
BBA+: Improving the Security and Applicability of
Privacy-Preserving Point Collection

Gunnar Hartung
∗

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

gunnar.hartung@kit.edu

Max Hoffmann
†

Ruhr-Universität Bochum

Horst Görtz Institute for IT-Security

Bochum, Germany

max.hoffmann@rub.de

Matthias Nagel
‡

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

matthias.nagel@kit.edu

Andy Rupp
§

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

andy.rupp@kit.edu

ABSTRACT
Black-box accumulation (BBA) has recently been introduced as a

building-block for a variety of user-centric protocols such as loyalty,

refund, and incentive systems. Loosely speaking, this building block

may be viewed as a cryptographic “piggy bank” that allows a user

to collect points (aka incentives, coins, etc.) in an anonymous and

unlinkable way. A piggy bank may be “robbed” at some point by a

user, letting her spend the collected points, thereby only revealing

the total amount inside the piggy bank and its unique serial number.

In this paper we present BBA+, a definitional framework ex-

tending the BBA model in multiple ways: (1) We support offline

systems in the sense that there does not need to be a permanent

connection to a serial number database to check whether a pre-

sented piggy bank has already been robbed. (2) We enforce the

collection of “negative points” which users may not voluntarily

collect, as this is, for example, needed in pre-payment or reputation

systems. (3) The security property formalized for BBA+ schemes is

stronger and more natural than for BBA: Essentially, we demand

that the amount claimed to be inside a piggy bank must be exactly

the amount legitimately collected with this piggy bank. As piggy

bank transactions need to be unlinkable at the same time, defining

∗
The project underlying this report was supported by the German Federal Ministry

of Education and Research under Grant No. 01|S15035A. The responsibility for this

contents of this publication lies with the author.

†
The author is supported by DFG grant PA 587/10-1.

‡
The author is supported by the German Federal Ministry of Education and Research

within the framework of the project “Sicherheit vernetzter Infrastrukturen (SVI)” in

the Competence Center for Applied Security Technology (KASTEL).

§
The author is supported by DFG grant RU 1664/3-1 and the Competence Center for

Applied Security Technology (KASTEL).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134071

this property is highly non-trivial. (4) We also define a stronger

form of privacy, namely forward and backward privacy.

Besides the framework, we show how to construct a BBA+ sys-

tem from cryptographic building blocks and present the promising

results of a smartphone-based prototypical implementation. They

show that our current instantiation may already be useable in prac-

tice, allowing to run transactions within a second—while we have

not exhausted the potential for optimizations.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Public
key encryption; • Applied computing → Digital cash; Electronic
funds transfer; Secure online transactions;

KEYWORDS
Customer Loyalty Programs, Incentive Systems, Stored-Value Pay-

ments, Reputation Systems, Black-Box Accumulation.

1 INTRODUCTION
In numerous user-centric cyber-physical systems, point collection

and redemption mechanisms are one of the core components.

Well-known examples include loyalty programs like the German

Payback system [33] or the UK-basedNectar program [4]. Usersmay

collect points at every purchase for being loyal customers (and for

revealing some information about their purchases). Later, collected

points may be redeemed in exchange for vouchers, services, or

other benefits.

In fact, many other cyber-physical systems try to incentify a

certain behavior of users by means of similar mechanisms. For in-

stance, in envisioned mobile sensing scenarios [15], users should be

encouraged to collect environmental or health data measured with

their smart devices and provide this data (enhanced by location-time

information) to some operator. In exchange, users receive micro-

payments they can use to pay for services based on the collected

data. In Vehicle-to-Grid scenarios [27], e-car owners are rewarded

for the power their e-car batteries provide to the Smart Grid when

cars are parked at the mall, office, etc.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1925

https://doi.org/10.1145/3133956.3134071

In [25] Jager and Rupp formalized the core functional, security,

and privacy requirements of a building block to realize the kind of

systems described above. Their new building block, called black-box

accumulation (BBA), consists of a set of non-interactive algorithms

to generate, manipulate, and show properties about a BBA token

(aka piggy bank). When correctly executed by legitimate parties,

it allows a user to collect positive points (representing incentives)
in an anonymous and unlinkable fashion. More precisely, in the

BBA framework we have four parties: user, issuer, accumulator, and

verifier. In the beginning, a user receives a BBA token generated by

the issuer (using his secret key) which is bound to a unique serial

number known to both parties. All points are collected using this

single, constant-size accumulation token. To this end, a user blinds

and unblinds the token before and after every transaction with an

accumulator (who uses the same secret key as the issuer). When

redeeming the token, the sum of all collected points as well as the

serial number is revealed to the verifier.

Obviously, obtaining and redeeming a BBA token is a linkable

operation as the unique serial number of the token is revealed in

both operations. A permanent connection to a database containing

serial numbers of tokens already redeemed is required to prevent

double-redemption (aka double-spending) of tokens. Hence, BBA

schemes are online systems. Moreover, the authors formalized a

rather weak form of security, by only demanding that a collusion

of malicious users may not be able to redeem more points than the

total amount of points issued to them. In particular, this does not

rule out that users may transfer points arbitrarily between their

BBA tokens (without help). Also, an “old” copy of a BBA token

(i.e., one not holding the most current balance) can be used for the

accumulation or redemption of points. In this way, a user could

easily get rid of “negative” points.

To summarize, the original BBA framework suffers from a num-

ber of serious restrictions including (1) fairly weak security guaran-

tees, (2) the need of a permanent database connection, (3) the lack

of mechanisms to enforce the collection of “negative” points, and

(4) the linkability of token creation and redemption.

These shortcomings limit the applicability of BBA as a building

block in user-centric systems. For instance, loyalty system providers

do not want their customers to pool or trade their points, which is,

however, not excluded by the BBA security definition. Moreover,

customers should be allowed to partially redeem collected points.

To realize this feature with a BBA scheme, one would need to

redeem all points on a token, create a new one, and charge it with

the remaining (unspent) points. However, in this way all partial

redemptions of a customer are linkable.

Other applications requiring features beyond BBA are anony-

mous reputation systems where a central authority rates the be-

havior, reliability, or activity of users by issuing reputation points.

Similar to loyalty systems, it is undesirable that users are able to

pool or trade their reputation points. Additionally, it might be useful

in some scenarios to be able to issue negative reputation points ei-

ther by subtracting points or having a separate counter for negative

ratings.

Yet another set of applications which benefit from stronger se-

curity, offline capabilities, and negative points, are pre- or post-

payment systems. These systems are employed in many domains

like public transportation, toll collection, cashless canteen systems,

etc. In practice, such payment systems are typically implemented

using simple RFID-transponder or smartcard-based solutions like

the Mifare Classic [30], which essentially offers no security and

privacy at all ([16, 19, 20] and more), or the Mifare Desfire [31, 32]

also allowing to link all transactions.

1.1 Our Contribution
Definitional framework. We present the BBA+ framework

which addresses the restrictions of BBA discussed above, thereby

significantly strengthening the security and broadining the appli-

cability of black-box accumulation.

Our framework offers the following additional features: We con-

sider interactive algorithms (protocols) which leads to more intu-

itive definitions and broadens the class of possible instantiations.

The framework also supports the collection of negative points, and

a mechanism to identify users who present an old version of their

token (possibly having a higher balance than their most recent one).

Our security model is game-based. We formalize a stronger se-

curity property which captures the natural notion that the claimed

balance for each BBA+ token must be exactly the amount legiti-

mately collected with this token up to this point. Note that due to

the strong privacy property that needs to be satisfied in parallel,

defining security is highly nontrivial. We resolve this issue by de-

manding that privacy can be removed by a secret trapdoor held by

a trusted third party or shared by a couple of semi-trusted parties.

Our security model consists of a reduced model and a full-fledged

model, where the full-fledged model additionally considers eaves-

dropping on honest users. In the full version of this paper [22], we

define the full-fledged model in detail. Moreover, we show that any

system secure in the reduced model is also secure in the full-fledged

model provided that we additionally encrypt all protocol messages

using an IND-CCA secure scheme.

Our privacy model is simulation-based. We define a strong form

of privacy, namely forward and backward privacy: An adversary,

including the system operator, must not be able to link transactions

of an honest user. This even needs to hold for transactions preceding

and succeeding (except the very next) a corruption of the user,

during which all of his secrets leak to the adversary. The set of

unlinkable transactions not only includes accumulation but also

point redemption. In this context, note that the lifetime of a BBA+

token is essentially unrestricted, and, in contrast to a BBA token,

does not end with the first redemption of points.

Details on our framework are given in Section 3.

Construction. We propose an instantiation satisfying the prop-

erties sketched above. This scheme is a semi-generic construc-

tion using public-key encryption, homomorphic trapdoor com-

mitments, digital signatures, and Groth-Sahai (GS) non-interactive

zero-knowledge proofs over bilinear groups for which the SXDH

assumption holds.

To achieve freshness of tokens, we draw from techniques typi-

cally used in offline e-cash systems, namely double-spending tags.

Here, some double-spending tag, e.g., t := id ·u2 +u1 mod p, needs
to be revealed when spending an e-coin. This tag contains user iden-

tity information id which is blinded by some secret user randomness

u1 (which has been fixed when the coin was issued) and involves a

challengeu2 freshly chosen by a merchant. No information about id

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1926

is revealed when the coin is spent once (as u1 is uniformly drawn).

However, when the coin is spent a second time, a different challenge

u ′
2
is used in the revealed tag t ′ := id ·u ′

2
+u1 mod p, while the user

randomness u1 and id are the same (which needs to be enforced

by the protocol). This enables the bank to extract id using the two

double-spending tags t and t ′ and challenge values u2 and u
′
2
.

Let us briefly sketch our construction which follows but signif-

icantly extends the idea of [25]. For the sake of simplicity, each

user may only receive a single token bound to his ID. An initial

BBA+ token jointly generated by the issuer and the user essentially

consists of a (multi-)commitment c and a signature σ on this com-

mitment under the issuer’s secret key. The commitment c contains
a user’s secret key skU , a token version number s , the balance

valuew = 0, and some randomness u1 that will be used to generate
a double-spending tag in the next transaction. Note that skU , s ,
and u1 are not known to the issuer but pkU , c , and σ are.

To add (positive or negative) points in an unlinkable fashion,

one cannot simply send over the token (c,σ) to the accumula-

tor. Instead, the user sends a new commitment c ′ containing the

same secret key skU , the same balance w , but a new token ver-

sion number s ′,1 and some new randomness u ′
1
. Then he proves in

zero-knowledge that c ′ is indeed a new, correctly modified version

of his old certified commitment c . Additionally, the proof ensures
that a double-spending tag (encoding skU) along with the version

number s for the old token (c,σ) is revealed. The version number

is used to index the double-spending tags in the database. If the

accumulator accepts the proof, the homomorphic property of the

commitment scheme is used to add v points to c ′ which is then

signed. The new token (c∗,σ ∗) is sent to the user. Verifying the

balance of a token and redeeming points works analogously, except

that the balance w is revealed to the verifier. Note that the com-

putational complexity of all operations as well as the token size is

independent of the number of points to be transferred or stored.

This concludes the simplified description of our construction. More

details can be found in Section 4.

While our construction is fairly intuitive and draws from tech-

niques also commonly used in e-cash or P-signatures, there are

technical differences to these concepts as explained in the related

work section. The main challenge was to carefully combine these

techniques into a protocol that it is both provably secure and ef-

ficient at the same time. For instance, proving that a token can

only be used with its legitimate balance is highly non-trivial. Other

technical challenges arise from building on the Groth-Sahai proof

system. GS proofs are efficient and secure in the CRS model but re-

quire particular care, as they are no proper proofs-of-knowledge for

witness components over Zp and not always zero-knowledge. For

example, to prove statements about shrinking multi-commitments

to Zp -messages, which we use to obtain compact tokens and proofs,

the employed commitment scheme needs to satisfy a non-standard

binding property (F -binding).

Implementation. In order to assess the suitability of our con-

struction for real-world applications, we implemented our BBA+

instantiation and measured execution times on a smartphone. Our

implementation results show that all protocols can be executed

1
Actually, the new version number is jointly chosen by user and issuer. s ′ is only the

user’s share.

in less than 400 ms on the user side (for 254-bit Barreto-Naehrig

curves with optimal Ate pairing). This leads to the conclusion that

our instantiation is already usable in practice and can be efficiently

executed with current, well-established hardware. Details on the

implementation and measurements, as well as ideas for further

optimizations can be found in Section 6.

1.2 Related Work
At first sight, the problem of privacy-preserving point collection

might appear easily solvable using (offline) e-cash: user and ac-

cumulator may execute the e-coin withdrawal protocol to collect

several points. All collected coins may later be redeemed using the

spend protocol (multiple times). However, besides not being very

efficient, because coins typically cannot be aggregated, this also

violates user privacy as in traditional offline e-cash, e.g. [12], with-

drawing e-coins is identifying. This is because the identity of a user

needs to be encoded into an e-coin during withdrawal to enable

double-spending detection. In our system, we initially encode this

identity into the user’s token (aka wallet or piggy bank) which is

used to collect points and not into a point itself.

