
Deterministic Browser

Yinzhi Cao
Lehigh University

Bethlehem, PA

yinzhi.cao@lehigh.edu

Zhanhao Chen
Lehigh University

Bethlehem, PA

zhc416@lehigh.edu

Song Li
Lehigh University

Bethlehem, PA

sol315@lehigh.edu

Shujiang Wu
Lehigh University

Bethlehem, PA

shw316@lehigh.edu

ABSTRACT

Timing attacks have been a continuous threat to users’ privacy in

modern browsers. To mitigate such attacks, existing approaches,

such as Tor Browser and Fermata, add jitters to the browser clock so

that an attacker cannot accurately measure an event. However, such

defenses only raise the bar for an attacker but do not fundamentally

mitigate timing attacks, i.e., it just takes longer than previous to

launch a timing attack.

In this paper, we propose a novel approach, called deterministic

browser, which can provably prevent timing attacks in modern

browsers. Borrowing from Physics, we introduce several concepts,

such as an observer and a reference frame. Speci!cally, a snippet

of JavaScript, i.e., an observer in JavaScript reference frame, will

always obtain the same, !xed timing information so that timing

attacks are prevented; at contrast, a user, i.e., an oracle observer,

will perceive the JavaScript di"erently and do not experience the

performance slowdown. We have implemented a prototype called

DeterFox and our evaluation shows that the prototype can defend

against browser-related timing attacks.

CCS CONCEPTS

• Security and privacy → Browser security; Web application

security;

KEYWORDS

Determinism, Web Browser, Timing Side-channel Attack

1 INTRODUCTION

Timing attacks have continuously posed a threat to modern web

browsers, violating users’ privacy. For example, an adversary can

infer the size of an external, cross-site resource based on the loading

time [45, 46]; a website can !ngerprint the type of the browser based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3133996

on the performance of JavaScript [33, 34]; two adversaries can talk

to each other via a covert channel [38, 45].

Faced with browser-related timing attacks, researchers from

both industry and academia have proposed solutions to mitigate

such attacks by adding noises or called jitters to the time avail-

able to the attackers and decreasing the time precision. For ex-

ample, Tor Browser [4], an industry pioneer in protecting users’

privacy, reduces the resolution of a !ne-grained JavaScript clock,

per f ormance .now , to 100ms; following Tor Browser, major browsers,

such as Chrome and Firefox, also reduces the resolution to 5µs. Sim-

ilarly, Kohlbrenner and Shacham proposed Fermata [26], a solution

that introduces fuzzy time [21] into browser design and then de-

grades not only the explicit clock like per f ormance .now but also

other implicit clocks like setTimeout in the browser.

However, the aforementioned prior work—which reduces the

browser’s clock resolution—only raises the bar for an attacker but

do not fundamentally mitigate timing attacks. Even if such work

is deployed, it just takes longer time for an adversary to launch

an aforementioned timing attack and obtain the information that

she needs. Say, an adversary tries to infer a resource’s size based

on the loading time, i.e., launching a side-channel attack. All the

existing defenses only limit the bandwidth of such a side chan-

nel as acknowledged by Kohlbrenner and Shacham [26]. Consider

JavaScript performance !ngerprinting as another example. Jitters

that are added by existing defenses can be averaged out, when the

attack is performed longer or in multiple runs.

Apart from the prior work targeting browser-related timing at-

tacks, another direction that prevents lower-level timing attacks,

such as L2 cache attacks, is to introduce determinism. Examples

of such approaches are Deterland [48], StopWatch [29, 30], and

λ
PAR

SEC
[50]. However, Deterland still adopts statistical, i.e., non-

deterministic, solutions for external events by grouping events

together, which only limits the bandwidth of an external timing at-

tack. StopWatch cannot prevent internal timing attacks, and needs

virtual machine replication for I/O events, which is not applicable

at a higher level, such as a browser. λPAR
SEC

is a new programming

language with ensured security property, but requires that all the

existing programs are rewritten and follow their language speci!-

cation. In sum, it still remains unclear how to apply determinism

in real-world systems even at lower level let alone web browsers

so as to prevent timing attacks.

In this paper, we propose deterministic browser, the !rst ap-

proach that introduces determinism into web browsers and prov-

ably prevents browser-related timing attacks. Both challenges and

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

163

opportunities arise in deterministic browser. One challenge is that

JavaScript, the dominantweb language, is event-driven, i.e., JavaScript

engine may be waiting for events without executing any statements;

accordingly, one opportunity is that JavaScript is singled-threaded—

speci!cally no event can interrupt the JavaScript execution.1

To better explain deterministic browser, let us revisit timing

attacks. A timing attack is that an adversary tries to measure the

duration of a target, secret event (called a “target secret” in the

paper) using a reference clock of the physical time. The target

secret is an event that the adversary does not know how long it

takes to !nish, e.g., the parsing time of a cross-origin script. The

reference clock is used to measure the target secret, which could

be explicit, e.g., per f ormance .now , or implicit, e.g., setTimeout and

requestAnimationFrame . An implicit reference clock is based on

an event that the adversary knows how long it takes to !nish. The

duration of such known event is de!ned as an implicit clock tick,

usually much smaller than the duration of the target secret.

A necessary condition of launching a successful timing attack is

that all three key elements—i.e., (i) an adversary, (ii) a target secret,

and (iii) a reference clock—have to co-exist at the same time in a

runtime environment. An adversary is the subject, a target secret

is the object, and a reference clock is the tool that the subject used

to steal the object. Therefore, a natural solution is to remove one

or more of the three key elements from the runtime environment

and break the necessary condition. However, all three elements are

essential in a browser and hard to remove. An adversary just looks

like a normal client-side JavaScript. The detection of such JavaScript

is a di"erent research direction and based on past research on

JavaScript malware detection [11, 17], false positives and negatives

are hard to avoid. A target secret is a common browser operation

such as script parsing—i.e., the removal of target secrets will break

the browser functionality. We can remove2 an explicit reference

clock of the physical time, such as per f ormance .now , but many

implicit clocks like setTimeout and using JavaScript execution as

minor clocks [26] also exist and contribute to essential browser

functionalities.

In deterministic browser, instead of removing key elements from

the entire runtime environment, i.e., the web browser, we break

down the web browser into several smaller units and remove one

or more di"erent key elements from these smaller units. That is,

from a macro perspective, all three key elements still exist in the

web browser; from a micro perspective, at most two elements exist

in one smaller unit. Speci!cally, the smaller unit that we introduce

is called reference frames (RFs),3 a new, abstract concept borrowed

from Physics. Each RF has one independent clock and sometimes

an observer—e.g., a JavaScript program possibly controlled by the

adversary. Just as in Physics, the job of the observer is to measure

the duration of an event in the RF, i.e., making two observations

at the start and end of the event, obtaining two timestamps and

calculating the interval. In web browser, one important yet di"erent

property of a RF is that one and only one event—e.g., a target secret

1The statement holds, even if we take WebWorkers, a new HTML5 standard, into
consideration.
2Strictly speaking, because a clock is an essential concept, the so-called removal of a
clock is just to de!ne a new clock in which the ticking unit is zero.
3Note that a reference frame is not an HTML or JavaScript frame: An HTML or
JavaScript frame may contain many reference frames. To avoid confusion, we often
use the abbreviation, i.e., RF, for reference frame in the paper.

or an implicit clock tick event—can be executed in one RF; di"erent

events are executed in di"erent RFs separately. (As discussed in

Section 3.1, RFs are usually implemented by OS level threads.) We

now look at di"erent RF examples and explain how to remove key

elements of a timing attack from these RFs. In general, RFs can be

categorized into two types: with and without a target secret.

First, let us say a RF is executing a target secret—that is, all

three key elements co-exist in this RF. JavaScript execution engine

is such an example, in which the target secret is the execution

performance of JavaScript. In such case, we need to rede!ne the

clock in the RF such that when an observer measures the duration of

any event, it can always calculate the duration based on what it has

already known without looking at the clock. A RF with such a clock

is de!ned as deterministic (De!nition 1) in our paper. Here our

de!nition of determinism—which provably prevents timing attacks

shown in Theorem 1—is broader than the existing de!nition, such

as the one used in DeterLand [48]. We further show that in the

context of JavaScript RF, our de!nition can boil down to a simple

form (Theorem 2), and then be specialized to the existing de!nition.

Particularly, the clock in JavaScript RF ticks based on the number

of executed opcodes.

Second, let us say a RF has no target secret, e.g., a RF executing

a tick event for an implicit reference clock. Concrete examples are

like a RF executing setTimeout , one dealing with an HTTP request,

and another executing requestAnimationFrame . In such cases, only

two elements exist in the RF—there is no target secret for the adver-

sary to steal. That is, the clock in such RFs can follow the physical

time. However, the clock information in such RFs can be commu-

nicated to a deterministic RF that has a target secret, hence being

used for measurement. Therefore, when a deterministic RF receives

information from another (non-deterministic) RF, we need to make

the recipient RF remain deterministic (Lemma 1)—the technique of

such communication between RFs is de!ned as deterministic com-

munication (De!nition 2). Particularly, as shown in Section 5, we

introduce a priority queue to replace the original event queue, i.e.,

the central communication data structure, in the JavaScript event

model. Our new priority queue synchronizes clocks in two RFs

from the viewpoint of the recipient observer. In other words, when

the recipient observer sees the communication message conveying

the time from other RF, e.g., the physical time, the conveyed time

is the same as its own clock.

Apart from the aforementioned categorization of RFs based on

whether a target secret exists, RFs can also be classi!ed based on

the existence of an observer, one with an observer called a main

RF and one without called an auxiliary RF. The clock in a RF is

in an unde!ned state when an observer is absent, because only

observers can obtain timing information, i.e., making observations.

Then, the clock will become available when the observer is back,

usually when a RF communication happens. For example, when

a JavaScript RF is waiting for an event to !nish, the clock in the

JavaScript RF is unde!ned and determined by the event to !nish.

For another example, when a setTimeout RF is waiting for some

amount of time, the clock is also unde!ned and determined when

the RF communicates with the JavaScript RF.

Another important property of deterministic browser—which is

just similar to Physics—is that di"erent observers perceive di"erent

time elapse in their own RFs. For example, the observer in JavaScript

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

164

RF, i.e., a snippet of JavaScript code possibly controlled by an adver-

sary, will always obtain the same performance information when

measuring itself so that timing attacks are prevented. At contrast,

an oracle observer, e.g., the user of the browser, will perceive the

JavaScript execution just as normal as in a legacy browser so that

she does not experience the performance slowdown as what the

JavaScript observer does.

