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ABSTRACT
In the last years we have witnessed the appearance of a variety

of strategies to design optimal location privacy-preserving mecha-

nisms, in terms of maximizing the adversary’s expected error with

respect to the users’ whereabouts. In this work, we take a closer

look at the defenses created by these strategies and show that, even

though they are indeed optimal in terms of adversary’s correctness,

not all of them offer the same protection when looking at other

dimensions of privacy. To avoid “bad” choices, we argue that the

search for optimal mechanisms must be guided by complementary

criteria. We provide two example auxiliary metrics that help in

this regard: the conditional entropy, that captures an information-

theoretic aspect of the problem; and the worst-case quality loss,

that ensures that the output of the mechanism always provides a

minimum utility to the users. We describe a new mechanism that

maximizes the conditional entropy and is optimal in terms of aver-

age adversary error, and compare its performance with previously

proposed optimal mechanisms using two real datasets. Our empiri-

cal results confirm that no mechanism fares well on every privacy

criteria simultaneously, making apparent the need for considering

multiple privacy dimensions to have a good understanding of the

privacy protection a mechanism provides.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Net-
works → Location based services;

KEYWORDS
Location Privacy;MechanismDesign;MechanismEvaluation; Quan-

tifying Privacy

1 INTRODUCTION
Location based services raise important privacy concerns regard-

ing the private information that exposing accurate location to ser-

vice providers reveals [13, 14, 16, 20, 30]. To protect users’ privacy,

the academic community has proposed a wide variety of location

privacy-preserving mechanisms [3, 15, 17–19, 21, 23, 28, 29] that

mostly work altering the users’ actual location before exposing it
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to the service provider. The privacy evaluation of these proposals

typically does not consider a strategic adversary, fostering an arms

race in which defenses and attacks succeed each other without ever

providing clear location privacy guarantees. To counter this effect,

recent efforts focus on cutting the arms race short by either embed-

ding the adversarial knowledge on the design process [5, 24, 27], or

providing guarantees independent of the adversary’s prior [2, 5, 24].

In this paper, we focus on sporadic user-centric protectionmecha-

nisms based on randomization, which preserve privacy by reporting

a noisy version of the real location to the service provider according

to a probability distribution. These mechanisms are adequate for ap-

plications that require infrequent location exposure, and can be run

locally by the user. In this scenario, approaches that embed the ad-

versarial knowledge on the design process are based on a Bayesian

modeling of the adversary [26], and find optimal noise-generating

mechanisms via linear optimization in which a target privacy ob-

jective is sought in presence of utility constraints [27]. On the other

hand, approaches that provide privacy guarantees independent of

the adversary’s prior are based on geo-indistinguishability [2], an

adaptation of differential privacy [9] to two-dimensional spaces,

used by a number of works [11, 12, 22]. Geo-indindistinguishability

can be achieved optimally in terms of utility using expensive lin-

ear programming [5], or suboptimally using efficient remapping

techniques that increase the utility of the query [6]. Finally, the

Bayesian and the geo-indistinguishability approaches have been

combined by Shokri [24] to obtain mechanisms that guarantee geo-

indindistinguishability while achieving a good performance against

the Bayesian adversary.

Following the recommendation by Shokri et al. [26], which has

been taken as the standard by the community, all of these ap-

proaches use the adversary’s correctness, i.e., how close the ad-

versary’s estimate is to the correct answer, to evaluate location

privacy. Usually, the adversary’s correctness is measured as her

expected estimation error, where this error is modeled using some

distance metric between the real location and the adversary’s esti-

mation [25].

In this paper, we aim at understanding the properties of the

mechanisms output by these design strategies. We find that, when

the target privacy notion is the adversary’s expected estimation

error, there are many optimal mechanisms that meet a desired

quality loss constraint. While this may seem advantageous, we

show that following such an optimization objectivemay result in the

selection of naive mechanisms that obviously provide little privacy,

e.g., alternating the exposure of the actual user location and a far

away location. Indeed, this mechanism complies on average with

the constraints of the problem. Yet, it results on little uncertainty for

the adversary, effectively providing a false perception of privacy.
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To counter such effect we argue that, depending on the user’s

preferences, the search for an optimal location privacy-preserving

mechanism needs to consider more criteria than the error, contra-

dicting the belief established by Shokri et al. [26]. As examples of

complementary metrics to guide the design of protection mecha-

nisms we propose the use of information-theoretic metrics, e.g.,

the conditional entropy, or a worst-case bound for quality loss. We

provide efficient methods to construct mechanisms with respect to

these criteria, and demonstrate that the remapping method intro-

duced in [6] to improve the utility of geo-indistinguishability-based

methods is in fact a straightforward generic scheme to build an

optimal mechanism in terms of the expected estimation error from

any obfuscation mechanism. We evaluate the effectiveness of the

different mechanisms according to different privacy criteria using

two real location datasets concluding that, generally, mechanisms

that are optimal for one criterion do not necessarily perform well

on others.

To summarize, we make the following contributions:

✓ We provide a theoretical characterization of optimal location

privacy-preserving mechanisms in terms of the mean adversarial

error. We show that, for a given average quality loss, there is more

than one optimal protection mechanism that maximizes the average

privacy. This family of mechanisms forms a convex polytope in

which different mechanisms provide different privacy guarantees.

✓ We demonstrate the limitations of evaluating defenses solely

considering the correctness of the adversary [26], and advocate

for the use of complementary criteria to guide the design of loca-

tion privacy-preserving mechanisms where the privacy guarantees

provided are better understood.

✓We provide algorithms to efficiently design mechanisms based on

criteria other than the adversary’s error. Furthermore, we demon-

strate that remapping, previously proposed as an enhancement to

geo-indistinguishability, is not only beneficial to improve the utility

of this technique but can be used as a generic method to turn any

obfuscation mechanism into optimal in terms of average adversarial

error.

✓We evaluate prior and new location privacy-preserving mech-

anisms on two real location datasets. Our results confirm that it

is difficult to find optimal mechanisms that fare well on all crite-

ria. This demonstrates that previous approaches to design location

privacy-preserving mechanisms, while having solid foundations,

oversimplify the design problem and generate defenses that overes-

timate the level of privacy offered to the user.

This paper is organized as follows. In Section 2, we introduce our

system model, and the quality loss and privacy metrics we consider

in the paper. In Section 3 we study the consequences of choosing

the average adversary error as the standard metric to evaluate lo-

cation privacy, illustrating that mechanisms that are optimal by

this criterion may provide little privacy. In Section 4 we propose

to consider auxiliary metrics to avoid bad mechanism choices in

the optimization. As examples, we study the use of the conditional

entropy and the worst-case quality loss. We evaluate several mech-

anisms built according to these new criteria in Section 5, and offer

our conclusions in Section 6.

2 SYSTEM MODEL
We now describe our system model, which is in agreement with

the framework for location privacy proposed by Shokri et al. [26],

and introduce the notation used throughout the paper, which is

summarized in Table 1.

We consider a set of users that send queries with a geographical

position of interest to a location based service to obtain a service

(e.g., finding points of interest or nearby friends). The location of in-

terest can be the current location of the user or some other location

the user is interested in querying about. Users wish to obtain utility

from the location based service, while keeping their whereabouts

private from an adversary that can observe the locations in the

queries, e.g, an eavesdropper of the user-server communication, or

the service provider itself. In order to protect their locations, users

employ a location privacy-preserving mechanism that perturbs their

location prior to exposing it to the server. We consider a strategic

adversary that knows the protection mechanism operation, and

has some knowledge about the users movement patterns. Given

the observed perturbed location and her knowledge, the adversary

tries to infer the user real location.

