
Capturing Malware Propagations with Code Injections and
Code-Reuse A�acks

David Korczynski

University of Oxford

University of California, Riverside

david.korczynski@cs.ox.ac.uk

Heng Yin

University of California, Riverside

heng@cs.ucr.edu

ABSTRACT
Defending against malware involves analysing large amounts of

suspicious samples. To deal with such quantities we rely heavily on

automatic approaches to determine whether a sample is malicious

or not. Unfortunately, complete and precise automatic analysis

of malware is far from an easy task. �is is because malware is

o�en designed to contain several techniques and countermeasures

speci�cally to hinder analysis. One of these techniques is for the

malware to propagate through the operating system so as to execute

in the context of benign processes. �e malware does this by writing

memory to a given process and then proceeds to have this memory

execute. In some cases these propagations are trivial to capture

because they rely on well-known techniques. However, in the cases

where malware deploys novel code injection techniques, rely on

code-reuse a�acks and potentially deploy dynamically generated

code, the problem of capturing a complete and precise view of the

malware execution is non-trivial.

In this paper we present a uni�ed approach to tracing malware

propagations inside the host in the context of code injections and

code-reuse a�acks. We also present, to the knowledge of the au-

thors, the �rst approach to identifying dynamically generated code

based on information-�ow analysis. We implement our techniques

in a system called Tartarus and match Tartarus with both synthetic

applications and real-world malware. We compare Tartarus to pre-

vious works and show that our techniques substantially improve

the precision for collecting malware execution traces, and that

our approach can capture intrinsic characteristics of novel code

injection techniques.

KEYWORDS
Malware, Taint Analysis, Security, Code Injection

1 INTRODUCTION
Today, malware remains one of the biggest IT security threats that

we have to face. Although the last decade has introduced many

improvements in our defences and has signi�cantly raised the bar

for malware authors to be successful, there is still an increasing

number of malware incidents reported each year. Presently, the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . . $15.00

DOI: h�p://dx.doi.org/0.1145/3133956.3134099

�ght against malware is challenged by two core, albeit opposite,

problems. On the one hand, anti-malware companies receive thou-

sands of samples every day and each of these �les must be processed

and analysed in order to determine their maliciousness. On the

other hand, malicious applications are o�en well-designed so�-

ware with dedicated anti-analysis features. �is makes accurate

and automatic analysis of malware a true challenge. In addition to

this, many of the current tools available are constructed for speci�c

reverse engineering purposes, which makes them less applicable to

fully automated procedures and more useful for manually-assisted

analysis tasks.

One problem that has particularly challenged the malware re-

search community is analysis and detection of malware propaga-

tions inside a host system. When malware executes on a host

system, it integrates itself to the system using stealthy approaches,

o�en motivated by evasion and privilege escalation. An important

part of our defences is to identify these propagation strategies so

they can be used in host-based intrusion prevention systems (HIPS).

A key aspect of malware propagation strategies is the use of code
injections. In the context of malware, code injection is when the mal-

ware writes code to another processes on the system so as to have

this code execute. When the malware does this, it e�ectively exe-

cutes under the context of a legitimate application like white-listed

processes that goes undetected by HIPS. In cases where malware

relies on well-known techniques to inject the code it is easy for

malware analysis systems to identify the code injection. However,

recent reports have shown that novel code injection techniques

can go unidenti�ed by �ne-grained malware analysis environments

[29, 36] and also bypass modern-day HIPS [27, 45]. �is presents

a crucial challenge because false-negatives in both environments

mean that malware can operate without detection for a potentially

long time.

Traditional code injection techniques rely on �xed API calls

such as WriteProcessMemory and CreateRemote�read where recent

approaches have started adopting exploit-like features such as code-

reuse a�acks [2, 27, 29, 45]. �is means, instead of writing code to

another process using WriteProcessMemory and creating a thread

in the target process with CreateRemote�read, malware will, for

example, write memory to a global bu�er, force the target process

to overwrite its own stack with the memory from the global bu�er,

eventually resulting in the target process executing a ROP chain

controlled by the malware. In this way the malware achieves execu-

tion in the target process even without explicitly writing memory

to it [27].

�e security community has previously investigated automated

analysis of malware propagation and code injection. �ese works

can be roughly divided in two groups. One group that has been

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1691

focused on automated approaches to unpacking of malware, and

another group focused on detection and analysis of code-reuse

a�acks.

Automated approaches to unpacking malware is a well-studied

area [5, 22, 30, 40]. �e main focus point of these approaches is how

to uncover and extract dynamically generated code. Code injection

is a natural extension hereof, as we can consider code injections to

be dynamically generated code across processes. �e most recent

work on unpacking has indeed investigated this particular prob-

lem [5, 40]. However, the suggested approaches do not address

several challenges posed by recent code injections. For example,

Codisasm proposed by Bonfante et al. [5] relies on hooking Cre-
ateRemote�read and CreateRemote�readEx in order to monitor

code execution in a di�erent process. �is excludes their approach

from any code injections that do not rely on these two API calls,

of which there are many [2, 27, 29, 45]. Ugarte et al. [40] make

e�orts into monitoring dynamically generated code via �le map-

pings and to shared memory sections. However, these techniques

only monitor for dynamically generated code explicitly wri�en by

the malware, and do not consider when malware uses code-reuse

a�acks. Because of this, their approach will not detect malicious

code that has been dynamically generated via benign code, of which

there has recently been several cases [2, 27, 29, 45].

Similarly to automatic unpacking, automatic detection and anal-

ysis of code-reuse a�acks has lately received a lot of a�ention

[10, 17, 23, 34]. However, the problem with relying on generic

methods for detecting novel a�acks is simply that it is hard, and

analysis of special cases seems inevitable [10, 16]. In fact, a recent

demonstration of a new code injection was shown to bypass both

HIPS and the many exploit-mitigations deployed by Windows [28].

�is particular injection technique was adapted by malware not

long a�er the technique was published [2] . �e problem with the

current tools for analysing code-reuse a�acks, besides being few in

numbers, is that these tools provide a local and limited view on the

injection in respect to the entire malware propagation. �is makes

them well-suited for aiding reverse engineering but are not well-

adapted for complete and automated analysis of entire malware

propagations [17, 23, 34].

Because of the limitations in previous work and the problems

reported by the malware community, there remains to be found

a general and accurate solution to automatic analysis of malware

propagations with code injections and code-reuse a�acks. Before

we proceed, it is natural to consider what is required by such a

solution. Within the entire malware propagation, the malicious

code o�en contains several waves of encrypted code even before

performing any code injection, and potentially a�er a given code

injection as well. �ese encrypted waves of code contain the mali-

cious payload which will be used for analysing the capabilities of

the malware. We therefore consider a complete solution to auto-

mated analysis of malware propagations to both capture malware

execution traces across the entire operating system (OS) and also

raise the execution trace into abstractions in the shape of code

waves and code injections.

In this paper we describe Tartarus, a system for automatically

capturing and analysing malware propagations with code injections

and code-reuse a�acks. Tartarus captures the malware execution

based on a novel approach that relies on taint analysis of the entire

malware code in combination with a model of code-reuse a�acks.

�is combination allows Tartarus to follow malware execution in

the whole OS without relying on any API hooking, and also gives

Tartarus the ability to identify where code-reuse a�acks occur.

Tartarus further deploys two novel abstractions upon the malware

execution trace in order to identify dynamically generated code

and code injection techniques.

To the best of our knowledge, Tartarus is the �rst malware anal-

ysis system that monitors malware execution based on taint anal-

ysis in combination with code-reuse a�acks. Tartarus is also the

�rst system that captures dynamically generated code based on an

information-�ow model and also has the abilities to automatically

identify code injections and give detailed insights about them. We

have systematically tested Tartarus against several datasets that

demonstrate the operational practicality of Tartarus, its relevance

against todays’ malware landscape as well as its improvements on

previous work.

Our main contributions can be listed as follows:

‚ We propose a technique for complete malware tracing

based on taint analysis in combination with a model of

code-reuse a�acks.

‚ We propose a novel technique based on information-�ow

for identifying dynamically generated code.

‚ We propose a �ne-grained technique as a uni�ed approach

for automatically identifying code injections and also pro-

viding detailed insights about them.

‚ We implement our techniques in a practical system called

Tartarus and evaluate it thoroughly against several datasets.

Our results show that Tartarus works well in operational

contexts and improves over previous work in several areas.

2 MOTIVATION AND BACKGROUND
In this section we illustrate the motivation and background for our

work by introducing a running example. We describe each of the

three techniques: (1) dynamically generated code; (2) code-reuse

a�acks; and (3) code injections, and use our running example to

describe the limitations of previous work.

2.1 Motivating example
Our running example is a sample collected from the Gapz malware

family and Figure 1 shows the propagation strategy the sample

deploys. �e entry point of the malware is given by the black circle

within the Malware.exe process. Solid arrows present control-�ow,

dashed arrows present data-�ow and wave0 are instructions ex-

plicitly present in the Malware.exe binary image when �rst loaded.

When executed, the sample �rst deploys one wave of dynamically

generated code (wave1 of Malware.exe). �e instructions of this

wave then overwrite a pointer within the legitimate Windows pro-

cess explorer.exe using SetWindowsLong and hijacks control of

the process with a call to SendNotifyMessage. �e execution in

explorer.exe is transferred to a sequence of code-reuse a�acks

that are responsible for writing shellcode within explorer.exe.

�e code-reuse a�acks transfer execution to the newly wri�en

shellcode and the shellcode itself writes a new wave of dynamically

generated code inside explorer.exe. Finally, this wave continues to

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1692

wave0

4150
instrs

wave1

2700
instrs

Malware.exe

Code-
reuse
attacks

23 instrs

shellcode
58 instrs

wave1

456 instrs

wave2

3567
instrs

explorer.exe
SendNotifyMessage

SetWindowsLong

Figure 1: Malware propagation of Gapz.

deploy yet another wave of dynamically generated code with a

substantially larger number of instructions.

2.2 Dynamically generated code
Nowadays, the majority of malware deploy dynamically generated

code. In its simplest terms, dynamically generated code refers to

when an application writes memory at runtime and then proceeds

to execute this memory. Most o�en, malware does this by contain-

ing encrypted code inside its binary image and then decrypts this

memory during execution, followed by transferring control to it.

Traditionally, dynamically generated code has been associated

with the concept of packers. From a simplistic point of view, pack-

ers are applications that input a binary and output a new binary

that will dynamically generate the original binary’s code. �e main

concern of previous work in unpacking is therefore focused on

automatic ways to uncover the code dynamically generated in the

packed application. �e techniques applied by previous solutions

are fundamentally very similar. �ey keep a set of all the mem-

ory writes performed by the malware, and then monitor for each

instruction executed in the malware process whether the bytes

making up the instruction is an element of this set.

However, this heuristic is fundamentally limited because it only

monitors code explicitly wri�en by the malware. As such, they

do not consider the cases where malware uses benign code to

dynamically generate malicious code on its behalf. �is limitation

is visible in our motivating example where previous approaches

to automatically uncovering dynamically generated code would

only includewave0 andwave1 of the Malware.exe process. �is is

because Gapz relies on the code-reuse a�acks to write the shellcode,

and the shellcode is then in charge of propagating memory wri�en

by the Malware.exe process into the explorer.exe process. As a

result, previous approaches will fail to recognize the code-reuse

a�acks and all of the malware execution that propagates from this

code.

2.3 Code-reuse attacks
To hijack an application’s control-�ow, malware can manipulate

benign code of the application even without writing any code to

the application itself. We call this type of a�ack a code-reuse a�ack.