We have implemented a prototype of our deterministic browser

called DeterFox by modifying a legacy Firefox browser. Our evalu-

ation shows that DeterFox can defend against browser-related tim-

ing attacks in the literature and is compatible with existing websites.

Note that our implementation is open-source—the repository and a

video demo can be found at this website (http://www.deterfox.com).

2 THREAT MODEL

We present our threat model from three aspects: in-scope attacks,

a motivating example, and out-of-scope attacks.

In-scope Attacks. In this paper, we include browser-related tim-

ing attacks in our threat model. As described, such attacks are made

possible because an adversary can measure the duration of a target

secret at client-side browsers using a reference clock. The adver-

sary is the client-side JavaScript and the reference clock could be

the physical one de!ned by per f ormance .now or other implicit

ones, such as setTimeout . The target secret varies according to the

speci!c attack scenario, and now let us use the following three

examples to explain it.

• JavaScript Performance Fingerprinting. JavaScript performance

!ngerprinting [33, 34] is one special case of browser !ngerprint-

ing where an adversary executes a certain snippet of JavaScript

code and !ngerprints the browser based on how long the execu-

tion takes. In such attacks, the target secret is the performance of

JavaScript execution on the speci!c machine.

• Inference of Cross-origin Resource via Loading Time. An adver-

sary website may load resources from a third-party website via

a script tag and measure the parsing time by the browser until

an error event is triggered. By doing so, the adversary can infer

the size of the response and thus other private information, such

as the number of Twitter friends [45, 46]. This is also called a

timing side channel attack. In this example, the target secret is

the loading of the cross-origin response, which the adversary

does not know due to the same-origin policy.

• Inference of Image Contents via SVG Filtering. Stone [44] shows

that an adversary can apply an SVG !lter on an image and infer

the contents based on how long the !ltering process takes. By

doing so, the adversary can steal the pixels of a cross-origin

image or browsing history. In this example, the target secret is

the performance of the SVG !lter. Note that the reference clock

used in this attack is requestAnimationFrame .

AMotivating Example. Now let us look at a motivating example

in Figure 1. The example contains two versions of attacks: syn-

chronous (Line 1–21) and asynchronous (Line 22–28) ones. The

synchronous version uses per f ormance .now as the reference clock

and the asynchronous one uses setInterval . We will discuss how

determinism prevents these two versions in Section 4.1.4 and 5.3

respectively.

The synchronous attack (Line 1–21) adopts a so-called clock-

edge technique invented by Kohlbrenner and Shacham [26], which

measures a minor clock, e.g., a simple, cheap JavaScript operation

like count + +, by repeating the operation between two edges of a

major clock, e.g., the physical clock, for multiple times. Then, one

can calculate the minor clock by dividing the granularity of major

clock by the number of executed operations. Here is the detail of

the attack. The nextEdдe function (Line 1–8) tries to !nd the next

edge of the major clock (per f ormance .now) and count the number

of executed operations towards the next major clock edge. For a

JavaScript !ngerprinting attack (Line 9–12), one can !rst skip the

rest of the current major clock period (Line 11), and then calculate

the number of operations in a full major clock period (Line 12) for

!ngerprinting. For a side-channel attack (Line 13–21), one can !nd

the !ngerprint (Line 14), start from a new edge (Line 15), and then

measure a target secret using the major clock (Line 16–18). The

remaining cycles in the minor clock are counted (Line 19), and the

duration for the target secret is calculated by combining the minor

and major clocks (Line 20). Note that дrain is the granularity of the

major clock.

The asynchronous attack (Line 22–28) adopts an implicit clock,

e.g., setTimeout , setInterval or requestAnimationFrame , to mea-

sure an asynchronous target secret, e.g., the time to parse a third-

party response. First, the sideChannelAsync function (Line 25–28)

invokes an asynchronous target secret function—for simplicity,

we hide the details in the tarдetSecretAsync function with only a

callback function (Line 26). Then, the implicit clock is invoked via

a setInterval function with countFunc as a callback (Line 27). The

countFunc will be invoked periodically with a u interval until the

callback is invoked, i.e., the target secret !nished execution. Then,

one can calculate the duration of the target secret based on how

many times countFunc is executed (Line 24).

Out-of-scope Attacks. We now look at out-of-scope attacks. Par-

ticularly, we restrict the target secret in the timing attacks to be

browser-related and exclude these depending on other parties, such

as the web server and the user. Such restriction is natural because

we only make the browser deterministic but not others.

• Server-side timing attacks. In a server-side timing attack, a mali-

cious client infers a secret—e.g., some information that the client

cannot access without login—at the server side [13]. Examples

are that a user can infer the number of private photos in a hidden

gallery based on the server’s response time. To prevent such

attacks, one can rely on existing defenses [7] by normalizing

web tra"c or changing the server-side code.

• User-related timing attacks. User-related timing attacks refer to,

for example, biometric !ngerprinting, which measures the user’s

behavior, such as keystroke and mouse move, and identi!es

users based on these biometrics. Many of such !ngerprinting

tactics, such as keystroke dynamics, are also related to time. Such

attacks are out of scope, because the target secret, e.g., mouse

move, comes from the user.

3 DETERMINISTIC BROWSER

In this section, we introduce several general de!nitions.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

165

1 function nextEdge () {

2 start = performance.now();

3 count = 0;

4 do {

5 count ++;

6 } while (start== performance.now());

7 return count;

8 }

9 function fingerprinting () {

10 nextEdge ();

11 fingerprint = nextEdge ();

12 }

13 function sideChannelSync () {

14 fingerprint = fingerprinting ();

15 nextEdge ();

16 start = performance.now();

17 targetSecret ();

18 stop = performance.now();

19 remain = nextEdge ();

20 duration = (stop - start) + (fingerprint -remain)/

fingerprint*grain;

21 }

22 total = 0;

23 function countFunc (){total ++;}

24 function callback (){duration = total*u;}

25 function sideChannelAsync () {

26 targetSecretAsync(callback);

27 setInterval(countFunc , u);

28 }

Figure 1: A Motivating Example.

3.1 Concepts

Borrowing from Physics, we !rst introduce the concepts used in

our deterministic browser.

A reference frame (RF), in the context of our deterministic browsers

(referred as our context), is an abstract concept with a clock that

ticks based on certain criteria, e.g., the real-world physical time,

the execution of JavaScript, and the parsing of HTML. Concretely,

we can consider that a RF can be implemented via an OS-level

thread in web browsers, although there are no strict one-one map-

pings between threads and RFs in web browsers. Speci!cally, some

browser kernel threads may not be RFs and two threads, if one runs

immediately after another, may belong to the same RF.

Let us take a browser API, e.g., setTimeout or setInterval , and

its implementation in Firefox, as a concrete example of creating RFs.

The JavaScript engine of Firefox, a RF in our context, is running in

the main thread of Firefox. When JavaScript code calls setTimeout

or setInterval under the window object, a new timer thread—i.e.,

a new RF—is created. After the speci!ed time in setTimeout or

setInterval passes, the timer thread will communicate with the

main thread with an event. That said, the concept of RF is natural

and modern browsers have already provided implementations. Note

that although we use Firefox as an example, the concept of RF is

abstract and general. In a multiple-process browser, like Google

Chrome, RFs could be represented by processes or threads in multi-

ple processes.

The concept of RF de!nes a unit that is smaller than all other web

containers, such as HTML frames, origins, JavaScript runtime, and

browser tabs. The advantage of a RF is that we can easily separate

three key elements—an adversary, a target secret, and a reference

clock—of a timing attack. For example, because a RF is singled-

threaded, i.e., can execute only one event, a target secret and an

implicit clock tick are separated in di"erent RFs naturally.

For each RF, one important concept is called an observer. In our

context, an observer is de!ned as a Turing complete program that

can make observations, e.g., access the data belonging to the RF or

measure the execution status of itself. Some RFs have observers,

such as a JavaScript RF with JavaScript program, and some, such

as DOM RFs, do not. A RF with an observer is called a main RF,

and a RF without an observer an auxiliary RF. For the purpose of

de!ning determinism, we can consider virtual observers residing

in auxiliary RFs.

3.2 De!nition of Determinism

Let us introduce the de!nition of determinism, which includes two

parts: (i) how to de!ne a deterministic RF, and (ii) how to de!ne

a deterministic communication between RFs. Next, we will show

how determinism can prevent timing attacks. Now we !rst de!ne

a deterministic RF in De!nition 1.

Definition 1. (Deterministic RF) Given a reference frame (RF)

and an observer (Ob)—no matter active or virtual, we de!ne a RF as

deterministic if and only if the following holds:

When the Ob makes two observations O1 and O2 at timestamps t1
and t2 measured by the internal clock, t2 − t1 can be represented as a

function of O1 and O2, i.e., t2 − t1 = f (O1,O2).

The core of De!nition 1 is that when an observer makes obser-

vations, e.g., access the data of the RF or measure the execution of

JavaScript, the observer cannot obtain additionally timing informa-

tion other than what it has already known. In other words, based

on the observations in the RF, the observer can directly deduce the

timing, e.g., t2 − t1, without looking at the clock in the RF.

For the purpose of explanation, let us look at one toy example of

de!ning deterministic RFs. Speci!cally, the RF clock ticks based on

the following rule: Every time an integer variable x is incremented

by 1, the clock ticks by an atomic unit. This RF is deterministic

because the clock is directly de!ned as a function of a variable, i.e.,

an observation that the observer can make. As we can expect, this

RF can prevent timing attacks (assuming that external clocks are

handled by De!nition 2 below). However, because the clockmay not

tick if the observer does not increment it, browser functionalities

will be broken.

Beside the internal clock, an observer can also obtain other clocks

via RF communication. So we de!ne a deterministic communication

in De!nition 2.

Definition 2. (Deterministic Communication) Given two

RFs (RF r eceiver , a deterministic RF, and RF sender , another RF) and

an observer (Ob) in RF r eceiver , we de!ne the communication from

RF sender to RF r eceiver as deterministic if and only if either of the

following holds:

(1)When theOb fromRF r eceiver makes an observation inRF sender

at the timestamp tr eceiver inRF r eceiver (i.e., a communication from

RF sender to RF r eceiver happens), at that moment, the timestamp

tsender in RF sender equals to tr eceiver (tsender = tr eceiver);

(2) RF sender is deterministic.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

166

De!nition 2 gives two conditions for a deterministic communi-

cation between a sender and a receiver, i.e., either (1) two clocks are

synchronized or (2) both RFs are deterministic. Note that in order

to synchronize two clocks (i.e, the !rst condition), it is required

that the clock in the receiver is behind the one in the sender so

that when the communication message from the sender arrives, the

message can be delayed until the receiver reaches the time. Later in

Section 5, we will show that such condition can be easily achieved

by adjusting parameters in the clock of the receiver and putting the

so-called placeholder in the event queue of the receiver.

