
Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives

Melissa Chase
Microsoft Research

melissac@microsoft.com

David Derler
Graz University of Technology

david.derler@tugraz.at

Steven Goldfeder
Princeton University

stevenag@cs.princeton.edu

Claudio Orlandi
Aarhus University
orlandi@cs.au.dk

Sebastian Ramacher
Graz University of Technology
sebastian.ramacher@tugraz.at

Christian Rechberger
Graz University of Technology &
Denmark Technical University
christian.rechberger@tugraz.at

Daniel Slamanig
AIT Austrian Institute of Technology

daniel.slamanig@ait.ac.at

Greg Zaverucha
Microsoft Research

gregz@microsoft.com

ABSTRACT

We propose a new class of post-quantum digital signature schemes
that: (a) derive their security entirely from the security of symm-
etric-key primitives, believed to be quantum-secure, and (b) have
extremely small keypairs, and, (c) are highly parameterizable.

In our signature constructions, the public key is an image y =
f (x) of a one-way function f and secret key x . A signature is a
non-interactive zero-knowledge proof of x , that incorporates a
message to be signed. For this proof, we leverage recent progress of
Giacomelli et al. (USENIX’16) in constructing an efficient Σ-protocol
for statements over general circuits. We improve this Σ-protocol to
reduce proof sizes by a factor of two, at no additional computational
cost. While this is of independent interest as it yields more compact
proofs for any circuit, it also decreases our signature sizes.

We consider two possibilities to make the proof non-interactive:
the Fiat-Shamir transform and Unruh’s transform (EUROCRYPT’12,
’15,’16). The former has smaller signatures, while the latter has a
security analysis in the quantum-accessible random oracle model.
By customizing Unruh’s transform to our application, the overhead
is reduced to 1.6x when compared to the Fiat-Shamir transform,
which does not have a rigorous post-quantum security analysis.

We implement and benchmark both approaches and explore the
possible choice of f , taking advantage of the recent trend to strive
for practical symmetric ciphers with a particularly low number of
multiplications and end up using LowMC (EUROCRYPT’15).

The full version of this paper is available as IACR Cryptology ePrint Archive Report
2017/279. This paper is a merge of [34, 46].
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3133956.3133997

CCS CONCEPTS

• Security and privacy→Digital signatures; •Theory of com-

putation → Cryptographic primitives;

KEYWORDS

Post-quantum cryptography, zero-knowledge, signatures, block
cipher, Fiat-Shamir, Unruh, implementation

1 INTRODUCTION

More than two decades ago Shor published his polynomial-time
quantum algorithm for factoring and computing discrete loga-
rithms [81]. Since then, we know that a sufficiently powerful quan-
tum computer is able to break nearly all public key cryptography
used in practice today. This motivates the invention of crypto-
graphic schemes with post quantum (PQ) security, i.e., security
against attacks by a quantum computer. Even though no sufficiently
powerful quantum computer currently exists, NIST recently an-
nounced a post-quantum crypto project1 to avoid a rushed transi-
tion from current cryptographic algorithms to PQ secure algorithms.
The project is seeking proposals for public key encryption, key ex-
change and digital signatures thought to have PQ security. The
deadline for proposals is fall 2017.

In this paper we are concerned with constructing signature
schemes for the post-quantum era. The building blocks of our
schemes are interactive honest-verifier zero-knowledge proof sys-
tems (Σ-protocols) for statements over general circuits and sym-
metric-key primitives, that are conjectured to remain secure in a
post-quantum world.
Post-Quantum Signatures. Perhaps the oldest signature scheme
with post-quantum security are one-time Lamport signatures [63],
built using hash functions. As Grover’s quantum search algorithm
can invert any black-box function [52] with a quadratic speed-up
over classical algorithms, one has to double the bit size of the hash
function’s domain, but still requires no additional assumptions to
provably achieve post-quantum security. Combined with Merkle-
trees, this approach yields stateful signatures for any polynomial

1http://csrc.nist.gov/groups/ST/post-quantum-crypto/

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1825

https://doi.org/http://dx.doi.org/10.1145/3133956.3133997
http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html

number of messages [71], where the state ensures that a one-time
signature key from the tree is not reused. By making the tree very
large, and randomly selecting a key from it (cf. [47]), along with
other optimizations, yields practical stateless hash-based signa-
tures [17].

There are also existing schemes that make structured (or number-
theoretic) assumptions. Code-based signature schemes can be ob-
tained from identification schemes based on the syndrome decoding
(SD) problem [70, 82, 86] by applying a variant of the well-known
Fiat-Shamir (FS) transform [40]. Lattice-based signature schemes
secure under the short integer solution (SIS) problem on lattices
following the Full-Domain-Hash (FDH) paradigm [13] have been in-
troduced in [43]. More efficient approaches [7, 9, 65, 66] rely on the
FS transform instead of FDH. BLISS [36], a very practical scheme,
also relies on the FS transform, but buys efficiency at the cost of
more pragmatic assumptions, i.e., a ring version of the SIS problem.
For signatures based on problems related to multivariate systems of
quadratic equations only recently provably secure variants relying
on the FS transform have been proposed [56].

When it comes to confidence in the underlying assumptions,
hash-based signatures are arguably the preferred candidate among
all existing approaches. All other practical signatures require an ad-
ditional structured assumption (in addition to assumptions related
to hash functions).

1.1 Contributions

We contribute a novel class of practical post-quantum signature
schemes. Our approach only requires symmetric key primitives like
hash functions and block ciphers and does not require additional
structured hardness assumptions.

Along the way to building our signature schemes, we make
several contributions of general interest to zero-knowledge proofs
both in the classical and post-quantum setting:

• We improve ZKBoo [44], a recent Σ-protocol for proving
statements over general circuits. We reduce the transcript
size by more than half without increasing the computa-
tional cost. We call the improved protocol ZKB++. This
improvement is of general interest outside of our applica-
tion to post-quantum signatures as it yields significantly
more concise zero knowledge proofs even in the classical
setting.

• We also show how to apply Unruh’s generic transform [83–
85] to obtain a non-interactive counterpart of ZKB++ that
is secure in the quantum-accessible random oracle model
(QROM; see [18]). To our knowledge, we are the first to
apply Unruh’s transform in an efficient signature scheme.

• Unruh’s construction is generic, and does not immediately
yield compact proofs. However, we specialize the construc-
tion to our application, and we find the overhead was sur-
prisingly low – whereas a generic application of Unruh’s
transform incurs a 4x increase in size when compared to
FS, we were able to reduce the size overhead of Unruh’s
transform to only 1.6x. Again, this has applications wider
than our signature schemes as the protocol can be used
for non-interactive post-quantum zero knowledge proofs
secure in the QROM.

We build upon these results to achieve our central contribution:
two concrete signature schemes. In both schemes the public key
is set up to be an image y = f (k) with respect to one-way func-
tion f and secret key k . We then turn an instance of ZKB++ to
prove knowledge of k into two signature schemes – one using the
FS transform and the other using Unruh’s transform. The FS vari-
ant, dubbed Fish, yields a signature scheme that is secure in the
ROM, whereas the Unruh variant, dubbed Picnic, yields a signature
scheme that is secure in the QROM, and we include a complete
security proof.

We review symmetric-key primitives with respect to their suit-
ability to serve as f in our application and conclude that the
LowMC family of block ciphers [4, 6] is well suited. We explore the
parameter space of LowMC and show that we can obtain various
trade-offs between signature size and computation time. Thereby,
our approach turns out to be very flexible as besides the aforemen-
tioned trade-offs we are also able to adjust the security parameter
of our construction in a very fine-grained way.

We provide an implementation of both schemes for 128-bit post-
quantum security, demonstrating the practical relevance of our
approach. In particular, we provide two reference implementations
on GitHub2,3. Moreover, we rigorously compare our schemes with
other practical provably secure post-quantum schemes.

1.2 Related Work

We now give a brief overview of other candidate schemes and
defer a detailed comparison of parameters and performance to
Section 7. We start with the only existing instantiation that solely
relies on standard assumptions, i.e., comes with a security proof in
the standard model (SM). The remaining existing schemes rely on
structured assumptions related to codes, lattices and multivariate
systems of quadratic equations that are assumed to be quantum
safe and have a security proof in the ROM. At the end of the section,
we review the state of the art in zero-knowledge proofs for non-
algebraic statements.

Hash-Based Signatures (SM). Hash-based signatures are attrac-
tive as they can be proven secure in the standardmodel (i.e., without
ROs) under well-known properties of hash functions such as second
preimage resistance. Unfortunately, highly efficient schemes like
XMSS [22] are stateful, which seems to be problematic for practical
applications [68]. Stateless schemes like SPHINCS [17] are thus
more desirable, but this comes at reduced efficiency and increased
signature sizes. SPHINCS has a tight security reduction to security
of its building blocks, i.e., hash functions, PRGs and PRFs. At the
128-bit post-quantum security level, signatures are about 41 kB in
size, and keys are of size about 1 kB each.

Code-Based Signatures (ROM). In the code-based setting the
most prominent and provably secure approach is to convert iden-
tification schemes due to Stern [82] and Véron [86] to signatures
using FS. For the 128-bit PQ security level one obtains signature
sizes of around ≈ 129 kB (in the best case) and public key size of

2https://github.com/Microsoft/Picnic
3https://github.com/IAIK/fish-begol

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1826

https://github.com/Microsoft/Picnic
https://github.com/IAIK/fish-begol

≈ 160 bytes.4 We note that there are also other code-based sig-
natures [27] based on the Niederreiter [72] dual of the McEliece
cryptosystem [67], which do not come with a security reduction,
have shown to be insecure [38] and also do not seem practical [64].
There is a more recent provably secure approach [37], however, it
is not immediate if this leads to efficient signatures.
Lattice-Based Signatures (ROM). For lattice based signatures
there are two major directions. The first are schemes that rely on
the hardness of worst-to-average-case problems in standard lattices
[7, 9, 30, 43, 66]. Although they are desirable from a security point
of view, they suffer from huge public keys, i.e., in the orders of a
few to some 10 MBs. TESLA [7] (based upon [9, 66]) improves all
aspects in the performance of GPV [43], but still has keys on the
order of 1 MB. More efficient lattice-based schemes are based on
ring analogues of classical lattice problems [3, 10, 11, 36, 53] whose
security is related to hardness assumptions in ideal lattices. These
constructions drop key sizes to the order of a few kBs. Most notable
is BLISS [35, 36], which achieves performance nearly comparable
to RSA. However, it must be noted, that ideal lattices have not been
investigated nearly as deeply as standard lattices and thus there is
less confidence in the assumptions (cf. [75]).
MQ-Based Signatures (ROM). Recently, Hülsing et al. in [56] pro-
posed a post-quantum signature scheme (MQDSS) whose security
is based on the problem of solving a multivariate system of qua-
dratic equations. Their scheme is obtained by building upon the
5-pass (or 3-pass) identification scheme in [79] and applying the
FS transform. For 128-bit post-quantum security, signature sizes
are about 40 kB, public key sizes are 72 bytes and secret key sizes
are 64 bytes. We note that there are other MQ-based approaches
like Unbalanced Oil-and-Vinegar (UOV) variants [74] or FHEv−
variants (cf. [76]), having somewhat larger keys (order of kBs) but
much shorter signatures. However, they have no provable security
guarantees, the parameter choice seems very aggressive, there are
no parameters for conservative (post-quantum) security levels, and
no implementations are available.
Supersingular Isogenies (QROM). Yoo et al. in [87] proposed a
post-quantum signature scheme whose security is based on super-
singular isogeny problems. The scheme is obtained by building
upon the identification scheme in [39] and applying the Unruh
transform. For 128-bit post-quantum security, signature sizes are
about 140 kB, public key sizes are 768 bytes, and secret key sizes
are 49 bytes.

At the same time, Galbraith et al. [41] published a preprint con-
taining one conceptually identical isogeny-based construction, and
one based on endomorphism rings. They report improved signature
sizes using a time-space trade-off and only present their improve-
ments in terms of classical security parameters.
Zero-Knowledge forArithmeticCircuits.Zero-knowledge (ZK)
proofs [49] are a powerful tool and exist for any language inNP [48].
Nevertheless, practically efficient proofs were until recently only
known for restricted languages covering algebraic statements in
certain algebraic structures, e.g., discrete logarithms [28, 80] or
equations over bilinear groups [51]. Expressing any NP language

4The given estimates are taken from a recent talk of Nicolas Sendrier (available at https:
//pqcrypto.eu.org/mini.html), as, unfortunately, there are no free implementations
available.

as a combination of algebraic circuits could be done for example by
expressing the relation as a circuit, however for circuits of practi-
cal interest (such as hash functions or block ciphers), this quickly
becomes prohibitively expensive. Even SNARKS, where proof size
can be made small (and constant) and verification is highly efficient,
have very costly proofs (cf. [15, 26, 42] and the references therein).5
Unfortunately, signatures require small proof computation times
(efficient signing procedures), and this direction is not suitable.

Quite recently, dedicated ZK proof systems for statements ex-
pressed as Boolean circuits by Jawurek et al. [58] and statements ex-
pressed as RAM programs by Hu et al. [55] have been proposed. As
we exclusively focus on circuits, let us take a look at [58]. They pro-
posed using garbled circuits to obtain ZK proofs, which allow effi-
cient proofs for statements like knowledge of x fory = SHA-256(x).
Unfortunately, this approach is inherently interactive and thus not
suitable for the design of practical signature schemes. The very
recent ZKBoo protocol due to Giacomelli et al. [44], which we
build upon, for the first time, allows to construct non-interactive
zero-knowledge (NIZK) proofs with performance being of interest
for practical applications.