One of the most popular techniques of this kind is return-oriented

programming, described by Shacham [38]. �e basic idea is to rely

on small sequences of code that end in ret instructions. We call

such code sequences gadgets. �e a�ack then works by writing an

address to memory such that whenever the target ret instruction

is executed, it will transfer control to the address wri�en by the

adversary. By combining these gadgets in meaningful ways, the

adversary can achieve complex computation and in most real-world

cases even Turing complete computation [6, 8]. In the context of

ROP, we call a chain of gadgets a ROP chain.

Code-reuse a�acks is not limited to ROP, but are o�en lever-

aged with a combination of hijacking other types of indirect branch

instructions. For example, jump-oriented programming (JOP) ex-

plores a similar paradigm to ROP, but focuses on indirect jmp in-

structions instead of ret instructions [4]. Equally, code-reuse at-

tacks can be obtained by hijacking indirect call instructions, and

even a mix all three instruction types. Although it is not shown in

Figure 1, our motivating sample does indeed hijack both ret and

indirect call instructions.

Although there exist several techniques for identifying code-

reuse a�acks [10, 17, 23, 34], these are designed to highlight the

use of gadgets and not the overall malware propagation. As can be

seen in Figure 1, the code-reuse a�acks only play a very local role

in the malware propagation and does not reveal much about the

sample’s overall structure. As such, these techniques will not be of

much use in fully automatic approaches, but rather serve well in

assisting manual forensics tasks.

2.4 Code injections
Code injection is when a malicious binary writes code to another

process and then proceeds to execute this code. �e e�ect of code

injections is that execution of the malicious code happens inside a

“legitimate” application. In practice, there are many reasons why

malware use code injections. Two of the most common reasons are

evasion against anti-malware solutions and escalation of process

level restrictions. By nature, dynamically generated code and code

injection techniques are closely related. In order to inject code,

the malware writes the code at runtime, making the injected code

dynamically generated.

Traditionally, malware has relied on a common set of approaches

to inject their code. �ese approaches rely on well-known API

calls such as WriteProcessMemory, MapViewOfSection and alike, to

place malicious memory in the context of the target process, and

then execute this code using API calls such as CreateRemote�read,

�eueUserAPC and Resume�read. Previous work on automatic

unpacking and automated malware analysis environments there-

fore rely on hooking these API functions [5, 11] to detect the code

injections.

However, as observed in our motivating example, the malware

does not rely on WriteProcessMemory or similar API calls to estab-

lish the code injection. In fact, the malware relies on two rather

mundane API functions, SendNotifyMessage and SetWindowsLong.

Furthermore, the injection technique is application-speci�c in that

it relies on constructs speci�cally present in explorer.exe.
It is important to clarify that code injections are not necessarily

exploits, and many of them are not intended to escalate privileges

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1693

from an OS point of view. Rather, these are injection techniques that

target OS-speci�c constructs that allows the malware to execute

code in another process. �e code injection is then used for achiev-

ing evasive behaviours, bypassing white-listed HIPS processes and

several other purposes [28]. E�ectively, the number of potential

targets for these code injections is very large, because the malware

is not necessarily interested in a speci�c set of privileged processes.

2.5 Observations and objectives
�e combination of dynamically generated code, code-reuse a�acks

and code injections allows for complex malicious propagations

that pose new challenges for malware analysis systems. Although

these techniques have been treated individually in the past, they

have signi�cant overlap and malware o�en use the techniques in

combination. Previous work su�ers from focusing on one of the

techniques and are therefore incomplete when the techniques are

combined.

�e objective with Tartarus is to construct a uni�ed approach

for automatic analysis of malware that combines all of the three

techniques: (1) Dynamically generated code; (2) Code-reuse a�acks

and (3) Code injections. We achieve this by dividing the objective

of Tartarus into two main goals:

(1) A novel approach to malware execution tracing that is

tailored analysis of malware propagations. �is requires a

technique that is general enough to tracing malware even

in the context of code injections and code-reuse a�acks.

(2) Techniques for raising the collected execution trace into

higher level semantics suitable for fully automatic analysis,

namely dynamically generated code and code injections.

Dynamically generated malicious code should be recog-

nized independent of who wrote the code and code injec-

tions must be identi�ed even if the injection techniques

are unknown prior to analysis.

3 SYSTEM-WIDE MALWARE TRACING
In this section we present Tartarus’ �rst goal of optimizing the

completeness and precision of malware execution tracers. We start

by presenting a model that allows us to reason precisely about mal-

ware execution tracers and then proceed to present our approach.

At the end of the section we give a brief discussion on limitations

as well as a comparison to previous work.

3.1 Abstract model of execution environment
We consider execution at the machine instruction level and our

model is extended from work done by Dinaburg et al [12]. Since

an instruction can access memory and CPU registers directly, we

consider a system state as the combination of memory contents

and CPU registers. Let M be the set of all memory states and C
be the set of all possible CPU register states. We then denote all

possible instructions as I , where each instruction can be considered

a machine recognizable combination of opcode and operands stored

at a particular place in memory.

A program P is modelled as a tuple (MP , ϵP) where MP is the

memory associated with the program and ϵP is an instruction in

MP which de�nes the entry point of the program. When a program

executes, there are o�en many other programs executing on the

system as well, and each of these may communicate with each other

through the underlying OS. As such, we model the execution envi-

ronment E as the underlying OS and the other programs running

on the system.

We de�ne a transition function δE : I ˆM ˆC Ñ I ˆM ˆC to

represent the execution of an instruction in the environment E. It

de�nes how execution of an instruction updates the execution state

and determines the next instruction to be executed. �e trace of

instructions obtained by executing program P in execution environ-

ment E is then de�ned to be the ordered set T pP ,Eq “ pi0, . . . ,il q
where i0 “ ϵP and δE pik ,Mk ,Ck q “ pik`1

,Mk`1
,Ck`1

q for 0 ď

k ă l . We note here that the execution trace does not explicitly

capture what instructions are part of the program, with the excep-

tion of i0, but rather all the instructions executed on the system

including instructions in other processes etc.

3.2 Malware execution trace
We now introduce the concept of malware execution trace, which

describes what instructions of a whole-system execution is part

of the malware execution. Suppose P is a malware program and

PA is some malware tracer that aims to collect P ’s execution trace.

Malware program P is interested in evading analysis and gaining

privilege escalation by using dynamically generated code, code-

reuse a�acks and code injections. As such, the execution trace of

the malware may contain instructions that are not members of the

program’s memory MP .

To monitor the malware across the environment, the malware

monitor PA maintains a shadow memory that allows it to label the

memory and the CPU registers. �is shadow memory is updated

for each instruction in the execution trace. Let S Ď M ˆC be the

set of all possible shadow memories. We then de�ne the function

δA : SˆI Ñ S to represent the updating of a shadow memory when

an instruction is executed. We call this the propagation function.

�e list of shadow memories collected by the malware tracer is

now de�ned as the ordered set: STApT pP ,Eqq “ ps0, . . . ,sl q where

δApsk ,ik q “ sk`1
for 0 ď k ă l .

�e job of the analyser is to determine for each instruction in

the execution trace whether the instruction belongs to the malware

or not. To do this, the analyser uses the predicate ΛA : S ˆ I Ñ
ttrue, f alseu. �e malware execution trace is now given as the

sequence of instructions for which ΛA is true and we call ΛA the

inclusion predicate. We de�ne the malware execution trace formally

as follows:

De�nition 1. Let T pP ,Eq be an execution trace and PA a malware
tracer. �e malware execution trace is the ordered set
ΠA “ pm0, . . . ,md q where:

‚ ΠA Ď T pP ,Eq;
‚ Dv |mj “ iv ^ ΛApsv ,iv q for 0 ď j ď d .

�e above de�nition gives us a starting point from which we

can reason about the properties of malware tracers. In particular,

for a given malware tracer it highlights the propagation function,

δA, together with the inclusion predicate, ΛA, to be the de�ning

parts. Given two malware tracers that are targeted the same ex-

ecution environment, such as X86, we can then make a detailed

comparison about the instructions each analyser includes in its

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1694

malware execution trace. We do this with Tartarus and previous

work [5, 40]. However, before this comparison is possible, we must

�rst introduce our approach and we do this next.

3.3 Overview of malware execution tracing
Algorithm 1 gives an overview of our approach. For notation, let

irAs denote the address of an instruction and irOs the output of an

instruction. �e �rst step (line 2) is to taint the memory making up

the malware, and we describe this in Section 3.4. Next, we execute

the malware and continue execution until there is no more taint or

a user-de�ned timeout occurs.

For each instruction we check if the memory making up the

instruction is tainted (line 8) and if so, include it in the malware

execution trace. If it is not tainted (line 10), we check if the instruc-

tion is part of a bu�er that holds the code-reuse instructions we

need to monitor (line 13). If it is, then we set a temporal variable

indicating if the instruction should be included in the malware

execution trace, and also remove it from the set of code-reuse to

monitor. Next (line 17), we check if the instruction initiates any

code-reuse (Section 3.5). If it does, then we set the temporal vari-

able indicating the instruction must be appended to the malware

execution trace and also include the code being reused into our

code-reuse bu�er (Section 3.5). Finally, we execute the instruction

and propagate taint (line 24).

Algorithm 1: Main algorithm

Data: Malware execution trace Π, gadgets G.

Result: (input) Malware sample B
1 // Initialisation;

2 T Ð init taintpBq; // Taint set

3 T G ÐH;

4 // Begin full system instrumentation;

5 iÐ f ir st instr pq;
6 while T ‰ H do
7 // is the instruction tainted?;

8 if irAs P T then
9 ΠÐ Π^xiy;

10 else
11 // code-reuse handling

12 // is it in the gadget bu�er?

13 if i P T G then
14 append “ true ;

15 T G Ð T Gztiu;

16 // does it initiate code-reuse?;

17 if init iates code reusepi, Pq then
18 append “ true
19 T G Ð дet code reusedpi, T Gq
20 G Ð T G Y G

21 if append “ true then
22 ΠÐ Π^i

23 append “ f alse

24 pi, T q Ð updatepi, T q;

25 return pΠ, Gq

Address Instruction Code-reuse conditions GI
I CALL [A] A P T , rAs R T , I R T 3

I CALL reg r eд P T , rr eдs R T , I R T 3

I JMP [A] A P T , rAs R T , I R T 3

I JMP reg r eд P T , rr eдs R T , I R T 3

I RET esp P T , resps R T , I R T 3

Table 1: Conditions for identifying GI instructions.

3.4 Initial setting
We consider malicious code execution on the basis of tainted mem-

ory. �e only two ways we include instructions in the malware

execution trace is if memory that makes up an instruction is tainted

or the instruction is part of a code-reuse a�ack. �e only way new

taint is introduced in the system apart from the initial taint is by

instructions that are already tainted. �e initial taint is therefore

seed for the rest of the analysis and will have a large impact on the

completeness and precision of the analysis.

To ensure completeness, the initial taint must cover all memory

that belongs to the malware codebase, and also memory from where

the malware can derive dynamically generated code. If we miss

any such memory, then there is a possibility the malware uses this

memory to dynamically generate code and our monitor will miss

out when this code is executed. On the basis that malware can

contain code anywhere in its module we taint the entire module

of the malware. �e tainting occurs when the program has been

loaded into memory so as to ensure our tainting happens before

any of the malicious code is executed.

