
Object Flow Integrity
Wenhao Wang

wenhao.wang@utdallas.edu

The University of Texas at Dallas

Xiaoyang Xu

xiaoyang.xu@utdallas.edu

The University of Texas at Dallas

Kevin W. Hamlen

hamlen@utdallas.edu

The University of Texas at Dallas

ABSTRACT

Object flow integrity (OFI) augments control-flow integrity (CFI)

and software fault isolation (SFI) protections with secure, first-class

support for binary object exchange across inter-module trust bound-

aries. This extends both source-aware and source-free CFI and SFI

technologies to a large class of previously unsupported software:

those containing immutable system modules with large, object-

orientedAPIs—which are particularly common in component-based,

event-driven consumer software. It also helps to protect these inter-

module object exchanges against confused deputy-assisted vtable

corruption and counterfeit object-oriented programming attacks.

A prototype implementation for Microsoft Component Object

Model demonstrates that OFI is scalable to large interfaces on the

order of tens of thousands ofmethods, and exhibits low overheads of

under 1% for some common-case applications. Significant elements

of the implementation are synthesized automatically through a

principled design inspired by type-based contracts.

CCS CONCEPTS

• Security and privacy → Software security engineering; •

Software and its engineering → Classes and objects; Incre-

mental compilers;

KEYWORDS

security; control-flow integrity; object-oriented programming; bi-

nary transformation

1 INTRODUCTION

Control-flow integrity (CFI) [2] and software fault isolation (SFI) [61]
secure software against control-flow hijacking attacks by confining

its flows to a whitelist of permissible control-flow edges. The ap-

proach has proven successful against some of the most dangerous,

cutting-edge attack classes, including return-oriented programming
(ROP) [51] and other code-reuse attacks (CRAs) [5]. Attacks in these

families typically exploit dataflow vulnerabilities (e.g., buffer over-

flows) to corrupt code pointers and thereby redirect control to

attacker-chosen program subroutines. By validating each impend-

ing control-flow target at runtime before it is reached, CFI guards

can often thwart these hijackings.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’17, October 30 – November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133986

CFI and SFI frameworkswork by statically instrumenting control-

flow transfer instructions in vulnerable software with extra guard
code that validates each computed jump destination at runtime.

The instrumentation can be performed at compile-time (e.g., [2, 4–

6, 32, 36, 43–46, 55, 57, 71]) or on sourceless binaries (e.g., [40, 48, 58,

62, 65, 72–74]). This facility to harden source-free binary software

is important for securing software in-flight—allowing third parties

to secure dynamically procured binary software on-demand in a

way that is transparent to code producers and consumers—and for

securing the large quantity of software that is closed-source, or that

incorporates software components (e.g., binary libraries) whose

source code is unavailable to code consumers.

While the past decade has witnessed rapid progress toward more

powerful, higher performance, and more flexible CFI enforcement

strategies, there still remain large classes of consumer software

to which these technologies are extremely difficult to apply using

existing methods. Such limitations often stem from many source-

aware CFI algorithms’ need for full source code for the entire soft-

ware ecosystem (e.g., even for the OS kernel, device drivers, and

complete runtime system) in order to properly analyze application

control-flows, or the difficulty of analyzing complex flows common

to certain well-entrenched consumer software paradigms, such as

GUI-interactive, event-driven, and component-based software ap-

plications. For example, although CFI has been applied successfully

to some large applications, in our experience no CFI/SFI algorithm

published in the literature to date (see §6) successfully preserves

and secures the full functionality of Windows Notepad—one of the

most ubiquitous consumer software products available.

The central problem is a lack of first-class support for archi-

tectures in which immutable, trusted software components have

huge object-oriented interfaces. Programs like Notepad interact with

users by displaying windows, monitoring mouse events, and send-

ing printer commands. At the binary level, this is achieved by calling

runtime system API methods that expect binary objects as input.

The app-provided binary object contains a virtual method table

(vtable), whose members are subsequently called by the runtime

system to notify the app of window, mouse, and printer events. The

call sites that target untrusted code, and that CFI algorithms must

instrument, are therefore not exclusively located within the untrusted
app code—many are within trusted system libraries that cannot be

modified (or sometimes even examined) by the instrumentation

process, since they are part of the protected runtime system.

Most CFI algorithms demand write-access to all system soft-

ware components that may contain unguarded, computed jumps—

including the OS, all dynamically loaded libraries, and all future

updates to them—in order to ensure safety. In component-driven

settings, where modules are dynamically procured on-demand via

1

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1909

https://doi.org/10.1145/3133956.3133986

a distributed network or cloud, this is often impractical. Unfortu-

nately, such settings comprise >98% of the world’s software mar-

ket,
1
including many mission-critical infrastructures that incorpo-

rate consumer software components.

One approach for coping with this pervasive problem has been to

secure objects passed to uninstrumentedmodules at call sites within

the instrumented modules, before the trusted module receives them

(e.g., [57]). But this approach fails when trusted modules retain

persistent references to the object, or when their code executes

concurrently with untrusted module code. In these cases, verifying

the object at the point of exchange does not prevent the untrusted

module from subsequently modifying the vtable pointer to which

the trusted module’s reference points (e.g., as part of a data corrup-

tion attack). We refer to such attacks as COnfused DEputy-assisted
Counterfeit Object-Oriented Programming (CODE-COOP) attacks,

since they turn recipients of counterfeit objects [54] into confused

deputies [31] who unwittingly invoke policy-prohibited code on

behalf of callers.

Faced with such difficulties, many CFI systems conservatively

resort to disallowing untrusted module accesses to trusted, object-

oriented APIs to ensure safety. This confines such approaches to

architectures with few trusted object-oriented system APIs (e.g.,

Linux), applications that make little or no use of such APIs (e.g.,

benchmark or command-line utilities), or platforms where the ma-

jority of the OS can be rewritten (e.g., ChromeOS [57]). The ma-

jority of present-day software architectures that fall outside these

restrictive parameters have remained unsupported or receive only

incomplete CFI security.

To bridge this longstanding gap, we introduce object flow integrity
(OFI)—a systematic methodology for imbuing CFI and SFI systems

with first-class support for immutable, trusted modules with object-

oriented APIs. OFI facilitates safe, transparent flow of binary objects

across trust boundaries in multi-module processes, without any

modification to trusted module code. To maintain the deployment

flexibility of prior CFI/SFI approaches, OFI assumes no access to

untrusted application or trusted system source code; we assume

only that trusted interfaces are documented (e.g., via public C++

header files or IDL specifications).

Our prototype implementation showcases OFI’s versatility and

scalability by targeting the largest, most widely deployed object-

oriented system API on the consumer software market—Microsoft

Component Object Model (COM) [27]. Most Windows applications

rely upon COM to display dialog boxes (e.g., save- and load-file di-

alogs), create interactive widgets (e.g., ActiveX controls), or dynam-

ically discover needed system services. To handle these requests in

a generalized, architecture-independent manner, COM implements

an elaborate system of dynamic, shared module loading; distributed,

inter-process communication; and service querying facilities—all

fronted by a vast, language-independent, object-oriented program-

ming interface. Consequently, COM-reliant applications (which

constitute a majority of consumer software today) have remained

significantly beyond the reach of CFI/SFI defenses prior to OFI.

To keep our scope tractable, this paper does not attempt to ad-

dress all research challenges faced by the significant body of CFI

literature. In particular, we do not explicitly address the challenges

1
https://www.netmarketshare.com

1

Untrusted Module
CoCreateInstance(⟨clsid ⟩, . . . , ⟨iid1 ⟩, &o1);

2 o1→Show(. . .);

3

Trusted Module
o1→QueryInterface(⟨iid2 ⟩, &o2);

4 o2→GetOptions(. . .);
5 o2→Release();
6 o1→GetResult(&o3);
7 o3→GetDisplayName(. . .);
8 o3→Release();
9 o1→Release();

Listing 1: Code that opens a file-save dialog box

of optimizing the performance of the underlying CFI enforcement

mechanism, deriving suitable control-flow policies for CFI mecha-

nisms to enforce (cf., [54]), or obtaining accurate native code dis-

assemblies without source code (cf., [66]). Our goal is to enhance

existing CFI/SFI systems with support for a much larger class of

target application programs and architectures without exacerbating

any of these challenges, which are the focuses of related works.

In summary, our contributions are as follows:

• We introduce a general methodology for safely exchanging

binary objects across inter-module trust boundaries in CFI/SFI-

protected programs without varying trusted module code.

• A prototype implementation for Microsoft COM demonstrates

that the approach is feasible for large, complex, object-oriented

APIs on the order of tens of thousands of methods.

• A significant portion of the implementation is shown to be syn-

thesizable automatically through a novel approach to reflective

C++ programming.

• Experimental evaluation indicates that OFI imposes negligi-

ble performance overhead for some common-case, real-world

applications.

Section 2 begins with an examination of CODE-COOP attacks

and how they manage to evade incomplete CFI protections applied

to source-free, component-based software. Section 3 presents OFI’s

approach to addressing these dangers. Our prototype implementa-

tion and its evaluation is presented in Sections 4 and 5, respectively.

Related work is summarized in Section 6, and Section 7 concludes.

2 BACKGROUND

2.1 Inter-module Object Flows

To motivate OFI’s design, Listing 1 presents typical C++ code for

creating a standard file-open dialog box on a COM-based OS, such

as Windows. The untrusted application code first creates a shared

object o1 (line 1), where ⟨clsid⟩ and ⟨iid1⟩ are global numeric identi-

fiers for the system’s FileOpenDialog class and IFileOpenDialog
interface of that class, respectively. Method Show is then invoked

to display the dialog (line 2).

While executing Show, the trusted system module separately ma-

nipulates object o1, including calling its QueryInterface method

to obtain a new interface o2 for the object, and invoking its methods

(lines 3–5). Once the user has finished interacting with the dialog

and it closes, the untrusted module calls o1’s GetResult method to

obtain an IShellItem interface o3 whose GetDisplayNamemethod

discloses the user’s file selection (lines 6–7). Finally, the untrusted

module releases the shared objects (lines 8–9).

2

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1910

https://www.netmarketshare.com

1 LPCTSTR lpFileName = TEXT("dnscmmc.dll");
2 HMODULE hModule;
3 IUnknown ∗o1;
4 HRESULT(WINAPI ∗lpGCO)(REFCLSID, REFIID, LPVOID∗);

6 hModule = LoadLibrary(lpFileName);
7 (FARPROC&) lpGCO = GetProcAddress(hModule, "DllGetClassObject");
8 lpGCO(⟨clsid ⟩, ⟨iid1 ⟩, (LPVOID∗) &o1);

10 // ... code containing a data corruption vulnerability ...