Even transferable e-cash, e.g. [6], does not achieve our goals. In

such a scheme, the ownership of a coin can be transferred anony-

mously and unlinkably between users multiple times without the

help of the bank. Applied to our scenario, an accumulator could

thus withdraw e-coins, possibly from the issuer acting as bank, and

transfer them anonymously to a user. However, an impossibility

result by Canard and Gouget [13] implies that an adversary imper-

sonating issuer, accumulators, and verifiers would be able to link

a user’s collection and redeeming transactions. Moreover, trans-

ferable e-cash allows users to transfer e-coins arbitrarily among

each other, a property which is undesirable in our scenario as users

would be able to pool their points.

Besides BBA [25], which we already discussed, only [28] ap-

pears to consider a point collection mechanism as a multi-purpose

building block on its own. However, the proposed protocol—called

uCentive—targets a simpler scenario than we do: incentives are

not accumulatable on the user’s side but stored and redeemed indi-

vidually, negative points are not supported, and double-spending

detection is done online rather than offline. BBA+ and uCentive also

differ regarding the use of cryptographic building blocks: uCentive

makes use of anonymous credentials and partially blind signatures.

Moreover, the security and privacy properties of their system are

only informally stated and no proofs are given.

BBA+ shares some aspects with the notion of priced oblivious

transfer (POT). POT was introduced by Aiello et al. [3] as a tool to

protect the privacy of customers buying digital goods. The goal is

to allow a buyer to purchase digital goods from a vendor without

leaking the “what, when and how much”. In the original notion of

POT, a user’s wallet is not possessed by the user itself. In [3] the

vendor manages this information. Consequently, user anonymity

cannot be granted and the system is inherently limited to a single

vendor. Camenisch et al. [11] extended POTs by anonymity of users

and unlinkability of individual transactions which brings it closer to

our framework. Nonetheless, the scheme is still limited to a single

vendor or a system where all vendors share a joint state in an online

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1927

fashion, whereas our system is an offline system. Moreover, [11]

lacks a rigorous formal treatment and an implementation.

The techniques we use to instantiate BBA+ bear some resem-

blance with P-signatures [8, 24] which have been introduced by

[8] as a tool to construct anonymous credentials. A P-signature

scheme is a two-party scheme between a user and an issuer. The

scheme combines the algorithms of a commitment scheme, a signa-

ture scheme and extends them by some additional zero-knowledge

protocols that allow the user to prove certain statements about the

commitments. More precisely, a user can generate commitments

to messages. He can ask the issuer to sign the original message

inside the commitment using the issuer’s secret key without the

issuer learning this message. Moreover, the user can prove that he

knows a valid signature on the message inside a commitment or

generate two new commitments and prove the equality of their

content. The scheme in [8] builds on weak Boneh-Boyen signatures

[9], Groth-Sahai commitments and Groth-Sahai NIZK proofs [21].

To instantiate a BBA+ scheme, properties beyond that of a P-

signature scheme are needed. To see this, let us try to build a BBA+

scheme from P-signatures. We would like to embed our piggy bank

as a message, encoding the balance, a serial number, a user ID, and

maybe some additional information. This message could then be

blindly signed by the issuer using the P-signature scheme. To collect

some points, the user would generate a fresh commitment to the

message and send it to the accumulator along with a proof showing

that he has a signature on the message inside the commitment. Note

that this step can be done repeatedly using the same message, as P-

signatures do not include a mechanism (double-spending detection)

to prevent a user from showing the samemessage twice. In fact, such

a mechanism is not required for standard anonymous credentials.

However, in our setting this is necessary as a user could present

an old piggy bank to collect or redeem points and thus get rid

of negative points. Apart from this, there are other shortcomings.

After a user proved that she has a valid piggy bank, it needs to be

updated by the accumulator to add new points. To realize this with

the P-signature scheme, the user would like to update the balance in

the old message accordingly, commit to this updated message and

prove that the two messages (for which the accumulator obtained

commitments) are closely “related” (i.e., only differ wrt. balance

and serial number). However, a P-signature scheme only offers

a protocol for showing that two commitments contain the same
message.

From a technical perspective, in our BBA+ instantiation, com-

mitments rather than messages inside commitments as in [8, 24]

are signed. Thus, in combination with Groth-Sahai NIZK proofs we

make use of F -binding commitments (cf. Section 2.2) rather than

F -unforgeable signatures as in [8].

2 PRELIMINARIES
We make use of the common notation to describe cryptographic

schemes and define their security properties.

2.1 Bilinear Groups and Assumptions
The results of this paper are in the setting of asymmetric bilin-

ear groups. We use the following definition of a bilinear group

generator.

Definition 2.1 (prime-order bilinear group generator). A prime-
order bilinear group generator is a PPT algorithm SetupGrp that on

input of a security parameter 1
n
outputs a tuple of the form

gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)

where G1,G2,GT are descriptions of cyclic groups of prime order

p, logp = Θ(n), д1 is a generator of G1, д2 is a generator of G2,

and e : G1 × G2 → GT is a map (aka pairing) which satisfies the

following properties:

• e is efficiently computable

• Bilinearity: For all a ∈ G1,b ∈ G2, x ,y ∈ Zp , we have

e (ax ,by) = e (a,b)xy .
• Non-Degeneracy: e (д1,д2) generates GT .

Our construction relies on the SXDH assumption in bilinear

groups, which essentially asserts that the DDH assumption holds

in both source groups of the bilinear map.

Definition 2.2. We say that the DDH assumption holds with

respect to SetupGrp over Gi if the advantage AdvDDHSetupGrp,i,A (1n)

defined by

��������
Pr

b = b ′

��������

gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)
x ,y, z ← Zp ;h0 := д

xy
i ;h1 := д

z
i ;b ← {0, 1}

b ′ ← A (1n , gp,дxi ,д
y
i ,hb)

−
1

2

��������
is a negligible function in n for all PPT algorithms A. We say that

the SXDH assumption holds with respect to SetupGrp if the above

holds for both i = 1 and i = 2.

We also make use of the Co-CDH assumption which is obviously

implied by the SXDH assumption.

Definition 2.3. We say that the Co-CDH assumption holds with

respect to SetupGrp if the advantage AdvCO-CDHSetupGrp,A (1n) defined

by

Pr

[
a = дx

2

�����
gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)

x ← Zp ;a ← A (1n , gp,дx
1
)

]

is a negligible function in n for all PPT algorithms A.

2.2 Building Blocks
For our semi-generic construction, we draw from Fgp-extractable
non-interactive zero-knowledge (NIZK) proofs, as well as equivocal

homomorphic commitments, digital signatures, and public-key en-

cryption which all need to be compatible with the proof system. In

the following, we describe these building blocks in an informal fash-

ion appropriate to understand the construction. Formal definitions

can be found in the full version [22].

Fgp-extractable NIZKs. Let R be a witness relation for some

NP language L = {x | ∃wit s.t. (x ,wit) ∈ R}. Informally speaking, a

zero-knowledge proof scheme is a system that allows a prover P
to convince a verifier V that some x given to V is contained in L
without V learning anything beyond that fact. In a non-interactive

zero-knowledge (NIZK) proof, only one message, the proof π , is
sent from P to V for that purpose.

More precisely, a (group-based) NIZK proof system consists of

the algorithms SetupGrp, SetupPoK, Prove, and Vfy. SetupGrp(1n)
generates public parameters gp given implicitly to all algorithms.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1928

The considered language Lgp may depend on gp. SetupPoK(gp)
outputs a common reference stringCRS. Prove(CRS,x ,wit) outputs
a proof π on input of x ∈ Lgp and a valid witnesswit with (x ,wit) ∈
R, else Prove outputs ⊥. Vfy(CRS,x ,π) outputs 1 if π is considered

a valid proof for x ∈ Lgp, and 0 otherwise. The proof system is called

perfectly complete ifVfy(CRS,x ,π) always accepts proofs generated
by Prove(CRS,x ,wit). It is called perfectly sound if it is impossible

to generate a proof π for x < Lgp such that Vfy(CRS,x ,π) = 1.

Moreover, it is called perfectly Fgp-extractable if there exists some

PPT algorithms SetupEPoK and ExtractW such that (1) SetupEPoK
outputs some CRS which is perfectly indistinguishable from a real

CRS as well as a trapdoor tdepok and (2) ExtractW is able to exploit

this trapdoor to extract Fgp (wit) for an NP-witness wit for x ∈ Lgp
from any valid proof π . Perfect Fgp-extractability implies perfect

soundness. Note that if Fgp is the identity function, then the system

is a real proof of knowledge. However, in our case the domain of

Fgp consists of tuples of group elements and exponents e ∈ Zp ,
where Fgp maps exponents e to дe

1
∈ G1 or д

e
2
∈ G2 (depending

on the context e is used in) and acts as the identity function on

group elements. This is a property of the Groth-Sahai proof system

[18, 21] we have to deal with. Finally, the proof system is called

composable zero-knowledge if there exist PPT algorithms SetupSPoK
and SimProof such that (1) SetupSPoK outputs some CRS which

is computationally indistinguishable from a real CRS as well as a

trapdoor tdspok and (2) SimProof can use this trapdoor to generate

proofs for x (not necessarily in Lgp) without knowing a witness

that look real even if tdspok is known.

Fgp-binding commitments. A commitment scheme allows a

user to commit to a messagem and publish the result, called com-

mitment c , in a way that m is hidden from others, but also the

user cannot claim a differentm afterwards when he opens c . In an

Fgp-binding commitment scheme one commits to a messagem but

opens the commitment using Fgp (m).
More precisely, a non-interactive commitment scheme consists of

the four algorithms SetupGrp,Gen,Com, andOpen. SetupGrp(1n)
generates public (group) parameters gp and Gen(gp) creates a pub-
lic common reference string CRS. The parameters gp fix a message

space for the commitment scheme. Let Fgp be a bijective function
on the message space. We call the codomain of Fgp the implicit

message space. Com takes the CRS and a messagem as input and

outputs a commitment c as well some decommitment value d . To
verify that a commitment can be opened to a message Open is

used. It takes CRS, c , d , as well as some implicit message SM as

input and returns 1 or 0. We call the scheme correct if Open al-

ways returns 1 on input (c,d) ← Com(CRS,m) and Fgp (m). A
commitment scheme is called hiding if any PPT adversary A has

negligible advantage to distinguish between the commitments to

two messages chosen by A. It is called Fgp-binding if any PPT ad-

versary has a negligible advantage to find a commitment that can

be opened using two different implicit messagesM , M ′. Moreover,

it is equivocal if, roughly speaking, there is a trapdoor for the CRS

that allows to efficiently open a commitment to any given implicit

message. Finally, the scheme is called additively homomorphic if
commitments c1 tom1 and c2 tom2 with decommitment values d1
and d2, respectively, can efficiently be combined usingCAdd(c1, c2),

resulting in a commitment c tom1 +m2 with decommitment value

d ← DAdd(d1,d2).

Digital signatures. A digital signature scheme consists of the

four algorithms SetupGrp, Gen, Sgn, and Vfy. SetupGrp(1n) gen-
erates public (group) parameters gp. The key generation algorithm

Gen(gp) outputs a secret key sk and a public key pk. The signing
algorithm Sgn outputs a signature σ on input of a messagem and

sk. The verification algorithm Vfy decides whether σ is a valid sig-

nature onm given pk,m, and σ . A signature scheme is correct if Vfy
always outputs 1 on input σ ← Sgn(sk,m), pk andm. It is called

EUF-CMA secure if any PPT adversary A given pk and access to

a signature oracle which signs arbitrary messages, has negligible

advantage to compute a signature to a new message.

PKE. A public-key encryption (PKE) scheme consists of the

four algorithms SetupGrp, Gen, Enc, and Dec. SetupGrp(1n) gen-
erates public (group) parameters gp. The key generation algorithm

Gen(gp) outputs a secret key sk and a public key pk. The encryp-
tion algorithm Enc(pk,m) takes pk and a messagem and outputs

a ciphertext c . The decryption algorithm Dec(sk, c) takes sk and c
and outputs a messagem or ⊥. For correctness, we want that Dec
always outputsm on input c ← Enc(pk,m). A PKE scheme is called

IND-CPA secure if any PPT adversary A has negligible advantage

to distinguish the ciphertexts of two messages chosen by A.

3 BBA+ DEFINITION
In this section, we introduce BBA+ schemes along with security

and privacy definitions appropriate for a variety of applications.

3.1 High-Level System Description
Let us start with an overview of the different parties involved in a

BBA+ scheme and a high-level description of the algorithms and

protocols they use.

A BBA+ system mainly involves five types of parties: A Trusted

Third Party (TTP), an Issuer, an Accumulator, a Verifier, and a User.