3.5 Code-reuse identi�cation
In Section 2.3 we introduced the di�erent types of code-reuse at-

tacks. �e similarity between the techniques is that an indirect

branch instruction in benign code redirects execution to other be-

nign code, and the value that determines the destination is con-

trolled by the adversary. �e di�erence between the techniques is

then the instruction used i.e. whether it is a ret, jmp or call in-

struction. Because of this similarity, we consider code reuse a�acks

on a more abstract level. Formally, we de�ne code reuse a�acks as

pairs pGI,GCq where GC is the reused code (gadget code) and GI

is the instruction that initiates the branch to the reused code (gadget
initiator). When malware reuses code as part of their control-�ow,

GI is the trigger that allows the malware to use GC for its own

purposes.

We identify GI instructions as dynamic instructions made up of

non-tainted memory that branches to non-tainted memory, but the

memory that determines the destination of the branch is tainted.

�e particular execution pa�ern we capture with this de�nition is

malware that creates a control-�ow by chaining two benign code

regions (non-tainted code) together by overwriting the address

determining the branch destinations and not the code itself. Table

1 illustrates the speci�c rules we use to determine if an instruction

is a GI.

When a GI instruction has been identi�ed, we proceed to de-

termine GC. Previous literature on exploit mitigation has tested

several ways on how to de�ne GC and there is no de�nitive best

solution. �e di�culty occurs because GC can in practice include

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1695

an arbitrary number of instructions and arbitrary structure, and

can vary between small gadgets and entire functions. To this date,

we monitor if the destination of GI is a function, and if so, con-

sider the GI to be a function call inside the malware execution

trace. If the destination is not a function, then we include GI in the

execution trace as well as the instructions of the �rst basic block at

GI’s destination.

When a pair pGI,GCq has been identi�ed we must include

them in the malware execution trace. However, the gadget is only a

one-time execution so we can’t taint the instructions as we do with

regular malware code. Instead, we append the GI instruction to the

malware execution trace as we observe it, and all the instructions

of the GC basic block is put into a bu�er. Instructions in the bu�er

are then included in the execution trace only the �rst time they are

executed right a�er the GI instruction execution. In this way we

ensure only including the gadgets at the speci�c instance where

the malware makes use of it.

We notice here that there is one exception to the rule, which

is when we observe a chain of code-reuse a�acks where the last

hijacked indirect branch branches to tainted memory. �is is seen

in code injection techniques where a chain of code-reuse a�acks is

used by the malware to transfer execution to shellcode. In this case,

the last hijacked indirect branch will e�ectively transfer execution

to tainted memory, which means it does not satisfy the conditions

for a code-reuse a�ack. To circumvent not including this hijacked

indirect branch in the malware execution trace, if we observe a

chain of code-reuse a�acks followed by another hijacked indirect

branch that transfers execution to tainted memory, then we also

include this hijacked indirect branch in the malware execution trace

as a code-reuse a�ack.

3.6 Propagation function
In Section 3.2 we describe that one of the key aspects of a malware

execution tracer is the propagation function. �e propagation func-

tion is in charge of updating the shadow memory. �e core part

of our propagation function is de�ned by our update algorithm,

shown in Algorithm 2. We �rst apply taint propagation for a given

instruction, done by the propagate taint function. In practice, we

do this with a bitwise tainting and do not rely on pointer tainting.

Because our implementation is based on the DECAF [21] platform

we taint directly on the QEMU tcg instructions [3]. �e taint prop-

agation rules and the soundness and precision of them are veri�ed

by Lok et al. here [43].

When the taint propagation has been done, we continue to ex-

ecute (emulate) the instruction. If the instruction just executed is

part of the tainted memory then we also taint the output of the

instruction. We do this because some malware generates dynami-

cally generated code without the code explicitly originating from

its own memory. It is for example possible for malware to read

benign code and modify this to suit its own needs and our running

example of the Gapz malware employs this type of behaviour.

3.7 Comparison to previous work
�e de�nition of malware execution trace given in De�nition 1

allows us to rigorously compare Tartarus to previous works [5, 40].

Algorithm 2: update

Data: Instruction i , taint set T .

Result: Taint set T

1 // Initialisation;

2 T Ð propaдate taintpi, T q;
3 inext Ð exec instr piq;
4 if irAs P T then
5 for o P irOs do
6 T Ð T Y tou;

7 return pinext , T q;

Previous work on automatic unpacking updates the shadow mem-

ory with any memory wri�en by instructions already inside of the

shadow memory. By contrast, our approach updates the shadow

memory based on our taint propagation and any output of instruc-

tions that are in the shadow memory. As such, our updates to the

shadow memory includes the same as those of previous work but

also propagations of shadow memory performed by instructions

that are not part of the shadow memory itself. Furthermore, pre-

vious work on automatic unpacking only includes instruction in

the execution trace if the memory making up the instructions are

part of the shadow memory. By contrast, our approach includes in-

struction in the execution trace if they are either part of the shadow

memory or code-reuse a�acks. As such, our approach also includes

the same and more instructions in the malware execution trace.

�is is easy to show formally and in Appendix A we give a formal

treatment that shows we indeed capture the same instructions and

also more, compared to previous work.

In this section, we have shown how Tartarus achieves one of

its two purposes, namely a general approach to malware execu-

tion tracing in the context of dynamically generated code, code

injections and code-reuse a�acks. We now proceed to consider

how Tartarus achieves its second goal of raising the execution into

higher-level semantics.

4 CODEWAVES
�e �rst abstraction we propose on the malware execution trace is

a novel approach to identify dynamically generated code. �e goal

of uncovering dynamically generated code is to identify whenever

memory that was wri�en during runtime is also executed. �e

approach by previous work is to divide the malware execution into

code waves such that each code wave consists of memory explicitly

wri�en by the previous code wave [5, 24, 40] ([40] uses the termi-

nology layers instead of code waves). However, we cannot rely on

this approach because it can not identify malicious code that was

dynamically generated via benign code, i.e. the malware triggered

benign code to do the writing of the dynamically generated code.

Instead, Tartarus takes a di�erent approach and raises the malware

execution trace into dynamically generated code waves indepen-

dent of who wrote the code, but on the basis that the wri�en code

must originate from the malware.

We model dynamically generated code on a process-level basis

and consider the �rst code wave to be the malware module when

�rst loaded into memory. To identify code waves we use a per-

process shadow table that is a memory snapshot taken at one point

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1696

of the tainted memory in some process, and each shadow table

corresponds to one code wave. When a malicious instruction exe-

cutes, we can then map the bytes making up the instruction with

the bytes of the shadow table. If we observe any inconsistencies

with the shadow table and the currently executing instruction, we

can conclude this instruction is part of a new wave of dynamically

generated code.

Because the shadow table is composed of tainted memory and

tainted memory is propagated through both benign and malicious

instructions, then we e�ectively de�ne dynamically generated code

independent of who wrote the code. However, since the tainted

code originates from the malware itself, then we can e�ectively

declare the dynamically generated code to be dynamically gener-

ated malicious code. �ese are the two aspects that separate our

technique from previous work and allows our technique to be more

general. �e ability to identify dynamically generated code in this

way is vital for identifying dynamically generated code across pro-

cesses because in most cases memory wri�en from one process

to another is not done by the instructions explicitly part of the

malware but rather by some OS provided APIs or features.

In practice a shadow table is a hashtable where each key is an

address in virtual memory and the corresponding value is the byte

located at that address when the pair was inserted into the hashtable.

Whenever a tainted instruction is executed we have one of four

possible cases:

(1) the instruction is inside a process that does not have a

shadow table assigned;

(2) the instruction is inside a process with a shadow table

assigned, but the address of the instruction is not in the

shadow table;

(3) the instruction is inside a process with a shadow table

and the address of the instruction is inside the shadow

table, but the memory in shadow table is not similar to the

instruction executed;

(4) the instruction is inside a process that has a shadow ta-

ble and the address of the instruction is in the shadow

table, and the memory in the shadow table is similar to the

current instruction.

In all cases but (4), we consider the instruction to be entrypoint

of a new code wave. Further, cases 1-3 each indicate a high-level

feature of the new code wave. In case (1) we have an instance of

code injection, in case (2) we simply have a new code wave and in

case (3) we have a new code wave that has overwri�en memory in

a previous code wave.

When an entrypoint of a new code wave is discovered, Tartarus

�rst clears the shadow table of the given process, and if a shadow

table does not already exist Tartarus simply initiates one. Next, the

entire process memory is scanned and every byte that is tainted is

put in the new shadow table. A�er the scanning, the shadow table

contains the current code wave of the process under execution.

5 CODE INJECTIONS
�e second abstraction that we propose is to identify code injec-

tions in the malware execution trace, and also extract essential

insights about these by performing semantics-aware dependency

analysis on the malware execution trace and the taint propagation

log. �e procedure consists of the following three steps: (1) from

the malware execution trace, identify where control-�ow goes from

one process to another and arrange such �ndings into transition

pairs; (2) �nd any code-reuse a�acks involved in the transition; (3)

perform backward dependency analysis on these two components

and generate a code injection graph; In this section, we detail each

of these steps.

5.1 Transition model
�e transition model captures when the malware execution �ows

from one process to another. �is type of �ow is composed of an

initiator instruction in the source process and a target instruction

in the destination process. Together the initiator and target in-

struction make up a transition pair. Identifying the transition pairs

is not trivial because the instructions in the malware execution

trace are ordered according to when they were observed in a single

cored execution environment, and not necessarily the control �ow

of the malware execution. In practice, this problem of misalign-

ment between control-�ow and observation time occurs because

of asynchronous procedure calls, parallel execution and context

switches.

Previous works have handled the problem of identifying tran-

sition pairs with two di�erent solutions. Ugarte et al. [40] create

a transition pair whenever a thread context switch occurs. We

have found that in practice this approach is inaccurate because it

generates too many transition pairs. �e reason for this is that a

context-switch does not re�ect a control-�ow transition from the

process or thread being switched out to the one being switched in.

Bonfante et al. [5] hook a set of function calls which are known

to initiate execution in remote processes. Although this approach

works well in practice when the injection techniques are known,

it lacks generality because it cannot identify unknown code injec-

tions.

Our approach is instead to �rst identify all target instructions in

a general manner independent of function hooking, and then trace

backwards in order to identify the initiator instruction. In com-

parison to an approach that �rst identi�es the initiator instruction

and then the target instruction, our approach is able to identify the

target instruction independently of the initiator instruction exactly

because we rely on taint for tracing the malware execution. When

we trace backwards to identify the initiator instruction, we then

use function hooking to identify if the injection matches an already

known injection technique, and if it does not we then deploy a

general heuristic to identify the initiator instruction.

To identify target instructions we monitor for malware code

execution inside processes where the malware has previously not

executed. When we observe this behaviour, we know (1) this is the

�rst instruction in a given code wave and (2) injection of code has

occurred because this is the �rst time malware code is executed in

the process. We label each of these instructions as target instruc-

tions. We note here that we only declare an instruction a target

instruction if it is not a code-reuse a�ack.

When a target instruction has been found, we proceed to �nd

the corresponding initiator. During execution we monitor all API

calls done by instructions in the malware execution trace. �is

includes obfuscated calls such as push X; rol [esp], Y; ret.

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1697

We then keep a subset of these calls in a set F , with all the calls to

functions that we know possibly initiate execution in a remote con-

text e.g. CreateRemoteThread, ResumeThread, CreateProcess,

QueuseUserAPC. When a target instruction is observed, we �rst

check if there is an element e P F that initiates execution of this

code. If there is, then we declare the element e as the initiator of

the code injection. In is important to note here that the hooking is

only used to identify the injection initiator and not to identify that a

code injection has happened. Our approach to identifying whether

a code injection has happened is completely independent of our

use of hooking. However, if there is no such element, then we have

a code injection that relies on an unknown method for injecting the

code. In this case, we trace back in the malware execution trace to

the �rst instruction that branches to something outside of the mal-

ware memory (such as calling a function in a dynamically loaded

module) and is a non-gadget related instruction. �is instruction is

then identi�ed as the initiator.

