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ABSTRACT
Logic locking has been conceived as a promising proactive defense

strategy against intellectual property (IP) piracy, counterfeiting,

hardware Trojans, reverse engineering, and overbuilding a�acks.

Yet, various a�acks that use a working chip as an oracle have been

launched on logic locking to successfully retrieve its secret key,

undermining the defense of all existing locking techniques. In

this paper, we propose stripped-functionality logic locking (SFLL),

which strips some of the functionality of the design and hides it in

the form of a secret key(s), thereby rendering on-chip implementa-

tion functionally di�erent from the original one. When loaded onto

an on-chip memory, the secret keys restore the original functional-

ity of the design. �rough security-aware synthesis that creates a

controllable mismatch between the reverse-engineered netlist and

original design, SFLL provides a quanti�able and provable resilience

trade-o� between all known and anticipated a�acks. We demon-

strate the application of SFLL to large designs (>100K gates) using

a computer-aided design (CAD) framework that ensures a�aining

the desired security level at minimal implementation cost, 8%, 5%,

and 0.5% for area, power, and delay, respectively. In addition to

theoretical proofs and simulation con�rmation of SFLL’s security,

we also report results from the silicon implementation of SFLL on

an ARM Cortex-M0 microprocessor in 65nm technology.

CCS CONCEPTS
•Security and privacy →Security in hardware; Hardware at-
tacks and countermeasures; Hardware reverse engineering;
Hardware security implementation; •Hardware →Logic synthe-
sis; Electronic design automation;

KEYWORDS
Design-for-trust, IP piracy, hardware Trojan, reverse engineering,

logic locking, Boolean satis�ability (SAT)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . .$15.00

DOI: h�p://dx.doi.org/10:1145/3133956:3133985

Tamper-proof 

memory

Inputs Outputs
Circuit to be 

protected

Key inputs

Figure 1: An abstract representation of a logic-locked design.
Only on applying the secret key, the design produces correct
outputs; otherwise, incorrect outputs are produced.

1 INTRODUCTION
1.1 IP piracy and reverse engineering
�e increasing cost of IC manufacturing has forced many com-

panies to go fabless over the years. With the outsourcing of IC

fabrication in a globalized/distributed design �ow including multi-

ple (potentially untrusted) entities, the semiconductor industry is

facing a number of challenging security threats. �is fragility in

the face of poor state-of-the-art IP protection has resulted in hard-

ware security vulnerabilities such as IP piracy, overbuilding, reverse

engineering, and hardware Trojans [9, 13, 19, 20, 37, 39, 45, 47–49].

To address these issues most e�ectively at the hardware level [32],

a number of hardware design-for-trust (DfTr) techniques such as

IC metering [1, 22, 23], watermarking [17, 18, 21, 31], IC camou�ag-

ing [3, 4, 27, 28, 35, 46, 51, 56, 62], split manufacturing [14, 16], and

logic locking [34, 36, 38, 40, 41, 52, 53, 55, 61, 63] have been pro-

posed. Logic locking, in particular, has received signi�cant interest

from the research community, as it can protect against a potential

a�acker located anywhere in the IC supply chain, whereas other

DfTr techniques such as camou�aging or split manufacturing can

protect only against a limited set of malicious entities as shown

in Table 1. Mentor Graphics, a major CAD tool provider, has an-

nounced the launch of TrustChain, a framework to support logic

locking and camou�aging [26, 42].

1.2 Logic locking: defenses and attacks
Logic locking inserts additional logic into a circuit, locking the

original design with a secret key. In addition to the original in-

puts, a locked circuit has key inputs that are driven by an on-chip

tamper-proof memory [15, 50], as illustrated in Fig. 1. �e addi-

tional logic may consist of XOR gates [34, 36, 38] or look-up tables

(LUTs) [5]. Fig. 2 presents the IC design �ow incorporating logic

locking. �e locked netlist passes through the untrusted design

phases. Without the secret key (i) the design details cannot be

recovered (for reverse-engineering), and (ii) the IC is not functional,
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Figure 2: Locking and activation of an IC in IC design �ow. �e red regions denote untrusted entities; the green regions
represent trusted entities.

Table 1: Protection o�ered by DfTr techniques against un-
trusted entities in the IC supply chain.

Techniques Foundry SoC Integrator Test User
IC metering [1, 22, 23] 7 3 3 3

Watermarking [17, 18, 21, 31] 7 7 7 3

IC camou�aging [3, 4, 27, 28, 35, 46, 51] 7 3 3 3

Split manufacturing [14, 16] 3 7 7 7

Logic locking [34, 36, 38, 52, 55] 3 3 3 3

i.e., it produces incorrect outputs (for over-production). A locked

IC needs to be activated by loading the secret key onto the chip’s

memory.

Traditional logic locking techniques choose key gate loca-

tions based on various gate selection algorithms, such as ran-

dom (RLL) [38], fault analysis-based (FLL) [5, 36], and strong-

interference-based logic locking (SLL) [34, 59]. Over the years,

many key-recovery a�acks have been mounted that exploit the

vulnerabilities of logic locking techniques [33, 34, 44, 54, 60]. A

summary of these a�acks is presented in Table 2.

A powerful a�ack that broke all the logic locking techniques

existing then is Boolean satis�ability (SAT)-based key-pruning a�ack,

referred to as SAT a�ack. �e a�ack is based on the notion of incor-
rect key elimination using distinguishing input pa�erns (DIPs) [44].

DIPs are computed using a miter circuit constructed using two

copies of the locked netlist; the two circuits share the primary

inputs but have di�erent key inputs. A DIP is found when the

two copies of the locked netlist di�er in their outputs. A func-

tional IC with the secret key loaded in its memory is used as an

oracle to identify the incorrect keys in an iterative fashion. �e

computational complexity of the a�ack is expressed in terms of

the number of DIPs generated by the SAT a�ack [44]. �e latest

research works on logic locking have focused on defending against

the SAT a�ack [52, 55, 57].

1.3 SAT attack resilient logic locking
Two SAT a�ack resilient logic locking techniques—SARLock [55]

and Anti-SAT [52] (see Fig. 3)—have been recently proposed. �ey

both use one-point functions to obtain resilience against SAT at-

tacks. SARLock corrupts/inverts the output of the circuit for all the

incorrect keys at exactly one input pa�ern that is di�erent for each

incorrect key. �e correct key values are hardcoded in logic gates

to mask the output inversion for the correct key [55]. Anti-SAT

employs two complementary logic blocks that converge at an AND

gate. �e output of the AND gate is always 0 only for the correct

Table 2: Attack resiliency of logic locking techniques
against the existing attacks. 7 denotes susceptibility to the
attack and 3 denotes resilience.

A�ack RLL FLL SLL AntiSAT SARLock TTLock Proposed

[38] [5, 36] [34] [52] [55] [61] SFLL

Sensitization [34] 7 7 3 3 3 3 3
SAT [44] 7 7 7 3 3 3 3

AppSAT [40] 7 7 7 7 7 7 3
Removal/SPS [57] 3 3 3 7 7 3 3
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Figure 3: (a) SARLock [55]. (b) Anti-SAT [52]. In both tech-
niques, an incorrect key may assert the flip signal, produc-
ing incorrect outputs. Source: [61].

key; otherwise, it may be 1. Its output corrupts an internal node

in the original design for an incorrect key, to produce incorrect

outputs.

SARLock can be intertwined with one of the gate selection-

based logic locking techniques, such as RLL, FLL or SLL, providing

multiple layers of defense [55]. A variant of SAT a�ack, referred to

as AppSAT [40], was recently proposed to show that a multi-layered

defense comprising a point function and a SAT a�ack vulnerable

logic locking technique can be reduced to a single-layer defense

comprising the point function alone (e.g., from SARLock+FLL to

SARLock). �e Double-DIP a�ack achieves the same objective

using more powerful 2-DIPs, i.e., DIPs that can eliminate at least

two incorrect keys in a single iteration [41]. �e work in [40, 41]

elucidates that simple integration of multiple techniques together

fails to combine the resilience o�ered by individual techniques.

Limitations of existingwork: Protection unit that can be iso-
lated and removed. Despite their SAT a�ack resilience, both

SARLock [55] and Anti-SAT [52] exhibit security vulnerabilities,

as they leave the original circuit implementation, the IP-to-be-

protected, as is. SARLock is vulnerable to removal a�ack: Given

a protected/locked netlist, an a�acker can identify the compara-

tor/mask blocks and the �ip signal that directly feeds the output

by tracing the transitive-fanout of key-inputs, and remove these

blocks, retrieving the original circuit (proprietary IP). Anti-SAT

is vulnerable to signal probability skew (SPS) a�ack [57]: Given a

protected netlist, an a�acker can identify the �ip signal: it is at

the output of the gate whose inputs exhibit the maximum bias

towards opposite values. �e a�acker can then retrieve the origi-

nal design by re-synthesizing the locked netlist with a constraint

value 0 (1) on the �ip signal. Even upon additional obfuscation

using additional XOR/XNOR and multiplexer key gates [52], the

Anti-SAT block can be isolated using the AppSAT guided removal

(AGR) a�ack [58]. In addition, both SARLock and Anti-SAT are

also vulnerable to the Bypass a�ack [53]. �e Bypass a�ack �nds

a DIP that causes an incorrect output for a wrong key and bypass

circuitry is added around the Anti-SAT/SARLock block to �x the

output for this DIP. �is �x recovers the original design as for both

SARLock and Anti-SAT the incorrect key-driven design fails for

only one input pa�ern.

