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ABSTRACT
Bilinear groups form the algebraic setting for a multitude of im-

portant cryptographic protocols including anonymous credentials,

e-cash, e-voting, e-coupon, and loyalty systems. It is typical of such

crypto protocols that participating parties need to repeatedly ver-

ify that certain equations over bilinear groups are satisfied, e.g.,

to check that computed signatures are valid, commitments can

be opened, or non-interactive zero-knowledge proofs verify cor-

rectly. Depending on the form and number of equations this part

can quickly become a performance bottleneck due to the costly

evaluation of the bilinear map.

To ease this burden on the verifier, batch verification techniques

have been proposed that allow to combine and check multiple

equations probabilistically using less operations than checking each

equation individually. In this work, we revisit the batch verification

problem and existing standard techniques. We introduce a new

technique which, in contrast to previous work, enables us to fully

exploit the structure of certain systems of equations. Equations of

the appropriate form naturally appear in many protocols, e.g., due

to the use of Groth–Sahai proofs.
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The beauty of our technique is that the underlying idea is pretty

simple: we observe thatmany systems of equations can alternatively

be viewed as a single equation of products of polynomials for which

probabilistic polynomial identity testing following Schwartz–Zippel

can be applied. Comparisons show that our approach can lead

to significant improvements in terms of the number of pairing

evaluations. Indeed, for the BeleniosRF voting system presented at

CCS 2016, we can reduce the number of pairings (required for ballot

verification) from 4k + 140, as originally reported by Chaidos et al.

[19], to k + 7. As our implementation and benchmarks demonstrate,

this may reduce the verification runtime to only 5% to 13% of the

original runtime.

CCS CONCEPTS
• Security and privacy→Mathematical foundations of cryp-
tography; Public key (asymmetric) techniques; • Theory of com-
putation → Cryptographic protocols;

KEYWORDS
Batch verification; bilinear maps; Groth–Sahai proofs; structure-

preserving cryptography; Belenios; P-signatures

1 INTRODUCTION
Elliptic curve groups equipped with a bilinear map, aka pairing,
proved to be one of the most useful mathematical objects of modern

cryptography. Since the first constructive use of pairings by Joux

[39] countless pairing-based cryptographic schemes and protocols

have been proposed. Identity-based encryption [13], identity-based

signatures [47], group [31], ring [20], and aggregate signatures

[14], anonymous credentials [18], e-cash [16], e-voting [21, 22],

e-coupons [46], and loyalty programs [38] are just a few examples.

It is common, especially in more complex pairing-based systems,

e.g., like e-cash and e-voting schemes, that parties need to repeat-

edly verify multiple equations involving the pairing. Since in terms

of execution time, a pairing operation is usually much more ex-

pensive than an exponentiation in the elliptic curve groups (e.g.,

5.52 ms vs. 1.13 ms for our smartphone implementation of a 254-bit
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order bilinear setting), those verifications can quickly become a

performance bottleneck. In particular, this might be the case when

targeting constrained devices or when huge numbers of equations

need to be checked at a server.

The equations we consider typically come in the form of verifica-

tion equations for digital signature schemes, commitment schemes,

but first and foremost in the form of verification equations of zero-

knowledge or witness-indistinguishable proofs. These proofs are

a very common tool in cryptographic protocols to enforce that

participating parties behave honestly. In pairing-based crypto the

most famous instance of such a proof system which is employed in

numerous schemes and protocols, e.g., [5, 7, 9, 15, 19, 21, 22, 30, 38]

to cite only a few, is due to Groth and Sahai [35]. Groth–Sahai

(GS) proofs are non-interactive witness-indistinguishable (NIWI)

and zero-knowledge (NIZK) proofs of satisfiability of quadratic

equations in bilinear groups. In many cases, these proofs are also

extractable and can be used as a proof of knowledge. While under

certain circumstances, there might be more efficient alternatives

like Fiat-Shamir-based NIZKs [27] or SNARKs [10], there are many

good reasons to stick with GS. For instance, GS proofs are secure

in the CRS model under standard assumptions, whereas the secu-

rity of FS-NIZKs is based on the highly idealized and controver-

sial Random-Oracle-Model (ROM) and current instantiations of

SNARKs make use of non-falsifiable assumptions. Also, GS proofs

are rerandomizable, a very useful property exploited in privacy-

preserving protocols like e-voting schemes [21, 22], which cannot

be easily obtained in the ROM.

Related work. In order to speed up the verification of large sys-

tems of equations, several batch verification techniques have been

proposed.

Bellare et al. [8] proposed batch verifiers for modular exponen-

tiations, i.e., equations of the form ai = дxi . The small exponent

batching technique combines n such equations into a single one,

i.e.,

∏
i a

ri
i = д

xi ri
which is a linear combination with random ℓ-bit

coefficients ri , where ℓ is a security parameter (typically ℓ = 80).

This approach comes at the cost of a small loss of soundness: even

if the combined equation verifies, there is a probability of at most

2
−ℓ

that one of the original equations was false. Camenisch et

al. [17] apply the small exponent technique to batch verify two

short pairing-based signatures in scenarios with many different

signers. Besides presenting batch verifiers for a variety of signa-

ture schemes over bilinear groups, Ferrara et al. [26] also give a

general (informal) framework of how to securely and efficiently

batch verify a set of pairing-based equations. They propose the use

of small exponent batching and describe a set of rules to optimize

the batched equations. These rules take the relative costs of pair-

ing and exponentiations in the different groups of a pairing-based

setting into account but might be conflicting. Thus, [11] looks at

different types of equations arising from Groth–Sahai proofs to find

an optimally batched equation for each case. As finding optimal ex-

pressions using the considered set of rules by hand quickly becomes

tedious and error-prone, the authors of [2, 3] propose automated

batch verification over bilinear groups.

If the higher-level structure which our batching exploits is known
and made explicit for the algorithm, it should be easily integrated

into (existing) automated batching tools. This is the case for GS

proofs. We did not explore how to algorithmically find such higher-

level structure, but believe it to be very expensive in general.

Our contributions. Many of the equations in bilinear groups one

wants to batch verify are very structured (e.g. GS proofs [35], struc-

ture preserving cryptography [1, 42] or the protocols [33, 43]). For

instance, many of them consist simply of matrix-vector multipli-

cation in the exponent. In contrast, the examples considered by

Ferrara et al. lack such structure.

Our work exploits this additional structure to get significant

performance improvements. In particular, we note that verification

of GS proofs and linear algebra operations can be written as check-

ing a set of polynomial identities in the exponent.
1
Our batching

algorithm simply performs the usual probabilistic identity checking

algorithm in the exponent (evaluation at some point chosen from a

large enough set S). Pointwise evaluation of the polynomial identity

costs several exponentiations, but reduces the number of pairing op-

erations significantly compared to other batching strategies. A nice

feature of the polynomial view on batching is that it suggests other

possibilities for S apart from small exponents, as was considered

in [23] for batching of exponentiations. The fundamental insight

which explains our efficiency gains is that pointwise evaluation

corresponds to computing a random linear combination of all the

individual equations with structured randomness (as opposed to

independent). This structured randomness is compatible with the

pairing and allows to compute most exponentiations in G1 and G2

before computing the pairing. One nice feature of our approach is

that it is more systematic and less “hand-crafted”.

We apply our techniques to two concrete examples, P-signatures

[6] and the BeleniosRF voting scheme [19], and compare our savings

with the small exponent batching approach. This demonstrates that

in certain cases our technique can make a big difference: we are

able to reduce the required number of pairing operations for ballot

verification in BeleniosRF to k + 7, whereas Chaidos et al. report
4k + 140 pairing applications in [19] using small exponent batching.

Furthermore, our experimental results show the impact of saving

pairings on performance.

Batching in bilinear groups: An illuminating example. In the fol-

lowing, we consider a pairing e : G1 ×G2 → GT for cyclic groups

G1,G2,GT of orderp. We use additive notation for all groups. Hence,

bilinearity means that for all γ1,γ2 ∈ Zp and a1 ∈ G1,a2 ∈ G2, we

have e(γ1a1,γ2a2) = γ1γ2e(a1,a2). Furthermore, we use implicit no-

tation for group elements, i.e., we write [x]σ B xPσ ∈ Gσ with re-

spect to some fixed group generator Pσ ∈ Gσ , where σ ∈ {1, 2,T }.
This notation naturally generalizes to matrices of group elements

by applying it component-wise. Using this notation we can write

e([x]1, [y]2) = [xy]T for x ,y ∈ Zp .
Batch verification techniques typically consist of two phases: a

first phase where all the equations are combined into a single one,

and a second phase where the cost of verifying the combined claim

is optimized. In the bilinear setting, the latter means reducing the

number of pairing computations, which are the most expensive

operations, but also trying to minimize the total cost taking into

account the relative cost of other operations (exponentiations inGT
are the most expensive, followed by exponentiations inG2, followed

1
This is inspired by (but even simpler than) the polynomial framework of [36].
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by exponentiations in G1). For instance, for the second phase, one

of the rules of Ferrara et al. [26] says “move the exponent into the

pairing”, i.e. one should replace terms of the form γe([x]1, [y]2) by
e(γ [x]1, [y]2) in the combined expression.

Following these lines, let us now illustrate the small exponent

batching as well as our new technique by considering the following

set of claims:

e([x1]1, [y1]2)
?

= [t1]T e([x1]1, [y2]2)
?

= [t2]T
e([x2]1, [y1]2)

?

= [t3]T e([x2]1, [y2]2)
?

= [t4]T
(1)

Applying small exponent batching, which is the standard approach

[8, 11, 26], results in the following single combined claim in Phase 1:

γ1e([x1]1, [y1]2) + γ2e([x1]1, [y2]2) +
γ3e([x2]1, [y1]2) + γ4e([x2]1, [y2]2)

?

=
∑
4

i=1 γi [ti ]T .
for independent, random (small) γi . In Phase 2, one applies the rules

from [26] to minimize the number of operations. This yields:

e(γ1[x1]1+γ3[x2]1, [y1]2)+e(γ2[x1]1+γ4[x2]1, [y2]2)
?

=

4∑
i=1

γi [ti ]T .

In particular, the total expression can be evaluated with only 2

pairings and 4 exponentiations in each of G1 and GT .
Our new approach works as follows: we introduce Phase 0 in

which we try to rewrite Eq. (1) in terms of a higher-level bilinear

map ẽ : G2

1
×G2

2
→ G4

T involving the underlying basic bilinear map

e : G1 ×G2 → GT . In this case, we define

ẽ([®x]1, [®y]2) B
(
e(x1,y1) e(x1,y2)
e(x2,y1) e(x2,y2)

)
=

(
[x1y1]T [x1y2]T
[x2y1]T [x2y2]T

)
= [®x ®y⊤]T ,

and write Eq. (1) we want to verify as

ẽ([®x]1, [®y]2)
?

=

(
[t1]T [t2]T
[t3]T [t4]T

)
.

If we look at this equation in the exponent, the claim reads ®x ®y⊤ ?

= T.
We can, alternatively, interpret vectors and matrix as polynomials

f = x1R1+x2R2, g = x1S1+x2S2 and h = t1R1S1+t2R1S2+t3R2S1+
t4R2S2 in variables R1,R2, S1, S2. So the equation in the exponent

looks like f · g = h. Now, in Phase 1, we sample ®r , ®s ← Z2p and

check whether

f(®r ) · g(®s) ?= h(®r , ®s)
(
⇐⇒ (®r⊤ ®x)(®y⊤®s) ?= ®r⊤T®s

)
,

holds, which is equivalent to verifying if

e([®r⊤ ®x]1, [®y⊤®s]2)
?

= ®r⊤
(
[t1]T [t2]T
[t3]T [t4]T

)
®s

holds. To spell this out equation-wise, we are now checking if

e([r1x1 + r2x2]1, [s1y1 + s2y2]2)
?

=

r1s1[t1]T + r1s2[t2]T + r2s1[t3]T + r2s2[t4]T ,
which corresponds to a linear combination of each of the atomic

claims (each equation in GT ) with coefficients of a special form,

namely, r1s1, r1s2, r2s1, r2s2. Obviously, correctness holds because
of basic linear algebra. It is not hard to see that the soundness

error is at most 2/p. The interesting observation is that we have

reduced the number of pairing operations with respect to the small

exponent batching approach by 50% (and by 75% compared to the

naive approach).

Often, e.g. when verifying GS proofs, one has a set Z of sets

EQi of equations with the property that each set EQi is amenable

to our techniques. As a first step, we batch each set EQi into a

single equation Ei . We call this internal batching. Then we batch

the equations Ei (for i ∈ Z) into a single equation E. This is called
external batching.

For very structured equations, even external batching is amenable

to our techniques, which yields extremely efficient batch verifica-

tion. See App. B.3 for an example.

2 PRELIMINARIES
2.1 Bilinear Groups
The results of this paper are in the setting of (prime-order) bilinear

groups.
2
We use the following formal definition.