We model the locations queried by the users as a discrete set

of points of interest denoted by X � {x1,x2, · · · ,xN }. We refer to

these locations as real or input locations since they are the actual

locations that are input to the location privacy-preserving mecha-

nism. We use π (x ) to denote the prior probability that a user in the

population queries the service provider about location x (π (x ) ≥ 0

and

∑
x ∈X π (x ) = 1). This prior can either represent the global

behavior of all the users as in [6], or be tailored to a particular user,

but we assume that it is known both by the user and the adversary

and that it can be used to design the privacy-preserving mecha-

nism. We also consider independence between queries, i.e., that the

input locations x from the same or other users are samples form

i.i.d. random variables given by π .
The set of possible locations reported by the location privacy-

preserving mechanism is denoted byZ. We assume that users can

report any location in the worldZ = R2. We refer to these locations

as output locations, as they are the outputs of the privacy-preserving
mechanism. The mechanism itself is denoted by f and modeled as

a set of (continuous) conditional probability distributions, where

f (z |x ) denotes the probability density function (pdf) of reporting

the output location z ∈ R2 when the real location of the user is

x ∈ X (note that f (z |x ) ≥ 0 and

∫
R2

f (z |x )dz = 1 for all x ∈
X). We represent discrete mechanisms, i.e., mechanisms with a

discrete output domain, in R2 with the Dirac delta function δ . For
example, the mechanism that maps any x ∈ X to two particular

outputs z1,z2 ∈ R
2
with the same probability would be f (z |x ) =

0.5δ (z −z1) + 0.5δ (z −z2). For integration purposes, δ (z −z′) must

be understood as a two-dimensional Gaussian pdf centered at z′

whose variance is arbitrarily small.

When using a privacy-preservingmechanism f to obtain privacy,
the user experiences a loss on the quality of service due to the fact

that she reports a location that might not be the location of interest,

and may even be far away from this one. We use P( f ,π ) to denote

the privacy of the user, and Q( f ,π ) to denote her quality loss. We

specify particular instantiations of these functions below.
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Table 1: Summary of notation

Symbol Meaning

x Input location the user is interested in querying about.

X Set of valid input locations or points of interest.

z Output location released by the mechanism, z ∈ R2.
x̂ Adversary’s estimation of the input location, x̂ ∈ R2.
π (x ) Prior probability that a user wants to query about x .
f (z |x ) Privacy mechanism. Pdf of z ∈ R2 given x ∈ X.
fZ (z) Pdf of z, i.e., fZ (z) =

∑
x ∈X π (x ) · f (z |x ).

p (x |z) Posterior probability of x given z.

dQ (x ,z) Quality loss distance function between x and z.

Q Average quality loss metric, in (1).

Q
+

Worst-case quality loss metric, in (2).

dP (x , x̂ ) Privacy distance function between x and x̂ .
PAE Average error privacy metric, in (5).

PCE Conditional entropy privacy metric, in (9)

PGI Geo-Indistinguishability privacy metric, in (11)

2.1 Quality Loss Metrics
We consider two possible definitions of quality loss: the average

loss, and the worst-case loss. To this end we introduce dQ (x ,z), a
function that quantifies how much quality of service is lost by a

user reporting output location z when she is interested in input

location x . Larger values ofdQ (x ,z) indicate a larger loss, and there-
fore a worse utility performance for the user. The canonical choice

for this function is the Euclidean distance: dQ (x ,z) = | |x − z | |2.
Note that dQ (·) does not need to be a metric in the mathematical

sense: it could be any function that maps an input location and a

released location to a loss value (e.g., a feeling-based utility metric

as in [1, 4]).

Average Loss. The average loss measures how much quality a user

loses on average, and can be written as:

Q( f ,π ) =
∑
x ∈X

∫
R2

π (x ) · f (z |x ) · dQ (x ,z)dz . (1)

This metric has been the typical choice of utility in the related liter-

ature [2, 5–7, 27] since it is very intuitive. This metric also has the

advantage of being linear with the mechanism f , which is very use-

ful towards reducing the computational cost of mechanism design

algorithms. Moreover, it makes the analysis of optimal algorithms

in terms of average loss tractable.

Worst-case Loss. Given a function that quantifies the point-wise

loss as defined above, dQ (x ,z), the worst-case loss is defined as:

Q
+ ( f ,π ) = max

x,z
π (x )>0
f (z |x )>0

dQ (x ,z) . (2)

The worst-case loss measures how much utility the user loses in

the worst case possible. For example, if dQ (x ,z) is the Euclidean
distance and the user wants to query about x , a mechanism with

Q
+ ( f ,π ) ≤ 2km ensures that the output z will not be further

than 2km away from x . This property is very helpful for many

applications that target nearby-type of services, since if the reported

location is very far from the desired location then the result of the

query would be generally useless for the user.

2.2 Privacy Metrics
We present now three notions of privacy: the average adversary

error, the conditional entropy of the posterior distribution, and

geo-indistinguishability.

Average Error. The average error is the de-facto standard to mea-

sure location privacy since Shokri et al. [26] argued that incorrect-

ness determines the privacy of users. Consider that the adversary

knows the prior π and the mechanism f chosen by the user. With

this information, she produces an estimate x̂ ∈ ˆX of the user’s input

location x . The choice of ˆX depends on the computational power

of the adversary. Since we assume that the user has the freedom to

report any location in R2, we also assume an unbounded adversary

that can estimate locations on the whole world
ˆX = R2. Upon

observing z, the adversary can build a posterior probability mass

function over the inputs, denoted as p (x |z):

p (x |z) =
π (x ) · f (z |x )∑

x ′∈X π (x ′) · f (z |x ′)
. (3)

Let dP (x , x̂ ) be a function that quantifies the magnitude of the

adversary’s error when deciding that the input location was x̂
when the input location is actually x . As in the case of the average

loss Q, this function dP (·) does not necessarily need to be a metric

(e.g., it can include the user sensitivity to an adversary learning

semantic information such as in [1]). Given an output location z,
the optimal decision for the adversary in terms of minimizing the

average error is

x̂ (z) = argmin

x̂ ∈R2




∑
x ∈X

p (x |z) · dP (x , x̂ )


. (4)

The average adversary’s error, or just average error, is defined as

themean error incurred by an adversary that chooses the estimation

x̂ optimally given each observed z. Let fZ (z) =
∑
x ∈X π (x ) · f (z |x )

be the probability density function of z. Then, the average error is:

PAE ( f ,π ) =

∫
R2

fZ (z)
∑
x ∈X

p (x |z) · dP (x , x̂ (z))dz (5)

=

∫
R2

min

x̂ ∈R2




∑
x ∈X

π (x ) · f (z |x ) · dP (x , x̂ )


dz . (6)

Note that mechanisms designed with PAE inherently protect against

a strategic adversary, since the metric embeds the adversary’s esti-

mation. This metric has been used as part of the design objective

in previous works [26, 27], and as a way of comparing the per-

formance in terms of privacy of mechanisms designed with other

different privacy goals in mind [2, 5–7].

Conditional Entropy. The conditional entropy is an information-

theoretic metric that can be used to measure the adversary’s un-

certainty about the user’s real location when z is released. After

observing z, the adversary builds the posterior p (x |z) using (3). The
uncertainty of the adversary regarding the value of x given z can
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be measured as the entropy of this posterior:

H (x |z) � −
∑
x ∈X

p (x |z) · log(p (x |z)) . (7)

The conditional entropy measures the average entropy of the pos-

terior after z is released. Formally,

PCE ( f ,π ) =

∫
R2

fZ (z) · H (x |z)dz , (8)

where fZ (z) is the probability density function of z, and H (x |z) is
a function of z as defined in (7). Alternatively, using only the prior

π and the mechanism f , the conditional entropy can be written as

PCE ( f ,π ) = −
∑
x ∈X

∫
R2

π (x )·f (z |x )·log

(
π (x ) · f (z |x )∑

x ′∈X π (x ′) · f (z |x ′)

)
dz .

(9)

Note that this metric does not depend on the geography of the

problem, i.e., on the particular values of x or z. If we use the base-
two logarithm in the formula, then PCE can be interpreted as how

many bits of information the adversary needs on average to com-

pletely identify x . This metric was disregarded as a possible privacy

metric in [26] due to being uncorrelated with the average error. In

this work, we challenge such conclusion showing that considering

solely the correctness of the adversary may lead to the design of

mechanisms that offer low privacy. We show in Section 4 how using

the conditional entropy as a complementary privacy metric helps

to avoid choosing those undesirable mechanisms.