5.2 Injection mechanics
When the initiator and the target instruction pair has been found,

we continue to identify if there is any code-reuse in-between them

that are of importance to the injection. Speci�cally, we consider

each code injection as a sequence of instructions xinitiator ,R,G,tarдety
where R is a sequence of instructions with pid not equal to the pid

of tarдet andG is a sequence of instructions that are all code-reuse

pairs and have pid to be the same as the pid of target. Both R and

G may be empty sequences. We call G the catalyst and the tuple

(initiator ,catalyst ,tarдet) the key components of the code injection.

�e key components of the code injection make up the control �ow

of the code injection: initiator Ñ catalyst Ñ tarдet .
Figure 2 shows the key components of the code injection col-

lected by Tartarus when matched with the Gapz malware sample.

�e initiator instruction here is the instruction call SendNotifyMessage
at address 9b3b00 in the malware process. �is call triggers three

indirect call gadgets, that then transfer control to 6 ROP gadgets.

�e target instruction is mov ebp, esp at address 77ef48c0.

To identify code injections that purely rely on code-reuse a�acks

and not any target instruction, such as the malware proposed by

Vogl et al. [41], we also identify a code injection if we observe a

code-reuse sequence of longer than 10 gadgets.

�e key components give valuable insight into a code injection

and the instructions that are part of it. However, on their own, the

key components give li�le insight into how the malware established

these components. To give insight about this we construct the code

injection graph. A code injection graph describes the control-�ow of

the code injection and the propagation of tainted memory involved

in the code injection. �e nodes of the graph are either instructions

in the malware execution trace or taint-propagation instructions.

�e edges in the graph therefore show either control-�ow or taint-

�ow. In practice we also annotate the nodes with several descriptive

elements such as the modules and functions they are part of.

To construct the code injection graph we analyse the taint-

propagation history of the tainted memory in the catalyst and

the target. Speci�cally, we trace backwards on the instructions that

have propagated the tainted memory until one of two conditions

is satis�ed: (1) the instruction propagating tainted memory is part

P ID Address Instruction
4d0 9b3b00 call SendNotifyMessage

5f0 1001b4b call [eax] ; KiUserAPCDispatcher

5f0 1001b59 call [eax + 8]

5f0 1022599 std

5f0 102259a ret

5f0 1001b6e call [eax + 4]

5f0 7c9ee5be mov ecx, 0x94

5f0 7c9ee5c3 rep movsd

5f0 7c9ee5c5 pop edi

5f0 7c9ee5c6 xor eax, eax

5f0 7c9ee5c8 pop esi

5f0 7c9ee5c9 pop edi

5f0 7c9ee5ca ret

5f0 77ec5b26 cld

5f0 77ec5b27 ret

5f0 101179c pop eax

5f0 101179d ret

5f0 7c9015f8 alloca probe

5f0 7c90160c ret

5f0 7c802213 WriteProcessMemory

5f0 7c802298 ret

5f0 101179c pop eax

5f0 101179d ret

5f0 1002080 jmp eax

5f0 77ef48c0 mov ebp, esp

Figure 2: Key components of Gapz code injection.

lea edi, [esp + 0x10]
pop eax
call eax

Figure 3: Code of KiUserAPCDispatcher.

of the malware execution trace or (2) the instruction propagating

memory propagates memory from a code wave di�erent than the

code wave of which the target instruction belong.

6 IMPLEMENTATION
We have implemented the techniques described in the previous

sections into a practical system called Tartarus. Our implementation

consists of three main parts: (i) a dynamic analysis component that

executes a given sample in our sandbox; (ii) a component that does

analysis on the output of our dynamic analysis and (iii) a manager

component that wraps around the two other components to allow

for analysis of large sample sets.

�e dynamic analysis component emulates the malware execu-

tion and is built on top of DECAF [21]. It is in charge of capturing

the malware execution trace described in Section 3 and identifying

code waves described in Section 4. In addition, it performs several

supporting tasks such as dumping memory of code waves, construct

the pair-wise execution order of instructions inside each code wave,

collect obfuscated library calls (like those described in Section 5.1)

and dump taint-logging information. �e second component takes

as input the output of our dynamic analysis component and identi-

�es and analyses code injections. It also reconstructs control-�ow

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1698

within each code wave based on disassembly of the code wave’s

memory dumps and the pair-wise execution order of instructions

in the code wave. Based on the code waves and the code injections

this component then generates a system-wide control-�ow graph

that shows the propagation strategy deployed by the malware. An

important aspect to note here is that our implementation will dis-

card malware execution inside a process if this process only has 10

or less instructions executed inside of it.

�e dynamic analysis component does not need to log the entire

execution trace. �is is because the pair-wise execution order of

instructions gives us information to reconstruct control-�ow within

each code wave, and identi�cation and analyses of code injections

only require API calls, code-reuse a�acks and taint-logging infor-

mation. Additionally, for each code injection we can construct the

injection mechanics even without the taint-log because we don’t

need to backtrack on the taint propagations. We only need the

taint-logging information to derive the entire code injection graph.

As such, Tartarus comes with two se�ings, one that produces the

taint-log and one that does not. �e one that does not produces

minimal outputs (a few MB) from the dynamic analysis where taint

logs can become several (1-5) GBs for a large malware sample. In

total, Tartarus consists of about 9000 lines of C code and 3500 lines

of Python.

7 EVALUATION
To verify the e�ectiveness of Tartarus, we have evaluated it against

a set of benchmark applications comprising synthetic applications

and real-world malware. In Section 7.1 we experimentally validate

the correctness of Taturatus by matching it with applications where

we have ground-truth. �en in Section 7.2 we compare Tartarus

with previous works and our results show that Tartarus is more

precise by �nding code injections in more applications. In Section

7.3 we perform in-depth analysis on two case studies, demonstrating

that Tartarus is able to capture malware propagations, dynamically

generated and code injections, and also give valuable insights about

the three. In Section 7.4 we present a study on the performance of

Tartarus relative to malware samples in our experiments, and �nally

in Section 7.5 we report observations from matching Tartarus with

934 recently collected PE �les from online malware repositories.

7.1 Experimental validation of correctness
In our �rst experiment we empirically evaluate the correctness of

Tartarus. To do this, we match Tartarus with applications where

we know if the applications perform code injections or not. In

total, Tartarus is evaluated against three data sets comprising 49

applications.

�e �rst set, A, is composed of several code injection techniques

that are publicly documented. Four of these techniques include

code-reuse a�acks and six of them do not. �e second set, B, is com-

posed of a set of malware samples from 4 malware families where

anti-malware companies have documented that these malware sam-

ples inject code into other processes. We have only selected �les

from reports where hashsums are given for the malware samples

to ensure we select correct samples. �e third set, C , is composed

of benchmark applications where we are sure they do not inject

Tartarus CO CS

Samples # num CRI CRI CI CI CI

(A) PowerLoader 1 3 1 1 0 0

(A) PowerLoaderEx 1 3 1 1 0 0

(A) AtomBombing 1 3 1 1 0 0

(A) Codeless 1 3 1 1 0 0

(A) WPM, CRT 1 0 1 1 1

(A) WPM, STC, RT 1 0 1 0 1

(A) WPM, QAPC 1 0 1 0 0

(A) MVS, STC, RT 1 0 1 0 1

(A) MVS, CRT 1 0 1 1 1

(A) MVS, QAPC 1 0 1 0 0

(B) CryptoWall 4 [1] 4 0 4 0 4

(B) Gapz [36] 4 3 3 4 1 1

(B) Ramnit [35] 12 0 12 4 7

(B) Tinba [25] 8 0 8 8 8

Total 38 7 38 15 24

Table 2: Evaluation with code injecting binaries.
#CRI = Code-reuse injection, #CI = Code Injection,

#Codeless = Modi�ed version of Atombombing that

relies purely on code-reuse a�acks.

#WPM = WriteProcessMemory, #CRT = CreateRemote�read,

#STC = Set�readContext, #RT = Resume�read,

#QAPC = �eueUserAPC/Nt�eueUserAPC, #MVS =

MapViewOfSection, #CO = Codisasm, #CS = CuckooSandbox.

Tartarus CO CS

samples # num CI CI CI

(C) WCET [19] 11 0 0 0

Table 3: Evaluation with non code-injecting binaries.

code into other processes. �e benchmarks collected are all from

the WCET benchmark suite [19].

�e �rst �ve columns of Table 2 show the results of matching

Tartarus with the samples from set A and B. As can be seen, Tartarus

correctly identi�es code injection in all of the code injecting binaries,

and also identi�es when code-reuse a�acks are part of the code

injection techniques.

Given that our technique relies on taint to capture malware

execution, it is imperative that the taint does not explode. Tartarus

�nds no code injecting binaries when matched with our data set

C, as shown in the �rst three columns of Table 3. However, these

samples are fairly simple and do not behave in any complex system-

interactive behaviours. To measure the number of false positives

Tartarus produces in contexts where the samples use a lot of system

activities we match for each malware sample in dataset B the code

injections as identi�ed by Tartarus with those identi�ed in the

anti-malware companies’ reports.

In [25] CSIS and Trend Micro reports that Tinba injects into

winver.exe, explorer.exe, svchost.exe, �refox.exe and iexplore.exe. In

6 of the 8 samples we analysed, Tartarus found injections into

winver.exe, explorer.exe, �refox.exe and chrome.exe. In 1 of the 2

other samples Tartarus found injections into winver.exe, explorer.exe,

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1699

svchost.exe, �refox.exe and chrome.exe and �nally in the last sample

Tartarus found injections into 20 processes on the system. We

picked 2 samples of the �rst 6 to con�rm that the malware indeed

injects into chrome.exe, and we also manually analysed the last

sample to verify that the sample injects into all processes on the

system for which it has privileges.

In [36] researchers from eset report that Gapz injects code into

the Windows process explorer.exe and also uses code-reuse a�acks.

Tartarus found code injections into explorer.exe in 3 of the 4 sam-

ples we analysed and code-reuse a�acks in all 3 of these. In two

of these samples Tartarus captured explorer.exe to be the only pro-

cess where injection occurred, where in the other one Tartarus

captured code injections into explorer.exe but also svchost.exe and

winlogon.exe. �is sample contained about 3800 unique instructions

inside explorer.exe and only 22 and 138 unique instructions within

svchost.exe and winlogon.exe, respectively. �e last sample exhibited

no code-reuse a�acks and injected code into svchost.exe rather than

explorer.exe. We veri�ed manually that this malware does indeed

inject code into svchost.exe and relies on CreateProcessInternalW
and Resume�read functions, and no code-reuse a�acks, to perform

the injection.

In [35] researchers from Symantec report that Ramnit injects

code into IEXPLORE.EXE and svchost.exe. In 9 out of the 12 Ram-

nit samples Tartarus found injections into IEXPLORE.EXE and sv-
chost.exe. In the remaining three samples, Tartarus captured code

injection into IEXPLORE.EXE and svchost.exe but also 25, 20 and 17

instructions inside of drwtsn32.exe, respectively.

In [1] researchers from Cisco report that CryptoWall 4 injects

into svchost.exe and explorer.exe. In all four samples of CryptoWall

4.0 in our data set we observed malware execution in these two

processes. In two of the samples svchost.exe and explorer.exe were

the only processes of which injection occurred. In the two other

samples, Tartarus also captured 20 and 17 instructions inside vssas-
mind.exe, respectively.