Issuers, accumulators and verifiers are subsumed under the term

operators. In particular, they need to trust each other as the share

the same secret key (see below).

System setup. To setup the system once, we make use of a

Trusted Third Party T (or a number of mutually distrusting parties

doing a multi-party computation). This party computes a common

reference string (CRS), which typically consists of a description

of the underlying algebraic framework used by all algorithms and

protocols as well as certain system-wide public keys. The TTP also

computes a trapdoor which can be used to remove the unlinkabil-

ity of user transactions but which is only needed for definitional

purposes. Of course, we need to assume that this trapdoor is not

given to anyone (e. g., the Issuer, Accumulator, or Verifier). The TTP

could be a (non-governmental) organization trusted by both, Users

to protect their privacy and Issuers, Accumulators, and Verifiers to

protect system security.

To obtain a working system, the Issuer I also needs to generate

a key pair consisting of a public and a secret key (pkI , skI). The
secret key is shared with the Accumulator and Verifier, and can be

used to create BBA+ tokens and update their balance. The public

key is used to verify the authenticity of such a token.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1929

System operation. In order to participate in the system, a user

first needs to generate a key pair. The public key is used to identify

the user in the system and is assumed to be bound to a physical ID

such as a passport number, social security number, etc. Of course,

for this purpose the public key needs to be unique. We assume that

ensuring the uniqueness of user public keys as well as verifying

and binding a physical ID to them is done “out-of-band” before

calling the BBA+ protocols (in particular the Issue protocol). A

simple way to realize the latter could be to make use of external

trusted certification authorities.

Issuing tokens. To generate a BBA+ token, a user and the issuer

execute the Issue protocol. In this protocol the user uses skU to

prove that he is the owner of the claimed public key pkU for which a

token should be generated. As already explained, when this protocol

is executed it has been ensured that pkU is unique, bound to a

physical ID, and no token has been generated before under pkU .
2

This information can be stored in a database, e. g., maintained by

the issuer or a separate system operator. The user’s protocol output

is a BBA+ token with balance 0.

Collecting points. To add a (positive or negative) value v to the

current balance
3 w of a token, the user and the accumulator in-

teract in the scope of the Accum protocol. As these protocol runs

should be anonymous and unlinkable, the accumulator is only given

the secret key it shares with the issuer and the value v . It is not
given and may not derive any information about the user it in-

teracts with, provided that this user behaves honestly. The user’s

output is the updated token with balancew +v . The accumulator’s

output is some double-spending tag, enabling the identification

of the user if he uses the old version of the token with balance

w in another transaction. To this end, double-spending tags are

periodically transmitted to a central database which is regularly

checked for two double-spending tags associated with the same

token version number. If the DB contains two such records, then

the algorithm IdentDS can be used to extract the public key of the

user this token belongs to as well as a proof (such as his secret key)

that the user is guilty. The latter can be verified using the algorithm

VerifyGuilt. The DB is typically maintained by a system operator

who coincides with the issuer in many scenarios. Also, IdentDS is

run by this party. VerifyGuilt may be run by anyone, in particular

by justice.

Claiming a balance and redeeming points. A user who wants to

prove to some verifier that he has a valid token with balancew and

who possibly wants to redeem v points, interacts with the verifier

in the scope of the Vfy protocol. Similar to the Accum protocol, also

Vfy protocol runs should be anonymous and unlinkable. This is the

reason why the verifier does only receive minimal input such as

the issuer’s secret key andw .
4
The outcome for the user is again

an updated token of balancew +v (note that v might be a negative

2
It is possible for a user to have more than one token by allowing him to have more

than one public key bound to his name.

3
The semantics ofw is not necessarily fixed to be simply the sum of collected points.

For instance, one could also encode two counters intow , one for positive points and

one for negative points.

4
In certain scenarios revealingw may significantly help to link transactions. For such

applications, the framework can be extended to only show a bound on the balance (cf.

Section 8.1). Due to efficiency reasons, we omit this feature in our basic system.

value) which is ready to be used in the next transaction. The veri-

fier’s output is a double-spending tag just as before. This data must

eventually be transferred to the database already mentioned.

3.2 Formal System Definition
The following definition formalizes our notion of extended black-

box accumulation systems that are interactive, offline, and enforce

the use of fresh tokens.

Definition 3.1 (BBA+ Scheme). An extended black-box accumula-
tion (BBA+) scheme BBAP = (Setup, IGen,UGen, Issue,Accum,
Vfy,UVer, IdentDS,VerifyGuilt) with balance and accumulation

value space Zp (where p may depend on CRS and, in particular, n)
consists of the following PPT algorithms and interactive protocols:

(CRS, td) ← Setup(1n). The setup algorithm takes the security

parameter as input and returns a public common reference string

CRS and a trapdoor td.5

(pkI , skI) ← IGen(CRS). The issuer’s key generation algorithm

takes CRS as input and returns a public and private key pair (pkI ,
skI), where skI is sharedwith accumulator and verifier.We assume

for convenience that CRS is part of pkI .

(pkU , skU) ← UGen(CRS). The user’s key generation algorithm

takesCRS as input and returns a public-private key pair (pkU , skU)
which is used for authentication during token issuance.

((τ ,bU),bI) ← Issue⟨U (pkI , pkU , skU),I (pkI , skI , pkU)⟩.
The interactive token issuing protocol is executed between a user

U , given pkI and his own public and private key pkU , skU as

input, and an issuer I, whose input is pkI , skI and the public-key

pkU of the userU . At the end of the protocol, the user outputs a

token τ (with balance 0) along with a bit bU . The issuer’s output is

a bit bI . The bit bU (resp. bI) indicate whetherU (resp. I) accepts

the protocol run.

((τ ∗,bU), (dstag, hid,bAC)) ← Accum⟨U (pkI , pkU , skU ,τ ,w,
v),AC (pkI , skI ,v)⟩. The interactive accumulation protocol is ex-

ecuted between a userU and an accumulatorAC. The user’s input

is pkI , his own public and private key pkU , skU , a token τ with

balance w , and the value v . The accumulator’s input is pkI , skI ,
and the value v . At the end of the protocol, the user outputs an

updated token τ ∗ (with balancew +v) and a bit bU . The issuer’s

output consists of some double spending tag dstag = (s, z) with
token version number s and data z, a hidden user ID hid,6 as well as
a bit bAC . The bit bU (resp. bAC) indicate whetherU (resp. AC)

accepts the protocol run.

((τ ∗,bU), (dstag, hid,bV)) ← Vfy⟨U (pkI , pkU , skU ,τ ,w,v),
V (pkI , skI ,w,v)⟩. The interactive verification and redeeming pro-
tocol is run between a user U and a verifier V . The inputs and

outputs are analogous to those of the Accum protocol, except that

V receives the current token balancew as an additional input.

b ← UVer(pkI , pkU , skU ,τ ,w). The token verification algorithm

is a deterministic polynomial-time algorithm run by U which,

given pkI , the user’s public and secret key pkU , skU , a token τ ,

5
The trapdoor is needed in the security definition to define the legitimate balance of a

token although token transactions are unlinkable.

6hid is used for definitorial purposes only. In our instantiation, hid is an encryption

of pkU .

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1930

and balancew , outputs a bit b. This bit is 1 if τ is a valid token with

a balancew owned by the user with public key pkU .

(pkU ,Π) ← IdentDS(pkI , dstag1, dstag2). The double-spender de-
tection algorithm is a deterministic polynomial-time algorithm

which is given pkI and two double-spending tags dstag
1
= (s1, z1)

and dstag
2
= (s2, z2). It returns the public key pkU of a user and a

proof of guilt Π, or it returns an error ⊥.

b ← VerifyGuilt(pkI , pkU ,Π). The guilt verification algorithm is

a deterministic polynomial-time algorithm which is given pkI , a
user public key pkU and a proof of guilt Π. It returns 1 if the user
with public key pkU is considered guilty of double-spending and 0

otherwise.

Correctness for BBA+ schemes is fairly straightforward:

Definition 3.2 (BBA+Correctness). ABBA+ schemeBBAP is called
correct if all of the following properties hold for all n ∈ N, (CRS, td)
← Setup(1n), issuer key-pairs (pkI , skI) ← IGen(CRS), user key-
pairs (pkU , skU) ← UGen(CRS), and parties U , I, AC, and V

honestly following the protocols.

Correctness of issuing. For all outputs of the issue protocol ((τ ,bU),
(bI)) ← Issue⟨U (pkI , pkU , skU),I (pkI , skI , pkU)⟩, it holds
that bU = bI = 1 and UVer(pkI , pkU , skU ,τ , 0) = 1.

Correctness of accumulation. For all tokens τ , balances w ∈ Zp
with UVer(pkI , pkU , skU ,τ ,w) = 1 and all values v ∈ Zp , we
have that ((τ ∗, 1), (s, z, hid, 1)) ← Accum⟨U (pkI , pkU , skU ,τ ,w,
v),AC (pkI , skI ,v)⟩ and UVer(pkI , pkU , skU ,τ

∗,w +v) = 1.
7

Correctness of token verification. For all tokens τ , balancesw ∈ Zp
with UVer(pkI , pkU , skU ,τ ,w) = 1 and all values v ∈ Zp , we
have that ((τ ∗, 1), (s, z, hid, 1)) ← Vfy⟨U (pkI , pkU , skU ,τ ,w,v),
I (pkI , skI ,w,v)⟩ and UVer(pkI , pkU , skU ,τ

∗,w +v) = 1.

3.3 Definition of System Security
For security we distinguish between a reduced, simplified model

and a more natural, full-fledged model that is given in the full ver-

sion of the paper [22]. In the full-fledged model, the adversary can

be a collusion of malicious users who additionally may command,

eavesdrop on, and adaptively corrupt honest users. In the reduced

model, introduced in the following, no interactions with honest

users are considered. Fortunately, we can show in a black-box fash-

ion that any scheme secure in the reduced model is also secure

in the full-fledged model if all protocol messages are additionally

encrypted with an IND-CCA secure encryption scheme. Note that

privacy is not affected by extending the protocols with encryption.

With our security definition, we essentially capture three prop-

erties:

(1) A token may only be created in the name of and used by its

legitimate owner (owner-binding).

(2) For a token one may only claim exactly the amount of points

that have legitimately been collected with this token up to

this point unless an old version of the token is presented

(balance-binding).

(3) Users presenting old tokens can be identified after the fact.

7
To simplify definitions, subtraction byv is not handled as a separate operation but by

addingv ′ := p−v mod p . In an implementation, one may prefer having a subtraction

operation though.

Formalizing the notion above raises a major problem: It requires

to link each transaction with a user and token. However, on the

other hand, we demand that transactions are anonymous and un-

linkable. To resolve this issue, we only consider systems where

privacy can be abolished given a trapdoor td (which is kept secret

by the TTP) to the CRS. We call such schemes trapdoor-linkable
and formalize them in the following.

When we talk about a successful protocol run in the following,

we always mean that this run has been accepted by the issuer,

accumulator, or verifier. Let AC’s view of a run of the Accum
protocol consist of all its inputs, outputs, and messages sent and

received, i. e., (pkI , skI ,v,msgs, dstag, hid,bAC), where msgs ∈
{0, 1}∗ is the bit string of messages sent during the protocol run.

Similarly, letV ’s view of a run of the Vfy protocol be represented

by a tuple (pkI , skI ,w,v,msgs, dstag, hid,bV). For some fixed

security parameter n ∈ N and CRS ← Setup(1n), let us consider
the set of views of AC, denoted by VAccum

n,CRS , resulting from any

Accum protocol run accepted byAC with any (possibly malicious)

party and any (pkI , skI) ← IGen(CRS), v ∈ Zp as input to AC.

We define V
Vfy
n,CRS analogously with respect to executions of the

Vfy protocol accepted byV .

Definition 3.3 (Trapdoor-Linkability). A BBA+ scheme BBAP is

called trapdoor-linkable if it satisfies the following conditions:

(1) Completeness. Letn ∈ N, (CRS, td) ← Setup(1n), and view ∈
VAccum
n,CRS . Let hid denote the hidden user ID contained in view.

Then there exist inputs pkU , skU ,τ ,w , and random choices

for an honest user U and honest accumulator AC such

that an Accum protocol run betweenU and AC with these

inputs and random choices leads to a view view′ ∈ VAccum
n,CRS

containing the same hidden user ID hid as view. The same

holds for all view ∈ VVfy
n,CRS with respect to Vfy.

(2) Extractability. There exists a PPT algorithm ExtractUID such

that for any n ∈ N, (CRS, td) ← Setup(1n) and view =
(pkI , skI ,v,msgs, dstaghid, 1) ∈ VAccum

n,CRS resulting from

an Accum protocol run with an honest user on input pkU ,

ExtractUID outputs pkU on input (td, hid). The same needs

to hold for ExtractUID with respect to views view ∈ VVfy
n,CRS.