Geo-Indistinguishability. Geo-indistinguishability is an exten-

sion of the concept of differential privacy, originally a notion of

privacy in databases, to the location privacy scenario. It was origi-

nally proposed in [2] and other works have continued the research

on this line [5–7]. Formally, ϵ-geo-indistinguishability requires the

following condition to be fulfilled by a location privacy-preserving

mechanism f ,∫
A
f (z |x )dz ≤ eϵ ·dP (x,x

′) ·

∫
A
f (z |x ′)dz , ∀x ,x ′ ∈ X ,∀A ⊆ R2 .

(10)

This requirement ensures that given an areaA ⊆ R2, the probability
of reporting a point z in that area if the original location was x over

any other location x ′ within some distance around x , is similar, and

therefore x and x ′ have some degree of statistical indistinguisha-

bility. In this definition, dP (x ,x
′) is a function that quantifies how

indistinguishable x and x ′ are: smaller values of dP (x ,x
′) indicate

a higher indistinguishability, as the constraint becomes tighter. The

privacy parameter in this definition is ϵ : larger values of ϵ indicate a
looser constraint that allows f (z |x ) and f (z |x ′) to bemore different,

and therefore x and x ′ become more distinguishable. Smaller values

of ϵ force the probability density functions f (z |x ) and f (z |x ′) to
be closer, providing more privacy. Note that, if for a single input

location x there is a positive probability of reporting the output in a

region A ⊆ R2,
∫
A f (z |x )dz > 0, then that must also be true for ev-

ery other input location x ′. Also, note that geo-indistinguishability
is independent of the prior π .

The typical choice of dP (x ,x
′) in geo-indistinguishability is the

Euclidean distance [2, 5]. Many geo-indistinguishability mecha-

nisms rely on the fact that dP (x ,x
′) is a metric (specifically, in the

fact that it satisfies the triangular inequality dP (x ,x
′) ≤ dP (x ,z) +

dP (x
′,z)) to prove that they meet the condition in (10).

Although geo-indistinguishability is generally considered a pri-

vacy guarantee and not itself a metric, we can adapt it to represent

an equivalent concept to our generic metric P( f ,π ). Given a mech-

anism that provides ϵ-geo-indistinguishability, it is straightforward
to see that it is also ϵ ′-geo-indistinguishable if ϵ ′ > ϵ . Since a

smaller ϵ denotes more privacy, it makes sense to define the geo-

indistinguishability level provided by a mechanism f according to

the smallest ϵ it guarantees. Also, since we are defining P( f ,π ) as
a magnitude that grows with the protection of the users, we choose

to define our measure of geo-indistinguishability, PGI ( f ), as the
inverse of the smallest ϵ guaranteed by the mechanism. Given the

mechanism f , we write

PGI ( f ) = inf

x,x ′∈X
z∈R2

dP (x ,x
′) ·

�����
log

f (z |x )

f (z |x ′)

�����

−1

, (11)

wherewe assume by convention that log( 0
0
) = 0 and thatdP (x ,x

′) =
| |x − x ′ | |2 is the Euclidean distance. Larger values of PGI indicate

more privacy, and themechanism guarantees 1/PGI-geo-indistingui-

shability.

3 LIMITATIONS OF THE EXPECTED
ADVERSARY ERROR BASED EVALUATION

The most standard way to assess the location privacy provided by

two mechanisms has been the evaluation of the trade-off between

their average adversary error PAE and their average loss Q. The use

of the average error as yardstick for location privacy was proposed

in [26] under the general notion of correctness, and its use as a way

of comparing mechanisms was followed by many of the subsequent

works [1, 2, 5–7, 27]. The choice of distance functions dP (·) and
dQ (·) for both the average error and the average loss in these works

is mostly the Euclidean distance [1, 2, 5, 6, 27] although some of

them also consider the Hamming distance [5, 26, 27] or semantic

distances for privacy [1, 7].

In this section, we show the problems that stem from this estab-

lished 2-dimensional evaluation approach. We start by studying the

properties of mechanisms that are optimal according to these two

metrics. Then, we introduce a new mechanism that we call the coin
mechanism, and use it as an example that brings to light the flaws

of judging the privacy of a mechanism by its performance in terms

of average error and average loss.

3.1 Study of the Established Mechanism
Evaluation

We start our analysis by assuming that the choice of distance func-

tions dP (·) and dQ (·) is the same for simplicity, which is a typical

choice in related works (e.g., both are the Euclidean distance). We

denote this by dP (·) ≡ dQ (·). At the end of the section, we argue

what happens when this is not the case. We also introduce two def-

initions. First, let FQ be the set of all the mechanisms that achieve

an average loss smaller or equal than Q. Formally,

FQ �
{
f |Q( f ,π ) ≤ Q

}
. (12)

Session I3:  Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1962



Also, let F
opt
Q
⊆ FQ be the set of all mechanisms f ∈ FQ that are

optimal in terms of average adversary error, i.e.,

F
opt
Q
�
{
f | f ∈ FQ , PAE ( f ,π ) ≥ PAE ( f

′,π ) ∀f ′ ∈ FQ
}
. (13)

We call a mechanism inside F
opt
Q

optimal, since it achieves as much

privacy as possible among all the mechanisms with the same quality

loss. We state the following lemma:

Lemma 3.1. The set of optimal mechanisms with respect to the
average privacy PAE and the average loss Q is a convex polytope.

Proof. Let the privacy achieved by any mechanism in F
opt
Q

be

Popt (Q). Then, we can define this set as

F
opt
Q
= { f | PAE ( f ,π ) = Popt (Q), Q( f ,π ) ≤ Q} , (14)

and since PAE ( f ,π ) and Q( f ,π ) are linear operations with f , (14)
can be written as an intersection of half-spaces, which forms a

convex polytope. □

Note that the proof also applies to the case where dP (·) .
dQ (·) (e.g., privacy as the average Hamming error of the adver-

sary and quality loss as the average Manhattan distance). The

same outcome can be derived for the conditional entropy and geo-

indistinguishability, althoughwe leave those results out of the scope

of this work.

This lemma shows that there is a family of optimal mechanisms

that lie inside a convex polytope, instead of just a single mechanism.

All of them provide the same (maximal) privacy for the same quality

loss constraint so, in principle, they are equally useful. In what

follows, we show why this is not the case.

We start by introducing the concept of remapping. A remapping

д is a function д : R2 → R2 that maps an output z ∈ R2 to another

output z′ ∈ R2 according to the probability density function д(z′ |z).
It is well known that if we generate a mechanism f ′ = f ◦ д =∫
R2

д(z′ |z) · f (z |x )dz, then the privacy of f ′ in terms of average

error, conditional entropy or geo-indistinguishability is not smaller

than that of f . This is reasonable, as the remappingд is independent
from x , and thus it does not reveal any information about it. The

optimal Bayesian remapping is defined as follows:

Definition 3.2 (Optimal remapping). Given a mechanism f , its
optimal remapping is the one that minimizes the average loss of

the composition f ′ = f ◦ д, i.e., д(z′ |z) = δ (z′ − r (z)), where

r (z) = argmin

z′∈R2

∑
x ∈X

π (x ) · f (z |x ) · dQ (x ,z′) . (15)

This remapping assigns each location z to the location r (z) in
(15), and is used in [6] as a way of improving the utility of geo-

indistinguishability mechanisms. Now, we show that it can also

be used not only to reduce the quality loss of mechanisms but to

achieve optimal mechanisms in terms of average error privacy:

Theorem 3.3. Let д be an optimal remapping for mechanism f ,
and let f ′ be the composition f ′ = f ◦ д. If dP (·) ≡ dQ (·), then f ′ is
an optimal mechanism, i.e., f ′ ∈ F opt

Q(f ′,π )
.

The proof is provided in the Appendix.

