ ), h(x⃗ ), h′(x⃗ ), m(x⃗ ) ∈ Z[x⃗] for i ∈
[I ] [22].

We solve the polynomial equation entailment problems (1) and (2)
via the ideal membership problem [11, 22]. For (1), consider the
ideal I = ⟨ei (x⃗ ) − e ′i (x⃗ )⟩i ∈[I ]. Suppose д(x⃗ ) − д

′(x⃗ ) ∈ I . Then there
are ui (x⃗ ) ∈ Z[x⃗] (called coefficients) such that

д(x⃗ ) − д′(x⃗ ) =
∑
i ∈[I ]

ui (x⃗ )[ei (x⃗ ) − e ′i (x⃗ )]. (3)

Hence д(x⃗ ) − д′(x⃗ ) = 0 follows from the polynomial equations
ei (x⃗ ) = e ′i (x⃗ ) for i ∈ [I ]. Similarly, it suffices to check if h(x⃗ ) −

Session I4:  Verifying Crypto CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1983



h′(x⃗ ) ∈ ⟨m(x⃗ ), ei (x⃗ ) − e
′
i (x⃗ )⟩i ∈[I ] for (2). If so, there are u,ui (x⃗ ) ∈

Z[x⃗] such that

h(x⃗ ) − h′(x⃗ ) = u (x⃗ ) ·m(x⃗ ) +
∑
i ∈[I ]

ui (x⃗ )[ei (x⃗ ) − e ′i (x⃗ )]. (4)

Thus h(x⃗ ) ≡ h′(x⃗ ) mod m(x⃗ ) as required. The reduction to the
ideal membership problem however is incomplete. Consider Z |=
∀x .x2 + x ≡ 0 mod 2 but x2 + x < ⟨2⟩ [22].

Two Coq tactics are available to find formal proofs for the poly-
nomial equation entailment problems [28, 29]. The tactic nsatz
proves the entailment problem of the form in (1); the tactic gbarith
proves the form in (2). The ideal membership problem can be solved
by finding a Gröbner basis for the ideal [15]. Both tactics solve the
polynomial equation entailment problem by computing Gröbner
bases for induced ideals. Finding Gröbner bases for ideals however
is NP-hard because it allows us to solve a system of equations over
the Boolean field [20]. Low-level mathematical constructs can have
hundreds of polynomial equations in (1) or (2). Both Coq tactics
fail to solve such problems in a reasonable amount of time.

We develop two heuristics to solve the polynomial equation
entailment problem more effectively. Note that the polynomial
equations generated by Algorithm 6 are of the forms: x = e (from
assignment statements) or x +2cy = e (from Split statements). Such
polynomial equations can safely be removed after every occurrences
of x are replaced with e or e − 2cy respectively. The number of
generators of the induced ideal is hence reduced. We define a Coq
tactic to simplify polynomial equation entailment problems by
rewriting variables and then removing polynomial equations.

To further improve scalability, we use the computer algebra
system Singular to solve the ideal membership problem [21]. Our
tactic submits the membership problem to Singular and obtains
coefficients from the computer algebra system. Since algorithms
used in Singular might be implemented incorrectly, our Coq tactic
then certifies the coefficients by checking the equation (3) or (4)
to ensure the polynomial equation entailment problem is correctly
solved. Soundness of our technique therefore does not rely on the
external solver Singular.

