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ABSTRACT

We introduce identity-based format-preserving encryption (IB-FPE)
as a way to localize and limit the damage to format-preserving en-
cryption (FPE) from key exposure.We give de�nitions, relations be-
tween them, generic attacks and two transforms of FPE schemes to
IB-FPE schemes. As a special case, we introduce and cover identity-
based tweakable blockciphers. We apply all this to analyzeDFF, an
FPE scheme proposed to NIST for standardization.

1 INTRODUCTION

Schemes for format-preserving encryption (FPE) have been stan-
dardized [19] and are inwidespread use for the encryption of credit-
card numbers. Towards limiting the damage from key exposure,
we introduce identity-based FPE (IB-FPE). We provide a provable-
security treatment involving de�nitions, attacks and two design
paradigms. We apply this to analyze DFF [36], an FPE scheme pro-
posed to NIST for standardization.

FPE. Format-preserving encryption (FPE) originates with [10, 13].
An FPE scheme F speci�es a deterministic encryption function F.E

: {0, 1}F.kl × F.TS × F.Dom → F.Dom that takes a F.kl-bit key J ,
a tweakT and a message X to return a ciphertext Y = F.E(J ,T ,X ).
There is a corresponding decryption function F.D : {0, 1}F.kl×F.TS
× F.Dom→ F.Dom such that the maps F.E(J ,T , ·), F.D(J ,T , ·) are
permutations over F.Dom that are inverses of each other. What
makes FPE special is that the domain F.Dom can be arbitrary and
in particular very small. Some examples are F.Dom = {0, 1}8 —
encrypt a byte so that the ciphertext is also a byte— F.Dom = Z410
—encrypt a 4 digit PIN so that the ciphertext is also four decimal
digits— F.Dom = Z1610 —encrypt a 16-digit credit-card number so
that the result is also a 16-digit credit-card number. FPE is moti-
vated by legacy constraints which in many systems mandate that
the ciphertext replace the plaintext, and must thus have the same
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“format" as the plaintext. Tweakable blockciphers [27] are the spe-
cial case where F.Dom = {0, 1}F.bl for some integer F.bl called the
block length.

The canonical metric of security for an FPE scheme F is prp se-
curity [10, 26]. The game picks a challenge bit b and random key
J ∈ {0, 1}F.kl. For each tweak T it also lets Π(T , ·) be a random
permutation over F.Dom. The adversary A can ask for encryp-
tion under a tweak T and message X of its choice, being returned
F(J ,T ,X ) if b = 1 or Π(T ,X ) if b = 0, and similarly for decryption.

FPE is not easy to build. Today the most practical approach is
Feistel with strong —AES-based— round functions and a number
of rounds r ≥ 8. NIST SP 800-38G [19] standardizes two such
schemes, FF1 (r = 10) and FF3 (r = 8). Recent attacks [7, 17] sug-
gest that it would be good to increase the number of rounds when
the inputs are very short, but this is largely orthogonal to our work.

Corporations o�ering FPE-based products include HPE Voltage,
Verifone, Protegrity, Ingenico, Thales/Vormetric andGemalto. Tens
of millions of credit-cards have been encrypted with these prod-
ucts.

IB-FPE.We de�ne an identity-based FPE (IB-FPE) scheme as a pair
(F,KDF) consisting of a (base) FPE scheme F and an associated key-
derivation function KDF. The latter takes a master key K and iden-
tity I to (deterministically) return a key J = KDF(K , I ) ∈ {0, 1}F.kl
for I to use with F.

In the traditional usage of an FPE scheme F, an organization
would have a single key K for F stored at many di�erent devices
(for example, point-of-sale terminals) that each encrypts directly
underK . But each device is at some risk of compromise due to phys-
ical, insider or side-channel attacks. Compromise of even one de-
vice (which could be quite likely) then has the global consequence
of exposure of K . IB-FPE allows us to localize, and thus limit, the
damage from key exposure. With IB-FPE, we can associate an iden-
tity I to a device and delegate to it the derived key JI = KDF(K , I ),
allowing the device to (e�ectively) encrypt under K without ac-
tually having K . (The master key K would be stored in a secure
location, for example in secure hardware.) Compromise of device
I would now have only local consequences, encryptions under JI
being compromised but (for an IB-FPE scheme meeting the de�-
nitions we will give) encryption under other identities remaining
secure.

Another bene�t of IB-FPE is to increase the lifetime of the keyK .
In practice it is recommended to limit the number of encryptions
under a particular key, changing (rotating) the key periodically.
Withu identities each performing q encryptions, direct encryption
with a traditional FPE scheme would result in uq encryptions un-
der the base key. With IB-FPE, we have u key derivations under
the master key and only q encryptions under each of u di�erent
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derived keys. This structure can signi�cantly increase the number
uq of encryptions that can be safely performed [1, 34].

IB-FPE security. Let (F,KDF) be an IB-FPE scheme. We give a prp
style de�nition of security called ib-prp. We also give two key-
recovery security de�nitions called ib-kr-ai and ib-kr-ti. We show
relations between them, summarized in Fig. 4.

While natural, these de�nitions are strong, in particular allow-
ing selective opening attacks [5, 8, 18, 22] that make them hard
to provably achieve. We also de�ne non-adaptive versions, which
continue to relate to each other as per Fig. 4, andwhich our schemes
are shown to achieve.

The definitions. The ib-prp game picks a random challenge bit
b and random master key K , and associates key JI = KDF(K , I ) ∈
{0, 1}F.kl to identity I . The adversary gets oracle Enc taking iden-
tity I , tweak T and message X , and oracle Dec taking I ,T and ci-
phertextY . Initially, they respondwith F.E(JI ,T ,X ) and F.D(JI ,T ,Y ),
respectively. At any point, the adversary can either expose the key
of I , querying Exp(I ) to get JI , or switch I to challenge mode
by querying Ch(I ), restricted, of course to not being able to do
both for the same I . If I is switched to challenge mode, oracles
Enc,Dec change in theb = 0 case, withEnc(I ,T , ·) andDec(I ,T , ·)
now becoming permutations that are random but consistent with
prior replies.

Theoretical work has traditionally formalized only strong goals
that represent the most desirable targets for security proofs, ib-prp
in our case. But we also formalize weaker key-recovery security
goals (ib-kr-ai and ib-kr-ti). Oracles in the games are like in the
b = 1 case of ib-prp. The adversary returns a key J ′ and identity
I ′. In the ib-kr-ti (target identity) case, it wins if J ′ = JI ′ is the key
for the identity it names, while in the ib-kr-ai (any identity) case,
I ′ is ignored and it wins if J ′ = JI for any un-exposed challenge
identity I . The motivation is that (1) We are interested not just in
security proofs but in attacks, for which we want to make claims
that are strong (violating ib-kr-ai or ib-kr-ti is much more damag-
ing than violating ib-prp) as well as precise (which requires that
key-recovery advantages be formalized), and (2) We might be able
to prove better security (in terms of bounds on adversary advan-
tage) for ib-kr-ai or ib-kr-ti than for ib-prp.

So far adversaries are adaptive in the sense that they can query
Enc,Decwith I before deciding to expose I . We say that an adver-
sary (whether ib-prp, ib-kr-ai or ib-kr-ti) is non-adaptive if its ex-
posure decision for I does not depend on seeing encryptions or de-
cryptions under I : if it queriesExp(I ), it has not previously queried
Enc(I , ·, ·) or Dec(I , ·, ·).

Security in the face of exposure queries captures the above-mentioned
application goal that the damage from compromise is local rather
than global. (Encryption for an identity is secure even if the keys
of other identities are known to the attacker.) Exposure is thus a
central element of the framework, and is a powerful adversary ca-
pability even in the non-adaptive case. The de�nition adapts the
classical one for IBE [14], di�erences being that our setting is sym-
metric (there is no public master key), encryption is deterministic,
the goal is prp style security (rather than semantic security) and
there are multiple challenge identities, not just one. In the adaptive
case, the combination of these elements allows a selective opening
attack [5, 8, 18, 22]. We stress that non-adaptive security, even if

weaker than adaptive, is hardly a weak notion, and seems more
than adequate for practice.

Relations. It is clear that ib-kr-ai security (tightly) implies ib-kr-
ti security. (If you can �nd the key for an identity you name, you
can �nd a key for some identity.) Proposition 3.2 says that, con-
versely, ib-kr-ti tightly implies ib-kr-ai, because, given a candidate
key, one can (under some conditions) test to see which identity it
matches. We would expect that ib-prp implies ib-kr-ti (and thus,
by the above, ib-kr-ai), and while Theorem 3.3, at the highest level,
validates this, the truth it shows is more delicate. The di�culty is
that in FPE the domain size can be small, and the reduction is pa-
rameterized to adjust. The relations, summarized in Fig. 4, hold in
both the adaptive and non-adaptive cases.

Attacks. We give attacks on the security of any IB-FPE scheme
(F,KDF), showing inherent limitations in achievable security. The
attacks are strong (they violate non-adaptive ib-kr-ai, not just ib-
prp) and rigorously analyzed (Theorems 4.1 and 4.2 provide and
prove precise lower bounds on adversary advantage). Their impli-
cation is that for (F,KDF) to have k-bits of (even non-adaptive, ib-
kr-ai) security, FPE scheme F must have 2k-bit keys, regardless of
the length of the master key and the choice of KDF. We call this
the double-key condition.

The challenge with the attacks is to cover all IB-FPE schemes
(F,KDF). We give two attacks, calling the �rst thematching attack

and the second, which generalizes DP [20], the exhaustive search

attack. Depending on the value of a quantity we de�ne, called the
diversity of the key-distribution function KDF, we are able to show
that one or the other attack always has constant non-adaptive ib-
kr-ai advantage with e�ort around 2F.kl/2.

Building IB-FPE schemes. We now turn to constructing IB-FPE
schemes that do as well as possible subject to the limitations un-
covered by our attacks. Given that FPE schemes F (satisfying stan-
dard prp security) are hard to build, we want to leverage existing
constructions of them. Accordingly, our approach is modular: tak-
ing as given a (base) FPE scheme F, we design key-derivation func-
tions KDF for it and prove non-adaptive ib-prp security of (F,KDF)
assuming the prp security of F and also possibly assuming some-
thing about KDF. We aim to make the master key of KDF as short
as we can and to make KDF as e�cient as we can. We also aim
for instantiations of our key-derivation functions that use only a
blockcipher, and moreover one that (like AES) has the same key
and block length. (This is because practical FPE schemes already
use such blockciphers, as Feistel round functions.) Below we �rst
give a natural, standard-model key-derivation construction PRF.
Then, to improve e�ciency and get an analysis of DFF, we give
and analyze an ideal-cipher model construction Dbl.

The PRF construction. We show in Section 5 that PRFs make
good key-derivation functions: If KDF : KDF.MKS × KDF.IS →
{0, 1}F.kl is a PRF and base FPE scheme F is prp secure then IB-
FPE scheme (F,KDF) is non-adaptive ib-prp secure. We call this
the PRF construction of an IB-FPE scheme. Assuming F.kl = 2k ,
the concrete reduction, as given by Theorem 5.1, implies that if
KDF has k-bits of prf security and F has 2k-bits of prp security
then (F,KDF) has k bits of non-adaptive ib-prp security. Our at-
tacks discussed above imply that the reduction is optimal.
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For an instantiation we would like to base KDF solely on AES

and achieve full 128-bit security with the master key being a (128-
bit) AES key. Abstractly, assuming given a base FPE scheme F that
has 2k bits of prp security with F.kl = 2k , this means that we
want to build KDF : {0, 1}k ×KDF.IS→ {0, 1}2k , with k bits of prf
security, solely from a blockcipher E : {0, 1}k × {0, 1}k → {0, 1}k
having k bits of prp-cpa security. This is a challenging goal, but
we can reach it via DHT’s new analysis [15] of the XOR prp-to-prf
transform of BKR [9]. Our key-derivation function, shown in Fig. 8,
has a computational cost of four invocations of the blockcipher E.

In summary, the PRF construction instantiated as above is an
e�cient way to generically turn an FPE scheme into an IB-FPE
scheme with optimal security, a standard-model proof and a rea-
sonable key-derivation cost of four blockcipher invocations. There
are twomotivations for the alternative key-derivation method that
follows: (1) Our results about it will eventually yield an analysis of
the DFF scheme proposed to NIST for standardization, and (2) It
uses only two blockcipher invocations.