Now let us look at and prove Lemma 1 that connects De!nition 1

and De!nition 2.

Lemma 1. Adeterministic RF remains deterministic after communi-

cating with other RFs, i.e., following De!nition 1, if the communication

obeys De!nition 2.

Proof. See Appendix A for proof. !

Now we can show our important theorem about determinism,

i.e., Theorem 1.

Theorem 1. (Determinism prevents timing attacks) If a RF

with a target secret is deterministic, an adversary observer—no matter

in this RF or another RF—cannot infer the target secret.

Speci!cally, if the observer measures the ending and starting times-

tamps (tEnd and tSt) of the target secret, the following holds: ∆t =

tEnd − tSt = const .

Proof. See Appendix B for proof. !

Theorem 1 says that the observer will always obtain the same

timing information when measuring the target secret. Speci!cally,

determinism normalizes the target secret so that the delta between

the ending and starting timestamps of the target secret, from the

viewpoint of an observer, is always the same, i.e., deterministic,

even if the target secret happens multiple times in di"erent runtime

environments. In other words, we prove that determinism prevents

timing attacks.

4 REFERENCE FRAMES

In this section, we will introduce how to make RFs in current

browsers deterministic. The ideal yet simple solution is to make

every RF deterministic, but such solution is impossible in some

scenarios. For example, a network message may contain the infor-

mation about the physical clock, and there is no way to make such

RF deterministic (as it belongs to the external world). The good

news is that according to Theorem 1, we only need to make RFs

with target secrets deterministic to prevent timing attacks. Now let

us look at several examples of RFs.

4.1 JavaScript Main RFs

JavaScript main RF needs to be deterministic because the perfor-

mance of JavaScript execution as shown in Figure 1 is a target secret

to the JavaScript itself. In this subsection, we start from some back-

ground knowledge, present our core de!nition of a deterministic

JavaScript RF, and then use Figure 1 as an example to show how

timing attacks are prevented.

4.1.1 Background. To execute a JavaScript program, a browser—

particularly the JavaScript engine part—will parse and convert the

JavaScript program into a special form called operation code (op-

code), sometimes referred as bytecode as well. Then, depended on

the execution mode, i.e., interpreter or just-in-time (JIT) compila-

tion, the opcode will be interpreted or converted to machine code

for execution.

Note that although the de!nition of opcodes is speci!c to the

type of the browser, such as Firefox and Google Chrome, determin-

ism can be associated with any set of opcodes. In our prototype

implementation, we modi!ed Firefox browser and thus used the

de!nition of opcodes in SpiderMonkey, the Firefox JavaScript en-

gine.

4.1.2 Deterministic JavaScript RF. We will give an alternative

de!nition of determinism in JavaScript RF in De!nition 3. This

alternative de!nition for JavaScript is similar to the special def-

inition [48] that researchers used in lower level, such as virtual

machines. We will then use Theorem 2 to show that this de!ni-

tion is equivalent to our general determinism de!nition of RFs

(De!nition 1) in the context of JavaScript engine.

Definition 3. (Deterministic JavaScript RF) Given a set of

opcodes (SO) generated from a program, a !xed initial state, and

a set of !xed inputs, a JavaScript RF is deterministic if and only if

the followings hold for any two executions (E1 and E2) on di"erent

runtime environments:

For every opcode (op ∈ SO) in E1 and E2, t1op − t
2
op = C , where

tkop is the timestamp when the opcode op is executed in Ek , andC is a

constant related to only the starting time of E1 and E2.

Theorem 2. (Determinism De!nition Equivalence) In the

context of JavaScript engine, De!nition 3 is equivalent to De!nition 1.

Proof. See Appendix C for proof. !

Now let us look at De!nition 3, which says that JavaScript op-

erations in di"erent executions of a deterministic RF will follow

a determined distribution pattern over time axis when inputs are

!xed and span over time in a !xed pattern. That is, if one makes a

translation from one execution to the starting point of another, the

two executions look the same.

There are two methods to !x the execution pattern for JavaScript.

First, one intuitive method is to still use physical clock in this

RF but arrange the opcode execution sequence following a pre-

determined pattern. However, such arrangement will slow down

a faster execution, and cannot make up for a slower execution (as

the clock does not wait for a slower execution).

Second, what is being used in this paper is that instead of chang-

ing the execution, we change the clock in this RF so that the per-

ceived execution pattern from the viewpoint of the observer, i.e.,

the JavaScript program, is !xed, although we, such as oracle users

knowing the physical time, see the execution pattern di"erently.

4.1.3 An Example of Deterministic JavaScript RF. Given De!ni-

tion 3, there are many possible clock de!nitions in deterministic

JavaScript RFs, which have no di"erences from the perspective of

preventing timing attacks. Now, considering simplicity and perfor-

mance overhead, we de!ne a speci!c clock used in our implemen-

tation, which ticks based on the following criteria:

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

167

(i) When there are opcodes running, the clock ticks with regards

to the executed opcode. That is, we have the following equation,

tnow = tstar t +
∑
op∈E JO unitop , where E JO is the set of executed

JavaScript opcodes and unitop is the atomic elapsed time for that

opcode. For simplicity, if we normalize unitop as unit , we will have

Equation 1.

tnow = tstar t + countE JO × unit (1)

(ii) When there are no opcodes running, the clock can tick based

on any criterion, because there is no target secret in the JavaScript

RF—as JavaScript is not executing—and more importantly no ob-

server in the JavaScript RF measuring target secrets. One can con-

sider a JavaScript RF in this state as a blackbox that no observers

know what happens inside (thinking about Schrödinger’s cat). The

key for such state is that when another RF communicates with the

JavaScript RF, we need to synchronize clocks in both RFs (De!ni-

tion 2). The reason is that when there exists communication, e.g.,

when a callback is invoked, an observer will be present. We will

discuss more details about the communication in Section 5.

The aforementioned clock makes JavaScript RF deterministic.

Assume that we have two executions of the same JavaScript at t1star t
and t2star t separately. For an arbitrary opcode op, we will have

t1op −t
2
op = (t1star t +countE JO ×unit)− (t

2
star t +countE JO ×unit) =

t1star t − t
2
star t = C , thus satisfying De!nition 3.

4.1.4 Preventing the Synchronous A!ack in Figure 1. Now let us

use Figure 1 to discuss how the synchronous attack (Line 1–21) is

prevented in JavaScript main RF. For the simplicity of explanation,

we assume that one JavaScript statement will form into one opcode.

In this case, the return value of the nextEdдe function (Line 1–6)

is always 1, because for each JavaScript statement (Line 4–6), the

clock of the JavaScript RF will tick forward by unitop , the unit time

for an opcode. Then, start is not equal to per f ormance .now () at

Line 6, and the function just returns 1 at Line 7. For JavaScript

!ngerprinting, the f inдerprint is !xed as 1 (Line 11). For a side-

channel attack, there is only one opcode between Line 16 and Line

18. Therefore, stop − start equals unitop , and f inдerprint − remain

equals 0, which makes duration as a constant number, i.e., unitop .

4.2 Auxiliary RFs

In this part of the section, we discuss how to make auxiliary RFs

deterministic. Similar to JavaScript main RF, an auxiliary RF needs

to be deterministic if it has a target secret. Now let us look at several

examples of auxiliary RFs. Note that this is an illustration but not a

complete list. Just as what Tor Browser [4] and Fermata [26] did to

add noise at various places, we also need to investigate the same

places (RFs) in browser and make them deterministic.

4.2.1 DOM Auxiliary RF. A DOM auxiliary RF is attached to a

JavaScript main RF: Such RF is created by the invocation of DOM

operation via JavaScript and destroyed when the DOM operation

!nishes. We need to make DOM auxiliary RF deterministic, because

the execution time of a DOM operation can be used to infer the

size of the resource involved in the operation [45]. The clock in

a DOM auxiliary RF will inherit from the JavaScript one, when

the DOM RF is created by the JavaScript. Then, the clock in the

DOM auxiliary RF will tick for a constant time, i.e., when the DOM

operation returns—no matter synchronously via a function call or

asynchronously via an event, the clock is incremented by a constant

time. Note that when there is no communication between DOM

and JavaScript, because there are no observers, the clock in the

DOM RF is in a uncertain state.

4.2.2 Networking Auxiliary RF. A networking auxiliary RF is

also attached to the JavaScript main RF. Networking auxiliary RFs

are created by an HTTP request, and destroyed by an HTTP re-

sponse, both initiated from the JavaScript main RF. Networking

auxiliary RF is deterministic for cross-origin requests, but non-

deterministic for same-origin ones. The reason is as follows. If a

request is from cross origin, the initiator, i.e., the JavaScript, can

infer the size of the response based on the time of processing the

response [45]. That is, the networking RF contains a target secret.

Speci!cally, the clock in such RF always ticks for a constant time

between the request and the response. As a comparison, if a request

is from the same origin as the JavaScript, the JavaScript by any

means has access to the response, i.e., there is no target secret in

the RF. Because an external server may embed the physical time

in the response, we will let the clock in same-origin networking

RF tick based on the physical time. Note that the communication

between same-origin networking and JavaScript RFs is still deter-

ministic per De!nition 2 so that the JavaScript RF cannot obtain

the physical time.

4.2.3 Video Auxiliary RF. Video auxiliary RF is created when a

JavaScript renders a video on an HTML5 canvas as an animating tex-

ture. According to Kohlbrenner and Shacham [26], such video ren-

dering can be used as an implicit clock via the requestAnimationFrame

API, because most modern browsers render video in a 60Hz fre-

quency. That is, one can infer the physical time based on the current

displayed video frame.We do not need to make a video RF determin-

istic, i.e., the clock in such RF ticks based on physical time, because

it contains no target secrets. Note again that the communication

between the video auxiliary and other deterministic RFs is still

deterministic.

4.2.4 WebSpeech or WebVTT Auxiliary RF. WebSpeech and We-

bVTT are another two venues of implicit clocks in the modern

browsers as mentioned by Kohlbrenner and Shacham [26]. A Web-

Speech RF with a SpeechSynthesisU tterance object is created by a

speak () method, and destroyed by a cancel () method which !res

a callback with a high resolution duration of the speech length. A

WebVTT is a subtitle API that can specify the time for a speci!c

subtitle and check for the currently displayed subtitle. Similar to

the video auxiliary RF, because there are no target secrets, both RFs

are non-deterministic and the clocks in these two RFs tick based

on the physical time.