6 EVALUATION

We evaluate our techniques in real-world low-level mathematical
constructs in X25519. In elliptic curve cryptography, arithmetic com-
putation over large finite fields is required. For instance, Curve25519
defined byy2 = x3+486662x2+x is over the Galois fieldK = GF(ϱ)
with ϱ = 2255 − 19. To make the field explicit, we rewrite its defini-
tion as:

y ·K y =K x ·K x ·K x +K 486662 ·K x ·K x +K x . (5)

Since arithmetic computation is over K whose elements can
be represented by 255-bit numbers, any pair (x ,y) satisfying (5)
(called a point on the curve) can be represented by a pair of 255-
bit numbers. It can be shown that points on Curve25519 with the
point at infinity as the unit (denoted 0G) form a commutative group
G = (G,+G, 0G) with G = {(x ,y) : x ,y satisfying (5)}. Let P0 =
(x0,y0), P1 = (x1,y1) ∈ G . We have −P0 = (x0,−y0) and P0+GP1 =

(x ,y) where

m = (y1 −K y0) ÷K (x1 −K x0) (6)
x = m ·Km −K 486662 −K x0 −K x1

y = (2 ·K x0 +K x1 +K 486662) ·Km −Km ·Km ·Km −K y0

when P0 , ±P1. Other cases (P0 = ±P1) are defined similarly [15].
G and similar elliptic curve groups are the main objects in elliptic
curve cryptography. It is essential to implement the commutative
binary operation +G very efficiently in practice.

6.1 Arithmetic Computation over GF(2255 − 19)
The operation +G is defined by arithmetic computation over K.
Mathematical constructs for arithmetic over K are hence necessary.
Recall that an element in K is represented by a 256-bit number.
Arithmetic computation for 255-bit integers however is not yet
available in commodity computing devices as of the year 2017; it
has to be carried out by limbs where a limb is a 32- or 64-bit number
depending on the underlying computer architectures. Figure 3 is
such an implementation of subtraction for the AMD64 architecture.

Multiplication is another interesting but much more complicated
computation. The naïve implementation for 255-bit multiplication
would compute a 510-bit product and then find the corresponding
255-bit representation by division. An efficient implementation
for 255-bit multiplication avoids division by performing modulo
operations aggressively. For instance, an intermediate result of the
form c ·K 2255 is immediately replaced by c ·K 19 since 2255 =K 19
in GF(ϱ). This is indeed how the most efficient multiplication for
the AMD64 architecture is implemented (Appendix A.1) [9, 10].

In our experiment, we took real-world efficient and secure low-
level implementations of arithmetic computation overGF(ϱ) from [9,
10], manually translated source codes to our domain specific lan-
guage, specified their algebraic and range properties, and performed
certified verification with our technique. Table 1 summarizes the
results without and with applying the two heuristics in Section 5.2.
The column “safe” shows the time used by the SMT solver Boolec-
tor to verify if the input program is safe. The column “range” shows
the time used by Boolector to verify the range specification of
the input program. The columns “algebraic” show the time used by
Singular to verify the algebraic specification of the input program.
The columns “total” show the total verification time including safety
check, verification of range and algebraic specifications, rewriting,
proof certification, etc. The columns “without heuristics” and “with
heuristics” respectively show the time information without and
with the two heuristics. The results show that without the two
heuristics, multiplication and square cannot be verified because
the computation of Gröbner bases was killed by the OS after run-
ning for days. With the heuristics, all the implementations can be
verified in seconds.

We also tried to verify buggy implementations such as the buggy
implementation of multiplication mentioned in [14]. In such cases,
our verification tactic in Coq just failed without giving any coun-
terexample. Note that when our tactic fails to verify a program, we
cannot conclude that the program is buggy because our approach
is sound but not complete.
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Table 1: Certified Verification of Arithmetic Operations over GF(ϱ)

number of lines
time (seconds)

remarksafe range without heuristics with heuristics
algebraic total algebraic total

addition 10 0.162 0.249 30.545 41.55 0.401 4.14 a +K b

subtraction 15 0.140 0.389 35.646 48.47 0.208 4.93 a −K b

multiplication 144 3.904 41.070 - - 2.312 81.93 a ·K b

multiplication by 121666 26 0.266 0.852 1112.311 1125.41 0.315 7.70 121666 ·K a

square 109 3.722 19.905 - - 1.087 47.44 a ·K a

6.2 The Montgomery Ladderstep

Recall that X25519 is based on the Abelian group G = (G,+G, 0G)
induced by the curve Curve25519. As aforementioned, the binary
operation +G requires another sequence of arithmetic computation
over GF(ϱ). Errors could still be introduced or even implanted in
any sequence of computation proclaimed to implement +G. Our
next experiment verifies a critical low-level program implementing
the group operation [9, 10].