SARLock is re-architected into TTLock in [61] to gain resilience

against removal a�acks. TTLock makes changes to the original
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design to corrupt the output in the absence of the secret key. As

SARLock is based on a one-point function, its re-architected version

TTLock ends up protecting one input pa�ern, that is, the modi�ed

netlist and the original netlist di�er in their outputs for one input

pa�ern only. �e work in [61] describes this SAT and removal

a�ack resilient architecture but provides neither a CAD framework

to e�ect the design changes nor a formal analysis proving resilience

against various a�acks. Furthermore, protection of a single input

pa�ern leads to a rigid scheme where the designer lacks the control

to hide an arbitrary amount of IP-critical logic in arbitrary parts

of his/her design. Protection of a single input pa�ern, and thus,

low (and uncontrollable) corruptibility also leads to the recovery of

an approximate netlist through a�acks, such as AppSAT [40] and

Double-DIP [41], which SARLock is vulnerable to as well.

1.4 Motivation, proposed approach, and
challenges

Motivation. Our ultimate goal is to develop a logic locking tech-

nique that can withstand all known and anticipated a�acks. Re-

silience to oracle-guided a�acks, such as SAT a�ack, should be

delivered while at the same time hardware implementation of the

design should not reveal all the details of the design IP to reverse-

engineers (i.e., removal a�acks). A logic locking framework should

enable the designer to hide the security-critical parts of the design

IP, and thereby, to customize logic locking to the security needs of

the application.

While hiding any part of the design IP from its hardware imple-

mentation may be su�cient to render general applications resilient

to reverse engineers (removal a�acks), there are applications where

a designer may want to specify the parts to hide. Examples in-

clude processors with to-be-protected address spaces, for which

access is granted only to restricted entities [8]; network-on-chip

(NoC) routers where certain IP address ranges may carry particular

semantics [12]; intrusion detection systems that rely on pa�ern

matching [24]; and digital signal processing applications, such as

comb �lters [10], which accentuate/a�enuate frequencies at regular

intervals.

Approach. Building on the architecture abstracted in [61], the

proposed technique strips part of the design functionality from

its hardware implementation. �e design implemented in hard-

ware is therefore no longer the same as the original design, as

the former will be missing the stripped functionality. We refer to

the proposed technique that can arbitrarily specify this stripped

functionality as Stripped-Functionality Logic Locking (SFLL). �e

hardware implementation can be conceived to have an intentionally

and controllable built-in error. �is error is canceled by a restore
unit only upon the application of the secret key of logic locking.

�e stripped functionality can be captured e�ciently in terms

of input cubes
1

for which the hardware-implemented design and

the original one produce di�erent outputs. We refer to these input

cubes as protected cubes. �ey can be stored in bits rather than

hardcoded in logic gates. SARLock [55] and Anti-SAT [52] protect

zero cubes, as they implement the design IP as is in hardware.

1
Input cubes refer to partially-speci�ed input pa�erns; some input bits are set to

logic-0’s or logic-1’s, while other input bits are don‘t cares (x’s). An n-bit input cube

with k speci�ed (care) bits contains 2
n−k

input pa�erns.

Protected cubes can also be conceived as conditions to manifest the

built-in error; a reverse-engineer applying the removal a�ack will

obtain a netlist with this error with respect to the original design.

For general applications that require hiding any part of the func-

tionality, it may be su�cient to protect an arbitrary set of cubes. For

applications that are speci�c about the part of the functionality to

hide, the proposed SFLL framework should enable the designer to

strip functionality based on IP-critical cubes that he/she can specify

and provide as input to the framework.

Challenges. �e proposed approach necessitates that we dis-

cover and explore the connection between resilience to oracle-

guided a�acks and removal a�acks. �is translates to another

challenge–quantifying the resilience of logic locking to a�acks in

terms of properties (e.g., the number and size) of cubes protected by

them. Only then, we can implement a logic locking framework that

can enable the designer to make an informed decision on how to

trade resilience to one a�ack for resilience to another, and identify

the sweet spot to protect against all a�acks.

1.5 Contributions
• We discover, quantify, and explore the trade-o� between re-

silience of logic locking to di�erent a�acks.

• We develop a provably and quanti�ably secure and scalable logic

locking technique SFLL that thwarts all known and anticipated

a�acks. We present two versions of SFLL.

(1) �e �rst version SFLL-HDh , a generalized version of TT-

Lock [61], is suitable for general application where stripping

an arbitrary part of the functionality is su�cient for pro-

tection. �is implementation is simple and scalable but is

capable of protecting a restricted set of input cubes, all dic-

tated by one secret key. SFLL-HD
h

protects

(k
h
)

input cubes

that are of Hamming Distance (HD) h from the k-bit secret

key. We provide a security analysis and show that k and h
dictate the trade-o� between oracle-guided a�ack resilience

and removal a�ack resilience.

(2) �e second version SFLL-�exc×k allows the user to specify c
IP-critical input cubes to be protected, each with k speci�ed

bits.

– We quantify the security level and trade-o� in terms

of the number and the size of these cubes.

– We develop a two-stage optimization framework that i)

compresses the input cubes, and ii) performs security-

aware logic synthesis to strip functionality based on

compressed cubes while lowering the cost of imple-

mentation and adhering to security requirements.

• �is is a complete approach from theory to practice. We develop

security de�nitions and metrics; develop a CAD framework for

SFLL; and validate SFLL’s security, cost-e�ectiveness, and scala-

bility through both computer simulations on large-sized bench-

mark circuits (one with >100K gates) and silicon implementation

of ARM Cortex-M0 microprocessor in 65nm LPe technology. We

fabricate both the baseline and the SFLL-locked microprocessors to

perform an accurate comparative analysis.
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2 PRELIMINARIES
Before delving into further details, we �rst de�ne the terminologies

that are used in the remainder of the paper.

Notation. We de�ne a set as S and its elements are denoted as

s ∈ S. We write s
$←− S to denote s has been sampled uniformly

randomly from the set S. We use cktlock , cktactv and cktr ec to

denote a logic-locked, an activated, and a reconstructed circuit,

respectively. For a circuit ckt the set of all possible inputs and

outputs are denoted as I andO respectively. We writeAS to denote

a probabilistic polynomial time (PPT) adversary A following an

a�ack strategy S.

De�nition 2.1. A combinational circuit ckt is a netlist that im-

plements a Boolean function F : I → O , where I = {0, 1}n and

O = {0, 1}m with n inputs and m outputs. A logic locking tech-

nique L can be viewed as a triplet of algorithms, (Gen, Lock,
Activate), where:

(1) Gen is a randomized key generation algorithm, z
$←−

Gen(1k ), where k denotes the key-size,

(2) Lock is the algorithm to lock a circuit’s functionality,

cktlock ← Lockz (ckt), and

(3) Activate is a deterministic algorithm that activates the

locked circuit, cktactv ← Activatez (cktlock ) such that

∀i ∈ I , cktactv (i) = F (i).

�reat model. Consistent with the previous works, here we as-

sume the a�acker has access to an oracle, denoted, ckt(·), which

is a copy of a working chip with the secret key loaded onto its

memory. �e a�acker queries the oracle with a set of input pat-

terns and observes the corresponding outputs. Apart from this, the

a�acker also has the reverse-engineered netlist cktlock , which is

locked using a logic locking technique L. In this work, we assume

the a�acker also knows the corresponding elements between the

original and the locked netlist; that is, he can identify the location

of the protection unit. �e a�ack success for an adversary AS
implies recovering a circuit such that:

∀i ∈ I , cktr ec (i) = F (i), AS : cktlock → cktr ec (1)

SAT attack resilience. SAT a�ack, a representative and e�ective

oracle-guided a�ack that iteratively prunes the key space, queries

the oracle cktlock (·)with an input pa�ern d , called a distinguishing

input pa�ern, to eliminate a set of incorrect keys in each iteration.

�e a�ack terminates a�er querying the oracle with a set of DIPs,

and outpu�ing a single key z′. �e a�acker ASAT reconstructs

a circuit cktr ec where cktr ec ← Activatez′(cktlock ) such that Eq.

(1) is satis�ed.

De�nition 2.2. A logic locking technique L is called λ-secure

against a PPT adversary ASAT, making a polynomial number of

queries q(λ) to the oracle, if he/she cannot reconstruct cktr ec with

probability greater than
q(λ)
2
λ .

A logic locking technique resilient to the SAT a�ack is also

expected to thwart other variant key-space pruning a�acks.

Sensitization attack resilience. Sensitization a�ack, which is

another oracle-guided a�ack, determines individual key bits by

generating and applying pa�erns that sensitize them to the out-

puts. In [34], two key bits are considered pairwise-secure i� the

sensitization of one key bit cannot be done without controlling the

other key bit and vice versa. �e same paper presents SLL that

maximizes key bits that are all pairwise-secure. For example, key

bits converging at a dominating gate are all pairwise-secure, if there

is no input assignment to block any one of them before they reach

the dominating gate.

De�nition 2.3. A logic locking technique L is λ-secure against a

sensitization a�ack i� λ key bits are all pairwise secure.