5 COMMUNICATION BETWEEN RFS

In this section, we discuss, when one RF communicates with an-

other, how to synchronize clocks according to De!nition 2. Before

explaining our technique, i.e., a priority queue, we !rst need to

understand how the RF communication works in legacy browsers.

The RF communication is handled by a so-called event loop [1],

in which a loop keeps fetching events from a queue structure called

event queue. Let us again use setTimeout to explain the RF commu-

nication with the event queue. When the main RF calls setTimeout ,

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

168

!"#$%&'(')'$*'%
+)",'

- -.-/ -.-/.-//

$0),"1%
'2'$-

'2'$-%
31"*'4015')

3467#*"1%
*10*8%4015')

9"7'%:;%*10*8%
("7-%(0)<")5%

9"7'%=;%
3)0*'77

9"7'%>;%
3"?7'

9"7'%@;%
<"#-

A)#0)#-6%B?'?'

Figure 2: Mechanism of Priority Queue in the Main RF.

the main RF will dispatch an event into the event queue of the timer

RF, i.e., launching a communication from the main RF to the timer

RF. The timer RF will fetch the event, process it (i.e., waiting in this

example), and then dispatch another event, called a callback, back

to inform the main RF the completion of setTimeout , i.e., launching

a communication from the timer RF to the main RF.

In our paper, we replace the event queue in the main RF with a

priority queue. Speci!cally, we reserve a callback place in the queue

for events that the main RF dispatched to other RFs. When the call-

back is dispatched back to the main RF, the callback is synchronized

at the reserved place following De!nition 2. Take a deterministic

auxiliary RF for example. The duration of processing an event in

such RF always equals to a !xed value from the perspective of

the main RF observer. To achieve that, the main RF pre-assigns an

expected delivery time for every callback as a priority in the queue

so that the callback will be only delivered at that speci!c, !xed

time from the viewpoint of the main RF observer. One important

property of this priority queue is that when multiple events happen

in many deterministic RFs, the queue will arrange all the callbacks

in a pre-determined, !xed sequence. Now let us look at the details.

5.1 Priority Queue

Now let us look at how the main RF interacts with the priority

queue. Similar to the current event model, when the main RF is idle,

it will try to fetch an event from the queue. In our model, the event

with the highest priority, i.e., the one with the earliest delivery time,

will be returned to and processed by the main RF. There are two

sub-scenarios (Case 1&2 in Figure 2) here. First, when the expected

delivery time is ahead of the clock in the main RF (called the main

clock), the browser kernel will move the main clock to the expected

time, and let the main RF process the event. Second, when the

expected delivery time is behind the clock in the main RF (i.e., the

main RF was processing other events at the expected delivery time),

the main RF will directly process the event without changing the

clock.

Note that both cases follow the deterministic de!nition of com-

munication in De!nition 2. For Case 1, because two clocks are

synchronized at the delivery time, the communication is determin-

istic. For Case 2, we can consider that the event is delivered at the

expected delivery time following De!nition 2. However, because

JavaScript is a single-thread language, the main RF cannot process

the event when busy. That is, the main RF has to postpone the

processing of the event to the time when it is idle. Thus we can

combine the delivery and the processing, because even if the event

is delivered, the main RF cannot notice and process the event.

Besides normal events, there are two special events (Figure 2): an

event placeholder and a physical clock holder. An event placeholder

is a virtual slot indicating that a real event should be at this place in

the queue, but the event has not been !nished in the auxiliary RF.

When the main RF fetches an event placeholder (Case 3), the main

RF needs to pause its own clock and wait until the event arrives or

is canceled (e.g., timeout). If the event arrives, it will replace the

event holder, and the main RF will process the event; if the event is

canceled, the main RF will process the next event in the queue.

A physical clock holder is a mapping from the current physical

time to the main RF clock time. Because the physical clock keeps

ticking, the place of the holder also changes, i.e., the priority of

the holder will be lowered constantly. The usage of such holder is

two-fold. First, when an auxiliary RF with the physical time tries

to communicate with the main RF, the browser kernel will add the

event to the holder’s place in the queue. Second, in a very rare

case (Case 4), when the main RF tries to fetch the physical clock

holder, i.e., the main clock ticks faster than the physical one, the

browser kernel will pause themain RF until the main clock is behind

the physical one. The reason is that an event with physical time

can come at any time, and if the main clock is faster, the browser

kernel cannot synchronize the main clock with the physical one.

To prevent such scenario, we can set the unit in Equation 1 to a

very small number so that the main clock cannot catch up with the

physical one in the fastest machine.

5.2 RF Communication

We now look at how the priority queue can be used in the commu-

nication between RFs.

5.2.1 Main and Auxiliary RF Communication. Let us !rst look

at the communication between main and auxiliary RFs. First, say

the auxiliary RF is deterministic, and Figure 3 shows how it works.

Before creating such auxiliary RF, the main RF !rst put a place-

holder in the priority queue (Step 1). Because the auxiliary RF is

deterministic, the main RF can predict the expected delivery time.

Then, the auxiliary RF is started (Step 2) and keeps running until

it !nishes and tries to deliver an event to the main RF. The event

will be put in the priority queue, replacing the previous placeholder

(Step 3). At the expected delivery time in the scale of the main

clock, the event is delivered to the main RF (Step 4). If the main

RF is busy, the execution might be delayed (Step 5). As mentioned,

if the execution is delayed, the main RF can fetch the event at the

delayed time.

Second, say the auxiliary RF is non-deterministic. Examples of

such RFs include these created by the main RF (e.g., same-origin

networking RF) and these created by the user (e.g., mouse or key-

board RF). When such RF is created, because we cannot predict the

expected delivery time, no placeholder is created. If the auxiliary

RF tries to communicate with the main RF, i.e., an event is !red,

the event will be put at the place of the physical clock holder in the

priority queue.

5.2.2 Communications between Two Main RFs. We then discuss

how two main RFs communicate with each other using the priority

queue, which follows De!nition 2. There are two scenarios in this

communication: (i) the sender’s clock is ahead of the receiver, and

(ii) the sender’s clock is behind. First, when the sender’s clock is

ahead, the browser kernel can put the communication message,

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

169

!
!"#$%&'()*

"

#$%&'()*+(,&"-(&(+(."
#/%&0,(1"(&1&
2)10(-3)'(,

#4%&5"1,"&167*)*1,8&
,(9(,(.0(&9,1:(

#;%&,(2)10(&"-(&
2)10(-3)'(,&<*"-&
"-(&,(1)&(+(."

+,-#'#"./%&'()*

#=%&(7(06"(&"-(&(+(."

23"(."*1)&
'()18

0.#(.#1/%2,3,3

Figure 3: Communication between Main and Auxiliary RFs.

i.e., an event, in the priority queue at the position of a future time.

Then, when the event is executed, two clocks are synchronized—

everything is the same as the communication between a main and

auxiliary RF, and follows the !rst condition in De!nition 2.

Second, when the sender’s clock is behind, the browser kernel

will put the communication event in the front of the priority queue,

i.e., deliver the event immediately. In such case, the receiver knows

two clocks, i.e., the sender’s and its own. Let us !rst consider that

the sender has a target secret, i.e., the sender’s RF is deterministic.

In such case, the communication follows the second condition in

De!nition 2.

Let us then consider that the sender’s RF contains no target

secrets and is not deterministic. An example is that the main RF is

not running JavaScript and just gets synchronized with an auxiliary

RF with a physical clock. Such case contradicts with our assumption

in the beginning that the sender’s clock is behind the receiver’s,

because as shown in Section 5.1, relying on the physical clock holder,

the clock in a deterministic main RF, i.e., the one in the receiver,

is always behind the physical clock. Therefore, the scenario boils

down to our !rst case, where the sender’s message is put in the

priority queue, and both clocks are synchronized.

5.3 Preventing the Asynchronous Attack in

Figure 1

Now let us look at how the priority queue can help to prevent the

asynchronous attack (Line 22–28) in Figure 1. In one sentence, when

the adversary measures the duration of the asynchronous target

secret using the reference clock (i.e., setInterval in this example),

no matter how long the target secret takes to !nish, the adversary

will always obtain a !xed, deterministic value.

Here are the details. In the sideChannelAsync function, when the

asynchronous target secret is invoked in function tarдetSecretAsync

(Line 26) say at tinit , the browser kernel will put an event place-

holder in the priority queue with an expected delivery time, say

at td , and create a deterministic RF to execute the asynchronous

secret. That is, td − tinit is a constant due to determinism. Next

when the setInterval function is invoked, the browser kernel will

create another RF for waiting and put an event placeholder in the

priority queue with an expected delivery time at tinit + u where

u is the variable at Line 27. Because the implicit clock introduced

by setInterval is to measure tarдetSecretAsync , u should be much

smaller than td −tinit . That is, the event placeholder for setInterval

should be ahead of the one for the target secret in the priority queue.

Therefore, function countFunc (Line 23) is executed, and then an-

other event placeholder for setInterval is created. After countFunc

is executed for round ((td − tinit)/u) times, the callback for the

target secret, i.e., callback , is executed. Note that if the target secret

!nishes execution, the placeholder for the target secret is replaced

by the callback, which can be executed immediately; if not, the

JavaScript RF will wait there for the placeholder to be replaced by

the callback.

In sum, we have three RFs in this example: JavaScript RF, DOM

RF for setTimeout , and a deterministic RF for executing the target

secret. The duration measured by callback is always round ((td −

tinit)/u) ∗ u, a deterministic value. Therefore, the asynchronous

attack is prevented.

6 IMPLEMENTATION

We have implemented a prototype of deterministic browser called

DeterFox with 1,687 lines of code by modifying Firefox nightly

51.0a1 at 40 di"erent !les. The implementation is available at this

repository (https://github.com/nkdxczh/gecko-dev/tree/deterfox).

Let !rst look at the implementation RFs. As mentioned, legacy

Firefox already has RF implementations via OS level threads (xp-

com/threads/nsThread.cpp). Di"erent RFs are di"erent subclasses of

nsThread, such as TimerThread (xpcom/threads/TimerThread.cpp).

Now we introduce the core part of our implementation: determin-

istic JavaScript RF and priority queue.

Let us !rst look at the deterministic JavaScript engine (js/src). We

associate a counter with each JavaScript context in SpiderMonkey,

the Firefox JavaScript engine of Firefox. When per f ormance .now

is invoked, the counter multiplying a unit time will be returned.