12 IUnknown ∗o2;
13 o1→QueryInterface(⟨iid2 ⟩, (LPVOID∗) &o2);

Listing 2: CODE-COOP attack vulnerability

Safely supporting this interaction is highly problematic for CFI

frameworks. All method calls in Listing 1 target non-exported func-
tions located in trusted system libraries. The function entry points

are only divulged to untrusted modules at runtime within vtables

of shared object data structures produced by trusted modules. By

default, most CFI policies block such control-flows as indistinguish-

able from control-flow hijacking attacks.

If one whitelists these edges in the control-flow policy graph

to permit them, a significant new problem emerges: Each method

call implicitly passes an object reference (the this pointer) as its
first argument. A compromised, untrusted module can therefore

pass a counterfeit object to the trusted callee, thereby deputizing

it to commit control-flow violations when it invokes the object’s

counterfeit method pointers.

One apparent solution is to validate these object references on

the untrusted application side at the time they are passed, but this

introduces a TOCTOU vulnerability: Since shared COM objects are

often dynamically allocated in writable memory, a compromised

or malicious application can potentially modify the object’s vtable

pointer or its contents after passing a reference to it to a trusted

module. Trusted modules must therefore re-validate all code point-

ers at time-of-use to ensure safety, but this breaks CFI’s deployment

model because it necessitates rewriting all the system libraries.

2.2 CODE-COOP Attacks

Listing 2 demonstrates the danger with a common Windows COM

programming idiom that is vulnerable to CODE-COOP attack even

with CFI protections enabled for all application-provided modules.

Lines 6–8 dynamically load a COM library (e.g., dnscmmc.dll) and

invoke its DllGetClassObject function to obtain an object refer-

ence o1. Line 13 later obtains a new interface o2 to the object.

A data corruption vulnerability (e.g., buffer overwrite) in line 10

can potentially allow an attacker to replace o1’s vtable with a coun-

terfeit one. CFI protections guarantee that line 13 nevertheless

targets a valid QueryInterface implementation, but if the process

address space contains any system COM library that has not un-

dergone CFI instrumentation, the attacker can redirect line 13 to

an unguarded QueryInterface. Since all QueryInterface imple-

mentations internally call other methods on o1 (e.g., AddRef), the
attacker can corrupt those to redirect control arbitrarily.

To demonstrate this, we compiled and executed Listing 2 on

Windows 10 (Enterprise 1511, build 10586.545) with Microsoft Con-

trol Flow Guard (MCFG) [55] enabled, and nevertheless achieved

arbitrary code execution. MCFG is a Visual Studio addition that

compiles CFI guard code into indirect call sites, including line 13.

The guards constrain the sites to a whitelist of destinations. Most

Windows 10 system libraries are compiled with MCFG enabled so

that their call sites are likewise protected, but many are not. We

counted 329 unprotected system libraries on a clean install of Win-

dows 10—many of them in the form of legacy libraries required for

backward compatibility. (For example, some have binary formats

that predate COFF, and are therefore incompatible with MCFG.)

These include dnscmmc.dll (the DNS Client Management Console),

which Listing 2 exploits. If an attacker can contrive to load any of

them (e.g., through dll injection or by corrupting variable lpFileName
in line 6), CODE-COOP attacks become threats. Since COM services

obtain libraries dynamically and remotely on-demand, replacement

of all 329 of the libraries we found with CFI-protected versions is

not an antidote—universal adoption of MCFG across all software

vendors and all module versions would be required.

Moreover, even universal adoption of MCFG is insufficient be-

cause MCFG cannot protect returns in component-based applica-

tions, which are the basis of many code-reuse attacks (e.g., ROP).

Stronger CFI systems that do protect returns must likewise univer-

sally modify all binary components or suffer the same vulnerability.

We consider the existence of at least some uninstrumented mod-

ules to be a practical inevitability in most deployment contexts;

hence, we propose an alternative approach that augments arbitrary

existing CFI approaches to safely tolerate such modules without

demanding write-access to system code.

3 DESIGN

3.1 Object Proxying

OFI solves this problem by ensuring that trusted callee modules

(i.e., potential deputies) never receive writable code pointers from

untrusted, CFI-protected callers. Achieving this without breaking

intricate object exchange protocols and without demanding full

source code requires careful design. Our solution centers around

the idea of proxy objects. Each time an object flows across an inter-

module trust boundary, OFI delivers a substitute proxy object to

the callee. There are two kinds of proxies in OFI:

• Floor proxy objects ⌊o⌋ are delivered to trusted callees when

an untrusted caller attempts to pass them an object o. (Floor
objects are so-named because higher-trust tenants see them

when “looking down” toward low-trust objects).

• Ceiling proxy objects ⌈o⌉ are delivered to untrusted callees when
a trusted caller attempts to pass them an object o. (Low-trust
tenants see them when “looking up” toward high-trust objects.)

Functions ⌊·⌋ and ⌈·⌉ are inverses, so ⌊⌈o⌉⌋ = ⌈⌊o⌋⌉ = o. Thus, if
one tenant passes an object to another, who then passes it back,

the original tenant receives back the original object, making the

proxying transparent to both parties.

At a high level, proxy objects are in-lined reference monitors
(IRMs) [53] that wrap and mediate access to the methods of the

objects they proxy. When called, their methods must (1) enforce

3

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1911

Mediators

low memory high memory

Vault
Dispatch

indirect vaulter(s)call vault_dispatch
call return_trampoline

call vault_dispatch

Trampoline Pool
direct vaulter(s)

V-Trampoline Pool
call v-vault_dispatch

call v-vault_dispatch

V-Vault
Dispatch

virtual vaulter(s)

indirect
bouncer(s)

down
up

Bounce
Dispatch

call bounce_dispatch

call bounce_dispatch

Chute Pool

V-Chute Pool
call v-bounce_dispatch

call v-bounce_dispatch

V-Bounce
Dispatch

virtual
bouncer(s)

down
up

return
trampolineU

nt
ru
st
ed

M
od

ul
e
(lo

w
)

Tr
us
te
d
M
od

ul
e
(h
ig
h)

Figure 1: Cross-module OFI control-flows

...

class C0

methods

class C1 <: C0

methods
...

object
reference

vtable pointer

method pointer 1

method pointer 2

method pointer 3

method pointer 4

Figure 2: Proxy object binary representation

control-flow and dataflow guards that detect and prevent impend-

ing CFI violations, and (2) seamlessly purvey the same services

as the object they proxy (whenever this does not constitute an in-

tegrity violation). In the literature, these requirements are known

as IRM soundness and transparency [30, 35]. The soundness prop-

erty enforced by a proxy object can be formalized as a type-based

contract derivable from the method’s type signature, as detailed

in §3.2; transparency is achieved by the proxy’s reversion to the

original object’s programming whenever the contract is satisfied.

When applying OFI to binary code without source code, it is not

clear where to inject guard code that introduces these proxy objects.

All of the calls in Listing 1 take the form of computed jump instruc-

tions at the binary level, whose destinations cannot generally be

statically predicted. Injecting guard code that accommodates every

possible proxy scenario at every computed jump instruction in the

program would introduce unacceptable performance overhead.

To avoid this, OFI adopts a lazy, recursive approach to object prox-

ying: At object creation points, OFI substitutes the created objects

with proxy objects whose methods are mediators that enforce CFI
guards before falling through to the proxied object’s original pro-

gramming. The mediators recursively introduce a new layer of prox-

ying for any potentially insecure objects being passed as arguments.

Thus, proxying occurs dynamically, on-demand, as each method is

called by the various principals and with various object arguments.

For example, OFI transforms line 6 so that ⌈o1⌉→GetResult points
to mediator method GetResult_vaulter, whose implementation

calls o1→GetResult with this pointer equal to ⌊⌈o1⌉⌋ = o1. When

control returns to the mediator, it replaces out-argument o3 with
⌈o3⌉ and then returns to the untrusted caller. We refer to proxy

methods that mediate low-to-high calls followed by high-to-low re-

turns as vaulters, and those that mediate high-to-low calls followed

by low-to-high returns as bouncers.
CODE-COOP attacks that attempt to deputize object recipients

by corrupting proxy vtables are thwarted by storing proxy objects

entirely within read-only memory. This is possible because proxy

objects need no writable data; modern object exchange protocols

like COM and CORBA require object recipients to access any data

via accessor methods (e.g., to accommodate distributed storage),

while the object’s creator may access in-memory data fields di-

rectly. Thus, OFI proxies consist only of a fixed vtable and no data.

Moreover, to avoid overhead associated with dynamically allocat-

ing them, our design assigns all proxy objects the same vtable. This
allows the entire proxy object pool to be efficiently implemented

as a single, read-only physical page of memory (possibly allocated

to multiple virtual pages) filled with the shared vtable’s address.

Each such vtable pointer constitutes a complete proxy object, ready

to be used as a fresh proxy during mediation. The vtable methods

all call a central dispatcher method that consults the call stack to

determine which proxy object and virtual method is the desired

destination, and invokes the appropriate mediator implementation.

Figure 1 illustrates the resulting control-flows. When an un-

trusted module attempts to call a method of a shared object, the

code pointer it dereferences points into a v-trampoline pool consist-
ing of direct call instructions that all target OFI’s v-vault dispatch
subroutine. The dispatcher pops the return address pushed by the v-

trampoline pool to determine the index of the method being called,

and consults the stack’s this pointer to determine the object. Based

on this information, it selects and tail-calls the appropriate virtual
vaulter mediator. The vaulter proxies any in-arguments, calls the

trusted module’s implementation of the method, then proxies any

out-arguments, and returns to the caller.

In the reverse direction, trusted modules call into a chute pool
that targets OFI’s bounce dispatch subroutine, which dispatches

control to a virtual bouncer. To safely accommodate the return of

the untrusted callee to the trusted caller (which constitutes a control-

flow edge from untrusted code to a non-exported trusted address,

4

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1912

which many CFI policies prohibit), the bouncer replaces the return

address with the address of a special return trampoline that safely
returns control to the “up” half of the bouncer implementation.

This approach generalizes to direct untrusted-to-trusted calls

and indirect (non-virtual) untrusted-to-trusted calls, which are both

represented atop Figure 1. Direct calls are statically identifiable by

(both source-aware and source-free) CFI, and are therefore stati-

cally replaced with a direct call to a corresponding direct vaulter
implementation. Indirect, inter-module calls dereference code point-

ers returned by the system’s dynamic linking API (e.g., dlsym()
or GetProcAddress() on Posix-based or Windows-based OSes,

respectively). OFI redirects these to trampoline pool entries that

dispatch appropriate indirect vaulters. (Dynamic linking can also

return pointers to statically linked functions, in which case the

dispatcher targets a direct vaulter.)

Another benefit of this proxy object representation strategy is its

natural accommodation of subclassing relationships. Callees with

formal parameters of type C0 may receive actual arguments of any

subtype C1 <: C0; likewise, callers expecting return values or out-

arguments of type C0 may receive objects of any subtype C1 <: C0.