The Dbl construction. Letting F be the given prp-secure FPE
scheme with F.kl = 2k , our Dbl (“Double”) construction of an
IB-FPE scheme (F,KDF) lets E : {0, 1}k × {0, 1}k → {0, 1}k be a
blockcipher and then de�nes key-derivation functionKDF : {0, 1}k
× KDF.IS→ {0, 1}2k by

KDF(K , I ) = E(K ,M0(I )) ‖ E(K ,M1(I )) , (1)

whereM0,M1 : KDF.IS→ {0, 1}k are injective functions with dis-
joint ranges. We refer toM as an embedding scheme, and it param-
eterizes the construction. Theorem 6.1 implies that (F,KDF) has
k-bits of ib-prp security assuming F has 2k-bits of prp security and
E is an ideal cipher. The double-key condition emanating from our
attacks says that the analysis of Theorem 6.1 is optimal. Next we
discuss some technical elements of the result.

One might have hoped to establish prf security of KDF in the
ideal-cipher model and then apply our result about PRF, but, even
in the ideal-ciphermodel, the key-derivation functionKDF of Eq. (1)
has only k/2 bits of prf security. Instead we give a direct analysis.

In practice we expect that E = AES will be used, not only by
KDF, but also by F. To model this, we allow F to have oracle access
to the same ideal cipher E that is used by KDF. This common use
of the ideal primitive precludes a modular proof and makes the
analysis more challenging. Given an ib-prp adversary A against

F under KDF, the reduction aims to build a prp adversary A and
bound ϵ , the ib-prp advantage of A against F,KDF, as a function

of ϵ , the prp advantage of A against F. The natural approach is
a hybrid argument. The di�culty is that, due to the structure of
KDF, keys of di�erent users are not statistically independent. If u
is the number of users invoked by A, the straightforward hybrid
argument would incur a loss ofO(u/2k ) per hybrid step, resulting
in a bound of the form ϵ ≤ uϵ + δ where δ = O(u2/2k ). This
would imply onlyk/2 bits of security for F underKDF, well short of
what we want and believe to be true. Theorem 6.1 gives a di�erent
proof that includes amore sophisticated hybrid argument to obtain
δ = O(u/2k ), which implies k-bit ib-prp security for (F,KDF), as
desired.

IB-FPE from Pre-masking FPE. Dbl builds an IB-FPE scheme (F,
KDF) assuming as given the base FPE scheme F : {0, 1}2k × F.TS×
F.Dom → F.Dom. We now ask if the assumption can be dropped.
That is, we want to build a practical F from our blockcipher E :
{0, 1}k × {0, 1}k → {0, 1}k so that, with KDF as in Eq. (1), IB-FPE
scheme (F,KDF) can be shown to have k bits of ib-prp security as-
suming nothing more than ideality of E. The di�culty is that prac-
tical FPE schemes F are mostly Feistel-based, and Feistel (as we ex-
plain further in Section 7) notoriously lacks tight analyses showing
prp security for small domains and number of rounds. However we
show that the goal can be reached if we target key-recovery secu-
rity rather than prp security.

Our results are quite general. We de�ne a class of FPE schemes
that we call pre-masking. This class includes Feistel-based schemes.
The schemes use a blockcipher E : {0, 1}k × {0, 1}k → {0, 1}k but
have 2k-bit keys. Encryption and decryption do not have direct
access to the key but can call an oracle that uses the key in con-
junction with the blockcipher in a restricted way. (See Section 7
for the full de�nition.) Now, take any F in this class and adjoin the
key-derivation function KDF of Dbl as per Eq. (1) to get IB-FPE
scheme (F,KDF). Then Theorem 7.3 establishes that (F,KDF) has
k bits of ib-kr-ti security.

Security of DFF. Two FPE schemes proposed to NIST for stan-
dardization, namely FF2 [35] —not standardized due to the attack
of [20]— and DFF [36] —still under consideration— derive a sub-
key from the tweak and then encrypt under the subkey with an
un-tweaked cipher. The authors highlight this method as provid-
ing a feature they call delegation, where knowledge of the subkey
for one tweak would not impact security of encryption under an-
other tweak. Our IB-FPE framework allows us to formalize this
claim and evaluate the security, relative to it, of DFF.

We view FF2 = (F�2,KDF�2) and DFF = (FFd� ,KDFd�) as IB-
FPE schemes with identity space the tweak space of the original
scheme, and a tweak space that is trivial, consisting, say, of just
the empty string. In FF2, the master key K is 128 bits and the key
delegated to I is JI = KDF�2(K , I ) = AES(K , I ). Since F�2 (accord-
ingly) has 128-bit keys, our attacks from Section 4 say that FF2 has
atmost 64 bits of ib-kr-ti security, explaining theDworkin and Perl-
ner (DP) attack [20]. Arguing that a scheme with a 128-bit (master)
key should provide 128-bits of security, NIST rejected FF2. Seeking
128 bits of security,DFF continues to have a 128-bit master key, but
derived keys (and thus keys for FFd�) are 256 bits long. Our attacks
indicate that the security is at most 128 bits. The question relevant
to standardization is whether it actually is 128, or signi�cantly less.

Let the domain be Zn
rdx

, the set of length n strings over alphabet

Zrdx (2 ≤ rdx,n < 28), and regard rdx,n as �xed. Let k = 128. Then
the key-derivation function KDFd� of DFF = (FFd� ,KDFd�) can
be viewed as obtained by applying our Dbl transform with E =

AES and embedding scheme M de�ned by M0(I ) = [rdx]1‖[|I |]1‖
[n]1‖[I ]13 andM1(I ) = [0]3‖[I ]13, where [x]ℓ denotes the encoding
of x as an ℓ-byte string. Then (1) our results from Section 6 say
that DFF has about 128 bits of ib-prp security if E is ideal and FPE
scheme FFd� is assumed to have about 256 bits of prp security, and
(2) Observing that FFd� is an E-based pre-masking FPE scheme, our
results from Section 7 say that DFF has about 128 bits of ib-kr-ti
security assuming only that E is ideal.
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There is, however, a caveat that our analysis uncovers. For our
results to apply, the functionsM0,M1 de�ned above must be injec-
tive. This is not, strictly speaking, true for DFF, because the iden-
tity space is the set of all binary strings of length at most 13 bytes,
and so, for example,M1(001) = M1(01). It is true (our conditions on
M are met) if we restrict identities further, for example to all have
the same length, or so that no two represent, in binary, the same
integer. For the general case we have neither a proof, nor an attack
showing security to be signi�cantly smaller than the desired 128
bits. In Section 8 we expand on this and also give the best attack
we know for the general case. We would suggest that the embed-
ding function used in DFF be changed to meet our conditions, so
that our results would apply to validate security in the general case
as well. For example, let identities be binary strings of at most 12
bytes, let M0(I ) = [0]1‖[rdx]1‖[|I |]1‖[n]1‖[I ]12 and M1(I ) = [1]1‖
[rdx]1‖[|I |]1‖[n]1‖[I ]12.

We clarify that, as designed and presented in [35, 36], FF2 and
DFF are FPE schemes targeting key delegation based on tweaks,
not IB-FPE schemes. To translate �ndings above back to the origi-
nal context, read “tweak” for “identity”.

Discussion and related work. Identity-based cryptographywas
suggested by Shamir [33]. Identity-based encryption (IBE) was for-
malized and achieved by BF [14].

BHT [7] give message-recovery attacks on Feistel-based FPE
schemes F, including the FF1 and FF3 standards [19] and FFd� , in
the case that the domain is tiny. DV [17] give small-domain attacks
on FF3. FF1 and FF3 are not relevant for us. (Having 128 bit keys,
they cannot, by our attacks, be base schemes for high-security IB-
FPE.) For F = FFd� , the validity of Theorems 5.1 (for PRF) and 6.1
(forDbl) is not a�ected, but to get the full possiblek-bits of security
for the IB-FPE scheme (FFd� ,KDF) from these results, one would
have to increase the number of rounds in FFd� for tiny inputs. The
BHT attacks do not contradict our proof of ib-kr-ti security ofDFF
because they are message-recovery attacks and do not succeed in
key recovery.

Shu�e-based FPE schemes [21, 29, 31] are a possible choice in
the role of F to obtain IB-FPE schemes via the PRF or Dbl con-
structions. For e�ciency, however, schemes in practice, including
FFd� , have been Feistel based, so we have focused on the latter in
considering instantiating F via pre-masking FPE schemes.

2 PRELIMINARIES

Notation and conventions.We let ε denote the empty string. If
y is a string then |y | denotes its length and y[i] denotes its i-th bit
for 1 ≤ i ≤ |y |, and for 1 ≤ i ≤ j ≤ |y |, let y[i : j] = y[i] · · ·y[j].
If X is a �nite set, we let x ←$ X denote picking an element of X
uniformly at random and assigning it to x . Algorithms may be ran-
domized unless otherwise indicated. Running time is worst case.
IfA is an algorithm, we lety ← A(x1, . . . ; r ) denote runningAwith
random coins r on inputs x1, . . . and assigning the output to y. We
let y←$A(x1, . . .) be the result of picking r at random and letting
y ← A(x1, . . . ; r ). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, . . ..

We use the code based game playing framework of [11]. By
Pr[G ⇒ y] we denote the event that the execution of game G re-
sults in the game returningy. We write Pr[G] as an abbreviation of

Pr[G ⇒ true]. In code of games, unless otherwise indicated, sets
are assume initialized to empty, booleans to false, integers to 0 and
anything else to⊥. We adopt the convention that the running time
of an adversary refers to the worst-case execution time of the game
with the adversary, so that the time for the execution of oracles to
compute replies to oracle queries is included. This means that usu-
ally in reductions, adversary running time is roughly maintained.

If D,R are sets then Func(D,R) denotes the set of all functions
from domainD to range R, and Perm(D) the set of all permutations
on D.

PRFs and PRPs. Recall that the prf advantage of an adversary A
against a family of functionsGG : GG.Keys×GG.Dom→ GG.Rng

is de�ned asAdv
prf
GG
(A) = 2 Pr[Gprf

GG
(A)]−1, where gameG

prf
GG
(A)

is shown in Fig. 1. Also the prp-cpa advantage of an adversary A
against a family of permutations GG : GG.Keys × GG.Dom →
GG.Dom is de�ned as Adv

prp-cpa
GG

(A) = 2 Pr[Gprp-cpa
GG

(A)] − 1,

where game G
prp-cpa
GG

(A) is shown in Fig. 1.

Ideal primitives. An ideal primitive is de�ned simply as a set of
functions. An instance (meaning, a particular function) P will be
picked at random in the games and provided as an oracle, to al-
gorithms that need it and to the adversary. For example, the ideal
primitive corresponding to a random oracle with domain D and
range R is Func(D,R). Ideal ciphers are a bit more work since one
must give access to both the map and its inverse. If K,D are sets
then IC(K,D) is the set of all maps P : K×D×{+,−} → Dwith the
property that P(K , ·,+), P(K , ·,−) ∈ Perm(D) are inverses of each
other for every K ∈ K. If P ←$ IC(K,D), and then P is provided as
an oracle, we are in the ideal cipher model where one has oracle
access to both the cipher P(·, ·,+) and its inverse P(·, ·,−). As an
abbreviation, we let IC(k,n) = IC({0, 1}k , {0, 1}n ), capturing ideal
blockciphers with key length k and block length n.

3 FPE AND IB-FPE

We give de�nitions and basic results, including relations between
notions, for FPE and IB-FPE.

FPE schemes. A format-preserving encryption (FPE) scheme F [10,

13] speci�es a deterministic encryption algorithm F.E : {0, 1}F.kl ×
F.TS × F.Dom → F.Dom together with a deterministic decryp-
tion algorithm F.D : {0, 1}F.kl × F.TS × F.Dom → F.Dom. Here
{0, 1}F.kl is the keyspace, F.Dom is the domain and F.TS is the
tweak space. For every key J ∈ {0, 1}F.kl and tweak T ∈ T, the
functions F.E(J ,T , ·), F.D(J ,T , ·) ∈ Perm(F.Dom) are permutations
over F.Dom that are inverses of each other. We refer to F.kl as the
key length. The scheme may have an associated ideal primitive
F.IP, in which case F.E, F.D have oracle access to a function P ∈
F.IP. Tweakable blockciphers [27] are a special case: FPE scheme F
is a tweakable blockcipher if F.Dom = {0, 1}F.bl for an integer F.bl
called the blocklength.

