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ABSTRACT
The goal of an algorithm substitution attack (ASA), also called a
subversion attack (SA), is to replace an honest implementation of
a cryptographic tool by a subverted one which allows to leak pri-
vate information while generating output indistinguishable from
the honest output. Bellare, Paterson, and Rogaway provided at
CRYPTO ’14 a formal security model to capture this kind of attacks
and constructed practically implementable ASAs against a large
class of symmetric encryption schemes. At CCS’15, Ateniese, Magri,
and Venturi extended this model to allow the attackers to work in
a fully-adaptive and continuous fashion and proposed subversion
attacks against digital signature schemes. Both papers also showed
the impossibility of ASAs in cases where the cryptographic tools are
deterministic. Also at CCS’15, Bellare, Jaeger, and Kane strength-
ened the original model and proposed a universal ASA against
sufficiently random encryption schemes. In this paper we analyze
ASAs from the perspective of steganography – the well known
concept of hiding the presence of secret messages in legal commu-
nications. While a close connection between ASAs and steganog-
raphy is known, this lacks a rigorous treatment. We consider the
common computational model for secret-key steganography and
prove that successful ASAs correspond to secure stegosystems on
certain channels and vice versa. This formal proof allows us to
conclude that ASAs are stegosystems and to “rediscover” several
results concerning ASAs known in the steganographic literature.

KEYWORDS
algorithm substitution attack; subversion attack; steganography;
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1 INTRODUCTION
The publication of secret internal documents of the NSA by Edward
Snowden (see e. g. [4, 14, 20]) allowed the cryptographic community
a unique insight into some well-kept secrets of one of the world’s
largest security agency. Two conclusions may be drawn from these
reveals:
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• On the one hand, even a large organization such as the NSA
seems not to be able to break well established implementa-
tions of cryptographic primitives such as RSA or AES.
• On the other hand, the documents clearly show that the NSA
develops methods and techniques to circumvent the well
established security notions by e. g. manipulating standard-
ization processes (e. g. issues surrounding the Dual_EC_DRBG
number generator [11, 23, 25]) or reason about metadata.

This confirms that the security guarantees provided by the crypto-
graphic community are sound, but also indicates that some security
definitions are too narrow to evade all possible attacks, including
(non-)intentional improper handling of theoretically sound crypto-
graphic protocols. A very realistic attack which goes beyond the
common framework is a modification of an appropriate implemen-
tation of a secure protocol. The modified implementation should
remain indistinguishable from a truthful one and its aim is to al-
low leakage of secret information during subsequent runs of the
subverted protocol. Attacks of this kind are known in the literature
[2, 6, 7, 21, 28, 29] and an overview on this topic is given in the
current survey [24] by Schneier et al.

A powerful class of such attacks that we will focus on – coined
secretly embedded trapdoor with universal protection (SETUP) attacks
– was presented over twenty years ago by Young and Yung in the
kleptographic model framework [28, 29]. The model is meant to
capture a situation where an adversary (or “big brother” as we
shall occasionally say) has the opportunity to implement (and, in-
deed, “mis-implement” or subvert) a basic cryptographic tool. The
difficulty in detecting such an attack is based on the hardness of
program verification. By using closed source software, the user must
trust the developers that their implementation of cryptographic
primitives is truthful and does not contain any backdoors. This
is especially true for hardware-based cryptography [7]. But it is
difficult to verify this property. Even if the software is open source –
the source code is publicly available – the sheer complexity of cryp-
tographic implementations allows only very specialized experts to
be able to judge these implementations. Two of the most prominent
bugs of the widely spread cryptographic library OpenSSL1 – the
Heartbleed bug and Debian’s faulty implementation of the pseudo-
random number generator – remained undiscovered for more than
two years [24].

Inspired by Snowden’s reveals, the recent developments reignited
the interest in these kind of attacks. Bellare et al. named them
algorithm substitution attacks (ASA) and showed several attacks on
certain symmetric encryption schemes [7]. Note that they defined
a very weak model, where the only goal of the attacker was to

1https://www.openssl.org/
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distinguish between two ciphertexts, but mostly used a stronger
scenario with the aim to recover the encryption key. Degabriele
et al. criticized the model of [7] by pointing out the results crucially
rely on the fact that a subverted encryption algorithm always needs
to produce valid ciphertexts (the decryptability assumption) and
proposed a refined security notion [13]. The model of algorithm
substitution attacks introduced in [7] was extended to signature
schemes by Ateniese et al. in [2]. Simultaneously, Bellare et al. [6]
strengthened the result of [7] by enforcing that the attack needs to
be stateless.

In this paper we thoroughly analyze (general) ASAs from the
steganographic point of view. The principle goal of steganography
is to hide information in unsuspicious communication such that
no observer can distinguish between normal documents and docu-
ments that carry additional information. Modern steganography
was first made popular due to the prisoners’ problem by Simmons
[26] but, interestingly, the model was inspired by detecting the
risk of ASAs during development of the SALT2 treaty between
the Soviet Union and the United States in the late seventies [27].
This sheds some light on the inherent relationship between these
two frameworks which is well known in the literature (see e. g.
[22, 28, 29]).

Our main achievement is providing a strict relationship between
secure algorithm substitution attacks and the common computa-
tional model for secret-key steganography. Particularly, we prove
that successful ASAs correspond to secure stegosystems on certain
channels and vice versa. This formal proof allows us to conclude
that ASAs are stegosystems and to “rediscover” results of [2, 6, 7]
concerning ASAs.

The computational model for steganography used in this paper
was first presented by Hopper, Langford, and von Ahn [15, 16] and
independently proposed by Katzenbeisser and Petitcolas [18]. A
stegosystem consists of an encoder and a decoder sharing a key.
The encoder’s goal is to embed a secret message into a sequence
of documents which are send via a public communication channel
C monitored by an adversary (often called the warden due to the
prisoners problem of Simmons [26]). The warden wants to distin-
guish documents that carry no secret information from those sent
by the encoder. If all polynomial-time (in the security parameter κ)
wardens fail to distinguish these cases, we say that the stegosystem
is secure. If the decoder is able to reconstruct the secret message
from the sequence send by the encoder, the system is called reliable.

Our Results
We first investigate algorithm substitution attacks against symmet-
ric encryption schemes in the framework by Bellare et al. [6]. We
model encryption schemes as steganographic channels in appropri-
ate way which allows to relate algorithm substitution attacks with
steganographic systems and vice versa. This leads to the following
result.

Theorem 1.1 (Informal). Assume that SES is a symmetric en-
cryption scheme. Then there exists an indistinguishable and reliable
algorithm substitution attack against SES if and only if there exists a
secure and reliable stegosystem on the channel determined by SES.

The proof of the theorem is constructive in the sense that we
give an explicit construction of an algorithm substitution attack

against SES from a stegosystem and vice versa. As conclusion we
provide a generic ASA against every symmetric encryption scheme
SES whose insecurity is negligible if, roughly speaking, SES has
sufficiently large min-entropy. Our algorithm against SES achieves
almost the same performance as the construction of Bellare et al.
(see Theorem 4.1 and Theorem 4.2 in [6] and also our discussion in
Section 6).

Next, we generalize our construction and show a generic algo-
rithm substitution attack ASA against any (polynomial-time) ran-
domized algorithm Rwhich, with hardwired secret s , takes inputs x
and generates outputs y. Algorithm ASA, using a hidden hardwired
random key ak, returns upon the secret s the sequence ỹ1, ỹ2, . . .
such that the output is indistinguishable from R(s,x1),R(s,x2), . . .
and ỹ1, ỹ2, . . . embeds the secret s . From this result we conclude:

Theorem 1.2 (Informal). There exists a generic algorithm sub-
stitution attack ASA that allows an undetectable subversion of any
cryptographic primitive of sufficiently large min-entropy.