7.2 Comparative evaluation
To assess the quality of our results, we put Tartarus in context with

other approaches. Our second experiment, presented in this section,

compares our solution with two approaches that are state-of-the

art in malware analysis. We speci�cally compare our tool with a

recent malware disassembler, Codisasm [5], and a coarse-grained

malware analysis platform, namely Cuckoo Sandbox.

Codisasm relies on both static and dynamic analysis and is aimed

at disassembling binaries with self-modifying code and overlapping

instructions. �e tool is built on top of PIN and hooks two API calls

CreateRemoteThread and CreateRemoteThreadEx to follow the

malware propagation. Although Codisasm is designed as a malware

disassembler, it relies on capturing an instruction-level execution

trace of the malware to perform the disassembly. It furthermore

identi�es dynamically generated code by monitoring for execution

of memory that is explicitly wri�en by the malware, as described

in Section 4. As such, Tartarus and Codisasm both capture the

execution trace and dynamically generated code, although with

two di�erent approaches, and this is the reason we select it as a

comparative benchmark. CuckooSandbox is a malware analysis tool

that is heavily used in industry and deploys a malware analyser with

system and API call granularity [11]. It contains many techniques

for automatically following malware in case of code injections. Both

Codisasm and CuckooSandbox follow malware based on function

hooking and heuristics about known injection techniques.

�e results of executing our sample set A and B in Codisasm and

CuckooSandbox is shown in column 6 and 7 of Table 2. As can be

seen Tartarus outperformed both CuckooSandbox and Codisasm

by a large margin. CuckooSandbox detected code injection in 24

samples and Codisasm in 15 samples of the 38 applications.

In comparison to Cuckoo Sandbox, the �rst thing we noticed

is that Cuckoo Sandbox fails on all four synthetic injection tech-

niques that rely on code-reuse a�acks. Furthermore, Cuckoo fails

to observe code injection in 3 of the Gapz malware samples and 5

of the Ramnit malware samples. �e sample from the Gapz family

that Cuckoo correctly identi�ed as containing code injection was

the sample without code-reuse a�acks as described above. �e use

of ResumeThread was accurately reported by both Tartarus and

Cuckoo Sandbox.

�e second thing we notice when comparing to Cuckoo is that

Cuckoo failed to correctly identify code injections via remote proce-

dure calls. We believe this is because many remote procedure calls

do not constitute code injections. �erefore Cuckoo cannot create

a hook and label each remote procedure call an injection because

it will produce many false positives. Tartarus does not run into

this problem because tainted code must be be executed for Tartarus

to declare that a code injection occurs, and Tartarus can therefore

identify which remote procedure calls result in a code injection.

It may seem Tartarus should identify a code reuse a�ack for the

remote procedure calls because an indirect branch in the target

process transfers execution to a value set by the process sending

the remote procedure call. However, in our cases, the destination of

the indirect branch is tainted code so the conditions for a code-reuse

a�ack, as described in Section 3.5, are not satis�ed. Furthermore,

it is important to note here that even in the case where a remote

procedure call is performed, and not to tainted memory, then we

will still not declare it as a code injection because only 1 code-reuse

a�ack will be observed. As such, it does not satisfy the conditions

for a code injection described in Section 5 because there is no target

instruction nor a chain of code-reuse a�acks.

Codisasm found code injections in 15 of the 36 samples. In par-

ticular, Codisasm found code injections in both of the synthetic

samples that relied on CreateRemote�read. Because we don’t have

direct access to their system, but rather through a web interface,

it is di�cult to assess the speci�c cause of limitations in the other

samples. For several samples we would get get error messages back

from the server that either an unknown malfunction occurred or

the timeout occurred because the system had crashed or wasn’t able

to produce any traces. However, we consider the limitations to be a

result of two properties: one conceptual and one in the implementa-

tion. In terms of conceptual limitation, Codisasm follows malware

propagation based on monitoring calls to CreateRemoteThread
and CreateRemoteThreadEx. However, there are many techniques

that do not use either of these API functions to inject code. Notably

only 2 out of 10 injection techniques in data set A makes use of

CreateRemoteThread. From an implementation point of view, the

dynamic analysis component of Codisasm relies on PIN. PIN is a

process-level dynamic binary instrumentation framework and has

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1700

wave0

4150
instrs

wave1

2700
instrs

Malware.exe

Code-
reuse
attacks

23 instrs

wave0

58 instrs
wave1

456 instrs

wave2

3567
instrs

explorer.exe
SendNotifyMessage

SetWindowsLong

Figure 4: Malware propagation of Gapz.

previously been reported to be unreliable when instrumenting mal-

ware. For example, it fails instrumentation in case of code injection

into processes with multiple active threads [18].

7.3 Detailed analysis
To demonstrate the precision of our approach and its ability to

give insights about code injection techniques we present in this

section two detailed case studies of Tartarus. �e �rst case study is

from a Gapz malware sample and the second case is from a recently

published code injection technique called AtomBombing.

Gapz malware. Figure 4 shows a high-level view of the system-

wide CFG produced by Tartarus when matched with a sample from

the Gapz malware family. �e solid arrows represent control-�ow,

the dashed arrow represent data-�ow and the black circle is the

entry point.

�e malware �rst decrypts itself with a single wave of self-

modifying code and then proceeds to inject code into explorer.exe.

Because Tartarus has identi�ed an injection catalyst, we know there

are code-reuse a�acks involved in the injection. Furthermore, the

injection transfers control to a rather small code wave of only 58 in-

structions. �is suggests that the malware uses a code-reuse a�ack

to leverage shellcode execution inside of explorer.exe, and this

is indeed the case. �e key components identi�ed by Tartarus are

shown in Figure 2, and Figure 5 shows a part of the code injection

graph for the three �rst gadgets in the key components. Rounded

boxes are control-�ow and squared boxes are taint-propagating

nodes. �e rounded boxes shows the code-reuse initiator and also

the gadget itself.

Investigating the key components, we observe the �rst code-

reuse a�ack is a call to KiUserAPCDispatcher, and the code of

this function is shown in the bo�om of Figure 3. �is gadget puts

the value of esp + 0x10 into edi and the second gadget executes

the instruction std which will cause the direction �ag to be set.

�e third gadget, initiated by the instruction at 1001b4b, executes

the two instructions: mov ecx, 0x94 followed by rep movsd,

e�ectively causing 0x94 bytes to be copied from esi to edi. Because

the direction �ag is set, edi and esi will be decreased by one a�er

every mov instruction. Recall that edi was set to esp + 0x10 by the

�rst gadget, which means that the memory at the top of the stack

CALL [ebp-0xc] . . .

AtomBombing.exe

Nt�eueAPC�read

. . .
CALL eax

RPCDispatcher

. . .

explorer.exe

ZwSet�readContext

. . .
ret

ZwAllocateVirtualMemory

. . .
ret

memcpy

ret
mov eax, edi
. . .

wave0

Figure 6: AtomBombing caught by Tartarus
with hook on Nt�eueAPC�read.

to be overwri�en with whatever esi points to. We can therefore

easily conclude the stack is being overwri�en with the memory

pointed to by esi, hinting strongly towards a set of indirect call

instructions being hijacked to allow for a ROP a�ack. Before we

proceed, it is important to note here that the malware execution

trace is subset of all the instructions executed. When the third

gadget is executed there has in fact been several push instructions

between the �rst and the third gadget, resulting in a larger distance

between esp and edi than 0x14 as can be thought from looking at

the malware execution trace. However, these are not part of the

malware execution trace and is therefore not shown by Tartarus.

Investigating the code injection graph, we observe that Tartarus

correctly identi�es SendNotifyMessage as the code execution ini-

tiator and SetWindowsLong as a function responsible for data-�ow

in the overwri�en addresses in the code-reuse a�acks. Further anal-

ysis reveals that the ROP chain uses WriteProcessMemory to over-

write memory inside the process of explorer.exe and then pro-

ceeds to transfer execution to the �rst wave inside explorer.exe.

Investigating the complete code injection graph, shown in Appen-

dix A, we see with minimal e�ort that the code-reuse a�acks does

in fact turn into a ROP chain and also that the return addresses

were overwri�en by the rep movsd instruction.

AtomBombing. Recently, researchers discovered a new injec-

tion technique called AtomBombing [27], which uses code-reuse

a�acks to avoid using standard API calls for code injection. �e

technique was �rst presented October 2016 and only four months

later researchers discovered a new 64-bit version of the Dridex

malware that had adopted AtomBombing into its arsenal [2].

AtomBombing abuses the global atom table in Windows to share

memory between processes and undocumented asynchronous pro-

cedure calls to force the injectee application to call various functions

on behalf of the injecting process. Speci�cally, the injecting process

writes a ROP chain and shellcode onto the global atom table us-

ing GlobalAddAtom. �e injecter then uses NtQueueApcThread to

force the injectee process to call GlobalGetAtomName such that the

ROP chain and shellcode is stored inside the target process. To in-

voke execution, the injecter again uses NtQueueApcThread to force

the injectee to call SetThreadContext to navigate eip and esp. eip

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1701

Call SendNotifyMessage

1001b4b Call [eax]
KiUserAPCDispatcher

1001b59 Call [eax + 8]
std
ret

1001b6e Call [eax + 4]
mov ecx, 0x94
rep movsd
pop edi
xor eax, eax
pop esi
pop edi

mov [esi + 0x94], eax
0xa40, wave1
9b3748

mov [esi + 0x80], eax
0xa40, wave1
0x9b373d

mov [esi + 0x94], eax
0xa40, wave1
0x9b3748

mov [esi + 0x9c], eax
0xa40, wave1
0x9b3765

mov eax, [esi]
. . .

Kernel

push [ebp + 0x10]
0xa40
0x7e42c2a4
User32.dll
SetWindowsLong

push eax
0xa40, wave1
0x9b3aee

[esi] chaser

[eax+4] chaser

[eax + 8] chaser

[eax] chaser

eax chaser

eax chaser

eax chaser

esi chaser

Figure 5: Code injection graph for the �rst three gadgets in Gapz code injection. �e graph shows that in all
three call gadgets the value tainting eax was propagated through SetWindowsLong in the host process.

CALL ds:ExitProcess . . .

AtomBombing.exe

ExitProcess

. . .
CALL eax

RPCDispatcher

. . .

explorer.exe

ZwSet�readContext

. . .
ret

ZwAllocateVirtualMemory

. . .
ret

memcpy

ret
mov eax, edi
. . .

wave0

Figure 7: AtomBombing caught by Tartarus
without any hooks.

is set to ZwAllocateVirtualMemory which is the �rst code-reuse

a�ack in the target process, and esp is set to point to the begin-

ning of the ROP chain. As such, AtomBombing achieves code

execution with a combination of calls to NtQueueApcThread and

GlobalAddAtom in the injecter process.

When Tartarus is matched with AtomBombing, Tartarus �nds

the code injection shown in Figure 6. Tartarus captures the code in-

jection exactly, seeing that a call to NtQueueApcThread in the host

process results in the target process calling SetThreadContext.

�e ret instruction inside ZwAllocateVirtualMemory is the �rst

ROP gadget in the injection. �is ROP gadget transfers execution to

memcpy and the return instruction of memcpy transfers execution to

a simple ROP gadget consisting of only a ret instruction. �is gad-

gets is there because the ROP chain must catch the dest parameter

given to memcpy, which is 4 bytes away from the original return

address. �erefore, the third ret instruction executed results in

transfer of control to the destination of the copied bu�er.