This theorem provides a straightforward way of building an

optimal mechanism f ′ from any mechanism f . The idea is to reas-

sign each output z of f to another symbol z′ such that the average

quality loss is minimized. Doing this for every output ensures that

the quality loss cannot be further reduced, and since the distance

function used to evaluate quality loss and privacy is the same, the

best estimation the adversary can do of x is just to keep the re-

leased value. Note that the Q( f ′,π ) ≤ Q( f ,π ). This means that,

in order to find an optimal mechanism f ′ for a target quality loss

Q( f ′,π ) = Q using the remapping strategy, one has to adjust the

loss of the mechanism f (e.g., by tuning its variance if it is a noise

mechanism) until f ′ achieves the desired average loss Q.

It is straightforward to see that, if the optimal remapping for a

mechanism f is just doing nothing, then it means f is optimal:

Corollary 3.4. If the optimal remapping in (15) for a mechanism
f is д(z′ |z) = δ (z′ − z), then f is optimal for its quality loss Q, i.e.,
f ∈ F opt

Q .

This is a very convenient way of proving the optimality of a

mechanism when dP (·) ≡ dQ (·). Another way of seeing that such

mechanism is optimal, is by realizing that with this choice of met-

rics, the privacy is upper bounded by the quality loss PAE ( f ,π ) ≤

Q( f ,π ), and the upper bound is indeed achieved when an optimal

mechanism is used. We note that the fact that PAE ( f ,π ) = Q( f ,π )
for optimal mechanisms is not new, as it was already mentioned in

[2] about the mechanisms in [27].

3.2 The Coin Mechanism and the Flaws of the
Traditional Approach

We now discuss the following mechanism, which we call the coin
mechanism, and prove that it is optimal. Let z∗ be the output location
that minimizes the average quality loss of a mechanism that always

reports that location regardless of the input x . Formally,

z∗ � argmin

z∈R2

∑
x ∈X

π (x ) · dQ (x ,z) . (16)

As an example, if we measure the point-to-point loss as the mean

squared errordQ (x ,z) = | |x−z | |2
2
, then z∗ will be given by the mean

z∗ =
∑
x ∈X π (x ) ·x . If the loss is measured as the Euclidean distance,

then z∗ is the geometric median of π . Given a generic distance

function dQ (·), the optimal output location z∗ can be computed by

solving the optimization problem in (16).

Let Q
∗
be the average quality loss achieved by a mechanism

that always reports z∗ regardless of the input. We construct the

following mechanism, which we denote fcoin. First, we fix a desired
quality loss Q ≤ Q

∗
and compute α � 1 − Q/Q∗. Then, we build

fcoin (z |x ) = α · δ (z − x ) + (1 − α ) · δ (z − z∗) , (17)

where z∗ is in (16). This mechanism can be easily explained and

implemented simulating a coin flip. We first set our desired quality

loss Q ≤ Q
∗
. Note that it would not make sense to fix Q to a value

larger than Q
∗
since we would not achieve more privacy by doing

so; a mechanism that always reports z∗ and has an average loss

of Q
∗
yields the highest privacy allowed by π . Then, we compute

α = 1−Q/Q∗ and set it as the probability that our coin shows heads.

Assume we are interested in querying about a location x ∈ X, so
we flip the coin. If the coin shows heads, then we report our desired

Session I3:  Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1963



location z = x . If the coin hits tails, then we report z∗ regardless
of the value of x . It is easy to see that the average loss of (17) is

indeed Q, by the linearity of this metric with f .

Proposition 3.5. The coin mechanism obtained for quality loss
Q achieves the maximum average adversarial error possible given a
constraint on the average quality loss, i.e., fcoin (Q) ∈ F

opt
Q , if both

are measured with the same distance function dP (·) ≡ dQ (·).

The proof is straightforward using the result in Corollary 3.4.

We now reason why, even though the coin mechanism is optimal

by the standards that have been used to evaluate privacy in prior

works (i.e., PAE and Q), this mechanism is hardly desirable for any

user. When the coin shows heads, the adversary observes z. If
z , z∗, the adversary knows for sure that the user was interested

in querying about x = z and therefore the user has no privacy

at all. In this case, for privacy issues, there was no point in using

the mechanism. When the coin shows tails, the user is mapped

far away to z∗. The adversary observes z∗ and has no idea where

the user is, besides the prior π that was already known by her. In

this case, the privacy of the user is maximal, but the quality loss is

very large, since z∗ is almost always very far away from the user.

The quality loss is so large that the utility the user gets from this

realization of the mechanism can be considered zero, so we can

say that there was no point in using the mechanism in this case

either. We have reached the issue we mentioned earlier: there is a

mechanism, optimal by classic location privacy standards [26], that

is useless both from the privacy and the quality loss point of view.

This shows that there is a fundamental problem with the classic

way that has been used to evaluate location privacy mechanisms.

3.3 The reach of this problem
One could think that the problem of this bi-dimensional evaluation

approach lies on the fact that one cannot use the same metric

to measure quality loss and privacy, e.g., the Euclidean distance.

However, even with different metrics, mechanisms similar to the

coin can be derived. For example, if privacy is the average mean

squared error and quality loss is measured as the averageManhattan

distance (i.e., the l1 norm), a deterministic mechanism that consists

on reporting the real location on most of the places and mapping to

the other side of the Earth in some others is optimal, due to the fact

that the MSE grows quadratically with the distance, while the l1
(or any lp norm) does not. In our evaluation, we show an example

where a mechanism optimized for PAE and Q with a different pair

of distance functions dP (·) , dQ (·) suffers from the coin issue. The

problem does not arise from the particular distance functions dP (·)
and dQ (·) one uses to evaluate the average error and loss, but from

the fact that these metrics are averages, and as such they do not

restrict the minimum privacy of a single use of the mechanism or

the maximum quality loss of the mechanism, they just ensure that

the average is good. We believe that, while evaluating the average

behavior of a mechanism is not an erroneous notion per-se, it must

be handled with care to avoid undesirable results, such as the coin

mechanism.

As a concluding remark, we would like to note that we have

shown this problem assuming that the outputs of the mechanism

and the values estimated by the adversary are points in R2, for

notational simplicity and generality. An important fraction of pre-

vious works [1, 5, 7, 26, 27] assume a discrete model where the set

of output valuesZ and estimated values
ˆX are the centers of a grid

over the map or points of interest such asX. In these scenarios, one

can derive a similar mechanism, where hitting tails means that the

user reports the location out of the allowed ones that minimizes

the average error. That mechanism can also be shown to be optimal

in terms of average error and loss, although it is not a desirable

mechanism for any user. For completeness, we also evaluate this

scenario in our experiments. The same applies to the case where

instead of having discrete input locations X, users can report any

point in R2 (for example, a tracking or a date finder application).

The coin mechanism in (17) can be applied directly to this scenario,

and it can be shown to be optimal (changing the summations over

X to integrals). It is clear that using the traditional evaluation ap-

proach has flaws in all these scenarios and we must find a solution

to this.

4 COMPLEMENTARY MECHANISM
EVALUATION CRITERIA

So far we have seen that evaluating mechanisms based solely on the

average error and quality loss does not reflect whether a mechanism

is actually more beneficial than another one, due to the fact that

some undesirable mechanisms are deemed optimal by this approach.

In this section, we propose a solution to this evaluation procedure

that consists in incorporating complementary evaluation criteria

that add different perspectives to the performance of a mechanism

in terms of privacy and quality loss.

We propose two metrics, that are not intended to be used as a re-

placement of the average error and average loss but in combination

with them, adding new dimensions to the privacy vs. quality loss

trade-off. The first metric we propose is the conditional entropy, a

privacy metric that helps detecting inconsistent mechanisms such

as the coin. The second one is the worst-case loss, a quality loss

metric that provides a way of staying out of mechanisms that might

yield no utility for the user at all. We comment on the implemen-

tation of mechanisms that take these metrics into consideration,

and propose a mechanism that maximizes the conditional entropy

while being optimal in terms of average error and quality loss. We

finish the section describing other alternative privacy metrics.