Removal attack resilience. Removal a�ack operates on a locked

netlist and tries to isolate and remove the protection logic. �e

a�ack is a transformationT : cktlock → cktr ec | ∀i ∈ I , cktr ec (i) =
F (i), irrespective of the key value. Note that for a removal a�ack

cktr ec (p) , F (p),∀p ∈ P , where P denotes the set of protected

pa�erns.

De�nition 2.4. A logic locking technique L is λ-resilient against

a removal a�ack, where λ denotes the cardinality of the set of

protected input pa�erns P .

3 SFLL-HD
We �rst present SFLL-HD

h
for general applications that will bene�t

from stripping an arbitrary part of the design functionality. We

also show that SFLL-HD
h

is a logic locking platform that provides

controllable resilience against all known a�acks. In SFLL-HD
h

, all

the protected input cubes are of the same Hamming Distanceh from

the secret key; though the set of protected cubes are thus restricted,

a large number of cubes can be protected through a simple, scalable,

and cost-e�ective hardware.

3.1 SFLL-HD0

We �rst explain SFLL-HD
h

for the special case of h = 0; there is

only one protected input cube, and it is the same as the secret key.

In other words, SFLL-HD
0

is functionally the same as TTLock [61].

SFLL-HD
0

modi�es a design to invert its output for one selected

(protected) input pa�ern; this inversion is the manifestation of the

built-in error. �e functionality stripping can be e�ected via logic

gate insertions/replacements; the security-aware synthesis module

in SFLL-�ex in Section 4.2 can also be used to strip functionality

based on a set of protected input cubes. SFLL-HD
0

inverts the

erroneous output only upon the application of the correct key

to the restore unit, thereby, cancelling out the built-in error and

recovering the correct output. Moreover, SFLL-HD
0

introduces one

additional error into the design along with the inverted output for

each incorrect key. Here, the secret key consists of the protected

input cube selected by the designer.

SFLL-HD
0

has the following properties:

• It protects exactly one input cube.

• Each input pa�ern can eliminate one and only one incorrect key,

thereby ensuring the SAT a�ack requires number of DIPs that is

exponential in terms of the key-size.

• Removal a�acks, when launched against SFLL-HD
0
, only re-

cover the (minimally) modi�ed design that exhibits incorrect

(but approximate) functionality.
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Figure 4: Proposed SFLL-HD0 architecture for n = k = 3. �e
functionality-stripped circuit (FSC) is minimally di�erent
from the original function: they produce a di�erent re-
sponse for one protected input pattern (IN = 6). �e restore
unit cancels this error for the correct key k6 and introduces
a second error for all incorrect keys. Errors are denoted by
X’s. Note that although SFLL-HD0 is functionally the same
as TTLock, the two are di�erent in hardware architecture;
TTLock uses a comparator whereas SFLL uses a Hamming
Distance checker. Source: [61].
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Figure 5: a) Original circuit, b) FSC. Gate G1 is replaced
with G1’ in the FSC, inverting the output Yfs for IN=6.
Source: [61].

3.1.1 Construction of SFLL-HD0. �e architecture of SFLL-HD
h

consists of a restore unit and an XOR gate. �e restore unit com-

putes the Hamming distance between the key inputs and the pri-

mary inputs. In the special case of SFLL-HD
0
, the Hamming dis-

tance between the primary inputs and the key is zero, implying

that the restore signal is asserted only when the key inputs and

the primary inputs match. Note that for h = 0, this restore unit

can be reduced to a simple k-bit comparator rendering SFLL-HD
0

functionally equivalent to TTLock, as shown in Fig. 4.

We reuse the example circuit from [61] to illustrate the architec-

ture of SFLL-HD
0

depicted in Fig. 5a. �e circuit is protected by a

three-bit key, n=k=3; the protected cube is an input pa�ern, asn = k
in this example. �e original circuit is shown in Fig. 5a whereas the

functionality-stripped circuit (FSC) is shown in Fig. 5b. �e original

and the functionality-stripped circuits produce a di�erent output

for only input pa�ern 6. Yf s column in Fig. 4 shows the inversion

(error) for this protected input pa�ern. �is error is cancelled out

by applying the correct key k6 which asserts the restore signal for

input pa�ern 6, and thus, recovering the desired output, as depicted

in the table in Fig. 4. �e table also illustrates that each incorrect

key induces one extra error in the design, leading to two inversions

in each column of the table except the one for the correct key.

3.1.2 Security analysis of SFLL-HD0. We prove the following

theorems which establish the security of SFLL-HD
0

against all

known and anticipated a�acks. We assume n inputs and k key bits,

where k ≤ n. SFLL-HD
0

delivers the same security properties as

TTLock [61]. To establish the security properties of SFLL-HD
0
, we

develop a formal approach which was missing in [61].

SAT attack resilience. SFLL-HD
0

resilience against SAT a�ack

is achieved by ensuring that the a�ack encounters its worst-case

scenario. In each iteration, a DIP eliminates exactly one incorrect

key, necessitating a number of iterations that is exponential in

the key-size. In the example shown in Fig. 4, the a�ack requires

7=2
3
-1 iterations in the worst-case. However, if the a�acker is

fortuitous he/she may hit the protected input cube and eliminate

all incorrect keys at once. In the same example, the protected

input pa�ern IN=6 helps the a�acker to eliminate all the incorrect

keys immediately. However, as an a�acker does not have any

information about the protected cube, the probability of such a

fortuitous hit is exponentially small in the number of key bits.

Theorem 3.1. SFLL-HD0 is k-secure against SAT a�ack.

Proof. First, we classify all the input cubes into two sets, the

set of protected cubes P and set of unprotected cubes P̂ . Now, as

SFLL-HD
0

only contains one protected input cube, P is a singleton

set. �us, |P | = 1 and |P̂ | = 2
k − 1.

Now, an a�acker can recover the secret key, and thus, the original

functionality of the design if she can �nd a protected input cube in

P . However, for a PPT a�acker making only a polynomial number

of queries q(k) to the oracle, the probability of �nding this cube is

|P |
2
k
+
|P |

2
k − 1

· · · |P |
2
k − q(k)

(2)

=
1

2
k
+

1

2
k − 1

· · · 1

2
k − q(k)

≈ q(k)
2
k

Note, without loss of generality, we consider the sampling as with-

out replacement as the SAT a�ack does not repeat any DIP. So,

from De�nition 2.2, SFLL-HD
0

is k-secure against SAT a�ack. �

Sensitization attack resilience.

Theorem 3.2. SFLL-HD0 is k-secure against a sensitization a�ack.

Proof. In SFLL-HD
0
, all the k bits of the key converge within

the comparator inside the restore unit to produce the restore signal.

�erefore, sensitizing any key bit through the restore signal to the

output requires controlling all the other key bits. All k bits are there-

fore pairwise-secure. SFLL-HD
0

is k-secure against sensitization

a�ack. �

Removal attack resilience. Since the restore signal is highly

skewed towards zero, it can be easily identi�ed by a signal probabil-

ity skew (SPS) a�ack. However, any removal a�ack would recover

only the FSC, without leaking any information about the original

design. As the FSC produces an erroneous response for the pro-

tected input cube, the design is resilient against removal a�ack.

Theorem 3.3. SFLL-HD0 is 2
n−k -resilient against removal a�ack.

Proof. Suppose the a�acker recovers a circuit cktr ec by iden-

tifying and removing the restoration logic. Now, cktr ec produces
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an incorrect output for the set of protected input cubes, denoted as

P . However, we know that each cube contains 2
n−k

input pa�erns.

�us, if Γ denotes the set of all input pa�erns contained in P ,

cktr ec (i) , F (i), ∀i ∈ Γ
|Γ | = |P | × 2

n−k
(3)

= 1 × 2
n−k

= 2
n−k

So, from De�nition 2.4, SFLL-HD
0

is 2
n−k

-resilient against a re-

moval a�ack. �

3.2 SFLL-HDh

In this section, we generalize for h; SFLL-HDh can protect all input

cubes that are of Hamming distance of h from the secret key. �e

number of protected input cubes is

(k
h
)
.

3.2.1 Construction of SFLL-HDh . With a HD of h, an input-size

of n, and key-size of k , SFLL-HD
h

inverts the FSC output Yf s for(k
h
)

input cubes, which contains 2
n−k ·

(k
h
)

pa�erns. �e restore

unit, which comprises of k XOR gates and an adder to compute

the Hamming distance, recti�es all these errors for the correct

key, while it introduces a di�erent but possibly overlapping set of

errors for any incorrect key. Fig. 6 depicts the architecture of the

proposed SFLL-HD
h

along with an example where n = k = 3 and

h = 1. As can be seen from the architecture, the implementation

overhead of the restore unit is independent of h, which is a hard-

coded (non-secret) constant that feeds the comparator inside the

restore unit.

3.2.2 Security analysis of SFLL-HDh . We assume n inputs and k
key bits, k ≤ n. Proofs of theorems are provided in Appendix B.1.

SAT attack resilience.

Theorem 3.4. SFLL-HDh is (k − dlog
2

(k
h
)
e)-secure against SAT

a�ack.

Sensitization attack resilience.

Theorem 3.5. SFLL-HDh is k-secure against sensitization a�ack.

Functionality 
stripped circuit IN 

	  
	   	   	  	  ?	  