In Figure 7, we show the AtomBombing injection caught by Tar-

tarus when there are no hooks on NtQueueApcThread. In this case,

Tartarus catches the exact same code injection except for the initia-

tor instruction which in this case is a call to ExitProcess. �e reason

this happens is because Nt�eueAPC�read is an asynchronous

procedure call, which means that the last API call in the injector

process at the time the injection happens inside explorer.exe is not

Nt�eueAPC�read because execution has continued inside the

injector process itself. �is clearly shows the use of hooks in our

technique, namely to capture the right initiator instruction and not

to identify whether an injection has occurred or not.

7.4 Performance evaluation
�e performance of Tartarus has a large impact on the applica-

tions of the tool. Because we speci�cally use Tartarus for malware

analysis, we measure the performance of Tartarus relative to the

malware samples in our data set. For a performance measurement

speci�cally about DECAF, we refer to the original DECAF paper

[21]. To put the performance of Tartarus in perspective, we mea-

sure how fast Tartarus identi�es the instructions that are part of the

system-wide CFG, i.e. unique instructions in the malware execution

trace, during execution of the samples.

We selected one sample from each of the malware families in

our B data set and ran them for 1100 seconds inside Tartarus. �e

samples shared very similar behaviours to the other samples in

their respective families, so each sample represents well the overall

malware family. Our experiments were performed on a laptop

with an i7 �ad Core 2.5 GHz processor and 16 GB of ram and

three instances of the dynamic analysis environment were run

simultaneously, meaning 3 samples were analysed approximately

every 1100 seconds on a standard laptop. We used a Windows XP

SP3 image. Our experiments were performed with our taint-logging

turned o�, meaning Tartarus is able to identify code waves and

code injections with their key components, but not the entire code

injection graph. �e results are shown in Figure 8.

We can see in Figure 8 that the majority of Tinba was captured in

less than 2 minutes, Gapz about 13 minutes, Ramnit about 7 minutes

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1702

0 5 10 15 20

0

20

40

60

80

100

Gapz

Tinba

Ramnit

CryptoWall

Time (min)

R
e
l
a
t
i
v
e

C
F
G

s
i
z
e

Figure 8: Size of CFG relative to analysis time.

Total instructions MT instructions Last injection

Gapz 1.2B 225M 13Min

TinyBanker 230M 10M 2Min

CryptoWall 2.0B 250M 14Min

Ramnit 580M 50M 7Min

Table 4: Instruction count of malware
samples. #MT = Malware execution trace.

and CryptoWall 4.0 in about about 17 minutes. To put this into

perspective of the sample sizes, we ran the same experiment with

two counters for capturing the number of instructions executed

in entire system and the number of instructions in the malware

execution trace. We counted until the last code injection in each of

the samples. �e instruction counts are shown in Table 4.

An interesting aspect of Figure 8 is how clearly it shows that the

samples in our dataset work in stages in that the construction of the

CFG is not linear but more of a step-wise construction. For example,

the Gapz malware has revealed about 65% of its CFG within the

�rst 3 minutes, but then continues for 10 with only about 5% more

of the CFG constructed. A�er 13 minutes of execution time, Gapz

�nally reveals more of itself and a big leap to about 95% happens.

To put the construction of the CFG into perspective of dynam-

ically generated code and code injections, Figure 9 and Figure 10

show the CFG construction relative to execution time, with the

addition of markers for when the �rst wave of dynamically gener-

ated code and code injections occurred. �e graphs are of a Tinba

and a Gapz sample, respectively. Note the Tinba graph is zoomed

in on the �rst 2 minutes of execution time. A triangle shows the

�rst wave of dynamically generated code and a circle denotes a

code injection. We observe that the majority of the code execu-

tion happens a�er the �rst wave of dynamically generated code.

Namely, in the Tinba case, more than 90% of the malware execution

happens a�er the �rst wave of dynamically generated code and in

the Gapz sample about 60%. Furthermore, in the Tinba case more

than 80% of unique instructions in the CFG happens a�er the �rst

code injection, where in the Gapz sample more than 20% happens

a�er the �rst code injection.

0 0.5 1 1.5 2

0

20

40

60

80

100

Time (min)

R
e
l
a
t
i
v
e

C
F
G

s
i
z
e

Figure 9: Relative CFG size of Tinba malware with �rst wave of
dynamically generated code and code injections marked.

0 5 10 15 20

0

20

40

60

80

100

Time (min)

R
e
l
a
t
i
v
e

C
F
G

s
i
z
e

Figure 10: Relative CFG size of Gapz malware with �rst wave of
dynamically generated code and code injections marked.

7.5 Relevance of approach on recent malware
We match Tartarus with a recent collection of malware samples to

demonstrate the relevance of our approach. In total, we analyse

934 PE �les submi�ed to VirusTotal in April and May of 2017. Each

sample has at least 40 anti-malware vendors reporting the sample

malicious. We verify the relevance of our approach by counting

the number of processes a sample injects into and whether it uses

code-reuse a�acks. We execute each sample for 600 seconds.

We found that 373 samples inject code into other processes,

which corresponds to 40% of the total malware samples. In contrast,

a report from PaloAlto Networks on New and Evasive Malware from

2013 reports that code injection was observed in 13.5% of samples

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1703

collected in March 2013 [33]. �is is an increase of almost three

times in four years. We found that 223 of the samples inject into 4

processes or less and in 120 of the samples code-reuse a�acks were

used as part of a code injection. In 118 of these cases, only one

code-reuse a�ack was used and in the other two cases a chain of

two code-reuse a�acks were used. We consider this to be a strong

indication that indeed code-injection is increasingly being used,

but chained code-reuse a�acks inside code injections remain rare.

8 LIMITATIONS AND FUTUREWORK
In this work our focus is on tracing malware propagations within

the host and identifying code injections and code waves with a

special a�ention to the use of code-reuse a�acks. In this section

we describe limitations of our approach and some of the remain-

ing challenges in the problem space of capturing and describing

malware propagations.

An interesting limitation to our approach is that we only con-

sider malware propagations that happens within a single system

execution. However, some malware carry propagation strategies

that stretch over a system reboot by, for example, dropping a bootkit

or rootkit which is initialized during system start-up. In fact, the

Gapz malware is in this category. When Gapz has injected into

explorer.exe it continues to drop a bootkit and then modify either

the master boot record (MBR) or the volume boot record (VBR)

(depending on the version of Gapz). As a result, during the next

bootup, the modi�cations to the MBR or VBR will cause the bootkit

to be loaded and Gapz will continue execution via the bootkit. Au-

tomatic analysis of this part of Gapz requires dynamic analysis to

be stretched over the system boot. To the best of our knowledge,

dynamic analysis of malware has never been done over several

system boots. �erefore, an interesting avenue of further research

is to investigate how much more information can be leveraged

automatically about the malware with such an approach.

Another limitation to our approach is the use of our techniques

when the guest system is a multiprocessor environment. For ex-

ample, our approach to collecting the malware execution trace

described in Algorithm 1 assumes a single-core execution environ-

ment. Although we believe the identi�cation of code injections

and code waves can follow very similar strategies to our current

approach, we have not yet tested Tartarus with a multi-core guest

environment. However, we will have many more parallel execution

contexts to concern ourselves with and can potentially not rely on

the order of the malware execution trace as we do in this work.

In this paper we focused on identifying control-�ow aspects

between processes based on code injections and code waves within

each process. However, we have not paid a lot of a�ention to the

control-�ow aspects within each code wave itself. In most cases,

we can identify a lot of the control-�ow within each code wave

from the instruction execution order in the malware execution trace

and disassembly of the code wave. However, if a malware sample

writes memory to another process and this memory has several

di�erent entry points independent of each other, then our approach

will only recognize one code injection and consider the wri�en

memory as one code wave. A more accurate approach would be to

discover multiple code injections to the same code wave, and use

that information to capture more precisely the control-�ow within

the code wave itself. One potential strategy for solving this problem

is a more re�ned de�nition of a code-wave, for example something

similar to Ugarte et al. who divides the memory of a code wave

into unpacking frames. However, this would require us to relax the

way we identify code injections and may end up producing many

false positives in the control-�ow graph of the malware.

From a practical point of view, a limitation to our approach is

that malware can detect the use of dynamic analysis. �is problem

is shared by any dynamic analysis environment. For example, mal-

ware can detect the presence of QEMU and then diverge execution

to non-malicious behaviours. We do not perform any activities to

combat malware that tries to detect the presence of our system.

�ere exists several approaches to hardening QEMU for malware

analysis which are directly correlated with approaches in which

malware detects QEMU. If we implement these techniques into

Tartarus we may harden it for some time, but is not likely to work

as a general solution. Conceptually, in order to make it harder for

the malware to detect that it is running inside an analysis environ-

ment, one approach is to switch to dynamic analysis environment

that are more transparent in nature. For example, environments

like Ether [12] that utilize hardware virtualization extensions o�er

more separation between the analysis environment and the guest

environment in which the malware is executing.

On a fundamental level, our techniques rely on taint analysis for

capturing malware propagation. As such, our techniques inherit

the limitations of taint analysis for malware analysis, meaning an

a�acker can deploy information-�ow evasive behaviours in order to

avoid analysis by our techniques. Certainly, techniques like multi-

path exploration via symbolic execution can aid in defeating evasive

behaviours. However, given that we can’t explore the entire state-

space of the vast majority of malware samples, the question we must

really solve is how to identify evasive behaviours. When an evasive

behaviour is then detected, we can rely on various techniques, with

symbolic execution as one of them, to guide execution down the

path of interest. For a more general description about limitation to

taint analysis for malware analysis we refer to Cavallaro et al. [7].

9 RELATEDWORK
Dynamic taint analysis have many applications in automating mal-

ware analysis tasks and a lot of work has been done in this area.

System-wide �ne-grained malware analysis with taint information

was �rst proposed in Panorama by Yin et al. [46]. Panorama is

built on top of QEMU and o�ers multiple features such as keylog-

ger detection and malware tracing based on taint analysis. Indeed

the malware tracing o�ered by Panorama is the work the comes

closest to ours. In the malware execution tracing itself, Tartarus

di�ers from Panorama by also considering code-reuse a�acks and

initially taints more memory than Panorama which only taints the

text section. Panorama deploys no abstractions on the execution

trace itself where Tartarus abstracts the trace into code waves and

code injections that are then used to construct a system-wide CFG.

Finally, the evaluation performed with Panorama is centred around

its keylogger detection, which does not rely on malware tracing

via taint, and the evaluation presented in this work is therefore the

�rst evaluation on taint analysis for malware tracing. Other work

include Egele et al. who use dynamic taint analysis for spyware

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1704

detection [13] and Moser et al. who use dynamic taint analysis

in combination with linear constraint solvers to explore multiple

execution paths in malware [32]. Dynamic taint analysis has also

been explored in Android, most notably by TaintDroid [14] and

DroidScope [44]. Besides automatic approaches to malware anal-

ysis, dynamic taint analysis has also been proposed as an aid to

manual reverse engineering tasks. For example, the tool SemTrax

[26], which is no longer being developed, augments debugging with

dynamic taint analysis and has the ability to visualize various rela-

tionships on tainted data, such as the set of operations performed

on tainted memory.

In the last decade, full-system dynamic binary analysis platforms

have gained a lot of a�ention from malware analysis researchers.

As a result, there now exists several multi-purpose systems that are

well-suited for building further analysis tools. We designed Tartarus

on top of DECAF [20] which is the successor of TEMU from the

BitBlaze project [39]. One of the key features of DECAF is that taint

analysis is performed directly on the QEMU tcg instructions, which

allows it to perform fast taint analysis during execution. In addition

to fast tainting via the tcg instructions, DECAF performs bitwise

taint analysis which gives it a very high level of precision in its taint.