Theorem 1.3 (Informal). Let Π be a cryptographic primitive
consisting with algorithms (Π.A1,Π.A2, . . . , Π.Ar ) such that {Ai |
i ∈ I } for some I ⊆ {1, . . . , r } are deterministic. Then there is no ASA
on Π which subverts only algorithms {Ai | i ∈ I }.

As a corollary we obtain the result of Ateniese et al. (Theorem 1
in [2]) that for every coin-injective signature scheme, there is a
successful algorithm substitution attack of negligible insecurity.
Moreover we get (Theorem 2 in [2]) that for every coin-extractable
signature scheme, there is a successful and secure ASA. We can
conclude also (Theorem 3 in [2]) that unique signature schemes
are resistant to ASAs fulfilling the verifiability condition. Roughly
speaking the last property means that each message has exactly
one signature and the ASA can only produce valid signatures.

We furthermore introduce the concept of universal ASAs that
can be used without a detailed description of the implementation
of the underlying cryptographic primitive and note that almost all
known ASAs belong to this class. Based upon this definition, we
prove the following upper bound on the information that can be
embedded into a single ciphertext:

Theorem 1.4 (Informal). No universal ASA is able to embed
more than O(1) · log(κ) bits of information into a single ciphertext in
the random oracle model.

The paper is organized as follows. Section 2 contains the ba-
sic preliminaries and notations that we use throughout this work,
Section 3 presents the formal definitions of algorithm substitution
attacks, and Section 4 gives the necessary background on steganog-
raphy. In order to relate ASAs and steganography, we make use of
an appropriate channel for symmetric encryption schemes defined
in Section 5. The proof of Theorem 1.1 is given in Section 6, where
one direction is contained in Theorem 6.1 and the other direction
is given as Theorem 6.3. We generalize our results to arbitrary ran-
domized algorithms in Section 7. Combining the positive results
of Theorem 7.1 with the generic stegosystem provided by Theo-
rem 4.1 allows us to conclude Theorem 1.2. The negative results of
Theorem 7.2 directly give Theorem 1.3. Finally, Section 8 defines
universal ASAs and contains the upper bound on the transmis-
sion rate of these ASAs via a sequence of lemmata that results in
Corollary 8.3 implying Theorem 1.4.
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2 BASIC PRELIMINARIES AND NOTATIONS
We use the following standard notations. A function f : N→ N is
negligible, if for all c ∈ N, there is an n0 ∈ N such that f (n) < n−c

for all n ≥ n0. The set of all strings of length n on an alphabet Σ
is denoted by Σn and the set of all strings of length at most n is
denoted by Σ≤n := ∪ni=0Σ

i . If S is a set, x ← S denotes the uniform
random assignment of an element of S to x . If A is a randomized al-
gorithm, x ← A denotes the random assignment (with regard to the
internal randomness of A) of the output of A to x . The min-entropy
measures the amount of randomness of a probability distribution
D and is defined as H∞(D) = infx ∈supp(D){− log PrD (x)}, where
supp(D) is the support of D. Moreover, PPTM stands for probabilis-
tic polynomial-time Turing machine.

A symmetric encryption scheme SES is a triple of probabilistic
polynomial-time algorithms (SES.Gen, SES.Enc, SES.Dec) with pa-
rameters SES.ml(κ) describing the length of the encrypted message
and SES.cl(κ) describing the length of a generated cipher message.
The algorithms have the following properties:

• The key generator SES.Gen produces upon input 1κ a key k
with |k | = κ.
• The encryption algorithm SES.Enc takes as input the key k
and a messagem ∈ {0, 1}SES.ml(κ) of length SES.ml(κ) and
produces a ciphertext c ∈ {0, 1}SES.cl(κ) of length SES.cl(κ).
• The decryption algorithm SES.Dec takes as input the key k
and a ciphertext c ∈ {0, 1}SES.cl(κ) and produces a message
m′ ∈ {0, 1}SES.ml(κ).

If the context is clear, we also write Gen, Enc, Dec, ml and cl
without the prefix SES. We say that (Gen, Enc,Dec) is reliable, if
Dec(k, Enc(k,m)) =m for all k and allm.

An cpa-attacker A against a symmetric encryption scheme is
a PPTM that mounts chosen-plaintext-attacks (cpa): It is given a
challenging oracle CH that either equals Enck for a randomly gen-
erated key k or produces random bitstrings of length cl(κ). For
an integer λ, let RAND(λ) be an algorithm that returns uniformly
distributed bitstrings of length λ. The goal of A is to distinguish
between those settings. Formally, this is defined via the following
experiment named CPA-Dist:

CPA-DistA,SES(κ)

Parties: attacker A, symmetric encryption scheme SES =
(Gen, Enc,Dec)

1: k ← Gen(1κ ); b ← {0, 1}
2: b ′ ← ACH(1κ )
3: return b = b ′

oracle CH(m)
1: if b = 0 then return Enc(k,m)

else return RAND(cl(κ))

Algorithm 1: Chosen-Plaintext-Attack experiment with se-
curity parameter κ.

A symmetric encryption scheme SES is cpa-secure if for every
attacker A there is a negligible function negl such that

AdvcpaSES(κ) := Pr[CPA-DistA,SES(κ) = true] ≤ negl(κ).

The maximal advantage of any attacker against SES is called the
insecurity of SES and is defined as

InSeccpaSES(κ) = max
A
{AdvcpaA,SES(κ)}.

For a SES = (Gen, Enc,Dec) we will assume that it has non-
trivial randomization measured by the min-entropy H∞(SES) of
ciphertexts that is defined via

2−H∞(SES) = max
k,m,c

Pr[SES.Enc(k,m) = c].

For two numbers ℓ, ℓ′ ∈ N, denote the set of all function from
{0, 1}ℓ to {0, 1}ℓ

′

by Fun(ℓ, ℓ′). Clearly, in order to specify a ran-
dom element of Fun(ℓ, ℓ′), one needs 2ℓ × ℓ′ bits and we can
thus not use completely random functions in an efficient setting.
Therefore we will use efficient functions that are indistinguish-
able from completely random functions. A pseudorandom function
F = (F.Eval, F.Gen) is a pair of PPTMs such that F.Gen upon input
1κ produces a key k ∈ {0, 1}κ . The keyed function F.Eval takes
the key k ← F.Gen(1κ ) and a bitstring x of length F.in(κ) and
produces a string F.Evalk (x) of length F.out(κ). An attacker, called
distinguisher Dist, is a PPTM that upon input 1κ gets oracle access
to a function that either equals F.Evalk for a randomly chosen key
k or is a completely random function f . The goal of Dist is to dis-
tinguish between those cases. A pseudorandom function F is secure
if for every distinguisher Dist there is a negligible function negl
such that

AdvprfDist,F(κ) :=���Pr[DistF.Evalk (1κ ) = 1] − Pr[Distf (1κ ) = 1]
��� ≤ negl(κ),

where k ← F.Gen(1κ ) and f ← Fun(F.in(κ), F.out(κ)). If Dist
outputs 1, this means that the distinguisher Dist believes that he
deals with a truly random function.

As usual, the maximal advantage of any distinguisher against F
is called the prf-insecurity InSecprfF (κ) and defined as

InSecprfF (κ) := max
Dist
{AdvprfDist,F(κ)}.

3 ALGORITHM SUBSTITUTION ATTACKS
AGAINST ENCRYPTION SCHEMES

While it is certainly very useful for an attacker to be able to recon-
struct the key, one can also consider situations, where the extractor
should be able to extract different information from the ciphertexts
or signatures. We will thus generalize the algorithm substitution
attacks described in the literature to the setting, where the sub-
stituted algorithm also takes a message am as argument and the
goal of the extractor is to derive this message from the produced
ciphertext. By always setting am := k , this is the setting described
by Bellare et al. in [6]. We thus strengthen the model of [7] and [6]
in this sense.