Remark 1. Note that extractability as defined above implies that
any fixed view view cannot result from interactions with different
users, but is uniquely associated with a single user. Furthermore, by
demanding completeness we prevent the use of some odd extraction
algorithms that output some special user public key on input of a
specifically crafted hid that only an adversary is able to generate
but not an honest user. Such extraction algorithms may lead to some
issues when used in our security definition.

In the security experiments we are going to formalize, an adver-

saryA may concurrently interact with an honest issuer, accumula-

tor, and verifier an arbitrary number of times. Clearly, the adversary

playing the role of the user may behave dishonestly and not follow

the corresponding protocols. In order to formalize this adversarial

setting, we define a couple of oracles the adversary may query.

• MalIssue(pkU) lets the adversary initiate the Issue protocol
with an honest issuer I provided that there is no pending

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1931

Experiment Expob-issueBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI, skI) ← IGen(CRS)
(pkU , skU) ← UGen(CRS)
b ← AMalIssue,MalAcc,MalVer (pkI, pkU)
The experiment returns 1 iff A did a successful call to MalIssue on input of the given

public-key pkU .

Figure 1: Owner-binding experiment for Issue.

Experiment Expob-acc-verBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI, skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer (pkI)
The experiment returns 1 iff A did a successful call to MalAcc or MalVer such that

ExtractUID applied to hid being part of the view of this call outputs a public-key pkU
for which there has been no successful execution ofMalIssue up to this call.

Figure 2: Owner-binding experiment for Accum/Vfy.

MalIssue call for pkU and pkU has also not been used in a

successful call to MalIssue before.
• MalAcc(v) is used by the adversary to initiate the Accum
protocol with AC for input v ∈ Zp .
• MalVer(w,v) is used by the adversary to initiate the Vfy
protocol withV for inputw ∈ Zp and v ∈ Zp .

In the setting described above, we consider several adversarial

goals. The first two goals formalized in Definitions 3.4 and 3.5 cover

the owner-binding property with respect to the different proto-

cols Issue, Accum, and Vfy. Definition 3.6 formalizes the balance-

binding property assuming that no double-spending took place.

Consequently, Definition 3.7 ensures that such double-spendings

are indeed hard to accomplish without being identified.

In Definition 3.4, we consider the probability that an adversary

may succeed in receiving a token in the name of an honest, uncor-

rupted user (i. e., using the user’s public-key). It demands that an

adversary may only create tokens in his own name.

Definition 3.4. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Issue if for any PPT adversary A

in the experiment Expob-issueBBAP,A (n) from Fig. 1 the advantage of A

defined by

Advob-issueBBAP,A (n) := Pr[Expob-issueBBAP,A (n) = 1] (1)

is negligible in n.

Definition 3.5 demands that an adversary may not be able to

successfully call the accumulation or verification protocol for a

forged token, i. e. a token that has not been issued by a legitimate

issuer.

Definition 3.5. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Accum and Vfy if for any PPT adver-

saryA in the experiment Expob-acc-verBBAP,A (n) from Fig. 2 the advantage

of A defined by

Advob-acc-verBBAP,A (n) := Pr[Expob-acc-verBBAP,A (n) = 1] (2)

is negligible in n.

With Definition 3.6 we ensure that, unless some token is used

twice (which induces the usage of the same token serial number),

Experiment ExpbbBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI, skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer (pkI)
The experiment returns 1 iff A did a successful call toMalVer resulting in a view view =

(pkI, skI, w, v, msgs, dstag, hid, 1) ∈ VVfy
n,CRS and extracted user public-key pkU ←

ExtractUID(td, hid) such that the following conditions are satisfied:

– all successfulMalIssue/MalAcc calls produced unique token version numbers

– the claimed balancew ∈ Zp does not equal the sum of previously collected accumula-

tion values v for pkU , i. e.,

w ,
∑

v∈VpkU

v ,

whereVpkU is the list of all accumulation valuesv ∈ Zp that appeared in previous suc-

cessfull calls toMalAcc orMalVer for which pkU could be extracted using ExtractUID.

Figure 3: Balance binding experiment.

Experiment ExpdsdBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI, skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer (pkI)
The experiment returns 1 iff A did two successful MalAcc/MalVer calls resulting in

two views view1 and view2 including two double-spending tags dstag
1
= (s, z1) and

dstag
2
= (s, z2) and extracted user public-keys pk

(1)
U

and pk(2)
U

(using ExtractUID) such

that at least one of the following conditions is satisfied:

– pk(1)
U
, pk(2)

U
or

– IdentDS(pkI, dstag1, dstag2) , (pk(1)
U

, Π) or

– IdentDS(pkI, dstag1, dstag2) = (pk(1)
U

, Π) but VerifyGuilt(pkI, pk
(1)
U

, Π) = 0

Figure 4: Double-spending detection experiment.

the claimed balance for a token in the scope of the verification

protocol always coincides with sum of points allegedly collected

with this token. Note that if this property is violated, then this

could mean that (1) the claimed balance is not equal to the “real”

balance of the presented token or that (2) the “real” balance does not

coincide with the sum of legitimately collected points associated

with this token in the records.

Definition 3.6. A trapdoor-linkable BBA+ scheme BBAP is called

balance-binding if for any PPT adversary A in the experiment

ExpbbBBAP,A (n) from Fig. 3 the advantage of A defined by

AdvbbBBAP,A (n) := Pr[ExpbbBBAP,A (n) = 1] (3)

is negligible in n.

Definition 3.7 enforces that two transactions leading to the same

token version number have always been initiated by the same user

and this user can be identified.

Definition 3.7. A trapdoor-linkable BBA+ scheme BBAP ensures

double-spending detection if for any PPT adversary A in the ex-

periment ExpdsdBBAP,A (n) from Fig. 4 the advantage of A defined

by

AdvdsdBBAP,A (n) := Pr[ExpdsdBBAP,A (n) = 1] (4)

is negligible in n.

3.4 Definition of User Security and Privacy
This section presents the key security properties for users, pro-

tecting them from dishonest operators: Firstly, a user should have

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1932

Experiment Exppriv-realBBAP,A (1n)

(CRS, td) ← Setup(1n)
(pkI, state0) ← A0 (CRS)

b ← AHonUser,RealHonIssue,RealHonAcc,RealHonVer,RealCorrupt
1

(pkI, state0)
return b

Figure 5: Real world privacy experiment.

the privacy guarantee that its individual interactions cannot be

exploited for tracking and secondly no operator should be able to

forge a proof that a user has allegedly committed a double-spending.

Our privacy definition essentially demands that an adversary,

which could be a collusion of I, AC, and V , may not be able

to link the Accum and Vfy transactions of an honest user. More

precisely, the definition demands that Accum and Vfy do not reveal
any information (except for the balance in case ofVfy) that may help

in linking transactions. This even needs to hold for transactions

preceding and succeeding (except the very next) the corruption of

the user. Hence, we define a form of forward and backward privacy.

To this end, our definition follows the real/ideal world paradigm.

In the real world, depicted in Fig. 5, first the CRS is generated

honestly and the adversary chooses a public system key pkI of his

choice. Then the adversary is allowed to interact with a couple of

oracles, that allow the adversary to create a number of honest users

and instruct these users to interact with him in the scope of Issue,
Accum, or Vfy. Within these interactions, the oracles play the role

of the honest user, while the adversary plays the issuer, accumulator,

or verifier. Whenever an interaction does not successfully terminate

from the user’s perspective, then this particular user refuses to

participate in any future interaction, i. e. the oracles are blocked for

the respective pkU .
8
If the adversary calls an oracle for a blocked

user, the oracle simply sends ⊥-messages. Moreover, for each user

no oracle can be called concurrently, i. e. for any arbitrary but fixed

pkU another oracle can only be invoked if no previous oracle call

for the same pkU is still pending. The oracles the adversary can

access are:

• HonUser() creates a new user entity by running (pkU , skU)
← UGen(CRS). The oracle returns pkU to the adversary.

• RealHonIssue(pkU) lets the user with public key pkU run

the Issue protocol with the adversary impersonating the

issuer I, provided that pkU has not been used before in a

call to RealHonIssue which was successful from the user’s

perspective.

• RealHonAcc(pkU ,v) lets the user with public key pkU run

the Accum protocol with the adversary impersonating the

accumulator AC on input v ∈ Zp , provided that the oracle

RealHonIssue(pkU) has successfully been called at some

point before.

• RealHonVer(pkU ,v) lets the user with public key pkU run

the Vfy protocol with the adversary impersonating the veri-

fierV on input v ∈ Zp provided that RealHonIssue(pkU)
has successfully been called at some point before.

8
We need to demand that any previous call for pkU was successful as otherwise an

adversarymay simply abort anAccum orVfy transaction or start two such interactions
in parallel and then trigger the user to double-spend its token in a subsequent call

which would reveal the user’s identity. If the adversary has tried to cheat and has been

successfully detected by the user doing so, then this user “leaves” the system.

Experiment Exppriv-idealBBAP,A (1n)

(CRS, tdsim) ← SimSetup(1n)
(pkI, state0) ← A0 (CRS)

b ← AHonUser,SimHonIssue,SimHonAcc,SimHonVer,SimCorrupt
1

(pkI, state0)
return b

Figure 6: Ideal world privacy experiment.

• RealCorrupt(pkU) can be called by the adversary to cor-

rupt the user with public and secret key (pkU , skU) ←
HonUser(). The oracle outputs the secret key skU of the

user as well as the user’s most recent token τ along with the

balancew .

In the ideal world, depicted in Fig. 6, first a CRS along with a

simulation trapdoor tdsim is generated honestly. The adversary only

receives the CRS as input like in the real game. Then, the adversary

may act exactly like in the real game, by accessing a number of

oracles. However, compared to the real world, some oracles are

implemented differently in order not to leak information that allows

to link transactions.

The basic idea is that all messages that are sent from a user to

the adversary in the scope of the protocols Vfy and AC are simu-

lated, i.e., are generated without any user-related data and thus are

information-theoretic independent. Nonetheless, if the adversary

corrupts a specific user by means of the SimCorrupt oracle, the
adversary expects to see a correct secret key skU , a plausible token

τ , and a correct balancew . As the adversary commands all users,

he can keep track of all balances and the simulation must do the

same. Hence, the oracles are implemented in a very specific way.

The adversary interacts with one global user simulator Usim

that keeps track of all interactions and the oracles are interfaces

of this simulator. Internally, the simulator stores and updates for

each pkU the corresponding skU , the current balancew and the

latest state object. This state object enables the simulator to come

up with a correct token upon corruption of a specific user. When

the adversary invokes an oracle (aka interface) the user simulator

Usim internally invokes a corresponding simulation algorithm that

does not receive any user-related input and returns an updated state

object to the simulator. Messages between the internal simulation

algorithm and the adversary are forwarded by the simulator.

If the adversary calls SimHonAcc or SimHonVer for a user with
ID pkU that has been successfully corrupted in the previous call

for this pkU , then the user simulator does not run the simulation

algorithm but executes the real protocol using the information that

has been returned by SimCorrupt.9

In the ideal game, the user simulatorUsim behaves as follows

upon an adversarial invocation of the oracles (aka interfaces):

• HonUser() creates a new user entity by running (pkU , skU)
← UGen(CRS). The simulator returns pkU to the adversary

and stores skU in the internal database.

• SimHonIssue(pkU) simulates a user with public key pkU
who runs the Issue protocol with the adversary imperson-

ating the issuer I, provided that pkU has not been used

9
This is required as the adversary, given all user secrets, may now perform the next

interaction of this user on his own and learn a double-spending tag. Running the

simulator now needs to result in a second double-spending tag that can be used with

the first one to reveal pkU .

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1933

Experiment ExpfacpBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI, skI) ← IGen(CRS)
(pkU , skU) ← UGen(CRS)
Π ← ARealHonIssue,RealHonAcc,RealHonVer (pkI, pkU)
The experiment returns 1 iff VerifyGuilt(pkI, pkU , Π) = 1.

Figure 7: False accusation protection experiment.

before in a call to SimHonIssue which was successful from

the user’s perspective. The internal simulation algorithm

gets pkU but not skU .

• SimHonAcc(pkU ,v) simulates a user with public key pkU
that runs the Accum protocol with the adversary imper-

sonating AC on common input v ∈ Zp , provided that

SimHonIssue(pkU) has successfully been called at some

point before. The internal simulation algorithm only gets v
but not τ ,w , pkU nor skU .

• SimHonVer(pkU ,v) simulates a user with public key pkU
that runs the Vfy protocol with the adversary impersonat-

ing the verifierV on common input v ∈ Zp provided that

SimHonIssue(pkU) has successfully been called at some

point before. The user simulator looks up the recent balance

w associated with pkU in the database and calls the simu-

lation algorithm. The internal simulation algorithm gets v
andw but not τ , pkU nor skU .