FPE security.We recall the standard prpmetric for an FPE scheme
F [10, 13]. It coincides with the classic (strong) tweakable-prp met-
ric of [26] in the case that F is a tweakable blockcipher. LetA be an
adversary and de�neAdv

prp
F
(A) = 2 Pr[Gprp

F
(A)] − 1, where game

G
prp
F
(A) is on the left in Fig. 2. The game picks a random challenge

bit b and runs the adversary. The latter gets oracles Enc,Dec for
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Game G
prf
GG
(A)

b ←$ {0, 1};K ←$ GG.Keys

b′←$ AFn ; Return (b′ = b)

Fn(X )
If T[X ] , ⊥ then return T[X ]
If b = 0 then T[X ] ←$ GG.Rng

Else T[X ] ← GG(K, X )
Return T[X ]

Game G
prp-cpa
GG

(A)
b ←$ {0, 1};K ←$ GG.Keys

b′←$ AFn ; Return (b′ = b)

Fn(X )
If ET[X ] , ⊥ then return ET[X ]
If b = 0 then Y ←$ {Y ∈ GG.Dom : DT[Y ] = ⊥ }
Else Y ← GG(K, X )
ET[X ] ← Y ; DT[Y ] ← X ; Return Y

Figure 1: Games de�ning PRF security (left) and PRP-CPA security (right) of GG.

Game G
prp

F
(A)

b←$ {0, 1} ; J ←$ {0, 1}F.kl ; P ←$ F.IP

b′←$ AEnc,Dec,P ; Return (b = b′)

Enc(T , X )
If ET[T , X ] , ⊥ then return ET[T , X ]
If b = 0 then Y ←$ {Y ∈ F.Dom : DT[T , Y ] = ⊥ }
Else Y ← F.EP (J , T , X )
ET[T , X ] ← Y ; DT[T , Y ] ← X ; Return Y

Dec(T , Y )
If DT[T , Y ] , ⊥ then return DT[T , Y ]
If b = 0 then X ←$ {X ∈ F.Dom : ET[T , X ] = ⊥ }
Else X ← F.DP (J , T , Y )
ET[T , X ] ← Y ; DT[T , Y ] ← X ; Return X

Game G
prpa

F
(A)

b←$ {0, 1} ; J ←$ {0, 1}F.kl ; P ←$ F.IP ; ch← false

b′←$ AEnc,Dec,Ch,P ; Return (b = b′)

Enc(T , X )
If ET[T , X ] , ⊥ then return ET[T , X ]
If (ch and b = 0) then Y ←$ {Y ∈ F.Dom : DT[T , Y ] = ⊥ }
Else Y ← F.EP (J , T , X )
ET[T , X ] ← Y ; DT[T , Y ] ← X ; Return Y

Dec(T , Y )
If DT[T , Y ] , ⊥ then return DT[T , Y ]
If (ch and b = 0) then X ←$ {X ∈ F.Dom : ET[T , X ] = ⊥ }
Else X ← F.DP (J , T , Y )
ET[T , X ] ← Y ; DT[T , Y ] ← X ; Return X

Ch()
ch← true

Figure 2: Games de�ning security of an FPE scheme F. Left: prp. Right: prpa.

encryption and decryption, and access to an instance P of the ideal
primitive F.IP. It returns a bit b ′ and wins if b ′ = b. Enc takes a
tweakT and message X and returns ciphertext Y , withDec corre-
spondingly taking tweak T and ciphertext Y to return message X .
If b = 1, encryption and decryption are done using F with key J .
If b = 0, each tweak is associated with a random permutation on
F.Dom under which both encryption and decryption are done.

Letting A again be an adversary, we also de�ne Adv
prpa
F
(A) =

2 Pr[Gprpa
F
(A)] − 1, where gameG

prpa
F
(A) is on the right in Fig. 2.

This captures what we call adaptive prp security, a notion we will
�nd useful for proofs. Oracles Enc and Dec use F under key J

until the adversary callsCh to switch the game to challenge mode
by setting �ag ch to true. At that point, for each tweak, the associ-
ated permutation starts behaving randomly but consistent with the
prior queries and (F-based) answers for that tweak. The prp notion
corresponds to the special case where the �rst query is Ch(). We
will exploit the following, which says that adaptivity can increase
advantage by a factor of at most two in general.

Proposition 3.1. Let F be an FPE scheme. Given a prpa adver-

sary Aprp, we can build a prp adversary Aprp of about the same

running time, and making at most as many Fn queries, such that

Adv
prpa
F
(Aprp) ≤ 2 · Advprp

F
(Aprp).

Proof. The adversaryAprp �rst picks a bita←$ {0, 1} and then
runs Aprp. Before the latter calls Ch, the former always use its

Enc/Dec oracles to reply to the Enc/Dec queries of Aprp. Af-
ter Aprp has called Ch to enter the challenge phase, if a = 1 then
Aprp continues to use its Enc/Dec oracles to reply to Aprp’s
Enc/Dec queries. However, if a = 0 then Aprp gives answers
that are random but still consistent with prior queries and answers.
When Aprp outputs its guess b ′ then Aprp outputs 1 if b ′ = a,
and outputs 0 otherwise. Let cprp be the challenge bit of game

G
prpa
F
(Aprp). We claim that

Pr[Gprp
F
(Aprp) ⇒ true | cprp = 1] = Pr[Gprpa

F
(Aprp)] (2)

Pr[Gprp
F
(Aprp) ⇒ false | cprp = 0] = 1

2
. (3)

This is because (1) when cprp = 0, the answers forAprp’sEnc and
Dec queries are always simulated via an ideal family of permuta-
tions, meaning that whatever Aprp receives is independent of a,
but (2) when cprp = 1, the guess of Aprp is incorrect if and only if
b ′ = a. Subtracting Eq. (2) and Eq. (3) side by side we have

Adv
prp
F
(Aprp) =

1

2
Adv

prpa
F
(Aprp)

as claimed. �

Proposition 3.1 says that prpa is an alternative, equivalent (up
to a factor two in advantage) characterization of classic (strong)
prp security for FPE schemes and tweakable blockciphers. For un-
tweaked blockciphers, Desai and Miner [16] consider a notion of

Session G3:  Crypto Standards CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1519



indistinguishable uniform permutation that is prpa with the adver-
sary restricted to just one post-challenge encryption query and no
decryption queries, showing it is equivalent to classic prp security
up a factor two in advantage. Our proof extends theirs.

For FPE, we do not need to consider key-recovery security. We
will for IB-FPE.

IB-FPE. A key-derivation function for FPE scheme F is a function

KDF : KDF.MKS × KDF.IS → {0, 1}F.kl that takes a master key

K in the master-key space KDF.MKS and a user identity I in the
identity-space KDF.IS to return a key KDF(K , I ) ∈ {0, 1}F.kl for F.
An identity-based FPE (IB-FPE) scheme is a pair (F,KDF) consist-
ing of a (base) FPE scheme F and a key-derivation function KDF

for F. An IB-FPE scheme (F,KDF) is an identity-based tweakable

blockcipher if F is a tweakable blockcipher.
The key-derivation function KDF may have an associated ideal

primitive, denoted KDF.IP, in which case KDF has oracle access to
a function P ∈ KDF.IP. We require that F.IP = KDF.IP, meaning
the ideal primitive of the key-derivation function is the same as
that of the FPE scheme, and in games a single instance P of the ideal
primitivewill be used as the oracle for F.E, F.D andKDF. This is not
only for simplicity but, more importantly, because the primitive in
practice is often instantiated via the same cryptographic function,
for example via AES.

IB-FPE security. Security requires that encryption under the key
of some identity remains secure even if the adversary can obtain
the keys of other identities. In terms of application and motivation,
an identity might represent a point-of-sale terminal as discussed in
Section 1, and thus our security requirement ensures that the dam-
age from compromise of a terminal remains local, not a�ecting the
security of encryption performed by other terminals.We give a prp
style notion, ib-prp. We also give two variants of key-recovery se-
curity, ib-kr-ai and ib-kr-ti. The core notions are adaptive, but each
has a corresponding non-adaptive version, obtained by restricting
attention to non-adaptive adversaries as de�ned below. We estab-
lish relations between the notions as summarized in Fig. 4. The
shown relations hold in both the adaptive and non-adaptive cases.

IB-PRP security. Let (F,KDF) be an IB-FPE scheme and A an ad-
versary we call an ib-prp adversary. De�ne

Adv
ib-prp
F,KDF

(A) = 2 Pr[Gib-prp
F,KDF

(A)] − 1,

where game G
ib-prp
F,KDF

(A) is on the left in Fig. 3. The game picks a

random challenge bit b and runs the adversary. The latter gets or-
acles Enc,Dec for encryption and decryption, an expose oracle
Exp, a challenge oracleCh and access to an instance P of the ideal
primitive F.IP = KDF.IP. It returns a bit b ′ and wins if b ′ = b. XI is
the set of exposed identities and ChI is the set of challenge identi-
ties. These sets stay disjoint throughout the game. Let us refer to an
identity as neutral if it is in neither of these sets. All identities start
neutral, since the sets XI,ChI are initialized to empty. Encryption
oracle Enc takes an identity I , tweak T and message X and re-
turns ciphertext Y , while decryption oracle Dec correspondingly
taking identity I , tweak T and ciphertext Y to return message X .
For neutral identities (and thus at the start of the game), these or-
acles behave honestly, meaning use F under keys derived via KDF

under master key K , regardless of the value of the challenge bit b.
Imagine the adversary querying these for a while. Adaptively, at
any point in this process, it can either expose the key of an iden-
tity I via a Exp(I ) query (this captures real-world compromise of
the key of this identity), or switch I to challenge mode via aCh(I )
query. If I is exposed, the encryption and decryption oracles for it
continue to behave honestly. If I is switched to a challenge iden-
tity, then encryption and decryption continue to behave honestly
if b = 1, but, if b = 0, they use, for any given tweak, a permutation
that is random subject to being consistent with prior queries and
replies for that identity and tweak.

IB-KR security. Let (F,KDF) be an IB-FPE scheme and A an ad-
versary we call a ib-kr adversary. De�ne

Adv
ib-kr-ti
F,KDF (A) = Pr[Gib-kr-ti

F,KDF (A)]

Adv
ib-kr-ai
F,KDF (A) = Pr[Gib-kr-ai

F,KDF (A)] ,

where the games are de�ned (together, they di�er on just one in-
dicated line) on the right in Fig. 3. There is no challenge bit, and
the encryption and decryption oracles are always honest, using F.
OracleExp again allows key exposure. Choice of challenge identi-
ties is again adaptive, meaning an identity can be named as a chal-
lenge one after encryption and decryption queries, either to it or
to other identities. The adversary returns a key and an identity. In
the target-identity case (ib-kr-ti), it wins if the key it provides is the
correct one for the identity it provides. In the all-identity (ib-kr-ai)
case, the identity it provides is ignored, and the adversary wins if
the key it provides is correct for some (any) identity. In both cases,
of course, the adversary can only win if the identity for which it
�nds the key is not exposed.

Key-derivation functions. In designs of IB-FPE schemes we will
of course want e�cient key-derivation functions. But in analyses
and for other conceptual purposes, it will be useful to consider
key-derivation functions that are not e�cient. In particular we de-
�ne the uniform key-derivation function U = U[F, ID], associated
to F and a set ID of identities, to capture users having random,
independent keys. Formally, let the master-key space U.MKS =

Func(ID, {0, 1}F.kl) be the set of all functions from ID to {0, 1}F.kl,
so that a master key K : ID → {0, 1}F.kl is a function taking an
identity and returning the key K(I ). Then the function U : U.MKS

×ID→ {0, 1}F.kl is de�ned byU(K , I ) = K(I ). PickingK at random
means the keys of di�erent identities are random and independent.