QROM vs ROM. One way of arguing security for signatures ob-
tained via the FS heuristic in the stronger QROM is to assume that
it simply holds as long as the underlying protocol and the hash
function used to instantiate the random oracle (RO) are quantum-
secure. However, it is known [18] that there are signature schemes
secure in the ROM that are insecure in the quantum-accessible
ROM (QROM), i.e., when the adversary can issue quantum queries
to the RO. One central issue in this context is how to handle the
rewinding of adversaries within security reductions as in the FS
transform [31]. Possibilities to circumvent this issue are via history-
free reductions [18] or the use of oblivious commitments within the
FS transform, which is not applicable to our approach. Although
many existing schemes ignore QROM security, given the general
uncertainty of the capabilities of quantum adversaries, we prefer
to avoid this assumption. Building upon results from Unruh [83–
85], we achieve provable security in the QROM under reasonable
assumptions.

2 BUILDING BLOCKS

Below, we informally recall the notion of Σ-protocols and other
standard primitives.

Sigma Protocol. A sigma protocol (or Σ-protocol) is a three flow
protocol between a prover Prove and a verifier Verify, where
transcripts have the form (r ,c,s). Thereby, r and s are computed by
Prove and c is a challenge chosen by Verify. Let f be a relation
such that f (x) = y, where y is common input and x is a witness
known only to Prove. Verify accepts if ϕ (y,r ,c,s) = 1 for an
efficiently computable predicate ϕ. There also exists an efficient
simulator, given y and a randomly chosen c , outputs a transcript
(r ,c,s) for y that is indistinguishable from a real run of the protocol
for x ,y.

5Using SNARKS is reasonable in scenarios where provers are extremely powerful
(such as verifiable computing [42]) or the runtime of the prover is not critical (such as
Zerocash [14]).

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1827

https://pqcrypto.eu.org/mini.html
https://pqcrypto.eu.org/mini.html

n-Special Soundness. A Σ-protocol has n-special soundness if n tran-
scripts (r ,c1,s1), . . . , (r ,cn ,sn) with distinct ci guarantee that a wit-
ness may be efficiently extracted.
Fiat-Shamir. The FS transform [40] converts a Σ-protocol into a
non-interactive zero knowledge proof of knowledge. A Σ-protocol
consists of a transcript (r ,c,s). The corresponding non-interactive
proof (r ′,c ′,s ′) generates r ′ and s ′ as in the interactive case, but
obtains c ′ ← H (r ′) instead of receiving it from the verifier. This
is known to be a secure NIZK in the random oracle model against
standard (non-quantum) adversaries [40].
Other Building Blocks. This paper requires other common prim-
itives, namely one-way functions, pseudorandom generators, and
commitments. We use the canonical hash-based commitment and
require commitments to be hiding and binding. Definitions are
given in the full version of this paper, where we also recall the defi-
nition of signature schemes, and existential unforgeability under
chosen message attacks (EUF-CMA), which is the standard security
notion for signature schemes.

3 ZKBOO AND ZKB++

ZKBoo is a proof system for zero-knowledge proofs on arbitrary
circuits described in [45]. We recall the protocol here, and present
ZKB++, an improved version of ZKBoo with proofs that are less
than half the size.

3.1 ZKBoo

While ZKBoo is presented with various possible parameter options,
we present only the final version from [45] with the best param-
eters. Moreover, while ZKBoo presents both interactive and non-
interactive protocol versions, we present only the non-interactive
version since our main goal is building a signature scheme.
Overview. ZKBoo builds on the MPC-in-the-head paradigm of
Ishai et al. [57], that we describe only informally here. The mul-
tiparty computation protocol (MPC) will implement the relation,
and the input is the witness. For example, the MPC could compute
y = SHA-256(x) where players each have a share of x and y is
public. The idea is to have the prover simulate a multiparty compu-
tation protocol “in their head”, commit to the state and transcripts
of all players, then have the verifier “corrupt” a random subset of
the simulated players by seeing their complete state. The verifier
then checks that the computation was done correctly from the per-
spective of the corrupted players, and if so, he has some assurance
that the output is correct and the prover knows x . Iterating this for
many rounds then gives the verifier high assurance.

ZKBoo generalizes the idea of [57] by replacing MPC with so-
called “circuit decompositions”, which do not necessarily need to
satisfy the properties of an MPC protocol and therefore lead to
more efficient proofs in practice. Fix the number of players to
three. In particular, to prove knowledge of a witness for a rela-
tion R := {(x ,y),ϕ (x) = y}, we begin with a circuit that computes
ϕ, and then find a suitable circuit decomposition. This contains
a Share function (that splits the input into three shares), three
functions Outputi ∈{1,2,3} (that take as input all of the input shares
and some randomness and produce an output share for each of
the parties), and a function Reconstruct (that takes as input the
three output shares and reconstructs the circuit’s final output). This

decomposition must satisfy correctness and 2-privacy which intu-
itively means that revealing the views of any two players does not
leak information about the witness x .

The decomposition is used to construct a proof as follows: the
prover runs the computation ϕ using the decomposition and com-
mits to the views – three views per run. Then, using the FS heuristic,
the prover sends the commitments and output shares from each
view to the random oracle to compute a challenge – the challenge
tells the prover which two of the three views to open for each of the
t runs. Because of the 2-privacy property, opening two views for
each run does not leak information about the witness. The number
of runs, t , is chosen to achieve negligible soundness error – i.e.,
intuitively it would be infeasible for the prover to cheat without
getting caught in at least one of the runs. The verifier checks that (1)
the output of each of the three views reconstructs to y, (2) each of
the two open views were computed correctly, and (3) the challenge
was computed correctly.

We now give a detailed description of the non-interactive ZKBoo
protocol. Throughout this paper, when we perform arithmetic on
the indices of the players, we omit the implicit mod 3 to simplify
the notation.

Definition 3.1 ((2,3)-decomposition). Let f (·) be a function that
is computed by an n-gate circuit ϕ such that f (x) = ϕ (x) = y, and
let κ be the security parameter. Let k1,k2, and k3 be tapes chosen
uniformly at random from {0,1}κ corresponding to players P1,P2
and P3, respectively. Consider the following set of functions, D:

(view(0)
1 , view

(0)
2 , view

(0)
3) ← Share(x ,k1,k2,k3)

view(j+1)
i ← Update(view(j)

i ,view
(j)
i+1,ki ,ki+1)

yi ← Output(Viewi)

y ← Reconstruct(y1,y2,y3)

such that Share is a potentially randomized invertible function
that takes x as input and outputs the initial view for each player
containing the secret share xi of x , i.e. view

(0)
i = xi . The function

Update computes the wire values for the next gate and updates
the view accordingly. The function Outputi takes as input the final
view, Viewi ≡ view(n)

i after all gates have been computed and
outputs player Pi ’s output share, yi .

We require correctness and 2-privacy as informally outlined
before. We defer a formal definition to Appendix A.1. The concrete
decomposition used by ZKBoo is presented in Appendix A.2.

3.1.1 ZKBoo Complete Protocol. Given a (2,3)-decomposition
D for a function ϕ, the ZKBoo protocol is a Σ-protocol for lan-
guages of the form L := {y | ∃ x : y = ϕ (x)}. We note that this
directly yields a non-interactive zero-knowledge (NIZK) proof sys-
tem for the same relation using well known results. We recall the
details of ZKBoo in Appendix A.
Serializing the Views. In the (2,3)-decomposition, the view is up-
dated with the output wire value for each gate. While conceptually
a player’s view includes the values that they computed locally,
when the view is serialized, it is sufficient to include only the wire
values of the gates that require non-local computations (i.e., the
binary multiplication gates). The verifier can recompute the parts
of the view due to local computations, and they do not need to be

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1828

serialized. Giving the verifier locally computed values does not even
save any computation as the verifier will still need to recompute
the values in order to check them.

In ZKBoo, the serialized view includes: (1) the input share, (2)
output wire values for binary multiplication gates, and (3) the out-
put share.

The size of a view depends on the circuit as well as the ring that
it is computed over. Let ϕ : (Z2ℓ)

m → (Z2ℓ)
n be the circuit being

computed overZ2ℓ such that there arem input wires,n output wires,
and each wire can be expressed with ℓ bits. Moreover, assume that
the circuit has b binary-multiplication gates. The size of a view in
bits is thus given by: |Viewi | = ℓ(m + n + b).

ZKBooProof Size.Using the above notation, we can now calculate
the size of ZKBoo proofs. Let κ be the (classical) security-parameter.
The random tapes will be of sizeκ as mentioned above. Furthermore,
let c be the size of the commitments ci (in bits) for a commitment
scheme secure at the given security level. In ZKBoo, hash-based
commitments were used and instantiated with SHA-256, and thus
c = 256. In ZKBoo, the openings D of the commitments contain
the value being committed to as well as the randomness used for
the commitments. Let s denote the size of the randomness in bits
used for each commitment. The size of the output share yi is the
same as the output size of the circuit, (ℓ · n). Let t denote the
number of parallel repetitions that we must run, and from ZKBoo
we know that to achieve soundness error of 2−κ , we must set t =
⌈κ (log2 3 − 1)−1⌉. The total proof size is given by

|p | = t · [3 · (|yi | + |ci |) + 2 · (|Viewi | + |ki | + s)]
= t · [3 · (ℓn + c) + 2 · (ℓ · (m + n + b) + κ + s)]
= t · [3c + 2κ + 2s + ℓ · (5n + 2m + 2b)]

= ⌈κ (log2 3 − 1)
−1⌉ · [3c + 2κ + 2s + ℓ · (5n + 2m + 2b)]

3.2 ZKB++

We now present ZKB++, an improved version of ZKBoo with NIZK
proofs that are less than half the size of ZKBoo proofs. Moreover,
our benchmarks show that this size reduction comes at no extra
computational cost.6

We present the ZKB++ optimizations in an incremental way over
the original ZKBoo protocol.
O1: The Share Function. We make the Share function sample
the shares pseudorandomly as:

(x1,x2,x3) ← Share(x ,k1,k2,k3) B

x1 = R1 (0 · · · |x − 1|)
x2 = R2 (0 · · · |x − 1|)
x3 = x − x1 − x2

where Ri is a pseudorandom generator seeded with ki , and by
Ri (0 · · · |x − 1|) we denote the first |x | bits output by Ri .

We note that sampling in this manner preserves the 2-privacy of
the decomposition. In particular, given only two of {(k1,x1), (k2,x2),
(k3,x3)}, x remains uniformly distributed over the choice of the
third unopened (ki ,xi).

6Our analysis of the original ZKBoo source code uncovered some errors which were
corrected in the new implementation.

We specify the Share function in this manner as it will lead to
more compact proofs. For each round, the prover is required to
“open" two views. In order to verify the proof, the verifier must be
given both the random tape and the input share for each opened
view. If these values are generated independently of one another,
then the prover will have to explicitly include both of them in the
proof. However, with our sampling method, in View1 and View2,
the prover only needs to include ki , as xi can be deterministically
computed by the verifier.

The exact savings depend on which views the prover must open,
and thus depend on the challenge. The expected reduction in proof
size resulting from using the ZKB++ sampling technique instead of
the technique used in ZKBoo is (4t · |x |)/3 bits.

O2: Not Including Input Shares. Since the input shares are now
generated pseudorandomly using the seed ki , we do not need to
include them in the view when e = 1. However, if e = 2 or e = 3, we
still need to send one input share for the third view for which the
input share cannot be derived from the seed. Since the challenge is
generated uniformly at random from {1,2,3}, the expected number
of input shares that we’ll need to include for a single iteration is
2/3.

O3: Not IncludingCommitments. In ZKBoo proofs, the commit-
ments of all three views are sent to the verifier. This is unnecessary
as for the two views that are opened, the verifier can recompute
the commitment. Only for the third view that the verifier is not
given the commitment needs to be explicitly sent.

We stress that there is no lost security here (in some sense we use
e as a “commitment to the commitments”) as even when the prover
sends the commitments, the verifier must check that the prover
has sent the correct commitments by hashing the commitments
to recompute the challenge. Here too, the verifier checks that the
commitments that it computed are the same ones that were used
by the prover by hashing them as part of the input to recompute
the challenge.

There is also no extra computational cost in this approach –
whereas the verifier now must recompute the commitments, in
the original ZKBoo protocol, the verifier needed to verify the com-
mitments in step 2 (see the full version of the paper for the full
ZKBoo protocol). For the hash-based commitment scheme used
in ZKBoo, the function to verify the commitment first recomputes
the commitment and thus there is no extra computation.

O4: No Additional Randomness for Commitments. Since the
first input to the commitment is the seed value ki for the random
tape, the protocol input to the commitment doubles as a random-
ization value, ensuring that commitments are hiding. Further, each
view included in the commitment must be well randomized for
the security of the MPC protocol. In the random oracle model the
resulting commitments are hiding (the RO model is needed here
since ki is used both as seed for the PRG and as randomness for
the commitment. Since one already needs the RO model to make
the proofs non-interactive, there is no extra assumption here).