4.1 The Conditional Entropy as a
Complementary Metric

4.1.1 Usefulness of the Conditional Entropy. One of the prob-
lems of the coin mechanism can be seen from an information-

theoretic point of view. The coin is a binary mechanism, in the

sense that each input location can only be mapped to itself or to

a fixed point in the map. From the adversary’s perspective, this

means that if the coin shows heads the adversary has no uncer-

tainty at all about the user’s input location, and if it shows tails

the uncertainty is maximal. The conditional entropy can be used

to detect these scenarios where the adversary has no uncertainty

about x . Recalling (8), the conditional entropy can be written as

PCE ( f ,π ) =

∫
R2

fZ (z) · H (x |z)dz , (18)
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where H (x |z) � −
∑
x ∈X p (x |z) · log(p (x |z)) is the entropy of the

posterior after a location z is released. It is clear that (18) is an

average over the entropy of all the posteriors. However, contrary

to the average error, the conditional entropy is an average over

functions H (z |x ) that are strictly concave with f . This means that

in order to perform well in terms of the conditional entropy, a

mechanism must spread its uncertainty among every posterior

p (x |z) instead of achieving maximal uncertainty with some outputs

and zero uncertainty with others, as the coin does.

Another interesting property of the entropy is that it is not a

geographical metric. The entropy of a posterior H (x |z) does not
depend on the coordinates of the input locations or the semantic

information tied to them (e.g., if the location is a hospital or a

club). The entropy only depends on how evenly the posterior is

distributed among the input locations. This probabilistic aspect of

privacy, defined as uncertainty in [26], cannot be captured by other

privacy notions such as correctness (e.g., the average adversary

error). Due to the geographic nature of the location privacy problem,

we cannot judge a mechanism based solely on its entropy. However,

using it as an additional dimension of privacy gives a more complete

picture of the performance of a mechanism.

We would like to point out that this notion of uncertainty pro-

vided by the entropy was disregarded as a reasonable privacy metric

in [26] based on the fact that, since it is not correlated with the

adversary error, it does not capture how hard is for the adversary

to estimate the real input location. We claim that it is indeed the

fact that the entropy is not correlated with the adversary error

which gives it a special value as a complementary metric of privacy.

The same way that semantic location privacy metrics have been

proposed together with geographic metrics [1, 7] to give different

perspectives on the problem, the conditional entropy is a tool that

gives valuable information about the protection provided by the

mechanism not captured by the average error.

We would like to make two remarks regarding the entropy. First,

the conditional entropy PCE ( f ,π ) must be taken into account to-

gether with the mutual information I (X ;Z ) to get a full picture of

the information-theoretic properties of the mechanism. The condi-

tional entropy represents the average amount of uncertainty the

adversary has about the real location x after observing z. A small

value of conditional entropy indicates low uncertainty, and there-

fore we might get the impression that a mechanism with such small

value provides low privacy. However, it might have been possible

that the entropy of the prior was already low, and therefore even if

the mechanism was perfect from the privacy point of view (i.e. it

did not reveal any information, I (X ;Z ) = 0), there is nothing any

mechanism could have done to avoid having a low conditional en-

tropy. We must therefore take into account the mutual information

or, equivalently, the entropy of the prior π , when interpreting the

value given by the conditional entropy.

The second remark is that the conditional entropy must not be

tailored to a particular adversary with a possibly wrong knowledge

of the prior π . In this work, we have assumed that the prior π
models the choice of input locations by the users, and therefore the

correct way of computing the entropy is by using π in the formulas

above. This entropy must be regarded as the uncertainty that a very

strong passive adversary with full knowledge of the behavior of

the users would have when observing z.

4.1.2 Implementation of Mechanisms with large Conditional En-
tropy. We now look for a mechanism that is optimal in terms of the

average error and average loss, i.e., a mechanism in F
opt
Q

, that also

achieves as much conditional entropy as possible. This problem

is equivalent to the rate-distortion problem [8] of finding a pdf

f (z |x ) that minimizes the mutual information between x and z
subject to a quality loss constraint, which can be solved iteratively

by implementing the Blahut-Arimoto algorithm. For this, we must

first restrict our output to a discrete alphabetZ for computational

reasons. The more points we assign to this alphabet and the more

evenly we cover the space where we want to compute the mech-

anism with them, the better its performance will be. Since both

the input and output domains are discrete, the mechanism is de-

termined by the probabilities of reporting z when the user is in x ,
that we denote by p (z |x ) here for clarity. We start with an initial

mechanism, for example uniform mapping p (z |x ) = 1/|Z|. Then,

we perform the following steps:

(1) We compute the probability mass function of each the output:

PZ (z) =
∑
x ∈X

π (x ) · p (z |x ) , ∀z ∈ Z . (19)

(2) We update the mechanism as follows:

p (z |x ) = PZ (z) · e
−b ·dQ (x,z ) , ∀x ∈ X,z ∈ Z. (20)

(3) We normalize the mechanism:

p (z |x ) =
p (z |x )∑

z′∈Z p (z′ |x )
, ∀x ∈ X,z ∈ Z. (21)

We skip this step for the outputs z with PZ (z) = 0.

(4) We repeat these steps until the change in the probabilities

p (z |x ) is below some threshold.

The value of b in the second step needs to be tuned to change the

quality loss of the mechanism Q( f ,π ) and cannot be pre-computed

to achieve an exact value of average loss. Larger values of b yield

mechanisms with less quality loss, and therefore less average error

privacy and less conditional entropy. Finally, we obtain our mech-

anism f (z |x ) by applying the optimal remapping to the discrete

mechanism defined in X → Z by the probabilities p (z |x ). This
ensures that the resulting mechanism is optimal from the adversary

error privacy point of view.

We make two remarks regarding this algorithm. The first one

is about its computational cost. The operations in the three steps

above are not expensive as they only include multiplications and

additions. The number of elements we need to compute in order

to build p (z |x ) is N � |X| · |Z|. The first step above consists of

N products and additions. In the second step e−b ·dQ (x,z )
can be

precomputed as b, X andZ do not change during the algorithm, so

we only have to make N multiplications, and in the third step we

compute |X| values of
∑
z′∈Z p (z′ |x ) and then perform N divisions.

It is clear then that the cost grows with the sizes of X and Z.

However, the algorithm only needs to be computed once for all the

users, which can be done in the cloud, and even if the prior π varies

we can use a previously computed algorithm as initialization of the

iteration above to get a fast update of the mechanism.

The second remark is that the mechanism produced by this

algorithm also satisfies 2b-geo-indistinguishability (the proof is

in the Appendix). This is a byproduct property that was not part
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of the reasoning behind the algorithm and it does not imply that

the conditional entropy and geo-indistinguishability are related.

In fact, these are fundamentally different notions: the former is an

average metric that only considers the probabilistic (and not the

geographic) aspect of the problem, while the latter is a worst-case

metric that also considers the geography of the problem. Also, if

we truncate the optimal conditional entropy mechanism, we obtain

a mechanism that is almost optimal in terms of conditional entropy

but does not provide any level of geo-indistinguishability.

We evaluate this mechanism and others with respect to the

conditional entropy and the traditional metrics in Section 5.

4.2 The Worst-Case Quality Loss as a
Complementary Metric

4.2.1 Usefulness of theWorst-CaseQuality Loss. After analyzing
the privacy problems of the coin mechanism, we now turn to the

utility point of view. The great drawback of the coin mechanism

from the quality loss perspective is that if the coin shows tails then

the server’s response to the user’s query will most likely be useless

due to the great quality loss incurred by reporting z∗. We can think

of many applications where, if the Euclidean distance between x
and z is larger than a certain value, the user gets literally nothing

from the server response. For example, if we are close to a point of

interest x and we want to find a nearby hospital, querying about

a location z in another city will likely return a useless response

from the server. In that case, we could think of generating another

output and query the server again because we did not get what

we were hoping for. By doing so, the privacy properties of the

mechanism change, and in the case of the coin it is equivalent to

always revealing our true location.