Non-adaptive security. Let A be either a ib-prp or an ib-kr ad-
versary. We say that it is non-adaptive if there is no identity I for
which A makes both a Exp(I ) query and a non-Exp(I ) —that is,
Ch(I ),Enc(I , ·, ·) orDec(I , ·, ·)— query. Thus, the adversary must
make its decision to expose the key of an identity I up front, with-
out prior queries to Enc(I , ·, ·) or Dec(I , ·, ·). (The de�nition also
excludes post Exp(I ) queries Enc(I , ·, ·), Dec(I , ·, ·) and Ch(I ),
but these are redundant anyway.) The security we prove for our
constructions of IB-FPE schemes is restricted to non-adaptive ad-
versaries as adaptivity allows selective-opening attacks (SOAs) [8,
18]. We elaborate on this below.

Discussion. In the de�nition of security for identity-based encryp-
tion (IBE) [14], the adversary can pick its (single) challenge not
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Game G
ib-prp
F,KDF

(A)

b←$ {0, 1} ; K ←$ KDF.MKS

XI← ∅ ; ChI← ∅ ; P ←$ F.IP

For every I ∈ KDF.IS do JI ← KDFP (K, I )
b′←$ AEnc,Dec,Exp,Ch,P ; Return (b = b′)

Enc(I, T , X )
If ET[I, T , X ] , ⊥ then return ET[I, T , X ]
If (I ∈ ChI and b = 0) then Y ←$ {Y ∈ F.Dom : DT[I, T , Y ] = ⊥ }
Else Y ← F.EP (JI , T , X )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return Y

Dec(I, T , Y )
If DT[I, T , Y ] , ⊥ then return DT[I, T , Y ]
If (I ∈ ChI and b = 0) then X ←$ {X ∈ F.Dom : ET[I, T , X ] = ⊥ }
Else X ← F.DP (JI , T , Y )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return X

Exp(I )
If I ∈ ChI then return ⊥
XI← XI ∪ {I } ; Return JI

Ch(I )
If I ∈ XI then return ⊥
ChI← ChI ∪ {I }

Game Gib-kr-ti
F,KDF

(A) / Gib-kr-ai
F,KDF

(A)

K ←$ KDF.MKS

XI← ∅ ; ChI← ∅ ; ChK← ∅ ; P ←$ F.IP

For every I ∈ KDF.IS do JI ← KDFP (K, I )
(J ′, I ′) ←$ AEnc,Dec,Exp,Ch,P

Return ((J ′, I ′) ∈ ChK) // ib-kr-ti
Return (∃ I : (J ′, I ) ∈ ChK) // ib-kr-ai

Enc(I, T , X )
Return F.EP (JI , T , X )

Dec(I, T , Y )
Return F.DP (JI , T , Y )

Exp(I )
If I ∈ ChI then return ⊥
XI← XI ∪ {I } ; Return JI

Ch(I )
If I ∈ XI then return ⊥
ChI← ChI ∪ {I }
ChK← ChK ∪ {(JI , I )}

Figure 3: Games de�ning security of an IB-FPE scheme (F,KDF). Left: ib-prp. Right: ib-kr-ti and ib-kr-ai.

ib-prp ib-kr-ti

ib-kr-ai

P
ro
p.
3.
2

Prop. 3.3

Figure 4: Relations between notions of IB-PRP security. An

arrow A → B is an implication: if an IB-PRP scheme meets

A then it also meets B. A barred arrow A9 B is a separation:

there exists an IB-PRP scheme meeting A but not B. Unan-
notated lines represent trivial relations. The relations hold

in both the adaptive and non-adaptive settings.

just while querying an exposure oracle (and, in the CCA case, a
decryption oracle), but as a function of encryptions under iden-
tities of its choice. The latter is captured, trivially, by giving the
adversary the master public key up front. Our setting is symmet-
ric, so there is no master public key. As per the paradigm of [4], we
accordingly give the adversary an encryption oracle. (To capture
CCA, we also give it a decryption oracle. We continue of course to
give the exposure oracle.) We allow multiple challenge identities,
not just one. Starting encryption (and decryption) for an identity
as honest and switching to challenge mode via Ch captures an
adaptive (encryption-dependent) choice of challenge identities to
mirror IBE security. However, the presence of multiple challenges

means that this e�ectively allows a SOA. SOAs are notoriously sub-
tle, and security against them is known (at least for other prim-
itives) to be hard to achieve [5, 8, 18, 22]. Correspondingly (and
unsurprisingly) we �nd that we are unable to show our schemes
meet our ib-prp de�nition for adaptive adversaries. We prove it,
instead, for non-adaptive adversaries. These adversaries are still
very powerful. (It is unclear that adaptivity is realistic or possible
in practice.) We leave adaptive security as an open question.

The multi-user (mu) setting [2, 3] considers many users, having
keys that are uniformly and independently distributed. Mu secu-
rity of an FPE scheme F can be viewed as a special case of our
setting, as follows. Let n be the number of users, and let ID =
{1, . . . ,n}. Let U = U[F, ID] be the uniform key-derivation func-
tion for F over this set of identities, and consider the IB-FPE scheme
(F,U). Let us call a ib-prp adversaryA a mu adversary if it begins
by querying all n identities to its Ch oracle, and makes no Exp

queries. Then mu security of F is exactly ib-prp security of (F,U)
relative to mu adversaries. In this way, certain results about IB-FPE
will automatically imply results on the mu security of the base FPE
scheme. Also, this lends a di�erent perspective on IB-FPE, view-
ing it as a generalization of mu security in which keys of di�erent
users are not necessarily random and independent, key exposures
are permitted and identities can be adaptively and optionally made
challenge ones.We thank Stefano Tessaro for pointing out this con-
nection and viewpoint to us.

A tweakable blockcipher [27] is the special case of an FPE scheme
F in which F.Dom = {0, 1}F.bl for some F.bl. Mu security for tweak-
able blockcipherswas considered in [25, 37]. Thework of LLMM [25],
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Game G
fp

F,d
(J , J ′)

P ←$ F.IP ; T ←$ F.TS

For i = 1, . . . , d do Xi ←$ F.Dom \ {X1, . . . , Xi−1 }
V ← (F.EP (J , T , X1), . . . , F.EP (J , T , Xd ))
V ′ ← (F.EP (J ′, T , X1), . . . , F.EP (J ′, T , Xd ))
Return (V = V ′)

Figure 5: Game to de�ne the false positive advantage of F on

d random messages, for subkeys J and J ′.

which is concurrent to, and independent of, ours, goes further to al-
low a key-derivation function so that they consider what in our lan-
guage is e�ectively an identity-based tweakable blockcipher. Their
de�nition of security, however, does not allow exposures and does
not allow challenge identities to be adaptively determined. It is the
special case of our ib-prp in which we restrict attention to what,
above, we called mu adversaries.

False positive rate. Fix an IB-FPE scheme (F,KDF). In some set-
tings, we have a F-key J and an identity I and want to test whether
J = KDF(K , I ). We don’t have K , or the task is of course easy, but
we do have access to an oracle F.EP (KDF(K , I ), ·, ·). The strategy is
pick some tweak T and inputs X1, . . . ,Xd , and declare J correct if
F.EP (KDF(K , I ),T ,Xi ) = F.EP (J ,T ,Xi ) for all i ∈ {1, . . . ,d}. This
test is not always correct. There may be false positives, meaning
it might accept even if J , KDF(K , I ). Here we give de�nitions to
quantify this. Consider game G

fp

F,d
(J , J ′) de�ned in Fig. 5 associ-

ated to F, keys J , J ′ ∈ {0, 1}F.kl and integer d . Then de�ne the false
positive advantage

Adv
fp

F,d
= max

J,J ′
Pr[Gfp

F,d
(J , J ′)]

as the maximum, over all distinct keys J , J ′ ∈ {0, 1}{0, 1}F.kl, of
the probability that the game returns true.

We now compute this advantage for the case that F is ideal. Let
N = |F.Dom| be the size of the domain. If J , J ′ then F.EP (J ,T , ·)
and F.EP (J ′,T , ·) are independent randompermutations, and hence

Adv
fp

F,d
=

1

N (N − 1) · · · (N − d + 1) . (4)

The choice of d required to make the bound of Eq. (4) negligible is
usually quite small. For example if N = 232 then setting d = 9 will
be enough, by Eq. (4), to ensure a false positive advantage of only

Adv
fp

F,d
≤ 2−256.

When F is not ideal, the false positive advantage depends on the
structure of F. It is easy to give arti�cial examples of F for which

Adv
fp

F,d
remains high even for large d , for example by having two

distinct keys J , J ′ that induce the same encryption function on all
tweaks, meaning F.E(J ,T ,X ) = F.E(J ′,T ,X ) for all T ,X , in which

case Adv
fp

F,d
= 1 for all d . Real and natural designs of FPE schemes,

however, are not expected to have such anomalies, and so it is cus-
tomary to assume that the false positive advantage is about the
same as that of an ideal FPE with the same domain, meaning ap-
proximated by Eq. (4). We will do this in our estimates.

Adversary AEnc,Dec,Exp,Ch,P
prp

(J , I ) ←$ AEncSim,DecSim,Exp,Ch,P
kr

; TI ← argminT |Q (I, T ) |
For i = 1, . . . , n do

X ←$ F.Dom \Q (I, TI ) ; Q (I, TI ) ← Q (I, TI ) ∪ {X }
If Enc(I, TI , X ) , F.E(J , TI , X ) then return 0

Return 1

Subroutine EncSim(I, T , X )
Y ← Enc(I, T , Y );Q (I, T ) ← Q (I, T ) ∪ {X }
Return Y

Subroutine DecSim(I, T , Y )
X ← Dec(I, T , Y ); Q (I, T ) ← Q (I, T ) ∪ {X }
Return X

Figure 6: Adversary Aprp for Proposition 3.3.

Eqivalence of ib-kr notions. It is clear that ib-kr-ai tightly im-
plies ib-kr-ti; we now prove the converse. Given an ib-kr-ai adver-
sary Aai, one can construct an ib-kr-ai adversary Ati by running
the former to get a candidate (I , J ), and then testing J for all iden-
tities in the challenge set ChI to �nd a matching identity. We will

use Adv
fp

F,d
de�ned above to account for the probability of false

positive. The following shows that ib-kr-ti indeed tightly implies
ib-kr-ai; the proof is in the full version [6].

Proposition 3.2. Let (F,KDF) be an IB-FPE scheme. Suppose that

we are given an ib-kr-ai adversaryAai of q Ch queries. For a param-

eter d ∈ N, we can construct an ib-kr-ti adversary Ati of about the

same running time plus qd calls to F.E such that

Adv
ib-kr-ai
F,KDF (Aai) ≤ Adv

ib-kr-ti
F,KDF (Ati) + q · Adv

fp

F,d
.

Adversary Ati uses the same number of queries as Aai, plus qd ad-

ditional Enc queries. Finally, if Aai is non-adaptive, so is Ati.

ib-prp implies ib-kr. One would expect that prpa security of an
IB-FPE scheme implies its ib-kr-ti (and thus ib-kr-ai as per Proposi-
tion 3.2) security. A basic template for showing that indistinguisha-
bility style security implies key-recovery security is given in [32].
The kr adversary is executed to obtain a candidate key J ′. To deter-
mine its challenge bit, the executing adversary now tests J ′ by see-
ing if encryption under it, on some “un-used" input, equals the out-
put of the encryption oracle on the same input, where “un-used"
means not already queried to the encryption oracle in the simula-
tion of the kr-adversary. In the b = 1 case, the test will succeed. In
the b = 0 case, the output of the encryption oracle is random and
will equal the encryption under J ′ with a probability inverse in the
size of the domain. Since the latter is usually large, the probability
p of success in this case will be small.

Here we follow the basic template above. Given an ib-kr-ti ad-
versary Akr, without loss of generality, we can assume that the
adversary makes only a single Ch query, and it is the very last
query before the adversary outputs its guess (I , J ). We say thatAkr
leaves at least v unused points if there is a tweak T such that Akr
makes at most (|F.Dom| − v) Enc(I ,T , ·) or Dec(I ,T , ·) queries.
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Proposition 3.3 below shows that ib-prp implies ib-kr; the proof is
in the full version [6].