Note that some Firefox scripts, e.g., these with “chrome://” and “re-

source://” origins, are also running in the same context as JavaScript

from the website. We create separate counters for such Firefox

scripts. Here is how the counters are incremented. Speci!cally,

SpiderMonkey has three modes of executing JavaScript code, one

interpreter (js/src/vm/Interpreter.cpp) and two just-in-time (JIT)

compilation modes (IonMonkey at js/src/jit/Ion.cpp and BaselineJIT

at js/src/jit/BaselineJIT.cpp). We increment the counter in all the

three modes. In the interpreter mode, the counter will be incre-

mented for each opcode; in both JIT modes, the counter will be

incremented based on the compiled JavaScript block. Our current

implementation does not add the counter in the compiled code

directly but before and after the compiled code execution. Note

that this implementation is still deterministic, because it makes the

JavaScript execution follow a certain pattern over time.

We then change the event queue for the deterministic commu-

nication. For each thread in Firefox, other threads can dispatch a

runnable to that thread and put (PutEvent method in xpcom/thread-

s/nsThread.cpp) the runnable in the event queue (mEventsRoot

object in xpcom/threads/nsThread.cpp). Note that there are many

queues in Firefox, and these queues are sometimes hierarchical, i.e.,

one queue may dispatch events to another queue. This event queue

that we talk about is directly associated with a thread, i.e., the inner

level queue.

7 EVALUATION

We evaluate DeterFox based on the following metrics:

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

170

Table 1: Robustness of Five Browsers against Di!erent At-

tacks. (“Clock-edge” [26]; “Clock-edge-m”: an modi"ed ver-

sion of “Clock-edge”; “Img (S)”: the image loading side-

channel attack [45] inferring two "les with S size di!erence;

“Script (S)”: the script parsing side-channel attack [45] infer-

ring two "les with S size di!erence; “Script-implicitClock

(2M)”: amodi"ed version of “Script (2M)” using setInterval as

an implicit clock; “Cache attack”: a side-channel attack [38];

“Cache-m”: a covert channel modi"ed from “Cache attack”;

“SVG Filtering”: the SVG "lter attack from Stone [44].)

Chrome Firefox Tor Browser FuzzyFox DeterFox

Clock-edge [26] × × × ! !

Clock-edge-m × × × × !

Img (100K) [45] × × ! ! !

Img (5M) [45] × × × × !

Script (100K) [45] × × ! ! !

Script (2M) [45] × × × × !

Script-implicitClock (2M) × × × × !

Cache a!ack [38] × × ! ! !

Cache-m × × × × !

SVG Filtering [44] × × × × !

Note:! means the browser is robust to the a!ack, and × not.

• Robustness to timing attacks. We evaluate DeterFox and other

existing browsers including commercial ones and research pro-

totype against existing timing attacks presented in the literature.

• Performance overhead. We evaluate the performance overhead

of DeterFox from the perspective of a user of the browser,

i.e., based on the physical time obtained from a standard Linux

machine.

• Compatibility. We evaluate the compatibility of DeterFox us-

ing two tests: an automated browser testing framework called

Mochitest, and the rendering of Top Alexa websites.

7.1 Robustness to Timing Attacks

In this part of the section, we evaluate the robustness of existing

browsers and DeterFox against timing attacks. Formal proof about

why a deterministic browser prevents timing attacks can be found in

Theorem 1. In this subsection, we focus on the empirical evaluation

of DeterFox and other prior arts against timing attacks presented

in the literature. Speci!cally, four existing browsers—namely Fire-

fox, Google Chrome, FuzzyFox [26],4 and Tor Browser [4]—are used

for comparison, which range from commercial browsers to research

prototype. An overview of the evaluation can be found in Table 1.

7.1.1 Clock-edge A!ack. A synchronous version of the clock-

edge attack [26] is presented in Section 2. Apart from that version,

we also design another version speci!cally targeting FuzzyFox. The

modi!ed version runs an operation for a considerable long time

and calculate the di"erence between two per f ormance .now asyn-

chronously. The attack is repeated for ten times to average out the

jitter added by FuzzyFox. Additionally, because twoper f ormance .now

are obtained asynchronously, they do not equal to each other ac-

cording to the FuzzyFox paper.

The !rst two rows of Table 1 shows the results of both the original

and modi!ed version of the clock-edge attack. All browsers except

4FuzzyFox is a prototype implementation of Fermata, and we use the version down-
loaded from their repository with the default parameters.

Figure 4: Script Parsing Attacks from Goethem et al. [45]

(We change the size of parsed scripts in the attack, and mea-

sure the time to trigger an “onerror” event. Each point in the

graph is the median value of nine repeated tests. Note that

all timestamps are obtained via JavaScript.)

DeterFox and FuzzyFox are vulnerable to the original version, i.e,

the minor clock can be used to measure a target secret with µs

accuracy. Both DeterFox and FuzzyFox will show a constant time

for the minor clock, making it unusable for measurement of target

secrets. For the modi!ed version, all browsers except DeterFox

are vulnerable. We also test !ve browsers on the clock-edge attack

for the !ngerprinting purpose (see Section 2), and the results are

the same as the one for the measurement purpose.

7.1.2 Side-channel A!acks from Goethem et al [45]. We evaluate

the robustness of browsers against two side-channel attacks from

Goethem et al. [45], namely script parsing and image loading. Both

attacks try to load a !le—which is not image or script and from a

di"erent origin—and measure the time between the start and when

the “onerror” event is triggered. Details can be found in their paper.

In the evaluation, we change the !le size from 1MB to 20MB and

observe the loading or parsing time. The experiment for each !le

size is repeated for 15 times, and we discard the !rst six results,

because the browser is sometimes busy loading system !les during

startup, which a"ect the result. Then, we obtain the median value of

the rest nine results for each !le size and show the result in Figure 4

and 5. Note that the !le size we use is larger than the one in Goethem

et al. [45], because both FuzzyFox and Tor Browser add noises to the

loading or parsing time so that it is hard to di"erentiate !les with

small sizes. However, the !le size that we use is still reasonable

for normal web communications, such as for email attachment.

Now let us look at the results for script parsing and image loading

separately.

Figure 4 shows the results of script parsing attack for !ve browsers.

First, the parsing time for DeterFox is a constant, deterministic

number, i.e., DeterFox is entirely robust to the script parsing at-

tack. Second, the parsing time for both legacy Firefox and Google

Chrome is linear to the !le size, con!rming the results reported by

Goethem et al. Lastly and more importantly, the parsing time for

both Tor Browser and FuzzyFox is a stair step curve with regards to

the !le size. That is, both browsers can defend against such parsing

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

171

Figure 5: Image Loading Attacks from Goethem et al. [45]

(We change the size of parsed scripts in the attack, and mea-

sure the time to trigger an “onerror” event. Each point in the

graph is the median value of nine repeated tests. Note that

all timestamps are obtained via JavaScript.)

attack in small scale when the !le sizes di"er a little, but fail when

the !le sizes di"er a lot, e.g., with 2MB di"erences (Table 1).

Figure 5 shows the results of image loading attack for !ve browsers.

First, similarly the loading time for DeterFox is a constant, show-

ing that DeterFox is robust to such image loading attack, and both

legacy Firefox and Google Chrome are vulnerable to the attack

because the loading time increases as the !le size linearly. Second,

the parsing time for FuzzyFox is still a stair step curve with a few

#uctuations. That is, FuzzyFox is also vulnerable to such attack

if the !le size di"ers much, e.g., with 5MB di"erences (Table 1).

Lastly, the loading time for Tor Browser is interesting, because the

time stays as a constant number when the !le size is below 4MB,

but increases linearly when the !le size is above 5MB. That is, Tor

Browser is also vulnerable to the attack when loading a large !le.

Note that in addition to using per f ormance .now to measure the

loading time, following the asynchronous attack in Figure 1, we

also tried setInterval as an implicit clock for the script parsing

attack with 2M !le size di"erence. The result (“Script-implicitClock

(2M)” line in Table 1) shows that only DeterFox can defend against

the attack with the setInterval implicit clock—this is expected as

onlyDeterFox can defend against the original script parsing attack

with 2M !le size di"erence.

7.1.3 Cache A!acks from Oren et al [38]. Oren et al. [38] pro-

pose a practical cache-based side-channel attack using JavaScript,

which can correctly recognize the website running in another tab by

creating a memory access pattern with zeros and ones called mem-

orygrams. We re-implement their attack and test all !ve browsers

against the attack. As shown in the seventh row of Table 1, both

Chrome and Firefox are still vulnerable, but Tor Browser, FuzzyFox,

and DeterFox are robust, i.e., the memorygrams in these three

browsers are all zero. Note that although Tor Browser was vulnera-

ble, people have patched Tor Browser to defend against this attack

by further reducing the time resolution.

Because both Tor Browser and FuzzyFox only limit the band-

width of the side/covert channel, we create a modi!ed version to

Table 2: Measured Time to Perform an SVG Filter (All the

numbers are inms and averaged from 20 experiments).

Chrome Firefox Tor Browser FuzzyFox DeterFox

200×200 image 16.66 17.01 18.94 109.09 192

1920×1080 image 17.87 50.35 106.67 114.54 192

show that a covert channel is still possible (the eighth row of Ta-

ble 1). Speci!cally, we create two iframes from di"erent origins that

talk to each other based on the cache attack for a long time. The

results show that if the attack lasts for two minutes, the receiver

in both Tor Browser and FuzzyFox can successfully di"erentiate

the one-bit information. That is, the channel still exists with signif-

icantly reduced bandwidth in both Tor Browser and FuzzyFox.

7.1.4 SVG Filtering A!acks from Stone [44]. Stone shows that

the performance of SVG !lter can be used to di"erentiate the con-

tents of images. We apply the feMorphology SVG !lter mentioned

in the Stone’s paper [44] to perform an erode operation upon two

images, one with size 1920×1080 and another with size 200×200,

and measure the operation time using requestAnimationFrame .

Both images are generated randomly with a mixture of RGB colors

and we perform the attack for 20 times.

The last row of Table 1 shows the summary results of the attack.

All other browsers except DeterFox are vulnerable, i.e., the mea-

sured operation time for the large (1920×1080) image is constantly

longer than the small one (200×200) as shown in Table 2. Based

on the results, an adversary can di"erentiate whether an cross-

origin image is a thumbnail or full-sized. By contrast, DeterFox

can defend against the attack—i.e., no matter how large the image

is, the operation time is always the same from the viewpoint of the

JavaScript observer. (The user can still tell the di"erence and will

not experience the slowdown as in FuzzyFox and Tor Browser.)

7.2 Performance Overhead

We !rst evaluate the performance of DeterFox by JavaScript bench-

mark and Top 100 Alexa websites. Then, we discuss the evaluation

results.