• SimCorrupt(pkU) can be called by the adversary to corrupt

the user with public key pkU . The simulator looks up skU
associated with pkU , the current balance w , and the state

object from the database. It then calls the internal simulation

algorithm on this input. The output of the algorithm is a

tuple (skU ,w,τ) and is returned to the adversary.

Please note that the internal simulation algorithms of

SimHonIssue, SimHonAcc, SimHonVer don’t get a token, skU nor

the state object as input. However, upon corruption the internal

algorithm of SimCorrupt(pkU) must come up with a valid token

as part of its output (skU ,w,τ). Essentially, this means that this

algorithm must create a plausible token out of the latest state ob-

ject. But this object has been created by algorithms that have never

received any user-specific input.

As already mentioned, for privacy we demand that the real and

the ideal world are computationally indistinguishable.

Definition 3.8. We say that a BBA+ scheme BBAP is privacy-
preserving, if there exist PPT algorithms SimSetup and SimCorrupt
as well as interactive PPT algorithms as described in SimHonIssue,
SimHonAcc and SimHonVer, respectively, such that for all PPT

adversaries A = (A0,A1) in the experiments from Figs. 5 and 6,

the advantage AdvprivBBAP,A (n) of A defined by

����Pr[Exp
priv-real
BBAP,A (n) = 1] − Pr[Exppriv-idealBBAP,A (n) = 1]

���� (5)

is negligible in n.

Finally, Definition 3.9 demands that honest users cannot be

falsely accused of having committed a double-spending by an ad-

versary who generates pkI and may coincide with I, AC, andV .

Definition 3.9. A trapdoor-linkable BBA+ scheme BBAP ensures

false-accusation protection if for any PPT adversary A in the ex-

periment ExpfacpBBAP,A (n) from Fig. 7 the advantage of A defined

by

AdvfacpBBAP,A (n) := Pr[ExpfacpBBAP,A (n) = 1] (6)

is negligible in n.

4 BBA+ INSTANTIATION
In this section, we present our basic scheme BBAP which is secure

with respect to the “reduced model” presented in Section 3.3 and

privacy-preserving with respect to the model in Section 3.4. As

already mentioned, this basic protocol can easily be made secure

in a full-fledged model in which eavesdropping on and corrupting

of honest users is allowed, by encrypting all messages transmitted

during the protocols Issue, Accum and Vfy. Please refer to the full

version of the paper [22] for details.

4.1 Building Blocks
Let SetupGrp be a bilinear group generator (cf. Definition 2.1) which
outputs the description of a bilinear group gp := (G1,G2,GT , e,p,
д1,д2) ← SetupGrp(1n) for which the SXDHproblem is assumed to

be hard. For our construction, we draw from the following building

blocks (cf. Section 2.2 for informal definitions) which all make use

of SetupGrp as their common group setup algorithm.

NIZKs. For proving that a user behaves honestly in the scope

of the Issue, Accum, and Vfy protocol, we make use of F
(1)
gp -, F

(2)
gp -,

and F
(3)
gp -extractable NIZK proof systems, denoted by P1, P2, and

P3, respectively. The functions F (1)gp , F
(2)
gp , and F

(3)
gp depend on the

considered languages L
(1)
pkI

, L
(2)
pkI

, and L
(3)
pkI

(defined later), but they

have the following in common: They behave as the identity function

with respect to group elements and map elements from Zp either

to G1 or G2 (by exponentiation of the basis д1 or д2) depending
on whether these are used as exponents of a G1- or G2-element

in the language. The proof systems share a common reference

string. More precisely, we demand that there is a shared setup algo-

rithm SetupPoK which generates the CRS and also a shared setup

algorithm SetupEPoK that additionally generates a single extrac-

tion trapdoor for P1, P2, and P3. In the following, let us denote

their output by CRSpok ← SetupPoK(gp) and (CRSpok, tdepok) ←
SetupEPoK(gp) respectively. Furthermore, let us denote the prove

and verify algorithms of these proof systems by PX .Prove and

PX .Vfy, for 1 ≤ X ≤ 3. We make use of an SXDH-based instan-

tiation of Groth-Sahai proofs [21] for this purpose. Note that GS

proofs are not always zero-knowledge, but we ensured that they

indeed are for the languages we consider (cf. [22]).

Homomorphic commitments. In order to form a token and

commit to secrets including the user secret key and the token

balance, we make use of an equivocal F ′gp-binding homomorphic

commitment scheme C for messages from Z4p . The commitment

space is G2 and decommitment values are elements of G1. The

function F ′gp mapsm := (m1,m2,m3,m4) to M := (дm1

1
,дm2

1
,дm3

1
,

дm4

1
), so G4

1
is the implicit message space. Moreover, as the user

needs to be able to prove that she can open a commitment, the

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1934

Setup(1n)
gp := (p, G1, G2, GT , e, p, д1, д2) ← SetupGrp(1n)
CRSpok ← SetupPoK(gp)
CRScom ← C.Setup(gp)
(skT , pkT) ← E.Gen(gp)
CRS := (gp, CRScom, pkT , CRSpok)
td := skT
return (CRS, td)

IGen(CRS)
(pksig, sksig) ← S.Gen(CRS)
return (pkI, skI) := ((CRS, pksig), sksig)

UGen(CRS)
y ← Zp
(pkU , skU) := (дy

1
, y)

return (pkU , skU)

Figure 8: Setup and Key Generation

corresponding verification equations must be compatible with our

proof systems.We use a scheme byAbe et al. [2] for this purpose.We

denote the CRS generator, commitment, and opening algorithms by

C.Setup, C.Com, and C.Open, respectively. Furthermore, as CAdd
and DAdd coincide with the multiplication of commitments and

decommitment values, respectively, we denote both operations by

“·”.

Signatures. In our protocol, commitments need to be signed

by the issuer to form a valid token. Moreover, users need to prove

that they know a valid signature without revealing this signature.

Hence, we make use of an EUF-CMA secure signature scheme S
for messages over G2 which is compatible with our proof system.

To instantiate this building block, we make use of the structure-

preserving signature scheme of Abe et al. [1]. We denote the key

generation algorithm, the signing algorithm, and the verification

algorithm by S.Gen, S.Sgn, and S.Vfy, respectively.

Encryption. hid will be a simple encryption of a user’s public

key under a public key contained in the CRS. For this purpose, an

IND-CPA secure encryption scheme E for messages in G1 which

is compatible with our proof system suffices. This building block

can be instantiated with the ElGamal encryption scheme [17]. We

denote the corresponding algorithms by E.Gen, E.Enc, and E.Dec.

4.2 Protocol Description
Figures 8 to 11 summarize the scheme. In the following, we elaborate

on the details of the different protocols and algorithms.

System and user setup. The setup and key generation algo-

rithms are given in Fig. 8. The global CRS CRS generated by Setup
consists of a CRSCRScom for the commitment scheme, a shared CRS

CRSpok for the three proof systems, as well as a public encryption

key pkT to generate the hidden user ID hid. The corresponding
trapdoor td equals the secret key skT to decrypt hidden IDs. Thus,

we have ExtractUID(td, hid) := E.Dec(skT , hid). The key pair of

the issuer is essentially a signature key pair (pksig, sksig). Remem-

ber that the global CRS is included in the public key for convenience,

U (pkI, pkU , skU) I (pkI, skI, pkU)

s′, u1 ← Zp
(c′, d ′) := C.Com(CRScom,

(s′, 0, skU , u1))

x := (c′, pkU)

wit := (дskU
2

, дu1
1
, дs

′

1
, d ′)

π := P1.Prove(CRSpok, x, wit)

c′, π

x := (c′, pkU)

if P1.Vfy(CRSpok, x, π) = 0

return 0

s′′ ← Zp
(c′′, d ′′) = C.Com(CRScom,

(s′′, 0, 0, 0))

c := c′ · c′′

σ = S.Sgn(sksig, c)

c, d ′′, σ , s′′

s := s′ + s′′ mod p

d := d ′ · d ′′

τ := (c, d, σ , s, u1)

if UVer(pkI, pkU , skU , τ , 0) = 0

return (⊥, 0)

else return (τ , 1) return 1

Figure 9: Issue protocol

i. e. pkI := (CRS, pksig). The key pair of a user consists of skU = y

and pkU = д
y
1
, where pkU is used as the user identity and skU to

prove this identity in the scope of Issue as well as to prove guilt in

VerifyGuilt.

Issuing tokens. The issue protocol is shown in Fig. 9. Essen-

tially, a valid token consists of a commitment c ∈ G2 on the token

version number s ∈ Zp , the balance w ∈ Zp , the user secret key
skU ∈ Zp , and the randomnessu1 ∈ Zp of the double-spending tag,

as well as a signature on c under skI . The token version number

needs to be chosen jointly byU (choosing an additive share s ′) and
I (choosing an additive share s ′′) to ensure unlinkability on the one
hand and enable double-spending detection on the other hand. The

randomness u1 is chosen byU and is used in the scope of Accum
and Vfy to compute double-spending tags. The fact that it is hidden

from I ensures that the double-spending tag looks random if the

token is used once. The fact that it is bound to the token ensures

that double-spending reveals the user identity. To generate such

a token, U commits to s ′, w = 0, skU , and u1. It then computes

a proof showing that the corresponding commitment c ′ has been
formed correctly by the owner of pkU . More precisely, P1 is used

to compute a proof π for a statement x from the language L
(1)
pkI

defined by

L (1)
pkI

:=

(c ′, pkU)

���������

∃ SKU ∈ G2; S ′, U1, D′ ∈ G1 :

C.Open(CRScom, (S ′, 1, pkU , U1), c ′, D′) = 1

e (pkU , д2) = e (д1, SKU)

(7)

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1935

UVer(pkI, pkU , skU , τ , w)

parse (c, d, σ , s, u1) := τ
if pkU = д

skU
1

∧ C.Open(CRS, (дs
1
, дw

1
, pkU , д

u1
1

), c, d) = 1∧

if S.Vfy(pksig, σ , c) = 1

return 1

else return 0

IdentDS(pkI, (s1, z1), (s2, z2))
parse (t, u2) := z1, (t ′, u′

2
) := z2

if s1 , s2 ∨ u2 = u′
2
return ⊥

else skU := (t − t ′) · (u2 − u′
2
)−1 mod p, pkU := дskU

1

return (pkU , skU)

VerifyGuilt(pkI, pkU , Π)

if дΠ
1
= pkU return 1

else return 0

Figure 10: User verification of tokens and double-spending
algorithms

The language depends on public parameters such as gp, CRScom,
CRSpok, pksig which are all subsumed in pkI and remain fixed after

the system has been setup. Note that the second equation in Eq. (7)

actually proves the knowledge of д
skU
2

(rather than skU itself).
10

However, computing д
skU
2

without knowing skU (only given pkU)

is assumed to be a hard problem (Co-CDH). Receiving c ′ and a

valid proof π , I adds a random s ′′ to s ′ contained in c ′ by using

the homomorphic property of C. This results in the commitment c
which can be opened using the decommitment value d = d ′ · d ′′.
The commitment c is then signed by I resulting in signature σ .
The values token c , σ , s ′′, and d ′′ are sent over toU who verifies

the correctness of the new token τ by applying UVer. The UVer
algorithm is shown in Fig. 10. It verifies that c opens correctly, σ is

valid, and skU is the secret key belonging to pkU .

Collecting points. The Accum protocol is depicted in Fig. 11.

Given his current token τ = (c,d,σ , s,u1), U receives a random

challenge u2 fromAC to prepare the t-part of the double-spending
tag as t = skUu2 + u1 for this token. Moreover, U prepares the

generation of a fresh token just like in the Issue protocol. To this
end, it computes a commitment c ′ containing the same balance

w and user secret key skU as c but a fresh share s ′ for a new

token version number and fresh randomness for generating double-

spending tags. Moreover, hid is generated as a fresh encryption of

pkU . Recall that while hid does not fulfill an obvious function, it

is needed for our security definitions. Finally, the user proves that

everything has been computed as claimed: c is a signed commitment;

c ′ is just a “new version” of this commitment containing the same

balance w and user secret key skU ; t contains skU and the user

randomness u1 (fixed in c) as well as the accumulator’s challenge

u2; and hid contains pkU belonging to skU . More precisely, P2 is
used to compute a proof π for a statement x from the language

10
Note that proving a statement ∃skU ∈ Zp : pkU = д

skU
1

instead would not help

as we can only extract д
skU
1

from the proof.