A solution to this utility issue consists in imposing a worst-case

quality loss constraint on the mechanism, i.e.,

Q
+ ( f ,π ) = max

x,z
π (x )>0
f (z |x )>0

dQ (x ,z) ≤ Q
+
max . (22)

To put it simply, wewant amechanism that releases output locations

within Q
+
max from the input location, i.e., a bounded mechanism. The

upper bound Q
+
max would be tuned depending on the application in

question, so that a user never gets a worthless result. When used

together with the average error and the average loss, the worst-

case loss metric reveals those mechanisms we might want to avoid

using. It is easy to see that the coin mechanism, although optimal in

terms of PAE and Q, gives a very large value of Q
+ ( fcoin,π ), which

manifests its uselessness.

An interesting consequence of setting a maximum worst-case

quality loss constraint when designing a mechanism is that it can

simplify the computational cost of the protocol that implements

or computes it. For example, take the case of the works in [5, 27],

where authors assume a discrete set of output locations Z and

propose to solve a linear program to find an optimal mechanism (in

terms of average error and geo-indistinguishability, respectively).

The constraint in (22) reduces the amount of variables that need

to be computed in these programs (only a subset ofZ are possible

outputs for each input x ∈ X), as well as the amount of constraints,

which in turn decreases drastically the computational cost of the

problem. In other implementations of mechanisms, where f is not

explicitly derived but computed by adding (continuous) noise and

then computing a remapping using the posterior (c.f. [6]), having a

worst-case quality loss constraint reduces the amount of inputs that

need to be considered when computing the posterior, effectively

reducing the computational cost of the algorithm.

Finally, we would like to note that this metric exposes a basic

problem with geo-indistinguishability mechanisms. As mentioned

before, when using a geo-indistinguishability mechanism, if a user

with input location x has non-zero probability of reporting z ∈ A ⊆
R2, then when the input location is any other x ′ ∈ X she must

assign a non-zero probability to reporting z ∈ A. This means that for

any geo-indistinguishable mechanism f , the worst-case quality loss
metric Q

+ ( f ,π ) gives a huge value and the probability of getting a

useless response from the server would be larger than zero. One

could argue that, given the nature of the geo-indistinguishability

guarantee, the probability of reporting a location z far from x is

low and decreases exponentially with the distance between them,

so we could disregard such an event from happening. However, if

we really truncate the mechanism to ensure that the probability of

going very far is zero, then the mechanism does not provide any

geo-indistinguishability guarantee at all. It is then clear that geo-

indistinguishability mechanisms are problematic from the quality

loss point of view, and if a user gets zero utility from a realization

of the mechanism she cannot re-use it immediately, otherwise the

privacy guarantee is violated. We comment on a possible solution

to this problem below.

4.2.2 Implementation of Mechanisms with Worst-Case Quality
Loss Constraint. Nowwe set the task of designing a mechanism that

achieves a good value of worst-case quality loss or, alternatively,

that ensures that the worst-case quality loss is below some bound

Q
+ ( f ,π ) ≤ Q

+
max. The straightforward approach, given a mecha-

nism f , is to truncate the mechanism (for example, by generating

samples of z until one of them ensures that dQ (x ,z) ≤ Q
+
max, and

then releasing that z). This approach is reasonable, but one must

take into account that the privacy properties of this new truncated

mechanism f ′ are not the same as the original mechanism f , and
therefore they must be re-evaluated.

Another issue that concerns the design of bounded mechanisms

is that a deterministic remapping (15) might violate a Q
+
con-

straint (i.e., even if f guarantees the Q
+
constraint, a composition

f ′ = f ◦ д might not guarantee it). Finding a bounded mechanism

that achieves as much privacy as an unbounded one in F
opt
Q

can

be an impossible task, due to the fact that the polytope defined by

Q
+ ( f ,π ) ≤ Q

+
max might be disjoint with F

opt
Q

. However, we can

lose some privacy with respect to an optimal unbounded mecha-

nism in exchange for a better worst-case quality loss guarantee by

enforcing the bounding constraint Q
+ ( f ,π ) ≤ Q

+
max.

4.3 Other Complementary Metrics
Now, we finally outline other metrics that can be used together

with the average error and average quality loss to assess the privacy

of mechanisms, and leave the development of mechanisms taking

them into account as subject for future work.

Geo-indistinguishability (10) inherently ensures that an input

locationx is mapped to a nearby locationwithmore probability than
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Figure 1: Two mechanisms that perform equally in the PAE
vs. Q plane, might behave very differently in practice. This
is revealed by considering amulti-dimensional characteriza-
tion of privacy.

to a far location, which solves the privacy issue we illustrated with

the coin mechanism. However, this privacy notion is not compatible

with a worst-case quality loss constraint by definition, due to the

fact that f (z |x ) > 0 implies f (z |x ′) > 0, ∀x ′ ∈ X. A possible

approach to solve this utility issue of geo-indistinguishability can

be to relax its definition, allowing a small tolerance value ∆ ≪ 1,

i.e.,∫
A
f (z |x )dz ≤ eϵ ·dP (x,x

′) ·

∫
A
f (z |x ′)dz+∆ ,

∀x ,x ′ ∈ X ,

∀A ⊆ R2 .
(23)

Other interestingmetrics to assess the privacy of mechanisms are

those based on the worst-case output. For example, the worst-case

output average error, defined as

PWC-AE ( f ,π ) = min

z∈R2
fZ (z )>0

min

x̂ ∈R2




∑
x ∈X

π (x ) · f (z |x ) · dP (x , x̂ )


, (24)

measures the average error of the adversary’s estimation in the

most vulnerable output. When applied to the coin mechanism, this

metric would reveal its privacy issue, since PWC-AE ( fcoin,π ) = 0.

On the other hand, the worst-case output conditional entropy,

defined as

PWC-CE ( f ,π ) = min

z∈R2
fZ (z )>0

∑
x ∈X

p (x |z) · logp (x |z) , (25)

reveals the uncertainty the adversary has after observing z in the

worst case (for the user). If there is any output value z that leaks
a lot of information about the real location x (as it happens with

every z , z∗ in the coin mechanism), this metric highlights it.

The metrics introduced throughout this section add additional

dimensions to the privacy and quality loss evaluation procedure,

revealing features not captured by the standard 2-dimensional ap-

proach based on the average error and the average loss. An example

of this new characterization of privacy is shown in Fig. 1 where

we show the performance of two mechanisms as a 3-D plot of PAE,

PCE and Q, together with the projections in the PAE-Q and PCE-

Q planes. In the next section, we show similar examples (albeit

with 2-dimensional plots, for clarity) of particular location privacy

preserving mechanisms.

5 EVALUATION
In this section, we assess the performance of different location

privacy-preserving mechanisms with respect to different privacy

notions. Our experiments confirm that relying on a single metric

for evaluation can lead to an erroneous assessment of the privacy

provided by a mechanism. We divide our evaluation into two parts.

First, we consider the continuous scenario introduced in Section 2

and use real datasets to evaluate the performance of unbounded

mechanisms, and of mechanisms that guarantee a maximum worst-

case quality loss. Second, we consider a simpler scenario where

the locations can only belong to a discrete set, and evaluate other

defenses that have been proposed in the literature. All our experi-

ments are performed using Matlab.
1

5.1 Continuous Scenario
For this part of the evaluation, we consider that users are interested

in querying about Points of Interest (PoIs) in a discrete set but

they can report any point in R2 to the server (see Section 2). We

also consider that the adversary performs her estimation in R2. We

build the set of PoIs using the Gowalla
2
and Brightkite

3
real-world

datasets. Following the approach of the finite domain evaluation

in [6], we restrict the PoIs to a finite region of San Francisco area

between the latitude coordinates (37.5395 and 37.7910) and longi-

tude (−122.5153 and −122.3789). We choose the San Francisco area

because it contains a big density of points of interest and a large

number of user check-ins, which ensures that the data is rich and

representative of what one would expect from users living in the

area. On the other hand, considering a finite region allows us to

evaluate mechanisms whose computational cost increases with the

number of points of interest, such as the exponential and exponen-

tial posterior mechanisms. We transform the PoIs into Cartesian

coordinates in kilometers using the Haversine formula with respect

to the center of the region. We end up with |X| = 9 701 PoIs for

Gowalla and |X| = 8 898 for Brightkite, distributed in an area of

roughly 28km × 12km. As example, the distribution of PoIs for

Gowalla is shown in Fig. 2. For each dataset, we compute the prior

π by counting how many users check-in on each point of interest

and normalizing the resulting histogram. The obtained priors are

shown in Fig. 3. We see that, in both datasets, there is a single

point of interest xtop that draws a lot of attention from the users

(π (xtop) ≈ 0.04 in Gowalla and π (xtop) ≈ 0.23 in Brightkite).