7.2.1 JavaScript Benchmark. We !rst evaluate the performance

overhead of DeterFox using a JavaScript performance test suite

called Dromaeo [2], a uni!ed benchmark from Mozilla. Each test

in Dromaeo is executed for at least !ve times and maybe up to ten

times if a signi!cant level of error cannot be reached. Next, the

results are !t into a t-distribution to calculate the 95% con!dence

interval. Note that because we changed the clock in DeterFox, all

the timestamps used in the experiment are based on the local time

of a Linux machine instead of the JavaScript time.

Figure 6 shows the evaluation results with the median overhead

of DeterFox as 0.63% and the maximum as 1% when compared

with the legacy Firefox of the same version. That is, the overhead

introduced by DeterFox is almost ignorable in terms of JavaScript

performance when observed by an oracle. In three of the test cases,

DeterFox is even slightly faster than Firefox because DeterFox

does not invoke any system calls during per f ormance .now , but

legacy FireFox does. If the measured time is very small, the in-

vocation of per f ormance .now will in#uence the result. Another

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

172

Figure 6: JavaScript Performance Benchmark Evaluation. (Themedian overhead of DeterFox is 0.63%, and note that all times-

tamps are obtained based on a standard Linux machine.)

Figure 7: CumulativeDistribution Function of LoadingTime

of Top 100 Alexa Websites. (Note that all timestamps are ob-

tained based on a standard Linuxmachine. Themedian over-

head is 0.1%, i.e., there is no statistical di!erence between

Firefox andDeterFox. The x-axis is cut o! at 50ms, because

some Top 100 Alexa websites are located in China and the

loading time is very long, e.g., 1–2mins, and more impor-

tantly the loading time of such websites are dominated by

the network latency, i.e., unrelated to the browser.)

interesting experiment is to disable the JIT mode for both Deter-

Fox and the legacy Firefox and test the performance overhead to

show the in!uence of the added counter. The results show the

median overhead for the interpreter mode as 6.1%.

7.2.2 Top 100 AlexaWebsites. We then evaluate the performance

overhead of DeterFox against Top 100 Alexa websites. Speci"cally,

we measure the loading time of Top 100 websites in four browsers

and show the cumulative distribution function (CDF) of the loading

time.

Figure 7 shows the results of this experiment. The CDF curve of

DeterFox is very close to the one of legacy Firefox. The median

overhead of DeterFox compared with legacy Firefox is 0.1%, i.e.,

with no statistical di#erence. At contrast, both Tor Browser and

FuzzyFox incur a non-ignorable overhead. The reason is that both

Tor Browser and FuzzyFox add jitters causing a delays during page

loading, butDeterFox only adjusts the time in each RF, i.e., the time

that JavaScript observes, while the user does not observe similar

overhead as JavaScript does.

7.2.3 Discussion. The overhead of DeterFox comes from two

parts: the counter and the priority queue. The counter brings over-

head because the incrementing behavior takes time. Further, the

overhead is small, because the incrementing behavior is very cheap.

The priority queue does not bring any overhead if there is only

one event waiting. When there are two (or more than two) events

in the queue, if the event—which DeterFox arranges behind the

other—comes "rst, the arrangement will cause overhead. However,

in practice, as shown in Top 100 Alexa websites, this case is rare,

and even if it happens the other event will also come in a short

time, which bring little overhead for DeterFox.

7.3 Compatibility

We evaluate the compatibility of DeterFox from three perspectives:

Mochitest, rendering Top 100 Alexa websites, and behind-login

functionalities of popular websites.

7.3.1 Mochitest. Mochitest [3] is a comprehensive, automated

testing framework from Mozilla, and Mozilla will use Mochitest

to test Firefox before each release. The entire Mochitest that we

use from Firefox nightly 51.0a1 contains 878,556 individual tests

grouped into 41,264 categories, and will run for 8 hours on a stan-

dard Linux virtual machine [5] downloaded from Mozilla o$cial

website. Note that even the legacy Firefox cannot pass all the tests

on that virtual machine: Speci"cally, the legacy Firefox nightly

51.0a1 only passes 97.8% of tests—859,283 out of 878,556 as passed,

9,943 as OK, i.e., in their todo list, and 9,330 as failed.

Our evaluation results show that DeterFox passes 97.6% of tests,

i.e., 10,339 as failed, 10,358 as OK, and the rest as passed. We look at

these failed cases and "nd that DeterFox fails additional 1,502 tests

when compared with the legacy Firefox. Interesting, there are 493

tests thatDeterFox passes but the legacy Firefox fails. One possible

reason is that DeterFox changes the sequence of events, which

may "x some concurrency bugs caused by rendering sequence. We

look into some of these cases that DeterFox fails, and "nd that

they belong to many categories, such as DOM and layout.

7.3.2 Top 100 Alexa Websites. We evaluate the compatibility of

DeterFox by comparing the screenshot of DeterFox with the one

of legacy Firefox browser. Because modern websites contain many

ads, even two sequential visits to the same website may render

di#erently. Thus we manually look at these websites in which the

similarity of the screenshots between DeterFox and Firefox is

smaller than 0.9 (A similar threshold to test browser compatibility

is also used in the literature [40]).

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

173

In total, 63 websites pass the initial test and we manually exam-

ine the rest 37. All the di!erences are highlighted automatically

by a red circle for manual inspection. The results show that all

di!erences are caused by dynamic contents, such as a di!erent ad

and a news update. In sum, DeterFox is compatible with Top 100

Alexa websites, i.e., does not cause noticeable di!erences when

rendering the front page of these websites.

7.3.3 Behind-login Functionalities of Some Popular Websites. In

this subsection, we evaluate the behind-login functionalities of sev-

eral popular websites. Speci"cally, we choose the most popular

website, according to Alexa, from several website categories includ-

ing email, social network, online shopping, video, and JavaScript

game. Our manual inspection shows that we can successfully per-

form corresponding actions. Here are the details.

• Email: Gmail. We register a new account with Google, log into

Gmail, and then send an email with an attachment to another

email address. From a di!erent computer, we reply to this email

and attach another "le in the reply. Then, from the "rst computer,

we receive the reply, look at the contents, and then download

the attachment in the reply.

• Social Network: Facebook. We register a new account with Face-

book, and log in. Then, we con"gure several privacy settings

following Facebook’s tutorial, and add several friends. Next, we

post a status in Facebook by sharing a news. We also talk with a

friend via Facebook message.

• Online Shopping: Amazon. We register a new account and log

in. Then, we browse several items using the search functions in

Amazon. Next, we add a book to our shopping cart, proceed to

checkout, and purchase the book with a newly added credit card.

• Video: Youtube. We log into Youtube with the Google account,

and search several keywords. Then, we select a video, and watch

it for one minute. We also post a comment under the video, and

then delete the comment.

• JavaScript Game. We search the keyword “JavaScript Game" on

Google and click the "rst JavaScript game in the list, i.e., the "fth

item during our search. The JavaScript game is very similar to

gluttonous snake in which the gamer can control an item to eat

others. We play the game for one minute.

8 DISCUSSION

We discuss several problems in this section.

Access to Physical Time. One common misunderstanding of our

deterministic browser is that JavaScript will lose access to the phys-

ical time. A deterministic browser only prevents JavaScript (an

observer) from accessing the physical clock when there is a secret

event running at the same time, because necessary conditions of a

timing attack involve an observer and a secret event (See Section 2);

at contrast, if there is no secret event execution, JavaScript has free

access to the physical clock. Speci"cally, the deterministic browser

kernel will fast forward the main clock in JavaScript to the physical

one as discussed in Section 5. In practice, because JavaScript is an

event-driven language, if JavaScript is just waiting for one single

event with physical time, e.g., a network request from the same

origin, the main clock will be the same as the physical clock.

User-related Timing Attacks. As discussed in Section 2, our deter-

ministic browser, especially the current prototype DeterFox, does

not consider timing-related biometric "ngerprinting, i.e., the secret

event in our prototype is restricted to the browser itself. To defend

such biometric "ngerprinting that is related to time, we need to

introduce determinism into corresponding reference frames. For

example, the clock in a keyboard reference frame needs to tick

based on the number of pressed keys instead of the physical clock.

This, however, is considered as our future work.

External Timers and Observers. In real-world, external timers and

observers, e.g., these that reside outside a browser, are impractical

as pointed out by the FuzzyFox [26] paper. Any timestamps or

observations provided via such methods are too coarse-grained

to perform any meaningful attacks. Therefore, neither FuzzyFox

nor Tor Browser considers external timers and observers in their

thread model. Theoretically, a deterministic browser can defend

against such attacks performed by external timers or observers,

because according to De"nition 2, two RFs are synchronized during

communication. That is, when an external observer obtains the

time or an internal observer obtains an external time, the time is

out-of-dated, which only re#ects the synchronized time.

9 RELATEDWORK

In the related work section, we "rst discuss existing timing attacks,

and then present prior work that mitigates such timing attacks,

especially browser-related ones.

9.1 Browser-related Timing Attacks

We discuss existing browser-related timing attacks below.

9.1.1 JavaScript Performance Fingerprinting. Mowery et al. [33]

and Mulazzani et al. [34] show that the performance of JavaScript,

i.e., how long a certain set of JavaScript code takes to execute,

can be used to di!erentiate, or called "ngerprint, di!erent types

and versions of web browsers. The reason behind such JavaScript

performance "ngerprinting is that di!erent browsers have di!er-

ent JavaScript engine implementations and thus di!erent runtime

performance behaviors.

9.1.2 Timing-based Side or Covert Channels. Timing attacks [23,

25, 32, 52, 53] in general have been studied for a long time. We

focus on browser-related side or covert channels. Felten et al. [18]

"rst point out that due to the existence of web content caching, the

loading time of external resource can be used to infer the browsing

history in the past. Then Bortz et al. [8] classify timing channels into

two categories: direct timing attacks that infer private information

stored at server side, and cross-site timing attacks that infer the

size of a cross-site resource in the client browser. The former is

beyond the scope of the paper because the target secret is caused

by the server as discuss in Section 2; the latter is within the scope.

After that, Kotcher et al. [27] "nd another timing attack, showing

that the time of rendering a document after applying a CSS "lter

is related to the document’s visual content. Similarly, Goethem et

al. [45, 46] show that the parsing time of scripts and video can be

used to infer the size of the corresponding resource. Oren et al. [38]

and Gras et al. [20] show that lower-level caching attacks can be

launched from the JavaScript without privileged access.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

174

9.2 Countermeasures of Timing Attacks

We now discuss existing countermeasures of timing attacks.