O5: Not Including the Output Shares. In ZKBoo proofs, as part
of a, the output shares yi are included in the proof. Moreover, for
the two views that are opened, those output shares are included a
second time.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1829

First, we do not need to send two of the output shares twice.
However, we actually do not need to send any output shares at
all as they can be deterministically computed from the rest of the
proof as follows:

For the two views that are given as part of the proof, the output
share can be recomputed from the remaining parts of the view.
Essentially, the output share is just the value on the output wires.
Given the random tapes and the communicated bits from the binary
multiplication gates, all wires for both views can be recomputed.

For the third view, recall that the Reconstruct function simply
XORs the three output shares to obtain y. But the verifier is given y,
and can thus instead recompute the third output share. In particular,
given yi , yi+1 and y, the verifier can compute: yi+2 = y +yi +yi+1.
Computational Trade-Off.While we would expect some computa-
tional cost from recomputing rather than sending the output shares,
our benchmarks show that there is no additional computational
cost incurred by this modification, perhaps because it is a small
part of the overall verification. For the challenge view, Viewe , the
verifier anyway needs to recompute all of the wire values in order
to do the verification, so there is no added cost.

For the second view, Viewe+1, the verifier must recompute the
wire values as well since the verifier will need to compute the values
which must be stored as output of the (2,3)-decomposition, so there
is effectively no cost.

For the third view, the extra cost of recomputing the output share
is just two additions in the ring, which is exactly the cost of a single
call to Reconstruct.

However, in step 2 of the verification in ZKBoo, the verifier has
to call Reconstruct in order to verify that the three output shares
given are correct (see the full version of the paper for the full ZKBoo
protocol). But in our optimization, the verifier no longer needs to
perform this check as the derivation of the third share guarantees
that it will reconstruct correctly. Thus, the verifier is adding one
Reconstruct but saving one, and thus no cost is incurred.

We note that the outputs will be checked as the yi ’s are hashed
with H to determine the challenge. The verifier recomputes the
challenge and if the yi values used by the verifier do not match
those used by the prover, the challenge will be different (by the
collision resistance property of H), and the proof will fail.

O6:Not IncludingViewe . In step 2 of the proof, the verifier recom-
putes every wire in Viewe and checks as he goes that the received
values are correct. However we note that this is not necessary.

The verifier can recompute Viewe given just the random tapes
ke ,ke+1 and the wire values of Viewe+1. But the verifier does not
need to explicitly check that each wire value in Viewe is computed
correctly. Instead, the verifier will recompute the view, and check
the commitments using the recomputed view. By the binding prop-
erty of the commitment scheme, the commitments will only verify
if the verifier has correctly recomputed every value stored in the
view.

Notice that this modification reduces the computational time as
the verifier does not need to perform part of step 2, i.e., there is no
need to check every wire as checking the commitment will check
these wires for us. But more crucially, this modification reduces
the proof size significantly. There is no need to send the AND
wire values for Viewe as we can recompute them and check their

correctness. Indeed, for this view, the prover only needs to send
the input wire value and nothing else.

3.2.1 Putting it All Together: ZKB++. This series of optimiza-
tions results in our new protocol ZKB++ which is presented in
Scheme 1.

Notice that in ZKB++, the prover explicitly sends the challenge
e to the verifier. In the original ZKBoo protocol, the verifier is
explicitly given all of the inputs to the challenge random oracle, so
it can compute the challenge right away, and then check the proofs.
However, in our protocol, the verifier is no longer explicitly given
these inputs. Thus our verifier must first recompute all implicitly
given values. To be able to compute those values, the challenge e is
required which is why we explicitly include e in the proof.

There are 3 possible challenges for each iteration, so the cost of
sending e for a t iteration proof is t · log2 (3).
ZKB++ Proof Size. The expected proof size is

|p | = t[|ci | + 2|ki | + 2/3|xi | + b |wi | + |ei |]
= t[c + 2κ + 2/3ℓm + bℓ + log2 (3)]
= t[c + 2κ + log2 (3) + ℓ · (2/3 ·m + b)]

= ⌈κ (log2 3 − 1)
−1⌉[c + 2κ + log2 (3) + ℓ · (2/3 ·m + b)]

The ZKB++ improvements reduce the proof size compared to ZKBoo
by a factor of 2; independent of the concrete circuit.

As an example, we can consider the concrete case of proving
knowledge of a SHA-256 pre-image. For this example, we set ℓ = 1
(for Boolean circuits), c = 256 (we use SHA-256 as a commitment
scheme), and s = κ (the randomness for the commitment in ZKBoo
that we eliminated in ZKB++). For the circuit, we use the SHA-256
boolean circuit from [23], for which m = 512, n = 256, and b =
22272. Given these parameters, if we set κ = 128, then the ZKB++
proof size is 618 kilobytes, which is only 48% of ZKBoo proof size
(1287 kilobytes). At the 80-bit security level, the ZKB++ proof size
is 385 kilobytes, and at the 40-bit security level, the proof size is
193 kilobytes. For all these figures, we used 256-bit commitments,
and thus in practice they may be slightly reduced by using a weaker
commitment scheme.
ZKB++ Security. From our argumentation above we conclude that
the security of ZKBoo directly implies security of ZKB++ in the
(Q)ROM.

4 THE FISH SIGNATURE SCHEME

The FS transform is an elegant way to obtain EUF-CMA secure
signature schemes. The basic idea is similar to constructing NIZK
proofs from Σ-protocols, but the challenge c is generated by hashing
the prover’s first message r and the messagem to be signed, i.e.,
c ← H (r ,m). In the following we will index the non-interactive
PPT algorithms (ProveH ,VerifyH) by the hash functionH , which
we model as a random oracle. Let us consider a language LR with
associated witness relation R of pre-images of a one-way function
fk : Dκ → Rκ , sampled uniformly at random from a family of one-
way functions { fk }k ∈Kκ , indexed by key k and security parameter
κ:

((y,k),x) ∈ R ⇐⇒ y = fk (x).

Henceforth, we may use { fk } for brevity. The function family { fk }
could be any one-way function family, but since we found that

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1830

For public ϕ and y ∈ Lϕ , the prover has x such that y = ϕ (x). The prover and verifier use the hash functions G (·) and H (·) and H ′(·) which
will be modeled as random oracles (H ′ will be used to commit to the views). The integer t is the number of parallel iterations.
p ← Prove(x):

1. For each iteration ri ,i ∈ [1,t]: Sample random tapes k (i)1 ,k
(i)
2 ,k

(i)
3 and simulate the MPC protocol to get an output view View(i)

j and

output share y (i)j . For each player Pj compute
(x

(i)
1 ,x

(i)
2 ,x

(i)
3) ← Share(x ,k

(i)
1 ,k

(i)
2 ,k

(i)
3) = (G (k

(i)
1),G (k

(i)
2),x ⊕ G (k

(i)
1) ⊕ G (k

(i)
2)),

View(i)
j ← Update(Update(· · · Update(x

(i)
j ,x

(i)
j+1,k

(i)
j ,k

(i)
j+1) . . .) . . .) . . .),

y
(i)
j ← Output(View(i)

j).

Commit [C (i)
j ,D

(i)
j]← [H ′(k (i)j ,x

(i)
j ,View

(i)
j),k

(i)
j | |View

(i)
j], and let a(i) = (y

(i)
1 ,y

(i)
2 ,y

(i)
3 ,C

(i)
1 ,C

(i)
2 ,C

(i)
3).

2. Compute the challenge: e ← H (a(1) , . . . ,a(t)). Interpret the challenge such that for i ∈ [1,t], e (i) ∈ {1,2,3}
3. For each iteration ri , i ∈ [1,t]: let b (i) = (y

(i)
e (i)+2

,C
(i)
e (i)+2

) and set

z (i) ←




(View(i)
2 ,k

(i)
1 ,k

(i)
2) if e (i) = 1,

(View(i)
3 ,k

(i)
2 ,k

(i)
3 ,x

(i)
3) if e (i) = 2,

(View(i)
1 ,k

(i)
3 ,k

(i)
1 ,x

(i)
3) if e (i) = 3.

4. Output p ← [e, (b (1) ,z (1)), (b (2) ,z (2)), · · · , (b (t) ,z (t))].
b ← Verify(y,p):

1. For each iteration ri ,i ∈ [1,t]: Run the MPC protocol to reconstruct the views, input and output shares that were not explicitly
given as part of the proof p. In particular:

x
(i)
e (i)
←




G (k
(i)
1) if e (i) = 1,

G (k
(i)
2) if e (i) = 2,

x
(i)
3 given as part of z (i) if e (i) = 3.

x
(i)
e (i)+1

←




G (k
(i)
2) if e (i) = 1,

x
(i)
3 given as part of z (i) if e (i) = 2,

G (k
(i)
1) if e (i) = 3.

Obtain View(i)
e (i)+1

from z (i) and compute
View(i)

e ← Update(. . . Update(x
(i)
e ,x

(i)
e+1,k

(i)
e ,k

(i)
e+1) . . .),

y
(i)
e (i)
← Output(View(i)

e (i)
), y

(i)
e (i)+1

← Output(View(i)
e (i)+1

),y
(i)
e (i)+2

← y ⊕ y
(i)
e (i)
⊕ y

(i)
e (i)+1

Compute the commitments for views View(i)
e (i)

and View(i)
e (i)

. For j ∈ {e (i) ,e (i) + 1}:

[C (i)
j ,D

(i)
j]← [H ′(k (i)j ,x

(i)
j ,View

(i)
j),k

(i)
j | |View

(i)
j]

Let a′(i) = (y
(i)
1 ,y

(i)
2 ,y

(i)
3 ,C

(i)
1 ,C

(i)
2 ,C

(i)
3) and note that y (i)

e (i)+2
and C (i)

e (i)+2
is a part of z (i) .

2. Compute the challenge: e ′ ← H (a′(1) , . . . ,a′(t)). If, e ′ = e , output Accept, otherwise output Reject.

Scheme 1: The ZKB++ proof system, made non-interactive using the Fiat-Shamir transform.

function families based on block ciphers gave the most efficient
signatures, we tailor our description to this choice of { fk }. Here we
have that

fk (x) B Enc(x ,k),

where Enc(x ,k) denotes the encryption of a single blockk ∈ {0,1}c ·κ
with respect to key x ∈ {0,1}c ·κ . One can sample a one-way func-
tion { fk } with respect to security parameter κ uniformly at random
by sampling a uniformly random block k ∈ {0,1}c ·κ . In Appendix C
we formally argue that we can use a block cipher (viewed as a PRF)
in this way to instantiate an OWF. In the classical setting we set
c = 1, whereas we set c = 2 in the post-quantum setting to account
for the generic speedup imposed by Grover’s algorithm [52]. The
rationale for using a random instead of a fixed block k when creat-
ing the signature keypair is to improve security against multi-user
key recovery attacks and generic time-memory trade-off attacks
like [54]. To reduce the size of the public key, one could choose a

smaller value that is unique per user, or use a fixed value (with a
potential decrease in security). Since public keys in our schemes
are small (at most 64 bytes), our design uses a full random block.

When using ZKBoo to prove knowledge of such a pre-image, we
know [44] that this Σ-protocol provides 3-special soundness. We
apply the FS transform to this Σ-protocol to obtain an EUF-CMA
secure signature scheme. In the so-obtained signature scheme the
public verification key pk contains the image y and the value k
determining fk . The secret signing key sk is a random value x from
Dκ . The corresponding signature scheme, dubbed Fish, is illustrated
in Scheme 2.

If we view ZKBoo as a canonical identification scheme that is
secure against passive adversaries one just needs to keep in mind
that most definitions are tailored to 2-special soundness, and the
3-special soundness of ZKBoo requires an additional rewind. In par-
ticular, an adapted version of the proof of [61, Theorem 8.2] which

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1831

Gen(1κ) : Choose k ←R Kκ , x ←
R Dκ , compute y ← fk (x), set pk← (y,k) and sk← (pk,x) and return (sk,pk).

Sign(sk,m) : Parse sk as (pk,x), compute p = (r ,s) ← ProveH ((y,k),x) and return σ ← p, where internally the challenge is computed
as c ← H (r ,m).

Verify(pk,m,σ) : Parse pk as (y,k), and σ as p = (r ,s). Return 1 if the following holds, and 0 otherwise:
VerifyH ((y,k),p) = 1,

where internally the challenge is computed as c ← H (r ,m).

Scheme 2: Generic description the Fish and Picnic signature schemes. In both schemes Prove is implemented with ZKB++, in

Fish it is made non-interactive with the FS transform, while in Picnic, Unruh’s transform is used.

considers this additional rewind attests the security of Scheme 2.
The security reduction, however, is a non-tight one, like most sig-
nature schemes constructed from Σ-protocols.7 We obtain the fol-
lowing:

Corollary 4.1. Scheme 2 instantiated with ZKB++ and a secure

one-way function yields an EUF-CMA secure signature scheme in the

ROM.