Proposition 3.3. Let (F,KDF) be an IB-FPE scheme and let d =

|F.Dom| be the size of the domain of F. Suppose we are given an ib-kr

adversary Akr leaving at least v unused points. Let n be an integer

parameter satisfying 1 ≤ n ≤ v . Then we build an adversary Aprp

(shown in Fig. 6) such that

Adv
ib-kr-ti
F,KDF (Akr) ≤ Adv

ib-prp
F,KDF

(Aprp) + p ,

where

p = 2F.kl · (v − n)!
v!

.

Adversary Aprp makes the same number of queries as Akr, plus n

additional Enc queries. The running time of Aprp is that of Akr
plus the time for n executions of F.E. Finally, if Akr is non-adaptive,

so is Aprp.

If d is large then p can be easily made small. The di�cult case
is when d is small. To illustrate the quality of our bounds in this
case, let us consider an example, namely d = 104, corresponding
to the encryption of 4 decimal digits of a credit-card number. With
DFF, the key length will be F.kl = 256. Setting v = d/2 = 5000 and
n = 30 we have

p = 2256 · (5000 − n)!
5000!

≤ 2256 · 2−368 ,

which is tiny.

Ib-kr doesn’t imply ib-prp.Conversely, we claim that ib-kr-ti (and
thus ib-kr-ai due to Proposition 3.2) does not imply ib-prp. (This
is the hatched arrow in Fig. 4.) This can be shown by counter-
example. Thus, consider the FPE scheme F de�ned by F.E(J ,T ,X )
= X for all J ,T ,X . Let ID be some non-empty set of identities and
let KDF = U[F, ID] be the associated uniform key-derivation func-
tion as de�ned above. IB-FPE scheme (F,KDF) is certainly not ib-
prp secure. However an adversary A has Gib-kr-ti

F,KDF
(A) ≤ 2−F.kl,

making it ib-kr-ti secure if the key length of F is large.

4 ATTACKS

In this section we give generic non-adaptive attacks on any IB-
FPE (F,KDF) that show inherent quantitative limits to the security
that is achievable. Our attacks recover derived keys (meaning, have
good advantage under our ib-kr-ai metric), not just violate ib-prp
security. An important implication of these attacks is that for k
bits of ib-kr-ai security, the key-length of F (which is the length
of derived keys) must be at least 2k-bits regardless of the length
of the master key. The reason, roughly, is that collisions between
derived keys can be exploited to violate security. These attacks are
important to show that our constructions of IB-FPE schemes in
later sections are optimal in security given the key lengths.

Overview and diversity. Let (F,KDF) be an IB-FPE scheme. For
integer parameters q,p ≥ 1, we will show that there is an at-
tack (adversary) A that succeeds in key recovery with advantage

Adv
ib-kr-ai
F,KDF (A) ≥ Ω(pq) · 2−F.kl. The adversary makes O(q) Enc

and Ch queries and has o�ine computation e�ort about the cost
of O(p) encryptions under F.E. In particular, to allow p,q to reach
O(2k ), one must have F.kl ≥ 2k .

We de�ne the diversity KDivKDF(q) ofKDF relative toq as the ex-
pected size of the set {KDFP (K , I1), . . . ,KDFP (K , Iq )}, where the
expectation is over P ←$ KDF.IP, K ←$ KDF.MKS, and I1, . . . , Iq
sampled uniformly without replacement from KDF.IS (that is, sam-
pled uniformly and independently subject to being distinct). High
diversity means that keys of di�erent identities are largely distinct,
while low diversity means keys of distinct identities frequently col-
lide. We will give two, separate attacks. The �rst, called the match-
ing attack (MA) works when the diversity is low. Speci�cally, it
has a high (constant) ib-kr-ai advantage when KDivKDF(q) ≤ q/4.
The second, called the exhaustive-search attack (ESA) works when
the diversity is high. Speci�cally, it has ib-kr-ai advantage around
Ω(pq) · 2−F.kl when KDivKDF(q) > q/4. All cases for the diversity
being covered, one or the other attack always applies to get ib-kr-
ai advantage of the claimed form. The analyses of the attacks are
made more di�cult by the fact that F and KDF share the same in-
stance of the ideal primitive.

The matching attack. Let (F,KDF) and q be given. We associate
to them the matching adversary MAq described in Fig. 7. In this
attack, the adversary �rst samples without replacement q iden-
tities I1, . . . , Iq , and picks a random ℓ←$ {1, . . . ,q}. The goal of
the adversary is to recover the key of some identity Ii , for i ∈
{1, . . . ,q}\{ℓ}. To achieve this, it queries Exp(Iℓ) to get the key
Jℓ corresponding to Iℓ , and outputs Jℓ as its guess. The intuition
is that if the set {J1, . . . , Jq } of keys for all identities involved is
small (which happens on the average if the diversity is low) then
Jℓ is likely to equal Ji for some i , ℓ, and the adversary wins.
The cost of the attack is q queries to Enc and one query to Exp.
The following theorem gives a precise lower bound on adversary
advantage.

Theorem 4.1. Let (F,KDF) be an IB-FPE scheme. Then for any

q ∈ N we have

Adv
ib-kr-ai
F,KDF (MAq ) ≥

1

2
− KDivKDF(q)

q
.

In particular if KDivKDF(q) ≤ q/4 then Adv
ib-kr-ai
F,KDF (MAq ) ≥

1/2 − 1/4 = 1/4, meaning the ib-kr-ai advantage is very high.

Proof. Let K be the master key of KDF and let P ←$ KDF.IP.
From Markov’s inequality,

Pr
[�

�{KDFP (K , I1), . . . ,KDFP (K , Iq )}
�

� ≥ q/2
]

≤ KDivKDF(q)
q/2 .

Let S = {KDFP (K , I1), . . . ,KDFP (K , Iq )} and suppose |S | ≤ q/2
which occurs with probability at least 1 − 2 · KDivKDF(q)/q. We
say that identity Ii is bad if there is some j ∈ {1, . . . ,q} \ {i} such
that Ii and Ij have the same derived key, meaning KDFP (K , Ii ) =
KDFP (K , Ij ). Note that if there are at most r bad identities then the
set S must have size at least q − r . Since we assumed |S | ≤ q/2,
there are at least q/2 bad identities. Since we pick ℓ at random, the

chance that Iℓ is bad is at least 1/2. Hence Adv
ib-kr-ai
F,KDF (MAq ) ≥

1/2 − KDivKDF(q)/q as claimed. �

The exhaustive search attack. Let (F,KDF) be given, as well as
integer parametersp,q,d .We associate to them adversary ESAq,p,d
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Adversary MA
Enc,Dec,Exp,Ch,P
q

S ← ∅ ; T ←$ F.TS

X ←$ F.Dom ; ℓ←$ {1, . . . , q }
For i ← 1 to q do

Ii ←$ KDF.IS\S ; S ← S ∪ {Ii }
For i ∈ {1, . . . , q }\{ℓ } do

C ← Ch(Ii , T , X )
Pick arbitrary I ∈ {I1, . . . , Iq }\{Iℓ }
Return (I, Exp(Iℓ ))

Adversary ESA
Enc,Dec,Exp,Ch,P
q,p,d

S1, S2 ← ∅ ; T ←$ F.TS

For ℓ ← 1 to d do

Xℓ ←$ F.Dom\S1 ; S1 ← S1 ∪ {Xℓ }
For i ← 1 to q do

Ii ←$ KDF.IS\S2 ; S2 ← S2 ∪ {Ii }
For ℓ ← 1 to d do Vℓ ← Enc(Ii , T , Xℓ )
Zi ← (V1, . . . , Vd )

For j ← 1 to p do

Jj ←$ {0, 1}F.kl
For ℓ ← 1 do d do Uℓ ← F.EP (Jj , T , Xℓ )
Z ← (U1, . . . , Uℓ ) ; i ← Find(Z , Z1, . . . , Zq )
If i > 0 then (Ch(Ii ); Return (Ii , Jj ))

Figure 7: Top: The matching attack. Bottom: The exhaustive

search attack.

described in Fig. 7. Algorithm Find(Z ,Z1, . . . ,Zq ), used in the at-
tack as a subroutine, returns an index i such that Z = Zi if Z ∈
{Z1, . . . ,Zq }, and 0 otherwise. The attack somewhat generalizes
and extends the NIST/NSA attack on FF2 [20], and also resembles
Biham’s key-collision attack on DES [12]. Biham’s attack can be
viewed as a special case of ours, where the key-derivation func-
tion is the uniform one, the domain is large, and the parameters p
and q are close to 2F.kl/2. The main novelty is a rigorous analysis
lower-bounding the ib-kr-ai advantage. The attack uses dq queries
to Enc, q queries to Ch, and no Exp queries. The running time
is that of dp executions of F.E plus p executions of Find. With ap-
propriate data structures, the latter should cost about O(p logq).
The value of d will be a small constant that, in estimates above, we
absorbed into the big-oh.

The idea is as follows. The adversary picks distinct identities
I1, . . . , Iq . Let J ′i = KDFP (K , Ii ), where K is the master key cho-

sen in the overlying key-recovery game G
ib-kr-ai
F,KDF

(ESAq,p,d ). The
adversary aims to �nd one of the target keys J ′1, . . . , J

′
q via exhaus-

tive search over the space of FPE keys. It picks at random p keys
J1, . . . , Jp from the key space {0, 1}F.kl of F. Now, for each i, j, it
aims to test whether J ′i = Jj . If any such test succeeds, it can call
Ch(Ii ), return (Ii , Jj ) andwin. If the tests are perfectly correct, then
it wins with probability about pm · 2−F.kl wherem = |{J ′1, . . . , J

′
q }|,

and if the diversity is high, like ≥ q/4, then this looks like the ib-kr-
ai advantage we want. There are however several di�culties. One
is that there is no reasonable way to do perfectly correct testing.

We will handle this by using the false positive advantage Adv
fp

F,d
de�ned in Section 3. Another di�culty is the analysis. In particu-
lar, KDivKDF(q) is an expectation taken over the choice of P , but

the same P is used by the encryption algorithm in the tests, so we
cannot use independence of the success and false-positive proba-
bilities.

The following gives a lower bound on the ib-kr-ai advantage of
the exhaustive search attack. The proof is in the full version [6] of
this paper.

Theorem 4.2. Let (F,KDF) be an IB-FPE scheme. Then for any

p,q,d ∈ N such that pq ≤ 2F.kl we have

Adv
ib-kr-ai
F,KDF (ESAq,p,d ) ≥

p · KDivKDF(q)
2F.kl+1

− pq · Advfp
F,d
. �

We saw above that if KDivKDF(q) ≤ q/4 then the matching at-
tack already gives an attack with high (constant) ib-kr-ai advan-
tage. The exhaustive search attack is e�ective in the complemen-

tary case where KDivKDF(q) > q/4. In this case, assuming Adv
fp

F,d
is negligible, Theorem 4.2 says the attack has ib-kr-ai advantage
about pq/2F.kl+3. In particular p = q ≈ 2F.kl/2 yields constant ad-
vantage, showing that k bits of security requires F.kl ≥ 2k .

5 THE PRF CONSTRUCTION

Wegive amodular approach to build IB-FPE schemes. Given a prpa-
secure FPE scheme F we set KDF to a PRF to get an ib-prp-secure
IB-FPE scheme (F,KDF). Then we instantiate KDF to get IB-FPE
schemes with security matching our attacks.

The PRF construction. Theorem 5.1 below proves ib-prp secu-
rity of (F,KDF) assuming prpa security of F and prf security of
KDF. The di�erent resource metrics for A referred to below were
de�ned in Section 3. The proof, which is in the full version [6], is
a standard hybrid argument.

Theorem 5.1. Let (F,KDF) be an IB-FPE scheme. Suppose we are

given a non-adaptive ib-prp adversaryA whoseEnc,Dec,Ch queries

involve at mostu di�erent identities, with at most q1 queries toEnc,

Dec per identity. AssumeA makes qe queries to Exp. Then we can

construct a prpa adversary A of q1 Enc/Dec queries, and a prf

adversary B making u + qe queries to its Fn oracle, such that

Adv
ib-prp
F,KDF

(A) ≤ u · Advprpa
F
(A) + 2 · Advprf

KDF
(B) . (5)

The running time of A and B is about the same as that of A plus

the time for q1 executions of F.E. �

From Theorem 5.1, one can obtain an IB-FPE scheme in the stan-
dard model, by setting F to a standard-model FPE scheme such as
the Sometimes-Recurse shu�e [29]. This answers in the a�rma-
tive the theoretical question of whether IB-FPE is achievable in
the standard model.