Definition 2.1 (prime-order bilinear group generator). A prime-
order bilinear group generator is a PPT algorithm Gen that on input

of a security parameter 1
λ
outputs a tuple of the form

BG B (G1,G2,GT , e,p,P1,P2) ← Gen(1λ)
whereG1,G2,GT are descriptions of cyclic groups of prime order p,
logp = Θ(λ), P1 is a generator of G1, P2 is a generator of G2, and

e : G1 ×G2 → GT is a map which satisfies the following properties:

• Bilinearity: For all Q1,Q
′
1
∈ G1, Q2,Q

′
2
∈ G2, α ∈ Zp ,

we have e(αQ1,Q2) = e(Q1,αQ2) = αe(Q1,Q2), as well as
e(Q1+Q

′
1
,Q2) = e(Q1,Q2)+e(Q ′

1
,Q2) and likewise e(Q1,Q2+

Q ′
2
) = e(Q1,Q2) + e(Q1,Q

′
2
).

• Non-Degeneracy: PT B e(P1,P2) generates GT .

Following [36], we refer to e as a basic bilinear map. This is to

distinguish it from a composite bilinear map ẽ : Gn1

1
×Gn2

2
→ GnT

T ,

for some n1,n2,nT ∈ N, which is built on top of e and whose

evaluation requires several evaluations of the basic bilinear map.

Unless it is specifically stated, BG refers to a generic bilinear

map and no assumption is made concerning the (non)-existence of

an efficiently computable isomorphism between G1 and G2. Only

in certain contexts we will specify if BG is an elliptic curve of Type

I, II or III (according to the classification of [32]). In case of Type I

(or symmetric) bilinear groups, G1 = G2 and we drop the subindex

to refer to group elements, i.e. e : G ×G → GT .

2.2 Notation: Implicit Representation
To represent elements in groups we use the notation introduced

in [25]. Namely, given a cyclic group ⟨P⟩ = G of order p, for
a ∈ Zp we define [a] B aP. Similarly, given a bilinear groupBG B
(G1,G2,GT , e,p,P1,P2), we generalize this notation to distinguish

between the elements of the groups G1,G2,GT as [a]σ B aPσ ,
for any σ ∈ {1, 2,T }. Although all groups are written in additive

notation, we still use the term exponentiation to refer to scalar

multiplications aPσ for Pσ ∈ Gσ and a ∈ Zp . We further extend

our notation to refer to vectors and matrices of group elements,

namely, for a vector
®f ∈ Znp and a matrix A = (ai, j )i, j ∈ Zn×mp ,

the implicit representation in the group Gσ is defined by [ ®f ]σ B
([fi ]σ )i ∈ Gn

σ and [A]σ B ([ai, j ]σ )i, j ∈ Gn×m
σ for σ ∈ {1, 2,T }.

2
Using a simple generalization of the lemma of Schwartz–Zippel enables our tech-

niques in composite order N = pe1
1
· . . . · penn , as long as mini (pi ) is large enough.
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2.3 Pairing-based Claims and Batch Verifiers
We define batch verifiers for claims over bilinear groups following

[26]. Let BG B (G1,G2,GT , e,p,P1,P2) ← Gen(1λ). A pairing-
based verification equation over BG is a boolean relation of the

form
m∑
i=1

αi e([ai ]1, [bi ]2)
?

= [c]T

for m ∈ poly(λ), [ai ]1 ∈ G1, [bi ]2 ∈ G2, [c]T ∈ GT , and αi ∈
Zp . Let us denote this relation by C and call it a claim. A pairing-

based batch verifier with soundness error (i.e. false positive error

probability) ε is a PPT algorithm which on input of a representation

of claims C(1), . . . ,C(n), where n ∈ poly(λ), always accepts if all
claims are true, and rejects otherwise with probability 1 − ε . The
soundness error ε is usually set to 2

−ℓ
, where ℓ is a statistical

security parameter and a standard choice is ℓ = 80.

2.4 Computational Assumptions
Our improvements in batch verification are unconditional and de-

pend only indirectly on the hardness of some cryptographic prob-

lem.
3
However, we will be referring to different computational

assumptions in bilinear groups when describing the Groth–Sahai

proof system and list them here for completeness.

The decisional Diffie-Hellman and Decisional Linear Assump-

tions are two of the most standard assumptions in the bilinear group

setting and are described below.

• Decisional Diffie-Hellman (DDH) Assumption. It is hard to

distinguish (G, [x], [y], [xy]) from (G, [x], [y], [z]), for G =
(G,p,P) ← Gen(1λ), x ,y, z ← Zp .
• Decisional 2-Linear (2-Lin) Assumption [12]. It is hard to dis-

tinguish (G, [x1], [x2], [r1x1], [r2x2], [r1 + r2]) from (G, [x1],
[x2], [r1x1], [r2x2], [z]), for G = (G,p,P) ← Gen(1λ) and
uniform x1,x2, r1, r2, z ← Zp .

In a bilinear group BG, the SXDH Assumption says thatDDH holds

in G1 and G2.

2.5 Schwartz–Zippel Lemma
The Schwartz–Zippel Lemma is a well-known result [48, 50] which

can be used for efficient testing of polynomial identities.

Lemma 2.2. Let f ∈ Zp [ ®X ], ®X = (X1, . . . ,Xµ ) a non-zero polyno-
mial of total degree d . Let S ⊂ Zp be any finite set. If x1, . . . ,xµ are
sampled independently and uniformly at random from S , then

Pr[f(x1, . . . ,xµ ) = 0] ≤ d/|S |.

2.6 Overview of Groth–Sahai Proofs
Groth and Sahai [35] constructed a proof system for satisfiability of

quadratic equations over bilinear groups. The equations for which

one can prove satisfiability can be written in a unified way as

my∑
j=1

f (aj , yj ) +
mx∑
i=1

f (xi ,bi ) +
mx∑
i=1

my∑
j=1

f (xi ,γi jyj ) = t , (2)

where A1,A2,AT are Zp -modules, ®x ∈ Amx
1

, ®y ∈ Amy
2

are the

variables (for which one shows that there is a satisfying assignment),

3
We just assume that the order of the bilinear group is sufficiently large and chosen

according to the security parameter.

®a ∈ Amy
1

,
®b ∈ Amx

2
, Γ = (γi j ) ∈ Zmx×my

p , t ∈ AT are the constants
of the equation and f : A1 × A2 → AT is a bilinear map. More

specifically, Groth and Sahai consider equations of the following

types for BG B (G1,G2,GT , e,p,P1,P2):
(1) Pairing product equations, withA1 = G1,A2 = G2,AT = GT ,

f ([x]1, [y]2) = e([x]1, [y]2) = [xy]T ∈ GT .
(2) Multi-scalar multiplication equations inG1, withA1 = AT =

G1, A2 = Zp , f ([x]1, y) = [xy]1 ∈ G1.

(3) Multi-scalar multiplication equations in G2, with A1 = Zp ,
A2 = AT = G2, f (x, [y]2) = [xy]2 ∈ G2.

(4) Quadratic equations in Zp , with A1 = A2 = AT = Zp ,
f (x, y) = xy ∈ Zp .

Essentially, the GS proof system is a commit-and-prove scheme

in the sense that it works in two steps: first, the prover commits to

a satisfying assignment for the equation and second, it proves that

the equation is satisfied using the committed assignment.

2.6.1 Specifying a GS Instantiation. Groth and Sahai presented

their proof system following a general algebraic framework and

also gave two different instantiations of this framework in prime

order bilinear groups. Such an instantiation is specified by the items

described below.

a) A choice of the (prime order) bilinear group type, that is,

specifying whether the group is symmetric or asymmetric.

b) A decisional assumption in Gn1

1
, n1 ∈ N and some vec-

tors [®u1]1, . . . , [®un1
]1 ∈ Gn1

1
. For each possible A1 (cf. equa-

tion types), a map ι1 : A1 → Gn1

1
and some commitment

scheme for elements in A1, where the commitment keys are

[®u1]1, . . . , [®uk1 ]1 ∈ Gn1

1
for some k1 ≤ n1 which depends

on A1.

c) A decisional assumption in Gn2

2
, n2 ∈ N and some vec-

tors [®v1]2, . . . , [®vn2
]2 ∈ Gn2

2
. For each possible A2, a map

ι2 : A2 → Gn2

2
and some commitment scheme to elements of

A2, where the commitment keys are [®v1]2, . . . , [®vk2 ]2 ∈ G
n2

2

for some k2 ≤ n2, which depends on A2.

d) A composite bilinear map ẽ : Gn1

1
×Gn2

2
→ GnT

T with certain

properties in the commitment space
4
, and for each possible

(A1,A2,AT , f ) a map ιT : AT → GT , such that for all a1 ∈
A1, a2 ∈ A2 we have ιT (f (a1,a2)) = ẽ(ι1(a1), ι2(a2)) .

The most efficient instantiation of the GS proof system (cf. Sec. 2.6.5)

is based on the SXDH Assumption.

2.6.2 Prover. A prover who wants to convince a verifier that

an equation of the form (2) is satisfiable, holds a witness of satis-

fiability (x1, . . . ,xmx ) ∈ Amx
1

, (y1, . . . ,ymy ) ∈ Amy
2

, which is an

assignment of the indeterminates ®x, ®y which satisfies the equation.

The prover sends to the verifier:

(1) [x i ]1 ∈ Gn1

1
, i = 1, . . . ,mx , which are commitments to

x1, . . . ,xmx .

(2) [y j ]2 ∈ Gn2

2
, j = 1, . . . ,my , which are commitments to

y1, . . . ,ymy .

(3) Some vectors [ ®π1]2, . . . , [ ®πk1 ]2 ∈ G
n2

2
, and [ ®θ1]1, . . . , [ ®θk2 ]1 ∈

Gn1

1
, called the proof.

4
Following the terminology of [28, 36], the bilinear map has to be projecting.
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Note that strictly speaking the three items together constitute the

proof, but this terminology comes from thinking of GS proofs as

a commit-and-prove scheme. The actual description of how the

commitments and the proof are computed is irrelevant for our

results, where we only care about saving operations for verification.

2.6.3 Verifier. The verification runs in two steps.

Step 1 The verifier defines some values [ai ]1 ∈ Gn1

1
, i = 1, . . . ,my ,

[bi ]2 ∈ Gn2

2
, i = 1, . . . ,mx , and [t]T ∈ GnT

T , which can be

derived from the constants a1, . . . ,amy ∈ G1, b1, . . . ,bmx ∈
G2 and t ∈ GT defining the equation.

Step 2 The verifier accepts a proof if and only if

my∑
i=1

ẽ([ai ]1, [yi ]2) +
mx∑
i=1

ẽ([x i ]1, [bi ]2) +
mx∑
i=1

my∑
j=1

γi j ẽ([x i ]1, [y j ]2)

?

= [t]T +
k1∑
i=1

ẽ([®ui ]1, [ ®πi ]2) +
k2∑
i=1

ẽ([ ®θi ]1, [®vi ]2), (3)

holds, with the rest of the elements defined as said before,

namely: [®ui ]1 (resp. [®vi ]2) are the commitment keys to ele-

ments in A1 (resp. A2), and [ ®πi ]2, [ ®θi ]1 is the proof.
When the equation has no terms in ®x (resp. ®y), the verification

equation is also of this form with k1 = 0 (resp. k2 = 0).

2.6.4 Reducing Verification Cost. Note that even without batch-

ing, the verifier can optimize the verification equation (3) before

evaluating it so that it requires less computations of ẽ . In particu-

lar, the number of evaluations of ẽ can always be brought down

to at mostmx +my for the left-hand side of (3) by grouping all

the terms with the same first or second argument, e.g. replacing

ẽ([aj ]1, [y j ]2)+
∑mx
i=1 γi j ẽ([x i ]1, [y j ]2) by ẽ([aj+

∑mx
i=1 γi j [x i ]1, [y j ]2).

This is only an upper bound. In practice, the cost tends to be much

lower: for instance, if there are no linear terms in ®x (i.e. [bi ]2 = [®0]2),
then the number of required evaluations of ẽ for the left-hand side is
bounded bymy . This trick can be applied to every GS instantiation

and equation type.

For multiscalar and quadratic equations there are additional

optimizations possible, due to the knowledge of discrete logarithms

of some of the constants. For example, if we have a multiscalar

equation inG1, that is A1 = AT = G1, A2 = Zp , then b1, . . . ,bmx ∈
Zp . By definition, [bi ]2 = ι2(bi ) = bi ι2(1) ∈ Gn2

2
. By bilinearity,

mx∑
i=1

ẽ([x i ]1, [bi ]2) = ẽ
( mx∑
i=1

bi [x i ]1, ι2(1)
)

(4)

and the right-hand side of Eq. (4) can be computed by the verifier

since bi is a known constant describing the equation. Thus, the

linear terms in ®x can be grouped in a single ẽ-pairing, resulting in at

most min(mx +my ,my + 1) evaluations of ẽ for the left-hand side

of (3). Clearly, an analogous trick works if A1 = Zp and A2 = G2

and for quadratic equations.

2.6.5 SXDH Instantiation. The SXDH instatiation of GS proofs

[35] is the most efficient setting in terms of proof size, in the number

of group elements, and in the number of basic pairings for verifi-

cation. Furthermore, asymmetric bilinear groups for which SXDH
is assumed to hold, have more efficient arithmetic. To specify this

instantiation we follow Sec. 2.6.1.