5 THE PICNIC SIGNATURE SCHEME

The Picnic signature scheme is the same as Fish, except for the trans-
form used to make ZKB++ noninteractive. Unruh [83] presents an
alternative to the FS transform that is provably secure in the QROM.
Indeed, Unruh even explicitly presents a construction for a signa-
ture scheme and proves its security given a secure a Σ−protocol.
Unruh’s construction requires a Σ−protocol and a hard instance
generator, but he does not give an instantiation.We use his approach
to argue that with a few modifications, our signature scheme is
also provably secure in the QROM. One interesting aspect is that,
while on first observation Unruh’s transform seems much more
expensive than the standard FS transform, we show how to make
use of the structure of ZKB++ to reduce the cost significantly.
Unruh’s Transform: Overview. At a high level, Unruh’s trans-
form works as follows: Given a Σ-protocol with challenge space
C , an integer t , a statement x , and a random permutation G, the
prover will

(1) Run the first phase of the Σ-protocol t times to produce
r1, . . . ,rt .

(2) For each i ∈ {1, . . . ,t }, and for each j ∈ C , compute the
response si j for ri and challenge j. Compute дi j = G (si j).

(3) Compute H (x ,r1, . . . ,rt ,д11, . . . ,дt |C |) to obtain a set of
indices J1, . . . , Jt .

(4) Output π = (r1, . . . ,rt ,s1J1 , . . . ,st Jt ,д11, . . . ,дt |C |).
Similarly, the verifier will verify the hash, verify that the given si Ji
values match the corresponding дi Ji values, and that the si Ji values
are valid responses w.r.t. the ri values.

Informally speaking, in Unruh’s security analysis, zero knowl-
edge follows from HVZK of the underlying Σ-protocol: the simu-
lator just generates t transcripts and then programs the random
oracle to get the appropriate challenges. The proof of knowledge
property is more complex, but the argument is that any adversary
who has non-trivial probability of producing an accepting proof

7There are numerous works on signatures from (three move) identification schemes
[1, 2, 12, 32, 62, 73, 77]. Unfortunately existing proof techniques do not give tight
security reductions.

will also have to output some дi j for j , Ji which is a correct re-
sponse for a different challenge - then the extractor can invert G
and get the second response, which by special soundness allows it
to produce a witness.

To instantiate the function G in the protocol, Unruh shows that
one does not need a random oracle that is actually a permutation.
Instead, as long as the domain and co-domain of G have the same
length, it can be used, since it is indistinguishable from a random
permutation.

Applying the Unruh transform to ZKB++: The Direct Ap-

proach. We can apply Unruh to ZKB++ in a relatively straight-
forward manner by modifying our protocol. Although ZKB++ has
3-special soundness, whereas Unruh’s transform is only proven for
Σ-protocols with 2-special soundness, the proof is easily modified
to 3-special soundness.

Since ZKB++ has 3-special soundness, we would need at least
three responses for each iteration. Moreover, since there only are
three possible challenges in ZKB++, we would run Unruh’s trans-
form with C = {1,2,3}, i.e., every possible challenge and response.
We would then proceed as follows:

Let G : {0,1} |si j | → {0,1} |si j | be a hash function modeled as a
random oracle.8 Non-interactive ZKB++ proofs would then proceed
as follows:

(1) Run the first ZKB++ phase t times to produce r1, . . . ,rt .
(2) For each i ∈ {1, . . . ,t }, and for each j ∈ 1,2,3, compute the

response si j for ri and challenge j. Compute дi j = G (si j).
(3) Compute H (x ,r1, . . . ,rt ,д11, . . . ,дt3) to obtain a set of in-

dices J1, . . . , Jt .
(4) Output π = (r1, . . . ,rt ,s1J1 , . . . ,st Jt ,д11, . . . ,дt3).

While this works, it comes as a significant overhead in the size of
the proof. That is, we have to additionally include д11, . . . ,дt3. Each
дi j is a permutation of an output share and there are 3t such values,
so in particular the extra overhead would yield a proof size of

t · [c + 2κ + log2 (3) + ℓ · (2/3 ·m + b)]+
3t · [2κ + ℓ · (2/3 ·m + b)] =
t · [c + 8κ + loд2 (3) + ℓ · (8/3m + 4b)].

Since for most functions, the size of the proof is dominated by t · ℓb,
this proof is roughly four times as large as in the FS version. To
this end, we again introduce some optimizations.

8Actually, the size of the response changes depending on what the challenge is. If the
challenge is 0, the response is slightly smaller as it does not need to include the extra
input share. So more precisely, this is actually two hash functions, G0 used for the
0-challenge response andG1,2 used for the other two.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1832

O1: Making Use of Overlapping Responses.We can make use
of the structure of the ZKB++ proofs to achieve a significant reduc-
tion in the proof size. Althoughwe refer to three separate challenges,
in the case of the ZKB++ protocol, there is a large overlap between
the contents of the responses corresponding to these challenges. In
particular, there are only three distinct views in the ZKB++ protocol,
two of which are opened for a given challenge.

Instead of computing a permutation of each response, si j , we can
compute a permutation of each view, vi j . For each i ∈ {1, . . . ,t },
and for each j ∈ {1,2,3}, the prover computes дi j = G (vi j).

The verifier checks the permuted value for each of the two views
in the response. In particular, for challenge i ∈ {1,2,3}, the verifier
will need to check that дi j = G (vi j) and дi (j+1) = G (vi (j+1)).

O2: Omit Re-Computable Values. Moreover, since G is a public
function, we do not need to include G (vi j) in the transcript if we
have included vi j in the response. Thus for the two views (corre-
sponding to a single challenge) that the prover sends as part of the
proof, we do not need to include the permutations of those views.
We only need to include G (vi (j+2)), where vi (j+2) is the view that
the prover does not open for the given challenge.

Putting it Together: New Proof Size. Combining these two mod-
ifications yields a major reduction in proof size. For each of the t
iterations of ZKB++, we include just a single extra G (v) than we
would in the FS transform.

AsG is a permutation, the per-iteration overhead of ZKB++/Unruh
over ZKB++/FS is the size of a single view. This overhead is less
that one-third of the overhead that would be incurred from the
naive application of Unruh as described before. In particular, the
expected proof size of our optimized version is then

t · [c + 2κ + log2 (3) + ℓ · (2/3 ·m + b)]+
t · [κ + ℓ · (1/3 ·m + b)] =
t · [c + 3κ + loд2 (3) + ℓ · (m + 2b)].

The overhead depends on the circuit. For LowMC, we found the
overhead ranges from 1.6 to 2 compared to the equivalent ZKB++/FS
proof.

Security of the Modified Unruh Transform. For zero knowl-
edge, we can take the same approach as in Unruh [84]: to simulate
the proof we choose the set of challenges J1, . . . , Jt , run the (2,3)-
decomposition simulator to obtain views for each pair of dishonest
parties Ji , Ji+1, honestly generate дi Ji and дi Ji+1 and the commit-
ments to those views, and choose дJi+2 and the corresponding com-
mitment at random. Then we program the random oracle to output
J1, . . . , Jt on the resulting tuple. The analysis follows exactly as
in [84].

For the soundness argument, our protocol has two main differ-
ences from Unruh’s general version: (1) the underlying protocol we
use only has 3-special soundness, rather than the normal 2-special
soundness, and (2) we have one commitment for each view, and one
G (v) for each view, rather than having a separateG (viewi ,viewi+1)
for each i .

As mentioned above, the core of Unruh’s argument [84, Lemma
17], says that the probability that the adversary can find a proof
such that the extractor cannot extract but the proof still verifies is
negligible.

For our case, the analysis is as follows: For a given tuple of
commitments r1 . . . rt , andG-values д11,дt |C | that is queried to the
random oracle either one of the following is true: (1) There is some
i for which (G−1 (дi1), G−1 (дi2)), (G−1 (дi2), G−1 (дi3)), (G−1 (дi3),
G−1 (дi1)), are valid responses for challenges 1,2,3 respectively9,
or (2) For all i at least one of these pairs is not a valid response. In
particular this means that if this is the challenge produced by the
hash function,A will not be able to produce an accepting response.
From that, we can argue that if the extractor cannot extract from
a given tuple, then the probability (over the choice of a RO) that
there exists an accepting response forA to output is at most (2/3)t .
Then, we can rely on [84, Lemma 7], which tells us that given qH
queries, the probability that A produces a tuple from which we
cannot extract butA can produce an accepting response is at most
2(qH + 1) (2/3)t .

The rest of our argument can proceed exactly as in Unruh’s proof
and we obtain the following:

Corollary 5.1. Scheme 2 instantiated with ZKB++, a secure per-

mutation and one-way function yields an EUF-CMA secure signature

scheme in the QROM.

The full proof is given in Appendix D. The security reduction in
our proof is non-tight, the gap is proportional to the number of RO
queries.

6 SELECTING AN UNDERLYING PRIMITIVE

We require one or more symmetric primitives suitable to instanti-
ate a one-way function. We now first investigate how choosing a
primitive with certain properties impacts the instantiations of our
schemes. From this, we derive concrete requirements, and present
our choice, LowMC.

6.1 Survey of Suitable Primitives

The signature size depends on constants that are close to the secu-
rity expectation (cf. Section 7 for our choices). The only exceptions
are the number of binary multiplication gates, and the size of the
rings, which all depend on the choice of the primitive. Hence we
survey existing designs that can serve as a one-way function sub-
sequently.
StandardizedGeneral-Purpose Primitives.The smallest known
Boolean circuit of AES-128 needs 5440 AND gates, AES-192 needs
6528 AND gates, and AES-256 needs 7616 AND gates [20]. An AES
circuit in F24 might be more efficient in our setting, as in this case
the number of multiplications is lower than 1000 [25]. This results
in an impact on the signature size that is equivalent to 4000 AND
gates. Even though collision resistance is often not required, hash
functions like SHA-256 are a popular choice for proof-of-concept
implementations. The number of AND gates of a single call to the
SHA-256 compression function is about 25000 and a single call to
the permutation underlying SHA-3 is 38400.
Lightweight Ciphers. Most early designs in this domain focused
on small area when implemented in hardware where an XOR gate
is by a small factor larger than an AND or NAND gate. Notable
designs with a low number of AND gates at the 128-bit security
9In fact G is not exactly a permutation, but we ignore that here. We can make this
formal exactly as in Unruh’s proof, by considering the set of preimages.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1833

level are the block ciphers Noekeon [29] (2048) and Fantomas [50]
(2112). Furthermore, one should mention Prince [19] (1920), or the
stream cipher Trivium [33] (1536 AND gates to compute 128 output
bits) with 80-bit security.

Custom Ciphers with a Low Number of Multiplications.Mo-
tivated by applications in SHE/FHE schemes, MPC protocols and
SNARKs, recently a trend to design symmetric encryption primi-
tives with a low number of multiplications or a low multiplicative
depth started to evolve. This is a trend we can take advantage of.

We start with the LowMC [6] block cipher family. In the most
recent version of the design [4], the number of AND gates can be be-
low 500 for 80-bit security, below 800 for 128-bit security, and below
1400 for 256-bit security. The stream cipher Kreyvium [24] needs
similarly to Trivium 1536 AND gates to compute 128 output bits,
but offers a higher security level of 128 bits. Even though FLIP [69]
was designed to have especially low depth, it needs hundreds of
AND gates per bit and is hence not competitive in our setting.

Last but not least there are the block ciphers and hash functions
around MiMC [5] which need less than 2 · s multiplications for s-bit
security in a field of size close to 2s . Note that MiMC is the only
design in this category which aims at minimizing multiplications
in a field larger than F2. However, since the size of the signature
depends on both the number of multiplications and the size of
the field, this leads to a factor 2s2 which, for all arguably secure
instantiations of MiMC, is already larger than the number of AND
gates in the AES circuit.

LowMC has two important advantages over other designs: It has
the lowest number of AND gates for every security level: The closest
competitor Kreyvium needs about twice as many AND gates and
only exists for the 128-bit security level. The fact that it allows for
an easy parameterization of the security level is another advantage.
We hence use LowMC for our concrete proposal and discuss it in
more detail in the following.

6.2 LowMC

LowMC is a flexible block cipher family based on a substitution-
permutation network. The block size n, the key size k , the number
of 3-bit S-boxesm in the substitution layer and the allowed data
complexity d of attacks can independently be chosen. To reduce
the multiplicative complexity, the number of S-boxes applied in
parallel can be reduced, leaving part of the substitution layer as the
identity mapping. The number of rounds r needed to achieve the
goals is then determined as a function of all these parameters. For
the sake of completeness we include a brief description of LowMC
in Appendix B.

To minimize the number of AND gates for a given k and d , we
want to minimize r ·m. A natural strategy would be to setm to 1, and
to look for an n that minimizes r . Examples of such an approach are
already given in the document describing version 2 of the design [4].
In our setting, this approach may not lead to the best results, as
it ignores the impact of the large amount of XOR operations it
requires. To find the most suitable parameters, we thus explore a
larger range of values form.

Whenever we want to instantiate our signature scheme with
LowMC with s-bit PQ-security, we set k = n = 2 · s . This choice to

double the parameter in the quantum setting takes into account cur-
rent knowledge of quantum-cryptanalysis for models that are very
generous to the attacker [59, 60]. Note that setting s = 64,96,128
matches the requirements of the upcoming NIST selection process10
for security levels 1,3 and 5, respectively. Section 7 gives bench-
marks for level 5, the full version of this paper has benchmarks for
levels 1 and 3 as well.