Below we give in detail our definitions based upon the model
proposed by Bellare et al. in [6]. If the substitution attack is stateful,
we allow the distinguisher that tries to identify the attack to also
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choose this state and observe the internal state of the attack. Every
algorithm substitution attack thus needs to be stateless, as in the
model of Bellare et al. in [6]. Note that this is a stronger requirement
than in [7] and [2], as those works also allowed stateful attacks.

In our setting an algorithm substitution attack against a sym-
metric encryption scheme SES = (SES.Gen, SES.Enc, SES.Dec) is a
triple of PPTMs

ASA = (ASA.Gen,ASA.Enc,ASA.Ext)

with parameter ASA.ml(κ) for the message length – the length of
the attacker message – and the following functionality.

• The key generator ASA.Gen produces upon input 1κ an at-
tacker key ak of length κ.
• The encryption algorithmASA.Enc takes an attacker key ak ∈
supp(ASA.Gen(1κ )), attacker message am ∈ {0, 1}ASA.ml(κ),
an encryption key k ∈ supp(SES.Gen (1κ )), an encryption
messagem ∈ {0, 1}SES.ml(κ), and a state σ ∈ {0, 1}∗ and pro-
duces a ciphertext c of length SES.cl(κ) and a new state σ ′.
• The extraction algorithm ASA.Ext takes as input an attacker
key ak ∈ supp(ASA.Gen(1κ )) and ℓ = ASA.ol(κ) a ciphertext
c1, . . . , cℓ with ci ∈ {0, 1}SES.cl(κ) and produces an attacker
message am′.

An algorithm substitution attack needs (a) to be indistinguish-
able from the symmetric encryption scheme and (b) should be able
to reliably extract the message am of length ASA.ml(κ) from the
ciphertexts. Due to information-theoretic reasons, it might be im-
possible to embed the attacker message am into a single ciphertext:
If SES.Enc uses 10 bits of randomness, at most 10 bits from am
can be reliably embedded into a ciphertext. Hence, the algorithm
substitution attack needs to produce more than one ciphertext in
this case. For messagem1, . . . ,mℓ , the complete output, denoted
as ASA.Encℓ(ak, am,k,m1, . . . ,mℓ) is defined as follows:

1: σ = ∅
2: for j = 1 to ℓ do (c j ,σ ) ← ASA.Enc(ak, am,k,mj ,σ )
3: return c1, . . . , cℓ

To formally define the probability that the extractor is able to
reliably extract am from the given ciphertexts c1, . . . , cℓ , we de-
fine its reliability2 as 1 − UnRelASA,SES(κ), where the unreliability
UnRelASA,SES is given as

max{Pr[ASA.Ext(ak,ASA.Encℓ(ak, am,k,m1, . . . ,mℓ)) , am]},

with the maximum taken over all ak ∈ supp(ASA.Gen(1κ )), am ∈
{0, 1}ASA.ml(κ), andmi ∈ {0, 1}SES.ml(κ). The algorithm is success-
ful, if there is negligible function negl with UnRelASA,SES(κ) ≤
negl(κ).

The indistinguishability of an ASA is defined as follows. Call
a watchdog Watch a PPTM that tries to distinguish the output
of the attacker encryption algorithm ASA.Enc from the original
encryption algorithm Enc. The indistinguishability is defined via
the game named ASA-Dist:

2In [6], this is called the key recovery security.

ASA-DistWatch,ASA,SES(κ)

Parties: watchdogWatch, algorithm substitution attack
ASA = (ASA.Gen,ASA.Enc, ASA.Ext), and encryption
scheme SES = (SES.Gen, SES.Enc, SES.Dec)

1: ak← ASA.Gen(1κ ); b ← {0, 1}
2: b ′ ←WatchCH(1κ )
3: return b = b ′

oracle CH(am,k,m,σ )
1: if b = 0 then c ← SES.Enc(k,m)

else (c,σ ) ← ASA.Enc(ak, am,k,m,σ )
2: return (c,σ )

Algorithm 2: ASA-distinguishing (detection) experiment
with security parameter κ.

An algorithm substitution attack ASA is called indistinguishable
from the symmetric encryption scheme SES, if for every watchdog
Watch, there is a negligible function negl such that

Advenc-watchWatch,ASA,SES(κ) :=
Pr[ASA-DistWatch,ASA,SES(κ) = true] ≤ negl(κ).

The maximal advantage of any watchdog distinguishing ASA
from SES is called the indistinguishability or insecurity of ASA and
is defined as

InSecenc-watchASA,SES (κ) = max
Watch

{Advenc-watchWatch,ASA,SES(κ)}.

In [7], Bellare et al. proposed a (stateless) construction ASA
against all symmetric encryption schemes SES. They prove in
Theorem 3 that if SES is a randomized, stateless, coin-injective
symmetric encryption scheme with randomness-length r and if
the ASA uses a PRF F then for a watchdog Watch that makes q
queries to its CH oracle we can construct an adversary A such that
Advenc-watchWatch,ASA,SES(κ) ≤ q/22

r
+AdvprfA,F(κ), where Amakes q oracle

queries and its running time is that of Watch.
Bellare et al. conclude that as long as their scheme uses a non-

trivial amount of randomness, for example r ≥ 7 bits resulting
2r ≥ 128, Theorem 3 implies that the subversion is undetectable.

4 BACKGROUNDS OF STEGANOGRAPHY
The definitions of the basic steganography concepts presented in
this section are essentially those of [16] and [12].

In order to define undetectable hidden communication, we need
to introduce a notion of unsuspicious communication. We do this
via the notion of a channel C. A channel C on the alphabet Σ with
maximal document length C.n is a function that maps a string
of previously send elements h ∈ (Σ≤C .n )∗ – the history – to a
probability distribution upon Σ≤C .n . We denote this probability
distribution by Ch . The elements of Σ≤C .n are called documents.
As usually, we will assume that the sequences of documents are
efficiently prefix-free recognizable.

A stegosystem S on a family of channels C = {Cκ }κ ∈N is a
triple of probabilistic polynomial-time (according to the security
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parameter κ) algorithms:

S = (S.Gen, S.Enc, S.Dec)

with parameters S.ml(κ) describing the message length of the sub-
liminal (hidden, or attacker) message and S.ol(κ) describing the
length of a generated sequence of stego documents to embed the
whole hidden message. The algorithms have the following func-
tionality:
• The key generator S.Gen takes the unary presentation of an
integer κ – the security parameter – and outputs a key (we
will call it an attacker key) ak ∈ {0, 1}κ of length κ.
• The stegoencoder S.Enc takes as input the key ak, the attacker
(or hidden) message am ∈ {0, 1}S.ml(κ), a history h, and a
state σ and outputs a document d from Cκ such that am
is (partially) embedded in this document and a new state.
In order to produce the document, S.Enc also has sampling
access to Cκh . We denote this by writing S.EncC(ak, am,h,σ ).
• The (history-ignorant) stegodecoder S.Dec takes as input the
key ak and ℓ = S.ol(κ) documents d1, . . . ,dℓ and outputs a
message am′. A history-ignorant stegodecoder thus has no
knowledge of previously sent documents. The stegodecoders
of nearly all known systems are history-ignorant.

To improve readability, if the stegosystem is clear from the con-
text, we will omit the prefix S. If C = {Cκ }κ ∈N is a family of
channels, the min-entropy of H∞(C,κ) is defined as H∞(C,κ) =
minh∈Σ∗ {H∞(Cκh )}. In order to be useful, the stegodecoder should
reliably decode the embedded message from the sequence of docu-
ments. As in the setting of algorithm substitution attack, the com-
plete output of ℓ documents of the stegosystem for the history
h on the subliminal message am of length S.ml(κ) is denoted as
S.Encℓ,C(ak, am,h) and is defined as follows.