We use prime order asymmetric bilinear groups, for which the

SXDH assumption holds (i.e. DDH in G1 and G2), and set n1 =
n2 = 2. Moreover, the bilinear map ẽ is the tensor product, i.e.

ẽ : Gn1

1
×Gn2

2
→ GnT

T is defined by

ẽ

((
[x1]1
[x2]1

)
,

(
[y1]2
[y2]2

))
=

(
[x1y1]T [x1y2]T
[x2y1]T [x2y2]T

)
.

The common reference string includes [®u1]1, [®u2]1 ∈ G2

1
and [®v1]2,

[®v2]2 ∈ G2

2
. Since the distribution of the vectors does not affect the

verification algorithm we omit its description. These parameters

are common to all equation types. We define maps ιGσ : Gσ → G2

σ ,

ιZσ : Zp → G2

σ , σ ∈ {1, 2} as5

ιGσ ([a]σ ) =
(
[a]σ
[0]σ

)
ιZσ (a) =

{
σ = 1 : a[®u2 + ®e1]1
σ = 2 : a[®v2 + ®e1]2

,

where ®e1 is the first vector of the canonical basis of Z2p . The maps

ι1, ι2, ιT in Sec. 2.6.1 b) and c) and the number of commitment keys

depend on the equation type:

(1) Pairing product equations: k1 = k2 = 2, ι1 = ιG
1
, ι2 = ιG

2
,

ιT B ®e1®e⊤1 [a]T .
(2) Multi-scalar multiplication equations in G1: k1 = 2, k2 = 1,

ι1 = ιG
1
, ι2 = ιZ

2
, ιT ([a]1) = ẽ(ιG

1
([a]1), ιZ

2
(1)).

(3) Multi-scalar multiplication equations in G2: k1 = 1, k2 = 2,

ι1 = ιZ
1
, ι2 = ιG

2
, ιT ([a]2) = ẽ(ιZ

1
(1), ιG

2
([a]2)).

(4) Quadratic equations in Zp : k1 = k2 = 1, ι1 = ιZ
1
, ι2 = ιZ

2
,

ιT (a) = ẽ(ιZ
1
(1), ιZ

2
(a)).

3 POLYNOMIAL VIEW OF COMPOSITE
PAIRINGS

Herold et al. [36] derived new instantiations of GS proofs by intro-

ducing a polynomial viewpoint on composite projecting
6
bilinear

maps.

More specifically, given a basic prime-order bilinear group set-

ting BG = (G1,G2,GT , e,p,P1,P2) and a choice of decisional as-

sumptions inG1 andG2 (e.g., SXDH), which determines parameters

n1,n2, their work [36] identifies vectors from Gn1

1
and Gn2

2
with

polynomials in some spaces V1,V2 ⊂ Zp [X1, . . . ,Xµ ]. Under this
identification, the composite pairing ẽ : Gn1

1
×Gn2

2
→ GnT

T becomes

polynomial multiplication of polynomials in V1 and V2. In this case,

nT is the dimension of the space VT , which is the vector space

spanned by all {fg : f ∈ V1, g ∈ V2} and the map ẽ can be evaluated

with nT basic pairing operations. The interesting point is that [36]

show that the map ẽ defined in this way is optimal in the sense that

it is the one with minimal nT compatible with a given decisional as-

sumption. Thus, it also requires the minimal number of evaluations

of the basic pairing e .
In this paper, we are not interested in the full power of the frame-

work, but only in the polynomial interpretation of (projective) bilin-

ear maps ẽ : Gn1

1
×Gn2

2
→ GnT

T of [36]. The basic idea of the poly-

nomial view is to interpret the Zp -vector spaces G
n1

1
, Gn2

2
and GnT

T
as (coefficients of) polynomials in the variables ®X = (X1, . . . ,Xµ ).
That is, we find subspacesV1,V2,VT ⊆ Zp [ ®X ] with respective bases

BP ,BQ ,BR such that Gσ � Vσ for σ ∈ {1, 2,T } and the pairing

5
Note that in [35] the vector ®e2 is used in ιZσ . Using ®e1 will simplify our notation.

6
This is the essential property of the map ẽ necessary to construct GS proofs [28].
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ẽ corresponds to polynomial multiplication. The space VT is the

vector space generated by {fg | f ∈ V1, g ∈ V2}.

Definition 3.1. Let BP B {p1, . . . , pn1
}, BQ B {q1, . . . , qn2

} be
sets of linearly independent vectors in Zp [X1, . . . ,Xµ ]. Let BR B
{r1, . . . , rnT } be a basis of VT B ⟨{pq : p ∈ BP , q ∈ BQ }⟩. We say

a bilinear map ẽ : Gn1

1
×Gn2

2
→ GnT

T admits a polynomial interpre-
tation given by BP ,BQ ,BR iff the pairing ẽ satisfies7

ẽ([ ®f ]1, [®д]2) = [®h]T ⇐⇒ (
n1∑
i=1

fipi )(
n2∑
j=1

дjpj ) =
nT∑
k=1

hk rk

for all
®f ∈ Zn1

p , ®д ∈ Zn2

p ,
®h ∈ ZnTp . In this case, we identify [ ®f ]1 with

[f]1 B
∑n1

i=1[fi ]1pi ( ®X ), [®д]2 with [g]2 B
∑n2

j=1[дj ]2qj ( ®X ) and [®h]T
with [h]T =

∑nT
k=1[hk ]T rk ( ®X ), and write ẽ([f]1, [g]2) = [fg]T =

[h]T .

Note that this definition implies that the image Im ẽ of ẽ spans
all of GnT

T . When we will be using the polynomial interpretation

in the following, it is most natural to assume that this is the case

(e.g. in GS proofs, if the image of ẽ is contained in a subspace, one

can define another map ẽ ′ : Gn1

1
×Gn2

2
→ G

n′T
T for some n′T < nT

which can also be used to verify the proof).

To cover all GS instantiations from the literature, if the image of

ẽ does not span GnT
T , we define a polynomial interpretation of ẽ as

a polynomial interpretation of ẽ ′ : Gn1

1
×Gn2

2
→ ⟨Im ẽ⟩ � G

n′T
T .

Example 3.2. (Tensor Product) Let us consider the pairing given

by ẽ : G2

1
×G2

2
→ G2×2

T with

ẽ([®x]1, [®y]2) = [xy⊤]T =
(
[x1y1]T [x1y2]T
[x2y1]T [x2y2]T

)
(5)

This is the pairing used for the SXDH instantiation of the GS proof

system, which is sketched in Sec. 2.6.5. Some possible choices of

polynomial views are:

(1) BP B {1,X }, BQ B {1,Y } and BR B {1,X ,Y ,XY }. InG2×2
T ,

the (i, j)-th unit matrix Ei, j = eie
⊤
j corresponds to XiYj .

(2) BP B {X1,X2}, BQ B {Y1,Y2}, BR B {X1Y1,X2Y1,X1Y2,
Y1Y2}.

(3) BP B {1,X }, BQ B {1,X 2} and BR B {1,X ,X 2,X 3}.
These polynomial interpretations are easily adapted for higher di-

mensional tensor products ẽ : Gn1

1
×Gn2

2
→ Gn1×n2

T , ẽ([®x]1, [®y]1) =
[xy⊤]T with n1,n2 ∈ N. For example, to extend (1), one sets BP B
{1,X1, . . . ,Xn1

},BQ B {1,Y1, . . . ,Yn2
}. InGn1×n2

T , the (i, j)-th unit
matrix Ei, j = eie

⊤
j then corresponds to XiYj .

The definition does not exclude BP = BQ . In fact, this is an

important special case which appears naturally when instantiating

GS proofs in symmetric bilinear groups, e.g. under the decisional

linear assumption. We stress however that the type of bilinear

group (asymmetric or symmetric) over which ẽ is defined is inde-

pendent of whether the map ẽ is symmetric or not (in the sense

that ẽ([®a]1, [®b]2) = ẽ([®b]1, [®a]2) may or may not hold).

7
Since each set {p1, . . . , pn

1
}, {q1, . . . , qn

2
}, {r1, . . . , rnT } is a basis of

Gn
1

1
, Gn

2

2
, GnT

T , respectively, this equivalence uniquely defines the pairing.

Example 3.3. (Symmetric Tensor Product) Let us consider the

pairing ẽ : G3

1
×G3

2
→ G6

T with

ẽ([®x]1, [®y]2) = ([x1y1]T , [x1y2 + x2y1]T , [x1y3 + x3y1]T ,
[x2y2]T , [x2y3 + x3y2]T , [x3y3]T ) (6)

A possible polynomial view is BP = BQ B {1,X1,X2} and BR B

{1,X1,X2,X
2

1
,X1X2,X

2

2
}. This polynomial interpretation can be

adapted to other dimensions in the obvious way.

With the polynomial view we can do the usual operations with

polynomials “in the exponent”. Most notably, one can evaluate

the polynomials at any point (x1, . . . ,xµ ) via exponentiations in
the respective group. For instance, to evaluate [f]1 at ®x means to

compute [f(®x)]1 =
∑n1

i=1[fi ]1pi (®x) ∈ G1 and similarly for [g]2 and
[h]T . Polynomial evaluation commutes with the pairing, i.e.

ẽ([f]1, [g]2)(®x) = [fg]T (®x) = e([f(®x)]1, [g(®x)]2) (7)

Note that for the evaluation, one can use multi-exponentiation

algorithms (e.g., see [44] for an overview). However, if the point at

which we need to evaluate has small coefficients (or is optimized

for fast exponentiation in some other way), one can instead use

Horner’s rule to leverage that.

3.1 Polynomial Identity Checking in the
Exponent

By the discussion above, it is obvious that one can verify any claim

involving several evaluations of a pairing ẽ for which there is a poly-
nomial view given by BP ,BQ ,BR using the standard probabilistic

algorithm for polynomial identity checking (cf. Schwartz–Zippel,

Sec. 2.5) in the exponent: given a claim which can be interpreted as

a polynomial equation

r∑
i=1

ẽ([fi ]1, [gi ]2)
?

= [h]T

over some ring Zp [X1, . . . ,Xµ ] for some r ∈ N, the equation can be

verified by sampling ®s ← Sµ , for some arbitrary set S and evaluating
the polynomials at ®s . The soundness error is at most d/|S |, where d
is the maximal degree of the polynomials in BR .

Expression (7) shows that this requires r basic pairing evalu-

ations. On the other hand, note that evaluation at ®s for [fi ]1 re-

quires to compute

∑n1

j=1[fi j ]1pj (®s) ∈ G1 with coefficients given

by pj (®s), j = 1, . . . ,n1 and similarly for G2 with BQ . In partic-

ular, the efficiency of the involved exponentiations depends on

the choice of BP ,BQ ,BR and S . A standard choice for S is S =

{0, 1, . . . , 280+log2 d − 1}, where d is the maximum degree of a poly-

nomial in BR . The resulting soundness error is 2
−80

.

Consider Example 3.2, fixing polynomial view (1). In this case,

we have d = 2 and evaluating elements at (X = s1,Y = s2) requires
1 small exponentiation inG1 and 1 inG2. Evaluating elements inG4

T
requires 3 small exponentiations

8
. Obviously, the choice of polyno-

mial view (2) is less interesting because it requires more randomness

for checking equality and more exponentiations. On the other hand,

choice (3) is interesting if one wants to save randomness, but some

of the exponents are no longer small when evaluating in G2.

8
We can compute this as [f(x, y)]T = ([f1,1] + x [f1,2]) + y([f2,1] + x [f2,2]T ) by

Horner’s rule.
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We note that other choices of S can lead to significant speed-

ups, as reported in [23]. For batch verification of exponentiations,

the authors suggest to choose the coefficients which define the

combined claim as a linear combination of the atomic claims from

different sets S . For instance, if S is the set of exponents with small

Hamming weight (e.g. Hamming weight at most 19 for a soundness

error of 2
−80

is sufficient) the authors report a 2 to 3 speed-up factor

for verification, the reason being that usually squaring is cheaper

than multiplication.

4 BATCH VERIFICATION TECHNIQUES FOR
PAIRING-BASED CLAIMS

Recall that we consider the following problem: Given group ele-

ments

[
a
(j)
i
]
1
∈ G1,

[
b
(j)
i
]
2
∈ G2,

[
c(j)

]
T ∈ GT and α

(j)
i ∈ Zp , we

wish to verify a set of N ′ claims C(j) of the form

m(j )∑
i=1

α
(j)
i e

( [
a
(j)
i
]
1
,
[
b
(j)
i
]
2

) ?

=
[
c(j)

]
T with 1 ≤ j ≤ N ′ (8)

more efficiently than verifying each claim individually. Typically,

the a
(j)
i and similarly the b

(j)
i are not all distinct; in particular, the

same group element may appear in several claims. In fact, if there

are no known relations among the a
(j)
i ’s and b

(j)
i , neither previous

work nor our batching technique will give any improvement com-

pared to treating each equation separately. We make the following

assumptions regarding computational costs: pairings are by far

the most expensive operations, followed by (in this order): expo-

nentiations in GT , exponentiations in G2, exponentiations in G1,

followed by group operations. This is justified by the state-of-art in

elliptic curves. An exact estimation of this relative cost depends on

several factors (representation of the points, choice of elliptic curve,

underlying hardware, exponentiation algorithms, etc) which is out

of the scope of this paper. Hence, our primary goal is to minimize

the number of pairing applications.