Tightness of bound. Suppose F.kl = 2k and F has ideal behavior.

Then we would expect Adv
prp
F
(A) ≈ q1/22k , corresponding to ex-

haustive key search being the best attack on prp security, and con-

sequently from Proposition 3.2, Adv
prpa
F
(A) . 2q1/22k . Similarly

assuming KDF has optimal prf security and |KDF.MKS| ≥ 2k , we

would expect Adv
prf
KDF
(B) ≈ (qe +u)/2k . Then the bound of Eq. (7)

becomes

Adv
ib-prp
F,KDF

(A) . 2uq1

22k
+

2(qe + u)
2k

. (6)
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KDF[E](K, I )
J0 ← EK (I ‖ 00)⊕EK (I ‖ 01); J1 ← EK (I ‖ 10)⊕EK (I ‖ 11)
Return J0 ‖ J1

Figure 8: Key-derivation function KDF[E], where E : {0, 1}k ×
{0, 1}k → {0, 1}k is a blockcipher.

This allowsu,q1,qe to reachO(2k ), which as per our attacksmeans
the bound from Theorem 6.1 is essentially tight.

Instantiating KDF. Recall that we want to use only AES as our
cryptographic primitive. Thus one needs to show how to instanti-
ate KDF from a blockcipher E : {0, 1}k × {0, 1}k → {0, 1}k such
that KDF achieves k-bits of prf security assuming that E has k bits
of prp-cpa security. This is non-trivial, and as a stepping stone, we
�rst aim to achieve a good PRF F : {0, 1}k × {0, 1}k−1 → {0, 1}k .
BKR [9] suggest that one can build F by way of

FK (x) = EK (x ‖ 0)⊕EK (x ‖ 1) .

The following result by DHT [15] con�rms that F indeed has k-bit
prf security.

Lemma 5.2. [15] Let E : {0, 1}k × {0, 1}k → {0, 1}k be a block-

cipher. Let F : {0, 1}k × {0, 1}k−1 → {0, 1}k be constructed by

EK (x) = FK (x ‖ 0)⊕FK (x ‖ 1). Then for any prf adversary A mak-

ing q ≤ 2k−5 queries to Fn, we can construct an adversary A of

about the same running time and 2q oracle queries such that

Adv
prf
F
(A) ≤ Adv

prp-cpa
E

(A) +
1.5q + 3

√
q

2k
. �

We then can construct a key-derivation functionKDF[E] : {0, 1}k×
{0, 1}k−2 → {0, 1}2k by

KDF[E](K , I ) = FK (I ‖ 0) ‖ FK (I ‖ 1)

for any k-bit master key K and (k − 2)-bit identity I . The key-
derivation function KDF[E] can be expressed in terms of E as in
Fig. 8. Proposition 5.3 below shows that KDF[E] also has k-bit prf
security.

Proposition 5.3. Let E : {0, 1}k × {0, 1}k → {0, 1}k be a block-

cipher. Let KDF[E] : {0, 1}k × {0, 1}k−2 → {0, 1}2k be as in Fig. 8.

Then for any adversaryA that makes q ≤ 2k−6 queries, we can con-
struct another adversary A of about the same running time and 4q
oracle queries such that

Adv
prf

KDF[E](A) ≤ Adv
prp-cpa
E

(A) +
3q + 5

√
q

2k
.

Proof. Without loss of generality, suppose thatA does not re-
peat a prior query.We �rst reduce the prf security ofKDF to the prf
security of F , by constructing an adversary B attacking F . Adver-
sary B runs A. When the latter queries Fn(I ), the former queries
I ‖ 0 and I ‖ 1 to its oracle to get answer Z0 and Z1, and returns
Z0 ‖ Z1 toA. WhenA �nally outputs a bit b ′, B outputs the same

bit. Let a and b be the challenge bit in game G
prf
KDF
(A) and Gprf

F
(B)

respectively. Then

Pr[Gprf

KDF[E](A) | a = 1] = Pr[Gprf
F
(B) | b = 1], and

Pr[Gprf

KDF[E](A) | a = 0] = Pr[Gprf
F
(B) | b = 0] .

Adding the equations above side by side we have

Adv
prf

KDF[E](A) ≤ Adv
prf
F
(B) .

Adversary B has about the same running time as A, and makes
2q ≤ 2k−5 oracle queries. Using Lemma 5.2, one can construct

another adversaryA of about the same running time as B, and 4q
oracle queries such that

Adv
prf
F
(B) ≤ Adv

prp-cpa
E

(A) + 3q + 3
√
2q

2k

≤ Adv
prp-cpa
E

(A) +
3q + 5

√
q

2k
.

Putting all this together we get the claimed result. �

Discussion. The KDF construction above uses 4 blockcipher calls.
Alternatively, onemight consider using Iwata’s CENCmethod [23]
that makes only 3 blockcipher calls. Speci�cally, let G : {0, 1}k ×
{0, 1}k−2 → {0, 1}k be constructed via

GK (I ) = (Z⊕E(K , I ‖ 01)) ‖ (Z⊕E(K , I ‖ 10)) ,

for any k-bit master key K and (k − 2)-bit identity I , where Z =
E(K , I ‖ 00). IMV [24] claim that G has k-bit prf security, but their
analysis is based on a combinatorial result by Patarin [30] whose
proof is very involved with some unproven claims [15]. We there-
fore use the KDF[E] construction above, as it has a rigorous proof.

6 THE DBL CONSTRUCTION

In Section 5, we followed the natural route to building IB-FPE in
which the key-derivation function KDF is a PRF, and showed that
one can instantiate KDF using four calls to an underlying block-
cipher. In this section, we’ll consider how to build a faster key-
derivation function KDF for a class of FPE schemes F that we call
square. It is in fact an abstraction of the key-derivation function
of the proposed DFF standard [36]. The key-derivation function
makes just two calls to the underlying blockcipher. Interestingly,
it has poor (only birthday-bound) prf security, but we’ll give a ded-
icated analysis to justify the (non-adaptive) ib-prp security of the
IB-FPE scheme.

We use a common ideal primitive framework. All schemes use a
common instance of a single ideal primitive—an ideal cipher IC(k,k)
in which the key and block length are the same. In particular we
allow the starting square FPE scheme F to use P ∈ IC(k,k), and
then de�ne KDF using the same P . This is because, for e�ciency
and implementation ease, we aim for all �nal constructions to be
(only) AES-based.

The analysis is made challenging by two elements. First is to not
only prove security, but with a good bound. Second is that the ideal
primitive being in common means there can be queries made to it
(directly, or indirectly via other oracles) by both the key-derivation
function and the encryption and decryption functions, so we can-
not use independence in a straightforward way.
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KDFP (K, I )
J0 ← P (K, M0(I ), +) ; J1 ← P (K, M1(I ), +) ; J ← J0 ‖ J1
Return J

Figure 9: Key-derivation function KDF = Dbl[k,M] associ-
ated to embedding scheme M, where P ∈ IC(k,k).

Sqare FPE schemes. Let F be an FPE scheme. We say that it is
square if there is an integer k ≥ 1 such that F.kl = 2k and F.IP =

IC(k,k). That is, the ideal primitive associated to F is the ideal ci-
pher with key and block length both the same value k , and more-
over keys for the scheme are of length 2k . DFF is underlain by such
a square scheme [36]. (In contrast, FF2 was not.) The term “square”
refers to the fact that the key space has size 22k , the square of the
size 2k of what, below, will be the master key space of the IB-FPE
scheme, which is crucial for getting high security due to the attacks
from Section 4.

The Dbl construction. Let F be a square FPE scheme with F.kl =
2k . We �rst de�ne embedding schemes, and then a key-derivation
function KDF to turn F into an IB-FPE scheme (F,KDF).

An embedding scheme M speci�es a pair of functions M0,M1 :
M.IS → {0, 1}k satisfying two conditions: (1) Both M0 and M1

are injective and (2) the two maps have disjoint images, meaning
M0(I1) , M1(I2) for all I1, I2 ∈ M.IS. We refer to M0,M1 as the
embedding functions, andM.IS as the identity space, ofM.

Now we de�ne the key-derivation function KDF = Dbl[k,M]
to construct an IB-FPE scheme (F,KDF). We let KDF.IS = M.IS,
meaning the identity space is that of M. We let KDF.mkl = k , so
that amaster key is ak-bit string. Then the key-derivation function
KDFP : {0, 1}k ×M.IS→ {0, 1}2k is as speci�ed in Fig. 9. The key
for identity I is the result of applying the ideal cipher, keyed with
the master key K , to M0(I ) and M1(I ), and concatenating these k-
bit strings to get a 2k-bit key. The key-derivation function, the en-
cryption algorithm and the decryption algorithm all have access
to P ∈ IC(k,k). We stress that, as discussed above for this com-
mon ideal primitive framework, the key derivation uses the same

instance of the ideal cipher as encryption and decryption.

Resistance to attacks. Let F be a square FPE scheme with F.kl =
2k . We consider how well the attacks of Section 4 do against F
underKDF = Dbl[k,M]. First, we claim that our choice ofKDF ren-
ders thematching attack entirely ine�ective. Indeed, sinceP(K , ·,+)
is a permutation, the keys for distinct identities will be distinct.
Thus for any K ∈ {0, 1}k and any identities I1, . . . , Iq ∈ M.IS, the
set {KDFP (K , I1), . . . ,KDFP (K , Iq )} will have size exactly q. So its
expected size, which is our diversity metric KDivKDF(q) from Sec-
tion 4, will equal q. Not only does Theorem 4.1 become vacuous,
but, looking at the attack in Fig. 7, we see that it will have ib-kr-
ai advantage zero, because the key returned by Exp(Iℓ) will not
equal any of the keys corresponding to the other identities. This
shows a bene�t of using a block cipher as the tool in key derivation
for KDF. Had we used even a random oracle, the matching attack
would have had at least some success.

The exhaustive search attack does have a non-trivial ib-kr-ai ad-
vantage. We noted above that KDivKDF(q) = q. Assuming the false

positive advantage Adv
fp

F,d
is negligible, recall that Theorem 4.2

says that the ib-kr-ai advantage of the exhaustive search attack is
about p ·KDivKDF(q) · 2−F.kl−1 = pq · 2−F.kl−1 = pq · 2−2k−1, where
q is the number of adversary Enc queries and p is roughly its run-
ning time. So the ib-kr-ai advantage stays below 1 as long as p and
q each stay below 2k . This means we havek-bits of security against
this attack, and explains the choice of square schemes.

In summary, KDF = Dbl[k,M] has been designed so that the
attacks we gave in Section 4 are not threats to the security of F
under KDF, in particular because F.kl = 2k while KDF.mkl = k .
However, this does not guarantee security, since there may well
be other attacks. Moreover, KDF has only birthday-bound prf se-
curity, and thus using Theorem 5.1 gives us only k/2-bits of ib-prp
security for (F,KDF). The main purpose of this section is to supply
proof-based evidence of k-bit security.