HD(IN,K)	  =	  h	  
	  K 

Yfs 

restore 

Y 

Restore unit 
	  

Tamper-‐proof	  	  
Memory	  

	  

Yfs IN k0 k1 k2 k3 k4 k5 k6 k7 
✔ 0  ✖  ✖  ✖  ✔  ✖ ✔ ✔ ✔ 
✔ 1 ✔  ✔  ✔  ✖ ✔  ✖ ✔ ✔ 
 ✖ 2 ✔  ✖  ✖  ✔  ✖  ✖ ✔  ✖ 
✔ 3 ✔  ✖  ✖  ✔ ✔ ✔ ✔  ✖ 
 ✖ 4 ✔  ✖  ✖  ✖  ✖ ✔ ✔  ✖ 
✔ 5 ✔  ✖  ✔  ✔  ✖ ✔ ✔  ✖ 
✔ 6 ✔  ✔  ✖  ✔  ✖ ✔ ✔  ✖ 
✖ 7  ✖  ✖  ✖  ✔  ✖ ✔ ✔  ✖ 

Figure 6: SFLL-HDh architecture for n=k=3 and h=1. Yfs in-
cludes

(k
h
)
errors, denoted by X’s. Restore unit recti�es all

errors for the correct key k6. For the incorrect keys, restore
unit introduces

(k
h
)
additional errors (at

(k
h
)
input patterns),

which may possibly coincide and cancel errors in Yfs.

Removal attack resilience.

Theorem 3.6. SFLL-HDh is 2
n−k ·

(k
h
)
-resilient against removal

a�ack.

As these theorems show, h can be adjusted to trade resilience

to one a�ack for resilience to another. Values of h closer to either

0 or k deliver higher resilience to SAT and other key-pruning at-

tacks, whereas resilience to the removal a�ack can be maximized

by se�ing h=k/2.

4 SFLL-FLEX
In contrast to SFLL-HD

h
, SFLL-�ex

c×k
allows the user to specify,

and thus, protect the IP-critical input pa�erns; the restore unit

stores the protected input pa�erns in a compact form, i.e., in the

form of c input cubes, each with k speci�ed bits. In this context, the

input cubes can be conceived as the secret keys to be loaded onto

the chip for the restore unit to recover the stripped functionality.

We will use the terms “protected input cubes” and “secret keys”

interchangeably for SFLL-�ex
c×k

. �e SFLL-�ex
c×k

framework

is shown in Fig. 7; in this section, we elaborate on the individual

processes in this framework.

In a design with multiple outputs, not every output needs pro-

tection; only the IP-critical part of the design has to be protected to

control the cost of logic locking, which is at the discretion of the

designer. SFLL-�ex
c×k

enables the outputs to be selectively �ipped

(and restored) for the protected input cubes; a �ip vector associated

with each protected input cube holds information regarding which

outputs are to be �ipped for the protected input cube.

Example. Fig. 8 presents an overview of SFLL-�ex
c×k

. �e FSC

di�ers from the original circuit for two protected input cubes x01x1

and x10x1, collectively representing 8 input pa�erns. �e restore

unit stores the two input cubes and the corresponding �ip vectors.

In this example, only three out of �ve outputs are protected.

4.1 Architecture
�e restore unit of SFLL-�ex

c×k
consists of a tamper-proof [50]

look-up table (LUT) and XOR gates. �e LUT stores c k-bit input

cubes along with the corresponding f -bit �ip vectors (for protecting

f out of m outputs) that dictate the functionality stripped from

the circuit.
2

When the input matches an entry in the LUT, the

associated �ip vector is retrieved from the table and XORed with

the outputs to restore the original functionality.

Cost. �e cost of SFLL-�ex
c×k

is proportional to the size of

the LUT, in addition to f XOR gates inserted at the outputs of

the FSC. �e cost of the LUT is denoted as c × (k + f ), where f
is a designer-de�ned parameter. Cost minimization requires the

minimization of c and k . Additionally, functionality stripping can

be used as an opportunity to reduce implementation cost as will be

discussed in Section 4.3. �us, the net cost of SFLL-�ex
c×k

is this

saving subtracted from the LUT cost.

2
One extreme case of SFLL-�ex

c×k
is to strip the entire functionality of the design;

such an approach would incur a prohibitive overhead, as the entire truth table, whose

size is exponential in the number of inputs, needs to be stored on-chip.
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Figure 7: Proposed SFLL-�exc×k logic locking. �e user-speci�ed input cubes are compressed to reduce the on-chip storage
requirements. Security-aware logic synthesis is then used to strip functionality from the circuit based on compressed cubes.
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Figure 8: SFLL-�ex2×3 for a circuit with �ve inputs and �ve
outputs. k=3 in the example as only three bits of the pro-
tected input cubes are speci�ed by the designer. f=3 as three
outputs are protected. �e circuit is re-synthesized to strip
the functionality from the original design based on the in-
put cubes; these cubes are used along with the �ip vectors to
restore the original functionality.

4.2 Challenges
As already pointed out, the applicability of SFLL-�ex depends on

addressing the following research problems:

• How can a minimal set of protected input cubes be produced

from those provided by the designer to reduce the storage cost

while ensuring the desired security level?

• Can the functionality strip be used as an opportunity to reduce

the implementation cost?

We address these problems in the following section.

4.3 Optimization framework for SFLL-�exc×k
Given a desired security level s and a set of input cubes (or input

pa�erns) Cinit to be protected, both provided by the designer for a

netlist N , the proposed stripped-functionality logic locking should

be implemented at minimal cost: we should minimize Costsf + c ×
k , where Costsf is the implementation cost of the functionality-

stripped netlist Nsf , and c × k is the implementation cost of the

LUT. �is is an optimization problem that can be formulated as:

minimize Costsf + c × k such that k − loд2c ≥ s

where k − loд2c is the security level a�ained against SAT a�acks,

as proved later in this section.

We break this optimization problem down to two smaller pro-

cesses. In the �rst process, we compress the input cubes (or input

pa�erns) to minimize the LUT cost = c × k , producing the resulting

keys in the process, while honoring the security constraint. In the

second process, we re-synthesize the logic of the protected outputs

based on the keys obtained from the �rst process with the goal of

minimizing Costsf . Such a sequential approach where the output

of the �rst process is fed into the second process may fail to deliver

the overall optimum solution, which rather necessitates a holistic

and intertwined approach. In this work, however, we choose to

follow a computationally-tractable approach for simplicity at the

expense of sub-optimality.

4.3.1 Process 1: Cube compression. In this process, our objective

is to reduce the LUT cost c × k , the major component of overall

implementation cost, thus, reducing our optimization objective to:

minimize c × k such that k − loд2c ≥ s

�ere are a couple of strategies that can be followed to solve this

optimization problem. In one strategy, we can create the keys that

will �ip at least one output for every pa�ern in every cube in Cinit .

�e problem then is �nding minimum cubes that collectively cover
each cube in Cinit ; this is the classical problem of minimum-cube

cover in 2-level logic optimization [30], and any synthesis tool can

be utilized to solve this problem.

In another strategy, we can create the keys that will �ip at least

one output for at least one input pa�ern in every cube in Cinit . In

this case, the problem is to �nd minimum cubes that, this time,

collectively intersect each cube in Cinit . To solve this problem,

we provide a heuristic approach, as described in Algorithm 1. �e

�rst step of the algorithm is cube compression wherein compatible
cubes are merged to reduce c . To achieve the required security level

s = k − log
2
c , we may not need to consider all the k bits in a cube,

reducing k . �e second step of the algorithm is to eliminate (or

turn into x’s) the bits that are con�icting among the cubes, while

adhering to security level s . �is second step may further reduce c ,

as certain cubes become compatible for merging.

Example. Consider c17 ISCAS benchmark circuit shown in

Fig. 9, a set of four 5-bit initial cubes, and security level s = 3, as

speci�ed by the designer. �e two initial cubes 0x100 and x1x00

can be merged into one cube 01100, reducing c to three. Next, we

can reduce k to four by eliminating the rightmost bit in all the cubes.

Elimination of bits in con�ict also leads to further reduction in c to

two, as more cubes can now be merged; the achieved security level

s = 3. �us, compared to initial 4 × 5 = 20 bits, only 2 × 4 = 8 bits

need to be stored on-chip.

4.3.2 Process 2: Security-aware synthesis. If the designer explic-

itly speci�es which output is �ipped for each cube, then the �ip

vectors are already determined. Such a rigid scheme does not o�er

any opportunity for optimization; the selected output functions

are �ipped for the corresponding input pa�erns included in the

protected input cubes. Any logic synthesis tool can be used for this

purpose. On the other hand, if the designer chooses not to specify
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Figure 9: Application of SFLL-�ex to c17 ISCAS circuit. a) Original circuit. b) Cube compression. c) FSC. d) Locked circuit.