It is therefore essential that proxy objects obey a corresponding

subtyping relation that satisfies

C1 <: C0 =⇒
(
⌊C1⌋ <: ⌊C0⌋

)
∧
(
⌈C1⌉ <: ⌈C0⌉

)
(1)

in order to preserve computations that depend on subtyping.

At the binary level, object vtables support inheritance as illus-

trated in Figure 2—ordering method pointers from most to least

abstract class allows code expecting a more abstract class to trans-

parently access the prefix of the vtable that is shared among all

its subclasses. Instantiating all proxy objects with a shared, fixed

vtable therefore allows all proxy objects to transparently subtype

all other proxy objects (since their vtables are identical). This avoids

introducing and consulting potentially complex runtime typing in-

formation for each object, which would lead to additional overhead

related to protecting that information from malicious tampering.

3.2 Type-based Contracts

In order to reliably synthesize and interpose its mediation logic

into all trust boundary-crossing method calls, OFI must base its

mediation on a description of each interface that links the com-

municating modules. Since interfaces are collections of method

type signatures, OFI therefore enforces a type-based contract [22]
between caller and callee. That is, each trusted interface method’s

type signature encodes a set of contractual obligations on code

pointers that must be enforced by OFI to ensure CFI-compliant

operation. This type-theoretic foundation is essential for scalably

automating OFI for large interfaces.

Figure 3 defines OFI contracts as a core subset of the type sys-

tem used by major interface description languages, such as MIDL

and CORBA IDL [21], for component communication. Interface

methods have types τ →cc τ ′, which denote functions from an

argument list of type τ to a return value of type τ ′. Calling conven-
tion annotation cc is used by OFI to preserve and secure the call

stack during calls. Classes, structures, and function argument lists

are encoded as tuples τ1 × τ2 × · · · × τn , which denote structures

having n fields of types τ1, . . . ,τn , respectively. For convenience,
named classes are here written as named typesC (in lieu of writing

τ : U ::= ⊥ (security-irrelevant byte)

| τ1 × τ2 (structures)

| τ s (arrays)

| τ1 + τ2 (unions)

| C (shared object classes)

| τ →cc τ
′

(functions)

| [dir]τ∗ (pointers)

| Σ(v :τ) f (dependent pairs)

| µt .τ | t (recursive datatypes)

s ::= n | ZT (zero-terminated) (array sizes)

n ∈ N (numeric constants)

f : N→ U (type dependencies)

dir ::= in | out | inout (argument directions)

cc ::= callee_pop | caller_pop (calling conventions)

Figure 3: A type system for expressingCFI obligations asOFI

contracts

out their usually large, recursive type signatures). Static-length

arrays and zero-terminated strings have repetition types τn and

τ ZT, respectively. Pointer arguments whose referents are provided

by callers (resp. callees) have type [in]τ∗ (resp. [out]τ∗). Those
with a caller-supplied referent that is replaced by the callee before

returning use bidirectional annotation [inout]. Self- or mutually-

referential types are denoted by µt .τ , where τ is a type that uses

type variable t for recursive reference.
For example, Listing 1’s GetResult method has type

GetResult : ([in]CIFD∗ × [out]CISI∗) →callee_pop ⊥4 (2)

whereCIFD andCISI are the types of the IFileDialog and IShell-
Item interfaces. This type reveals that a correct vaulter for GetRe-
sult must replace the first stack argument (i.e., the this pointer)
with a floor proxy of type ⌊CIFD⌋ before invoking the trusted callee,

and then replace the second stack argument with a ceiling proxy

of type ⌈CISI⌉ before returning to the untrusted caller.

In addition to the usual types found in C, we found that we

needed dependent pair types Σ(v :τ) f in order to express many API

method contracts. Values with such types consist of a fieldv of some

numeric type τ , followed by a second field of type f (v). Function
f derives the type of the second field from value v . For example,

the contract of QueryInterface is expressible as:

QueryInterface : [in]CIFD∗ ×

Σ(iid:⊥16)(iid = ⟨iid1⟩ ⇒ [out]C1∗

| iid = ⟨iid2⟩ ⇒ [out]C2∗ | · · ·) →callee_pop ⊥4

(3)

This type indicates that the second stack argument is a 16-byte

(128-bit) integer that identifies the type of the third stack argument.

If the former equals ⟨iid1⟩, then the latter has type [out]C1∗, etc.

There is a fairly natural translation from interface specifications

expressed in C/C++ IDLs, such as SAL, to this type system. Products

(×), repetition (τ s), sums (+), classes (C), functions (→), pointers

5

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1913

Ex [[⊥]]d p = {}

Ex [[τ1 × τ2]]d p = Ex [[τ1]]d p; Ex [[τ2]]d (p + |τ1 |)

Ex [[τ
n]]d p =

(
n > 0 ⇒ (Ex [[τ]]d p; Ex [[τ

n−1]]d (p + |τ |))
)

Ex [[τ
ZT]]d p =

(
∗p , 0 ⇒ (Ex [[τ]]d p; Ex [[τ

ZT]]d (p + |τ |))
)

Ex [[τ1 + τ2]]d p = Ex [[τ1]]d p; Ex [[τ2]]d p

Ex [[τ →cc τ
′]]d p = 1 copy τ from caller to callee;

2 Ex [[τ]] (in) (&callee_frame);

3 r := call p;
4 Ex -1 [[τ

′]] (out) (&r);
5 Ex -1 [[τ]] (out) (&caller_frame);

6 pop τ from opposite(cc) stack;
7 return r

Ex [[[dir]τ∗]]d p =
(
(dir ∈ {d, inout} ∧ ∗p , 0) ⇒

match τ with (_ → _) ⇒ ∗p := &(Ex -1 [[τ]] (in) (∗p))
| C ⇒ ∗p := x(∗p)

| _ ⇒ Ex [[τ]]d (∗p)
)

Ex [[Σ(v :τ) f]]d p = Ex [[τ]]d p; Ex [[f (∗p)]]d (p + |τ |)

Ex [[µt .τ]]d p = Ex [[τ [µt .τ/t]]]d p

Figure 4: Mediator enforcement of OFI contracts

(∗), and datatype recursion (µ) are expressed in C++ datatype defi-

nitions as structures, arrays, unions, shared classes, function point-

ers/references, and type self-reference (or mutual self-reference),

respectively. SAL annotations additionally specify argument direc-

tions and array bounds dependencies. Special dependencies involv-

ing class and interface identifiers, such as those in QueryInter-
face’s contract, can be gleaned from the system-maintained list of

registered classes and interfaces.

OFI contract types are then automatically translated into ef-

fective procedures for enforcing the contracts they denote (i.e.,

mediator implementations). Figure 4 details the translation algo-

rithm in the style of a denotational semantics
2
where Ex [[τ]]d p

yields a procedure for enforcing the contract denoted by type τ with
proxying function x ∈ {⌊·⌋, ⌈·⌉} in call-direction d ∈ {in, out} on
the bytes at address p.

For example, E ⌊ ·⌋ [[τGetResult]](in)(&GetResult) yields the im-

plementation of GetResult_vaulter, where τGetResult is the type
in equation 2. The implementation first copies caller stack frame

τ to a secure callee-owned stack (line 1). It then enforces the in-

contract for τ (line 2), which replaces the argument of type CIFD

with a proxy of type ⌊CIFD⌋, before invoking GetResult (line 3).

Upon return, the out-contracts for return type τ ′ and frame τ are

enforced (lines 4–5). In this case, return type τ ′ = ⊥4
is security-

irrelevant, but the out-contract for τ demands replacing stack object

CISI with proxy ⌈CISI⌉. Finally, the frame of the participant (viz.,
caller or callee) that did not already clean its stack is popped (line 6),

and control returns to the caller (line 7). (The first and last steps

are required because OFI separates untrusted and trusted stacks for

memory safety, temporarily duplicating the shared frame.)

2
Here, notation |τ | denotes the size of data having type τ .

Each contract enforcement (lines 2, 4, and 5) entails recursively

parsing the binary datatypes of Fig. 3 and substituting code point-

ers with pointers to mediators that enforce the proper contracts.

Structure, array, and union contracts are enforced by recursively

enforcing the contracts of their member types. Function pointer con-

tracts are enforced by lazily replacing them with mediator pointers,

shared class contracts are enforced by proxying, and other pointer

contracts are enforced by eagerly dereferencing the pointer and

enforcing the pointee’s contract. Dependent pairs are enforced by

resolving the dependency to obtain the appropriate contract for

the next datum. Finally, recursive types are enforced as a loop that

lazily unrolls the type equi-recursively [12].

An OFI implementation can enforce the contract implied by a

trusted interface by implementing mediator algorithm E ⌊ ·⌋ [[τ →cc
τ ′]](in) for each method signature τ →cc τ

′
in the interface. Such

mediators are vaulter implementations. Some rules in Fig. 4 invert

proxy function x , prompting the enforcement to also implement

bouncer mediators of the form E ⌈·⌉ [[τ →cc τ
′]]. These mediate call-

backs, such as those commonly used in event-driven programming.

Bouncers also mediate methods by which trusted modules initiate

unsolicited contact with untrusted modules, such as those that load

untrusted libraries and invoke their initializers.

3.3 Trust Model

OFI’s attacker model assumes that original, untrusted modules may

be completely malicious, containing arbitrary native code, but that

they have been transformed by CFI/SFI into code compliant with

the control-flow policy. The transformed code monitors and con-

strains all security-relevant API calls and their arguments as long as

control-flow stays within the sandbox (cf., [2, 65]). Malicious apps

must therefore first escape the control-flow sandbox before they

can abuse system APIs to do damage. OFI blocks escape attempts

that abuse call sites in immutable modules that depend on objects or

code pointers supplied by instrumented modules. It thereby extends

whatever policy is enforced by the underlying CFI/SFI mechanism

to those call sites. In order to defeat CODE-COOP attacks, the un-

derlying CFI/SFI must therefore enforce a COOP-aware policy [54]

for OFI to extend (see §6.3).

Control-flow policies consist of a (possibly dynamic) graph of

whitelisted control-flow edges that is consulted and enforced by

CFI/SFI guard code before each control-flow transfer from untrusted

modules (but not before those from trusted modules). OFI requires

that this graph omit edges directly from low- to high-trust modules;

such edges must be replaced with edges into OFI’s trampoline pools,

to afford OFI complete mediation of such transfers.

A facility for read-only, static data is required for OFI to maintain

tamper-proof proxy objects. This can be achieved by leveraging

CFI/SFI to restrict untrusted access to the system’s virtual memory

API—untrusted modules must not be permitted to enable write-

access to OFI-owned data or code pages.

To prevent untrusted modules from directly tampering with

trusted modules’ data, some form of memory isolation is required.

SFI achieves this by sandboxing all memory-writes by untrusted

modules (e.g., [37, 61]). CFI leverages control-flow guards to enforce

atomic blocks that guard memory-writes (e.g., [20, 34, 41]).