We evaluate six location-privacy preserving mechanisms, mea-

suring their performance in terms of the average adversary error

(PAE), conditional entropy (PCE) and geo-indistinguishability (PGI)

for different values of average quality loss (Q). We always use the

Euclidean distance for the quality loss dQ (x ,z) = | |x − z | |2, and
therefore the optimal remapping in (15) is obtained by computing

the geometric median of the posterior. We compute this median

using Weiszfeld’s iterative method. We first evaluate the mecha-

nisms without any bounds on their worst-case quality loss, and

then imposing such constraint.

The first three mechanisms we evaluate consist in adding noise

in the continuous plane and then remapping them. We generate

1
https://www.mathworks.com/products/matlab.html

2
https://snap.stanford.edu/data/loc-gowalla.html

3
https://snap.stanford.edu/data/loc-brightkite.html
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Figure 2: Points of interest in the
San Francisco region taken from
Gowalla dataset.
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Figure 3: Priors π for Gowalla (left) and Brightkite (right) datasets.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Figure 4: Conditional entropy vs. average quality loss for Gowalla (left) and Brightkite
(right) datasets.
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Figure 5: Geo-Ind Privacy PGI vs. average quality loss for Gowalla (left) and Brightkite
(right) datasets.

this noise in polar coordinates, sampling θ from a uniform distribu-

tion in (0, 2π ) and the radius r from a distribution specified below.

Since for these algorithms we cannot find a closed form expression

for f (z |x ), we evaluate them empirically. To this end we sample

π to obtain x , we obtain z adding the noise and performing the

remapping, and then we measure privacy according to each metric.

We report averages over 5 000 repetitions. These mechanisms are:

• [Lap] Planar Laplacian noise plus remapping [6]. To gen-

erate the radius of the Laplace noise, we first sample p uni-

formly in the interval (0,1). Then, following [2], we set

r = 1

ϵ

(
W−1

( p−1
e

)
+ 1

)
whereW−1 is the −1 branch of the

Lambert W function. We test different values of ϵ from

0.4km−1 to 40km
−1
, so that the average loss varies between

0.05 and 5km.

• [Gau] Bi-dimensional Gaussian noise plus remapping.

To generate Gaussian noise, we sample the radius from a

Rayleigh distribution, varying its mean from 0.05 to 5km.

• [Cir] Uniform circular noise plus remapping. In this case,

we sample the radius r ∈ (0,R) from f (r ) = r/R2, where R
is the maximum radius of the circle, which we vary from

0.075km to 7.5km. This ensures an average loss that varies

between 0.05 and 5km.

Second, we evaluate three mechanisms that output values in a

discrete set, whose conditional probability density functions f (z |x )
can be computed arithmetically. This allows us to exactly determine

their privacy and quality loss performance. These mechanisms are:

• [Coin] The coin mechanism, explained in Sect. 3.2. We

vary its average loss Q from 0 to 2.

• [Exp] The Exponential mechanism plus optimal remap-

ping. The exponential mechanism is a general differential

privacy technique that can be applied to provide geo-indistin-

guishability [10]. We set Z = X and set a parameter b,
then compute the probability of mapping each input x to

an output z as p (z |x ) = a · e−b ·dQ (x,z )
, where a ensures

that

∑
z∈Z p (z |x ) = 1. Then, we apply an optimal remap-

ping to the outputs of this function and obtain f (z |x ). In the

experiments, we vary b from 0.4km−1 and 40km
−1
.

• [ExPost] Exponential posterior mechanism, proposed

in Section 4.1.2. In our experiments we set the discrete output

alphabet of this algorithm toZ = X.

5.1.1 Results for unbounded mechanisms (no Q+ constraint).
When the worst-case quality loss is not constrained, the optimal

remapping ensures that all mechanisms are optimal in terms of
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Figure 6: Average error vs. average quality loss
for different bounded mechanisms.
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Figure 7: Conditional entropy vs. average qual-
ity loss for different bounded mechanisms.
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Figure 8: Semantic map
of the discrete synthetic
scenario.

average error, i.e., PAE = Q (see Fig. 11 in the Appendix). This shows

that the optimal remapping applied to any mechanism achieves an

optimal performance, whether it was Laplacian noise or a binary

selection of a location such as Coin, as we proved in Sect. 3.

Figure 4 shows the mechanisms’ performance in terms of con-

ditional entropy PCE, where the horizontal black line represents

the maximum entropy achievable, i.e., the entropy of the prior π .
Unsurprisingly, ExPost outperforms the rest of the mechanisms, as

it is optimized with respect to this metric. The relative improvement

of ExPost with respect to the other algorithms is slightly better in

Brightkite than in Gowalla. This is due to the fact that in Brightkite

the most frequent PoI is more popular than in Gowalla (see Fig. 3),

and thus performing well in this location is crucial to achieve a

good overall privacy level in Brightkite. The iterative structure of

ExPost allows this mechanism to refine its performance and be

more effective than the rest of the mechanisms around this PoI. We

note, however, that this refinement comes at the price of an increase

in computational cost. Overall, all the mechanisms achieve a similar

performance in terms of conditional entropy, except for the coin,

that performs poorly. This reinforces the critique in Sect. 3.2: even

though Coin is optimal in terms of the average adversary error,

measuring its performance in terms of conditional entropy reveals

its privacy flaws.

Figure 5 shows the mechanisms’ performance in terms of geo-

indistinguishability PGI ( f ) (we recall that PGI ( f ) = 1/ϵ), only for

Lap, Exp and ExPost, as these are the only algorithms that guaran-

tee this property. As already seen in [6], the Laplace noise outper-

forms the exponential mechanism, and ExPost performs similar to

the latter.

5.1.2 Results for bounded mechanisms. We now impose a worst-

case quality loss constraint of Q
+
max = 1.5km to the mechanisms

(as a reference, we show a circle of radius 1.5km in Fig. 2). To

implement this constraint in the mechanisms, we truncate their

output at 1.5km and then apply the optimal remapping that respects

the worst-case loss constraint. We do this by solving the problem

in (15) with constraints. We do not evaluate the coin mechanism in

this scenario, since it almost always violates the Q
+
constraint.

The results for the average adversary error as Euclidean distance

are shown in Fig. 6. As expected, the mechanisms obtained after the

remapping in this scenario are not necessarily optimal. We see that

ExPost achieves a result that is close to the optimal mechanism

in the unbounded case, while the other mechanisms achieve less

average privacy. We conjecture this is due to the iterative nature

of ExPost, that refines its performance, while the other mecha-

nisms are not optimized regarding the worst-case loss constraint.

Again, ExPost achieves a wider advantage in Brightkite for the

same reason explained above.

Figure 7 shows the performance of the bounded mechanisms in

terms of conditional entropy. The results are similar to those in the

unbounded scenario, with ExPost outperforming the others with

a slightly wider advantage in this case. As bounded mechanisms

do not achieve geo-indistinguishability, we do not evaluate the

performance with respect to this metric in this scenario.