U (pkI, pkU , skU , τ , w, v) AC (pkI, skI, v)

u2 ← Zp

u2

parse (c, d, σ , s, u1) := τ

t := skUu2 + u1 mod p

r, s′, u′
1
← Zp

hid := E.Enc(pkT , pkU ; r)

(c′, d ′) := C.Com(CRScom,

(s′, w, skU , u′1))

x := (c′, (дs
1
, t, u2), hid)

wit := (c, σ , дw
1
, pkU , д

u1
1
, дd

1
,

дs
′

1
, д

u′
1

1
, дd

′

1
, skU , u1, r)

π = P2.Prove(CRSpok, x, wit)

c′, s, t, π , hid

z := (t, u2)

dstag := (s, z)

x := (c′, (дs
1
, t, u2), hid)

if P2.Vfy(CRSpok, x, π) = 0

return (⊥, ⊥, 0)

s′′ ← Zp
(c′′, d ′′) := C.Com(CRScom,

(s′′, v, 0, 0))

c∗ := c′ · c′′

σ ∗ = S.Sgn(sksig, c∗)

c∗, d ′′, σ ∗, s′′

s∗ := s′ + s′′ mod p

d∗ := d ′ · d ′′

w∗ := w + v

u∗
1
:= u′

1

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

if UVer(pkI, pkU , skU , τ
∗, w∗) = 0

return (⊥, 0)

else return(τ ∗, 1) return (dstag, hid, 1)

Figure 11: Accumulation protocol

L
(2)
pkI

defined by

(c′, (S, t, u2), hid)

���������������������������

∃ c, σ ∈ G2 ;

W , pkU , U1, D, S′, U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S,W , pkU , U1), c, D) = 1

C.Open(CRScom, (S′,W , pkU , U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

, U1 = д
u
1

1
, t = skUu2 + u1

(8)

Upon receiving c ′, s , t , π , and hid, AC checks the proof π and

updates c ′ by adding s ′′ to s ′ and v tow resulting in commitment

c∗. The commitment is signed and c∗ along with the accumulator’s

half of the decommitment valued ′′ and the corresponding signature
σ ∗ are sent to the user who verifies them.

Claiming a balance and redeeming points. The Vfy protocol
works the same way as the Accum protocol except that the balance

w is not treated as a secret anymore. That means the balance (or

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1936

more preciselyW := дw
1
) is not a witness but part of the statement

x in the language L
(3)
pkI

defined by

(c′, (S, t, u2), hid,W)

���������������������������

∃ c, σ ∈ G2 ;

pkU , U1, D, S′, U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S,W , pkU , U1), c, D) = 1

C.Open(CRScom, (S′,W , pkU , U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

, U1 = д
u
1

1
, t = skUu2 + u1

(9)

for whichU generates a proof using P3.

Double-spending detection. The IdentDS and VerifyGuilt al-
gorithms are given in Fig. 10. To see why IdentDS is working,

observe the following: Firstly, to use a specific token τ in an Accum
or Vfy protocol run, a (potentially malicious) user is forced to reveal

the fixed token version number s , because s is bound to τ by being

contained in the signed commitment c . The proof π asserts that

this is indeed the case even if c and σ are not revealed explicitly.

Secondly, for a specific token τ the commitment c and the proof

π also enforce that the fixed user secret key skU and the fixed

randomness u1 of the double-spending tag as well as a freshly cho-

sen challenge value u2 are always used in a Accum or Vfy protocol

run to calculate t = skUu2 + u1. Hence, double-spending a token
reveals the same token version number s1 = s2 and involve different
challenges u2 , u

′
2
with overwhelming probability. In this case, we

can easily extract skU given t = skUu2 + u1 and t ′ = skUu ′2 + u1.
The proof of guilt Π is simply set to be skU , which is assumed to

be hard to compute given pkU only.
11

5 SECURITY AND PRIVACY THEOREMS
The following theorems state that the instantiation described in

the previous section fulfills the security and privacy definitions

given in Sections 3.3 and 3.4, provided that all the building blocks

are secure. For a formal definition of our building blocks and their

properties as well as complete proofs of Theorems 5.1 to 5.7, we

refer the reader to the full version of our paper [22]. In the following

we only formally state the theorems and point out the main proof

ideas.

5.1 System Security
Theorem 5.1 (Trapdoor-Linkability). If BBAP and E are cor-

rect, and P2 and P3 are perfectly sound, then BBAP is trapdoor-
linkable.

Recall that trapdoor-linkability demands completeness and ex-

tractability. The completeness property is satisfied since the sound-

ness of P2 (P3) ensures that any hid which is the output ofAC (V)

is a proper encryption of some valid public key pkU . As BBAP is

correct, an honest user holding pkU could have created a token

and afterwards used this token which resulted in the hidden user ID

hid (assuming appropriate encryption randomness). Extractability

is satisfied, provided that E is correct, since for an honest user, hid
will always be the encryption of his public key pkU .

11
Of course, we need to show that honest protocol runs do not reveal significant

information about skU .

Theorem 5.2 (Owner-Binding wrt. Issue). If the Co-CDH as-
sumption holds and P1 is perfectly F

(1)
gp -extractable, then BBAP is

owner-binding with respect to Issue.

The extractability property of P1 asserts that д
skU
2

can be ex-

tracted from the proof given during the protocol. This value is a

solution to the Co-CDH instance д1, д2, д
skU
1
= pkU .

Theorem 5.3 (Owner-Binding wrt. Accum and Vfy). If P1, P2,
P3 are perfectly F

(1)
gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively, C is

F ′gp-binding, S is EUF-CMA secure, and E is correct, then BBAP is
owner-binding with respect to Accum and Vfy.

Consider the first call to MalAcc or MalVer that fulfills the win-
ning condition of the experiment. The soundness of the NIZKs, the

F ′gp-binding of C and the correctness of E ensure that the public

key pkU extracted from the corresponding NIZK proof and the key

pk′
U

extracted by ExtractUID from the corresponding hid token

are well-defined and identical. Now, distinguish two cases with

respect to the commitment c (which fixes pkU) extracted from

the proof: a) either c is a fresh commitment or b) it is a replayed

commitment from a previous protocol invocation. Case a) is an im-

mediate violation of the EUF-CMA security of the signature scheme,

as only signed commitments can lead to acceptable protocol exe-

cutions. Case b) implies that the adversary was able to equivocate

an old commitment from some p̂kU to pkU . This contradicts the

F ′gp-binding property of the commitment (after exploitation of the

soundness of the NIZKs).

Theorem 5.4 (Double-Spending Detection). If P1, P2, P3 are
perfectly F (1)gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively,C is additively

homomorphic and F ′gp-binding, S is EUF-CMA secure, and E is correct,
then BBAP ensures double-spending detection.

The proof considers each of the three possible winning condi-

tions separately. The last winning condition can be immediately

ruled out by our protocol definition.

If the first winning condition holds, there are two double-spen-

ding tags with the same token version number s but different user

public keys pk(1)
U

and pk(2)
U
. Consider the commitments c1 and c2

that can be extracted from the proofs sent by the adversary in

each of the corresponding protocol executions. If c1 = c2 holds,

this violates the F ′gp-binding property of C as the adversary is able

to equivoke the same commitment to two different user IDs. If

c1 , c2 holds, two sub-cases needs to be considered. If at least

one of the commitments is a fresh commitment, this immediately

contradicts the EUF-CMA security of S by the same argument as in

Theorem 5.3. If both commitments are replayed commitments of

former protocol invocations, they are already associated to some

version numbers s1 and s2, respectively. As version numbers are

uniformly drawn from Zp in each protocol invocation, si = s only
holds with negligible probability. (Here, the Blum-like coin tossing

requires the homomorphism of C.) Hence, the adversary is able to

equivoke the commitments to the winning version number s which
again contradicts the F ′gp-binding property.

If the second winning condition holds, ExtractUID extracts pk(1)
U

= pk(2)
U

from the protocol invocations but IdentDS returns a differ-

ent value (or⊥) given dstag
1
= (s, (t ,u2)) and dstag2 = (s, (t ′,u ′

2
)).

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1937

From the extractability of the NIZKs and the correctness of E, it fol-
lows that t and t ′ have been computed using the same skU . Hence,

considering IdentDS, either u2 = u ′
2
or u1 , u

′
1
. The first case only

occurs with negligible probability. The second case implies that

that either both corresponding commitments (fixing u1 and u
′
1
) are

equal or not. Thus, again either the F ′gp-binding property of C is

violated or the EUF-CMA security of S.

Theorem 5.5 (Balance-Binding). If P1, P2, P3 are perfectly
F
(1)
gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively, C is F ′gp-binding, S is

EUF-CMA secure, and E is correct, then BBAP is balance-binding.

The proof proceeds in a sequence of game hops from the real

game to a modified game where the adversary always loses by

definition of the game. We show that if any two consecutive games

would significantly differ, this results in adversaries against the

security of the building blocks. The high-level idea is to augment

each game by additional sanity checks between the adversary’s in-

dividual oracle calls to MalIssue, MalAcc or MalVer. These checks
transform the original game into one which asserts that (1) an

adversary cannot make the experiment miscount the balance as-

sociated with user ID pkU and (2) an adversary cannot overclaim

or underclaim this computed balance. The technical challenge is

to properly formalize these sanity checks. To this end, a directed

graph is introduced, where a path links the individual protocol

executions that belong to the same user. The checks assert that the

adversary cannot deviate from the correct balance along each path.

5.2 User Security and Privacy
Theorem 5.6. If P1, P2, P3 are composable zero-knowledge, C is

equivocable and E is IND-CPA secure, thenBBAP is privacy-preserving.

This proof proceeds in a sequence of game hops that gradually

transform the real game into the ideal game in which no privacy

infringement can occur as all message are independent of user-

specific data. The game hops are as follows: a) replace the honest

CRS by a CRS that allows simulation of NIZK proofs and equivoca-

tion of commitments, b) replace all proofs by simulated proofs, c)

replace commitments by fake commitments, d) choose a random

value instead of an honest double-spending tag, e) replace the hid
by an encryption of д0

1
. The complete proof has to deal with two

technical subtleties: a) The subroutine UVer needs to be re-defined

properly. If the commitments are replaced by fake commitments the

unmodified version always fails and thus an honest party playing

the user aborts. However, the check cannot just be skipped entirely

as otherwise the adversary could just send garbage, check if the

user aborts and thus easily distinguish between real and ideal. b)

The experiment needs to keep track of all interactions such that it

can come up with a correct balance upon corruption. To this end,

the oracles need some sort of shared state.

Theorem 5.7. If BBAP is privacy-preserving and the calculation
of discrete logarithms in G1 is a computationally hard problem, then
BBAP ensures false accusation protection.

The oracles which the adversary is allowed to use are a subset

of the oracles of the privacy game. Assume there is an efficient

adversary that wins the false-accusation game with non-negligible

probability. Replace all oracles by their ideal counterparts using the

Table 1: User execution times for our instantiation

Algorithm Execution Time Data Sent Data Received

[ms] [Bytes] [Bytes]

Issue 115.27 672 320

Acc 385.61 3728 320

Vrfy 375.73 3664 320

same techniques as in the privacy proof. We distinguish two cases:

a) The adversary still outputs skU with non-negligible probability.

This contradicts the DL assumption inG1. b) The adversary does not

output the correct skU . This implies the existence of an adversary

who can distinguish between the real and the ideal privacy game.

6 PERFORMANCE EVALUATION
We evaluate the performance of our BBA+ instantiation by mea-

suring execution times of the BBA+ protocols using a practical

implementation. To this end, network payload and execution time

on the user’s device is measured. We selected the smartphone as a

target platform suitable for mobile applications, since it has become

a familiar companion in everyday life to the majority of potential

users. An additional benefit of this platform is that a developer

using our scheme does not have to distribute any new hardware

and users are already acquainted with their device.

The issuer’s, accumulator’s or verifier’s performance is not mea-

sured, as we expect their hardware to be much more powerful. Not

included in our measurements are data-transmission times, since

they depend on external factors not influenced by BBA+. How-

ever, we provide estimations based on the prevalent transmission

technology NFC.

We evaluate our implementation on a OnePlus 3 smartphone. It

features a Snapdragon 820 Quad-Core processor (2 × 2.15 GHz & 2

× 1.6 GHz), 6 GB RAM and runs Android OS v7.1.1 (Nougat). The

implementation is done in C++14 using the RELIC toolkit v.0.4.1,

an open source library with support for pairing-friendly elliptic

curves under the LGPL license [5].

6.1 Bilinear Groups
The digital signature scheme, the commitment scheme and the

non-interactive zero-knowledge proof system all build on pairing-

friendly elliptic curves. We configured RELIC with curves of 254-

bit order, the minimal supported size for pairing-friendly curves

that exceed 80 bit security. With this parameter choice the toolkit

configures itself to use the Barreto-Naehrig curves Fp254BNb and

Fp254n2BNb presented by Aranha et al. [7, 26].

We select the optimal Ate pairing as RELIC’s pairing function

since current speed records are achieved using this function [29].

To further optimize the performance of BBA+, one might use a

custom implementation of elliptic curves with a compatible bilinear

map, optimized for this purpose.We emphasize however, that RELIC

itself already delivers very promising execution times.

6.2 Implementation Results
Table 1 shows the average execution times for the respective BBA+

protocols on the user device and the amount of data that has to be

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1938

transmitted from the device to the issuer, accumulator, or verifier

and vice versa. To obtain a compact data stream for network transfer

while maintaining generality, we serialized each element as a length

byte, followed by its internal serialization. The size of a data packet

could further be reduced using compression algorithms. Note that

these are average execution timesmeasured on a smartphone during

regular use. The operating system’s scheduler interferes with the

computations and thus single protocol execution times may vary.