6

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1914

Data fields of shared objects are conservatively treated as private;

non-owners must access shared object data via accessor methods.

This is standard for interfaces that support computing contexts

where object locations cannot be predicted statically (e.g., in a dis-

tributed computations), including all COM interfaces. This affords

the accessor methods an opportunity to dynamically fetch or syn-

chronize requested data fields when they are not available locally.

Our design of OFI is carefully arranged to require almost no

persistent, writable data of its own, eliminating the need to protect

such data within address spaces shared by OFI with malicious

modules. In multithreaded processes, OFI therefore conservatively

stores its temporary data in CPU registers or other secured, thread-

local storage spaces. There are three exceptions:

Dynamic CFGs. If the control-flow policy is dynamic (e.g., new

edges become whitelisted during dynamic linking), then OFI re-

quires a safe place to store the evolving policy graph. This is typi-

cally covered by the underlying SFI/CFI’s self-integrity enforcement

mechanisms.

Object Inverses. A small hash table associating objects with

their proxies is required, in order to compute inverses ⌊⌈·⌉⌋ and

⌈⌊·⌋⌉. This can be confined to dedicated memory pages, admitting

the use of efficient, OS-level memory protections. For example, on

Windows desktop OSes we allocate a shared memory mapping to

which a separate memory-manager process has write access, but
to which the untrusted process has read-only access. OFI modules

residing in untrusted processes can then use lightweight RPC to

write to the hash table. CFI protections prevent untrusted modules

from accessing the RPC API to perform counterfeit writes.

Reference Counts. To prevent double-free attacks, in which an

untrusted module improperly frees objects held by trusted mod-

ules, object proxies maintain reference counts independent from

the objects they proxy. When the proxy is first created, OFI in-

crements the proxied object’s reference count by one. Thereafter,

acquires and releases of the proxy are not reflected to the proxied

object; they affect only the proxy object’s reference count. When

the proxy’s reference count reaches zero, it decreases the proxied

object’s reference count by one and frees itself. Proxy object refer-

ence counters are stored within the secure hash table entries (see

above) to prevent tampering.

4 IMPLEMENTATION

4.1 Architecture

Our prototype implementation of OFI extends theReins system [65].

We chose Reins because it realizes fully source-free SFI+CFI (in-

cluding no reliance on symbol files), and it supports Windows

platforms. This affords an aggressive evaluation of OFI’s design in

austere contexts that lack the benefits of source code and that must

support extensive, complex object-oriented APIs, such as COM.

Prior to the introduction of OFI enhancements, Reins could not

support COM-dependent features of any target application; trigger-

ing such features induced its CFI protections to prematurely abort

the application with a security violation.

Figure 5 depicts the system architecture. Untrusted native code

binaries are first disassembled to obtain a conservative control-flow

graph (CFG) policy. The policy dictates that only the control-flow

pass

static rewriting

untrusted trusted
untrusted
binary

conservative
disassembler

intra-module
CFG policy

binary
rewriter

rewritten
binary verifier

safe
binary

linker

policy-
enforcement

library

inter-module
CFG policy

Figure 5: Reins system architecture

1 void VaultDispatch() {
2 __asm pop eax
3 PROLOGUE // create secure stack frame
4 __asm mov ret_addr, eax
5 index = (trampoline_pool_base − ret_addr) / TRAMPOLINE_SIZE;
6 vaulter_addr = get_vaulter(index);
7 __asm mov eax, vaulter_addr
8 EPILOGUE // pop secure stack frame
9 __asm jmp eax
10 }

Listing 3: Vault Dispatch (abbreviated)

paths statically uncovered and analyzed by the disassembly process

are permissible. A binary rewriting module then injects guard code

at all control-flow transfer sites to constrain all flows to the CFG.

OFI is agnostic to the particular guard code used to realize

SFI/CFI, so we here assume merely that the underlying SFI/CFI im-

plementation protects each control-flow transfer instruction with

arbitrary (sound) code pointer validation or sanitization logic (see

§6). (Reins employs SFI-style chunking and masking [37] for ef-

ficient sandboxing of intra-module flows, followed by CFI-style

whitelisting of inter-module flows. This could be replaced with

more precise but less efficient CFI-only logic without affecting OFI.)

A separate verifier module independently validates control-flow

safety of the secured binary code. This shifts the large, unvalidated

rewriting implementation out of the trusted computing base.

Aside from adjusting the control-flow policy to incorporate OFI

mediation, OFI extensions inhabit only the policy enforcement li-
brary portion of the architecture; no change to the disassembly,

rewriting, verification, or linking stages was required. This indi-

cates that OFI can be implemented in a modular fashion that does

not significantly affect the underlying SFI/CFI system’s internals.

The enhancements to the policy enforcement library introduce

the inter-module control-flow paths depicted in Figure 1. Their

implementations are detailed below.

4.2 Dispatcher Implementation

Vault Dispatch. OFI’s Vault Dispatch subroutine directs control

from a non-virtual trampoline to a corresponding vaulter. Listing 3

sketches its implementation. The index of the calling trampoline is

first computed from the return address passed by the trampoline to

the dispatcher (lines 2–5). Reins allocates exactly one trampoline

in the pool for each non-virtual, trusted callee permitted as a jump

destination by the policy. The index therefore unambiguously de-

termines the correct vaulter for the desired callee (line 6). No CFI

7

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1915

1 void VVaultDispatch() {
2 __asm pop ecx
3 __asm mov eax, [esp+4]
4 PROLOGUE // create secure stack frame
5 __asm mov ret_addr, ecx
6 __asm mov ceiling_proxy_object, eax
7 index = (vtrampoline_pool_base − ret_addr) / TRAMPOLINE_SIZE;
8 trusted_object = floor(ceiling_proxy_object);
9 if (!trusted_object) security_violation();
10 v_vaulter = get_v_vaulter(ceiling_proxy_object, index);
11 __asm mov eax, trusted_object
12 __asm mov [ebp+8], eax
13 __asm mov eax, v_vaulter
14 EPILOGUE // pop secure stack frame
15 __asm jmp eax
16 }

Listing 4: Virtual Vault Dispatch (abbreviated)

guards are needed here because CFI guard code in-lined into the

untrusted call site has already constrained the flow to a permissible

trampoline. Finally, the dispatcher tail-calls the vaulter (line 9).

The implementation therefore enforces the control-flow policy

in four steps: (1) CFI guard code at the call site ensures that the call

may only target trampolines assigned to permissible trusted callees.

(2) The dispatcher implementation exclusively calls the vaulter that

mediates the CFI-validated callee. (3) The vaulter implementation

enforces the callee’s OFI contract and exclusively calls the callee it

guards. (4) The trusted callee never receives caller-writable object

vtables; it only receives immutable proxy objects whose methods

re-validate call destinations at time-of-callback. This secures the

trusted callee against attacks that try to corrupt or replace the

underlying object’s vtable.

V-Vault Dispatch. Dispatching virtual calls is similar but requires

more steps. Listing 4 sketches its implementation. In this case the

caller-provided this pointer is retrieved along with the trampoline

index (lines 3 and 6). Since the destination is a vaulter, valid this
pointers are always ceiling proxy objects. OFI applies the floor map-

ping (⌊·⌋) to recover a reference to the trusted function it proxies

(line 8). If this fails, a counterfeit object is detected, so OFI aborts

with a security violation (line 9). Otherwise the correct vaulter is

computed from the ceiling proxy and the index (line 10), the callee’s

this pointer is replaced with the proxied object (lines 11–12), and

the vaulter is tail-called (line 15).

Bounce Dispatch. Dispatching non-virtual flows from trusted to

untrusted modules is analogous to the vault dispatching procedure,

except that the dispatcher targets bouncers rather than vaulters,

and indexes the chute pool rather than the trampoline pool. The

callee-provided return address is also replaced with the address of

OFI’s return trampoline, so that it can mediate the return.

The bouncer implementation(s) invoked by the dispatcher (see

Listing 5) also first switch to a fresh, callee-writable stack (lines 2–

9), to prevent the untrusted callee from corrupting trusted caller-

owned stack frames before it returns. SFI memory guards pre-

vent the callee from writing into the protected, caller-owned stack.

OFI contracts carry sufficient information to implement this stack-

switching transparently. For example, the contracts reveal the size

1 void Bouncer() {
2 PROLOGUE // create untrusted callee stack frame

4 // switch to new fiber for down part of bouncer
5 childinfo[0] = &parent_stack;
6 childinfo[1] = argsize;
7 childinfo[2] = untrusted_callee_addr;
8 childfiber = CreateFiber(0, BouncerDown, childinfo);
9 SwitchToFiber(childfiber);

11 // up part of the bouncer: return from untrusted callee
12 DeleteFiber(childfiber);
13 r = TlsGetValue(tlsindex);
14 enforce_ret_contract(r); // run E⌊·⌋ [[τ ′]]out (see Fig. 4)
15 enforce_out_contract(); // run E⌊·⌋ [[τ]]out (see Fig. 4)

17 // clean stack and return to trusted caller
18 __asm mov eax, r
19 __asm mov ecx, argsize
20 EPILOGUE // pop secure stack frame
21 __asm pop edx
22 __asm add esp, ecx
23 __asm push edx
24 __asm ret
25 }

27 void BouncerDown() {
28 // initialize callee stack
29 __asm sub esp, childinfo[1]
30 __asm mov esi, childinfo[0]
31 __asm mov edi, esp
32 __asm rep movs byte ptr [edi], byte ptr [esi]
33 __asm push offset return_trampoline

35 enforce_in_contract(); // run E⌈·⌉ [[τ]]in (see Fig. 4)

37 __asm mov eax, childinfo[2]
38 CFI_VALIDATE(eax)
39 __asm jmp eax
40 }

Listing 5: Bouncer implementation (abbreviated)

of the topmost (shared) activation frame and the calling convention,

allowing that frame to be temporarily replicated on both stacks.

To facilitate efficient stack-switching, we leverage the Windows

Fibers API [19]. In the trusted-to-untrusted direction, we first create

a child fiber. The fiber’s stack is arranged so that its return address

targets the return trampoline, and the “down” part of the bouncer

implementation (lines 27–40) is the child fiber’s start address.

The “down” implementation copies the arguments to the new

stack (lines 29–32) and then enforces the relevant typing contract on

in-arguments (line 35) as described in §3.2, before falling through to

the untrusted callee (lines 37–39). Crucially, the underlying object’s

method pointer is re-validated at time-of-call (line 38), to thwart

CODE-COOP attacks.

On return, the return trampoline switches back to the parent

fiber, which invokes the “up” half of the bouncer (lines 12–24).

This enforces the contracts for return values and out-arguments

(lines 14–15) as described in §3.2 before returning to the caller.