1: σ = ∅
2: for j = 1 to ℓ do
3: (dj ,σ ) ← S.EncC(ak, am,h,σ ); h = h | | dj
4: return d1, . . . ,dℓ

The unreliability UnRelS,C(κ) of the stegosystem S on the chan-
nel family {Cκ }κ ∈N with security parameter κ is defined as

UnRelS,C(κ) :=

max
ak,am

max
h
{Pr[S.Dec(ak, S.Encℓ,C(ak, am,h)) , am]},

where the maximum is taken over all ak ∈ supp(S.Gen(1κ )), am ∈
{0, 1}S.ml(κ), and h ∈ (Σn(κ))∗. If there is a negligible function negl
such that UnRelS,C(κ) ≤ negl(κ), we say that S is reliable on C.
Furthermore, the reboot-reliability of the stegosystem S is defined
as

UnRel⋆S,C(κ) :=
max
ak,am

max
τ

max
h1, ...,hτ

max
ℓ1, ..., ℓτ

{Pr[S.Dec(ak,d1,d2, . . . ,dℓ) , am]}

where the maxima are taken over all ak ∈ supp(S.Gen(1κ )), am ∈
{0, 1}S.ml(κ), all positive integers τ ≤ ℓ, all histories h1, . . . ,hτ ,
and all positive integers ℓ1, . . . , ℓτ such that ℓ1 + . . . + ℓτ = ℓ. The
documents d1, . . . ,dℓ are the concatenated output of the runs

S.Encℓ1,C(ak, am,h1) | | . . . | | S.Encℓτ ,C(ak, am,hτ ).

We say that the stegosystem S is reboot-reliable if UnRel⋆S,C(κ) is
bounded from above by a negligible function. This corresponds
to a situation where the stegoencoder is restarted τ times, each
time with the history hi , and is allowed to generate ℓi documents.
Note that reboot-reliability is a strictly stronger requirement than
reliability and we can thus conclude

UnRelS,C(κ) ≤ UnRel⋆S,C(κ).

To define the security of a stegosystem, we first specify the
abilities of an attacker: AwardenWard is a probabilistic polynomial-
time algorithm that will have access to a challenge oracle CH. This
challenge oracle can be calledwith amessage am and a historyh and
is either equal to S.EncC(ak, am,h,σ ) for a key ak ← S.Gen(1κ )
or equal to random documents of the channel.

The goal of the warden is to distinguish between those oracles.
It also has access to samples of the channel Cκh for a freely cho-
sen history h. Formally, the chosen-hiddentext-attack-advantage is
defined via the following game SS-CHA-Dist:

SS-CHA-DistWard,S,C(κ)

Parties: warden Ward, stegosystem S, channel C
1: ak← S.Gen(1κ )
2: b ← {0, 1}
3: b ′ ←WardCH,C(1κ )
4: return b = b ′

oracle CH(am,h,σ )
1: if b = 0 then d ← Cκh

else (d,σ ) ← S.Enc(ak, am,h,σ )
2: return (d,σ )

Algorithm 3: Chosen-Hiddentext experiment with security
parameter κ.

A stegosystem S is called secure against chosen-hiddentext attacks
if for every warden Ward, there is a negligible function negl such
that

AdvchaWard,S,C(κ) := Pr[SS-CHA-DistWard,S,C(κ) = true]

≤ negl(κ).

The maximal advantage of any warden against S is the insecurity
InSecchaS,C(κ) and defined as maxWard{AdvchaWard,S,C(κ)}.

A very common technique in the design of secure stegosystems
called rejection sampling goes back to an idea of Anderson, pre-
sented in [1]. The basic concept is that the stegoencoder samples
from the channel until he finds a document that already encodes
the hiddentext. This was first used by Cachin in [10] to construct a
secure stegosystem in the information-theoretic sense.

In the following, let F be pseudorandom function that maps
input strings of length F.in(κ) (documents) to strings of length
F.out(κ) = log(ml(κ)) + 1 (message parts). To simplify notation,
we treat the output of F.Evalk as a pair (b, j) with |b | = 1 and
|j | = log(ml(κ)). The encoder of the rejection sampling stegosystem,
which we denote as RejSamF, is defined as follows:
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RejSamF.Enc(ak, am,h,σ )

Input: key ak, message am, history h, state σ
1: i := 0;
2: repeat
3: d ← Ch
4: i := i + 1
5: (b, j) := F.Evalak(d)
6: until am[j] = b or i > s ▷ am[j] is the j-th bit of am
7: return (d,σ )

Algorithm 4: Stegoencoder of RejSam with security parame-
ter κ and s ≥ 1.

The key generator RejSamF.Gen is equal to F.Gen and the de-
coder derives am, as long as its input documents contain every bit
am[j], by applying F.Evalak to these documents. Below we present
the description of the decoder. Note that the stegosystem is stateless.

RejSamF.Dec(ak,d1, . . . ,dS.ol(κ))

Input: key ak, documents d1, . . . ,dS.ol(κ)
1: for j = 1, . . . ,ml(κ) do
2: let amj := ⊥
3: for i = 1, 2, . . . , S.ol(κ) do
4: (b, j) := F.Evalk (di )
5: let amj := b
6: if all amj , ⊥ then
7: return am = am1am2 . . . amml(κ)
8: else
9: return ⊥

Algorithm 5: Decoder of RejSam.

In [16], Hopper et al. were the first to prove the security of this
stegosystem in the complexity-theoretic model. Their argument
was simplified by Dedić et al. in [12] and by Backes and Cachin in
[3]. The version given here is based upon the stateless construction
of Dedić et al. and also uses the idea of Bellare et al. in [6] to apply
the coupon collector’s problem to completely get rid of the state by
randomly choosing an index to embed.

The analysis of the coupon collector’s problem shows that by
sendingml(κ) · (lnml(κ)+ β) documents – for an appropriate value
β – one only introduces a term exp(−β) into the unreliability (see
e. g. [19] for a proof of this fact), which can be made negligible by
setting β ≥ ml(κ) − ln(ml(κ)). The output length on messages of
length ml(κ) will thus be bounded by ml(κ)2.

The security of this system directly follows from the analysis of
Dedić et al. in [12]:

Theorem 4.1 ([12, Theorems 4 and 5]). For every polynomial
ml(κ), there exists a universal history-ignorant stegosystem S =
RejSamF with security parameter κ and s ≥ 1 such that for every
channel Cκ we have

• S.ml(κ) = ml(κ),
• InSecchaS,C(κ) ≤ O(ml(κ)4 · 2−H∞(C

κ ) + ml(κ)2 · exp(−s)) +

InSecprfF,C(κ), and

• UnRel⋆S,C(κ) ≤ ml(κ)2(2 · exp(−2H∞(C
κ )−3)+ exp(−2−2s))+

InSecprfF,C(κ).

The notation InSecprfF,C(κ) indicates the insecurity of the pseudo-
random function F relative to the channel C. Informally, this means
that the attacker against F also has sampling access to C (for a
formal definition, see [12]). For an efficiently sampleable channel
C (i. e. one that can be simulated by a PPTM), it clearly holds that
InSecprfF,C(κ) = InSecprfF (κ). All channels used in this work are ef-
ficiently sampleable and we will thus omit the index C from the
term InSec.

5 ENCRYPTION SCHEMES AS
STEGANOGRAPHIC CHANNELS

Let SES = (Gen, Enc,Dec) be a symmetric encryption scheme that
encodes messages of lengthml(κ) into ciphertexts of length cl(κ) ≥
ml(κ) and let ℓ be a polynomial of κ. For SES we define a channel
family, named CκSES(ℓ), indexed with parameter κ ∈ N, where the
documents will correspond to the input of generalized algorithm
substitution attack against encryption schemes. The essential idea
behind the definition of the channel CκSES(ℓ) is that for all k ∈
supp(Gen(1κ )) and every sequence of messagesm1,m2, . . . ,mℓ(κ),
withmi ∈ {0, 1}ml(κ), for the history

h = k | | m1 | | m2 | | . . . | | mℓ(κ)

the distribution of the sequences of documents

c1 | | c2 | | . . . | | cℓ(κ)

generated by the channel is exactly the same as the distribution for

Enc(k,m1) | | Enc(k,m2) | | . . . | | Enc(k,mℓ(κ)).