Let P ∈ G be a point on Curve25519. We write [n]P for the n-
fold addition P +G · · · +G P ∈ G for n ∈ N. In X25519, we want
to compute a point multiplication, that is, the point [n]P for given
n and P . The standard iterative squaring method computes [n]P
by examining each bit of n iteratively. For each iteration, [2m]P is
computed from [m]P and addedwith another P when the current bit
is 1. Although the method is reasonably efficient, it is not constant-
time and hence insecure.

Algorithm 9 Montgomery Ladderstep
1: function Ladderstep(x1, xm, zm, xm+1, zm+1)

2: t1 ← xm +K zm
3: t2 ← xm −K zm
4: t7 ← t2 ·K t2
5: t6 ← t1 ·K t1
6: t5 ← t6 −K t7
7: t3 ← xm+1 +K zm+1
8: t4 ← xm+1 −K zm+1
9: t9 ← t3 ·K t2
10: t8 ← t4 ·K t1
11: xm+1 ← t8 +K t9

12: zm+1 ← t8 −K t9
13: xm+1 ← xm+1 ·K xm+1
14: zm+1 ← zm+1 ·K zm+1
15: zm+1 ← zm+1 ·K x1
16: xm ← t6 ·K t7
17: zm ← 121666 ·K t5
18: zm ← zm +K t7
19: zm ← zm ·K t5
20: return (xm, zm, xm+1, zm+1)
21: end function

To have constant execution time, the key idea is to compute both
[2m]P and [2m+1]P at each iteration. The Montgomery Ladderstep
is an efficient algorithm computing [2m]P and [2m + 1]P from P ,
[m]P , and [m + 1]P on Montgomery curves (including Curve25519).
The algorithm uses only x coordinates of the points. Furthermore,
expensive divisions are avoided in the Ladderstep by projective
representations. That is, the algorithm represents x ÷K z by the
pair x : z and works with fractions (Algorithm 9).

Let unprimed and primed variables denote their values before
and after computation respectively. Write xy to denote x ·K y for
short. The Montgomery Ladderstep has the following algebraic

specification [25]:2

x ′m =K 4(xmxm+1 −K zmzm+1) (xmxm+1 −K zmzm+1)
z′m =K 4x1 (xmzm+1 −K zmxm+1) (xmzm+1 −K zmxm+1)

x ′m+1 =K (xmxm −K zmzm ) (xmxm −K zmzm )
z′m+1 =K 4xmzm (xmxm +K 121666xmzm +K zmzm )

For the range specification, the unsigned value of each limb used
to represent an output xm , zm , xm+1, or zm+1 must be in the range
from 0 to 251 + 215. In our experiment, we replace all arithmetic
computation over K with corresponding mathematical constructs
(4 additions, 4 subtractions, 4 squares, 5 multiplications, and 1 mul-
tiplication by 121666) written in bvCryptoLine, translate the above
specification into an algebraic specification, a range specification,
and a safety check, and then apply our technique to verify the
Ladderstep (containing 1282 statements). The verification takes 131
hours, including 77 hours in safety check 3, 33 hours in checking
range specification, 16 hours in checking algebraic specification,
and the remaining hours in term rewriting, proof validation, etc.
For production releases of low-level mathematical constructs, we
believe 5.5 days in verification time are well invested.