8

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1916

1 void VBouncerDown() {
2 // initialize callee stack
3 __asm sub esp, childinfo[1]
4 __asm mov esi, childinfo[0]
5 __asm mov edi, esp
6 __asm rep movs byte ptr [edi], byte ptr [esi]
7 __asm push offset return_trampoline

9 enforce_in_contract(); // run E⌈·⌉ [[τ]]in (see Fig. 4)

11 // get virtual function address through ''this'' argument
12 __asm mov eax, [esp+4]
13 __asm mov eax, [eax]
14 __asm mov eax, [eax+childinfo[2]]
15 CFI_VALIDATE(eax)
16 __asm jmp eax
17 }

Listing 6: Virtual Bouncer-Down implementation (abbrevi-

ated)

V-Bounce Dispatch. Dispatching virtual calls from trusted to

untrusted modules (see Listing 6) is analogous to the bouncer dis-

patching procedure, except that the child is passed a vtable index

rather than a callee entry point address. An extra step is therefore

required within the “down” implementation to recover the correct

callee method address from the “this” pointer’s vtable (lines 12–14).

Again, the result is re-validated at time-of-call (line 15) to block

CODE-COOP attacks.

Return Trampoline. Whenever the trusted caller goes through

a bouncer to an untrusted callee, the bouncer creates a new stack

in which the return address targets OFI’s return trampoline. CFI

guards for inter-module return instructions must therefore per-

mit flows to the return trampoline in place of the validated return

address. For example, if the underlying CFI system enforces return-

flows via a shadow stack, it must validate the return address on

the shadow stack as usual, but then allow returning to the return

trampoline instead. The return trampoline flows to the “up” half

of the bouncer mediator, which returns to the CFI-validated re-

turn address stored on the shadow stack. This is the only piece of

OFI’s implementation that requires explicit cooperation from the

underlying CFI implementation.

4.3 Automated Mediator Synthesis

When trusted interfaces are specified in a machine-readable for-

mat, mediator implementations for them can be automatically syn-

thesized from callee type signatures (see §3.2). Such automation

becomes a practical necessity when interfaces comprise thousands

of methods or more.

Unfortunately, the only machine-readable specifications of many

real-world APIs are as C++ header files, which can be quite com-

plex due to the power of C’s preprocessor language, compiler-

specific pragmas, and compiler-predefined macros. For example,

the Windows.h header, which documents the Windows API, defines

millions of symbols and macros spanning hundreds of files, and

is not fully interpretable by any tool other than Microsoft Visual

C++ in our experience. The best tools for parsing them are the C++

compilers intended to consume them.

trusted binary

PE parser

export list

.h file

synthesizer
source code

C++
compiler
(pass 1)

symbol file

Reflector

templates
C++

compiler
(pass 2)

mediator source

C++
compiler
(pass 3)

mediator
library

Figure 6: Automated mediator synthesis

1 void TrySubmitThreadpoolCallback_vaulter(char x) {
2 fix_pointer(&x, 8);
3 { _TP_CALLBCK_ENVIRON_V3∗ x =
4 ∗((_TP_CALLBACK_ENVIRON_V3∗∗) (&x + 8));
5 if (x) {
6 fix_pointer(&x→CleanupGroupCancelCallback, 8);
7 fix_pointer(&x→FinalizationCallback, 8);
8 }
9 }
10 EPILOGUE // pop stack frame
11 __asm jmp TrySubmitThreadpoolCallback
12 }

Listing 7: Synthesized vaulter implementation

We therefore innovated a strategy of conscripting C++ compil-

ers to interpret interface-documenting header files for us, using

the resulting information to automatically synthesize mediation

library code. Our strategy achieves static reflective programming

for C++ without modifying the compiler, language, or header files.

Specifically, our synthesis tool is a C++ program that #includes
interface headers, and then reflects over itself to inspect function

prototypes, structures, and their types. To achieve reflection on

structures (which is not supported by C++17 [8]) the program reads

its own symbol file in a multi-pass compilation.

Figure 6 illustrates the synthesis process. The interface header,

list of exported functions (dumped from the trusted library’s export

table), and synthesizer source code are first compiled to produce

a debug symbol file (e.g., PDB file). Our Reflector tool parses the

symbol file to produce C++ templates that facilitate first-class access

to the static types of all constituent structure and class members.

By including the resulting templates into a second compilation pass,

the program reflects upon itself and synthesizes the source code for

appropriate mediation code (viz., vaulters and bouncers). A third

compilation pass applied to this synthesized mediation code yields

the final mediation library.

As an example, Listing 7 shows an automatically synthesized

vaulter implementation for the TrySubmitThreadpoolCallback
Windows API function. In this case, the synthesizer has discovered

that the trusted callee treats the top stack argument as a code pointer

9

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1917

1 typedef _TP_CALLBACK_ENVIRON_V3 typ1162;

3 template<> struct Reflect<typ1162> {
4 template <typename RetTyp>
5 static inline auto specialize(
6 typ11623 ∗obj,
7 auto(f)(decltype(typ1162::Version)∗, . . . ,
8 decltype(typ1162::CleanupGroupCancelCallback)∗,
9 decltype(typ1162::FinalizationCallback)∗, . . .
10)→RetTyp
11)→RetTyp
12 {
13 return f(
14 &(obj→Version), . . . ,
15 &(obj→CleanupGroupCancelCallback),
16 &(obj→FinalizationCallback), . . .
17);
18 }
19 }

Listing 8: Reflective template (abbreviated)

1 template <typename... FieldTypes>
2 void enforce_contract(FieldTypes...);

4 template <>
5 void enforce_contract() {}

7 template <typename... FieldTypes>
8 void enforce_contract(FARPROC ∗field1, FieldTypes... rest) {
9 // Generate C code to enforce FARPROC contract here...
10 enforce_contract(rest);
11 }

13 Reflect<typ1162>::specialize<void>((typ1162∗)0, enforce_contract);

Listing 9: Mediator synthesis via template recursion

to an untrusted callee expecting 8 bytes of stack arguments (line 2).

In addition, stack offset 8 holds a pointer to a structure which, if non-

null (line 5), contains two more code pointers to untrusted callees

expecting 8 bytes of stack arguments each (lines 6–7). Finally, since

no out-arguments or return values need sanitization, the vaulter

safely tail-calls the trusted callee for more efficient dispatch (line 11).

The typing information necessary to synthesize this implementa-

tion is exposed by our Reflect tool as a template of the form shown

in Listing 8. The template introduces Reflect<τ>::specialize
as a general mechanism for specializing polymorphic template

functions to the particular field types of any desired structure

type τ . Specifically, lines 7–10 declare a function parameter f whose
arguments are specialized to the field types of τ . When called,

Reflect<τ>::specialize(o, f) therefore calls f with a series of

pointer arguments specialized to the types and locations of object

o’s fields. (Reference o is used only for pointer arithmetic, so need

not be an actual object instance.)

The specialized polymorphic function can then iterate over its

type parameters using SFINAE programming idioms [59]. For ex-

ample, Listing 9 uses the template to generate OFI mediator code to

secure a security-relevant structure argument to an API function.

Lines 1–2 first prototype a generic recursive template function that

will recurse over all fields of an arbitrary structure. Lines 4–5 define

the base case of zero fields. Lines 7–11 implement the particular case

of enforcing the contract for a field of type FARPROC (i.e., generic

function pointer field). (This is just one representative case; the full

implementation has cases for all the types in Figure 3.) Code in

line 9 treats argument field1 as an index into the object layout

where the field resides at runtime on the stack or heap.

Line 13 demonstrates specializing the generic template to a par-

ticular class type. The Reflect template sketched in Listing 8 is

applied to specialize the generic enforce_contract template. This

allows mediation code for tens of thousands of API methods to be

automatically synthesized from just a few hundred lines of hand-

written template code, keeping OFI’s trusted computing base rela-

tively small and manageable.

5 EVALUATION

Performance evaluation of OFI on CPU benchmarks (e.g., SPEC

CPU2006) exhibits no measurable overhead because CPU bench-

marks do not typically access object-oriented system APIs within

loops, which is where OFI introduces overhead. To evaluate the ef-

fectiveness of OFI, we therefore tested our prototype with the set of

binaries listed in Table 1. The test binaries were chosen to be small

and simple enough to be amenable to fully automated binary reverse

engineering and instrumentation (whose efficacy is orthogonal to

OFI), yet reliant upon large, complex system APIs representative

of typical consumer software (and therefore an appropriate test of

our approach’s practical feasibility). All experiments detailed below

were performed on an Intel Xeon E5645 workstation with 24 GB

RAM running 64-bit Windows 7. We have no source code for any

of the test binaries.

Column 2 reports a count of the total number of libraries loaded

(statically and dynamically) by each test program, and column 3

reports a count of all methods exported by those libraries. On aver-

age, each program loads 12 libraries that export about 7,500 trusted

methods. Taking these statistics into consideration, although the

test binaries are small-to-moderate in size, the trusted interfaces

that must be supported to accommodate them are large. In total, we

need to mediate the interfaces of 54 trusted system libraries that

collectively expose 18,059 trusted methods, many of which have

challenging method signatures involving code pointers, recursive

types, class subtyping, dependent types, and object (or object-like)

data structures.

5.1 Transparency

Without OFI extensions, none of the test programs ran correctly af-

ter CFI instrumentation. All COM-dependent operations—including

dialog boxes, certain menus, and in some cases even application

start-up—failed with a control-flow violation.

After adding OFI to the instrumentation, we manually tested all

program features systematically. All features we tested exhibited

full functionality. While we cannot ensure that such testing is ex-

haustive, we consider it similar to the level of quality assurance to

which such applications are typically subjected prior to release.

10

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1918

Table 1: Interactive COM applications used in experimental evaluation

File Size Code Segment Size

Binary

Program # DLLs # Interface Funcs Old (KB) New (KB) Increase (%) Old (KB) New (KB) Increase (%)

Rewriting

Times (s)

calc 17 11,755 758 1,263 67 330 514 56 19.00

cmd 8 7,321 296 521 76 139 225 62 5.85

explorer 27 15,324 2,555 3,611 41 701 1,056 51 29.60

magnify 16 14,073 615 751 22 91 136 50 4.74

MCFG_Exploit 7 2,074 11 34 209 4 23 475 0.89

minesweeper 8 6,560 117 153 31 16 35 119 1.08

notepad 14 10,441 176 248 41 43 72 67 2.21

osk 19 13,662 631 849 35 147 218 48 7.10

powershell 9 6,318 442 489 11 36 47 31 2.32

solitaire 8 6,379 56 109 95 24 54 125 1.44

WinRAR 17 7,536 1,374 2,928 113 1,008 1,554 54 70.92

wmplayer 9 6,997 161 186 16 12 25 108 0.84

median 12 7,429 369 505 41% 67 104 59% 3.53s

0% 5% 10% 15% 20% 25%

c
a
lc

c
m
d

e
x
p
lo
r
e
r

m
a
g
n
if
y

M
C
F
G
_
E
x
p
lo
it

m
in
e
s
w
e
e
p
e
r

n
o
te
p
a
d

o
s
k

p
o
w
e
r
s
h
e
ll

s
o
li
ta
ir
e

W

in
R
A
R

w
m
p
la
y
e
r

M
E
D
IA
N

0.34%

1.82%
0.3%
0.23%
0.02%

14.02%
0.53%
0.23%
0.05%
0.37%
0.43%
1%

0.14%

Figure 7: OFI runtime overhead

5.2 Performance Overheads

Rewriting Time and Space Overheads. Table 1 reports the per-

centage increase of the file size and code segment, as well as the

time taken by OFI to rewrite each binary. Our prototype rewrites

about 60KB of code per second on average. A rewritten binary in-

creases in size by about 41%. Code segment sizes increase by about

59%. The large percentage increases exhibited by the MCFG_Exploit

experiment (209% and 475%, respectively) are artifacts of the ex-

ceptionally small size of that program. (It is the synthetic MCFG

exploit test reported in Section 2.2.)