In the following we provide an overview of existing batch veri-

fication and optimization techniques as well as present our own.

Which (combination of) techniques will yield the best performance

gain strongly depends on the concrete structure the system of

claims. Hence, we will only compare the different approaches later

when considering more concrete claims.

4.1 Previous Work
The basic idea of batching, as first introduced by Bellare et al. [8]

in the context of batch verification of exponentiation equations,

consists of two phases. First, consider a random linear combina-

tion of the equations. Second, minimize the computational cost of

evaluating the single resulting equation.

In our setting, this means that, in the first phase, we combine

the N ′ equations of the form (8) into a single equation of the form

N ′∑
j=1

r (j)
m(j )∑
i=1

α
(j)
i e

( [
a
(j)
i
]
1
,
[
b
(j)
i
]
2

) ?

=

N ′∑
j=1

r (j) ·
[
c(j)

]
T , (9)

where r (j) are chosen randomly according to some distribution.

This introduces a soundness error, i.e. there is some probability

that (9) is satisfied even if not all of the individual claims hold. The

exact soundness error depends on the choice of distribution for the

r (j)’s. In the second phase, one would try to minimize the cost of

verifying (9), which according to our cost model means minimizing

the number of evaluations of e .

First Phase: Small Exponent Batching. Ferrara et al. [26], following
[8], choose r (j) uniformly independent in S = {1, . . . , 2ℓ}, which
gives a soundness error of 2

−ℓ
(we assume 2

ℓ < p). This choice of
S is called Small Exponent Batching and is meant to minimize the

cost of exponentiations.

Second Phase: Transforming Equations. In our notation, Ferrara

et al. [26] suggest to transform the resulting equation (9) by the

following rules for the second phase:

(1) Move scalar (exponent) into pairing. As exponentiation in G1

is less expensive than in GT (and G2), replace a term of the

form α · e([a]1, [b]2) with [a]1 ∈ G1, [b]2 ∈ G2,α ∈ Zp by

e(α[a]1, [b]2).
(2) Move sum into pairing. When two applications of the pairing

share the same first or second argument, use bilinearity to

combine them. Say if [b]2 ∈ G2, one can replace the expression

α · e([a]1, [b]2) + α ′ · e([a′]1, [b]2) by e(α[a]1 + α ′[a′]1, [b]2).
(3) Switch two sums. The number of pairings may also be reduced

by moving a sum from the first to the second component (or

vice versa). Consider

∑t
j=1 e(

∑k
i=1 αi, j [ai ]1, [bj ]2). If t < k , then

k − t pairing applications can be saved by replacing this term

by

∑k
i=1 e([ai ]1,

∑t
j=1 αi, j [bj ]2).

Note that these rules are a heuristic and may be conflicting. Also,

the number of pairing operations saved might come at the cost of

increasing other operations, so the precise gains depend on the

relative costs of these operations. These techniques apply generally

and we will also use them for our second phase.

4.2 Our Techniques
0th Phase. Our techniques are based on polynomial evaluation

and we introduce an additional 0
th

phase. In this phase, we rewrite

the claims we wish to verify as polynomial equations. The extent to

which this is possible, and consequently the amount by which we

improve over previous results, depends strongly on the structure

of the claims. Note that GS proofs are particularly amenable to our

techniques, since the verification equation (3) uses a pairing ẽ that
has a polynomial interpretation for every instantiation from the

literature (cf. Appendix A).

To simplify the exposition, we assume at first that the claims

can be directly written as a single polynomial equation; the more

general case will be dealt with below in Sec. 4.3. This means that

we have N ′ = nT claims (over GT ) that can be jointly written as

m∑
i=1

αi · ẽ([®ai ]1, [®bi ]2)
?

= [®c]T (10)

for αi ∈ Zp , where ẽ : Gn1

1
×Gn2

2
→ GnT

T is a bilinear map which

admits a polynomial interpretation. The N ′ = nT claims overGT in

(10) then correspond to a single claim of themultivariate polynomial

identity

∑
i αiai · bi

?

= c. In the 0
th
phase, we choose a particular

polynomial interpretation (In general, there may be several choices

that perform differently in our batching scheme.).
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First Phase. We suggest to instantiate the first phase (in the lan-

guage of Sec. 4.1) by using the classical probabilistic polynomial

identity checking algorithm in the exponent, i.e. we verify

m∑
i
αi · e([ai (®s)]1, [bi (®s)]2)

?

= [c(®s)]T (11)

for a uniformly randomly chosen ®s ∈ Zµp (or more generally uniform

from a sufficiently large subset ®s ∈ Sµ ⊂ Zµp ), where µ is the number

of variables. We note that Eq. (11) can be evaluated by only m
applications of the basic pairing e . The evaluations at ®s correspond
to multi-exponentiations as explained in Sec. 3.1. For efficiency, we

evaluate first at ®s , then we multiply.

Let us write this out explicitly in terms of the basic pairing e .
For this, assume that we have a polynomial interpretation given by

pi ’s, qi ’s and ri ’s. Then Equation (11) becomes

m∑
i=1

αi · e
( n1∑
j1=1

pj1 (®s)[ai, j1 ]1,
n2∑
j2=1

qj2 (®s)[bi, j2 ]2
)

?

=

nT∑
jT =1

rjT (®s)[c jT ]T .

(12)

Here, [ai, j1 ]1, [bi, j2 ]2, [c jT ]T are the coefficients of [®ai ]1, [®bi ]2,
and [®c]T .

Soundness loss. We can easily compute the soundness loss in our

first phase using the Schwartz–Zippel lemma:

Theorem 4.1. Consider a set of nT claims (over GT ) of the form
Eq. (10) with some given polynomial interpretation. If all nT individ-
ual claims are true, then Eq. (11) holds for every choice of ®s ∈ Zµp , so
verification always succeeds. Conversely, assume that at least one of
the nT claims is false. Then, for a uniformly random choice of ®s ∈ Sµ ,
Eq. (11) only holds with probability (soundness error)

Pr

®s ∈S µ
[Verification succeeds | Some claim does not hold] ≤ d/|S |

over the choice of ®s ∈ Sµ , where d is the maximal degree of the
polynomials ri in the polynomial interpretation.

Proof. Since Eq. (10) corresponds to an equation in the space

of polynomials spanned by the ri ’s, the claim is an immediate

consequence of the Schwartz–Zippel lemma. □

As the soundness loss only depends on the size |S | of S , we
choose the set S such that it reduces the cost of exponentiations.

Second Phase. For the second phase (i.e. reorganizing the evalu-

ation), we suggest to use the heuristic techniques from Ferrara et

al. [26] as described in Sec. 4.1, starting from Eq. (11) (or, written

more explicitly, Eq. (12)).

4.3 Systems of Equations
In many cases, it may not be obvious or natural to write the claims

as a single polynomial equation. So consider the case that in the 0
th

phase, we do not write our claims as a single polynomial equation,

but rather as a system of equations. Concretely, we assume that our

N ′ claims (over GT ) can be written as a system of N equations

m(j )∑
i=1

α
(j)
i · ẽ

(j)([®a(j)i ]1, [®b
(j)
i ]2)

?

= [®c(j)]T for 1 ≤ j ≤ N (13)

where the superscript ranges over the N individual (composite)

equations. Each such composite equation uses a bilinear pairing

ẽ(j) : G
n(j )
1

1
× Gn(j )

2

2
→ G

n(j )T
T which admits a polynomial interpre-

tation given by bases {p(j)
1
, . . .}, {q(j)

1
, . . .}, {r(j)

1
, . . .}, which span

vector spaces of polynomials V
(j)
1

, V
(j)
2

, V
(j)
T . So the jth equation

corresponds to n
(j)
T equations overGT and we have N ′ =

∑N
j n
(j)
T .

Typically, ẽ(j) and the polynomial interpretation do not actually

depend on j. We emphasize that the “unstructured” case where

each ẽ(j) is just the basic pairing e is allowed and interesting. In

particular, writing the claims in the form (13) is always possible.

Via the polynomial interpretation, the set of claims (13) may be

viewed as a system of N polynomial equations

m(j )∑
i=1

α
(j)
i · a

(j)
i b(j)i

?

= c(j) for 1 ≤ j ≤ N (14)

for polynomials a(j)i ∈ V
(j)
1
, b(j)i ∈ V

(j)
2

, c(j) ∈ V (j)T .

To combine the equations, choose non-zero polynomials f (j) such
that the set of all f (j)r(j)i is linearly independent. Next, multiply the

jth equation with f (j), resulting in the equivalent system

m(j )∑
i=1

α
(j)
i · f

(j) · a(j)i b(j)i
?

= f (j) · c(j) for 1 ≤ j ≤ N . (15)

The jth equation is an equation in the space f (j) · V (j)T , which is

spanned by the f (j)r(j)i ’s. Since all f (j)r(j)i are linearly independent,

the system (14) is equivalent to the single polynomial equation

N∑
j=1

m(j )∑
i=1

α
(j)
i f (j) · a(j)i b(j)i

?

=

N∑
j=1

f (j)c(j), (16)

which we can then treat the same way as we described above.

We conclude that, in general, we need to choose in the 0
th

phase

a decomposition of the claims into N such “polynomial equations”,

polynomial interpretations for each of them together with polyno-

mials f (j) such that all f (j)r(j)i ’s that appear are linearly independent.

The efficiency of our batching strategy depends on these choices.

Indeed, a simple and natural way to ensure linear independence

of the f (j)r(j)i is choosing f (j) = Z j for variables Z j that did not

appear before. Another option is f (j) = Z j−1
for a new variable Z ,

which gives a slightly larger soundness error for k ≥ 3, but requires

less randomness. Depending on the structure of the equations, we

may also multiply by variables that are already present in the r(j)i ,

requiring even less randomness.

For GS proofs for systems of equations, the decomposition into

polynomial equations is completely natural andwe have polynomial

interpretations in every case of interest. For the f (j)’s, we will

always choose either fresh variables f (j) = Z j or f (j) = 1.

In the first and second phase, we proceed as before and test whether

N∑
j=1

m(j )∑
i=1

α
(j)
i f (j)(®s) · e

(
[a(j)i (®s)]1, [b

(j)
i (®s)]2

) ?

=

N∑
j=1

f (j)(®s)[c(j)(®s)]T

(17)
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holds for uniformly random ®s ∈ Sµ for a sufficiently large S ⊂ Zp .
Evaluating (17) can be done with

∑
jm
(j)

evaluations of e (or fewer,
if we can perform further optimizations in phase 2). As before, the

soundness error is bounded by
d
|S | , where d is the maximum total

degree of any fj r
(j)
i that appears in the polynomial interpretations.

Internal vs. external batching. Suppose we have N (composite)

equations as in (13), each of which all admit some (typically the

same) polynomial interpretation for its pairing ẽ(j). In such a situa-

tion, we distinguish internal and external batching.
By internal batching, we refer to the strategy we use to evaluate

a single equation using ẽ(j) under our chosen polynomial inter-

pretation. This corresponds to using our techniques in the way

described in Sec. 4.2 to each equation individually.

By external batching, we refer to the strategy we use to batch

the N equations into a single equation, i.e. the choice of the f (j).
The externally batched equation is then

N∑
j=1

m(j )∑
i=1

α
(j)
i f (j)(®s) · a(j)i b(j)i

?

=

N∑
j=1

f (j)(®s)c(j), or (18)

N∑
j=1

m(j )∑
i=1

α
(j)
i f (j)(®s) · a(j)i (®s)b

(j)
i (®s)

?

=

N∑
j=1

f (j)(®s)c(j)(®s), (19)

depending on whether we externally batch before or after internal

batching. Note that these operations commute. If we use indepen-

dent variables for internal and external batching, as we will do in

our examples, these steps are completely independent.

In other words: internal batching (essentially polynomial evalu-

ation) checks if a single equation with ẽ holds.
External batching only combines the N equations into one (and

does not touch the ẽ(j)’s).

4.4 Relation to Previous Work
Let us briefly discuss how our batching strategy fits into the frame-

work given by previous work and vice versa. First, let us express

previous previous work in our framework: The small-exponent

batching of [26] that we explained in Sec. 4.1 is actually a special

case of our approach if we choose S = {1, . . . , 2ℓ} and only perform
external batching. Namely, consider the case where every ẽ(j) = e
is just the basic pairing and the polynomial interpretation is trivial

(i.e. all p(j)i = q(j)i = r(j)i = 1). In this case, internal batching does

not do anything and we only perform external batching. The f (j)

take the role of the random linear combination that combines the

claims. In particular, (17) exactly corresponds to (9), where f (j)(®s)
corresponds to r (j). This gives an alternative direct proof for the

soundness error for the small exponent batching technique. In the

second phase, our techniques are the same, since we just use theirs.