Furthermore, we observe that the adversary only ever sees a sin-
gle plaintext-ciphertext pair. In the security proof given in Appendix
C, we build a distinguisher that only needs to see one additional
pair. This is why we can set the data complexity d = 1.11

7 IMPLEMENTATION AND PARAMETERS

We pursue two different directions. First, we present a general pur-
pose implementation for the Fish signature scheme.12 This library
exposes an API to generate LowMC instances for a given parameter
set, as well as an easy to use interface for key generation, signa-
ture generation/verification in both schemes. Using this library we
explore the whole design space of LowMC to find the most suit-
able instances. Second, we present a library which implements the
Picnic signature scheme13. This implementation is parameterized
with the previously selected LowMC instance, since the QROM
instantiation imposes a constant overhead which is independent
of the LowMC instance. Both libraries are implemented in C using
the OpenSSL14 and m4ri15 libraries. We have released both our
libraries as open source under the MIT License.

7.1 Implementation of Building Blocks

The building blocks in the protocol are instantiated similar to the
implementation of ZKBoo [44]. In the full version of this paper and
C, we give more formal arguments regarding our choices.
PRG. Random tapes are generated pseudorandomly using AES
in counter mode, where the keys are generated using OpenSSL’s
secure random number generator. In the linear decomposition of
the AND gates we use a function that picks the random bits from
the bit stream generated using AES. Since the number of AND
gates is known a-priori, we can pre-compute all random bits at the
beginning. Concretely, we assume that AES-256 in counter mode
provides 128 bits of PRG security, when used to expand 256-bit
seeds to outputs ≈ 1kB in length.
Commitments. The commitment function (used to commit to the
views) is implemented using SHA-256.
Challenge Generation. For both schemes the challenge is com-
puted with a hash function H : {0,1}∗ → {0,1,2}t implemented
using SHA-256 and rejection sampling: we split the output bits of
SHA-256 in pairs of two bits and reject all pairs with both bits set.
One-Way Function. The OWF function family { fk }k ∈Kκ used
for key generation in both signature schemes is instantiated with

10http://csrc.nist.gov/groups/ST/post-quantum-crypto/
11d is given in units of log2 (n), where n is the number of pairs. Thus setting d = 1
corresponds to 2-pairs, which is exactly what we need for our signature schemes.
12https://github.com/IAIK/fish-begol
13https://github.com/Microsoft/Picnic
14https://openssl.org
15https://bitbucket.org/malb/m4ri

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1834

http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html
https://github.com/IAIK/fish-begol
https://github.com/Microsoft/Picnic
https://openssl.org
https://bitbucket.org/malb/m4ri

LowMC. Concretely, we instantiate { fk } using a block cipher with

fk (x) B Enc(x ,k),

where Enc(x ,k) denotes the LowMC encryption of a single block
k ∈ {0,1}κ with respect to key x ∈ {0,1}κ . For such an instantiation
we assume that we have κ/2 bit security. In Appendix C we provide
further details on this choice. There, to make our results more
general, we also show that a block cipher with k = n = 2s when
viewed as a PRF can be used as an OWFwith 2s-bit classical security,
and thus gives us the s-bit post-quantum security that we desire.
Our implementations support multiple LowMC parameter sets.
FunctionG.As explained in Section 5,G may be implemented with
a random function with the same domain and range. We implement
G (x) as h(0∥x)∥h(1∥x) . . ., where h is SHA-256 and the output
length is |x |.
Hash Function Security. We make the following concrete as-
sumptions for the security of our schemes. We assume that SHA-
256 provides 128 bits of pre-image resistance against quantum
adversaries. For collision resistance, when considering quantum
algorithms, in theory it may be possible to find collisions using a
generic algorithm of Brassard et al. [21] with cost O (2n/3). A de-
tailed analysis of the costs of the algorithm in [21] by Bernstein [16]
found that in practice the quantum algorithm is unlikely to out-
perform the O (2n/2) classical algorithm. Multiple cryptosystems
have since made the assumption that standard hash functions with
n-bit digests provide n/2 bits of collision resistance against quan-
tum attacks (for examples, see papers citing [16]). We make this
assumption as well, and in particular, that SHA-256 provides 128
bits of PQ collision-resistance.

7.2 Circuit for LowMC

For the linear (2,3)-decomposition we view LowMC as circuit over
F2. The circuit consists only of AND and XOR gates. The number
of bits we have to store per view is 3 · r ·m, where r is the number
of rounds andm is the number of S-boxes.

Since the affine layer of LowMC only consists of AND and XOR
operations, it benefits from using block sizes such that all computa-
tions of this layer can be performed using SIMD instruction sets
like SSE2, AVX2 and NEON, i.e., 128-bit or 256-bit. Since our im-
plementation uses (arrays of) native words to store the bit vectors,
the implementation benefits from a choice of parameters such that
3 ·m is close to the word size. This choice allows us to maximize
the number of parallel S-box evaluations in the bitsliced implemen-
tation.

7.3 Experimental Setup and Results

Our experiments were performed on an Intel Core i7-4790 CPU
(4 cores with 3.60 GHz) and 16 GB RAM running Ubuntu 16.10.
Henceforth, we target the 128 bit post-quantum setting.
Number of Parallel Repetitions.While we already established
that ZKB++ is a suitable Σ-protocol (see the discussion at the end
of Section 3.2), we must set the number of parallel repetitions to
achieve the desired soundness error. For a single repetition we have
a soundness error of 2/3, which means that we need 219 parallel
repetitions for 128-bit security ((3/2)219 ≥ 2128). For 128-bit PQ
security, we must set our repetition count to t B 438. This is

double the repetition count required for classical security due to
Grover’s algorithm [52]. To see the effects of the search algorithm,
an adversary at first computes t views such that it can answer two
of the three possible challenges honestly for each view. Considering
the possible permutations of the individual views, the adversary is
thus able to answer 2t out of the 3t challenges. Grover’s algorithm
is then tasked to find a permutation of the views such that they
correspond to one of the 2t challenges. Out of the 2t permutations,
the expected number of solutions is (4/3)t , hence Grover’s algorithm
reduces the time to find a solution to (3/2)t/2. So for the 128-bit PQ
security level, we require t be large enough to satisfy (3/2)t/2 ≥ 2128,
and so t = 438 is the smallest possible repetition count.

Each of the parallel repetitions are largely independent. Thus,
we can split the signature generation/verification among multiple
cores. In the full version we discuss the benefits of using multiple
cores.
Selection of the Most Suitable LowMC Instances. We now ex-
plore the design space of LowMC. Figure 1 shows that choosing
a concrete LowMC instance allows a trade-off between computa-
tional efficiency and signature size, parameterized by the number
of rounds and by the number of S-boxes.

100 150

Size [kB]

50

100

150

200

300

400

T
im

e
[m

s]

256-256-42-14

256-256-1-316

256-256-10-38

Runtime vs. Signature Size, [n]-[k]-[m]-[r], n=256

Sign (Fish)

Verify (Fish)

Figure 1: Measurements for instance selection (128-bit post-

quantum security, average over 100 runs).

Using the notation [blocksize]-[keysize]-[#sboxes]-[#rounds],
we recommend the 256-256-10-38 instance as a good balance be-
tween speed and size.

To support our choice of LowMC, we note that running the
implementation for the SHA-256 circuit from [44] with t = 438
repetitions on the same machine yields roughly 2.7MB proof size,
signing times of 237ms, and verification times of 137ms. Informally
speaking, this can be seen as a baseline instantiation of our scheme
Fishwith SHA-256 instead of LowMC and ZKBoo instead of ZKB++
(cf. Table 1 for our results when using LowMC).

7.4 Comparison with Related Work

To compare our schemes to other post-quantum signature can-
didates, we focused on those that have a reference implementa-
tion available and ran the benchmarks on our machine. Table 1

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1835

gives an overview of the results, including MQDSS [56], the lattice
based schemes TESLA [7]16, ring-TESLA [3] and BLISS [36], the
hash-based scheme SPHINCS-256 [17], the supersingular isogeny-
based scheme SIDHp751 [87], and also give sizes for the code-based
scheme FS-Véron [86] to complete the picture.17 For our schemes,
we include LowMC instances with 256 bit block- and keysize.

Scheme
Gen Sign Verify |sk | |pk | |σ | Model[ms] [ms] [ms] [bytes] [bytes] [bytes]

Fish-1-316 0.01 364.11 201.17 32 64 108013 ROM
Fish-10-38 0.01 29.73 17.46 32 64 118525 ROM
Fish-42-14 0.01 13.27 7.45 32 64 152689 ROM
Picnic-10-38 0.01 31.31 16.30 32 64 195458 QROM
MQ 5pass 0.96 7.21 5.17 32 74 40952 ROM
SPHINCS-256 0.82 13.44 0.58 1088 1056 41000 SM
BLISS-I 44.16 0.12 0.02 2048 7168 5732 ROM
Ring-TESLA∗ 16k 0.06 0.03 12288 8192 1568 ROM
TESLA-768∗ 48k 0.65 0.36 3216k 4128k 2336 (Q)ROM
FS-Véron n/a n/a n/a 32 160 129024 ROM
SIDHp751 16.41 7.3k 5.0k 48 768 141312 QROM

Table 1: Timings and sizes of private keys (sk), public keys

(pk) and signatures (σ) at the post-quantum 128-bit security

level.
∗
An errata to [3] says that this parameter set is not

supported by the security analysis (due to a flaw).

Our implementation is a highly parameterizable implementation,
flexible enough to cover the entire design spectrum of our ap-
proaches. In contrast, the implementations of other candidates
used for comparison come with a highly optimized implementation
targeting a specific security level (and often also specific instances).
Thus, our timings are more conservative than the ones of the other
schemes. Yet, while timings and sizes can largely not compete with
efficient lattice-based schemes using ideal lattices, they are com-
parable to all other existing post-quantum candidates. We want
to stress that ideal lattices have not been investigated nearly as
deeply as standard lattices and thus there is less confidence in the
assumptions (cf. [75]) and also the choice of parameters of these
schemes can be seen as quite aggressive.

8 SUMMARY

We have proposed two post-quantum signature schemes, i.e., Fish
and Picnic. On our way, we optimize ZKBoo to obtain ZKB++. For
Fish, we then apply the FS transform ZKBoo, whereas we opti-
mize the Unruh transform and apply it to ZKB++ for Picnic. Fish
is secure in the ROM, while Picnic is secure in the QROM. ZKB++
optimizes ZKBoo by reducing the proof sizes by a factor of two,
at no additional computational cost. While this is of independent
interest as it yields more compact (post-quantum) zero-knowledge
proofs for any circuit, it also decreases our signature sizes. Our
work establishes a new direction to design post-quantum signature
schemes and we believe that this is an interesting direction for
future work, e.g., by the design of new symmetric primitives espe-
cially focusing on optimizing the metrics required by our approach.
16Due to an erroneous security analysis the scheme has been revised [8]. But since
this happened after we performed our benchmark computations, we present the
performance of the original TESLA scheme.
17Key sizes and signature sizes from BLISS were taken from [36], as they were not
readily available in the implementation. Sizes for FS-Véron are taken from https:
//pqcrypto.eu.org/mini.html.

Also, as ZKBoo/ZKB++ are still relatively young it is likely that we
will see further improvements in the next few years (for a recent
example see [78]).
Acknowledgments. D. Derler, S. Ramacher, C. Rechberger, and
D. Slamanig have been supported by H2020 project Prismacloud,
grant agreement n◦644962. C. Rechberger has additionally been sup-
ported by EU H2020 project PQCRYPTO, grant agreement n◦645622.
Steven Goldfeder is supported by the NSF Graduate Research Fel-
lowship under grant number DGE 1148900. C. Orlandi has been
supported by COST Action IC1306 and the Danish Council for
Independent Research.

REFERENCES

[1] Abdalla, M., An, J. H., Bellare, M., and Namprempre, C. From identification
to signatures via the fiat-shamir transform: Minimizing assumptions for security
and forward-security. In EUROCRYPT (2002).

[2] Abdalla, M., Fouqe, P., Lyubashevsky, V., and Tibouchi, M. Tightly-secure
signatures from lossy identification schemes. In EUROCRYPT (2012).

[3] Akleylek, S., Bindel, N., Buchmann, J. A., Krämer, J., and Marson, G. A. An
efficient lattice-based signature scheme with provably secure instantiation. In
AFRICACRYPT (2016).

[4] Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., and Zohner, M.
Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687, 2016.

[5] Albrecht, M. R., Grassi, L., Rechberger, C., Roy, A., and Tiessen, T. MiMC:
Efficient encryption and cryptographic hashing with minimal multiplicative
complexity. In ASIACRYPT (2016), pp. 191–219.

[6] Albrecht, M. R., Rechberger, C., Schneider, T., Tiessen, T., and Zohner, M.
Ciphers for MPC and FHE. In EUROCRYPT (2015).

[7] Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., and Schwabe, P. Tesla:
Tightly-secure efficient signatures from standard lattices. Cryptology ePrint
Archive, Report 2015/755, 2015.

[8] Alkim, E., Bindel, N., Buchmann, J. A., Dagdelen, Ö., Eaton, E., Gutoski, G.,
Krämer, J., and Pawlega, F. Revisiting TESLA in the quantum random oracle
model. In PQCrypto 2017 (2017), pp. 143–162.

[9] Bai, S., and Galbraith, S. D. An improved compression technique for signatures
based on learning with errors. In CT-RSA (2014).

[10] Bansarkhani, R. E., and Buchmann, J. A. Improvement and efficient imple-
mentation of a lattice-based signature scheme. In SAC (2013).