To give a formal definition of {CκSES(ℓ)}κ ∈N we need to specify
the probability distributions for any history h. Thus, we define the
family, on the alphabet {0, 1}, as follows.

For the empty history h = ∅, define

CκSES(ℓ)∅

as the distribution of all keys generated by Gen(1κ ). For a key
k ∈ supp(Gen(1κ )) and a (possibly empty) sequence of messages
m1,m2, . . . ,mr , with mi ∈ {0, 1}ml(κ) and 0 ≤ r ≤ ℓ(κ) − 1, the
distribution

CκSES(ℓ)k | |m1 | |m2 | |... | |mr

is the uniform distribution on all messagesmr+1 ∈ {0, 1}ml(κ). For
k ∈ supp(Gen(1κ )), a sequence of messagesm1,m2, . . . ,mℓ(κ) with
mi ∈ {0, 1}ml(κ), and a (possibly empty) sequence of ciphertexts
c1, . . . , cr , with ci ∈ supp(Enc(k,m((i−1) mod ℓ(κ))+1)), the distribu-
tion

CκSES(ℓ)k | |m1 | |m2 | |... | |mℓ(κ ) | |c1 | |c2 | |... | |... | |cr

is the distribution of Enc(k,m(r mod ℓ(κ))+1).
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6 ASAS AGAINST ENCRYPTION IN THE
STEGANOGRAPHIC MODEL

Themainmessage of our paper is that algorithm substitution attacks
against a primitiveΠ are equivalent to the use of steganography on a
corresponding channel CΠ determined by the protocol Π. Focusing
on symmetric encryption schemes as a common cryptographic
primitive, we will show in this section exemplary proofs for the
general relations between ASAs and steganography.

In the previous section we showed a formal specification of
the family of communication channels CκSES(ℓ) determined by a
symmetric encryption scheme SES. We will now prove that a secure
and reliable stegosystem on CκSES(ℓ) implies the existence of an
indistinguishable and successful algorithm substitution attack on
SES. On the other hand, we will also show that the existence of an
indistinguishable and successful algorithm substitution attack on
SES implies a secure and reliable stegosystem on CκSES(ℓ).

As a consequence we get a construction of an ASA against any
encryption scheme using a generic stegosystem like e. g. this pro-
posed by Dedić et al. [12]. Thus, we can conclude Theorem 1 and
Theorem 3 proposed by Bellare et al. in [7] that there exist in-
distinguishable and successful ASAs against encryption schemes.
Moreover we obtain Theorem 4 in [7] which says that an ASA is
impossible for unique ciphertext symmetric encryption schemes.

6.1 Steganography implies ASAs
Theorem 6.1. Assume SES is a symmetric encryption scheme

and let S be a stegosystem on the channel C := CκSES(S.ol(κ)) deter-
mined by SES. Then there exists an algorithm substitution attack ASA
against SES of indistinguishability, resp. reliability such that:

InSecenc-watchASA,SES (κ) ≤ InSecchaS,C(κ) and
UnRelASA,SES(κ) = UnRel⋆S,C(κ).

Proof. Let SES = (Gen, Enc,Dec) be a symmetric encryption
scheme and S = (SGen, SEnc, SDec) be a stegosystem on the chan-
nel C. To simplify notation, let ℓ = ℓ(κ) := S.ol(κ). We will con-
struct the algorithm substitution attack ASA = (AGen,AEnc, AExt)
on SES from the stegosystem S and show the indistinguishability
and success of ASA depending on security and reliability of S. The
components of the ASA are defined as follows.

The key generator AGen just simulates SGen – the key generator
of the stegosystem. It will output the attack key ak. The encoding
algorithm AEnc on input ak ∈ supp(AGen(1κ )), am ∈ {0, 1}S.ml(κ),
k ∈ supp(Gen(1κ )), and m ∈ {0, 1}SES.ml(κ) simulates SEnc on
channel C with input key ak, the message am and the history
h = k | | mℓ , wheremℓ is the string of length ℓ · |m | containing ℓ
copies ofm. Whenever SEnc makes a query to its channel oracle,
algorithm AEnc uses Enc on input k andm to produce a correspond-
ing ciphertext and sends it to SEnc. The encoder AEnc then outputs
the documentd generated by SEnc. Finally, the extraction algorithm
AExt on input ak ∈ supp(AGen(1κ )) and documents d1, . . . ,dℓ just
simulates SDec on the same inputs.

As one can see from the definitions, ASA is a generalized algo-
rithm substitution attack against SES. We will now prove that it is
indistinguishable from SES and that it is successful.

We prove first indistinguishability of the system. LetWatch be
a watchdog against the above ASA with maximal advantage, i. e.

Advenc-watchWatch,ASA,SES(κ) = InSecenc-watchASA,SES (κ),

where Advenc-watchWatch,ASA,SES(κ) is equal to the success probability that
ASA-DistWatch,ASA,SES(κ) = true. We will now construct a warden
Ward from Watch such that

AdvchaWard,S,C(κ) = Advenc-watchWatch,ASA,SES(κ).

Thus, we will get that

InSecenc-watchASA,SES (κ) ≤ InSecchaS,C(κ). (1)

The warden Ward on input 1κ just simulates the watchdog Watch
and gives the same output as Watch at the end of the simulation.
Whenever the watchdog makes a query on input am, k , and m
to its challenging oracle (that is either equal to SES’s encryption
algorithm Enc(k,m) or to ASA’s encryption AEnc(ak, am,k,m,σ )
for ak← AGen(1κ )), the wardenWard queries its own challenging
oracle with message am, state σ and history h = k | | mℓ . Note that
the challenging oracle of Ward is either equal to the channel C or
to SEnc(ak, am,h,σ ) for ak← SGen(1κ ).

If the challenging oracle of Ward is equal to the steganographic
encoding SEnc(ak, am,h,σ ) (i. e. the bit b in SS-CHA-Dist equals 1,
denoted by SS-CHA-DistWard,S,C(κ)⟨b = 1⟩), the answer ofWard
is the same as the output of the Watch in case it queries the ASA’s
encoding algorithm AEnc(ak, am,k,m) by construction. Thus,

Pr[SS-CHA-DistWard,S,C(κ)⟨b = 1⟩ = true]

= Pr[ASA-DistWatch,ASA,SES(κ)⟨b = 1⟩ = true].

If the challenging oracle of Ward is equal to the channel (the
bit b in SS-CHA-Dist equals 0), by the definition of the channel
C for the symmetric encryption scheme SES, the answer of the
challenging oracle is equal to the output of Enc(k,m). Hence,

Pr[SS-CHA-DistWard,S,C(κ)⟨b = 0⟩ = true]

= Pr[ASA-DistWatch,ASA,SES(κ)⟨b = 0⟩ = true].

We thus have

AdvchaWard,S,C(κ) = Pr[SS-CHA-DistWard,S,C(κ) = true]
= Pr[ASA-DistWatch,ASA,SES(κ) = true
= Advenc-watchWatch,ASA,SES(κ)

which completes the proof of (1).
We still need to prove that AExt is reliably able to extract the

attacker message am from the ciphertext. But, as AExt = SDec, the
reboot-reliability of SDec directly implies that AExt is successful
with probability of 1 − negl(κ). □

By combining Theorem 6.1 and Theorem 4.1, we can conclude
the following corollary.