However, we would like to emphasize that our approach is a

generalization even for the case of only external batching, because it

allows to analyze the casewhere the f (j) are algebraically dependent,
such as f (j) = Z j

for the jth equation. Our approach also suggests

an improvement over [26], which was already observed in [2]: we

may set one of the f (j)’s to be 1 and the rest to be Z j ’s. This still
ensures linear independence, but we save on exponentiations for

the equation where f (j) = 1.

Conversely, let us see how our polynomial evaluation batching

can be expressed in the framework given by previous work. First, we

remark that our batching strategy actually fits within the framework

in terms of phase 1 and phase 2 that we laid out in Sec. 4.1.

Indeed, polynomial evaluation at ®s in case of a single polynomial

equation is equivalent to the following: treat Eq. (10) as nT individ-

ual equations over GT , multiply the ith equation by ri (®s) and add

them up. For systems of polynomial equations, we need to multiply

by f (j)r(j)i (®s) instead. In this sense, polynomial evaluation fits phase

1. This also means that we may view our technique as a special case

of the Ferrara et al. [26] technique, where the randomness used to

combine equations is structured as f (j)r(j)i (®s).
We caution that strictly following the blueprint from Sec. 4 and

using Eq. (9) corresponds to verifying (in terms of polynomials)∑
j

∑
i
α
(j)
i f (j)(®s) ·

(
a(j)i b(j)i

)
(®s) ?=

∑
j

f (j)(®s)c(®s),

i.e. to first multiplying the polynomials a(j)i and b(j)i (using ẽ) and
then evaluating. By contrast, we actually evaluate them first and

then multiply (using e). These two different ways of computing

the same expression are in fact a reorganization of the resulting

equation, so our techniques add a step in the second phase as well.

This step is precisely enabled by the fact that our internal batching

strategy is compatible with the pairing and it is this step where our

improvements stem from.

4.5 Probabilistic Homomorphic Batching
In this section, we take a more abstract view on our techniques. For

brevity, we restrict our attention to internal batching.

Consider a (basic) bilinear group BG B (G1,G2,GT , e), where
for notational simplicity we drop the group order p and the gen-

erators P1,P2,PT from our notation. Consider a system of nT

claims of the usual form

∑m
i=1 αi ẽ([®ai ]1, [®bi ]2)

?

= [®c]T for some

ẽ : Gn1

1
×Gn2

2
→ BnTT . Defining B1 B Gn1

1
,B2 B Gn2

2
,BT B GnT

T ,

we may consider this as a single claim

∑m
i=1 αi ẽ(ai ,bi )

?

= c , where
αi ∈ Zp ,ai ∈ B1, bi ∈ B2, c ∈ BT over the bilinear group

BG′ B (B1,B2,BT , ẽ).9
The crucial property of our technique is that evaluation at a

point respects the pairing, i.e. f(®s)g(®s) = (f · g)(®s). In fancy terms,

evaluation at ®s is a homomorphism of bilinear groups.

Definition 4.2 (bilinear homomorphism). By Hom(BG′,BG), we
denote the set of triples ϕ• = (ϕ1,ϕ2,ϕT ) where ϕσ : Bσ → Gσ is

linear and ϕ• respects the pairing, i.e. e(ϕ1(a),ϕ2(b)) = ϕT (ẽ(a,b))
for all a ∈ B1, b ∈ B2. We call ϕ• a bilinear homomorphism.

BG′ : B1 × B2 BT

BG : G1 ×G2 GT

ϕ•

ẽ

ϕ1×ϕ2 ϕT
e

Any bilinear homomorphism allows us to transfer the verifica-

tion equation from BG′ to BG while preserving the structure of

the equations. The latter is the reason that verification in BG only

requiresm pairing evaluations. Note that, for GS proofs, ẽ needs

9
We deliberately write ai instead of [ ®ai ]1 , etc., to clarify that we do not want to treat

elements in Bσ as vectors in Gnσ
σ for i = 1, 2, T .
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to have the so-called projecting property [28], which exactly corre-

sponds to the existence of non-trivial bilinear homomorphisms.

This allows us to use what we call probabilistic homomorphic
batching: Randomly choose ϕ• ∈ H ⊂ Hom(BG′,BG) for appro-
priateH ⊂ Hom(BG′,BG), use ϕ• to transfer the equation from

BG′ to BG and verify in BG. For soundness, we need that for

any fixed 0 , c ∈ BT , the probability Prϕ•∈H[ϕT (c) = 0] is small.

This is only achievable for specific ẽ , e.g. if ẽ admits a polynomial

interpretation.

5 APPLICATIONS TO GROTH–SAHAI
PROOFS

The verification equation (3) of GS proofs in a bilinear group as in

Sec. 2.6 checks equality of nT equations in GT . In case we use GS

proofs for a system of equations, we use (as explained in Sec. 4.3)

internal batching to verify the nT equations of a single GS proof

and external batching to simultaneously verify the proofs of many

GS equations.

For all instantiations of GS proofs from the literature, there exists

a polynomial interpretation such that the verification equation can

be written as polynomial identity checking. This is explained in

more detail in Appendix A. Let {p1, . . . , pn1
}, {q1, . . . , qn2

}, and
{r1, . . . , rnT } be the chosen polynomial bases, and let X1, . . . ,Xµ
be the variables and S ⊆ Zp . We use this polynomial interpretation

of (Gn1

1
,Gn2

2
,GnT

T , ẽ) in each GS proof. For efficiency, we suggest

to use p1 = q1 = r1 = 1. We also suggest that one should choose

polynomial bases and ιi in the GS instantiation that fit together

well, e.g. so that ιG
1
([a]1)(®s) = [a]1, i.e. ιG

1
corresponds to mapping

(in the exponent) a ∈ Zp to the constant polynomial a ∈ Zp [ ®X ] as
in Ex. 5.1 below.

Thus, we are now in the situation of Sec. 4. We start explaining

how to batch a single GS verification equation, that is, we start with

internal batching. We use equation (20) where all pairings with ®y
are grouped. This is only for explanation. Our technique can be

applied to an equation optimized as in Sec. 2.6.4.

my∑
j=1

ẽ
(
[ai ]1 +

mx∑
i=1
[γi jx i ]1, [y j ]2

)
+

mx∑
i=1

ẽ([x i ]1, [bi ]2)

?

= [t]T +
k1∑
i=1

ẽ([®ui ]1, [ ®πi ]2) +
k2∑
i=1

ẽ([ ®θi ]1, [®vi ]2) (20)

We see that the number of ẽ-pairings is bounded bymx +my +

k1 + k2 + δt , where δt ∈ {0, 1}, but in practice it tends to be (much)

lower, since γi, j and ai , b j are 0 for many i, j. The term δt is 0

for pairing product equations and if t = 0. Otherwise, computing

ιT (t) = [t]T ∈ GnT
T from t ∈ AT may necessitate a pairing.

Now evaluate equation (20) at ®s ← Sµ . For this, we introduce
intermediate variables for the evaluation at ®s , namely

[âi ]1 = [ai (®s)]1 [x̂i ]1 = [xi (®s)]1 [ûi ]1 = [ui (®s)]1 (21)

and likewise for [θ̂i ]1, [b̂i ]2, [ŷi ]2, [v̂i ]2, [π̂i ]2, and [̂ti ]T .

The resulting, internally batched equation then looks like:

my∑
j=1

e

(
[âi ]1 +

mx∑
i=1
[γi j x̂i ]1, [ŷj ]2

)
+

mx∑
i=1

e([x̂i ]1, [b̂i ]2)

?

= [̂t]T +
k1∑
i=1

e([ûi ]1, [π̂i ]2) +
k2∑
i=1

e([θ̂i ]1, [v̂i ]2) (22)

Beyond efficiency improvements, an advantage of our technique

is that the resulting verification equation matches very closely the

original GS equation, which makes it conceptually easy to use and

analyze. For example, Blazy et al. [11] have different formulas for

each equation type. In our case, only the number of basic pairing

computations depends indirectly on the equation type, in the sense

that k1 and k2 are dependent on the equation type.

Another interesting observation is that the number of basic

pairings required to verify does not grow much with the size of the

underlying decisional assumptions, which only affects the terms

k1+k2. Concretely, this means that only two additional pairings are

required to verify a proof in the SXDH setting compared to the 2-Lin
setting. Indeed, one composite pairing maps to one basic pairing,

regardless of the arguments. In comparison, the technique of [11]

needs roughly min(n1,n2) basic pairings per composite pairing for

generic arguments. However, [11] exploits composite pairings of

vectors with [0] components to save basic pairings.

For concreteness, let us exemplify our techniques in the SXDH-
case, which is also the most important one in practice.

Example 5.1. Consider the SXDH instantiation in Sec. 2.6.5. For

the polynomial interpretation of (G2

1
,G2

2
,G2×2

T , ẽ), choose the one
in Ex. 3.2 (1), i.e. p1 = q1 = 1, p2 = X , q2 = Y . This means

[(a1,a2)]⊤1 =̂ [x1 + x2X ]1 and [(y1,y2)]⊤2 =̂ [y1 + y2Y ]2

and

(
[c1,1]T [c1,2]T
[c2,1]T [c2,2]T

)
=̂ [c1,1 + c2,1X + c1,2Y + c2,2XY ]T

The constants [ai ]1 ∈ G2

1
are computed as [(ai , 0)]⊤

1
= ιG

1
([ai ]1)

if A1 = G1 or ai [®u2 + ®e1]1 = ιZ
1
(ai ) if A1 = Zp . Likewise for A2

and [b j ]2. Remember that A1,A2,AT describe the equation type

(pairing product, multi-scalar, quadratic), cf. Sec. 2.6. For batching,

choose ρ,σ ∈ Zp and evaluate Eq. (20) at ®s = (ρ,σ ), i.e. X = ρ,
Y = σ . The intermediaries are

• [x̂i ]1 = [x i,1+ρx i,2]1 = [xi (®s)]1 and likewise for [®ui ]1, [ ®θi ]1,
and [ai ]1.
• [ŷj ]2 = [y j,1+σy j,2]2 = [yj (®s)]2 and likewise for [®vj ]2, [ ®πj ]2
and [aj ]2
• [̂t]T = [t1,1 + ρt2,1 + σt1,2 + ρσt2,2]T . For some AT and

t ∈ AT , this may need a pairing.
10

We have the following useful special cases:

• If Aσ = Gσ , then [âi ]σ = [ai ]σ .
• If A1 = Zp then only ι1(1)(®s) = [®u2,1 + ρ®u2,2]1 needs to be

computed (as explained in Sec. 2.6.4) and the same holds for

A2 = Zp .

10
This pairing corresponds to the term δt in the estimate for the number of pairings.

Session G4:  Voting CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1556



Symmetric instantiations. For symmetric GS instantiations we

proceed as above. The differences to the asymmetric instantiations

are more possibilities to optimize evaluation and shorter proofs.

The right-hand-side of the GS verification equation only needs

max(k1,k2) pairings instead of k1 + k2.

5.1 Batching Systems of GS Equations
For batching systems ofN GS verification equations (with each such

equation consisting ofnT equations overGT ), we use the techniques
from Sec. 4.3. Concretely, this means that we apply internal batching

to each of the N GS verifications individually (with the same ®s) as
explained in last section, resulting in N equations overGT . We then

batch the resulting equations by multiplying them with random

ri ∈ S for i > 1 and r1 = 1, and add them together. This corresponds

to choosing f (i) = Zi for i = 2 . . . ,N and f (1) = 1 in Sec. 4.3.
11

Since internal batching preserves the structure, each of the N
equations is of the form (22), whose left-hand side has the same

shape as the equation (2) for which we want to prove satisfiability.

Consequently, if some variables or coefficients are shared between

those equations, the same is true for the internally batched one

and this may allow us to combine some pairings, depending on the

structure of the system. However, we can always bound the number

of basic pairing evaluations by the total number of variables which

define the system of equations.

For the right-hand sides, since every equation has the same ®ui
and ®vj , we can always group them together. Note that the N equa-

tions might be of different types, i.e. the values k
(j)
1
, k
(j)
2

can vary

for each GS proof. Consequently, for the right-hand side we need at

mostmaxj (k(j)
1
)+maxj (k(j)

2
) evaluations of e for the terms with the

proofs plus the pairings necessary
12

to compute

∑N
j=1[ri t

(j)(®s)]T ,
independent of N and the number of variables or constants.

The left-hand side of our batched formula (22) matches the orig-

inal equation (not the GS verification equation) closely. Thus, one

can first externally batch the original equation and optimize the

expression, maybe with with an automated tool such as [2]. Then,

after essentially replacing the variables with the corresponding

intermediate values, (e.g. replacing [ai ]1 by [âi ]), and taking care of
the right-hand side, this yields a valid batch-verifier for GS proofs.

Precomputations. The evaluation point ®s (and also the ri ’s) can
be chosen before the verifier receives the proof. The verifier may

reuse the same ®s in the internal batching of several equations; we

do this anyway. In fact, the prover does not learn anything about s
from whether the verifier accepts a given proof (unless a dishonest

prover managed to cheat in that proof), because we can simulate

the verifier by doing a non-batched verification. Consequently, the

verifier can choose a (secret) ®s ahead of time and precompute [ûi ]1’s
and [v̂i ]2’s. If the constants in the equations are known a priori,

it may also precompute [âi ]1, [b̂i ]2 and [̂t]T ’s. After ®s was chosen,
the verifier can replace [®ui ]1 and [®vi ]2 by [ûi ]1 and [v̂i ]2, thereby
saving memory. We caution that ®s needs to be kept secret and this

optimization may lead to potential side-channel attacks.