7 CONCLUSION

We have developed techniques to verify algebraic and range spec-
ifications of low-level mathematical constructs in cryptographic
programs. Our case studies on real low-level implementations of
X25519 suggest the applicability and scalability of our techniques.
Currently, we are working on automatic translation from assem-
bly languages to our domain specific language. Such translation
will make our verification techniques more accessible to assembly
programmers. We are also applying our techniques to more low-
level mathematical constructs in industrial cryptographic programs.
Communication with assembly programmers will further improve
the proposed techniques in practice.
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A APPENDIX

A.1 Multiplication over GF(2255 − 19)
The following bvCryptoLine code implements multiplications over
GF(2255 − 19) for the AMD64 architecture:

1 : mulrax ← x3;

2 : mulrax ← mulrax × bv64 (19);
3 : mulx319 ← mulrax;
4 : mulrdx mulrax ← mulrax × y2;
5 : r0 ← mulrax;
6 : mulr01← mulrdx;
7 : mulrax ← x4;

8 : mulrax ← mulrax × bv64 (19);
9 : mulx419 ← mulrax;
10 : mulrdx mulrax ← mulrax × y1;
11 : carry r0 ← r0 +mulrax;
12 : mulr01← mulr01 +mulrdx + carry;
13 : mulrax ← x0;
14 : mulrdx mulrax ← mulrax × y0;
15 : carry r0 ← r0 +mulrax;
16 : mulr01← mulr01 +mulrdx + carry;
17 : mulrax ← x0;
18 : mulrdx mulrax ← mulrax × y1;
19 : r1← mulrax;
20 : mulr11← mulrdx;
21 : mulrax ← x0;
22 : mulrdx mulrax ← mulrax × y2;
23 : r2 ← mulrax;
24 : mulr21← mulrdx;
25 : mulrax ← x0;
26 : mulrdx mulrax ← mulrax × y3;
27 : r3 ← mulrax;
28 : mulr31← mulrdx;
29 : mulrax ← x0;
30 : mulrdx mulrax ← mulrax × y4;
31 : r4 ← mulrax;
32 : mulr41← mulrdx;
33 : mulrax ← x1;
34 : mulrdx mulrax ← mulrax × y0;
35 : carry r1← r1 +mulrax;
36 : mulr11← mulr11 +mulrdx + carry;
37 : mulrax ← x1;
38 : mulrdx mulrax ← mulrax × y1;
39 : carry r2 ← r2 +mulrax;
40 : mulr21← mulr21 +mulrdx + carry;
41 : mulrax ← x1;
42 : mulrdx mulrax ← mulrax × y2;
43 : carry r3 ← r3 +mulrax;
44 : mulr31← mulr31 +mulrdx + carry;
45 : mulrax ← x1;
46 : mulrdx mulrax ← mulrax ∗ y3;
47 : carry r4 ← r4 +mulrax;
48 : mulr41← mulr41 +mulrdx + carry;
49 : mulrax ← x1;

50 : mulrax ← mulrax × bv64 (19);
51 : mulrdx mulrax ← mulrax × y4;
52 : carry r0 ← r0 +mulrax;
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53 : mulr01← mulr01 +mulrdx + carry;
54 : mulrax ← x2;
55 : mulrdx mulrax ← mulrax × y0;
56 : carry r2 ← r2 +mulrax;
57 : mulr21← mulr21 +mulrdx + carry;
58 : mulrax ← x2;
59 : mulrdx mulrax ← mulrax × y1;
60 : carry r3 ← r3 +mulrax;
61 : mulr31← mulr31 +mulrdx + carry;
62 : mulrax ← x2;
63 : mulrdx mulrax ← mulrax × y2;
64 : carry r4 ← r4 +mulrax;
65 : mulr41← mulr41 +mulrdx + carry;
66 : mulrax ← x2;

67 : mulrax ← mulrax × bv64 (19);
68 : mulrdx mulrax ← mulrax × y3;
69 : carry r0 ← r0 +mulrax;
70 : mulr01← mulr01 +mulrdx + carry;
71 : mulrax ← x2;