As a reference value for an acceptable execution time, we con-

sider one second to be a reasonable upper bound. All protocols of

BBA+ execute in less than 400ms on the user’s side. If we use, for

example, NFC with its maximum transmission speed of 424 kbit/s,

it would take less than 80ms to transmit all data for any of the pro-

tocols from/to the communication terminal. This leaves more than

500ms to transmit data packets over the network to the protocol

partner, have him compute his part of the protocol and respond to

the user. Assuming that the issuer, accumulator, and verifier run

a powerful back-end, it should not be challenging to execute an

entire protocol run in less than a second.

6.3 Further Optimizations
The RELIC toolkit is a multi-purpose library which is not mainly

optimized for pairing-based elliptic curve cryptography. Hence, we

might be able speed up our implementation by creating a dedicated

library focused on a highly optimized implementation of a pairing-

friendly elliptic curve.

Regarding the Groth-Sahai proof system, we expect that a user

could significantly reduce his computations for generating a GS

proof by carefully applying the prover chosen CRS technique from

[18]. Moreover, there are ways to optimize the efficiency of the

verifier of a GS proof considerably. For instance, Herold et al. [23]

recently proposed a batch verification technique dedicated to Groth-

Sahai proofs. Integrating these optimizations into our BBA+ instan-

tion, could notably reduce the computational complexity of the

issuer, accumulator, and verifier.

7 APPLYING BBA+
In the following, we sketch important aspects when applying BBA+

in some selected scenarios. From a high-level perspective, applying

BBA+ to these scenarios seemsmostly straightforward. Nonetheless,

there are some technical subtleties that needs to taken into account,

including:

• To guarantee security and privacy, the CRS needs to be set

up by a party which is trusted by both the operator (issuer,

accumulator, verifier) and the user.

• As the parties I, AC, andV all share the same secret key,

they need to trust each other (in particular, not to collude

with a malicious user).

• The values |v | being collected in a specific scenario need to be
upper bounded in a way such that no balance “wraparounds”

(in Zp) occur during the lifetime of a token. Otherwise, a

user could wrongfully lose points. He could also gain points

if negative balances are allowed (e.g., when considering a

balance space Zp represented by {−
p−1
2
, . . . , 0, . . . ,

p−1
2
}).

• It needs to be ensured that the application meets the restric-

tions imposed by the BBA+ security model. In particular,

user registration needs to be done out-of-band: The appli-

cation needs to verify and store the (physical) identity of a

user and make sure his chosen public-key pkU is unique.

Furthermore, it must be ensured that that only a single to-

ken is issued per pkU . If for the same (natural) user more

than one token is required, then he may register multiple

pkU—one for each token. Management of (natural) users

and association of each pkU with a physical identity is out

of the scope of the BBA+ scheme.

• Users need to be forced to actually run the Accum or Vfy
protocol if the value v to be added is negative. How this

can be accomplished is application-specific. Remember, if

an application ensures this, the user is bound to continue

with the updated token in the next interaction and cannot

re-use an older version with a higher balance due to double-

spending detection.

7.1 Customer Loyalty Systems
As a basic application, we outline how BBA+ can be used to create

a privacy-preserving loyalty system for customer retention. When

the operator initiates a loyalty program, he asks a trusted third party

(e.g., the Federal Commissioner for Data Protection and Freedom of

Information) to generate a CRS by running Setup. The trusted third
party then publishes the CRS and securely stores the trapdoor.

When the CRS has been created, the operator may generate a key

pair (pkI , skI) ← IGen(CRS) and publish pkI . Before a customer

is allowed to participate in the loyalty program, he must register

himself. The operator verifies the (physical) identity of the user,

ensures that pkU is unique and stores all information in some kind

of CRM system. Then the user and the operator execute the Issue
protocol to create a token for the user.

When the customer purchases some products, he executes the

AC protocol with the operator (e.g., represented by the cash regis-

ter), where v is the number of points that the customer receives.

If the customer wants to redeem some points (say, v ′ ∈ N) to
obtain a voucher, he unveils his current balancew to the operator

(represented by some token remdemption machine), who checks

that w ≥ v ′. The parties then execute the Vfy protocol with v :=

−v ′ = p−v ′ mod p. Note that there is no need to force the customer

to execute Vfy with a negative v , as he has an incentive to do so

(obtaining a voucher).

Using a balance space Zp = {0, . . . ,p − 1}, balance wraparounds
are not an issue in this scenario: First, we avoid wraparounds that

could be caused by subtracting values by only executing Vfy ifw ≥
v . Second, adding up positive points will not result in a wraparound

neither. To achieve a reasonable level of security, p is in the order

of 2
250

(cf. Section 6.1) while a typical loyalty program grants one

point per expensed dollar. Hence, a user needs to spent about $ 10
75

before a wraparound occurs.

In order to detect double-spending of collected points, the op-

erator regularly scans his database for double-spending tags with

identical token version numbers. If there are some, he runs IdentDS
in order to obtain the public key pkU of the user who committed

double-spending and a proof of guilt Π. He then looks up the name

and address of the user with key pkU and can contact him about

this issue.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1939

7.2 Micropayments in Vehicle-to-Grid
As the world slowly moves toward more ecologically friendly, re-

newable and natural sources of energy, the problem of storing large

amounts of energy is emerging. For example, the supply of solar

and wind power depend on external circumstances, and thus energy

harvested from these sources must be stored in order to be able to

revert to this energy when the natural supply is low, e. g. at night.

One approach for storing and resupplying this energy is to use the

batteries of electric cars while they are parked. This is known as

Vehicle-to-Grid power transfer, and involves micro-trading.

In this setting, BBA+ can be used to realize the transfer of money.

Here, an electricity provider may take the role of the issuer, accu-

mulator, and verifier, respectively. The car owner (or his car, acting

autonomously) is a user. Depending on the supply of energy in the

net and the charging level of the car’s battery, the car autonomously

sells or buys energy in exchange for points.

This raises the question how the user can be forced to actually

run the Vfy protocol in order to lose points when charging his

battery. The simplest solution is to let the user prepay before any

charging takes place. A drawback of this approach is that a user

would lose money if he wants to leave before the charging process

is completed. For a more comfortable solution, this approach can

be augmented by a subsequent refund step (using Accum) if the

prepaid amount is not used up when leaving. This allows the user

to overbuy and gain more flexibility. Finally, our specific imple-

mentation enables a third solution preventing prepayments. The

Vfy protocol can be interleaved with the actual charging of energy.

Before the charging starts, the Vfy protocol is executed until the

message from the user to the operator has been sent. This ensures

that the operator has already learned a double-spending tag for the

current token. Please note, that the final value v that must be paid

(which is unknown by now) is not yet required by the protocol.

This input can be postponed. After the charging terminates, v is

calculated and the Vfy protocol is resumed. If a user decides to “run

away” without paying and does not finish the Vfy protocol run, he

will be detected during the next interaction. This is because he has

not received a fresh version of the token, but must reuse the old

version a second time.

When the points collected by the car are exhausted, the user

may buy additional points (using cash, bank transfer or another

commonplace payment method) to recharge his token. Likewise,

when the car has accumulated a large number of points, the car

owner may redeem the points collected by his car, in order to get

paid for the electricity his car has provided.

8 FUTURE EXTENSIONS
In this section we sketch how BBA+ could be extended by range

proofs and also point out future work regarding active adversaries.

8.1 Range Proofs
There are a variety of applications where it might be desirable not

to reveal the current balancew during the verification and redemp-

tion protocol. To overcome this issue, the Vfy protocol could be

extended by a range proof system such as [10] or [14]. Although

there has been great progress to increase the efficiency of those

proof systems, we deliberately did not include one in our basic

scheme, as even recent range proofs are still computationally ex-

pensive. So they may considerably slow down the execution on

low-end hardware like mobile devices. Nonetheless, as for certain

scenarios this privacy/efficiency tradeoff might be worthwhile, we

sketch how range proofs could be integrated into our instantiation.

8.1.1 High Level Overview. In the following, we explain the idea

of the range proof in [10]. Firstly, let us recap the trivial approach

to prove that a balance w is at least the redeemed value v , i. e.
w ∈ S := {v, . . . ,Nmax} with Nmax being an upper bound on the

balance space. Here, the verifier would generate a signature on

every element of S and the prover would prove in ZK that it knows

a signature on its balancew . Obviously, this approach is prohibitive

if S grows proportional to the underlying group Zp as this yields

an exponentially large set for logp ∈ Θ(n).
In [10] Camenisch et al. exploit a q-ary representation of the

secret with at most ηmax digits to overcome this problem. Here,

q,ηmax ∈ N are design parameters that are chosen during system

setup such that Nmax := q
ηmax − 1 < p. For a fixed q, the maximal

admissible number of digits ηmax to represent a value is bounded

by ηmax ≤ ⌊logq p⌋ ∈ O (n). Assume the prover wants to prove

that a secret x ∈ Zp is contained in the range {0, . . . ,qη − 1} for

some η ≤ ηmax. The verifier needs to generate only one signature

on each element in {0, . . . ,q − 1}, the prover generates a q-ary

representation of the secret x =
∑η−1
j=0 x jq

j
and then proves for

each digit x j (j ∈ {0, . . . ,η − 1}) that the digit is contained in the

set {0, . . . ,q − 1}, i. e. that it knows a signature for it.
Please note that this range proof is only applicable to a Zp -subset

whose size is a power of q. Depending on the tangible choice of q
and ηmax there are p − Nmax + 1 elements of the underlying group

that cannot be represented. In practical terms, this means that only

a subset of Zp can be used and “illegal” balances have to be avoided

by the protocol.

Moreover, the basic range proof only allows to show that a secret

x can be represented with η ≤ ηmax digits, i. e. that x ∈ {0, . . . ,q
η −

1} holds. But we need to prove a statementw ∈ {v, . . . ,Nmax} about

a secretw and usually neither interval limit is located at a q-power.
In order to overcome this issue the prover conducts two range

proofs about a suitable shifted value and shows that the shifted

value lies in two different intervals whose limits are aligned and

whose intersection is the claimed range. For details on the actual

calculation see Section 8.1.3.

8.1.2 Design Choices and Notation. The efficiency of range

proofs heavily depends on the representation of the elements with

individual digits. This leaves space for some design decisions. The

design parametersq and ηmax are a trade-off between the number of

signatures and the size of the NIZK statement. Please note, that the

signatures can be pre-computed and re-used for all NIZKs. Hence,

a greater q and a smaller ηmax is usually beneficial.

We fix the representation Zp = {0, . . . ,p − 1} ⊂ N, i. e. we
interpret elements of Zp as positive numbers with the usual ≤-order

inherited fromN. This means we keep the protocols Accum and Vfy
separated and only extend the latter by a range proof. Moreover,

for the ease of notation we denote the first ηmax q-powers of д1

by Q j := д
(q j)
1

for j = 0, . . . ,ηmax − 1. These public constants are

an F
(3)
gp -mapping of all relevant magnitudes of the positional digit

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1940

system. The system constants q, ηmax, Nmax are included in the

CRS.

8.1.3 Concrete Range Proof. As already stated, we want to proof
w ∈ {v, . . . ,Nmax} and need to shift the values such that the interval

limits fit into the proof scheme. In preparation let η ∈ [ηmax] be

defined as η := ⌊logq (Nmax −v)⌋ + 1 and N := qη − 1, i. e. N + 1 is

the smallest q-power greater than Nmax −v . It follows

w ∈ {v, . . . ,Nmax}

⇔ Nmax −w ∈ {0, . . . ,Nmax −v}

⇔ Nmax −w ∈ {0, . . . ,N } ∩ {Nmax −v − N , . . . ,Nmax −v}

⇔

{
Nmax −w ∈ {0, . . . ,N } ∧

N +v −w ∈ {0, . . . ,N }

⇔

∃ w ′
0
, . . . ,w ′η−1 ∈ {0, . . . ,q − 1} : Nmax −w =

η−1∑
j=0

w ′jq
j

∃ w ′′
0
, . . . ,w ′′η−1 ∈ {0, . . . ,q − 1} : N +v −w =

η−1∑
j=0

w ′′j q
j

(10)

In our instantiation of the BBA+ scheme, openings of commit-

ments are elements from the implicit message space G1. For this

reason,w does not directly become part of the witness but an F
(3)
gp -

mappingW = дw
1

and Eq. (10) translates into a statement about

group elements. For an F
(3)
gp -mapped balance W ∈ G1 the user

proves

∃ w ′
0
, . . . ,w ′η−1 ∈ Zp :W

η−1∏
j=0

Q
w ′j
j = д

Nmax

1
(11)

∃ w ′′
0
, . . . ,w ′′η−1 ∈ Zp :W

η−1∏
j=0

Q
w ′′j
j = дN+v

1
. (12)

These are multi-scalar multiplication equations (MSEs) and there-

fore fit into our Groth-Sahai proof system.
12

Note, that in contrast to Eq. (10) the Eqs. (11) and (12) do not

assert that w ′j , w
′′
j ∈ {0, . . . ,q − 1}. Hence, the user must addi-

tionally prove that w ′j , w
′′
j are indeed valid digits. For each digit

i ∈ {0, . . . ,q − 1} let σi := S.Sgn(sksig,дi
2
) be a corresponding

signature using signature scheme S. Then the user proves

∀ j ∈ {0, . . . ,η − 1} :

S.Vfy(pksig,д
w ′j
2
,σw ′j) = 1 ∧ S.Vfy(pksig,д

w ′′j
2
,σw ′′j) = 1.