11
We can use a different choice of f (i ) , but this one works well with small exponents.

12
This depends on the equation types, but it is at most two. For quadratic equations,

precomputing ιT (1) allows to “replace” the pairing by n1n2 exponentiations in GT .

5.2 Comparison with Blazy et al.
Blazy et al. [11] use the techniques of Ferrara et al. [26], work-

ing out the second phase for the case of GS verification equations.

The batching technique of Blazy et al. does not preserve the struc-

ture of the equations, as it is essentially small exponents batching.

Therefore, there are fewer opportunities to group elements, and

consequently, we obtain improvements over their results. A brief

comparison of the techniques is in Table 1.More details can be found

in Appendix B. Note that, if external batching is again amenable

to our techniques, higher efficiency gains are possible (w.r.t. small

exponents batching as in [11]). See App. B.3 for an example.

Blazy et al. [11] this work

SX
D
H

PPE mx + 2my + 8 mx +my + 4

ME1 min(2my + 9, 2mx +my + 7) min(mx ,my ) + 3
ME2 min(2mx + 9, 2my +mx + 7) min(mx ,my ) + 3
QE 2min(mx ,my ) + 8 min(mx ,my ) + 2

2
-
Li
n PPE 3m + 6 2m + 3

ME 3mx + 3my + 6 min(mx ,my ) + 3
QE 3m + 6 m + 3

Table 1: Number of pairings to verify an (internally) batched
GS proof. For simplicity, we assume evaluating [t(®s)]T needs
no pairings (δT = 0), e.g. since t = 0. For PPE and QE in the
symmetric 2-Lin GS instance, we writem =mx =my .

5.3 Example: P-signatures
Here we apply our techniques to the P-signatures of Belenkiy et

al. [6]. P-signatures were introduced in [6] and used to construct

anonymous credentials. For our purposes, it is only relevant that

they offer NIZK proofs of signature possession, which in [6] were

realized by GS proofs.

Blazy et al. choose P-signatures to exemplify the improvements

of their batching techniques in [11] to speed up verification of

proofs of P-signatures. Now we batch using our technique, and

compare the results. In our notation, the verification equations of a

proof of a P-signature in the SXDH instantiation are three PPEs

ẽ([x1]1, [b2 + y1 + y2]2) − [1]T
?

=

2∑
i=1

ẽ([®ui ]1, [ ®π (1)i ]2) +
2∑
i=1

ẽ([ ®θ (1)i ]1, [®vi ]2)

ẽ([x2]2, [1]1) − ẽ([a2]1, [y2]2)
?

=

2∑
i=1

ẽ([®ui ]1, [ ®π (2)i ]2) +
2∑
i=1

ẽ([ ®θ (2)i ]1, [®vi ]2)

ẽ([x3]1, [b3]2) − ẽ([a2]1, [y1]2)
?

=

2∑
i=1

ẽ([®ui ]1, [ ®π (3)i ]2) +
2∑
i=1

ẽ([ ®θ (3)i ]1, [®vi ]2)

We batch exactly as described in Sec. 5.1. That is, we batch the (re-

sulting) verification equations by multiplying the ith equation with

ri , where r1 = 1 and r2, r3 ← S , and we evaluate each individual

equation at ®s ← Sµ using a polynomial interpretation. Note that

for optimization, we use [̂1]T = ιGT ([1]T )(®s) = [1]T = e([1]1, [1]2).
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The formulas for the 2-Lin instantiation are essentially the same,

except that the sums range from 1 to 3 and the right-hand side of

the batched equation reflects this. For illustration, we show how a

batched P-signature proof for a single signature looks like using

our technique under the SXDH instantiation of GS proofs. In the

notation of (21), with polynomial interpretation being that of Ex. 5.1,

the batched equation is, on the left-hand side

e(−r1[1]1 + r3[x̂2]1, [1]2) + e(r1[x̂1]1, [b2 + ŷ1 + ŷ2]2)
+ e(r3[x̂3]1, [b3]2) + e(−[a2]1, [r3ŷ1 + r2ŷ2]2)

and on the right-hand side

e([û1]1, [r1π̂ (1)
1
+r2π̂

(2)
1
+r3π̂

(3)
1
]2)+e([û2]1, [r1π̂ (1)

2
+r2π̂

(2)
2
+r3π̂

(3)
2
]2)

+e([r1θ̂ (1)
1
+r2θ̂

(2)
1
+r3θ̂

(3)
1
]1, [v̂1]2)+e([r1θ̂ (1)

2
+r2θ̂

(2)
2
+r3θ̂

(3
2
]1, [v̂2]2).

The batched equation in [11] needs 2N + 11 pairings to verify

N signatures of the same signer. Our technique only needs N + 7
pairings. Moreover, we need about 1/3 fewer exponentiations in
G1 and about 1/2 fewer in G2. Sec. 7 contains timings of both

verification algorithms running on a modern smartphone. In the

full version [37], we give more details, formulas, estimates, and

consider signature verification with different signers.

6 APPLICATIONS TO MATRIX
MULTIPLICATION

Our techniques can be applied to do probabilistic checking of ma-

trix multiplication “in the exponent" with fewer pairing operations.

Since the introduction of the MDDH framework [25, 45], in which

standard decisional assumptions are written in terms of deciding

membership in the image of a matrix A, several protocols are writ-

ten in algebraic terms. For instance, in [42] the verification equation

of several constructions of structure preserving signature schemes

are written all in terms of vector-matrix operations in the exponent.

Other examples using this formulation are recent very efficient

constructions of (quasi-adaptive) NIZK proofs of membership in

linear spaces [33, 43].

6.1 Batch Verification of Matrix Multiplication

We first show how to interpret a matrix product claim AB ?

= C as a

polynomial identity claim. This follows from a well known result

of linear algebra, which writes matrix multiplication as a sum of

tensor products.

Lemma 6.1. Let A ∈ Zℓ×mp ,B ∈ Zm×np . For i = 1, . . . ,m, let

®ai ∈ Zℓp denote the ith column of A and ®bi ∈ Znp the transpose of the

ith row of B. Then, AB =
∑m
k=1 ®ak ®b

⊤
k .

Proof. Let A = (ai j ), B = (bi j ). The (i, j)-th coordinate of ®ak ®b⊤k
is aikbk j . Taking the sum over k = 1, . . . ,m, we obtain the formula

for matrix multiplication. □

As we have seen in Sec. 3, the tensor product, in this case from

Zℓp × Znp → Zℓ×np can be written as polynomial product. Now, we

use this view to address the following problem: given matrices

[Aj ] ∈ G
ℓ×mj
1

, [Bj ] ∈ G
mj×n
2

, [C]T ∈ Gℓ×n
T , verify if the claim

N∑
j=1

ẽ ′([Aj ]1, [Bj ]2)
?

= [C]T , (23)

holds, where ẽ ′([A]1, [B]2) = [AB]T . By the previous explanation,

this amounts to checking if

∑N
j=1

∑mj
i=1 ẽ([®a

j
i ]1, [®b

j
i ]1) = [C]T ,where

ẽ : Gℓ
1
×Gn

2
→ Gℓ×n

T is the tensor product, and ®aji is the i-th column

of Aj and ®b ji is the i-th row of Bj . Now, we take some polynomial

interpretation of the asymmetric tensor product, for instance, BP =
(p1, . . . , pℓ) = (1,X2, . . . ,Xℓ), BQ = (q1, . . . , qn ) = (1,Y2, . . . ,Yn )
and ri j B piqj as BR . Thus we interpret (23) as

N∑
j=1

mj∑
i=1

ẽ([aji ]1, [b
j
i ]1)

?

= [c]T

where ẽ is polynomial multiplication in the exponent, and aji , bji
and c, are, respectively, the polynomials associated to ®aji , ®b

j
i , C w.r.t.

BP , BQ , BR , e.g. c =
∑ℓ
i=1

∑n
j=1[ci j ]T ri j .

To batch verify, we evaluate the polynomials at a random point

in the set Sℓ+n−2. The required number of pairing operations is∑N
j=1mj . The number of exponentiations (assuming p1 = q1 = 1)

is (ℓ − 1)∑N
j=1mj in G1, (n − 1)

∑N
j=1mj in G2 and ℓn − 1 in GT 13

6.2 Comparison with Previous Work
Probabilistic matrix product verification is a well studied problem.

For instance, there is a well known probabilistic matrix verification

algorithm due to Freivalds [29]. It checks AB = C by testing AB®r =
C®r for r ← {0, 1}n and has soundness error 1/2. Note however that
the goal of these classical algorithms is to minimize the number

of multiplications in the finite field. When we look at the problem

in a bilinear group, we want to minimize the number of basic

pairing operations, even at the cost of increasing the number of

exponentiations. This means we do not care for the total number

of multiplications but only those which include multiples of the

entries of A and B.
Note that polynomial evaluation can be written as vector matrix

multiplication. Thus, an alternative description of our algorithm

is as follows: to verify AB ?

= C, check if ®u⊤AB®v ?

= ®u⊤C®v , for
some ®u, ®v sampled from some distribution given by the polynomial

interpretation. On the other hand, the standard small exponents

batching computes a linear combination of the equations and it is

not hard to see that both methods give essentially the same result

when min(ℓ,n) = 1.

Applying the small exponents test results inmin(ℓ,n)
( ∑N

j=1mj
)

pairing operations (e.g. if ℓ = min(ℓ,n) one moves the small ex-

ponents as exponentiations in G2 and groups all terms with the

same first argument in ẽ). If ℓ = min(ℓ,n), the test needs n∑N
j=1mj

exponentiations in G2 and if n = min(ℓ,n), it needs ℓ∑N
j=1mj ex-

ponentiations in G1.

13
The sum in GT should be computed as c(®s) = ∑ℓ

i=1 pi (®s)(
∑n
j=1[ci j ]T qj (®s)) ac-

cording to Horner’s rule. This way, all exponentiations inGT use exponents from S .
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6.3 Application Examples
In most application examples min(ℓ,n) = 1. For instance, in the

structure preserving signature schemes of [42], ℓ = 1 and n =
k + 1, where k depends on the security parameter, e.g. k = 1 if

the construction is based on the SXDH Assumption and k = 2 for

the Decisional Linear Assumption.
14

This is also the case for the

quasi-adaptive NIZK of linear spaces [33, 40, 43]. In all these cases,

our batching techniques make the number of pairing computations

independent of k .
In these examples, the concrete improvements w.r.t. small ex-

ponent batching are small (we save on exponentiations by taking

p1 = q1 = 1) but we think it is still interesting to give a general

method to batch these equation types, as opposed to manually hand-

crafting the verification equation. Also, our approach inherits the

advantages of the polynomial view analysis regarding the choice

of S .
We give an example of concrete improvement from the work of

González et al. [33, Sec. 5.1]. Let I be the identity matrix in Z2×2p . The

authors construct a NIZK proof that a set of commitments satisfy a

quadratic relation. The verification algorithm checks several linear

algebra equations which can be improved with our techniques.

Among them, the equation:

ẽ([®c]1, [ ®d]2)
?

= ẽ ′([θ ]1, [I]2) + ẽ ′([I]1, [π ]2). (24)

for vectors [®c]1 ∈ G2

1
, [ ®d]2 ∈ G2

2
and matrices [θ ]1 ∈ G2×2

1
, [π ]2 ∈

G2×2
2

. This case is particularly efficient since the discrete logarithm

of I is known, so all the exponentiations needed to evaluate the

right-hand side of (24) can be moved into a single argument of ẽ ′:

e([c1+r1c2]1, [d1+s1c2]2)
?

= e([θ11+r1θ21+s1θ12+r1s1θ22]1, [1]2)
+ e([1]1, [π11 + r1π21 + s1π12 + r1s1π22]2).

Thus, our techniques require only 3 basic pairings to verify the

claim. On the other hand, for the small exponent test, even if using

the same trick we require 6 basic pairings.

7 PERFORMANCE EVALUATION
In order to evaluate the benefits of our techniques in a real-world

application, we implemented the verification of P-Signatures [6]

and of a BeleniosRF vote [19]. We chose a modern smartphone

as our target platform to exemplarily evaluate the impact of our

techniques. For P-Signatures, we also implemented an optimization

proposed by Blazy et al. [11] and compare the results with our

novel techniques. In case of the BeleniosRF system, the comparison

is more intricate. Chaidos et al. [19] suggest the use of batching

techniques and provide the amount of pairings for their batched

result; but they do not provide the actual batched equations.

7.1 Implementation Details
We implemented the verification algorithms of all schemes in C

using the RELIC toolkit v.0.4.1 [4]. We configured RELIC to utilize

254-bit order Baretto-Naehrig curves Fp254BNb and Fp254n2Bnb
by Aranha et al. [41], optimal Ate parings for maximum speed, and

the left-to-right windowed NAF multiplication.

14
To be precise, k depends on the decisional assumption that one uses, following the

Matrix Diffie-Hellman framework of [25].