[11] Barreto, P. S. L. M., Longa, P., Naehrig, M., Ricardini, J. E., and Zanon, G.
Sharper ring-lwe signatures. IACR Cryptology ePrint Archive 2016 (2016), 1026.

[12] Bellare, M., Poettering, B., and Stebila, D. From identification to signatures,
tightly: A framework and generic transforms. In ASIACRYPT (2016).

[13] Bellare, M., and Rogaway, P. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS (1993).

[14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and
Virza, M. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE

SP (2014).
[15] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. Snarks for

C: verifying program executions succinctly and in zero knowledge. In CRYPTO

(2013).
[16] Bernstein, D. J. Cost analysis of hash collisions: Will quantum computers make

SHARCS obsolete? http://cr.yp.to/hash/collisioncost-20090823.pdf.
[17] Bernstein, D. J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-

pachristodoulou, L., Schneider, M., Schwabe, P., and Wilcox-O’Hearn, Z.
SPHINCS: practical stateless hash-based signatures. In EUROCRYPT (2015).

[18] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and
Zhandry, M. Random oracles in a quantum world. In ASIACRYPT (2011).

[19] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E. B., Knezevic, M., Knudsen,
L. R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S. S., and Yalçin, T. PRINCE - a low-latency block cipher for pervasive computing
applications - extended abstract. In ASIACRYPT (2012).

[20] Boyar, J., Matthews, P., and Peralta, R. Logic minimization techniques with
applications to cryptology. Journal of Cryptology 26, 2 (2013), 280–312.

[21] Brassard, G., Høyer, P., and Tapp, A. Quantum cryptanalysis of hash and
claw-free functions. In LATIN 1998 (Apr. 1998), C. L. Lucchesi and A. V. Moura,
Eds., vol. 1380 of LNCS, Springer, Heidelberg, pp. 163–169.

[22] Buchmann, J. A., Dahmen, E., and Hülsing, A. XMSS - A practical forward
secure signature scheme based on minimal security assumptions. In PQCrypto

(2011).
[23] Campanelli, M., Gennaro, R., Goldfeder, S., and Nizzardo, L. Zero-

knowledge contingent payments revisited: Attacks and payments for services.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-

cations Security (2017), ACM.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1836

https://pqcrypto.eu.org/mini.html
https://pqcrypto.eu.org/mini.html
http://cr.yp.to/hash/collisioncost-20090823.pdf

[24] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M.,
Paillier, P., and Sirdey, R. Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression. In FSE (2016).

[25] Carlet, C., Goubin, L., Prouff, E., Quisqater, M., and Rivain, M. Higher-
order masking schemes for s-boxes. In FSE (2012).

[26] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,
M., Parno, B., and Zahur, S. Geppetto: Versatile verifiable computation. In
IEEE SP (2015).

[27] Courtois, N., Finiasz, M., and Sendrier, N. How to achieve a mceliece-based
digital signature scheme. In ASIACRYPT (2001).

[28] Cramer, R., Damgård, I., and Schoenmakers, B. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO (1994).

[29] Daemen, J., Peeters, M., Van Assche, G., and Rijmen, V. Nessie proposal:
Noekeon. In First Open NESSIE Workshop (2000).

[30] Dagdelen, Ö., Bansarkhani, R. E., Göpfert, F., Güneysu, T., Oder, T., Pöp-
pelmann, T., Sánchez, A. H., and Schwabe, P. High-speed signatures from
standard lattices. In LATINCRYPT (2014).

[31] Dagdelen, Ö., Fischlin, M., and Gagliardoni, T. The fiat-shamir transforma-
tion in a quantum world. In ASIACRYPT (2013).

[32] Dagdelen, Ö., Galindo, D., Véron, P., Alaoui, S. M. E. Y., and Cayrel, P.
Extended security arguments for signature schemes. Des. Codes Cryptography
78, 2 (2016), 441–461.

[33] De Cannière, C., and Preneel, B. Trivium. In New Stream Cipher Designs - The

eSTREAM Finalists. 2008.
[34] Derler, D., Orlandi, C., Ramacher, S., Rechberger, C., and Slamanig, D.

Digital signatures from symmetric-key primitives. Cryptology ePrint Archive,
Report 2016/1085, 2016. http://eprint.iacr.org/2016/1085.

[35] Ducas, L. Accelerating bliss: the geometry of ternary polynomials. IACR

Cryptology ePrint Archive 2014 (2014).
[36] Ducas, L., Durmus, A., Lepoint, T., and Lyubashevsky, V. Lattice signatures

and bimodal gaussians. In CRYPTO (2013).
[37] Ezerman, M. F., Lee, H. T., Ling, S., Nguyen, K., and Wang, H. A provably

secure group signature scheme from code-based assumptions. In Advances in

Cryptology - ASIACRYPT (2015), pp. 260–285.
[38] Faugère, J., Gauthier-Umaña, V., Otmani, A., Perret, L., and Tillich, J. A

distinguisher for high-rate mceliece cryptosystems. IEEE Trans. Information

Theory 59, 10 (2013), 6830–6844.
[39] Feo, L. D., Jao, D., and Plût, J. Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies. J. Mathematical Cryptology 8, 3 (2014),
209–247.

[40] Fiat, A., and Shamir, A. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO (1986), pp. 186–194.

[41] Galbraith, S. D., Petit, C., and Silva, J. Signature schemes based on supersin-
gular isogeny problems. IACR Cryptology ePrint Archive 2016 (2016), 1154.

[42] Gennaro, R., Gentry, C., Parno, B., and Raykova, M. Quadratic span programs
and succinct nizks without pcps. In EUROCRYPT (2013).

[43] Gentry, C., Peikert, C., and Vaikuntanathan, V. Trapdoors for hard lattices
and new cryptographic constructions. In STOC (2008).

[44] Giacomelli, I., Madsen, J., and Orlandi, C. ZKBoo: Faster zero-knowledge for
boolean circuits. In USENIX Security (2016).

[45] Giacomelli, I., Madsen, J., and Orlandi, C. ZKBoo: Faster zero-knowledge
for boolean circuits. Cryptology ePrint Archive, Report 2016/163, 2016. http:
//eprint.iacr.org/2016/163.

[46] Goldfeder, S., Chase, M., and Zaverucha, G. Efficient post-quantum zero-
knowledge and signatures. Cryptology ePrint Archive, Report 2016/1110, 2016.
http://eprint.iacr.org/2016/1110.

[47] Goldreich, O. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In CRYPTO (1986).

[48] Goldreich, O., Micali, S., and Wigderson, A. How to prove all np-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In
CRYPTO (1986).

[49] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC (1985).

[50] Grosso, V., Leurent, G., Standaert, F., and Varici, K. Ls-designs: Bitslice
encryption for efficient masked software implementations. In FSE (2014).

[51] Groth, J., and Sahai, A. Efficient Non-interactive Proof Systems for Bilinear
Groups. In EUROCRYPT (2008).

[52] Grover, L. K. A fast quantum mechanical algorithm for database search. In
STOC (1996).

[53] Güneysu, T., Lyubashevsky, V., and Pöppelmann, T. Practical lattice-based
cryptography: A signature scheme for embedded systems. In CHES (2012).

[54] Hellman, M. A cryptanalytic time-memory trade-off. IEEE transactions on

Information Theory 26, 4 (1980), 401–406.
[55] Hu, Z., Mohassel, P., and Rosulek, M. Efficient zero-knowledge proofs of

non-algebraic statements with sublinear amortized cost. In CRYPTO (2015).
[56] Hülsing, A., Rijneveld, J., Samardjiska, S., and Schwabe, P. From 5-pass

mq-based identification to mq-based signatures. In Cryptology ePrint Archive,

Report 2016/708, to appear in Asiacrypt 2016 (2016).
[57] Ishai, Y., Kushilevitz, E., Ostrovsky, R., and Sahai, A. Zero-knowledge proofs

from secure multiparty computation. SIAM Journal on Computing 39, 3 (2009),
1121–1152.

[58] Jawurek, M., Kerschbaum, F., and Orlandi, C. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In ACM CCS (2013).

[59] Kaplan, M., Leurent, G., Leverrier, A., and Naya-Plasencia, M. Quantum
Differential and Linear Cryptanalysis. ArXiv e-prints (Oct. 2015).

[60] Kaplan, M., Leurent, G., Leverrier, A., and Naya-Plasencia, M. Breaking
symmetric cryptosystems using quantum period finding. In CRYPTO (2016).

[61] Katz, J. Digital Signatures. Springer, 2010.
[62] Kiltz, E., Masny, D., and Pan, J. Optimal security proofs for signatures from

identification schemes. In CRYPTO (2016).
[63] Lamport, L. Constructing digital signatures from one-way functions. Tech. Rep.

SRI-CSL-98, SRI Intl. Computer Science Laboratory, 1979.
[64] Landais, G., and Sendrier, N. Cfs software implementation. Cryptology ePrint

Archive, Report 2012/132, 2012.
[65] Lyubashevsky, V. Fiat-shamir with aborts: Applications to lattice and factoring-

based signatures. In ASIACRYPT (2009).
[66] Lyubashevsky, V. Lattice signatures without trapdoors. In EUROCRYPT (2012).
[67] McEliece, R. J. A public-key cryptosystem based on algebraic coding theory.

Tech. Rep. DSN PR 42-44, 1978.
[68] McGrew, D. A., Kampanakis, P., Fluhrer, S. R., Gazdag, S., Butin, D., and

Buchmann, J. A. State management for hash-based signatures. In Security

Standardisation Research (2016).
[69] Méaux, P., Journault, A., Standaert, F., and Carlet, C. Towards stream

ciphers for efficient FHE with low-noise ciphertexts. In EUROCRYPT (2016).
[70] Melchor, C. A., Gaborit, P., and Schrek, J. A new zero-knowledge code based

identification scheme with reduced communication. In ITW (2011).
[71] Merkle, R. C. A certified digital signature. In CRYPTO (1989).
[72] Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory.

Problems of Control and Information Theory (1986).
[73] Ohta, K., and Okamoto, T. On concrete security treatment of signatures derived

from identification. In CRYPTO (1998).
[74] Patarin, J., Courtois, N., and Goubin, L. Quartz, 128-bit long digital signatures.

In CT-RSA (2001).
[75] Peikert, C. A decade of lattice cryptography. Foundations and Trends in Theo-

retical Computer Science 10, 4 (2016).
[76] Petzoldt, A., Chen, M., Yang, B., Tao, C., and Ding, J. Design principles for

hfev- based multivariate signature schemes. In ASIACRYPT (2015).
[77] Pointcheval, D., and Stern, J. Security proofs for signature schemes. In

EUROCRYPT (1996).
[78] S. Ames, C. Hazay, Y. I., and Venkitasubramaniam, M. Ligero: Lightweight

sublinear arguments without a trusted setup. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security (2017), ACM.
[79] Sakumoto, K., Shirai, T., and Hiwatari, H. Public-key identification schemes

based on multivariate quadratic polynomials. In CRYPTO (2011).
[80] Schnorr, C. Efficient signature generation by smart cards. J. Cryptology 4, 3

(1991).
[81] Shor, P. W. Polynominal time algorithms for discrete logarithms and factoring

on a quantum computer. In ANTS-I (1994).
[82] Stern, J. A new identification scheme based on syndrome decoding. In CRYPTO

(1993).
[83] Unruh, D. Quantum proofs of knowledge. In EUROCRYPT 2012 (Apr. 2012),

D. Pointcheval and T. Johansson, Eds., vol. 7237 of LNCS, Springer, Heidelberg,
pp. 135–152.

[84] Unruh, D. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In EUROCRYPT 2015, Part II (Apr. 2015), E. Oswald and M. Fischlin,
Eds., vol. 9057 of LNCS, Springer, Heidelberg, pp. 755–784.

[85] Unruh, D. Computationally binding quantum commitments. In EUROCRYPT

(2016).
[86] Véron, P. Improved identification schemes based on error-correcting codes.

Appl. Algebra Eng. Commun. Comput. 8, 1 (1996).
[87] Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., and Soukharev, V. A post-

quantum digital signature scheme based on supersingular isogenies. Cryptology
ePrint Archive, Report 2017/186, 2017. http://eprint.iacr.org/2017/186.

A ADDITIONAL MATERIAL ON ZKBOO

For the full ZKBoo protocol, we refer the reader to the extended
version of this paper.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1837

http://eprint.iacr.org/2016/1085
http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2016/1110
http://eprint.iacr.org/2017/186

EXP(ϕ,x)decomp:

(1) First run the Share function on x : view(0)
1 ,view

(0)
2 ,view

(0)
3 ← Share(x ,k1,k2,k3)

(2) For each of the three views, call the update function successively for every gate in the circuit: view(j)
i =

Update(view(j−1)
i ,view(j−1)

i+1 ,ki ,ki+1) for i ∈ [1,3], j ∈ [1,n]
(3) From the final views, compute the output share of each view: yi ← Output(Viewi)

Scheme 3: Decomposition Experiment

A.1 (2,3)-Decomposition

We define the experiment EXP(ϕ,x)decomp in Scheme 3, which runs the
decomposition over a circuit ϕ on input x : We say that D is a
(2,3)-decomposition of ϕ if the following two properties hold when
running EXP(ϕ,x)decomp:
(Correctness) For all circuits ϕ, for all inputs x and for the yi ’s
produced by , for all circuits ϕ, for all inputs x ,

Pr[ϕ (x) = Reconstruct(y1,y2,y3)] = 1

(2-Privacy) Let D be correct. Then for all e ∈ {1,2,3} there exists
a PPT simulator Se such that for any probabilistic polynomial-time
(PPT) algorithm A, for all circuits ϕ, for all inputs x , and for the
distribution of views and ki ’s produced by EXP

(ϕ,x)
decomp we have that

��� Pr[A (x ,y,ke ,Viewe ,ke+1,Viewe+1,ye+2) = 1] − Pr[A (x ,y,Se (ϕ,

y)) = 1]��� is negligible.