Corollary 6.2. For every symmetric encryption scheme SES, there
exists an algorithm subsection attack ASA with message lengthml(κ)
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and parameter s ≥ 1 such that

InSecenc-watchASA,SES (κ) ≤ O(ml(κ)4 · 2−H∞(C
κ ))+

O(ml(κ)2 · exp(−s)) + InSecprfF (κ),

UnRel⋆S,C(κ) ≤ 2ml(κ)2 · exp(−2H∞(C
κ )−3)+

ml(κ)2 · exp(−2−2s) + InSecprfF (κ)

where C := CκSES(S.ol(κ))

One can compare this corollary to the construction used in the
proof of Theorem 4.1 and Theorem 4.2 in [6]. We can see that our
generic algorithm substitution attack gets almost the same bounds
for insecurity and for unreliability.

Note that the protocols in [2, 6] and our generic protocol of
Corollary 6.2 have a very bad rate: ml

ml ·(lnml+β ) = 1/(lnml+β) for
an appropriate value β . One can easily modify the above construc-
tions such that instead of one bit b of a message am we embed
a block of log(ml) bits per ciphertext. This improves the rate to

logml
ln(ml)−ln log(ml)+β = Θ(1).

6.2 ASAs imply Steganography
Theorem 6.3. Assume SES is a symmetric encryption scheme and

let ASA be an algorithm substitution attack against SES of output
length ASA.ol(κ). Then there exists a stegosystem S with the output
length S.ol(κ) = 2 · ASA.ol(κ) + 1 on the channel C := CκSES(S.ol(κ))
determined by SES such that S’s insecurity, resp. its reliability satisfy

InSecchaS,C(κ) ≤ InSecenc-watchASA,SES (κ) and
UnRelS,C(κ) = UnRelASA,SES(κ).

Proof. Let SES = (Gen, Enc,Dec) be a symmetric encryption
scheme and ASA = (AGen,AEnc,AExt) be an algorithm substitu-
tion attack against SES. To simplify notation, let ℓ = ASA.ol(κ). We
construct the stegosystem S = (SGen, SEnc, SDec) on C out of the
ASA.

The key generation algorithm SGen simply simulates AGen. It
will output the key ak. To encode a message am using the key
ak, the stegoencoding algorithm SEnc generates for any history
h a sequence of S.ol(κ) = 2ℓ + 1 documents such that the last ℓ
documents embed the message am. To describe the algorithm we
need to distinguish between different given histories h.
h = ∅: In this case, SEnc chooses a random key k ← SES.Gen(1κ )

using the generation algorithm of SES and outputs k .
h = k | | m1 | | m2 | | . . . | | mr for 0 ≤ r ≤ ℓ − 1: Encoder SEnc sam-

ples a random messagemr+1 and outputs it.
h = k | | m1 | | m2 | | . . . | | mℓ | | c1 | | . . . | | cr with r ≥ 0: The stego-

encoder SEnc simulates AEnc(ak, am,k,m(r+1) mod ℓ+1) and
outputs the generated ciphertext.

Note that by construction, in any case the last ℓ documents
generated by SEnc2ℓ+1 embed the message am in the same way as
done by ASAℓ .

If the decoder SDec is given documents d1, . . . ,d2ℓ+1, we output
AExt(ak,dℓ+2, . . . ,d2ℓ+1).

As one can see from the definitions, the decoding algorithm of S is
history-ignorant.Wewill prove that on the channelC = CκSES(2ℓ+1)
the security and reliability of the stegosystem S satisfy the stated
conditions.

We first analyze the security of the system. LetWard be a warden
against S on C with maximal advantage, i. e.

AdvchaWard,S,C(κ) = InSecchaS,C(κ),

where AdvchaWard,S,C(κ) = Pr[SS-CHA-DistWard,S,C(κ) = true].We
will construct a watchdogWatch against the algorithm substitution
attack ASA with the same advantage as Ward:

Advenc-watchWatch,ASA,SES(κ) = AdvchaWard,S,C(κ).

This will prove that

InSecchaS,C(κ) ≤ InSecenc-watchASA,SES (κ). (2)

The watchdog Watch on input 1κ simply simulates the warden
Ward. Whenever the warden Ward makes a query to its channel
oracle C with a history h, the watchdogWatch simulates the oracle
response as follows:
• If h = ∅, the watchdog uses Gen(1κ ) to construct a key k
and returns k to the warden.
• If h = k | | m1 | | . . . | | mr with r < ℓ, the watchdog
uniformly chooses a messagemr+1 from {0, 1}SES.ml(κ) and
outputsmr+1.
• If h = k | | m1 | | . . . | | mℓ | | c1 | | . . . | | cr with r ≥ 0, the
watchdog computes cr+1 ← Enc(k,m((r+1) mod ℓ)+1) and
outputs cr+1.

Clearly, this simulates the channel distribution C perfectly. If the
warden queries its challenge oracleWard.CH with chosen message
am, state σ , and history h (that is either equivalent to sampling
from Ch or to calling SEnc(ak, am,h,σ )), the watchdog simulates
the response of the oracle Ward.CH as follows:
• If h = ∅ then Watch chooses a random key k ← Gen(1κ )
and outputs it.
• If h = k | | m1 | | m2 | | . . . | | mr for 0 ≤ r ≤ ℓ− 1 thenWatch
samples a random messagem and outputs it.
• If h = k | | m1 | | m2 | | . . . | | mℓ | | c1 | | . . . | | cr with r ≥ 0
thenWatch queries its own oracle on k andm((r+1) mod ℓ)+1.

IfWatch.CH is equal to Enc of SES (the bit b in ASA-Dist is set to
0) the corresponding answer is identically distributed to a sample
of the channel C. Hence,

Pr[ASA-DistWatch,ASA,SES(κ)⟨b = 0⟩ = true] =

Pr[SS-CHA-DistWard,S,C(κ)⟨b = 0⟩ = true].

On the other hand, if Watch.CH is equal to AEnc (the bit b in
ASA-Dist is set to 1), the corresponding answer is identically dis-
tributed to SEnc(ak, am,h,σ ) and thus

Pr[ASA-DistWatch,ASA,SES(κ)⟨b = 1⟩ = true] =

Pr[SS-CHA-DistWard,S,C(κ)⟨b = 1⟩ = true].

We thus have
Advenc-watchWatch,ASA,SES(κ) =

Pr[ASA-DistWatch,ASA,SES(κ) = true] =
Pr[SS-CHA-DistWard,S,C(κ) = true] =

AdvchaWard,S,C(κ)

which proves (2).
The reliability of S is the same as the success probability of ASA

since SDec simply simulates AExt. □
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By using the fact that channels with min-entropy 0 can not be
used for steganography (see e. g. Theorem 6 in [16]) and observing
that channels corresponding to deterministic encryption schemes
have min-entropy 0, we can conclude the following corollary:

Corollary 6.4. For all deterministic encryption schemes SES and
all algorithm substitution attacks ASA against SES:

InSecenc-watchASA,SES (κ) ≥ 1.

Note that this exactly Theorem 4 in [7].

7 GENERAL RESULTS
Let R be a polynomial-time randomized algorithm with hardwired
secret s which takes inputs x and generates outputs y. The gen-
eral task of an algorithm substitution attack against R is to con-
struct a subverted algorithm ARak which using a hidden hardwired
random key ak outputs on the secret s in the sequence of calls
ARak(s,x1),ARak(s,x2), . . . a sequence such that

(1) the output ARak(s,x1),ARak(s,x2), . . . is indistinguishable
from R(s,x1),R(s,x2), . . . and

(2) ARak(s,x1),ARak(s,x2), . . . embeds the secret s .
In our setting we model the attack on R as a stegosystem on a

channel determined by R and define such a channel.