Goals and naive reduction. The assumption we make is that
the given square FPE scheme F satis�es prpa security. (This is equiv-
alent to conventional prp security as per Proposition 3.1.) Our goal
is thus to reduce the ib-prp security of (F,Dbl[k,M]) to the prpa se-
curity of F. As F is de�ned in the ideal-cipher model, this involves
something somewhat novel, namely a reduction in the ideal cipher
model. (Usually, in idealized models, one directly proves bounds
on adversary advantage rather than giving reductions.) Given a
non-adaptive ib-prp adversary A we aim to build another adver-

saryA and bound Adv
ib-prp
F,KDF

(A) as a function of Adv
prpa
F
(A) and

the resources ofA, in particular the number u of users (identities)

queried. A will simulate A’s P oracle.
The natural approach is a hybrid argument. The naive way of

doing this, however, will incur a loss of u2/2k in the advantage.
This is undesirable since we want to show security up to u ≈ 2k ,
not u ≈ 2k/2. In more detail, the i-th hybrid game would let the
keys of the �rst i identities be random, and the rest be speci�ed

via KDF as per Fig. 9 (0 ≤ i ≤ u). Adversary A would pick i

at random to play the role of its single user, aiming to simulate
the other identities for A. Let Ji denote the key (underlying the

single identity queried) in A’s game. The di�culty is that, for the

simulation to be correct in the case thatA’s challenge bit is 1, the
j = u − i + 1 keys Ji , . . . , Ju must be consistent with the structure
imposed by KDF, meaning be formed by taking 2j distinct, random
k bit strings and concatenating them in pairs. But Ji is random

since A is in the prpa game, and while A can pick Ji+1, . . . , Ju to
have the desired structure, this leaves a probability ϵ = O(u/2k )
that Ji will not have a consistent structure. Speci�cally, regardless

of howA picks distinct Ji+1, . . . , Ju , the chance that one of those is
Ji is ϵ = (u−i)/2k = O(u/2k ). This means a loss of ϵ in each hybrid
step, meaning, when A picks i , its advantage is the di�erence in
probabilities from the (i+1)-th and i-th hybrid games plus ϵ . When
we sum over all hybrids (corresponding to the random choice of
i), we get a uϵ loss. What we want instead is a reduction with a
loss that is O(u/2k ) globally. This is what we will provide below,
thereby showing security matching our attacks.

Key usage metric.When invokedwith a particular key J , the algo-
rithms F.E, F.D of the square FPE scheme will invoke their ideal ci-
pher instance P with certain keys. Speci�cally there is a setT (J ) ⊆
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{0, 1}k such that all P-queries of F.E and F.D only use keys inT (J ),
regardless of the inputs to F.E, F.D and responses to oracle queries.
We let F.nk be the maximum, over all J , of the size of T (J ). This
may sound complicated but it is really simple because typical con-
structionswill evaluate the ideal cipher only on some �xed number
of keys related to J . For example, for F = FFd� , we have F.nk = 1.
That is, there is only one blockcipher key used in the construction.
We de�ne this because our bounds will depend on it.

Reduction theorem. We now reduce the non-adaptive ib-prp se-
curity of our constructed IB-FPE scheme to the prpa security of the
underlying FPE scheme. (The latter can be further reduced to its
conventional prp security via Proposition 3.1.) The following the-
orem gives a good bound, where the global loss (the second term
in the bound) is onlyO(q/2k ) over and above the inevitable linear
loss from the hybrid argument, where q is linear (not quadratic) in
the number of queries that A makes to its di�erent oracles. The
quality of the bound is the same as that of Theorem 5.1, despite the
low prf security of Dbl[k,M].

Theorem 6.1. Let F be a square FPE scheme with F.kl = 2k . Let
KDF = Dbl[k,M] be a key-derivation function as per Fig. 9. Sup-

pose we are given a non-adaptive adversary A whose Enc,Dec,

Ch queries involve at most u di�erent identities, with at most q1
queries to Enc,Dec per identity. Assume A makes qe queries to

Exp and p queries to IP. The proof constructs an adversaryA such

that

Adv
ib-prp
F,KDF

(A)

≤ u · Advprpa
F
(A) + 8u + 8qe + 2p + 2u · F.nk − 6

2k
. (7)

Adversary A makes at most q1 queries to Enc,Dec and p queries

to IP. Its running time is about the same as that of A. �

Starting above, we may use IP as the name of the game pro-
cedure that implements the ideal primitive instance. Where Fig. 3
givesA oraclesEnc,Dec,Exp,Ch, P , we would now give it ora-
cles Enc,Dec,Exp,Ch, IP, with IP(x) de�ned to simply return
P(x) in the games of Fig. 3. The reason it helps to name the proce-
dure is that in our proofs it will be programmed, and not always
set to P . It will also be useful to de�ne the key-derivation function
KDF : Perm({0, 1}k ) ×M.IS→ {0, 1}2k by

KDF(π , I ) = π (M0(I )) ‖ π (M1(I )) (8)

for all π ∈ Perm({0, 1}k ) and all I ∈ M.IS. We prove Theorem 6.1
by invoking lemmas that will follow.

Proof of Theorem 6.1. Let N = u + qe . Let KDF be the key
derivation function de�ned by Eq. (8). Using Lemma 6.2 and then
Lemma 6.3 we have

Adv
ib-prp
F,KDF

(A) ≤ Adv
ib-prp
F,KDF

(A) + 2p + 2u · F.nk
2k

≤ u · Advprpa
F
(A) + 8N − 6 + 2p + 2u · F.nk

2k
,

where A is the adversary given by Lemma 6.3. �

Lemmas. The �rst lemma allows a move to a setting where key
derivation no longer uses the ideal primitive P that is used by F, but

instead generates keys independently, although still with the same
distribution as that of the prescribed key-derivation scheme. This
lemma holds for both adaptive and non-adaptive adversaries A.

Lemma 6.2. Let F be a square FPE scheme with F.kl = 2k . Let KDF
= Dbl[k,M] be the key-derivation function of Fig. 9. Let KDF be the

key derivation function de�ned by Eq. (8). Let A be an adversary.

Then

Adv
ib-prp
F,KDF

(A) ≤ Adv
ib-prp
F,KDF

(A) + 2p + 2u · F.nk
2k

(9)

where p is the number of IP queries of A and u is the number of

di�erent identities involved in the Enc,Dec queries of A. �

Note that the reduction does not change the adversary. Our claim
is that the ib-prp advantage of A with respect to the original key-
derivation scheme is bounded by its ib-prp advantage with respect
to the newly-de�ned key-distribution scheme plus an error term
that is linear in the resources.

Proof of Lemma 6.2. Consider gamesG0 andG1 of Fig. 10. They
optimistically imagine that key generation works as per KDF, pick-
ing a random permutation π and using it to specify the user keys.
The notation (L,W , s) ← x in the code for IP means this oracle
parses its query x as a triple consisting of a key L ∈ {0, 1}k , an
inputW ∈ {0, 1}k , and a sign s ∈ {+,−}. If L equals the master
key K , the bad �ag is set to true, and game G0, which includes
the boxed code, corrects by setting P(K , ·,+) to π and its inverse
P(K , ·,−) to π−1. Game G1, however, does not include the boxed
code. The result is that game G0 is using KDF for key generation
while game G1 is using KDF. Thus

Adv
ib-prp
F,KDF

(A) = 2 Pr[G0] − 1 (10)

Adv
ib-prp
F,KDF

(A) = 2 Pr[G1] − 1 . (11)

GamesG0,G1 are identical-until-bad, so by the Fundamental Lemma
of Game Playing [11] we have

2 Pr[G0] − 1 = 2 Pr[G1] − 1 + 2 · (Pr[G0] − Pr[G1])
≤ 2 Pr[G1] − 1 + 2 Pr[G1 sets bad] . (12)

Queries to IPmay bemade directly by the adversary, and there are
p such. However, such queries may also bemade by the F.E and F.D
algorithms when invoked in Enc and Dec queries. But we know
that for any J the total number of di�erent keys that F.EIP(J , ·, ·)
and F.DIP(J , ·, ·) ever use in their oracle queries is limited to F.nk.
Since a total of u identities is involved across the Enc and Dec

queries we have

Pr[G1 sets bad] ≤
p + u · F.nk

2k
. (13)

Putting together Equations (10)—(13) yields Eq. (9). �

The next lemma bounds the ib-prp advantage of a non-adaptive
adversaryA relative toKDF via the prpa advantage of a constructed

adversary A against the FPE scheme F. This uses a hybrid argu-
ment, but done in such a way that the global loss from the struc-
ture of the key-derivation scheme remains linear (not quadratic)
in the resources.
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Game G0 , G1

b←$ {0, 1} ; K ←$ {0, 1}k ; XI← ∅ ; ChI← ∅
P ←$ IC(k, k ) ; π ←$ Perm({0, 1}k )
For every I ∈ M.IS do

JI ,0 ← π (M0(I )) ; JI ,1 ← π (M1(I )) ; JI ← JI ,0 ‖ JI ,1
b′←$ AEnc,Dec,Exp,Ch,IP

Return (b = b′)

Enc(I, T , X )
If ET[I, T , X ] , ⊥ then return ET[I, T , X ]
If (I ∈ ChI and b = 0) then Y ←$ {Y ∈ F.Dom : DT[I, T , Y ] = ⊥ }
Else Y ← F.EIP(JI , T , X )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return Y

Dec(I, T , Y )
If DT[I, T , Y ] , ⊥ then return DT[I, T , Y ]
If (I ∈ ChI and b = 0) then X ←$ {X ∈ F.Dom : ET[I, T , X ] = ⊥ }
Else X ← F.DIP(JI , T , Y )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return X

Exp(I )
If I ∈ ChI then return ⊥
XI← XI ∪ {I } ; Return JI

Ch(I )
If I ∈ XI then return ⊥
ChI← ChI ∪ {I }

IP(x )
(L,W , s) ← x

If (L = K ) then

bad← true ; P (K, ·, +) ← π ; P (K, ·, −) ← π−1

y ← P (x ) ; Return y

Figure 10: Games for proof of Lemma 6.2.

Lemma 6.3. Let F be a square FPE scheme with F.kl = 2k . Let KDF
be the key derivation function de�ned by Eq. (8). Let A be a non-

adaptive adversary whose Enc,Dec,Ch queries involve at most u

di�erent identities, with at most q1 queries toEnc,Dec per identity.

Assume A makes qe queries to Exp and p queries to IP. The proof

constructs an adversary A such that

Adv
ib-prp
F,KDF

(A) ≤ u · Advprpa
F
(A) + 8u + 8qe − 6

2k
. (14)

Adversary A makes at most q1 queries to Enc,Dec and p queries

to IP. Its running time is about the same as that of A. �

Proof. Let N = u + qe . Let I1, . . . , Iu denote the identities in-
volved in A’s Enc,Dec,Ch queries. Since A is non-adaptive,
these are distinct from the identities, denoted Iu+1, . . . , IN , inA’s
Exp queries. To be more precise, since this is how the proof makes
crucial use of the non-adaptivity assumption on A, the sets {I1,
. . . , Iu } and {Iu+1, . . . , IN } are disjoint.

We would like to use a hybrid argument in which Iд is viewed

as the target forA. The di�culty is that the keys of di�erent iden-
tities are not independent so we cannot simulate the keys of non-
target identities without knowing the target key, and the latter is of
course denied to us in the reduction.We couldmove to a gamewith
random, independent keys, but this would result in an additive se-
curity loss involving terms like N 2/2k . The following argument
keeps the loss to N /2k .

Consider games G2,д ,G3,д of Fig. 11, where д ∈ [0..u] is an as-
sociated parameter. Here Ji = Ji,0‖ Ji,1 is the key associated to Ii
for i ∈ [1..N ]. Rather than specify the keys via a permutation π as
prescribed by KDF, we consider sampling them directly, meaning
the 2N k-bit strings Ji, j for i ∈ [1..N ] and j ∈ {0, 1} are random
subject to being distinct. The games do this, but not quite. The
key Jд = Jд,0‖ Jд,1 is treated di�erently, being sampled uniformly
at random, independently of other keys. If Jд,0, Jд,1 coincide with
some other Ji, j or with each other, the distribution is incorrect.