A.2 Linear Decomposition of a Circuit

ZKBoo uses an explicit (2,3)-decomposition, which we recall here.
Let R be an arbitrary finite ring andϕ a function such thatϕ : Rm →
Rℓ can be expressed by an n-gate arithmetic circuit over the ring
using addition by constant, multiplication by constant, binary addi-
tion and binary multiplication gates. A (2,3)−decomposition of ϕ is
given by the following functions. In the notation below, arithmetic
operations are done in Rs where the operands are elements of Rs):

• (x1,x2,x3) ← Share(x ,k1,k2,k3) samples random x1,x2,
x3 ∈ Rm such that x1 + x2 + x3 = x .

• yi ← Outputi (view
(n)
i) selects the ℓ output wires of the

circuit as stored in the view view(n)
i .

• y ← Reconstruct(y1,y2,y3) = y1 + y2 + y3
• view(j+1)

i ← Update
(j)
i (view(j)

i ,view
(j)
i+1,ki ,ki+1) computes

Pi ’s view of the output wire of gate дj and appends it to the
view. Notice that it takes as input the views and random
tapes of both party Pi as well as party Pi+1. We usewk to
refer to the k-th wire, and we usew (i)

k to refer to the value
ofwk in party Pi ’s view. The update operation depends on
the type of gate дj .

The gate-specific operations are defined as follows.
Addition by Constant (wb = wa + k).

w
(i)
b =




w
(i)
a + k if i = 1,

w
(i)
a otherwise.

Multiplication by Constant (wb = wa · k).

w
(i)
b = k ·w

(i)
a

Blocksize S-boxes Keysize Rounds

n m k r
256 1 256 316
256 10 256 38
256 42 256 14

Table 2: A range of different parameter sets for LowMC. All

parameters are computed for data complexity d = 1

Binary Addition (wc = wa +wb).

w
(i)
c = w

(i)
a +w

(i)
b

Binary Multiplication (wc = wa ·wb).

w
(i)
c =w

(i)
a ·w

(i)
b +w

(i+1)
a ·w

(i)
b +

w
(i)
a ·w

(i+1)
b + Ri (c) − Ri+1 (c),

whereRi (c) is the c-th output of a pseudorandom generator
seeded with ki .

Note that with the exception of the constant addition gate, the gates
are symmetric for all players. Also note that Pi can compute all gate
types locally with the exception of binary multiplication gates as
this requires inputs from Pi+1. In other words, for every operation
except binary multiplication, the Update function does not use the
inputs from the second party, i.e., view(j)

i+1 and ki+1.
While we do not give the details here, [45] shows that this de-

composition meets the correctness and 2-privacy requirements of
Definition 3.1.

B DESCRIPTION OF LOWMC

LowMC by Albrecht et al. [4, 6] is very parameterizable symmetric
encryption scheme design enabling instantiation with low AND
depth and low multiplicative complexity. Given any blocksize, a
choice for the number of S-boxes per round, and security expecta-
tions in terms of time and data complexity, instantiations can be
created minimizing the AND depth, the number of ANDs, or the
number of ANDs per encrypted bit. Table 2 lists the choices for the
parameters which are also highlighted in the figures.

The description of LowMC is possible independently of the
choice of parameters using a partial specification of the S-box and
arithmetic in vector spaces over F2. In particular, let n be the block-
size,m be the number of S-boxes, k the key size, and r the number
of rounds, we choose round constants Ci ←

R
Fn2 for i ∈ [1,r], full

rank matrices Ki ←
R
Fn×k2 and regular matrices Li ←

R
Fn×n2 indepen-

dently during the instance generation and keep them fixed. Keys for
LowMC are generated by sampling from Fk2 uniformly at random.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1838

LowMC encryption starts with key whitening which is followed
by several rounds of encryption. A single round of LowMC is com-
posed of an S-box layer, a linear layer, addition with constants and
addition of the round key, i.e.

LowMCRound(i) = KeyAddition(i)
◦ ConstantAddition(i)
◦ LinearLayer(i) ◦ SboxLayer.

SboxLayer is anm-fold parallel application of the same 3-bit
S-box on the first 3 ·m bits of the state. The S-box is defined as
S (a,b,c) = (a ⊕ bc,a ⊕ b ⊕ ac,a ⊕ b ⊕ c ⊕ ab).

The other layers only consist of F2-vector space arithmetic.
LinearLayer(i) multiplies the state with the linear layer matrix Li ,
ConstantAdditon(i) adds the round constantCi to the state, and
KeyAddition(i) adds the round key to the state, where the round
key is generated by multiplying the master key with the key matrix
Ki .

Algorithm 1 gives a full description of the encryption algorithm.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for
i ∈ [0,r], linear layer matrices Li ∈ Fn×n2 and round constants
Ci ∈ F

n
2 for i ∈ [1,r].

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
s ← K0 · y + p
for i ∈ [1,r] do

s ← Sbox (s)
s ← Li · s
s ← Ci + s
s ← Ki · y + s

end for

return s

C SECURITY OF KEY GENERATION

In this section, we argue that using the block cipher in the way we
use it can serve as our hard instance generator to generate keys
for our signature scheme. Below, we recall the definition of hard
instance generators as presented in [84]:

Definition C.1 (Hard Instance Generators). An algorithm G is
called a hard instance generator for a relation R if

(1) there is a negligible function ϵ1 (·) so that it holds that

Pr[(y,x) ← G (1κ) : (y,x) ∈ R] ≥ 1 − ϵ1 (κ),

(2) and for every PPT algorithmA there is a negligible function
ϵ2 (·) so that it holds that

Pr [(y,x) ← G (1κ),x∗ ← A(y) : (y,x∗) ∈ R] ≤ ϵ2 (κ).

To establish a relation between public and secret keys, we use a
family of block-cipher-based one-way functions { fk } where

fk (x) B Enc(x ,k).

That is, Enc(x ,k) denotes the encryption of a single block k ∈
{0,1}c ·κ with respect to key x ∈ {0,1}c ·κ . Upon key generation,
one first samples a concrete one-way function { fk } with respect to
security parameter κ uniformly at random by sampling a uniformly

random block k ∈ {0,1}c ·κ . This function is then fixed by including
k in the public key of the scheme, which implicitly defines the
relation R. That is

(y,x) ∈ R ⇐⇒ y = fk (x).

Now, we assume that using LowMC in this way yields a suitable
one-way function. As already mentioned by Unruh in [84], a one-
way function directly yields a suitable hard instance generator
(observe the similarity in the definitions). To make our results more
general, we show that any block-cipher where the keysize is equal
to the blocksize, and in particular equal to c · κ (where we set c = 1
in the classical setting, whereas we set c = 2 in the post-quantum
setting to account for the generic speedup imposed by Grover’s
algorithm [52]), when viewed as a family of PRFs, also yields a
suitable one-way function family. We do so in the full version of
this paper.

D SECURITY OF THE PROOF SYSTEM IN THE

QUANTUM RANDOM ORACLE MODEL

Here we prove that the proof system we get by applying our modi-
fied Unruh transform to ZKB++ as described in Section 5 is both
zero knowledge and simulation-extractable in the quantum random
oracle model.

Before we begin, we note that the quantum random oracle model
is highly non-trivial, and a lot of the techniques used in standard
random oracle proofs do not apply. The adversary is a quantum
algorithm that may query the oracle on quantum inputs which are
a superposition of states and receive superposition of outputs. If
we try to measure those states, we change the outcome, so we do
not for example have the same ability to view the adversary’s input
and program the responses that we would in the standard ROM.

Here we rely on lemmas from Unruh’s work on quantum-secure
Fiat-Shamir like proofs [84]. We follow his proof strategy as closely
as possible, modifying it to account for the optimizations we made
and the fact that we have only 3-special soundness in our underlying
Σ-protocol.
Zero Knowledge This proof very closely follows the proof from
[84]. The main difference is that we also use the random oracle to
form our commitments, which is addressed in the transition from
game 2 to game 3 below.

Consider the simulator described in Figure 4. From this point on
we assume for simplicity of notation that View3 includes x3.

We proceed via a series of games.
Game 1: This is the real game in the quantum random oracle
model. Let Hcom be the random oracle used for forming
the commitments, Hchal be the random oracle used for
forming the challenge, and G be the additional random
permutation.

Game 2: We change the prover so that it first chooses ran-
dom e∗ = e∗(1) , . . . ,e∗(t) , and then on step 2, it programs
Hchal (a

(1) , . . . ,a(t) ,h(1) , . . . ,h(t)) = e∗.
Note that each the a(1) , . . . ,a(t) ,h(1) , . . . ,h(t) has suffi-

cient collision-entropy, since it includes {h(i) = (д
(i)
1 ,д

(i)
2 ,

д
(i)
3)}, the output of a permutation on input whose first
k bits are chosen at random (the k (i)j), so we can apply

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1839

p ← Sim(x): In the simulator, we follow Unruh, and replace the initial state (before programming) of the random oracles with random
polynomials of degree 2q − 1 where q is an upper bound on the number of queries the adversary makes.

1. For i ∈ [1,t], choose random e (i) ← {1,2,3}. Let e be the corresponding binary string.
2. For each iteration ri ,i ∈ [1,t]: Sample random seeds k (i)

e (i)
,k

(i)
e (i)+1

and run the circuit decomposition simulator to generate View(i)
e (i)

,

View(i)
e (i)+1

, output shares y (i)1 , y (i)2 , y (i)3 , and if e (i) = 1 x (i)3 .

For j = e (i) ,e (i) + 1 commit [C (i)
j ,D

(i)
j]← [H (k

(i)
j ,View

(i)
j),k

(i)
j | |View

(i)
j], and compute д(i)j = G (k

(i)
j ,View

(i)
j).

Choose random Ce (i)+2,д
(i)
e (i)

Let a(i) = (y
(i)
1 ,y

(i)
2 ,y

(i)
3 ,C

(i)
1 ,C

(i)
2 ,C

(i)
3). And h(i) = д(i)1 ,д

(i)
2 ,д

(i)
3 .

2. Set the challenge: program H (a(1) , . . . ,a(t)) := e .
3. For each iteration ri , i ∈ [1,t]: let b (i) = (y

(i)
e (i)+2

,C
(i)
e (i)+2

) and set

z (i) ←




(View(i)
2 ,k

(i)
1 ,k

(i)
2) if e (i) = 1,

(View(i)
3 ,k

(i)
2 ,k

(i)
3 ,x

(i)
3) if e (i) = 2,

(View(i)
1 ,k

(i)
3 ,k

(i)
1 ,x

(i)
3) if e (i) = 3.

4. Output p ← [e, (b (1) ,z (1)), (b (2) ,z (2)), · · · , (b (t) ,z (t))].

Scheme 4: The zero knowledge simulator

Corollary 11 from [84] (using a hybrid argument) to argue
that Game 1 and Game 2 are indistinguishable.

Game 3:We replace the output of eachHcom (ke∗(i) ,Viewe∗(i))
and G (ke∗(i) ,Viewe∗(i)) with a pair of random values.

First, note that Hcom and G are always called (by the
honest party) on the same inputs, so we will consider them
as a single random oracle with a longer output space, which
we refer to as H for this proof.

Now, to show that Games 2 and 3 are indistinguishable,
we proceed via a series of hybrids, where the i-th hybrid
replaces the first i such outputs with random values.

To show that the i-th and i + 1-st hybrid are indistin-
guishable, we rely on Lemma 9 from [84]. This lemma
says the following: For any quantum A0,A1 which make
q0,q1 queries to H respectively and classical AC , all three
of which may share state, let PC be the probability if we
choose a random function H and a random output B, then
runAH0 followed byAC to generatex , and then runAH1 (x ,B),
that for a random j, the j-th query AH1 makes is measured
as x ′ = x . Then as long as the output of AC has collision-
entropy at least k , the advantage with which AH1 , when
run after A0,AC as described, distinguishes (x ,B) from
(x ,H (x)) is at most (4 +

√
2) √q02−k/4 + 2q1

√
PC .

In other words, if we can divide our game into three
such algorithms and argue that the A1 queries H on some-
thing that collapses to x with only negligible probability,
then we can conclude that the two games are indistinguish-
able. Let A0 run the game up until just before the i th itera-
tion in the proof generation. Let AC be the process which
choosesk (i)1 ,k

(i)
2 ,k

(i)
3 and generatesView(i)

1 ,View
(i)
2 ,View

(i)
3 ,

and outputs x = ke∗(i) ,Viewe∗(i) . (Note that this has col-
lision entropy |ke∗(i) | which is sufficient.) Let A1 be the
process which runs the rest of the proof, and then runs the
adversary on the response.