PANDA is another platform that allows full-system dynamic binary

analysis. In comparison to DECAF, PANDA is built around the

concept of repeatable reverse engineering. It executes an instance

of QEMU and records all non-deterministic data that goes into the

system. With the non-deterministic data recorded, PANDA then

provides the ability to replay the execution and the actual analysis

of the execution is performed during replay. �e key advantages

of this strategy compared to performing analysis directly on the

real execution is that the recording minimally a�ects the actual

execution in terms of performance, and that analysis can take a step-

wise fashion. As such, the execution on which analysis is performed

is e�ectively independent of the computational workload of the

analysis, i.e. analysis is performed on a “fast” full-system emulation,

and, di�erent analysis can be performed on the same execution.

PANDA supports byte-level taint analysis by raising the QEMU

trace into an LLVM trace. S2E [9] is another platform that also o�ers

full-system dynamic binary analysis, but, in comparison to DECAF

and PANDA, is focused around augmenting symbolic execution

to full-system analysis. S2E does this via an x86-to-LLVM QEMU

backend that interfaces S2E with the KLEE symbolic execution

engine that interprets LLVM instructions. Both DECAF, PANDA

and S2E provides comprehensible interfaces for writing plugins

and are all open-source projects.

�roughout the paper we have already mentioned automated

unpackers and other tools that give solutions to the problem of

self-modifying code. We have speci�cally focused on Codisasm [5]

and Ugarte et al [40]. Other tools include Renovo [22], OmniUn-

pack [30], EtherUnpack [12], RePEconstruct [24] and Polyunpack

[37]. All of these tools rely on the heuristic of monitoring explicit

write-then-execute pa�erns. EtherUnpack and Renovo captures

dynamically generated code within a speci�c process where Omni-

Unpack deploys a more coarse-grained approach by monitoring for

page-level write-then-execute pa�erns and suspicious system calls.

RePEconstruct is a tool based on DynamoRIO that aims at uncover-

ing dynamically generated code and identify obfuscated API calls,

but does not make any a�empt to follow the malware across pro-

cesses. Polyunpack detects unpacking behaviour by single-stepping

an application and matching the program counter to an initial static

analysis.

Besides related work in the more general scope of malware anal-

ysis, memory forensics is an area that also provides solutions to

the problem of identifying how malware infects a system. For ex-

ample, the Gapz malware places shellcode within explorer.exe by

overwriting the function atan inside of ntdll. Code integrity check

to verify the provenance of code in memory images is able to iden-

tify that malware overwrote the function by analysing memory

images [42]. Volatility [15] is a popular open source project that is

used for digital forensics and indeed there are plugins for volatility

aimed at identifying code injection [31]. �e di�erence between

our approach and that of memory forensics is the forensics analy-

sis relies on a snapshot where our approach is based on analysis

of an execution. �is means, if the Gapz would rewrite the atan
function a�er having executed its shellcode, such that the atan
function would contain its original instructions and the snapshot

of the memory image was taken post this rewriting, then forensics

on this snapshot would not reveal the overwri�en code, whereas

we would still observe the execution of shellcode.

10 CONCLUSION
In this paper we concern ourselves with automatic analysis of host-

based malware propagations. Speci�cally, we divide the problem

into to two smaller tasks. First, how to trace malware in a gen-

eral and precise manner in the context of execution across several

processes and code-reuse a�acks. Second, how to raise the col-

lected execution trace into higher-level semantics of dynamically

generated code and code injections.

To solve these problems we have proposed three techniques and

implemented them in a system we call Tartarus. Tartarus is a mal-

ware analysis environment that traces malware execution based on

taint analysis and a model of code-reuse a�acks. Tartarus abstracts

the execution trace into code waves based on an information-�ow

model, and also identi�es and highlights intrinsic characteristics

about code injection techniques in the execution trace. Finally, Tar-

tarus combines these abstractions into a system-wide control-�ow

graph.

We test Tartarus in the context of ground-truth applications

and our results show that Tartarus accurately captures malware

propagations, even without prior knowledge about them. We show

via a comparative evaluation that Tartarus improves capture of

malware execution traces over state-of-the-art dynamic analysis

tools. We evaluate the performance of Tartarus which ranges from

a few minutes to 15 minutes depending on the complexity of the

sample. Finally we demonstrate the relevance of our approach by

matching Tartarus with a recent malware data set which shows the

number of malware samples that inject code have increased almost

three times since 2013.

ACKNOWLEDGMENTS
�e authors would like to acknowledge our anonymous reviewers,

Pedro Antonino and Julien Vanegue for useful feedback and insight-

ful critique. We would also like to thank VirusTotal for providing

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1705

malware samples and Udi Yavo and Tal Liberman of enSilo for

making their code injection techniques available. Finally we would

like to thank Xunchao Hu for helping the �rst author with several

aspects of DECAF. Work is funded by National Science Foundation

Grant #1664315 and DARPA Grant #FA8750-16-C-0044.

REFERENCES
[1] Andrea Allievi and Holger Unterbrink. 2015. CryptoWall 4 �e Evolution Con-

tinues. (2015).

[2] Magal Baz and Or Safran. 2017. Dridex’s Cold War: Enter AtomBombing. (2017).

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41–41. h�p://dl.acm.org/citation.

cfm?id=1247360.1247401

[4] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

oriented Programming: A New Class of Code-reuse A�ack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security
(ASIACCS ’11). ACM, New York, NY, USA, 30–40. h�ps://doi.org/10.1145/1966913.

1966919

[5] Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fab-

rice Sabatier, and Aurélien �ierry. 2015. CoDisasm: Medium Scale Con-

catic Disassembly of Self-Modifying Binaries with Overlapping Instructions.

In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’15). ACM, New York, NY, USA, 745–756. h�ps:

//doi.org/10.1145/2810103.2813627

[6] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When

Good Instructions Go Bad: Generalizing Return-oriented Programming to RISC.

In Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS ’08). ACM, New York, NY, USA, 27–38. h�ps://doi.org/10.1145/

1455770.1455776

[7] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. 2008. On the Limits of Informa-

tion Flow Techniques for Malware Analysis and Containment. In Proceedings of
the 5th International Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA ’08). Springer-Verlag, Berlin, Heidelberg, 143–163.

h�ps://doi.org/10.1007/978-3-540-70542-0 8

[8] Stephen Checkoway, Ariel J. Feldman, Brian Kantor, J. Alex Halderman, Ed-

ward W. Felten, and Hovav Shacham. 2009. Can DREs Provide Long-lasting

Security? �e Case of Return-oriented Programming and the AVC Advantage. In

Proceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections (EVT/WOTE’09). USENIX Association, Berkeley, CA, USA,

6–6.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. �e S2E

Platform: Design, Implementation, and Applications. ACM Trans. Comput. Syst.
30, 1, Article 2 (Feb. 2012), 49 pages. h�ps://doi.org/10.1145/2110356.2110358

[10] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.

Stitching the Gadgets: On the Ine�ectiveness of Coarse-grained Control-�ow

Integrity Protection. In Proceedings of the 23rd USENIX Conference on Security
Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, 401–416. h�p:

//dl.acm.org/citation.cfm?id=2671225.2671251

[11] Cuckoo developers. 2017. Cuckoo Sandbox. (2017). h�ps://www.cuckoosandbox.

org/

[12] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether:

Malware Analysis via Hardware Virtualization Extensions. In Proceedings of the
15th ACM Conference on Computer and Communications Security (CCS ’08). ACM,

New York, NY, USA, 51–62. h�ps://doi.org/10.1145/1455770.1455779

[13] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.

2007. Dynamic Spyware Analysis. In 2007 USENIX Annual Technical Conference
on Proceedings of the USENIX Annual Technical Conference (ATC’07). USENIX

Association, Berkeley, CA, USA, Article 18, 14 pages. h�p://dl.acm.org/citation.

cfm?id=1364385.1364403

[14] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-�ow

Tracking System for Realtime Privacy Monitoring on Smartphones. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA, 393–407. h�p://dl.acm.org/

citation.cfm?id=1924943.1924971

[15] Volatility Foundation. Volatility - Open Source Memory Forensics. (��). h�p:

//www.volatilityfoundation.org/

[16] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and

Georgios Portokalidis. 2014. Size Does Ma�er: Why Using Gadget-Chain

Length to Prevent Code-Reuse A�acks is Hard. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 417–

432. h�ps://www.usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/goktas

[17] Mariano Graziano, Davide Balzaro�i, and Alain Zidouemba. 2016. ROPMEMU: A

Framework for the Analysis of Complex Code-Reuse A�acks. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’16). ACM, New York, NY, USA, 47–58. h�ps://doi.org/10.1145/2897845.

2897894

[18] Pin Yahoo Groups. 2015. Failure to instrument process tree. (2015). h�ps:

//groups.yahoo.com/neo/groups/pinheads/conversations/topics/12019

[19] Jan Gustafsson, Adam Be�s, Andreas Ermedahl, and Björn Lisper. 2010. �e

Mälardalen WCET benchmarks: Past, present and future. In OASIcs-OpenAccess
Series in Informatics, Vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[20] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen

Wang, Rundong Zhou, and Heng Yin. 2014. Make It Work, Make It Right, Make

It Fast: Building a Platform-neutral Whole-system Dynamic Binary Analysis

Platform. In Proceedings of the 2014 International Symposium on So�ware Testing
and Analysis (ISSTA 2014). ACM, New York, NY, USA, 248–258. h�ps://doi.org/

10.1145/2610384.2610407

[21] Andrew Henderson, Lok Kwong Yan, Xunchao Hu, Aravind Prakash, Heng

Yin, and Stephen McCamant. 2017. DECAF: A Platform-Neutral Whole-System

Dynamic Binary Analysis Platform. IEEE Trans. So�w. Eng. 43, 2 (Feb. 2017),

164–184. h�ps://doi.org/10.1109/TSE.2016.2589242

[22] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. 2007. Renovo: A Hidden

Code Extractor for Packed Executables. In Proceedings of the 2007 ACMWorkshop
on Recurring Malcode (WORM ’07). ACM, New York, NY, USA, 46–53. h�ps:

//doi.org/10.1145/1314389.1314399

[23] �omas Ki�el, Sebastian Vogl, Julian Kirsch, and Claudia Eckert. 2015. Counter-
acting Data-Only Malware with Code Pointer Examination. Springer International

Publishing, Cham, 177–197. h�ps://doi.org/10.1007/978-3-319-26362-5 9

[24] D. Korczynski. 2016. RePEconstruct: reconstructing binaries with self-modifying

code and import address table destruction. In 2016 11th International Conference
on Malicious and Unwanted So�ware (MALWARE). 1–8. h�ps://doi.org/10.1109/

MALWARE.2016.7888727

[25] Peter Kruse. 2012. W32.Tinba (TinyBanker) �e Turkish Incident. (2012).

[26] Persistence Labs. 2013. Semtrax. (2013). h�p://www.persistencelabs.com/blog

[27] Tal Liberman. 2016. AtomBombing: Brand New Code Injection for Windows.

(2016).

[28] Tal Liberman. 2017. BSidesSF 2017, AtomBombing: Injecting Code Using Win-

dows’ Atoms. (2017). h�ps://www.youtube.com/watch?v=9HV69QGiBAU

[29] Wayne Low. 2012. Code injection via return-oriented programming. Virus
Bulletin (2012).

[30] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. 2007. Omniunpack:

Fast, generic, and safe unpacking of malware. In In Proceedings of the Annual
Computer Security Applications Conference (ACSAC.