9.2.1 Browser-level Defense. Tor Browser [4] and Fermanta [26]

are the closest work to our deterministic browser. Tor Browser [4],

an industry pioneer in !ghting browser !ngerprinting, reduces the

clock resolution to 100ms, and adds noises at all places to mitigate

the browser’s !ngerprintability. Similarly, Fermata [26] reduces the

clock resolution and adds several pause tasks in the event queue to

reduce the resolution of implicit clocks. The main di"erence with

DeterFox is that existing works only limit the attacks’ capability,

e.g., prolonging the attack or reducing the channel bandwidth, but

do not fundamentally limit the timing attack.

Another di"erence between Fermata and deterministic browser

is that Fermata requires that all synchronous JavaScript calls are

converted to asynchronous because Fermata adds jitters in the event

queue. Such drastic changes will not be backward compatible with

legacy JavaScript program and their implementation, i.e., FuzzyFox,

does not support such changes.

9.2.2 System-level Defense (based on Determinism). Both Stop-

Watch [29, 30] and DeterLand [48] use determinism to prevent

lower-level timing side or covert channels. Their virtual time ticks

based on the number of executed binary instructions in the virtual

CPU. Similarly, Burias et al. [9] propose a deterministic information-

#ow control system to remove lower level cache attacks and then

Stefan et al. [43] show that such cache attacks still exist given

a reference clock. Aviram et al. [6] use provider-enforced deter-

ministic execution to eliminate timing channels within a shared

cloud domain. Compared with all existing determinisms, apart

from the domain di"erence, i.e., browser v.s., lower level, the di"er-

ences can be stated from three aspects. First, the communication

between the virtual and outside world in existing approaches is

non-deterministic, i.e., they still add jitters or group event together

to limit the bandwidth of side or covert channels. Second, there is

only one clock, i.e., the virtual time, de!ned in existing approaches,

while our work introduces many clocks in di"erent RFs.

9.2.3 Language-basedDefense. Many language-based defense [22,

41, 42, 47, 50, 51] have been proposed to provide well-typed lan-

guage that either provably leaks a bounded amount of information

or prevents timing attacks fundamentally. Though e"ective, such

approaches face backward compatibility problem, i.e., all the exist-

ing programs need to be rewritten and follow their speci!cations.

9.2.4 Detection of Timing A!acks. Many approaches [10, 19, 36]

focus on the detection of timing side or covert channels based on

the extraction of high-level information, such as entropy. Some

existing work, namely Chen et al. [12], adopt determinism to re-

play and detect timing channels via non-deterministic events. The

di"erence between existing works in detecting timing attacks and

our deterministic browser is that such existing work is reactive,

i.e., waiting for timing attacks to happen and then detecting them,

while our deterministic browser is proactive, i.e., preventing timing

attacks from happening in the !rst place.

9.2.5 Defense against Web Tracking. Some approaches, e.g., Pri-

Varicator [35] and TrackingFree [39], aim to prevent web tracking

in general. The purpose of these approaches is di"erent from ours.

JavaScript performance !ngerprinting is just a small component

of web tracking, and neither work can defend against JavaScript

performance !ngerprinting.

9.3 Other Similar Techniques

We discuss some existing techniques that are similar to our deter-

ministic browser.

9.3.1 Determinism in General. Determinism is also used in de-

terministic scheduling [14–16, 31, 37, 49], such deterministic multi-

threading. Such techniques make the execution of programs, e.g.,

a multithreaded one, follow a certain pattern so as to mitigate

bugs, e.g., concurrency ones. That is, they need to align execu-

tion sequence rather than adjusting the clocks. As a comparison,

our deterministic browser not only align execution sequence as in

deterministic scheduling, but also adjust di"erent clocks in RFs.

9.3.2 Logical Time. Logical time is also used in distributed sys-

tems to solve the problem of “happening before”, such as Lamport

Clock [28] and Virtual Time [24]. The purpose of such work is to

de!ne a partial or total order of events so that causal dependency

can be correctly resolved. The reason for such logical time is that a

distributed system lacks a centralized management; by contrast, a

deterministic browser has a browser kernel to coordinate di"erent

RFs with stronger clock synchronization than ordering events.

10 CONCLUSION

In conclusion, we propose deterministic browser, the !rst approach

that introduces determinism into web browsers and provably pre-

vents browser-related timing attacks. Speci!cally, we break a web

browser down into many small units, called reference frames (RFs).

In a RF, we can easily remove one of the three key elements, i.e., an

adversary, a target secret and a reference clock, in timing attacks.

To achieve the removal purpose, we have two tasks: (i) making RFs

with a target deterministic, and (ii) making the communication be-

tween RFs—especially a deterministic RF with a non-deterministic

one—deterministic.

We implemented a prototype of deterministic browser, called

DeterFox, upon Firefox browser. Our evaluation shows that De-

terFox can defend against existing timing attacks in the literature,

and is compatible with real-world websites.

11 ACKNOWLEDGEMENT

The authors would like to thank anonymous reviewers for their

thoughtful comments. This work is supported in part by U.S. Na-

tional Science Foundation (NSF) under Grants CNS-1646662 and

CNS-1563843. The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily

representing the o$cial policies or endorsements, either expressed

or implied, of NSF.

REFERENCES
[1] 2017. Concurrency model and Event Loop. (2017). https://developer.mozilla.org/

en-US/docs/Web/JavaScript/EventLoop.
[2] 2017. Dromaeo: JavaScript Performance Testing. (2017). http://dromaeo.com/.
[3] 2017. Mochitest. (2017). https://developer.mozilla.org/en-US/docs/Mozilla/

Projects/Mochitest.
[4] 2017. Tor Browser. (2017). https://www.torproject.org/projects/torbrowser.html.

en.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

175

[5] 2017. Using the Mozilla build VM. (2017). https://developer.mozilla.org/en-US/
docs/Mozilla/Developer_guide/Using_the_VM.

[6] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. 2010. Deter-
minating Timing Channels in Compute Clouds. In Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop (CCSW ’10). ACM, New York,
NY, USA, 103–108. https://doi.org/10.1145/1866835.1866854

[7] Michael Backes, Goran Doychev, and Boris Köpf. 2013. Preventing Side-Channel
Leaks inWeb Tra!c: A Formal Approach. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27,
2013.

[8] Andrew Bortz and Dan Boneh. 2007. Exposing Private Information by Timing
Web Applications. In Proceedings of the 16th International Conference on World
Wide Web (WWW ’07). ACM, New York, NY, USA, 621–628. https://doi.org/10.
1145/1242572.1242656

[9] Pablo Buiras, Amit Levy, Deian Stefan, Alejandro Russo, and David Mazieres.
2013. A library for removing cache-based attacks in concurrent information "ow
systems. In International Symposium on Trustworthy Global Computing. Springer,
199–216.

[10] Serdar Cabuk, Carla E. Brodley, and Clay Shields. 2004. IP Covert Timing Chan-
nels: Design and Detection. In Proceedings of the 11th ACM Conference on Com-
puter and Communications Security (CCS ’04). ACM, New York, NY, USA, 178–187.
https://doi.org/10.1145/1030083.1030108

[11] Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. 2014. JShield: Towards Real-
time and Vulnerability-based Detection of Polluted Drive-by Download Attacks.
In Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC).

[12] Ang Chen,W. BradMoore, Hanjun Xiao, Andreas Haeberlen, Linh Thi Xuan Phan,
Micah Sherr, and Wenchao Zhou. 2014. Detecting Covert Timing Channels with
Time-Deterministic Replay. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broom#eld, CO, 541–
554. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
chen_ang

[13] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. In Proceed-
ings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). IEEE Computer
Society, Washington, DC, USA, 191–206. https://doi.org/10.1109/SP.2010.20

[14] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng
Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: a Practical Runtime
for Deterministic, Stable, and Reliable Threads. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13).

[15] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang.
2011. E!cient Deterministic Multithreading through Schedule Relaxation. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP
’11). 337–351.

[16] Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. 2010. Stable Deter-
ministic Multithreading through Schedule Memoization. In Proceedings of the
Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10).

[17] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.
2011. ZOZZLE: Fast and Precise In-browser JavaScript Malware Detection. In
Proceedings of the 20th USENIX Conference on Security.

[18] EdwardW. Felten andMichael A. Schneider. 2000. Timing Attacks onWeb Privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security (CCS ’00). ACM, New York, NY, USA, 25–32. https://doi.org/10.1145/
352600.352606

[19] Steven Gianvecchio and Haining Wang. 2007. Detecting covert timing channels:
an entropy-based approach.. In ACM Conference on Computer and Communica-
tions Security (2008-02-22), Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson (Eds.). ACM, 307–316. http://dblp.uni-trier.de/db/conf/ccs/
ccs2007.html#GianvecchioW07

[20] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giu$rida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU. In Annual Network and
Distributed System Security Symposium (NDSS).

[21] Wei-Ming Hu. 1992. Reducing Timing Channels with Fuzzy Time. Journal of
Computer Security 1, 3-4 (May 1992), 233–254. http://dl.acm.org/citation.cfm?id=
2699806.2699810

[22] Marieke Huisman, PratikWorah, and Kim Sunesen. 2006. A Temporal Logic Char-
acterisation of Observational Determinism.. In CSFW. IEEE Computer Society, 3.
http://dblp.uni-trier.de/db/conf/csfw/csfw2006.html#HuismanWS06

[23] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks Against Kernel Space ASLR. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (SP ’13). IEEE Computer Society, Washington,
DC, USA, 191–205. https://doi.org/10.1109/SP.2013.23

[24] David R. Je$erson. 1985. Virtual Time. ACM Trans. Program. Lang. Syst. 7, 3 (July
1985), 404–425. https://doi.org/10.1145/3916.3988

[25] Paul C. Kocher. 1996. Timing Attacks on Implementations of Di!e-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’96). Springer-Verlag,
London, UK, UK, 104–113. http://dl.acm.org/citation.cfm?id=646761.706156

[26] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain
Times. In 25th USENIX Security Symposium (USENIX Security 16). USENIXAssocia-
tion, Austin, TX, 463–480. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/kohlbrenner

[27] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-origin
Pixel Stealing: Timing Attacks Using CSS Filters. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (CCS ’13). ACM,
New York, NY, USA, 1055–1062. https://doi.org/10.1145/2508859.2516712

[28] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/359545.
359563

[29] Peng Li, Debin Gao, and Michael K. Reiter. 2013. Mitigating access-driven timing
channels in clouds using StopWatch. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Budapest, Hungary, June
24-27, 2013. 1–12.