(13)

in order to show that it knows a valid signature for each digit. These

expand into two power-product equations (PPEs) each, using the

signature scheme from [1]. In summary, including a range proof

into the BBA+ scheme increases the NIZK of the Vfy protocol by 2

MSEs for correctness of representation and 4η PPEs for correctness

of the digits.

This concludes our description. We leave it as future work to

implement such a range proof and evaluate the absolute runtime

12
Groth-Sahai distinguish between different types of equations that are supported by

their proof system.

penalty for concrete choices of q and ηmax. Moreover, the security

model and proofs must be adopted to the new setting in order to

formally reestablish the security guarantees.

8.2 Fully Active Adversaries
In the security model described in Section 3.3, we consider adver-

saries that may arbitrarily deviate from the protocol. In the full

version of the paper [22], we give a full-fledged security model,

where the adversary may additionally eavesdrop on protocol exe-

cutions of honest users in several security experiments.

However, even in our full-fledged model, the adversary does

not control the network and therefore cannot tamper with the

messages of honest parties but is restricted to passively eavesdrop.

In other words, man-in-the-middle attacks are excluded by the

model. While we believe this is a realistic model for several of the

applications mentioned before, where the user and the operator

(issuer, accumulator, and verifier) are in direct contact with each

other, it may be insufficient if communication is done over a wide-

area network.

We therefore consider it interesting to extend our model to ad-

versaries that are not restricted to passively eavesdrop on honest

users, but may arbitrarily tamper with their communication as a

man-in-the-middle. However, we leave extending our model and

construction to such adversaries as future work.

ACKNOWLEDGMENTS
We would like to thank Jessica Koch and Valerie Fetzer for fruitful

discussions on black-box accumulation and their comments on ear-

lier version of this paper. Moreover, we also would like to thank the

anonymous ACM CCS reviewers for their constructive comments.

REFERENCES
[1] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2011.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups. In

Advances in Cryptology – CRYPTO 2011 (Lecture Notes in Computer Science),
Phillip Rogaway (Ed.), Vol. 6841. Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 649–666.

[2] Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo, and Mehdi Tibouchi. 2015.

Fully Structure-Preserving Signatures and Shrinking Commitments. In Advances
in Cryptology – EUROCRYPT 2015, Part II (Lecture Notes in Computer Science), Elis-
abeth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer, Heidelberg, Germany,

Sofia, Bulgaria, 35–65.

[3] William Aiello, Yuval Ishai, and Omer Reingold. 2001. Priced Oblivious Transfer:

How to Sell Digital Goods. In Advances in Cryptology – EUROCRYPT 2001 (Lecture
Notes in Computer Science), Birgit Pfitzmann (Ed.), Vol. 2045. Springer, Heidelberg,

Germany, Innsbruck, Austria, 119–135.

[4] Aimia Coalition Loyalty UK Ltd. 2016. The Nectar loyalty program. Online

Resource. (2016). https://www.nectar.com/.

[5] D. F. Aranha and C. P. L. Gouvêa. 2016. RELIC is an Efficient Library for Cryp-

tography. Online Resource. (2016). https://github.com/relic-toolkit/relic.

[6] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss. 2015.

Anonymous Transferable E-Cash. In Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings (Lecture Notes in
Computer Science), Jonathan Katz (Ed.), Vol. 9020. Springer, 101–124. https:

//doi.org/10.1007/978-3-662-46447-2_5

[7] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic

Curves of Prime Order. In SAC 2005: 12th Annual International Workshop on
Selected Areas in Cryptography (Lecture Notes in Computer Science), Bart Preneel
and Stafford Tavares (Eds.), Vol. 3897. Springer, Heidelberg, Germany, Kingston,

Ontario, Canada, 319–331.

[8] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2008.

P-signatures and Noninteractive Anonymous Credentials. In TCC 2008: 5th Theory
of Cryptography Conference (Lecture Notes in Computer Science), Ran Canetti (Ed.),

Vol. 4948. Springer, Heidelberg, Germany, San Francisco, CA, USA, 356–374.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1941

https://www.nectar.com/
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5

[9] Dan Boneh and Xavier Boyen. 2004. Short SignaturesWithout RandomOracles. In

Advances in Cryptology – EUROCRYPT 2004 (Lecture Notes in Computer Science),
Christian Cachin and Jan Camenisch (Eds.), Vol. 3027. Springer, Heidelberg,

Germany, Interlaken, Switzerland, 56–73.

[10] Jan Camenisch, Rafik Chaabouni, and abhi shelat. 2008. Efficient Protocols for

Set Membership and Range Proofs. In Advances in Cryptology – ASIACRYPT 2008
(Lecture Notes in Computer Science), Josef Pieprzyk (Ed.), Vol. 5350. Springer,

Heidelberg, Germany, Melbourne, Australia, 234–252.

[11] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. 2010. Unlinkable

Priced Oblivious Transfer with Rechargeable Wallets. In FC 2010: 14th Interna-
tional Conference on Financial Cryptography and Data Security (Lecture Notes in
Computer Science), Radu Sion (Ed.), Vol. 6052. Springer, Heidelberg, Germany,

Tenerife, Canary Islands, Spain, 66–81.

[12] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact

E-Cash. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings (Lecture Notes in Computer Science), Ronald
Cramer (Ed.), Vol. 3494. Springer, 302–321. https://doi.org/10.1007/11426639_18

[13] Sébastien Canard and Aline Gouget. 2008. Anonymity in Transferable E-cash. In

Applied Cryptography and Network Security, 6th International Conference, ACNS
2008, New York, NY, USA, June 3-6, 2008. Proceedings (Lecture Notes in Computer
Science), Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti

Yung (Eds.), Vol. 5037. 207–223. https://doi.org/10.1007/978-3-540-68914-0_13

[14] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. 2012. A Non-interactive

Range Proof with Constant Communication. In FC 2012: 16th International Con-
ference on Financial Cryptography and Data Security (Lecture Notes in Computer
Science), Angelos D. Keromytis (Ed.), Vol. 7397. Springer, Heidelberg, Germany,

Kralendijk, Bonaire, 179–199.

[15] Delphine Christin, Andreas Reinhardt, Salil S. Kanhere, and Matthias Hollick.

2011. A survey on privacy in mobile participatory sensing applications. Journal
of Systems and Software 84, 11 (2011), 1928–1946.

[16] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia. 2008. A

Practical Attack on the MIFARE Classic. In Smart Card Research and Advanced
Applications: 8th IFIP WG 8.8/11.2 International Conference, Proceedings, Gilles
Grimaud and François-Xavier Standaert (Eds.). Springer, Heidelberg, Germany,

London, UK, 267–282.

[17] Taher ElGamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In Advances in Cryptology – CRYPTO’84 (Lecture Notes
in Computer Science), G. R. Blakley and David Chaum (Eds.), Vol. 196. Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 10–18.

[18] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014:
17th International Conference on Theory and Practice of Public Key Cryptography
(Lecture Notes in Computer Science), Hugo Krawczyk (Ed.), Vol. 8383. Springer,

Heidelberg, Germany, Buenos Aires, Argentina, 630–649.

[19] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van Rossum,

Roel Verdult, RonnyWichers Schreur, and Bart Jacobs. 2008. DismantlingMIFARE

Classic. In ESORICS 2008: 13th European Symposium on Research in Computer
Security (Lecture Notes in Computer Science), Sushil Jajodia and Javier López (Eds.),
Vol. 5283. Springer, Heidelberg, Germany, Málaga, Spain, 97–114.

[20] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers Schreur.

2009. Wirelessly Pickpocketing a Mifare Classic Card. In 2009 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, Oakland, CA, USA, 3–15.

[21] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups. In Advances in Cryptology – EUROCRYPT 2008 (Lecture Notes in
Computer Science), Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, Germany,

Istanbul, Turkey, 415–432.

[22] Gunnar Hartung, Max Hoffmann, Matthias Nagel, and Andy Rupp. 2017. BBA+:

Improving the Security and Applicability of Privacy-Preserving Point Collection

(full paper). (2017). http://homepage.rub.de/andy.rupp/papers/bbap_full_paper.

pdf.

[23] Gottfried Herold, Max Hoffmann, Michael Klooß, Carla Ràfols, and Andy Rupp.

2017. New Techniques for Structural Batch Verification in Bilinear Groups with

Applications to Groth-Sahai Proofs. Cryptology ePrint Archive, Report 2017/802.

(2017). http://eprint.iacr.org/2017/802.

[24] Malika Izabachène, Benoît Libert, and Damien Vergnaud. 2011. Block-Wise P-

Signatures and Non-interactive Anonymous Credentials with Efficient Attributes.

In 13th IMA International Conference on Cryptography and Coding (Lecture Notes
in Computer Science), Liqun Chen (Ed.), Vol. 7089. Springer, Heidelberg, Germany,

Oxford, UK, 431–450.

[25] Tibor Jager and Andy Rupp. 2016. Black-Box Accumulation: Collecting Incentives

in a Privacy-Preserving Way. Proceedings on Privacy Enhancing Technologies
(PoPETs) 2016, 3 (2016), 62–82.

[26] Yuto Kawahara, Tetsutaro Kobayashi, Michael Scott, and Akihiro Kato. 2016.

Barreto-Naehrig Curves. Internet Draft. Internet Engineering Task Force. Work

in Progress.

[27] Willett Kempton and Jasna Tomic. 2005. Vehicle-to-grid power fundamentals:

Calculating capacity and net revenue. Elsevier Journal of Power Sources 144, 1
(2005), 268–279.

[28] Milica Milutinovic, Italo Dacosta, Andreas Put, and Bart De Decker. 2015. uCen-

tive: An efficient, anonymous and unlinkable incentives scheme. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE Computer Society Press, Helsinki, Finland,

588–595.

[29] Dustin Moody, Rene C. Peralta, Ray A. Perlner, Andrew R. Regenscheid, Allen L.

Roginsky, and Lidong Chen. 2015. Report on Pairing-based Cryptography. In

Journal of Research of the National Institute of Standards and Technology, Vol. 120.
National Insititute of Standards and Technology, Gaithersburg, MD, USA, 11–27.

[30] NXP Semiconductors Netherlands B.V. 2014. MIFARE Classic EV1 4K Product Data
Sheet Revision 3.1. NXP Semiconductors Netherlands B.V.

[31] NXP Semiconductors Netherlands B.V. 2016. MIFARE DESFire EV2 contactless
multi-application IC Data Sheet Rev. 2.0. NXP Semiconductors Netherlands B.V.

[32] David Oswald and Christof Paar. 2011. Breaking Mifare DESFire MF3ICD40:

Power Analysis and Templates in the Real World. In Cryptographic Hardware
and Embedded Systems – CHES 2011 (Lecture Notes in Computer Science), Bart
Preneel and Tsuyoshi Takagi (Eds.), Vol. 6917. Springer, Heidelberg, Germany,

Nara, Japan, 207–222.

[33] PAYBACK GmbH. 2016. The Payback loyalty program. Online Resource. (2016).

https://www.payback.net/.

Session I3: Personal Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1942

https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-540-68914-0_13
http://homepage.rub.de/andy.rupp/papers/bbap_full_paper.pdf
http://homepage.rub.de/andy.rupp/papers/bbap_full_paper.pdf
http://eprint.iacr.org/2017/802
https://www.payback.net/

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Bilinear Groups and Assumptions
	2.2 Building Blocks

	3 BBA+ Definition
	3.1 High-Level System Description
	3.2 Formal System Definition
	3.3 Definition of System Security
	3.4 Definition of User Security and Privacy

	4 BBA+ Instantiation
	4.1 Building Blocks
	4.2 Protocol Description

	5 Security and Privacy Theorems
	5.1 System Security
	5.2 User Security and Privacy

	6 Performance Evaluation
	6.1 Bilinear Groups
	6.2 Implementation Results
	6.3 Further Optimizations

	7 Applying BBA+
	7.1 Customer Loyalty Systems
	7.2 Micropayments in Vehicle-to-Grid

	8 Future Extensions
	8.1 Range Proofs
	8.2 Fully Active Adversaries

	Acknowledgments
	References