Operation Execution Time

Scalar multiplication in G1 (small exp) 0.73 ms

Scalar multiplication in G2 (small exp) 1.73 ms

Scalar multiplication in G1 1.13 ms

Scalar multiplication in G2 2.41 ms

Pairing evaluation 5.48 ms

Table 2: Average execution times of the basic operations.

Verification Algorithm Execution Time [ms]

Blazy et al. (original) 167.43

Blazy et al. (optimized) 154.96

This work 105.77

This work (t1 = 1) 100.96

Table 3: Execution times of our implemented P-Signature
verification algorithms.

Our target platform is a OnePlus 3 smartphone featuring a Snap-

dragon 820 Quad-Core CPU (2×2.15 GHz & 2×1.6 GHz) and 6GB

RAM, running Android 7.1.1 (Nougat).

Table 2 shows the average execution times of basic operations

in the groups G1 and G2 and of a pairing computation. Since we

use elliptic curves the measured operation in G1 and G2 is scalar

point multiplication The scalars used for the measurements were

random 82-bit for the small exponents (as used for batching) and

random 254-bit exponents, indicating the performance gain in small

exponents. Note that computing a pairing takes only about the 8-

fold time of a small scalar multiplication in G1, and merely the

3-fold time of a small scalar multiplication inG2. Thus, the number

of pairings alone is not a good runtime estimate, as a high amount

of group operations can outweigh the pairing computations.

Our implementation uses random inputs, since we are only in-

terested in the execution times of the verification algorithms.

7.2 P-Signatures
Table 3 shows the average execution times of the implemented

algorithms. P-Signatures optimized with our techniques are in the

best case about 40% faster than P-Signatures optimized with the

techniques of Blazy et al. Note that we slightly improved Blazy’s

approach. For details, see the full version [37].

7.3 Belenios Receipt Free Voting Scheme
The BeleniosRF system immensely benefits from our new tech-

niques. For details on the batching process, see Appendix C. In

Table 4, we show the number of pairings required for different

choices of the parameter k as well as the average execution times of

the verification algorithm. The percentual improvement is based on

the mathematical comparison, i.e. the number of pairings. However,

getting comparable execution times for this application is difficult.

Simply scaling the average execution time of a single pairing does
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k 1 5 10 25

#pairings ([19]) 144 160 180 240

#pairings (this work) 8 12 17 32

Improvement 94.4% 92.5% 90.5% 86.7%

Min. exec. time for [19] 789 876 986 1315

Est. exec. time for [19] 1482 2284 3174 4971

Exec. time (this work) 82.36 171.32 299.82 662.85

Table 4: Comparison of the different versions of the Bele-
niosRF voting scheme verification algorithm. All execution
times are in milliseconds.

not result in a directly comparable timing. As we showed in Sec-

tion 7.1, the basic group operations are, compared to a pairing,

faster by only a small factor, but numerous group operations are

required to compute the inputs for the remaining pairing functions.

In addition, Chaidos et al. use GS proofs along with QANIZK

proofs, which cost significantly less group operations.
15

Therefore,

Table 4 contains the minimum execution time on our platform and

an estimation for a more realistic execution time. The minimum

execution time is computed by multiplying the plain amount of

pairings with the average execution time of a pairing. Note that

this is an overly optimistic approximation, since it represents an

implementation which does not have to compute anything beyond

the pairings themselves. We estimate a more realistic execution

time by scaling our execution times according to the percentual im-

provements. This estimation is still not perfect due to the QANIZK

proofs, however, we expect this estimation to be much closer to a

realistic value than the lower bound.

Regardless of the aforementioned difficulties, optimizing the

BeleniosRF scheme highlights the application-specific improvement

potential. We are able to improve from 4k + 140 to k + 7 pairings, a
gain of up to 86-95% in execution time regarding the parameter set

k ∈ {1, 5, 10, 25}.
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APPENDIX
A A POLYNOMIAL VIEWPOINT FOR ANY GS

INSTANTIATION
Herold et al. [36] introduced the polynomial view to derive instanti-

ations of GS proofs with a more efficient map ẽ , and they introduced
new instantiations of GS proofs which were already given in the

polynomial language. In this section, we show that, for all instantia-

tions of GS proofs in the literature, the pairing ẽ : Gn1

1
×Gn2

2
→ GnT

T
can be interpreted as polynomial multiplication.

Groth and Sahai [35] originally proposed two prime order in-

stantiations, one in asymmetric bilinear groups based on the SXDH
Assumption and the other one in symmetric groups under the de-

cisional linear (or 2-Lin) assumption. These were generalized to

different assumptions in bilinear groups and different bilinear maps

ẽ in several works [25, 49]. In Table 5 below we give a list of all

the instantiations of GS proofs given in the cryptographic litera-

ture. The table specifies the dimensions of the commitment spaces

n1,n2, the decisional assumption they are based on and the choice

of bilinear map e : Gn1

1
×Gn2

2
→ GnT

T .

The tensor product and the symmetric tensor product have al-

ready been discussed in Examples 3.2 and 3.3. The last two maps

were already given in polynomial language. On the other hand,

ẽ([x], [y]) = [ 1
2
(xy⊤ +yx⊤)]T is like the symmetric tensor product

except that the image of the map ẽ does not spanGnT
T . However, this

just means that some elements in the image always appear twice

and are redundant. After we remove them (as is allowed by our def-

inition of polynomial interpretations), this is exactly the symmetric

tensor product again with BP = BQ = {p1 = 1, p2 = X1, p3 = X2}
and BR B {ri j = pipj } (in which case, ri j = rji ).

As we saw in Sec. 3, the choice of polynomial view affects the

number of exponentiations necessary to compute batching. We

note that for the maps of [36] given in polynomial language, the

choices of BP , BQ and BR are not always the most efficient for our

applications. For instance, for the 2-Lin Assumption, [36] sets BP =
BQ = {−X2,−X1,X1X2}, but an alternative and more efficient poly-

nomial view compatible with this assumption is the usual choice

for the symmetric tensor product, namely, BP = BQ = {1,X1,X2}.

B COMPARISONWITH BLAZY et al.
In this section, we compare batching GS proofs as in [11] with our

technique. We use the notation of Sec. 5.2. Instead of considering

all strategies of Blazy et al., we restrict to the strategy which only

uses exponentiations in G1.
16

16
There are cases where Blazy et al. save pairings by exponentiating inG2 . Essentially,

this is done by grouping all pairings with xi first (contrary to Eq. (25)). Thus our
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Scheme Bilinear Group Type n1,n2,nT Bilinear Map

and

Decisional Assumption

[GS08] [34] Type III n1 = n2 = 2 Tensor Product

SXDH nT = 4 ẽ([®x]1, [®y]1) = [®x ®y⊤]T
[GS08] [34] Type I n1 = n2 = 3

2-Lin nT = 9, n′T = 6 ẽ([®x], [®y]) = [ 1
2
(®x ®y⊤ + ®y®x⊤)]T

[EHKRV13] [25] Type I n1 = n2 = k + 1

Dk -MDDH nT = (k + 1)2, n′T =
k (k+1)

2
ẽ([®x], [®y]) = [ 1

2
(®x ®y⊤ + ®y®x⊤)]T

[Seo12] [49] Type I n1 = n2 = 3 Symmetric

U2-MDDH nT = 6 Tensor Product

[HHHRR14] [36] Type I n1 = n2 = 3, nT = 5 Polynomial Multiplication

S2-MDDH BP = BQ = {1,X ,X 2}
[HHHRR14] [36] Type I n1 = n2 = k + 1, Polynomial Multiplication

Dk -MDDH nT (depending on Dk ) BP = BQ (depending on Dk )

Table 5: List of GS instantiations in the cryptographic literature. In the new instantiations in [36] the pairing ẽ is already
expressed as polynomial multiplication. n′T denotes the dimension of the span of the image if ẽ is not surjective.

B.1 SXDH instantiation
In this section, we consider the SXDH instantiation of GS proofs

from Sec. 2.6.4. Our notation is as in Section 2.6. A commitment

is an element [(c1, c2)]1 ∈ G2

1
, so we view [x i ]1 lying in G2

1
. and

[y j ]2 ∈ G2

2
. In [11] the elements inG2×2

T are treated as mere vectors

and they do not have a polynomial interpretation.

Their batched term for the left-hand side of Eq. (3) for a pairing

product equation is

my∑
j=1

e

(
2∑

k=1

(
rk,1(

mx∑
i=1

γi, j [x i,k ]1) + [ai,k ]1, [y j,1]2
))

+

my∑
j=1

e

(
2∑

k=1

(
rk,1(

mx∑
i=1

γi, j [x i,k ]1) + [ai,k ]1, [y j,2]2
))

+

mx∑
i=1

e

(
2∑

k=1

rk,2[x i,k ]1, [bi,2]2
)
.

Note that [ai,2]1 and [bi,2]2 are zero, see Ex. 5.1.17 Thus, the left-
hand side needsmx + 2my pairings for “internal” batching à la [11],

while we needmx +my . The numbers and expressions are different

for multiscalar and quadratic equations, since Blazy et al. [11] use

knowledge of discrete logarithms as noted in Sec. 2.6.4.

For our batching, we consider the (internally batched) equation

my∑
j=1

e

(
[âi ]1 +

mx∑
i=1
[γi j x̂i ]1, [ŷj ]2

)
+

mx∑
i=1

e([x̂i ]1, [b̂i ]2)

?

= [̂t]T +
k1∑
i=1

e([ûi ]1, [π̂i ]2) +
k2∑
i=1

e([θ̂i ]1, [v̂i ]2) (25)

techniques are also improved in such cases. Note that, according to the timings in

Sec. 7, Table 2, changing 5
1

2
exponentiations fromG1 toG2 is as expensive as a pairing.

17
Blazy et al. [11] use the map ιGi ([a]) = [a ®e2] instead of [a ®e1]. But the influence on

the formulas is trivial and estimates are unchanged.

as our evaluation strategy. The number of pairings for all equation

types is listed in Table 1. A complete comparison between costs of

the techniques of Blazy et al. [11] is in the full version [37].

B.2 2-Lin instantiation
Now we consider the symmetric 2-Lin instantiation with symmetric

pairing ẽ . We suppose that k1 ≥ k2 and ®ui = ®vi for i = 1, . . . ,k2,
and we use the (shorter) symmetric proof. Then, compared to [11],

we need roughly one third of the number of pairings. Except for

pairing product equations, where it is roughly half the number of

pairings. This is due to an optimization wrt. constants inG1 andG2.

See Table 1 for the estimated number of pairings. For more details,

see the full version [37].

B.3 The impact of structure: An example
In this section, we reconsider the pairing product equation from

the introduction, namely

e([x1]1, [y1]2)
?

= [t1]T e([x1]1, [y2]2)
?

= [t2]T
e([x2]1, [y1]2)

?

= [t3]T e([x2]1, [y2]2)
?

= [t4]T .
(26)

But instead of verifying equations (26), we assume that we want to

verify a GS proof of it. We will see that our techniques are applicable

twice, since our GS batching preserves structure. We compare this

to standard small exponents batching of GS proofs (as employed

in [11]).

Now suppose we have GS proofs proving that the openings [x1]1,
[x2]1, [y1]2, [y2]2 of the respective commitments [x1]1, [x2]1 ∈
G2

1
and [y

1
]2, [y2]2 ∈ G2

2
satisfy equation (26). Since, as noted in

Sec. 5.1, the batched right-hand side (RHS) has constant costs (i.e. a

constant number of pairings), independent of the number of batched

equations,
18

we will only consider the left-hand side (LHS).

18
This holds true for batching as in [11], with higher constant costs.
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In this example, our batching techniques can be applied twice:

First, we apply internal batching, as in Sec. 5. This yields inter-

mediate variables [x̂1]1, [x̂2]2 ∈ G1, and [ŷ1]2, [ŷ2]2 ∈ G2, and

[̂ti, j ]T ∈ GT , which essentially satisfy the original equations (ex-

cept for the GS proof terms on the RHS). Using the batching tech-

nique from the introduction as external batching, we only need a

single pairing to check the LHS of the fully batched equation.

On the other hand, Blazy et al. [11] propose to batch each equa-

tion individually, and sum them up. In our language, they batch the

full set of (basic pairing) equations externally, using the standard

short exponent batching. A simple computation shows, that this

costs 4 pairings (for the LHS).

Now suppose that multiple equations of the form (26) have to

be verified. Then the costs of the LHS dominate, and our technique

is about 4 times faster than that of Blazy et al.

C BELENIOS RECEIPT FREE VOTING SYSTEM
C.1 General Remarks
The whole system in [19] depends on a parameter k . (This parame-

ter is not to be confused with k1,k2 associated to GS instantiations.)
A vote is a messagem = (m1, . . . ,mk ) ∈ {0, 1}k . The parameter

k should be set according to the number of candidates supported,

which is k or 2
k
depending on how it is used in a bigger protocol,

more specifically, depending on whether votes are homomorphi-

cally added or shuffled. The paper implements several values of k
(namely k = 1, 5, 10, 25) on different platforms (see Table 1, p. 1623).