7.1 ASA against a Randomized Algorithm
In this section we give formal definitions for algorithm substitu-
tion attack AR, its advantage AdvWatch,AR,R, etc. Formally, an algo-
rithm substitution attack against R is a triple of efficient algorithms
ASA = (Gen,AR, Ext), where Gen generates the key ak, the algo-
rithm AR takes the key ak, a secret s and all inputs x1,x2, . . . to
R and the extractor Ext tries to extract s from the outputs of AR
with the help of ak (but without knowing x1,x2, . . .). Similarly to
the setting for encryption schemes, ASA is called indistinguishable,
if every PPTM Watch – the watchdog – is not able to distinguish
between ARak(s,x1),ARak(s,x2), . . . and R(x1),R(x2), . . . even if he
is allowed to choose s and all xi . This is defined via the game
RASA-DistWatch,ASA,R defined analogously to ASA-Dist. The maxi-
mal advantage of any watchdog distinguishing ASA from R is called
the insecurity or indistinguishability of ASA and is formally defined
as

InSecasaASA,R(κ) = max
Watch

{AdvasaWatch,ASA,R(κ)},

where

AdvasaWatch,ASA,R(κ) := Pr[RASA-DistWatch,ASA,R(κ) = true].

The unreliability of ASA is also defined like before:

UnRelASA,R(κ) =

max{Pr[ASA.AExt(ak,ASA.AR(ak, am,x1, . . . ,xℓ)) , am]},

where the maximum is taken over all ak ∈ supp(ASA.Gen(1κ )),
am ∈ {0, 1}ASA.ml(κ), and x1, . . . ,xℓ being inputs to R.

Known examples which fit into this setting include e. g. the
subversion-resilient signature schemes presented in the work of
Ateniese et al. [2].

7.2 Channel determined by a Randomized
Algorithm

Let R be a polynomial-time randomized algorithmwith parameterκ.
We assume that the secret s is generated by Gen and the inputs x
to R are generated by the randomized polynomial-time algorithm
GenInput, associated with R (which may be chosen adversarially
as shown in the definition above). Let ℓ be a polynomial of κ. For R
we define a channel family, named CκR (ℓ), indexed with parameter
κ ∈ N, with documents which correspond to the input ofAR. The es-
sential idea behind the definition of the channel CκR (ℓ) is that for all
s ∈ supp(Gen(1κ )) and every sequence of inputs x1,x2, . . . ,xℓ(κ),
with xi ∈ supp(GenInput(1κ )), for the history

h = s | | x1 | | x2 | | . . . | | xℓ(κ)

the distribution of the sequences of documents

y1 | | y2 | | . . . | | yℓ(κ)

generated by the channel is exactly the same as the distribution for

R(s,x1) | | R(s,x2) | | . . . | | R(s,xℓ(κ)).

To give a formal definition of {CκR (ℓ)}κ ∈N we need to specify the
probability distributions for any history h. Thus, we define the
family, on the alphabet {0, 1}, as follows: For empty history h = ∅,
we define CκR (ℓ)∅ as the distribution on all possible keys gener-
ated by Gen(1κ ). For s ∈ supp(Gen(1κ )) and a (possibly empty)
sequence inputs x1,x2, . . . ,xr with xi ∈ supp(GenInput(1κ )) and
0 ≤ r ≤ ℓ(κ) − 1, the distribution CκR (ℓ)s | |x1 | |x2 | |... | |xr is the distri-
bution on inputs xr+1 ← GenInput(1κ ). For s ∈ supp(Gen(1κ )), a
sequence of inputs x1,x2, . . . ,xℓ(κ) with xi ∈ supp(GenInput(1κ )),
and a (possibly empty) sequence of R’s outputs y1, . . . ,yr with
yi ∈ supp(R(s,x((i−1) mod ℓ(κ))+1)), the probability distribution of
CκR (ℓ)s | |x1 | |x2 | |... | |xℓ(κ ) | |y1 | |y2 | |... | |... | |yr is the probability distribu-
tion of R(s,x(r mod ℓ(κ))+1).

7.3 Results
The theorems proved in the previous section can simply be gener-
alized by using our general construction of the channel CkR (ℓ) for
the randomized algorithm R and the generic stegosystem RejSamF

provided by Theorem 4.1.

Theorem 7.1. For every randomized algorithm R, there exists a
generic algorithm substitution attack ASA against R such that

InSecASAASA,R(κ) ≤ O(ml(κ)4 · 2−H∞(C
κ ))+

O(ml(κ)2 · exp(−s)) + InSecprfF (κ),

UnRel⋆S,C(κ) ≤ 2ml(κ)2 · exp(−2H∞(C
κ )−3)+

ml(κ)2 · exp(−2−2s) + InSecprfF (κ)

where C := CκR (S.ol(κ)).

Theorem 7.2. For all deterministic algorithms R and all algorithm
substitution attacks ASA against R:

InSecasaASA,R(κ) = 1.

Theorem 1.2 is thus just a consequence of Theorem 7.1 and
Theorem 1.3 is just a consequence of Theorem 7.2.

These general results also imply several other results from the
literature, for example on signature schemes. Ateniese et al. [2]
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study algorithm substitution attacks3 on signature schemes SIG =
(Gen, Sign,Vrfy), where
• The key generator SIG.Gen produces upon input 1κ a pair
(pk, sk) of keys with |pk| = |sk| = κ. We call pk the public
key and sk the secret key.
• The signing algorithm SIG.Sign takes as input the secret key
sk and a messagem ∈ {0, 1}SIG.ml of length SIG.ml(κ) and
produces a signature σ ∈ {0, 1}SIG.sl(κ) of length SIG.sl(κ).
• The verifying algorithm SIG.Vrfy takes as input the public
key pk, the messagem and a signature σ and outputs a bit b.

On the positive side (from the view of an algorithm substitution
attack) they show that all randomized coin-injective schemes and
all coin-extractable schemes have ASA. A randomized algorithm A
is coin-injective, if the function fA(x , ρ) = A(x ; ρ) (where ρ denotes
the random coins used byA) is injective and coin-extractable if there
is another randomized algorithm B such that Pr[B(A(x ; ρ)) = ρ] ≥
1 − negl for a negligible function negl. They prove the following
theorems:

Theorem 7.3 (Theorem 1 in [2]). For every coin-injective signa-
ture scheme SIG, there is a successful algorithm substitution attack
ASA and a negligible function negl such that

InSecasaASA,SIG(κ) ≤ InSecprfF (κ) + negl(κ)

for a pseudorandom function F.

Theorem 7.4 (Theorem 2 in [2]). For every coin-extractable sig-
nature scheme SIG, there is a successful algorithm substitution attack
ASA and a negligible function negl such that

InSecasaASA,SIG(κ) ≤ negl(κ).

Both of these results are easily implied by Theorem 7.1.
On the negative side (from the view of an algorithm substitution

attack), they show that unique signature schemes are resistant to
ASAs fulfilling the verifiability condition. Informally this means that
(a) each message has exactly on signature (for a fixed key-pair) and
(b) each signature produced by the ASA must be valid.

Theorem 7.5 (Theorem 3 in [2]). For all unique signature schemes
SIG and all algorithm substitution attacks ASA against them that
fulfill the verifiability condition, there is a negligible function negl
such that

InSecasaASA,SIG(κ) ≥ 1 − negl(κ).

As unique signature schemes do not provide enoughmin-entropy
for a stegosystem, this results follows from Theorem 1.3.

8 A LOWER BOUND FOR UNIVERSAL ASA
A setting similar to steganography, where universal stegosystems
exist, that can be used for any channel of sufficiently large min-
entropy, would be quite useful for attackers that plan to launch
algorithm substitution attacks. Such a system would allow them to
attack any SES without knowing the internal specification of the
encryption algorithm. A closer look at the results in [2, 6, 7] reveals
that their attacks do indeed go without internal knowledge of the
used encryption algorithm. They only manipulate the random coins
used in the encryption process. Note that SES.Enc(k,m; ρ) – where
3To be more precise, their attacks only replace the signing algorithm Sign.

ρ denotes the random coins used by SES.Enc – is a deterministic
function, as SES.Enc is a PPTM.