5.2 Discrete scenario
We now consider a simple synthetic scenario and evaluate the

optimal mechanisms obtained following the method by Shokri et. al

[27]. In this work, the authors propose a linear program that finds

a mechanism f inside the polytope of optimal mechanisms for PAE

given a constraint Q, i.e., f ∈ F opt
Q

. This approach is very versatile,

as it can be computed for any pair of distance functions dP (·) and
dQ (·). We set our synthetic scenario under the assumptions of that

work: the input and output alphabets are discrete and identical

X = Z, and the adversary can only estimate locations inside that

same alphabet
ˆX = X. For simplicity, we consider that the set

of locations in X are the centers of the cells that make a 5 × 5
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Figure 9: Performance of Shokri et. al’s algorithm optimized for the adversary error in terms of Euclidean distance, compared
to the coin mechanism and exponential posterior mechanism.
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Figure 10: Performance of Shokri et. al’s algorithm optimized for the adversary error in terms of semantic distance, compared
to the coin mechanism and the exponential posterior mechanism.

square grid and assign a tag to each location that can be “Home”,

“Park”, “Shop” or “Café”, as depicted in Fig. 8. We consider that the

prior is uniform π (x ) = 1/25 , ∀x ∈ X. We measure the point-wise

loss as the Euclidean distance dQ (x ,z) = | |x − z | |2 and consider

two point-wise metrics of privacy: the Euclidean distance and a

semantic distance defined as the Hamming distance between tags,

i.e., dP (x ,z) = 0 if Tag(x ) = Tag(z), and dP (x ,z) = 1 otherwise.

Thismetric is similar to the semanticmetric in [1]. The average error

computed using this distance function represents the probability

that an adversary guesses incorrectly the tag of x .
We evaluate ExPost and Coin together with the optimal mecha-

nism proposed in [27]. For the latter, we solve the linear program

to find optimal mechanisms in terms of maximizing PAE using the

Euclidean distance (Fig. 9) and the semantic distance we defined

(Fig. 10). As expected, the optimalmechanisms (Shokri et. al) achieve

the optimal privacy when evaluated using the adversary’s error for

which they are optimized (Figs. 9a and 10b), but not when evalu-

ated against a different metric (Figs. 9b and 10a). ExPost and Coin
achieve maximum privacy in terms of Euclidean distance, as before,

but not in terms of semantic distance. This example emphasizes

that optimizing a mechanism with respect to a privacy metric may

provide very bad performance with respect to other privacy criteria.

This experiment also shows another important idea: even though

the solutions of the linear program both achieve approximately the

same performance in terms of average error (optimal in Figs. 9a

and 10b, suboptimal in Figs. 9b and 10a), they exhibit a radically

different behavior in terms of conditional entropy. Indeed, using the

mechanism computed with the simplex algorithm (a mechanism at

a vertex of F
opt
Q

), the adversary has much less uncertainty about x

on average than if the user had implemented a mechanism from

the interior of the polytope. This difference in entropy is also what

allows us to tell apart a mechanism such as ExPost from Coin. Note
that the mechanism computed by solving the linear program with

the simplex algorithm performs even worse than the coin in terms

of entropy, illustrating the dangers of optimizing privacy in only

one dimension.

6 CONCLUSIONS
In this work, we have demonstrated the problems of using a single

privacy metric as indicator of the performance of location privacy

preserving mechanisms. We have proven that there is more than

one optimal protection mechanism in terms of maximizing the av-

erage adversary error for a given average quality loss, and that the

family of mechanisms that fulfill such condition behave differently

in terms of other privacy metrics. Thus, optimizing defenses with

only one privacy metric in mind may lead to mechanisms that offer

poor protection in other dimensions of privacy. To avoid selecting

underperforming mechanisms we propose the use of complemen-

tary criteria to guide the choice. We provide two example auxiliary

metrics: the conditional entropy and the worst-case loss. We pro-

pose an optimal mechanism with respect to the former, and provide

means to implement mechanisms according to the latter.

We evaluate the mechanisms, comparing them to previous work,

on two real datasets. Our experiments confirm two important ideas:

first, that we cannot find a mechanism that performs optimally with
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respect to every privacy metric. Second, that even if a mechanism

performs well in a particular metric it does not imply that it is

necessarily beneficial for the user. Our findings reveal the need

to take a step back in mechanism design to integrate privacy as a

multi-dimensional notion, in order to avoid solutions that provide

a false perception of privacy.

A APPENDIX
A.1 Proof of Theorem 3.3
In order to prove this result, first notice that, when dP (·) ≡ dQ (·),

the quality loss Q is an upper bound of privacy PAE:

PAE ( f ,π ) =

∫
R2

min

x̂ ∈R2




∑
x ∈X

π (x ) · f (z |x ) · dP (x , x̂ )


dz

≤

∫
R2




∑
x ∈X

π (x ) · f (z |x ) · dQ (x ,z)


= Q( f ,π ) , (26)

Now, assume that f ′ = f ◦ д, and therefore

z = argmin

z′∈R2

∑
x ∈X

π (x ) · f ′(z |x ) · dQ (x ,z′) . (27)

The optimal adversary estimation of x given z given in (4) can

be written as

x̂ (z) = argmin

x̂ ∈R2

∑
x ∈X

π (x ) · f ′(z |x ) · dP (x , x̂ ) . (28)

We see that sincedP (·) ≡ dQ (·) the optimal adversary estimation

is doing nothing, i.e., x̂ (z) = z. This implies that PAE ( f
′,π ) =

Q( f ′,π ), and since we have achieved the upper bound on privacy

given in (26), f ′ is optimal.

A.2 Geo-indistinguishability of the posterior
exponential mechanism.

We recall that the geo-indistinguishability guarantee requires the

following condition to be fulfilled (now written for discrete mecha-

nisms, where p (z |x ) denotes the probability of reporting z when
the original location is x ):

p (z |x ) ≤ eϵ ·dP (x,x
′) · p (z |x ′) , ∀x ,x ′ ∈ X, z ∈ Z , (29)

where dP (x ,x
′) is the Euclidean distance.

The last iteration of the ExPost algorithm in 4.1.2 returns a

mechanism that can be written for a particular input x and output

z as

p (z |x ) =



PZ (z ) ·e−b ·dQ (x ,z )∑
z′∈Z PZ (z′) ·e−b ·dQ (x ,z′) if PZ (z) > 0 ,

0 , if PZ (z) = 0 .
(30)

where dQ (x ,z) is the Euclidean distance. In the second case, the

geo-indistinguishability guarantee is trivially achieved since given

any pair of input locations x ,x ′ ∈ X, p (z |x ) = p (z |x ′) = 0. For the

first case, we use the triangular inequality dQ (x ,z) + dQ (x ′,z) ≥
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Figure 11: Average error vs. average quality loss for different
unbounded mechanisms.

dQ (x ,x ′) to write

p (z |x ) =
PZ (z) · e

−b ·dQ (x,z )∑
z′∈Z PZ (z′) · e

−b ·dQ (x,z′)
(31)

≤
PZ (z) · e

b ·dQ (x,x ′) · e−b ·dQ (x ′,z )∑
z′∈Z PZ (z′) · e

−b ·dQ (x,z′)
(32)

≤
PZ (z) · e

b ·dQ (x,x ′) · e−b ·dQ (x ′,z )∑
z′∈Z PZ (z′) · e

−b ·dQ (x,x ′) · e−b ·dQ (x ′,z′)
(33)

=
PZ (z) · e

−b ·dQ (x ′,z )∑
z′∈Z PZ (z′) · e

−b ·dQ (x ′,z′)
· e2b ·dQ (x,x ′)

(34)

=e2b ·dQ (x,x ′) · p (z |x ′) , (35)

which satisfies the geo-indistinguishability for ϵ = 2b or PGI = 1/2b,
if dQ (·) is the Euclidean distance. This concludes the proof.

A.3 Performance of the unbounded
mechanisms in terms of the average error

When the average error (Euclidean) and the average quality loss

(Euclidean) are used to evaluate the performance of the mechanisms

described in Section 5, we achieve the trivial result PAE = Q. This

is shown in Fig. 11 for completeness.
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