Now we just have to argue that the probability that we
make a measurement of A1’s j-th query to H and get x is
negligible. To do this, we reduce to the security of the PRG
used to generate the random tapes (and hence the views).
Note that besides the one RO query, ke∗(i) is only used
as input to the PRG. So, suppose there exists a quantum
adversary A for which the resulting A1 has non-negligible
probability of making anH -query that collapses to x . Then
we can construct a quantum attacker for the PRG: we run
the above A0,AC , but instead of choosing ke∗(i) we use the
PRG challenge as the resulting random tape, and return a
random value as the RO output. Then we run A1, which
continues the proof (which should query ke∗(i) only with
negligible probability since ks are chosen at random), and
then runs the adversary. We pick a random j, and on the
adversary’s j-th query, we make a measurement and if
it gives us a seed consistent with our challenge tape, we
output 1, otherwise a random bit. If PC is non-negligible
then we will obtain the correct seed and distinguish with
non-negligible probability.

Game 4: For each i instead of choosing random ke∗(i) and
expanding it via the PRG to get the random tape used
to compute the views, we choose those tapes directly at
random.

Note that in Game 3, ke∗(i) are now only used as seeds
for the PRG, so this follow from pseudorandomness via a
hybrid argument.

Game 5: We use the simulator to generate the views that will
be opened, i.e. j , e∗(i) for each i . We note that now the
simulator no longer uses the witness.

This is identical by perfect privacy of the circuit decom-
position.

Game 6: To allow for extraction in the simulation-extractability
game we replace the random oracles with random polyno-
mials whose degree is larger than the number of queries

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1840

the adversary makes. The argument here identical to that
in [84].

Online Extractability Before we prove online simulation-extract-
ability, we define some notation to simplify the presentation:

For any proof π = e, {b (i) ,д(i) ,z (i) }i=1...t , let hash-input(π) =
{a(i) ,h(i) = (д

(i)
1 ,д

(i)
2 ,д

(i)
3)} be the values that the verifier uses as

input to H
chal

in the verification of π as described in Figure 1.
For a proof π = (e, {b (i) ,д(i) ,z (i) }i=1...t), let open0 (z (i)),open1 (

z (i)) denote the values derived from z (i) and used to compute C (i)
ei

and C (i)
ei+1 respectively in the description of Ver in Figure 1.

We say a tuple (a, j, (o1,o2)) is valid if a = (y1,y2,y3,C1,C2,C3),
Cj = Hcom (o1), Cj+1 = Hcom (o2) and o1,o2 consist of k ,View pairs
for player j, j + 1 that are consistent according to the circuit decom-
position. We say (a, j, (O1,O2)) is set-valid if there exists o1 ∈ O1
and o2 ∈ O2 such that (a, j, (o1,o2)) is valid and set-invalid if not.

We first restate lemma 16 from [84] tailored to our application, in
particular the fact that our proofs do not explicitly contain the com-
mitment but rather the information the verifier needs to recompute
it.

Lemma D.1. Let qG be the number of queries to G made by the

adversaryA and the simulator S in the simulation extractability game,

and let n be the number of proofs generated by S . Then the probability
that A produces x ,π∗ < simproofs where x ,π∗ is accepted by VerH ,

and hash-input(π∗) =
hash-input(π ′) for a previous proof π ′ produced by the simulator, is at

most n(n+ 1)/2(2−k)3t +O ((qG + 1)32−k) (Call this eventMallSim.)

Proof. This proof follows almost exactly as in [84].
First, we argue that G is indistinguishable from a random func-

tion exactly in [84].
Then, observe that there are only two ways MallSim can occur:
Let e ′ be the hash value in π ′. Then either S reprograms H

sometime after π ′ is generated so that H (hash-input(π ′)) is no
longer e ′, or π∗ also contains the same e as π , i.e. e = e ′. S only
reprogramsH if it chooses the same hash-input in a later proof - and
hash-input includes д(i)j , i.e. a random function applied to an input
which includes a randomly chosen seed. Thus, the probability that
S chooses the same hash-input twice is at most n(n+1)/2(2−k)3t +
O ((qG + 1)32−k , where (2−k)3t is the probability that two proofs
use all the same seeds, and O ((qG + 1)32−k is the probability that
two different seeds result in a collision inG , where the latter follows
from Theorem 8 in [84].

The other possibility is that hash-input(π∗) = hash-input(π ′) ,
and e = e ′, but b (i) ,д(i) ,z (i) , b ′(i) ,д′(i) ,z′(i) for some i . First note,
that if e = e ′ and hash-input(π∗) = hash-input(π ′), then д(i) =

д′(i) and b (i) = b ′(i) for all i , by definition of hash-input. Thus, the
only remaining possibility is that z (i) , z′(i) for some i . But since
h(i) = h′(i) for all i , this implies a collision in G, which again by
Theorem 8 in [84] occurs with probability at most O ((qG + 1)32−k .

We conclude thatMallSim occurs with probability at most n(n +
1)/2(2−k)3t +O ((qG + 1)32−k . □

Here, next we present our variant of lemma 17 from [84]. Note
that this is quoted almost directly from Unruh with two modifica-
tions to account for the fact that our proofs do not explicitly contain
the commitment but rather the information the verifier needs to

recompute it, and the fact that our underlying Σ-protocol has only
3 challenges and satisfies 3-special soundness. H0 in this lemma
will correspond in our final proof to the initial state of H

chal
.

Lemma D.2. Let G,Hcom be arbitrarily distributed functions, and

letH0 : {0,1}≤ℓ → {0,1}2t be uniformly random (and independent of

G). , Then, it is hard to findx andπ such that for {a(i) , (д
(i)
1 ,д

(i)
2 ,д

(i)
3)} =

hash-input(π) and J1 | | . . . | |Jt := H0 (hash-input(π))

(i) д
(i)
Ji
= G (open0 (z

(i))) and д
(i)
Ji+1 = G (open1 (z

(i))) for all i .

(ii) (a(i) , Ji , (open0 (z
(i)),open1 (z

(i)))) is valid for all i .

(iii) For every i , there exists a j such that (a(i) , j,G−1 (дi,j),G−1 (
дi,j+1))) is set-invalid.

More precisely, if AG,H0
makes at most qH queries to H0, it outputs

(x ,π) with these properties with probability at most 2(qH + 1) (23)
t/2

Proof.Without loss of generality, we can assume that G,Hcom are
fixed functions which A knows, so for this lemma we only treat H0
as a random oracle.

For any given value ofH0, we call a tuple c = (x , {a(i) }i , {д
(i)
j }i,j)

a candidate iff: for each i , among the three transcripts, (a(i) ,1,
G−1 (д1) (i) ,G−1 (д

(i)
2)), (a(i) ,2,G−1 (д(i)2),

G−1 (д(i)3)), and (a(i) ,3,G−1 (д(i)3),G−1 (д(i)1)) at least one is set-valid,
and at least one is set-invalid. Let ntwovalid (c) be the number of i’s
for which there are 2 set-valid transcripts. Let Evalid (c) be the set
of challenge tuples which correspond to only set-valid conversa-
tions. (Note that |Evalid (c) | = 2ntwovalid (c) .) We call a candidate an
H0-solution if the challenge produced by H0 only opens set-valid
conversations, i.e. in lies in Evalid (c). We now aim to prove that AH
outputs an H0 solution with negligible probability.

For any given candidate c , for uniformly random H0, the proba-
bility that c is an H0-solution is ≤ (23)

t . In particular, for candidate
c the probability is (23)

t ∗ 2ntwovalid (c)−t .
Let Cand be the set of all candidates. Let F : Cand→ {0,1} be a

random function such that for each c F (c) is i.i.d. with Pr [F1 (c) =
1] = (2/3)t .

Given F , we construct HF : {0,1}∗ → Zt3 as follows:
• For each c < Cand, HF (c) is set to a uniformly random
y ∈ Zt3.

• For each c ∈ Cand such that F (c) = 0, HF (c) is set to a
uniformly random y ∈ Zt3 \ Evalid (c).

• For each c ∈Candwith F (c) = 1, with probability 2ntwovalid−t ,
choose a random challenge tuple e from Evalid (c), and set
HF (c) := e . Otherwise HF (c) is set to a uniformly random
y ∈ Zt3 \ Evalid (c).

Note that for each c , and e the probability of H (c) being set to e
is 3−t . Suppose AH0 outputs an H0-solution with probability µ, then
since HF has the same distribution as H0, AHF () outputs an HF
solution c with probability µ. By our definition of HF , if c is an HF
solution, then F (c) = 1. Thus, AHF () outputs c such that F (c) = 1
with probability at least µ.

As in [84], we can simulateAHF () with another algorithm which
generates HF on the fly, and thus makes at most the same number
of queries to F that A makes to HF . Thus by applying Lemma 7
from [84], we get

µ ≤ 2(qH + 1) (
2
3
)t/2.

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1841

□
Finally, as the sigma protocol underlying our proofs is only

computationally sound (because we use Hcom for our commitment
scheme), we need to argue that an extractor can extract from 3 valid
transcripts with all but negligible probability.

Lemma D.3. There exists an extractor EΣ such that for any ppt

quantum adversary A, the probability that A can produce (a, {(ν1,j ,
ν2,j)}j=1,2,3) such that (a, j, (ν1,j ,ν2,j)) is a valid transcript for j =
1,2,3, but EΣ (a, {(ν1,j ,ν2,j)}j=1,2,3) fails to extract a proof, is negligi-
ble.

Proof. Recall that a = (y1,y2,y3,C1,C2,C3), and if all three tran-
scripts are valid, Cj = Hcom (ν1,j) = Hcom (ν2,j−1) for j = 1,2,3.
Thus, either we have ν1,j = ν2,j−1 for all j or A has found a colli-
sion in Hcom. But, Theorem 8 in [84] tells us that the probability
of finding a collision in a random function with k-bit output using
at most q queries is at most O ((q + 1)32−k), which is negligible. If
ν1,j = ν2,j−1 for all j , then we have 3 kj | |Viewj values, all of which
are pairwise consistent, so we conclude by the correctness of the
circuit decomposition, and the fact that (x = y,w) ∈ R iff ϕ (w) = y
that if we sum the input share in View1,View2,View3, we get a
witness such that (x ,w) ∈ R. □

TheoremD.4. Our version of the Unruh protocol satisfies simulation-

extractability against a quantum adversary.

Proof. We define the following extractor:

(1) On input π , compute hash-input(π) = {a(i) ,h(i) = (д
(i)
1 ,

д
(i)
2 ,д

(i)
3)}

(2) For i ∈ 1, . . . ,t : For j ∈ 1,2,3, check whether there is
a solution ν1,j ∈ G−1 (д(i)j),ν2,j ∈ G−1 (д(i)j+1) such that
(a(i) , j, (ν1,j ,ν2,j)) is a valid transcript. If there is a valid
transcript for all j, output EΣ (a(i) , {(ν1,j ,ν2,j)}j=1,2,3) as
defined by Lemma D.3 and halt.

(3) If no solution is found, output ⊥.
First we define some notation, again borrowed heavily from [84]:

Let Evi ,Evii ,Eviii be events denoting that A in the simulation
extractability game produces a proof satisfying conditions (i), (ii),
and (iii) from Lemma D.2 respectively.

Let SigExtFail be the event that the extractor finds a successful
(a, {(ν1,j ,ν2,j)}j=1,2,3), but EΣ fails to produce a valid witness.

Let ShouldExt denote the event that A produces x ,π such that
VerH accepts and (x ,π) < simproofs.

Then our goal is to prove that thew produced by the extractor
is such that (x ,w) ∈ R. I.e., we want to prove that the following
probability is negligible.

Pr[ShouldExt ∧ (x ,w) < R]
≤ Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim]
+ Pr[MallSim]
= Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim ∧ ¬Eviii]
+ Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim ∧ Eviii]
+ Pr[MallSim]
≤ Pr[(x ,w) < R ∧ ¬Eviii]
+ Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim ∧ Eviii]
+ Pr[MallSim]
= Pr[SigExtFail]
+ Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim ∧ Eviii]
+ Pr[MallSim]
= Pr[SigExtFail]
+ Pr[ShouldExt ∧ (x ,w) < R ∧ ¬MallSim ∧ Evi ∧ Evii ∧ Eviii]
+ Pr[MallSim]
≤ Pr[SigExtFail]
+ Pr[Evi ∧ Evii ∧ Eviii]
+ Pr[MallSim]

Here, the second equality follows from the definition of SigExtFail
and Eviii , and the description of the extractor. The third equality
follows from the fact that ¬MallSim means that the hash function
on hash-input(π) has not been reprogrammed, and the fact that
ShouldExt means verification succeeds, which means that condi-
tions (i) and (ii) are satisfied.

Finally, by Lemmas D.3, D.2, and D.1, we conclude that this
probability is negligible. □

Session I1: Post-Quantum CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1842

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Building Blocks
	3 ZKBoo and ZKB++
	3.1 ZKBoo
	3.2 ZKB++

	4 The Fish Signature Scheme
	5 The Picnic Signature Scheme
	6 Selecting an Underlying Primitive
	6.1 Survey of Suitable Primitives
	6.2 LowMC

	7 Implementation and Parameters
	7.1 Implementation of Building Blocks
	7.2 Circuit for LowMC
	7.3 Experimental Setup and Results
	7.4 Comparison with Related Work

	8 Summary
	References
	A Additional Material on ZKBoo
	A.1 (2,3)-Decomposition
	A.2 Linear Decomposition of a Circuit

	B Description of LowMC
	C Security of Key Generation
	D Security of the proof system in the quantum random oracle model