Runtime Performance. Figure 7 reports OFI runtime overheads

of the programs in Table 1. Since almost all object exchanges oc-

cur during application startup and in response to user events (e.g.,

mouse clicks), we created macros that open, manipulate, and close

each test program as rapidly as possible. By running such a simu-

lation in a loop for 1000 iterations, we obtain an average running

time. We measure the runtime overhead imposed by OFI as the

ratio of time spent within the OFI modules to the total runtime.

The median overhead is 0.34%; and no program has overhead

larger than 2.00%, except for MCFG_Exploit—our proof-of-concept

CODE-COOP exploit implementation. Its size is small, and its only

runtime operation initializes a COM object, which involves OFI

mediation, resulting in abnormally high percentage overheads. The

remaining tests are common consumer apps. Of these, the calcula-

tor program returns the worst overhead of 1.82%. This is due to the

fact that switching the calculator’s mode between standard, scien-

tific, programmer, and statistics requires frequent OFI mediation.

Each such switch reconstructs the GUI via 3,500 method calls that

involve shared code and/or object pointers, and thus OFI media-

tion. Nevertheless, we consider the 1.82% overhead to be modest

and unnoticeable by users. All other test programs have runtime

overheads below 1%, and the calculator’s <2% worst-case overhead

only occurs on mode changes.

The performance overheads reported in Figure 7 attempt to mea-

sure semi-realistic usage scenarios for user-interactive applications,

which tend to be the ones that use COM the most. However, to

derive a worst-case performance bound for OFI, we also created a

set of micro-benchmarks. Each implements a non-interactive pro-

gram that creates, manipulates, and destroys COM objects in a

tight loop. Technical details for each benchmark are provided in

Table 2. Although not realistic, these tests can measure the extreme

worst-case scenario that a program constantly crosses the trust

boundary without performing any other computation, triggering

OFI mediation continuously.

Micro-benchmarking yielded a median overhead of 32.44%, with

a maximum of just over 50%. We know of no realistic application

that would exhibit these overheads in practice, but they reveal

the overhead of instrumentation relative to the non-instrumented

inter-module control-flow paths.

5.3 Security Evaluation

To assess OFI’s response to attacks, we launched synthetic vtable

corruption and COOP attacks against some programs rewritten by

our prototype.We simulate COOP attacks by temporarilymodifying

the v-vault dispatcher to occasionally choose the wrong vaulter.

This simulates a malicious caller who crafts a counterfeit object

whose vtable pointer identifies a structurally similar (e.g., similarly

typed) vtable but not the correct one.

11

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1919

Table 2: Micro-benchmark overheads

No. Description Interfaces Functions Overhead

#1 (1) creates object,

(2) destroys object

IUnknown ::Release() 50.67%

#2 (1) creates object,

(2) raises and lowers ref count,

(3) destroys object

IUnknown ::AddRef(), Release() 41.30%

#3 (1) creates open dialog object,

(2) adds controls,

(3) destroys object

IFileOpenDialog ::QueryInterface(), Release() 41.69%

IFileDialogCustomize ::AddPushButton(), AddMenu(),

AddText(), AddControlItem(),

Release(),

#4 (1) creates open dialog object,

(2) binds file to shell object,

(3) retrieves file path,

(4) destroys all objects

IFileOpenDialog ::SetFileName(), Show(),

GetResult(), Release()

32.22%

IShellItem ::GetDisplayName(), Release()

#5 (1) creates open dialog object,

(2) binds files to array,

(3) binds elements to shell objs,

(4) retrieves the file paths,

(5) destroys all objects

IFileOpenDialog ::GetOptions(), SetOptions(),

SetFileName(), Show(),

GetResults(), Release()

32.44%

IShellItemArray ::GetCount(), GetItemAt(),

Release()

IShellItem ::GetDisplayName(), Release()

#6 (1) creates open dialog object,

(2) binds file to shell object,

(3) creates save dialog object,

(4) sets save-as default,

(5) binds saved file to new shell obj,

(6) retrives path of new shell obj,

(7) destroys all objects

IFileOpenDialog ::SetFileName(), Show(),

GetResult(), Release()

31.76%

IShellItem ::GetDisplayName(), Release()

IFileSaveDialog ::SetSaveAsItem(), SetFileName(),

Show(), GetResult(), Release()

#7 (1) creates save dialog object,

(2) binds saved file to shell obj,

(3) retrieves the file path,

(4) creates shell link object,

(5) sets path as link target,

(6) saves link in persist storage,

(7) destroys all objects

IFileSaveDialog ::SetFileName(), Show(),

GetResult(), Release()

31. 69%

IShellLink ::SetPath(), SetDescription(),

QueryInterface(), Release()

IPersistFile ::Save(), Release()

Table 3: Attack simulation results

Security Aborts

Binary

Program # Attacks

Within

Callee

After

Return

Within

OFI

calc 5 1 4 0

MCFG_Exploit 1 0 0 1

notepad 5 0 5 0

powershell 5 1 4 0

WinRAR 5 3 2 0

Table 3 reports the attack simulation results. Each program in

column 1 is exposed to 5 attacks. In each case, the attack quickly

results in a security abort and premature termination; no control-

flow policy violations were observed. Among the 20 attacks, the

callee aborted in 5 cases (column 3), and the caller aborted after

return in 15 cases (column 4).

Most of the security aborts take the form of SFI memory access

rejections (e.g., when an untrusted caller attempts to write to an

SFI-protected, callee-owned object). This is because OFI ensures

that even if an incorrect vaulter is chosen, control still flows to

a vaulter that enforces the contract demanded by its callee, and

therefore the callee does not receive any policy-violating objects

or code pointers. The callee might nevertheless receive incorrect

(but not policy-violating) arguments, such as data pointers into

inaccessible memory. In such cases, the callee safely aborts with a

memory access violation. Other times the callee runs correctly but

returns data or code pointers not expected by the caller, whereupon

CFI or SFI protections on the caller side intervene.

The MCFG_Exploit attack (see Section 2.2) is detected within

the OFI vaulter code when OFI identifies the counterfeit vtable.

5.4 Scalability

To exhibit OFI’s scalability, we applied our prototype to Mozilla

Firefox (version 48.0.1) for Windows, which is larger and more

complex than our other test applications in Table 1. Like many

large software products, Firefox is heavilymulti-module—most of its

functionalities are implemented in whole or part within application-

level DLLs that ship along with the main executable. Applying

12

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1920

Table 4: Browser experimental results

File Size Code Segment Size

Binary

Program # DLLs # Interface Funcs Old (KB) New (KB) Increase (%) Old (KB) New (KB) Increase (%)

Rewriting

Times (s)

firefox.exe 1 1,393 376 522 39 80 146 82 15.36

browsercomps.dll 8 7,611 43 100 133 28 57 103 5.15
freebl3.dll 3 4,166 329 688 109 236 359 52 41.77
lgpllibs.dll 2 3,359 50 110 120 36 59 64 6.14
mozglue.dll 3 3,374 104 238 129 84 134 59 15.33
msvcp120.dll 2 3,359 429 848 98 392 418 7 126.21
nss3.dll 5 4,422 1,662 3,972 139 1,360 2,310 70 242.72
nssdbm3.dll 2 3,359 84 216 157 72 131 83 14.27
nssckbi.dll 2 3,359 386 469 22 40 82 105 9.29
sandboxbroker.dll 5 5,193 198 381 92 100 182 82 20.06
softokn3.dll 2 3,359 137 339 147 112 202 81 20.67
xul.dll 36 12,657 51,251 104,116 103 31,184 52,865 70 5,662.68

median 3 3,367 264 425 115% 92 164 75% 17.71s

OFI merely to firefox.exe hence does not provide much security.

We therefore treated all modules in Table 4 as untrusted for this

experiment. Similar to Table 1, column 2 in Table 4 counts the

number of trusted libraries imported by each module, and column 3

counts the methods exported by each library. The other columns in

Table 4 report file size increase, code segment size increase, and the

time that OFI took to rewrite each module. On average, file sizes

increase by about 115%, and code segments by about 75%.

One problem that we encountered was that Firefox’s Just-In-

Time (JIT) JavaScript compiler performs runtime code generation,

which our Reins prototype does not yet support. (It conservatively

denies execution access to writable memory.) Future work should

overcome this by incorporating a CFI-supporting JIT compiler, such

as RockJIT [45]. As a temporary workaround, for this experiment

we installed a vectored exception handler that catches and redirects

control-flows to/from runtime-generated code through OFI. This is

potentially unsafe (because the runtime-generated code remains

uninstrumented by CFI) and slow (because exception handling

introduces high overhead), but allowed us to test preservation of

Firefox’s functionalities in the presence of OFI. All browser function-

alities we tested exhibited full operation after OFI instrumentation.

To estimate the performance impact of OFI on the application,

we conducted the same evaluation methodology as reported in

Section 5.2, but subtracted out the overhead of the extra context-

switches introduced by the exception handler. This yields an esti-

mated overhead of about 0.84%.

6 RELATEDWORK

6.1 SFI and CFI

SFI was originally conceived as a means of sandboxing untrusted

softwaremodules via software guards to a subset of a shared address

space [61]. CFI refined this idea to enforce more specific control-

flow graphs (CFGs) [1, 2]. Later work merged the two approaches

for more efficient enforcement [4, 20, 37, 43, 64, 65, 69], so that today

distinctions between SFI and CFI are blurred. We therefore here

refer to CFI in a broad sense that includes both lines of research.

With the rise of return-oriented programming and code-reuse

attacks (cf., [11, 52]), the impact of CFI research has increased in

recent years. In addition to securing user-level application soft-

ware against such threats, it has also been applied to harden smart-

phones [14, 39, 49], embedded systems [3], hypervisors [63], and

operating system kernels [13, 25, 33]. CFI-enforcing hardware is

also being investigated [15, 16, 18, 24, 28, 42, 68, 70].