We thus define a universal ASA as a triple of PPTMs such that
for every symmetric encryption scheme SES, the triple

ASASES = (ASA.Gen,ASA.EncSES.Enc(·, ·;·),ASA.Ext)

is an ASA against SES. The encoder ASA.Enc has only oracle access
to the encryption algorithm SES.Enc of the SES: It may thus choose
arbitrary values k ,m, and ρ and receives a ciphertext

c ← SES.Enc(k,m; ρ)

without having a complete description of the encryption schemes.
LetQ be set of ciphertexts thatASA.Enc receives upon its queries.

It might be possible for the encoding algorithm ASA.Enc to con-
struct a new ciphertext c < Q from the elements of Q, but such a
construction must be highly specific to a single SES and thus non-
universal. We thus say that ASA is consistent, if ASA.EncSES.Enc(·, ·;·)
only outputs ciphertexts in Q for all encryption schemes SES.
Note that the encoding EncSES.Enc(·, ·;·) of a consistent ASA with
parameters (ak, am,k,m,σ ) may output a ciphertext c withm ,
SES.Dec(k, c) if c was provided by the encryption oracle. But gen-
erating a c withm = SES.Dec(k, c) is only allowed if c was given
by the oracle.

As noted above, all attacks in [2, 6, 7] are consistent and universal
and Bellare, Jaeger, Kane explicitly state in their work [6] that their
ASA works against any encryption scheme of sufficiently large min-
entropy. We also remark that the rejection sampling ASA presented
earlier is universal and consistent.

For such a universal and consistent attackASA and an encryption
scheme SES, denote by ASA.query(SES,κ) the expected number
of oracle calls that ASA.EncSES.Enc(·, ·;·) makes to the encryption
algorithm SES.Enc, i. e. the expected size of Q.

In the steganographic setting, Dedić et al. showed in [12] that
(under the cryptographic assumption that one-way functions exist)
no universal stegosystem can embed more than O(1) · log(κ) bits
per document and thus proved that the rejection sampling based
systems have optimal rate.

The critical observation is that a universal stegosystem can only
work upon the documents sampled from the channel, as most chan-
nel distributions are not learnable due to information-theoretic
reasons. The stegosystem is thus not able to generate valid doc-
uments by itself. Their proof crucially depends on the fact that
the stegosystem can not deduce anything about the distribution of
unseen documents from the given documents. This is summarized
by two key properties. The first one (Lemma 2 in [12]) says that
secure stegosystems almost always output query answers which
belong to the channel’s support. This can be adapted to universal
ASAs (in a weaker form) as follows:

Lemma 8.1. Let ASA be a universal and consistent ASA such that
it is secure against the encryption scheme SES. Then, for all key
lengths κ, attacker messages am, keys k and messages m we have
Pr[SES.Dec(k, c) , m] ≤ negl for some negligible function negl,
where c ← ASA.Enc(ak, am,k,m) for ak← ASA.Gen(1κ ).

Proof. Since the watchdog knows k and m, it can verify if
SES.Dec(k, c) = m and thus detect whenever the universal ASA
outputs a non-ciphertext. □
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The second key property (stated as Lemma 1 in [12]) informally
says that a reliable universal stegosystem that samples at most n
documents can only embed log(n) bits per document. This is due
to the fact that the embedding must be injective with regard to
the attacker message am and that the sampling of the documents
is independent. Note that the independence of the documents de-
scribed above for the steganographic setting is not true for ASAs:
As the ciphertexts are constructed by the same PPTM SES.Enc (on
the same key k and the same messagem), there is a clear depen-
dency between the ciphertexts usable by the ASA. One can thus
not simply translate the second property into the ASA setting.

In the following, we will taker a closer look at an example that
clearly shows the dependency between the ciphertexts and how an
ASA can make use of this fact. We will then modify this example
and prove that this dependency can be eliminated in the random
oracle model. The full version of this work also shows how one
can get rid of the dependence on the random oracle model and the
requirement of consistency by using signature schemes similar to
the approach used by the authors in [9]. A minor modification of
this example allows us to also state the second key property in the
setting of ASAs in the random oracle model.

Consider an example presented by Bellare et al. in [7], where
they presented an attack against symmetric encryption schemes
that surface their initialization vector (IV). One such example is the
random counter mode CTR$F of [5] making use of the PRF F. For
the sake of completeness, the encoder CTR$F.Enc of the random
counter mode is defined below, where m is a message of length
ℓ · F.out(κ).

Input: key k , messagem; PRF F
1: splitm intom1,m2, . . . ,mℓ with |mi | = F.out(κ)
2: r ← {0, 1}F.in(κ) ▷ treated as string and number
3: c0 := r
4: for i = 1, . . . , ℓ do
5: ci := F.Evalk ([c0 + i mod 2F.in(κ)]) ⊕mi

6: return c = c0c1 . . . cℓ

Algorithm 6: Encoder of random counter mode CTR$F.

In a universal and consistent ASA, the encoder ASA.Enc can
observe that the first part c0 of the produced ciphertexts equals the
random coins ρ it gave to its encryption oracle. It may thus compute
a certain ρ∗ = SES.Enc(ak, am) (which is indistinguishable from a
random string) and the resulting ciphertext c∗ = SES.Enc(k,m; ρ∗)
would thus embed the attacker message. In contrast to the stegano-
graphic setting, where the stegoencoder can simply query its oracle
for channel documents, a universal and consistent ASA can choose
the random coins and make use of the dependencies between those
coins and the generated ciphertext.

In the following, we will thus work in the random oracle model
introduced by Bellare and Rogaway [8] to modify the random
counter mode CTR$F of [5] such that no ASA can embed more
than O(1) · log(κ) bits per ciphertext by getting rid of these de-
pendencies. If H : {0, 1}n → {0, 1}F.in(κ) is a random oracle (see

e. g. [17] for a detailed treatment of this topic), we modify the algo-
rithm above by setting c0 := H(r ) and choosing r of length n such
that |H(r )| = F.in(κ). Denote this modified version by CTR$F,H.
Due to the definition of the random oracle, until H(r ) is computed,
Pr[H(r ) = x] = 2− F.in(κ) for all x , i. e. no one can predict the output
of the random oracle. Clearly, if one replaces the PRF F by a com-
pletely random function f , the output ofCTR$f ,H.Enc(k,m; r ) is in-
dependent of k ,m and r . This implies that the set of sampled cipher-
textsC is a completely random subset of supp(CTR$f ,H.Enc(k,m)).
We can thus state the following.

Lemma 8.2. Let ASA be a universal and consistent ASA, F be a
PRF and H be a random oracle. For all key lengths κ:

UnRelASA,CTR$F,H (κ) ≥

1 −
ASA.ol(κ) · ASA.query(CTR$F,H,κ)

2ASA.ml(κ)
− InSecprfF (κ).

This allows us to conclude the following corollary bounding the
number of bits embeddable into a single ciphertext by a universal
algorithm substitution attack.

Corollary 8.3. In the random oracle model, there is no universal
and consistent ASA that embeds more than O(1) · log(κ) bits per
ciphertext.

9 CONCLUSIONS
In this work, we proved that ASAs in the strong undetectability
model of Bellare, Jaeger and Kane [6] are a special case of stegosys-
tems on a certain kind of channels described by symmetric en-
cryption schemes. This gives a rigorous proof of the well-known
connection between steganography and algorithm substitution at-
tacks. We make use of this relationship to show that a wide range of
results on ASAs are already present in the steganographic literature.
Inspired by this connection, we define universal ASAs that work
with no knowledge on the internal implementation of the sym-
metric encryption schemes and thus work for all such encryption
schemes with sufficiently large min-entropy. As almost all known
ASAs are universal, we investigate their rate – the number of em-
bedded bits per ciphertext – and prove a logarithmic upper bound
of this rate.
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