However, the timings are encrypting, signing and for computing

GS proofs, not their verification. The authors claim that the num-

ber of pairings for verification is 4(k + 35) using suitable batching
techniques. However, see Sec. C.5 for more on these numbers.

The basic verification process works in the following way: The

verification algorithm receives [(c1, c2, c3)]1, C, π , [(σ1,σ2,σ3)]1
where [(c1, c2, c3)]1 ∈ G3

1
is the ciphertext, and C are a set of GS

commitments, and π is a set of GS proofs that these commitments

satisfy certain relations. All other elements in the verification equa-

tions below are public parameters. They will be named essentially

as in [19] for comparability (except that the generator of Gi is not

дi as in [19] but Pi = [1]i ). We define them as they appear. The GS

instantiation is the SXDH instantiation from Sec. 2.6.5.

We split the verification process into two parts:

• Part I : Verification of GS proofs.

• Part II: Verification of a signature.

C.2 Part I
In an honest execution, the commitments

C =
(
{[c1,m,i ]1, [c2,m,i ]2}i=1, ...,k , [cT ]1, [cr ]2}

)
should open to the following values:

• For i = 1, . . . ,k , [c1,m,i ]1 = [(c11,m,i , c
2

1,m,i )]1 ∈ G2

1
, and

[c2,m,i ]2 = [(c12,m,i , c
2

2,m,i )]2 ∈ G2

2
, are commitments to

mi ∈ {0, 1} (in different groups).

• [cr ]1 = [(cr,1, cr,2)]1 ∈ G2

2
is a commitment inG2 to r , where

r = dlogP1 ([c1]1) = c1.
• [cT ]1 = [(cT ,1, cT ,2)]1 ∈ G2

1
is a commitment inG1 to [rX1]1,

where [X1]1 is some public element.

The proof

π =
(
{[®θi,eq]1, [ ®πi,eq]2}i=1, ...,k , {[®θi,quad]1, [ ®πi,quad]2}i=1, ...,k ,

[ ®θ
hash
]1, {[®θT ]1, [ ®πT ]2}, [ ®θV ]1[ ®θr ]1

)
consists of several subproofs and shows that the commitments are

defined as described above. Namely, it consists of GS proofs of the

following statements. For convenience, we use [ ®u ′]1 B ιZ
1
(1) =

[®u2 + ®e1]1 and [ ®v ′]1 B ιZ
2
(1) = [®v2 + ®e1]1

(1) For all i = 1, . . . ,k , the commitments [c1,m,i ]1 and [c2,m,i ]2
open to the same valuemi ∈ Zp . This is proven with GS proofs.

For this, the verifier checks for each i = 1, . . . ,k if:

ẽ([c1,m,i ]1, [ ®v ′]2) − ẽ([ ®u ′]1, [c2,m,i ]2)
?

= ẽ([®u1]1, [ ®πi,eq]2) + ẽ([ ®θi,eq]1, [®v1]2)
(2) For all i = 1, . . . ,k , the commitment [c1,m,i ]1 opens to xi

and [c2,m,i ]2 opens to yi such that xi (yi − 1) = 0. For each

i = 1, . . . ,k the verifier checks if:

ẽ([c1,m,i ]1, [®c2,m,i − ®v ′]2)
?

= ẽ([®u1]1, [ ®πi,quad]2) + ẽ([θi,quad]1, [®v1]2)
The previous two proofs together imply thatmi ∈ {0, 1}.

(3) Prove that

c2 = r [P]1 + [γ0]1 +
k∑
i=1

mi [γi ]1 ,

where the [P]1, [γi ]1 ∈ G1 are public values (this is essentially

Waters’ hash function) and r is the value committed in [cr ]2.
This corresponds to the following verification equation:

ẽ

((
[P]1
[0]1

)
, [cr ]2

)
+ ẽ

((
[γ0]1
[0]1

)
, [ ®v ′]2

)
+

k∑
i=1

ẽ

((
[γi ]1
[0]1

)
, [®c1,m,i ]2

)
?

=ẽ

((
[c2]1
[0]1

)
, [ ®v ′]2

)
+ ẽ([ ®θ

hash
]1, [®v1]2)

This equation is one-sided linear. Thus, we used an optimized

GS proof which has no proof term inG2. Further, [ ®θhash]1 is of

a special form, namely [ ®θ
hash
]1 =

(
[θ
hash,1]1
[0]1

)
.

(4) Prove that [cT ]1 opens to a value w and cr to r , such that

w = X r
1
. The verification equation is of the following form:

ẽ

((
[X1]1
[0]1

)
, [cr ]2

)
− ẽ([cT ]1, [ ®v ′]2)

?

= ẽ
(
[®u1]1, [ ®πT ]2

)
+ ẽ([ ®θT ]1, [®v1]2)

(5) Prove that [c3]1 = r [H (vk)]1, where H is a collision resistant

hash function and vk the verification key of the signature

scheme. The verification algorithm checks if:

ẽ

((
[H (vk)]1
[0]1

)
, [cr ]2

)
?

= ẽ

((
[c3]1
[0]1

)
, [ ®v ′]2

)
+ ẽ([ ®θV ]1, [®v1]2)

Further, [ ®θV ]1 is of a special form, namely [ ®θV ]1 =
(
[θV ,1]1
[0]1

)
.

(See item 3 for the explanation.)

(6) Prove that r [1]1 = [c1]1, i.e. r = c1, where r is the value com-

mitted in cr . The verification algorithm checks if:

ẽ

((
[1]1
[0]1

)
, [cr ]2

)
= ẽ

((
[c1]1
[0]1

)
, [ ®v ′]2

)
+ ẽ([ ®θr ]1, [®v1]2)
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Further, [ ®θr ]1 is of a special form, namely [ ®θr ]1 =
(
[θr,1]1
[0]1

)
.

(See item 3 for the explanation.)

Remark C.1. The proof of item 4 is the only equation where [®cT ]1
appears. We do not use dual mode commitments for [®cT ]1 but simply
ElGamal encryption because the equation is “right-simulatable”, see
e.g. [24] for justification.

C.3 Part II
This part of verification is to check a signature. We have to check

e([σ1]1, [д2]2)
?

= e([c1]1,σ4)
e([σ2]1, [д2]2)

?

= e([z]1, [X2]2) + e([c2]1, [σ4]2)
e([σ3]1, [д2]2)

?

= e([[д1]1, [σ4]2)
e([σ5]1, [д2]2)

?

= e([[P]1, [σ4]2)

This can be written as

ẽ2

©­­­«
©­­­«
[σ1]1
[σ2]1
[σ3]1
[σ5]1

ª®®®¬ , [д2]2
ª®®®¬

?

= ẽ2

©­­­«
©­­­«
[c1]1
[c2]1
[д1]1
[P]1

ª®®®¬ , [σ4]2
ª®®®¬+ẽ2

©­­­«
©­­­«
[0]1
[z]1
[0]1
[0]1

ª®®®¬ , [X2]2
ª®®®¬ , (27)

where ẽ2 : G
4

1
×G2 → G4

T is defined as

ẽ2

©­­­«
©­­­«
[a]1
[b]1
[c]1
[d]1

ª®®®¬ , [f ]2
ª®®®¬ =

©­­­«
e([a]1, [f ]2)
e([b]1, [f ]2)
e([c]1, [f ]2)
e([d]1, [f ]2)

ª®®®¬ .
C.4 Batching

Part I. Choose small exponents for internal batching, namely

r1 = s1 = 1 and random r2, s2 ← {0, . . . , 282 − 1}. Use the polyno-
mial interpretation of Ex. 5.1. That is, apply the linear maps G2

1
∋

[(x1,x2)]1 7→ [x1+r2x2]1 ∈ G1, and [(y1,y2)]2 7→ [y1+s2y2]2 ∈ G2,

and G2×2
T ∋ ([zi, j ]T )i, j 7→

∑
2

i, j=1 risj [zi, j ]T . This yields the inter-
mediate variables we write as [̂c1,m,i ]1, and so on. (Note that if the

second component is zero then the linear map does nothing, e.g.

for [θV ]1 we get [θ̂V ]1 = [θV ,1]1.)
In total, for Part I, we need to verify 2k + 3 equations. We do

not batch the equations for Parts I and II together, because they

have disjoint variables and this does not help to reduce the number

of pairings. In fact, batching them together only incurs additional

exponentiations.

Using external batching, we combine all equations of Part I into

a single equation. Namely we let S B {0, . . . , 282 − 1}. and we

sample random small coefficients, where for item 1 we use ai ← S ,
for item 2 we use bi ← S , i = 1, . . . ,k and for items 3,4,5 and 6

we use t1 = 1, and t2, t3, t4 ← S . Then we compute the random

linear combination of these claims and optimize the evaluation by

applying the rules of Ferrara et al. The result is following equation:

k∑
i=1

e
(
[−aiû ′ + bi ĉ1,m,i + γi ]1, [̂c2,m,i ]2

)
+ e

( [ k∑
i=1
(ai − bi )̂c1,m,i + γ0 + c2 − t2cT + t3c3

]
2
, [v̂ ′]2

)
+ e

(
[P + t2X1 + t3H (vk + t4)]1, [̂cr ]2

)
?

= e
(
[û1]1,

[ k∑
i=1

ai π̂i,eq +
k∑
i=1

bi π̂i,quad + t2π̂T
]
2

)
+ e

( [ k∑
i=1

ai θ̂i,eq +
k∑
i=1

bi θ̂i,quad+θ̂hash + t2θ̂T + t3θ̂V + t4θ̂r
]
1
,

[v̂1]2
)
. (28)

Part II. Choose additional small exponents r3, r4 ← S . Here we
use the technique of Sec. 6. That is, we essentially multiply equa-

tion (27) by ®ρ = (r2, 1, r3, r4). (We use this instead of (1, r2, r3, r4)
for efficiency). Thus we compute [σ̂ ]1 = ®ρ[(σ1,σ2,σ3,σ5)]⊤

1
, and

[x̂]2 = ®ρ[(c1, c2,д1, P)]⊤
2
and [̂z]1 = [z]1. We check if

e([σ̂ ]1, [д2]2)
?

= e([x̂]1, [σ4]2) + e([z]1, [X2]2) (29)

holds.

Total number of pairings. For Part I we need k + 4 pairings. for
Part II we need 3. Thus in total, we need k + 7 pairings.

Soundness. Soundness loss is 3/282 < 2
−80

for this choice of S .

C.5 A note on the numbers
We contacted the authors of [19] to learn the details of their ver-

ification optimizations. They use the QANIZK proofs from [33]

rather than GS proofs for proving that the commitments [ci,m,1]1
are bit commitments. The remaining equations are proven with GS

proofs and verification is improved with the batching techniques

of Blazy et al. [11].

The authors communicated a better batching formula for the GS

equations improving the total cost from 4k +140 to 3k +86 pairings.
Building on their result and adding external batching, we could

improve it to 3k + 63 pairings. Here, the GS proofs cost k + 11 and
the QANIZKs 2k + 52.

These numbers are derived without using any batching tech-

niques for the verification of the QANIZK proof. If we apply our

results, we can reduce the verification costs of the proof of [33]

that [ci,m,1]1 are bit commitments from 2k + 52 down to 2k + 22
pairing evaluations. This is still worse than our results with only

GS proofs, which needs k + 7 pairings in total. It is interesting that

while the QANIZK proof has very small size (constant), it is less

amenable to batch verification and should be avoided when the

goal is to minimize verification complexity.

We also evaluated how well batching as in [11] performs when

only GS proofs and no QANIZKs are used. After several attempts,

and carefully using the “linear properties” of [11], we achieved 2k +
11 pairings. This is still better than the QANIZK approach. Arguably,

this illustrates how difficult it is to find the right verification formula

with the approach of [11] without automated tools.

Session G4:  Voting CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1564


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Notation: Implicit Representation
	2.3 Pairing-based Claims and Batch Verifiers
	2.4 Computational Assumptions
	2.5 Schwartz–Zippel Lemma
	2.6 Overview of Groth–Sahai Proofs

	3 Polynomial View of Composite Pairings
	3.1 Polynomial Identity Checking in the Exponent

	4 Batch Verification Techniques for Pairing-Based Claims
	4.1 Previous Work
	4.2 Our Techniques
	4.3 Systems of Equations
	4.4 Relation to Previous Work
	4.5 Probabilistic Homomorphic Batching

	5 Applications to Groth–Sahai Proofs
	5.1 Batching Systems of GS Equations
	5.2 Comparison with Blazy et al.
	5.3 Example: P-signatures

	6 Applications to Matrix Multiplication
	6.1 Batch Verification of Matrix Multiplication
	6.2 Comparison with Previous Work
	6.3 Application Examples

	7 Performance Evaluation
	7.1 Implementation Details
	7.2 P-Signatures
	7.3 Belenios Receipt Free Voting Scheme

	Acknowledgments
	References
	A A Polynomial Viewpoint for any GS Instantiation
	B Comparison with Blazy et al.
	B.1 SXDH instantiation
	B.2 2-Lin instantiation
	B.3 The impact of structure: An example

	C Belenios Receipt Free Voting System
	C.1 General Remarks
	C.2 Part I
	C.3 Part II
	C.4 Batching
	C.5 A note on the numbers