[31] Monnappa22. HollowFind. (��). h�ps://github.com/monnappa22/HollowFind

[32] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring Multiple

Execution Paths for Malware Analysis. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (SP ’07). IEEE Computer Society, Washington, DC, USA,

231–245. h�ps://doi.org/10.1109/SP.2007.17

[33] PaloAlto Networks. 2013. �e Modern Malware Review. (2013).

[34] Michalis Polychronakis and Angelos D. Keromytis. 2011. ROP Payload Detection

Using Speculative Code Execution. In Proceedings of the 2011 6th International
Conference on Malicious and Unwanted So�ware (MALWARE ’11). IEEE Computer

Society, Washington, DC, USA, 58–65. h�ps://doi.org/10.1109/MALWARE.2011.

6112327

[35] Symantec Security Response. 2015. W32.Ramnit analysis. (2015).

[36] Eugene Rodionov and Aleksandr Matrosov. 2016. Mind the Gapz: �e Most

Complex Bootkiv Ever Analyzed? (2016).

[37] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. 2006.

PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing

Malware. In Proceedings of the 22Nd Annual Computer Security Applications
Conference (ACSAC ’06). IEEE Computer Society, Washington, DC, USA, 289–300.

h�ps://doi.org/10.1109/ACSAC.2006.38

[38] Hovav Shacham. 2007. �e Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). ACM, New York,

NY, USA, 552–561. h�ps://doi.org/10.1145/1315245.1315313

[39] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In

Proceedings of the 4th International Conference on Information Systems Security
(ICISS ’08). Springer-Verlag, Berlin, Heidelberg, 1–25. h�ps://doi.org/10.1007/

978-3-540-89862-7 1

[40] Xabier Ugarte-pedrero, Davide Balzaro�i, Igor Santos, and Pablo G. Bringas. SoK:

Deep Packer Inspection: A Longitudinal Study of the Complexity of Run-Time

Packers. (��).

[41] Sebastian Vogl, Jonas Pfoh, �omas Ki�el, and Claudia Eckert. 2014. Persistent

Data-only Malware: Function Hooks without Code. In Proceedings of the 21th
Annual Network and Distributed System Security Symposium (NDSS).

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1706

http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/2810103.2813627
https://doi.org/10.1145/2810103.2813627
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1145/2110356.2110358
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dl.acm.org/citation.cfm?id=2671225.2671251
https://www.cuckoosandbox.org/
https://www.cuckoosandbox.org/
https://doi.org/10.1145/1455770.1455779
http://dl.acm.org/citation.cfm?id=1364385.1364403
http://dl.acm.org/citation.cfm?id=1364385.1364403
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/goktas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/goktas
https://doi.org/10.1145/2897845.2897894
https://doi.org/10.1145/2897845.2897894
https://groups.yahoo.com/neo/groups/pinheads/conversations/topics/12019
https://groups.yahoo.com/neo/groups/pinheads/conversations/topics/12019
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1109/TSE.2016.2589242
https://doi.org/10.1145/1314389.1314399
https://doi.org/10.1145/1314389.1314399
https://doi.org/10.1007/978-3-319-26362-5_9
https://doi.org/10.1109/MALWARE.2016.7888727
https://doi.org/10.1109/MALWARE.2016.7888727
http://www.persistencelabs.com/blog
https://www.youtube.com/watch?v=9HV69QGiBAU
https://github.com/monnappa22/HollowFind
https://doi.org/10.1109/SP.2007.17
https://doi.org/10.1109/MALWARE.2011.6112327
https://doi.org/10.1109/MALWARE.2011.6112327
https://doi.org/10.1109/ACSAC.2006.38
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1

[42] Andrew White, Bradley Schatz, and Ernest Foo. 2013. Integrity veri�cation of

user space code. Digital Investigation (2013).

[43] Lok Yan and Heng Yin. 2017. SoK: On the Soundness and Precision of

Dynamic Taint Analysis. (2017). h�p://www.cs.ucr.edu/„heng/teaching/

cs260-winter2017/formaltaint.pdf

[44] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing

the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In

Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).
USENIX Association, Berkeley, CA, USA, 29–29. h�p://dl.acm.org/citation.cfm?

id=2362793.2362822

[45] Udi Yavo and Tomer Bi�on. 2015. Injection on Steroids: Code-less Code Injections

and 0-Day Techniques. (2015).

[46] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

2007. Panorama: Capturing System-wide Information Flow for Malware De-

tection and Analysis. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS ’07). ACM, New York, NY, USA, 116–127.

h�ps://doi.org/10.1145/1315245.1315261

A FORMAL COMPARISON TO PREVIOUS
WORK

�e de�nition of malware execution trace given in De�nition 1

allows us to formally compare Tartarus to previous works [5, 40].

Before we make the comparison, however, we need to give a few

more de�nitions. First, for a given instruction, let irW s denote the

memory it writes, irAs the instruction address and irOs the output of

the instruction. We have that irW s Ď irOs and for convenience that

irAs Ď irW s Ď irOs Ď S . Second, let the function TP : S ˆ i Ñ
S represent the taint propagation function, and CR : S ˆ i Ñ
ttrue, f alseu be the predicate that identi�es code-reuse.

We now proceed to formally de�ne the malware analysers of pre-

vious work [5, 40] and the approach by Tartarus, and then continue

to show malware execution trace collected by previous work is a

subtrace of the one collected by Tartarus. Both [5, 40] propose the

malware analyser PA,U B that updates the shadow memory with

any memory wri�en by instructions already in the shadow memory,

as such they de�ne δA as follows:

δA,U Bps,iq “ s Y tU B where tU B “

#

irW s, if irAs P s

H, otherwise

Furthermore, in the malware execution trace they only include

instructions that are part of the shadow memory, and therefore

de�ned ΛA as follows:

ΛA,U Bps,iq “

#

true, if irAs P s

f alse, otherwise

Tartarus updates the shadow memory based on the taint propa-

gation functionTP and also all output by instructions in the shadow

memory. As such, the malware analyser Tartarus PA,TA de�nes δA
as follows

δA,TAps,iq “ s Y tTA where tTA “

#

TPpi,sq Y irOs if irAs P s

TPpi,sq otherwise

Furthermore, Tartarus includes in the malware execution trace

any instruction part of the shadow memory or part of a code-reuse

a�ack, given by theCR function, and therefore de�nesΛA as follows

ΛA,TAps,iq “

#

true, if irAs P s _CRpi,sq

f alse, otherwise

We now show shat the malware execution trace collected by

previous work is indeed a subset of the malware execution trace

collected by Tartarus.

Theorem A.1. Let PA,U B and PA,TA be the malware tracer de-
�ned above and T pP ,Eq be some execution trace. Furthermore, let
STU BpT pP ,Eqq “ psu,0, . . . su,l q and STTApT pP ,Eqq “ pst,0, . . . ,st,l q
be the respective shadow memory sets. Given that su,0 = st,0, we have
that there is no element i P T pP ,Eq such that i P ΠU B ^ i R ΠTA.

Proof. We prove by contradiction that there is no element i P
T pP ,Eq such that i P ΠU B ^ i R ΠTA.

We �rst show that each element in the shadow memories col-

lected by PA,U B is a subset of the corresponding element in the

shadow memories collected by PA,TA. We have that su,0 “ st,0
and therefore su,0 Ď st,0. From the de�nitions of δA,U B and δA,TA,

we then have have tU B Ď tTA and therefore δA,U Bpsu,0,i0q Ď
δA,TApst,0,i0q. Because δA is a monotonic increasing function, we

then have that @su,i P STU BpT pP ,Eqq|su,i Ď st,i . As such, each

element in the shadow memories collected by PA,U B is a subset of

the corresponding element in the shadow memories collected by

PA,TA.

Assume there exist an element m such that m P ΠA,U B ^m R
ΠA,TA. �is means there exists an element i P T pP ,Eq such that

ΛA,U Bpsu,j ,iq is true and ΛA,TApst,j ,iq is false. From the de�ni-

tions of ΛA,U B and ΛA,TA, this is only possible if su,j contains an

element that is not in st,j . We have shown above that this is not

the case, and the proof is done. �

B CODE INJECTION GRAPH OF GAPZ
SAMPLE.

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1707

http://www.cs.ucr.edu/~heng/teaching/cs260-winter2017/formaltaint.pdf
http://www.cs.ucr.edu/~heng/teaching/cs260-winter2017/formaltaint.pdf
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2362793.2362822
https://doi.org/10.1145/1315245.1315261

Call SendNotifyMessage

1001b4b Call [eax]
KiUserAPCDispatcher

1001b59 Call [eax + 8]
std
ret

1001b6e Call [eax + 4]
mov ecx, 0x94
rep movsd
pop edi
xor eax, eax
pop esi
pop edi

7c9ee5ca ret
cld

77ec5b27 ret
pop eax

101179d ret
alloca probe

7c90160c ret
WriteProcessMemory

7c802298 ret
pop eax

101179d ret
jmp eax

0x77ef48c0 mov ebp, esp

mov [esi + 0x94], eax
0xa40
9b3748

mov [esi + 0x94], eax
0xa40
0x9b3748

mov [esi + 0x9c], eax
0xa40
0x9b3765

mov eax, [esi]

mov esi, eax
0x1001b3e
explorer.exe

mov eax, [esi + eax + 0xa4]
0x7e418894
explorer.exe

mov [ecx], edx
0xbf834ac4
win32k.sys

mov edx, [ebp + 0x10]
0xbf834abf
win32k.sys

push [ebp + 0x10]
0xbf834b15
win32k.sys

rep movsd
0x804de7f4
ntoskrnl.exe

push [ebp + 0x10]
0x7e42c285
ntoskrnl.exe

push [ebp + 0x10]
0x7e42c2a4
User32.dll
SetWindowsLong

push eax
0xa40, wave1
0x9b3aee

rep movsd
7c9ee5c3
explorer.exe

mov [esi + 0x64], eax
0x9b3799
wave1
Malware.exe

mov [esi + 0x10], eax
0x9b3830
wave1
Malware.exe

mov [esi+0x70], eax
0x9b37b7
wave1
Malware.exe

mov [esi + 0x78], eax
0x9b384a
wave1
Malware.exe

mov [esi + 0x2c], eax
0x9b384a
Malware.exe

push eaxmov eax, [eax]
mov [esi + 0x7c], eax
0x9b3824
Malware.exe

rep movsd
System
0x80575907

rep movsd
System
0x805758ad

rep movsb
0x9b39a1
wave1
Malware.exe

eax chaser

eax chaser

eax chaser

esi chaser

0x77ef48c0 chaser

[eax+4] chaser

[eax + 8] chaser

[eax] chaser

Session H2: Code Reuse Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1708

	Abstract
	1 Introduction
	2 motivation and background
	2.1 Motivating example
	2.2 Dynamically generated code
	2.3 Code-reuse attacks
	2.4 Code injections
	2.5 Observations and objectives

	3 System-wide malware tracing
	3.1 Abstract model of execution environment
	3.2 Malware execution trace
	3.3 Overview of malware execution tracing
	3.4 Initial setting
	3.5 Code-reuse identification
	3.6 Propagation function
	3.7 Comparison to previous work

	4 Code waves
	5 Code injections
	5.1 Transition model
	5.2 Injection mechanics

	6 Implementation
	7 Evaluation
	7.1 Experimental validation of correctness
	7.2 Comparative evaluation
	7.3 Detailed analysis
	7.4 Performance evaluation
	7.5 Relevance of approach on recent malware

	8 Limitations and future work
	9 Related work
	10 Conclusion
	Acknowledgments
	References
	A Formal comparison to previous work
	B code injection graph of Gapz sample.