72 : mulrax ← mulrax × bv64 (19);
73 : mulrdx mulrax ← mulrax × y4;
74 : carry r1← r1 +mulrax;
75 : mulr11← mulr11 +mulrdx + carry;
76 : mulrax ← x3;
77 : mulrdx mulrax ← mulrax × y0;
78 : carry r3 ← r3 +mulrax;
79 : mulr31← mulr31 +mulrdx + carry;
80 : mulrax ← x3;
81 : mulrdx mulrax ← mulrax × y1;
82 : carry r4 ← r4 +mulrax;
83 : mulr41← mulr41 +mulrdx + carry;
84 : mulrax ← mulx319;
85 : mulrdx mulrax ← mulrax × y3;
86 : carry r1← r1 +mulrax;
87 : mulr11← mulr11 +mulrdx + carry;
88 : mulrax ← mulx319;
89 : mulrdx mulrax ← mulrax × y4;
90 : carry r2 ← r2 +mulrax;
91 : mulr21← mulr21 +mulrdx + carry;
92 : mulrax ← x4;
93 : mulrdx mulrax ← mulrax × y0;
94 : carry r4 ← r4 +mulrax;
95 : mulr41← mulr41 +mulrdx + carry;
96 : mulrax ← mulx419;
97 : mulrdx mulrax ← mulrax × y2;
98 : carry r1← r1 +mulrax;
99 : mulr11← mulr11 +mulrdx + carry;
100 : mulrax ← mulx419;
101 : mulrdx mulrax ← mulrax × y3;
102 : carry r2 ← r2 +mulrax;
103 : mulr21← mulr21 +mulrdx + carry;
104 : mulrax ← mulx419;
105 : mulrdx mulrax ← mulrax × y4;
106 : carry r3 ← r3 +mulrax;
107 : mulr31← mulr31 +mulrdx + carry;
108 : mulr01 r0 ← (mulr01.r0) ≪ 13;

109 : mulr11 r1← (mulr11.r1) ≪ 13;
110 : r1← r1 +mulr01;
111 : mulr21 r2 ← (mulr21.r2) ≪ 13;
112 : r2 ← r2 +mulr11;
113 : mulr31 r3 ← (mulr31.r3) ≪ 13;
114 : r3 ← r3 +mulr21;
115 : mulr41 r4 ← (mulr41.r4) ≪ 13;
116 : r4 ← r4 +mulr31;

117 : mulr41← mulr41 × bv64 (19);
118 : r0 ← r0 +mulr41;
119 : mult ← r0;
120 : mult tmp ← mult@51;
121 : mult ← mult + r1;
122 : r1← mult;
123 : multtmp2 ← mult@51;
124 : r0 ← tmp;
125 : mult ← mult + r2;
126 : r2 ← mult;
127 : mult tmp ← mult@51;
128 : r1← tmp2;
129 : mult ← mult + r3;
130 : r3 ← mult;
131 : mult tmp2 ← mult@51;
132 : r2 ← tmp;
133 : mult ← mult + r4;
134 : r4 ← mult;
135 : mult tmp ← mult@51;
136 : r3 ← tmp2;

137 : mult ← mult × bv64 (19);
138 : r0 ← r0 +mult;
139 : r4 ← tmp;
140 : z0 ← r0;
141 : z1← r1;
142 : z2 ← r2;
143 : z3 ← r3;
144 : z4 ← r4;

Let bMul denote the above program. Define qa ≜⊤, qr ≜ 0 ≤ x0,

x1, x2, x3, x4, y0, y1, y2, y3, y4 ≤ bv
64 (252), q′a ≜ radix51V (x4, x3,

x2, x1, x0) × radix51V (y4, y3, y2, y1, y0) ≡ radix51V (z4, z3, z2, z1,

z0) mod bv64 (2255 − 19), and q′r ≜ 0 ≤ z0, z1, z2, z3, z4 ≤ bv
64 (252).

Its specification is

(|qa 99qr |) bMul (|q′a 99q
′
r |).
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