Software CFI methodologies can be broadly partitioned into com-

piler-side source-aware approaches and binary-only source-free ap-
proaches. Source-aware CFI leverages information from source code

to generate CFI-enforcing object code via a compiler. Examples in-

cludeWIT [4], NaCl [69], CFL [5], MIP [43], MCFI [44], RockJIT [45],

Forward CFI [57], CCFI [36], πCFI [46], and MCFG [55]. The avail-

ability of source code affords these approaches much greater ef-

ficiency and precision than source-free alternatives. For example,

source code analysis typically reveals a much more precise CFG for

CFI to enforce, and compilers enjoy opportunities to arrange data

structure and code layouts to optimize CFI guard code.

MCFI highlights the need for better multi-module CFI enforce-

ment algorithms and tools. To address this problem in source-aware

settings, it introduces a modular, separate-compilation approach in-

tegrated into the LLVM compiler. However, this requires all modules

to be recompiled with an MCFI-equipped compiler; environments

where some modules are immutable, are dynamically procured in

binary form, or are closed-source, are not supported.

In general, reliance on source code has the potential disadvan-

tage of reducing deployment flexibility. Much of the world’s soft-

ware is closed-source, with source-level information unlikely to be

disclosed to consumers due to intellectual property concerns and

constraints imposed by developer business models. Software whose

sources are available frequently link to or otherwise rely upon

binary modules (e.g., libraries) whose sources are not available, re-

quiring approaches for dealing with those source-free components.

Finally, software distribution models that deliver binary code on-

demand (e.g., as plugins, mobile apps, or hotpatches) usually lack

readily available source code with which to implement additional

third-party or consumer-side CFI protections.

Concerns over this inflexibility have therefore motivated source-

free CFI approaches that transform and harden already-compiled bi-

nary code without the aid of source code. Examples include XFI [20],

13

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1921

Reins [65], STIR [64], CCFIR [73], bin-CFI [74], BinCC [62], Lock-

down [48] TypeArmor [58] and OCFI [40]. Source-free approaches

face some difficult challenges, including the problem of effectively

disassembling arbitrary native code binaries [66], and severe restric-

tions on which code and data structures they can safely transform

without breaking the target program’s functionality. Poorer per-

formance than source-aware solutions typically results [7]. They

also tend to enforce more permissive control-flow policies, since

they lack source-level control-flow semantics with which to craft a

tighter policy [54]. This has led to successful attacks against these

coarse-grained policies (e.g., [9, 17, 26, 67]).

In contrast to this usual dichotomy, OFI is source-agnostic—it

can extend any of the source-aware or source-free approaches listed

above to enhance the security and compatibility of objects that flow

between CFI-protected software modules and those lacking CFI

protections. It does, however, require documentation of the API

that links the interacting modules, as described in §3.2.

6.2 VTable Protection

VTable protections prevent or detect vtable corruption at or before

control-flow operations that depend on vtable method pointers.

Like CFI, there are both source-aware and source-free approaches:

On the source-aware side, GNU VTV [56], SafeDispatch [32],

and VTrust [71] statically analyze source code class hierarchies to

generate CFI-style guards that restrict all virtual method call sites to

destinations that implement matching callees (according to C++ dy-

namic dispatch semantics). OVT-IVT [6] improves performance by

reorganizing vtables to permit quick validation as a simple bounds

check. CPI [34] heuristically derives a set of sensitive pointers, and

guards their integrity to prevent control-flow hijacking. CPS [34]

optimizes CPI to improve overheads for programswithmany virtual

functions by instrumenting only code pointers, but at the expense

of less security for vtable pointers exploited by confused deputy

attacks. Readactor++ [11] extends vtables into execute-only mem-

ory, where their layouts are randomized and laced with booby trap

entries [10] to counter brute-force attacks. Shrinkwrap [29] refines

VTV for tighter object inheritance precision.

On the source-free side, T-VIP [23] instruments virtual call sites

with guard code that verifies that the vtable is in read-only mem-

ory and that the indexed virtual method is a valid virtual method

pointer. VTint [72] additionally assigns them IDs that are dynami-

cally checked at call sites. This ensures that instrumented virtual

calls always index a valid vtable (though it cannot ensure that

the indexed vtable is the precise one demanded by the original

source code semantics). VfGuard [50] goes further and infers C++

class hierarchies and call graphs from native code through a suite

of decompilation techniques. This yields a more precise, source-

approximating CFI policy that can be enforced through static or

dynamic binary instrumentation.

OFI differs from these approaches by focusing on protecting

software modules that cannot be instrumented (e.g., because they

cannot be modified, they have defenses that reject modification, or

dynamic loading prevents them from being statically identified).

Such immutability renders the vtable protections above inapplicable,

since they must instrument all call sites where corrupted vtables

might be dereferenced in order to be effective.

6.3 COOP Attacks

COOP [54] is a dangerous new attack paradigm that substitutes

vtable pointers or vtable method pointers with structurally similar

but counterfeit ones to hijack control-flows of victim programs.

In the context of CFI-protected software, such attacks effectively

hijack software without violating the CFI-enforced control-flow

policy. They achieve this by traversing control-flow edges that

are permitted by the policy but that were never intended to be

traversed by the original program semantics. They therefore exploit

limitations in the defender’s ability to derive suitable policies for

CFI to enforce—especially in source-free contexts.

OFI does not directly defend against COOP attacks because it

does not suggest better policies for CFI to enforce. Rather, it extends

defenses that do work against COOP to be effective in contexts

where not all call sites can be instrumented with guard code. For

example, WIT [4] can block COOP attacks in WIT-instrumented

code, but not if the code links to uninstrumentedmodules towhich it

passes objects. In that context, a COOP attacker can flow counterfeit

objects to unguarded call sites in the uninstrumented modules.

Lacking guards, these sites traverse the prohibited edge prescribed

by the object, resulting in policy violations.

When coupled with a CFI defense enforcing a suitably semantics-

aware policy, OFI addresses this CODE-COOP attack. By completely

mediating the interface between guarded and unguarded modules

that share objects, it shields uninstrumented modules from coun-

terfeit objects. OFI is the first defensive work to focus on this attack

class.

6.4 Immutable Modules

We are not the first to identify immutable modules as a challenge

for CFI. For example, source-aware CFI instrumentation of Chrome

on ChromeOS identified two third-party libraries for which source

code was not available, and that interact with instrumented mod-

ules through object-oriented interfaces [57]. Forward CFI’s solution

to this mixed code problem validates object references at call sites

within instrumented modules. But this is insecure if the uninstru-

mented recipients retain persistent references to the shared objects,

or if they execute concurrently with untrusted (instrumented) code.

In both cases, the untrusted code may later corrupt the shared

vtable pointers without calling them, leaving the uninstrumented

module in possession of a corrupt, never-validated vtable.

In general, all prior source-aware and source-free CFI and vtable

protection research must instrument all interoperating modules

in order to thwart control-flow hijacking attacks. OFI is the first

solution that accommodates immutable modules. In deployment

contexts where the OS cannot be included in the instrumentation

process, such modules can be extremely prevalent—potentially in-

cluding most or all of the system libraries, plus an ongoing stream

of incoming upgrades, patches, and extensions to them. OFI seeks

to open such environments to CFI assistance.

6.5 Component-based Software Engineering

Microsoft COM [27] is presently the dominant industry standard

for component-based software engineering [38] of native code mod-

ules in consumer software markets. Its many facets include Object

Linking and Embedding (OLE), ActiveX, COM+, Distributed COM

14

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1922

(DCOM), DirectX, User-Mode Driver Framework (UMDF), and the

Windows Runtime (WinRT). Microsoft .NET applications typically

access Windows OS services via the .NET COM Interop, which

wraps COM. This prevalence makes COM an appropriate (but chal-

lenging) test of OFI’s real-world applicability.

Another primary competing standard is OMG’s Common Ob-

ject Request Broker Architecture (CORBA) [60]. CORBA resembles

COM but enforces additional layers of abstraction, including an

Object Request Broker (ORB) that has the option of supplying dif-

ferent representations of shared objects to communicating modules.

OFI is therefore potentially easier to realize for CORBA than for

COM, since it can take the role of a CFI-enforcing ORB. Interfaces

that communicate between CORBA and COM have also been de-

veloped [47].

7 CONCLUSION

OFI is the first work to extend CFI security protections to the sig-

nificant realm of mainstream software in which one or more object-

exchanging modules are immune to instrumentation. It does so

by mediating object exchanges across inter-module trust bound-

aries with the introduction of tamper-proof proxy objects. The

mediation strategy is source-agnostic, making it applicable to both

source-aware and source-free CFI approaches. A type-theoretic

basis for the mediation algorithm allows for automatic synthesis of

OFI mediation code from interface description languages.

A prototype implementation of OFI for Microsoft COM indi-

cates that the approach is feasible without access to source code,

and scales to large interfaces that employ callbacks, event-driven

programming, interface inheritance, datatype recursion, and de-

pendent typing. Experimental evaluation shows that OFI exhibits

low overheads of under 1% for some real-world consumer software

applications.

ACKNOWLEDGMENTS

The research reported herein was supported in part by NSF awards

#1513704 and #1054629, ONR award N00014-14-1-0030, AFOSR

award FA9550-14-1-0173, and an NSF-supported I/UCRC award

from Raytheon Company. Any opinions, recommendations, or con-

clusions expressed are those of the authors and not necessarily of

the aforementioned organizations.

REFERENCES

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-

flow Integrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS). 340–353.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009).

[3] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew

Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow

Attestation for Embedded Systems Software. In Proceedings of the 23rd ACM
Conference on Computer and Communications and Security (CCS).

[4] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, andMiguel Castro.

2008. Preventing Memory Error Exploits with WIT. In Proceedings of the 29th
IEEE Symposium on Security and Privacy (S&P). 263–277.

[5] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

oriented Programming: A New Class of Code-reuse Attacks. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security
(ASIACCS). 30–40.

[6] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. 2016. Protecting C++ Dy-

namic Dispatch Through VTable Interleaving. In Proceedings of the 23rd Network
and Distributed System Security Symposium (NDSS).

[7] Nathan Burow, Scott A. Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash,

Per Larsen, and Michael Franz. 2016. Control-Flow Integrity: Precision, Security,

and Performance. CoRR abs/1602.04056 (2016).

[8] Matúš Chochlík and Axel Naumann. 2016. Static Reflection (revision 4). C++

Standards Committee Paper P0194R0. (2016).

[9] Mauro Conti, Stephen J. Crane, Michael Franz, Per Larsen, Marco Negro, Christo-

pher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. 2015. Losing

Control: On the Effectiveness of Control-Flow Integrity under Stack Attacks. In

Proceedings of the 22nd ACM Conference on Computer and Communications and
Security (CCS). 952–963.

[10] Stephen J. Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Booby

Trapping Software. In Proceedings of the 2013 onNew Security ParadigmsWorkshop
(NSPW). 95–106.