Algorithm 1: Cube compression algorithm

Input : Initial cubes Cinit , Security level s
Output :Final cubes C

1 C ← merge compatible cubes(Cinit )

2 snew ← k − log
2
c

3 while snew ≥ s do
4 C ← eliminate con�icting bit(C)

5 C ← merge compatible cubes(C)

6 snew ← update security level(c,k)

7 end

Algorithm 2: Security-aware synthesis algorithm

Input :Original netlist N , Final cubes C
Output :Functionality-stripped netlist Nsf , Flip vector V

1 V ← init �ip vector(N )
2 Nsf ←rand soln(N ,C)
3 costsf ← cost(Nsf )
4 T = 1.0,Tmin = 0.00001,α = 0.9

5 while T > Tmin do
6 for i = 1 to 200 do
7 Nnew ←neighbor(Nsf ,C)
8 costnew ← cost(Nnew )

9 if Rand(0, 1) < exp( costnew−costsfT ) then
10 Nsf ← Nnew

11 costsf ← costnew
12 V ← update �ip vector(Nsf ,po)
13 end
14 end
15 T = T × α
16 end

the �ip vectors, a security-aware synthesis process can leverage

this �exibility to minimize implementation cost of the functionality-

stripped design Nsf without compromising security. �e process

also produces the �ip vectors, denoted by V , as described in Algo-

rithm 2.

Algorithm 2 starts with the original netlist N and a set of cubes

C . Initially, a random solution Nsf with the associated cost costsf
is generated by initializing the �ip vector V with a random value.

From this random solution, simulated annealing starts optimization

by selecting a neighboring solution at each iteration. A new solution

Nnew is generated by changing a random bit in the �ip vector V ,

which leads to inclusion/exclusion of the corresponding cube for

a particular output. �e solution Nnew is accepted if it yields cost

savings, i.e. costnew < costsf . An inferior solution may be accepted

with a probability of exp( costopt−costnewT ). �is is a key feature of

simulated annealing for exploring a larger search space without

ge�ing stuck at a local optimum.

Example. Let us consider the application of security-aware

synthesis to the c17 circuit in Fig. 9. Algorithm 2 operates on the

original c17 netlist and the �nal cubes produced by Algorithm 1,

and produces the FSC; AND gate G3 is removed from the logic cone

O1. �e �ip vector 10 will restore the stripped functionality for

logic cone O1 by �ipping its output for the cube 0110x.

4.4 Security analysis for SFLL-�exc×k

In this section, we discuss the resilience of SFLL-�ex
c×k

against the

state-of-the-art a�acks. �e proofs of theorems below are provided

in Appendix B.2.

SAT attack resilience. An a�acker, following a SAT-based or a

random guess a�ack model, must identify all input pa�erns of the

protected input cubes in SFLL-�ex
c×k

to be able to recover the

correct functionality of the original design from the on-chip imple-

mentation; in contrast to SFLL-HD
h

, the protected input cubes can

be arbitrary in SFLL-�ex
c×k

, and one cube does not infer another.

�is requires the retrieval of the content of the entire LUT that

represents the stripped functionality. Nevertheless, we assess the

security strength of SFLL conservatively; a�ack success is de�ned

by the a�acker’s ability to retrieve any input pa�ern that belongs to

one of the protected input cubes. �e following theorem establishes

the resilience of SFLL-�ex
c×k

against SAT a�ack.

Theorem 4.1. SFLL-�exc×k is (k − dlog
2
ce)-secure against SAT

a�ack.

Sensitization attack resilience.

Theorem 4.2. SFLL-�exc×k is k-secure against sensitization at-
tack.

Removal attack resilience.

Theorem 4.3. SFLL-�exc×k is c · 2n−k -resilient against removal
a�ack.

As these theorems show, the number and the size of the protected

input cubes, denoted by c and k respectively, dictate the trade-o�

between resilience to oracle-guided and removal a�acks.
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Figure 10: Results for SFLL-HDh for h={0,1,2}, and k={11,12,13,14}; the number of DIPs required for the SAT attack [44], and
the corresponding execution time in seconds.

5 SIMULATION RESULTS
5.1 Experimental setup
In this section, we present the experimental results to validate the

security expectations and demonstrate the e�ectiveness of the pro-

posed SFLL techniques. �e experiments are executed on a 28-core

Intel Xeon processors running at 2GHz with 128 GB of RAM. We

lock the combinational part of the sequential benchmark circuits

from the ISCAS’89 [7] and ITC’99 [11] suites in our experiments.

Table 3 shows the statistics for the circuits; the largest circuit b18

has >100K gates. �e area, power, and delay (APD) overhead for

SFLL-HD and SFLL-�ex versions are obtained using Synopsys De-

sign Compiler along with Global Foundries 65nm LPe library. We

present the results of security analysis wherein di�erent variants

of the SAT a�ack are launched on various versions of SFLL-HD

and SFLL-�ex. In particular, we launch the SAT a�ack [44] and the

AppSAT [40] against the proposed techniques. Each a�ack experi-

ment is repeated ten times to improve the statistical signi�cance;

average results of the ten runs are reported.

5.2 SFLL-HDh

5.2.1 Security analysis. �e resilience of SFLL-HD
h

is dictated

by the key-size k and h, which together dictate the number of

protected input cubes

(k
h
)
. In SFLL-HD experiments, we protect

the largest logic cone in each circuit. �e number of DIPs re-

quired for the SAT a�ack to succeed on SFLL-HD
h

circuits, and

Table 3: Statistics for the largest ITC’99 [11] and IS-
CAS’89 [7] benchmarks. LLC denotes the largest logic cone.

Benchmark Functionality Inputs Outputs Gate count LLC inputs

Sm
al
l

s35932 N/A 1763 2048 12,204 195

s38417 N/A 1664 1742 8709 99

s38584 N/A 1464 1731 11448 147

b14 Viper processor 277 299 9,767 218

b15 80386 processor 485 519 8,367 306

La
rg
e

b17 3× b15 1452 1512 30,777 308

b18 2× b14 + 2× b17 3357 3343 111,241 271

b20 2× modi�ed b14 522 512 19,682 282

b21 2× b14 522 512 20,027 282

b22 3× modi�ed b14 767 757 29,162 283

the corresponding execution time are presented in Fig. 10 for

k={11, 12, 13, 14} and h={0, 1, 2}. Although the actual security lev-

els required in a practical se�ing are much larger (e.g., 64-bit or

128-bit), we cannot empirically assess the security of SFLL for such

high values due to computational limitations. For the sake of un-

derstanding the trends, we experiment with these small key-sizes.

Impact of key size k. Fig. 10 demonstrates that the number of

DIPs required for the SAT a�ack to succeed grows exponentially

in k , con�rming our theoretical expectation. For instance, the

expected number of DIPs required to break SFLL-HD
0

is 2
k−1

. �e

same trend holds for SFLL-HD
1

and SFLL-HD
2

as well, except for

a few cases, where an a�acker may be fortuitous and the a�ack

terminates earlier, reducing the average number of DIPs.

�e execution time of the SAT a�ack is proportional to the num-

ber of DIPs, although there is a slight variation of 3× to 4× across

the benchmark circuits; the execution time grows exponentially in

k .

Impact of Hamming distance h. SFLL-HD
h

is (k−dlog
2

(k
h
)
e)-

secure. �us, an increase in h leads to a signi�cant change in the

security level and the expected number of DIPs required for the

SAT a�ack. For example, the average number of DIPs for the circuit

s38584 for h={0, 1, 2} and k=14 is 15K, 10K, and 5K, respectively, as

shown in Fig. 10.

5.2.2 APD overhead. �e APD overhead is obtained using Syn-

opsys DC Compiler using Global Foundries 65nm LPe library [43]

and is shown in Fig. 11 for k=128. �e overhead for SFLL-HD can

be a�ributed to two sources: the restore unit and the functionality-

stripped circuit. SFLL-HD
h

restore unit comprises a single k-bit

comparator along with an adder unit, where the overhead is antici-

pated to increase linearly in k but to remain constant for h, which

is a hard-coded constant (as it need not be a secret). �e 128-bit

comparator and adder blocks incur a signi�cant area, power, and

delay overhead on small-sized circuits; for the smallest �ve bench-

marks (˜10K gates), area, power, and delay overhead are 28%, 50%,

-2%, respectively. For larger-sized circuits, however, the overhead

of the restore unit is amortized; for the largest �ve benchmarks, the
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average area, power and delay overhead are only 10%, 6%, and -5%,

respectively, boding well for even larger-sized industrial circuits.

5.2.3 Scalability. SFLL-HD
h

algorithm operates on the RT-level

circuit. Fig. 12 shows that the execution time of the SFLL-HD

algorithm is only a few minutes, irrespective of h. For b18 circuit

with more than 100K gates, the execution time is only about 15

minutes, con�rming the scalability of the proposed SFLL-HD
h

.

5.3 SFLL-�exc×k
5.3.1 Security analysis. To validate the security of SFLL-�ex,

we launch the SAT a�ack [44] and AppSAT [40] a�ack on circuits

locked using SFLL-�ex for c = {1, 2, 3} and k = {11, 12, 13, 14}.
�e results shown in Fig. 13 demonstrate that the number of DIPs

for SFLL-�ex is exponential in k . With increasing c , we observe

a logarithmic decrease in the number of DIPs, in line with our

theoretical expectation. �e trends for the execution time is similar

to that for DIPs, except that the increase in execution time is more

prominent. While the DIPs double for each increment in k , the

execution time may increase by 3-5×. �e AppSAT [40] a�ack on

SFLL-�ex again fails in 100% of the cases.

5.3.2 Cube compression. �e savings for the cube compression

technique are presented in Table 4. In our experiments, we gener-

ate test cubes for randomly selected cinit stuck-at faults by using

Atalanta test pa�ern generation tool [25], and treat these test cubes

Table 4: Cube compression ratio R for SFLL-�exc×k.