[30] Peng Li, Debin Gao, andMichael K. Reiter. 2014. StopWatch: A Cloud Architecture
for Timing Channel Mitigation. ACM Trans. Inf. Syst. Secur. 17, 2, Article 8 (Nov.
2014), 28 pages. https://doi.org/10.1145/2670940

[31] Tongping Liu, Charlie Curtsinger, and Emery D Berger. 2011. Dthreads: e!cient
deterministic multithreading. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 327–336.

[32] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Ste$en Schulz,
and Stefan Katzenbeisser. 2009. Hide and Seek in Time - Robust Covert Timing
Channels.. In ESORICS (Lecture Notes in Computer Science), Michael Backes and
Peng Ning (Eds.), Vol. 5789. Springer, 120–135. http://dblp.uni-trier.de/db/conf/
esorics/esorics2009.html#LiuGASSK09

[33] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting information in JavaScript implementations. In WEB 2.0 SECURITY &
PRIVACY (W2SP).

[34] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser
identi#cation with javascript engine #ngerprinting. In WEB 2.0 SECURITY &
PRIVACY (W2SP).

[35] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. PriVaricator:
Deceiving Fingerprinters with Little White Lies. In Proceedings of the 24th Inter-
national Conference on World Wide Web (WWW ’15). ACM, New York, NY, USA,
820–830. https://doi.org/10.1145/2736277.2741090

[36] Peng Ning, Douglas S. Reeves, and Pai Peng. 2006. On the Secrecy of Timing-
Based Active Watermarking Trace-Back Techniques. IEEE Symposium on Security
and Privacy (2006).

[37] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: e!cient
deterministic multithreading in software. ACM Sigplan Notices 44, 3 (2009),
97–108.

[38] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15). ACM, New York, NY, USA,
1406–1418. https://doi.org/10.1145/2810103.2813708

[39] Xiang Pan, Yinzhi Cao, and Yan Chen. 2015. I Do Not Know What You Visited
Last Summer - Protecting users from third-party web tracking with TrackingFree
browser. In NDSS.

[40] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-box Enforcement of Content Security Policy Upon Real-
world Websites. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 653–665.
https://doi.org/10.1145/2976749.2978384

[41] Andrei Sabelfeld and David Sands. 2000. Probabilistic noninterference for multi-
threaded programs. In Computer Security Foundations Workshop, 2000. CSFW-13.
Proceedings. 13th IEEE. IEEE, 200–214.

[42] Geo$rey Smith and Dennis Volpano. 1998. Secure Information Flow in a Multi-
threaded Imperative Language. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98). ACM, New York,
NY, USA, 355–364. https://doi.org/10.1145/268946.268975

[43] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy, David Terei, Alejandro
Russo, and David Mazières. 2013. Eliminating cache-based timing attacks with
instruction-based scheduling. In European Symposium on Research in Computer
Security. Springer, 718–735.

[44] Paul Stone. 2013. Pixel perfect timing attacks with HTML5 (White Paper). (2013).
[45] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still

Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,
New York, NY, USA, 1382–1393. https://doi.org/10.1145/2810103.2813632

[46] Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen. 2016.
Request and Conquer: Exposing Cross-Origin Resource Size. In Proceedings of
the 21st USENIX Conference on Security Symposium (Security).

[47] Dennis Volpano and Geo$rey Smith. 1997. Eliminating covert "ows with min-
imum typings. In Computer Security Foundations Workshop, 1997. Proceedings.,
10th. IEEE, 156–168.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

176

[48] Weiyi Wu and Bryan Ford. 2015. Deterministically Deterring Timing Attacks in
Deterland. In Conference on Timely Results in Operating Systems (TRIOS).

[49] Junfeng Yang, Heming Cui, JingyueWu, Yang Tang, andGangHu. 2014. Determin-
ism Is Not Enough: Making Parallel Programs Reliable with Stable Multithreading.
(2014).

[50] Steve Zdancewic and Andrew C. Myers. 2003. Observational Determinism for
Concurrent Program Security. In 16th IEEE Computer Security Foundations Work-
shop (CSFW-16 2003), 30 June - 2 July 2003, Paci!c Grove, CA, USA. 29.

[51] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2012. Language-based
control and mitigation of timing channels. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing, China -
June 11 - 16, 2012. 99–110.

[52] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy (SP ’11). IEEE Computer Society,
Washington, DC, USA, 313–328. https://doi.org/10.1109/SP.2011.31

[53] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS ’12). ACM,
New York, NY, USA, 305–316. https://doi.org/10.1145/2382196.2382230

A PROOF OF LEMMA 1

Proof. Let us look at the two conditions in De!nition 2 sep-

arately. First, if the clocks in both RFs are synchronized at the

moment of the communication, the sender does not convey addi-

tional timing information to an observer in the receiver. Therefore,

De!nition 1 is satis!ed.

Second, if the sender is deterministic, the clock information can

be directly conveyed to the receiver. Speci!cally, we will show that

De!nition 1 is satis!ed in either clock or a mixture of both, which

makes the receiver’s RF still deterministic. Because the receiver is

deterministic in its own clock, we just need to consider the other

two cases.

(i) Since the sender is deterministic, following De!nition 1, we

have Equation 2.

tsender
2

− tsender
1

= f (Osender
1

,Osender
2

) (2)

Because the sender can convey any information in the message,

both Or eceiver
1

and Or eceiver
2

contain information about Osender
1

and Osender
2

. That is, we will have Equation 3, meaning that the

receiver is deterministic in the sender’s clock.

tsender
2

− tsender
1

= f ′(Or eceiver
1

,Or eceiver
2

) (3)

(ii) We further show that the mixture of the sender’s and the

receiver’s clock, i.e., tsender
2

−tr eceiver
1

, is deterministic. According

to Equation 3 and the de!nition of the receiver’s determinism, we

have Equation 4.

tsender
2

− tsenderstar t = f1 (O
sender
2

,Osender
star t)

tr eceiver
1

− tr eceiverstar t = f2 (O
r eceiver
1

,Or eceiver
star t)

(4)

When we minus the second equation in Equation 4 from the !rst,

we will have Equation 5.

(tsender
2

− tsenderstar t) − (tr eceiver
1

− tr eceiverstar t)

= f1 (O
sender
2

,Osender
star t)

− f2 (O
r eceiver
1

,Or eceiver
star t)

(5)

After doing some transformations in Equation 5, we will have

Equation 6, following De!nition 1 and showing that the receiver is

deterministic in the clockmixing both the sender’s and the receivers.

Note that both Osender
star t and Or eceiver

star t are constant.

tsender
2

− tr eceiver
1

= tsenderstar t − t
r eceiver
star t + f1 (O

sender
2

,Osender
star t)

− f2 (O
r eceiver
1

,Or eceiver
star t)

= f ′′(Or eceiver
1

,Osender
2

)

(6)

In sum, if a communication from a sender to a receiver obeys

De!nition 2, the communication does not break the determinism

in the receiver.

!

B PROOF OF THEOREM 1

Proof. According to Lemma 1, even if an adversary observer in a

RF obtains an external clock, the RF is still deterministic. Therefore,

without loss of generality, we only consider one clock in the proof.

There are two sub-scenarios: (i) an observer in a RF measuring an

internal target secret, and (ii) an observer in a RF measuring an

external target secret in another RF.

(i) Let us look at an observer in a RF measuring an internal target

secret. Let us assume that a target secret happens in two copies

(RF1 and RF2) of the same RF, e.g., the execution runtime of the

same JavaScript code with the same inputs. An observer (Ob) makes

observations (ORF 1
{St,End }

andORF 2
{St,End }

) of the target secret in these

two RFs. We have the following Equation 7.

ORF 1
End
= ORF 2

End
ORF 1
St = O

RF 2
St (7)

With Equation 7, we have Equation 8.

∆tRF 1 − ∆tRF 2 = (tRF 1
End
− tRF 1St) − (tRF 2

End
− tRF 2St)

= f (ORF 1
End
,ORF 1

St) − f (ORF 2
End
,ORF 2

St)

= 0

∆tRF 1 = ∆tRF 2 = const

(8)

Because RF1 and RF2 are arbitrary RFs, we show that ∆t =

tEnd − tSt = const

(ii) Let us then look at an observer in a RF measuring an external

target secret in another RF. Because according to De!nition 2, the

clocks in both RFs are synchronized, the measurement that the

observer makes is the same as another observer, maybe virtual, in

the RF with a target secret. Therefore, the sub-scenario just boils

down the !rst one.

!

C PROOF OF THEOREM 2

Proof. We prove this theorem from two aspects:

• De!nition 1⇒De!nition 3: Say for two di"erent executions (E1

and E2), i.e., two RFs in the context of JavaScript, an observer

makes two observations at the starting point (st) of the execu-

tion and the timestamp of a speci!c opcode (op). According to

De!nition 1, we will have Equation 9 and 10.

t1op − t
1
st = f (O1

op ,O
1
st) (9)

t2op − t
2
st = f (O2

op ,O
2
st) (10)

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

177

Then, we perform this operation (Equation 9−Equation 10):

t1op − t
1
st − (t2op − t

2
st)

= f (O1
op ,O

1
st) − f (O2

op ,O
2
st)

⇒ t1op − t
2
op

= t1st − t
2
st + f (O1

op ,O
1
st) − f (O2

op ,O
2
st)

= C

(11)

Equation 11 obeys De!nition 3.

• De!nition 3⇒De!nition 1: Say there is a speci!c execution (Esd),

i.e., a RF in JavaScript context, which can be used as a standard

for comparison with any other executions. The execution starts

from op1 to opn . For an arbitrary opcode (opi where i ∈ {1...n})

in that execution, we have the following Equation 12.

t
Esd
opi
=

∑

k ∈ {1...i }

t
Esd
opk

(12)

For an arbitrary execution (Eab), a replicate of Esd but at a dif-

ferent time, according to De!nition 3, we have Equation 13.

t
Eab
opi
− t

Esd
opi
= C

⇒ t
Eab
opi
= t

Esd
opi
+C =

∑

k ∈ {1...i }

t
Esd
opk
+C

(13)

Now, say an observer makes two observations in Eab , which

corresponds to two opcodes (opi and opj). We have Equation 14.

t
Eab
opi
− t

Eab
opj
=

∑

k ∈ {1...i }

t
Esd
opk
+C − (

∑

k ∈ {1...j }

t
Esd
opk
+C)

=

∑

k ∈ {i ...j }

t
Esd
opk

= f (opi ,opj)

(14)

Equation 14 obeys De!nition 1. Note that the last step in Equa-

tion 14 is due to that Eab is a replication of Esd and the observa-

tions in a JavaScript RF are the executed opcodes.

!

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

178