[11] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per

Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and

Michael Franz. 2015. It’s a TRaP: Table Randomization and Protection against

Function-Reuse Attacks. In Proceedings of the 22nd ACM Conference on Computer
and Communications and Security (CCS). 243–255.

[12] Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?.

In Proceedings of the 20th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). 50–63.

[13] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete

Control-Flow Integrity for Commodity Operating System Kernels. In Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P). 292–307.

[14] Lucas Davi, Ra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf

Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. 2012. MoCFI: A Framework

to Mitigate Control-flow Attacks on Smartphones. In Proceedings of the 19th
Network and Distributed System Security Symposium (NDSS).

[15] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick

Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015. HAFIX: Hardware-

Assisted Flow Integrity eXtension. In Proceedings of the 52th ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6.

[16] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-

assisted Fine-grained Control-flow Integrity: Towards Efficient Protection of

Embedded Systems Against Software Exploitation. In Proceedings of the 51th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[17] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.

Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow

Integrity Protection. In Proceedings of the 23rd USENIX Security Symposium.

401–416.

[18] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang, Pieter Maene,

Koen De Bosschere, Bart Preneel, Bjorn De Sutter, and Ingrid Verbauwhede. 2016.

SOFIA: Software and Control Flow Integrity Architecture. In Design, Automation
& Test in Europe Conference & Exhibition (DATE). 1172–1177.

[19] Joe Duffy. 2008. Concurrent Programming on Windows. Addison-Wesley.

[20] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.

Necula. 2006. XFI: Software Guards for System Address Spaces. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 75–88.

[21] Chris Exton, DamienWatkins, and Dean Thompson. 1997. Comparisons Between

CORBA IDL & COM/DCOM MIDL: Interfaces for Distributed Computing. In

Proceedings of the 25th Technology of Object-Oriented Languages and Systems
Conference (TOOLS). 15–32.

[22] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order

Functions. In Proceedings of the 7th ACM SIGPLAN International Conference on
Functional Programming (ICFP). 48–59.

[23] Robert Gawlik and Thorsten Holz. 2014. Towards Automated Integrity Protection

of C++ Virtual Function Tables in Binary Programs. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC). 396–405.

[24] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control

Flows Using Intel Processor Trace. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 585–598.

[25] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

Grained Control-Flow Integrity for Kernel Software. In Proceedings of the 1st
IEEE European Symposium on Security and Privacy (EuroS&P). 179–194.

[26] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.

Out of Control: Overcoming Control-Flow Integrity. In Proceedings of the 35th
IEEE Symposium on Security and Privacy (S&P). 575–589.

[27] David N. Gray, John Hotchkiss, Seth LaForge, Andrew Shalit, and TobyWeinberg.

1998. Modern Languages and Microsoft’s Component Object Model. Communi-
cations of the ACM (CACM) 41, 5 (1998), 55–65.

15

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1923

[28] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI:

Transparent Backward-Edge Control Flow Violation Detection Using Intel Pro-

cessor Trace. In Proceedings of the 7th ACM Conference on Data and Application
Security and Privacy (CODASPY). 173–184.

[29] István Haller, Enes Göktas, Elias Athanasopoulos, Georgios Portokalidis, and

Herbert Bos. 2015. ShrinkWrap: VTable Protection without Loose Ends. In Pro-
ceedings of the 31th Annual Computer Security Applications Conference (ACSAC).
341–350.

[30] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. 2006. Computabil-

ity Classes for Enforcement Mechanisms. ACM Transactions on Programming
Languages and Systems (TOPLAS) 28, 1 (2006), 175–205.

[31] Norm Hardy. 1988. The Confused Deputy: (Or Why Capabilities Might Have

Been Invented). ACM SIGOPS Operating Systems Review 22, 4 (1988), 36–38.

[32] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing

C++ Virtual Calls from Memory Corruption Attacks. In Proceedings of the 21st
Network and Distributed System Security Symposium (NDSS).

[33] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012.

kGuard: Lightweight Kernel Protection against Return-to-user Attacks. In Pro-
ceedings of the 21st USENIX Security Symposium. 459–474.

[34] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. 2014. Code-pointer Integrity. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 147–163.

[35] Jay Ligatti, Lujo Bauer, and David Walker. 2009. Run-time Enforcement of

Nonsafety Policies. ACM Transactions on Information and Systems Security
(TISSEC) 12, 3 (2009).

[36] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015.

CCFI: Cryptographically Enforced Control Flow Integrity. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS). 941–951.

[37] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Archi-

tecture. In Proceedings of the 15st USENIX Security Symposium.

[38] M.D. McIlroy. 1968. Mass Produced Software Components. In Proceedings of
the NATO Software Engineering Conference, Peter Naur and Brian Randell (Eds.).

138–156.

[39] Castro Miguel, Costa Manuel, Martin Jean-Philippe, Peinado Marcus, Akritidis

Periklis, Donnelly Austin, Barham Paul, and Black Richard. 2009. Fast Byte-

granularity Software Fault Isolation. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP). 45–58.

[40] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael

Franz. 2015. Opaque Control-Flow Integrity. In Proceedings of the 22nd Network
and Distributed System Security Symposium (NDSS).

[41] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.

2010. CETS: Compiler-Enforced Temporal Safety for C. In Proceedings of the 9th
International Symposium on Memory Management (ISMM). 31–40.

[42] Christoulakis Nick, Christou George, Athanasopoulos Elias, and Ioannidis Sotiris.

2016. HCFI: Hardware-enforced Control-Flow Integrity. In Proceedings of the
6th ACM Conference on Data and Application Security and Privacy (CODASPY).
38–49.

[43] Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space Efficiency

and Separate Compilation. In Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS). 199–210.

[44] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 577–587.

[45] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-in-time Compilation Using

Modular Control-flow Integrity. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS). 1317–1328.

[46] Ben Niu and Gang Tan. 2015. Per-Input Control-flow Integrity. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS).
914–926.

[47] M.K. Pawar, Ravindra Patel, and N.S. Chaudhari. 2013. Interoperability Between

.Net Framework and Python in Component Way. International J. of Computer
Science Issues (IJCSI) 10, 1 (2013), 165–170.

[48] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-Grained

Control-Flow Integrity Through Binary Hardening. In Proceedings of the 12th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). 144–164.

[49] Jannik Pewny and Thorsten Holz. 2013. Control-flow Restrictor: Compiler-based

CFI for iOS. In Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC). 309–318.

[50] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection

for Virtual Function Calls in COTS C++ Binaries. In Proceedings of the 22nd
Network and Distributed System Security Symposium (NDSS).

[51] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. ACM Transac-
tions on Information and System Security (TISSEC) 15, 1 (2012).

[52] Ahmad-Reza Sadeghi, Lucas Davi, and Per Larsen. 2015. Securing Legacy Soft-

ware against Real-World Code-Reuse Exploits: Utopia, Alchemy, or Possible

Future?. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security (ASIACCS). 55–61.

[53] Fred B. Schneider. 2000. Enforceable Security Policies. ACM Transactions on
Information and Systems Security (TISSEC) 3, 1 (2000), 30–50.

[54] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming. In

Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P). 745–762.
[55] Jack Tang. 2015. Exploring Control Flow Guard in Windows 10. Technical Report.

Trend Micro Threat Solution Team.

[56] Caroline Tice. 2012. Improving Function Pointer Security for Virtual Method

Dispatches. In GNU Cauldron Work.
[57] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-

Flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium. 941–955.

[58] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawlowski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In Proceedings of the 37th IEEE Symposium on Security and Privacy
(S&P). 934–953.

[59] David Vandevoorde and Nicolai M. Josuttis. 2002. C++ Templates: The Complete
Guide. Addison-Wesley.

[60] Steve Vinoski. 1997. CORBA: Integrating Diverse Applications Within Dis-

tributed Heterogeneous Environments. IEEE Communications Magazine 35, 2
(1997), 46–55.

[61] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-based Fault Isolation. In Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles (SOSP). 203–216.

[62] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and Dengguo

Feng. 2015. Binary Code Continent: Finer-Grained Control Flow Integrity for

Stripped Binaries. In Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC). 331–340.

[63] Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to

Provide Lifetime Hypervisor Control-Flow Integrity. In Proceedings of the 31st
IEEE Symposium on Security and Privacy (S&P). 380–395.

[64] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012. Bi-

nary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code.

In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS). 157–168.

[65] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.

Securing Untrusted Code via Compiler-Agnostic Binary Rewriting. In Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC). 299–308.

[66] Richard Wartell, Yan Zhou, Kevin W. Hamlen, and Murat Kantarcioglu. 2014.

Shingled Graph Disassembly: Finding the Undecidable Path. In Proceedings of the
18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
273–285.

[67] Patrick Wollgast, Robert Gawlik, Behrad Garmany, Benjamin Kollenda, and

Thorsten Holz. 2016. Automated Multi-architectural Discovery of CFI-Resistant

Code Gadgets. In Proceedings of the 21st European Symposium on Research in
Computer Security (ESORICS). 602–620.

[68] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon: Detecting

Violation of Control Flow Integrity Using Performance Counters. In Proceedings
of the 42nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks(DSN). 1–12.

[69] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, Tavis Ormandy,

Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client: A

Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of the 30th IEEE
Symposium on Security and Privacy (S&P). 79–93.

[70] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-assisted Fine-

grained Code-reuse Attack Detection. In Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID). 66–85.

[71] Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,

and Dawn Song. 2016. VTrust: Regaining Trust on Virtual Calls. In Proceedings
of the 23rd Network and Distributed System Security Symposium (NDSS).

[72] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn

Song. 2015. VTint: Protecting Virtual Function Tables’ Integrity. In Proceedings
of the 22nd Network and Distributed System Security Symposium (NDSS).

[73] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen

McCamant, Dawn Song, and Wei Zo. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (S&P). 559–573.

[74] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.

In Proceedings of the 22nd USENIX Conference on Security (USENIX). 337–352.

16

Session I2: Information Flow CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1924

	Abstract
	1 Introduction
	2 Background
	2.1 Inter-module Object Flows
	2.2 CODE-COOP Attacks

	3 Design
	3.1 Object Proxying
	3.2 Type-based Contracts
	3.3 Trust Model

	4 Implementation
	4.1 Architecture
	4.2 Dispatcher Implementation
	4.3 Automated Mediator Synthesis

	5 Evaluation
	5.1 Transparency
	5.2 Performance Overheads
	5.3 Security Evaluation
	5.4 Scalability

	6 Related Work
	6.1 SFI and CFI
	6.2 VTable Protection
	6.3 COOP Attacks
	6.4 Immutable Modules
	6.5 Component-based Software Engineering

	7 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 295.76, 44.31 Width 19.52 Height 38.07 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 295.7568 44.3112 19.5219 38.0677

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 16
 15
 16

 1

 HistoryList_V1
 qi2base