Bench s=64 s=128

c = 32 c = 64 c = 32 c = 64

s35932 867.9 1735.9 437.3 874.7

s38417 403.4 806.8 136.5 409.6

s38584 354.9 1441.5 180.2 360.4

b14 26.5 52.9 6.7 14.9

b15 238.8 115.8 120.3 79.6

b17 352.0 469.3 59.1 70.4

b18 813.8 3305.4 832.7 234.3

b20 126.5 61.4 31.9 42.5

b21 49.9 99.7 31.9 36.4

b22 91.6 183.2 62.9 74.9

Average 332.5 827.2 190.0 219.8

as the designer-provided input cubes Cinit . �e compression ratio

R is computed as the ratio of the initial number of key bits to be

stored cinit × kinit to that of compressed key bits cf inal × kf inal ;
kinit equals the number of inputs n. �e results are presented for

two di�erent security levels s = 64 and 128 and for two di�erent

numbers of initial cubes c = 32 and 64. On average, a compression

level of 400× is achieved, while still maintaining the desired secu-

rity level. �ese compression levels directly translate to a reduction

in implementation cost for the restore unit. It can be noted that a

lower security level (s = 64) enables a higher compression level.

5.3.3 Security-aware synthesis. We report the area, power, and

delay (APD) overhead separately for 1) the “optimal-cost” FSC (with-

out the restore unit) and 2) the overall circuit (with the restore unit

comprising the LUT and the surrounding combinational logic). �e

APD overhead is shown in Fig. 14a and Fig. 14b for target security

levels s = 64 bits and 128, respectively. �e simulated-annealing

based optimization is accomplished using area as the primary cost

metric. �e ABC [6] synthesis tool is used to convert a design to

And-Invert-Graph and the gate count is taken as the cost metric. It

can be inferred that security-aware synthesis incurs only a minimal

overall overhead of 5%, 4% and 2% for area, power, and delay for a

security level s = 64, and 11%, 8% and -1% for a security level s =
128. In these �gures, negative values denote a reduction in APD

when compared to the original circuit due to the functionality-strip

operation; e.g., this can be seen for the circuit s35932 in its area

footprint. However, due to the overhead of the restore unit compris-

ing mostly sequential elements, the overall overhead is positive. In

majority of the cases, the delay overhead is almost negligible (˜0%).

�is is due to the fact that adding the restore unit does not actually

a�ect the delay of the critical path, thus, incurring no signi�cant

performance penalty.

�e combined execution time for cube compression and security-

aware synthesis is presented in Fig. 15. �e execution time for cube

compression is in the order of a few seconds. �e execution time for

security-aware synthesis is directly determined by the simulated

annealing parameters (the temperature T and the gradient α ) and

the size (number of gates) of a circuit. As can be seen from the �gure,

even for large circuits such as b18 with >100K gates, the synthesis

is completed in about two hours. Our empirical results indicate

that the execution time remains independent of the security level s
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and the number of protected cubes k , con�rming the scalability of

the proposed SFLL-�ex
c×k

.

5.4 Double-DIP/AppSAT attack results
While the SAT a�ack terminates only upon retrieving the correct

key, the AppSAT [40] and Double-DIP [41] a�acks may (counter-
intuitively) terminate earlier returning an incorrect key value, which

results in an approximate netlist [40]. �e termination criteria

for AppsAT is dictated by an error rate speci�ed by the a�acker,

whereas, Double-DIP terminates when it can no longer �nd DIPs

that eliminate at least two incorrect keys.

Double-DIP. Each of the 2-DIPs employed by the Double-DIP

a�ack can eliminate at least two incorrect keys. Since no such 2-

DIPs exist for SFLL-HD
0

and SFLL-�ex
1×k

, the a�ack will terminate

immediately, recovering an approximate netlist. For larger h and c
values, each input pa�ern is a 2-DIP, leading to scalability issues

for the Double-DIP a�ack. As illustrated in Fig. 16, the a�ack then

behaves similarly to the SAT a�ack, except that the execution time

of the two a�acks may vary depending on the DIPs employed by

the two a�acks.

AppSAT. In our �rst set of AppSAT experiments, we used the

default AppSAT parameters as reported in [40], i.e., 50 random

queries to the oracle were employed at every 12
th

iteration of

the a�ack. We observed that estimating the error rate using such

a small number of pa�erns can be misleading and result in pre-

mature termination of the AppSAT a�ack, even for circuit with
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Table 5: AppSAT [40] attack results (with default AppSAT setting) against SFLL-HDh and SFLL-�exc×k. Only 50 randomqueries
are applied as per the default AppSAT settings [40]. �e attack fails to retrieve the correct key, and thus, we report it as failure.

Benchmark s35932 s38584 s38417 b14 b15 b17 b18 b20 b21 b22

Success/failure Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail
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Figure 16: Execution time of the SAT, AppSAT, and Double-
DIP attack on (k=) 32-bit s38417 circuit plotted as a function
of h. 1000 randomqueries are applied a�er every 12AppSAT
iterations. In the shaded region, all the three attacks time
out. Double-DIP is not applicable for h=0.

high corruptibility. Table 5 reports that the “default” AppSAT a�ack

terminates erroneously for all of the SFLL circuits, failing to retrieve

the correct netlist.

For more realistic corruptibility estimates, we repeated the ex-

periments on s38417 SFLL-HD circuit with 32 key bits. 1000 random

queries were applied a�er every 12 iterations. Fig. 16 shows that

for h ≤ 3, the a�ack terminated quickly, recovering an approximate

netlist. However, for the same h values, the SAT a�ack failed to

complete within the time limit of 48 hours. Moreover, for the larger

values of h, representing higher corruptibility, AppSAT behaves ex-

actly like the SAT a�ack, failing to retrieve an approximate netlist.

For example, forh = 4 (implying security level of 32−dlog
2

(
32

4

)
e=15

bits), both AppSAT and the SAT a�ack fail to succeed within the

time limit of 48 hours. Note that due to the inclusion of the random

queries (and additional clauses in the SAT formula), the execution

time of AppSAT may be occasionally higher than that of the SAT

a�ack. See Section 7.3 for further discussion.

5.5 Trade-o�: resilience to di�erent attacks
Fig. 17 illustrates the wide spectrum of solutions o�ered by the

proposed SFLL-HD and SFLL-�ex techniques; it shows the trade-o�

between the removal a�ack resilience (in terms of the number of

protected input pa�erns) and the security level s against oracle-

guide (e.g., SAT) a�acks for the largest �ve benchmark circuits. We

observe that for SFLL-HD
h

, the security-level s a�ained against

SAT a�acks varies polynomially with h (h ∈ [0,k]); the larger the

number of protected pa�erns, the lower the security level. �e

security level depends only on k and h, irrespective of the circuit.

For the maximum number of protected pa�erns, i.e., h=n/2, the

security level s is minimal. �e security level is at its maximum at

h = 0 or h = k .

For SFLL-�ex
c×k

, however, s decreases only logarithmically with

c (s = k − dlog
2
ce). As an example, for c = 128 cubes, the security

level s a�ained is 121, irrespective of the circuit. �e number of

protected pa�erns increases linearly with c . For example, for the
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Figure 17: SAT attack resilience vs. removal attack re-
silience; k=128. (a) SFLL-HDh and (b) SFLL-�exc×k.

circuit b20, the number of protected pa�erns increases from 2
384

for c=1 to 2
391

for c=128.

Both variants of SFLL enable the protection of a large number of

input pa�erns. While SFLL-HD allows the designer to choose only

the secret key value and the Hamming distance h, SFLL-�ex allows

him/her to specify the complete set of input cubes to be protected.

6 CASE STUDY: SILICON IMPLEMENTATION
OF SFLL-HD0 ON ARM CORTEX-M0
PROCESSOR

With the objective of deploying SFLL for IoT applications, we

present the details of silicon implementation of SFLL on an in-house
designed microcontroller using ARM Cortex-M0 microprocessor [2].

For accurate comparisons, we fabricated both the baseline and the

SFLL-locked microcontroller. Cortex-M0 belongs to the family of

Cortex-M 32-bit RISC processor series from ARM, suitable for a

variety of low-cost microcontrollers. �e microcontroller includes

ARM AHB-Lite as its BUS, UART interface, and 64 KB of SRAM.

6.1 Logic locking on ARM Cortex-M0
�e baseline ARM Cortex-M0 is locked using 128-bit SFLL-HD

0

along with 128-bit FLL [36]. FLL is a technique to achieve high

output corruptibility, while SFLL ensures security against any SAT-

based a�ack. Due to tight scheduling constraints, we were able to

tape-out only one version with SFLL-HD
0
. In our implementation,

we chose to lock the program counter (PC) to safeguard against

unauthorized execution. �is ensures that an a�acker with an

incorrect key would end up with an incorrect execution due to the

corrupted PC. Ideally, the secret key is stored in a tamper-proof

memory, such as one-time programmable fuse ROM. However, in

our implementation, the 256-bit key for the locked processor is

stored in a write-only con�guration register. �e locked processor
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(a)
(b)

Figure 18: Top-view of the fabricated silicon chips for ARM
Cortex-M0. (a) Baseline version and (b) Locked version.

Figure 19: Test set-up for the baseline as well as the locked
processor. �e program is loaded onto the processor via
UART interface.

is activated by loading the secret key onto the con�guration register

through UART.

Chip design/fabrication �ow. We used Synopsys VCS for

simulation, Synopsys Design Compiler for RTL synthesis, Synopsis

IC Compiler for back-end implementation, Synopsys Prime Time for

static timing analysis, Synopsys Formality for logical equivalence

checking, PrimeRail for IR drop analysis, and Cadence PVS for

physical veri�cation. �e baseline and the locked versions with the

maximum frequency of 100 MHz have been fabricated using Global

Foundries 65nm LPe process. A microscopic view of the bare dies

for the baseline and the locked versions are shown in Fig. 18a and

Fig. 18b, respectively. Fig. 19 illustrates the test setup for the chip.

6.2 Implementation overhead
�e APD overhead along with other parameters for the baseline

and locked processors are shown in Table 6. �e proposed 128-bit

FLL+128-bit SFLL-HD
0

incurs a minimal overhead of 2.16%, 5.62%,

and 5.38% for area, power and delay, respectively, when compared

to the baseline design.

A brief look at other implementation parameters, such as RAM

size, combinational/sequential area or wirelength demonstrates

that the two versions of the processor are quite similar. �e most

signi�cant di�erence is in the combinational area, which is about

15.2%. �is increase in area for the locked processor can be at-

tributed to the key gates introduced by FLL, and the restore unit

introduced by SFLL. �e additional routing resources required for

the additional logic translate into a wirelength overhead of 7.6%

Table 6: Baseline ARM Cortex-M0 vs. locked ARM Cortex-
M0 (128-bit FLL + 128-bit SFLL-HD0).

Baseline Locked Overhead (%)

Gate count 46800 51397 9.82

RAM area (µm2
) 349240 349240 0

Combinational area (µm2
) 61404 70765 15.24

Sequential area (µm2
) 36876 37169 0.79

IO pads (µm2
) 150000 150000 0

Wirelength (µm) 985233 1060502 7.64

Overall area (µm2) 597521 607175 1.62
Power (µW ) 6.66 7.03 5.62
Delay (ns) 8.00 8.43 5.38

(a)

(b)

Figure 20: Execution of the SFLL-locked ARM Cortex-M0
with the (a) correct key and (b) incorrect key. �e content
of the program counter EXP:CM0 PC is highlighted to show
the di�erence in execution.

6.3 Security analysis
�e locked processor protects against all oracle-guided a�acks. �e

sensitization a�ack [34] terminates in a few minutes but without

returning the correct key. When the SAT a�ack [44] is launched

on the locked processor, the a�ack does not terminate within the

speci�ed time limit of 48 hours. Since we implement compound

logic locking (SFLL+FLL) on the processor, the AppSAT a�ack [40]

would be able to reduce the compound logic locking problem to

SFLL alone; indeed the AppSAT a�ack on the locked processor

terminates a�er 46 hours, but fails to identify the SFLL key.

6.4 Operation of the locked processor
We use the simple example code below that performs one addition

operation to explain the impact of logic locking (i.e., hardware-

level protection) on processor operations (i.e., so�ware execution).

int a,b;
GPCFG->SPARE0=0x0000000F;
GPCFG->SPARE1=0x00000001;
a=GPCFG->SPARE0;
b=GPCFG->SPARE1;
GPCFG->GPTACFG=a+b;

�is C code is compiled for the ARM Cortex-M0 using ARM

IAR Embedded Workbench and the corresponding binary images

are loaded onto the SRAM via the UART interface. �e activated

processor (that has the secret key loaded on the chip) executes
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the code correctly as shown in Fig. 20a; the addition of 0x01 and

0x0F produces 0x10 as expected. On the other hand, the locked

processor (with an incorrect key loaded) cannot execute the code

correctly, as shown in Fig. 20b, as the program counter is corrupted.

An exception handler is then called, rese�ing the PC to the default

value of 0xFFF7 FFFE, causing the execution to go into an in�nite

loop.

7 DISCUSSION
7.1 Comparative security analysis
Table 7 presents a comparison of SFLL-HD and SFLL-�ex with other

logic locking techniques. Existing SAT a�ack resilient techniques

such as SARLock and Anti-SAT are vulnerable to removal a�acks.

�e proposed SFLL thwarts all known a�acks on logic locking.

Further, it allows a designer to cost-e�ectively explore the trade-o�

between resilience to SAT and removal a�acks.

7.2 Choosing between SFLL-HD and SFLL-�ex
While SFLL-HD is suitable for generic applications where the main

requirement is to protect a large number of input pa�erns with min-

imal overhead, SFLL-�ex allows a designer to protect speci�c input

cubes. �e capability to specify IP-critical cubes to protect, even

a small number of them, may be very bene�cial for applications

such as microprocessors with IP-critical controllers, digital signal

processing applications with IP-critical coe�cients, etc. �e �exi-

bility required in SFLL-�ex necessitates a slightly more expensive

restore unit mainly due to the LUT, compared to SFLL-HD, which

has a generic, simple, and scalable restore unit. In either case, the

security-aware synthesis framework enables the designer to a�ain

the desired security level.

7.3 Resilience against the derivative attacks
In this section, we discuss the security of SFLL against the a�acks

that have been derived from the SAT a�ack, namely AppSAT [40],

Double-DIP [41], and Bypass [53]. �ese a�acks mainly target

compound (multi-layered) logic locking techniques. AppSAT and

Double-DIP are approximate a�acks as they only reduce a com-

pound logic locking technique (e.g. SARLock+SLL) to a SAT a�ack

resilient technique (e.g. SARLock). �e Bypass a�ack, however, is

an exact a�ack; the a�ack, if successful, returns a netlist function-

ally equivalent to the oracle (functional IC).

�ese a�acks rely on the classi�cation of compound logic locking

key bits into two classes: key bits for RLL/SLL etc. that introduce

high corruptibility and key bits for SARLock/Anti-SAT etc. that

induce low corruptibility at the outputs. �ese a�acks can quickly

determine the correct values for the high corruptibility key bits. �e

AppSAT and Double-DIP a�acks then assign a random value for the

low corruptibility key bits, whereas, the Bypass a�ack introduces

additional logic to �x the occasional corruption at the outputs.

�ese a�acks will not be e�ective against SFLL as all the key bits in

SFLL incur uniform corruptibility and it is not feasible to partition

the key search space into low/high corruptibility regions.

AppSAT. �ere are two main di�erences between AppSAT and

the SAT a�ack. First, AppSAT is constructed by augmenting the

SAT a�ack with random queries to the oracle at regular intervals.

As reported in [40], AppSAT involves 50 random queries every 12

iterations of the a�ack. Second, AppSAT can terminate much earlier

than the SAT a�ack, i.e., when the error rate (or Hamming distance

at the outputs) is below a certain threshold (e.g.,
1

2
k ). While the

AppSAT a�ack can quickly recover an approximate netlist for low-

corruptibility SFLL circuits (with low h or c ), it behaves similarly to

the SAT a�ack for high-corruptibility SFLL circuits since the early

termination condition is not satis�ed. �us, SFLL resilience against

AppSAT is similar to that against the SAT a�ack.

�e 50 queries as per the default AppSAT se�ings are su�cient

to separate the key bits into two classes in case of compound lock-

ing techniques. However, no such classes of key bits exist in SFLL

where the corruptibility is uniform for all the key values. As re-

ported in Section 5.2.1, when the a�ack is launched on SFLL circuits

with varying corruptibility values (represented using h), the a�ack

terminated erroneously even for high corruptibility circuits. �e

error is be�er estimated with 1000 random queries. �e a�ack then

quickly extracts the approximate netlist for the smaller values of h.

For the larger h values, the a�ack performance is similar to that of

the SAT a�ack.

Double-DIP. Compared to the SAT a�ack, the Double-DIP at-

tack uses a larger miter circuit comprising four copies of the locked

netlist [41]. �e 2-DIPs computed by the a�ack eliminate at least

two incorrect keys per DIP. �e a�ack terminates when no more

2-DIPs can be found, implying that only DIPs that can eliminate

at most one incorrect key remain in the search space. �e a�ack

returns an approximate netlist. While the a�ack can break com-

pound logic locking techniques, it is not scalable, especially if the

locked circuit has multiple correct keys.

Except for SFLL-HD
0

or SFLL-Flex
1×k

(whrere there are no 2-

DIPs), the Double-DIP a�ack, when launched on SFLL circuits, will

run into scalability issues as it will compute an exponential number

of DIPs before it terminates. Rarely, when the a�ack is fortuitous

and selects one of the protected pa�erns as a DIP (the protected

pa�ern may be a 2-DIP), it can eliminate most of the incorrect keys

in a single iteration of the a�ack. In such cases, the a�ack returns

returns the exact netlist, similar to the basic SAT a�ack, but this is

highly unlikely for large enough key sizes.

Bypass. �e Bypass a�ack selects two random key values as

constraints for the two locked netlists in the miter circuit [53]. �e

a�ack then computes all the DIPs that result in di�ering outputs for

the two key values. For the traditional low corruptibility locking

techniques such as SARLock, only a few DIPs will be extracted. �e

a�acker then determines the correct key values for those DIPs from

the output of functional IC. One of the two key values is designated

as the secret key and an additional bypass circuit is added around

the locked netlist to �x the output for the selected DIPs.

In SFLL, a protected input pa�ern produces the same incorrect

output for most of the incorrect key values. Occasionally, the

output may be correctly restored even for incorrect key values, as

illustrated earlier in Figure 4. When applied to SFLL, the Bypass

a�ack fails to compute the complete set of DIPs that lead to incorrect

outputs for the two key values. Most of the DIPs yield exactly the

same incorrect output for both incorrect keys, and as such, cannot

be extracted using the miter construction employed by the Bypass

a�ack. �e bypass circuitry, when constructed using an incomplete

set of DIPs, will be erroneous.
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Table 7: Comparative security analysis of logic locking techniques against existing attacks. SFLL is secure against all attacks.
Various versions of SFLL o�er a trade-o� between SAT attack resilience and removal attack resilience.

Attack/Defense Anti-SAT [52] SARLock [55] TTLock [61] SFLL-HD
h

SFLL-�ex
c×k

SAT k -secure k -secure k -secure k − dlog
2

(k
h
)
e-secure (k − dlog

2
c e)-secure

Sensitization k -secure k -secure k -secure k -secure k -secure

Removal 0-resilient 0-resilient 2
n−k

-resilient

(k
h
)
· 2n−k -resilient c · 2n−k -resilient

7.4 Limitations and future work
While SFLL o�ers resilience against all known and anticipated

a�acks in addition to o�ering trade-o�s between a�ack resilience,

it might be occasionally broken if the a�acker is fortuitous enough

to �nd one of the protected pa�erns. Currently, a linear increase in

the number of protected pa�erns leads to a logarithmic decrease

in SAT a�ack resilience. As part of our future work, we will re�ne

SFLL algorithm so that the decrease in SAT a�ack resilience is

sub-logarithmic with increasing number of protected pa�erns.

Our current SFLL implementation relies on the existing security-

agnostic tools such as Synopsys DC Compiler and ABC [6] for

synthesis. Netlists synthesized using these tools may leave behind

traces for an a�acker to exploit. In future, we plan to modify the

ABC tool and o�er security guarantees against synthesis-driven

a�acks [29].

Currently, SFLL relies on a designer to specify which parts of a

design are security-critical. In future, we plan to automate this pro-

cess by developing metrics that quantify the criticality of di�erent

circuit components. Another related research question is to identify

the pa�erns-to-be-protected that incur the least implementation

overhead, or can even yield area, power, or delay savings.

8 CONCLUSION
We propose stripped-functionality logic locking: a low-cost, se-

cure, and scalable logic locking technique that provably thwarts

all known and anticipated a�acks. We quantify the resilience of

any logic locking technique against a given a�ack in terms of the

number and the size of the protected input cubes. Based on this

�nding, we develop a CAD framework that allows the designer to

strip functionality from the hardware implementation of the design

based on a set of input cubes to be protected; we also propose a

security-aware synthesis process that can strip functionality with

the objective of minimizing the cost of implementation. By adjust-

ing the number and the size of the protected cubes, the designer

can explore the trade-o� between resilience to di�erent a�acks.

�e stripped functionality is hidden from untrusted entities, such

as the foundry and the end-user (potential reverse-engineer). Only

the secret key, i.e., the protected cubes, can successfully recover

the stripped functionality through an on-chip restore operation.

Another �exibility that the proposed framework o�ers is that

for general applications, it enables the designer to protect any

number of a restricted set of cubes, leading to a simple and scalable

architecture. It also supports specialized applications that require

IP-critical input cubes to be protected. �e designer can thus choose

the solution that best �ts the security needs of his/her application.

Upon implementing the proposed logic locking technique on

large-sized benchmarks (> 100K gates) and launching all known

a�acks on them, we con�rm that the proposed technique is se-

cure and cost-e�cient. For further validation, we also apply the

proposed logic locking technique on an industry-strength micropro-

cessor design that we then implement in silicon; the data obtained

from the fabricated chips also con�rm the practicality, security,

and scalability of our technique. �e proposed technique can be

seamlessly integrated into the IC design �ow to thwart IP piracy,

reverse engineering, and overbuilding a�acks.
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A OPTICAL/SEM IMAGING OF THE CHIPS
A microscopic view of the bare dies of the baseline and locked

versions are shown in Fig. 18a and Fig. 18b, respectively, using

an optical microscope. �e I/O openings for the chips are clearly

visible in the �gure. We observe identical structures for both the

baseline and the locked versions, yet there are minute di�erences

between the two versions though not visible in the �gure.

Also, a scanning electron microscope (SEM) image of the locked

version is presented in Fig. 21 where a particular area of the chip is

milled out to spot part of the protection unit (shown in the inset)

used to lock the processor. �e chip was sectioned using an FEI

Scios focused ion beam (FIB) system. �e �rst milling stage involved

removing 5 microns of the top layer over a 100 by 100 micron area

using the Galium beam at 30 kV/15 nA. A�erward, 250 nm, or

thinner, slices were removed at a lower current 7 nA. Imaging

was performed using the electron beam using both secondary and

back-sca�ered electrons (ETD and T1) detectors. �is mill-and-

image process is our a�empt in mimicking the reverse engineering

capabilities of an a�acker to obtain the netlist of the device. In fact,

an a�acker would rather use etching to delayer individual metal

layers until he/she reaches the substrate layer. In our experiments,

we use FIB-SEM to mill until the substrate layer is exposed and the

gates used for logic locking are visible.

B PROOFS OF THEOREMS
We assume n inputs and k key bits, where k ≤ n.
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Figure 21: Scanning electronmicroscope (SEM) image of the
milled chip showing the area where part of the protection
unit was inserted.

B.1 SFLL-HDh

Theorem 3.4. SFLL-HDh is (k − dlog
2

(k
h
)
e)-secure against SAT

a�ack.

Proof. Similar to �eorem 3.1, for SFLL-HD
h

, |P | =
(k
h
)

and

|P̂ | = 2
k −

(k
h
)
. �us, for a PPT a�acker oblivious to the protected

input cubes, making only only polynomial number of queries q(k),
the success probability is given by Eq. 2,

|P |
2
k
+
|P |

2
k − 1

· · · |P |
2
k − q(k)

=

(k
h
)

2
k
+

(k
h
)

2
k − 1

· · ·
(k
h
)

2
k − q(k)

≈
q(k) ·

(k
h
)

2
k

<
q(k)

2
k−dlog

2
(kh)e

So, from de�nition 2.2, we get SFLL-HD
h

is (k − dlog
2

(k
h
)
e)-secure

against the SAT a�ack. �

Theorem 3.5. SFLL-HDh is k-secure against sensitization a�ack.

Proof. Similar to SFLL-HD
0
, all the k bits of SFLL-HD

h
con-

verge within the comparator inside the restore unit to produce the

restore signal. �erefore, sensitizing any key bit through the restore
signal to the output requires controlling all the other key bits. All

k bits are therefore pairwise-secure. SFLL-HD
h

is k-secure against

sensitization a�ack. �

Theorem 3.6. SFLL-HDh is 2
n−k ·

(k
h
)
-resilient against removal

a�ack.

Proof. As the restore signal is skewed towards 0, it can be iden-

ti�ed by a signal probability skew (SPS) a�ack. �e a�acker is

then able to recover the FSC, denoted as cktr ec which produces

erroneous output for the set of protect input pa�erns Γ. Similar to

�eorem 3.3, from Eq. 3 we get,

|Γ | = |P | × 2
n−k

=

(
k

h

)
× 2

n−k

So, from De�nition 2.4, SFLL-HD
h

is 2
n−k ·

(k
h
)
-resilient against a

removal a�ack. �

B.2 SFLL-�exc×k
Theorem 4.1. SFLL-�exc×k is (k − dlog

2
ce)-secure against SAT

a�ack.

Proof. For SFLL-�ex
c×k

, the cardinality of the set of protected

cubes P is |P | = c . �us, from Eq.2, the success probability of a PPT

adversary making a polynomial number of queries q(k) is given by

|P |
2
k
+
|P |

2
k − 1

· · · |P |
2
k − q(k)

=
c

2
k
+

c

2
k − 1

· · · c

2
k − q(k)

≈ q(k) · c
2
k

<
q(k)

2
k−dlog

2
c e

So, from de�nition 2.2 we get SFLL-HD
c×k

is (k − dlog
2
ce)-secure

against the SAT a�ack. �

Theorem 4.2. SFLL-�exc×k is k-secure against sensitization at-
tack.

Proof. All the k bits of SFLL-�ex
c×k

converge within the com-

parator inside the LUT to produce the signal that asserts the XOR

vector operation between the �ip vector and the outputs. �ere-

fore, sensitizing any key bit through the LUT to any of the outputs

requires controlling all the other key bits. All k bits are there-

fore pairwise-secure. SFLL-�ex
c×k

is k-secure against sensitization

a�ack. �

Theorem 4.3. SFLL-�exc×k is c · 2n−k -resilient against removal
a�ack.

Proof. Even if the LUT along with its surrounding logic can be

identi�ed by a reverse-engineer, he/she can only recover the FSC

denoted as cktr ec . However, cktr ec produces incorrect output for

the protected input pa�erns Γ. �us, similar to �eorem 3.3,

cktr ec (i) , F (i), ∀i ∈ Γ
|Γ | = |P | × 2

n−k

= c · 2n−k

So, from De�nition 2.4, SFLL-HD
c×k

is c · 2n−k -resilient against a

removal a�ack. �
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