Game G2,д , which includes the boxed code, corrects, re-sampling
this key to obey the distinctness rule, but game G3,д , which ex-
cludes the boxed code, does not correct. The former re�ects the
real game, the latter the one conducive to doing our hybrid because
non-target keys can be sampledwithout knowing the target key. (It
is important that we did not overkill by asking all keys to be inde-
pendent of each other in the second game, for this would incur the
quadratic security loss.) While we have discussed Ji as associated
to Ii , the identities to be queried are not known upfront, and the
allocation of an index v[I ] to identity I is made dynamically at the
time identity I is �rst queried to Enc orDec. Queries to Exp are
answered directly, simply revealing the created keys. The games
do not pick a challenge bit, instead returning true when the out-
put b ′ of A is 1, and false otherwise. When д = u, all Enc,Dec

queries are answered via F, and when д = 0 they are answered
randomly but consistently with prior replies, so that

Adv
ib-prp
F,KDF

(A) = Pr[G2,u ] − Pr[G2,0] . (15)

For each д, the two games G2,д ,G3,д are identical-until-bad, so by
the Fundamental Lemma of Game Playing [11] we have

Pr[G2,u ] − Pr[G2,0]
= Pr[G3,u ] + (Pr[G2,u ] − Pr[G3,u ])

− Pr[G3,0] + (Pr[G3,0] − Pr[G2,0])
≤ Pr[G3,u ] − Pr[G3,0] + Pr[G3,u sets bad]

+ Pr[G3,0 sets bad] . (16)

In game G3,д , the set D has size 2N − 2 at the time of the test

“Jд,0 ∈ D," so bad is set here with probability (2N −2)/2k . Similarly

the test involving Jд,1 sets badwith probability at most (2N−1)/2k ,
so

∀ д ∈ [0..u] : Pr[G3,д sets bad] ≤
4N − 3
2k

. (17)

Session G3:  Crypto Standards CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1528



Game G2,д , G3,д (0 ≤ д ≤ u)

P ←$ IC(k, k ) ; ChI← ∅ ; N ← u + qe ; c ← 0 ; e ← u

D ← ∅ ; R ← {0, 1}k
For i ∈ [1..N ] \ {д } and j ∈ {0, 1} do

Ji, j ←$ R ; R ← R \ {Ji, j } ; D ← D ∪ {Ji, j }
Jд,0←$ {0, 1}k ; Jд,1←$ {0, 1}k

If (Jд,0 ∈ D) then bad← true ; Jд,0←$ R ; R ← R \ {Jд,0 }
If (Jд,1 ∈ D ∪ {Jд,0 }) then bad← true ; Jд,1←$ R

b′←$ AEnc,Dec,Exp,Ch,P

Return (b′ = 1)

Enc(I, T , X )
If ET[I, T , X ] , ⊥ then return ET[I, T , X ]
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

J ← Jv[I ],0 ‖ Jv[I ],1
If (I ∈ ChI and v[I ] > д) then Y ←$ {Y ∈ F.Dom : DT[I, T , Y ] = ⊥ }
Else Y ← F.EP (J , T , X )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return Y

Dec(I, T , Y )
If DT[I, T , Y ] , ⊥ then return DT[I, T , Y ]
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

J ← Jv[I ],0 ‖ Jv[I ],1
If (I ∈ ChI and v[I ] > д) then X ←$ {X ∈ F.Dom : ET[I, T , X ] = ⊥ }
Else X ← F.DP (J , T , Y )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return X

Exp(I )
If (v[I ] = ⊥) then e ← e + 1 ; v[I ] ← e

J ← Jv[I ],0 ‖ Jv[I ],1 ; Return J

Ch(I )
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

ChI← ChI ∪ {I }

Adversary AEnc,Dec,Ch,IP

ChI← ∅ ; N ← u + qe ; c ← 0 ; e ← u

д←$ [1..u] ; R ← {0, 1}k
For i ∈ [1..N ] \ {д } and j ∈ {0, 1} do

Ji, j ←$ R ; R ← R \ {Ji, j }
Jд,0 ← ⊥ ; Jд,1 ← ⊥
b′←$ AEncSim,DecSim,ExpSim,ChSim,IP

Return b′

EncSim(I, T , X )
If ET[I, T , X ] , ⊥ then return ET[I, T , X ]
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

J ← Jv[I ],0 ‖ Jv[I ],1
If (I ∈ ChI and v[I ] > д) then Y ←$ {Y ∈ F.Dom : DT[I, T , Y ] = ⊥ }
If (v[I ] = д) then Y ← Enc(T , X )
If (I < ChI or v[I ] < д) then Y ← F.EIP(J , T , X )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return Y

DecSim(I, T , Y )
If DT[I, T , Y ] , ⊥ then return DT[I, T , Y ]
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

J ← Jv[I ],0 ‖ Jv[I ],1
If (I ∈ ChI and v[I ] > д) then X ←$ {X ∈ F.Dom : ET[I, T , X ] = ⊥ }
If (v[I ] = д) then X ← Dec(T , Y )
If (I < ChI or v[I ] < д) then X ← F.DP (J , T , Y )
ET[I, T , X ] ← Y ; DT[I, T , Y ] ← X ; Return X

ExpSim(I )
If (v[I ] = ⊥) then e ← e + 1 ; v[I ] ← e

J ← Jv[I ],0 ‖ Jv[I ],1 ; Return J

ChSim(I )
If (v[I ] = ⊥) then c ← c + 1 ; v[I ] ← c

If (v[I ] = д) then Ch(I )
ChI← ChI ∪ {I }

Figure 11: Games and adversary for proof of Lemma 6.3.

Using Equations (15), (16) and (17), we have

Adv
ib-prp
F,KDF

(A) ≤ Pr[G3,u ] − Pr[G3,0] +
8N − 6
2k

. (18)

We use a hybrid argument to bound Pr[G3,u ] − Pr[G3,0]. Consider
adversary A of Fig. 11. It picks д at random from [0..u], and then
picks keys Ji, j for i , д to be random but distinct. It then runs
A. It simulates the latter’s Enc,Dec,Exp,Ch oracles with the
shown sub-routines EncSim,DecSim,ExpSim,ChSim, respec-
tively. For IP, it directly uses its own IP oracle. The ability to do
the latter is important and is why we needed Lemma 6.2 to remove
all uses of the ideal primitive other than those made by F. In an-
swering Enc,Dec queries of A for an identity Ii , it uses F under
the keys it has created if i < д, forwards the queries to its own
Enc,Dec oracles if i = д —so that Jд is identi�ed with the hidden

key in game G
prp
F
(A)— and answers randomly if i > д, all this ad-

justed to take into account whether or not the identity is in ChI. A
Exp(I ) query ofA can be answered because v[I ] , д soA created,
and has, the relevant key, and can return it. In answering a Ch(I )

query, A calls its own Ch oracle with I if v[I ] = д. We have

Adv
prp
F
(A) = 1

u
·
u
∑

i=1

Pr[G3,i ] − Pr[G3,i−1]

=

1

u

(

Pr[G3,u ] − Pr[G3,0]
)

. (19)

Equations (18) and (19) imply Eq. (14). �

7 PRE-MASKING-BASED IB-FPE

While Theorem 6.1 shows that if we adjoin Dbl[k,M] to an ideal
square FPE F, the resulting IB-FPE scheme (F,Dbl[k,M]) has k-bit
ib-prp security, we’d like to have some provable guarantees if F is
concretely instantiated from the base FPE scheme of DFF. How-
ever, while the Feistel structure of DFF seems to have very strong
empirical security, it’s notoriously hard to give even a satisfactory
prp bound on Feistel networks on small domains. Let us now elab-
orate on the reason of this di�culty. Recall that in an information-
theoretic proof for prp security of Feistel (such as the classic Luby-
Racko� result [28]), all current techniques can only give a bound
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based on the number of queries of the adversary, but not its run-
ning time. However, for a r -round balanced Feistel network on do-
main {0, 1}2n , by a simple counting argument, if r < 2n , there is
an adversary (of astronomical running time) that makes only 2n

Enc queries and wins with advantage very close to 1. But in our
setting, n can be any number greater than 3, whereas in practice, r
is often at most 36.

Given the huge obstacle in proving ib-prp security as described
above, we turn into ib-kr-ti security. We now give a class of square
FPE constructions that we call pre-masking FPE, such that for any F
in this class, (F,Dbl[k,M]) has nearly k-bit ib-kr-ti security. Mem-
bers of this class use an ideal cipher P ∈ IC(k,k) (which will be
instantiated via AES), but we make no other hardness assumption.
This class includes the FPE scheme ofDFF, and thus justi�es the de-
sign choice ofDFF. We warn that we only claim ib-kr security, and
a pre-masking FPE therefore might be subject to di�erent attacks.
Thus our security guarantee here doesn’t contradict the message-
recovery attacks of BHT [7] on Feistel-based FPE schemes, includ-
ing DFF. (These attacks, however, are easily put out of reach by
increasing the number of rounds on small inputs.) Likewise, our
security claim for pre-masking FPEs does not contract the recent
message-recovery attack of Durak and Vaudenay [17] that exploits
a bug in the design of round functions of FF3.

Pre-masking FPE. Let F be a square FPE scheme, meaning F has
key-length F.kl = 2k and its ideal primitive is F.IP = IC(k,k).
We say that F is pre-masking if it additionally speci�es algorithms
F.EC, F.DC (we call them encode and decode) such that

F.EP (J ,T ,X ) = F.ECRoundP (J , ·)(T ,X )

F.DP (J ,T ,Y ) = F.DCRoundP (J , ·)(T ,Y ) ,

where we have de�ned

RoundP (J ,U )
J1 ← J [1 : k] ; J2 ← J [k + 1 : 2k]
Return P(J1,U⊕J2,+).

That is, F.E and F.D use the 2k-bit key J in a limited way, through
Round. The latter takes a k-bit input and implements Rivest’s clas-
sical DESX construction on top of the ideal-cipher instance P , but
omits the post-whitening (meaning that the output is not XOR’ed
with J2). Note the encoding and decoding functions do not have di-
rect access to the key J ; they can only access it indirectly through
queries to RoundP (J , ·). As an example, if F.Dom = {0, 1}2n and
F.TS = {0, 1}t for n + t ≤ k − 4, a 10-round Feistel-based pre-
masking FPE scheme can be built as in Fig. 12.

The e�ciency improvementwe obtain (due to dropping the post-
whitening in DESX) is based on the fact that Round only calls the
forward direction of the ideal cipher.

Security analysis.As a stepping stone in obtaining the ib-kr-ti se-
curity of a pre-masking FPE scheme F, we consider security of the
following FPE scheme F. Informally, the scheme F is a blockcipher,
implementing the DESX variant on top of AES. That is, FPE scheme
F has F.Dom = {0, 1}k and F.TS = {ε}. Its encryption scheme
F.EP (J ,T ,X ) returns Round(J ,X ), and the decryption scheme is
de�ned accordingly.

F.ECf (T , X )
L ← X [1 : n];R ← X [n + 1 : 2n]
ℓ ← k − n − t
For i = 1 to 10 do

V ← f ([i]ℓ ‖T ‖ R)
L′ ← R;R ← L⊕V [1 : n]; L ← L′

Return L ‖ R

F.DCf (T , Y )
L ← Y [1 : n];R ← Y [n + 1 : 2n]
ℓ ← k − n − t
For i = 10 downto 1 do

V ← f ([i]ℓ ‖T ‖ R)
L′ ← R;R ← L⊕V [1 : n]; L ← L′

Return L ‖ R

Figure 12: A 10-round Feistel-based pre-masking FPE

scheme F. Here [i]ℓ denotes the ℓ-bit encoding of a number

i ∈ {1, . . . , 10}. The oracle f : {0, 1}k → {0, 1}k is imple-

mented as RoundP (J , ·).

In Lemma 7.1 below, we’ll reduce the ib-kr-ti security of F to the
ib-kr-ti security of F, both relative to Dbl[k,M]. The constructed
adversary however makes no Dec query in attacking F. This re-
striction is crucial, because in F, there’s pre-whitening but no post-
whitening of the output of P(J1, ·,+).

Lemma 7.1. Let F be a pre-masking FPE scheme of F.kl = 2k
and F be as described above. Let KDF be the key-derivation func-

tion Dbl[k,M]. Suppose that we are given an adversary A whose

Enc/Dec queries involve atmostq calls toRound. AssumeAmakes

qe queries to Exp and p queries to IP. Then we can construct an ad-

versary A of the same number of IP and Exp queries such that

Adv
ib-kr-ti
F,KDF (A) ≤ Adv

ib-kr-ti
F,KDF

(A) .

Adversary A makes at most q Enc queries and noDec query.

Proof. Adversary A runs A and shares the Exp and P or-
acles with it. When A wants to encrypt (I ,T ,X ), adversary A
runs F.ECEnc(I,ε, ·)(T ,X ), where Enc is A’s own encryption or-

acle. Likewise, when A wants to decrypt (I ,T ,Y ), adversary A
runs F.DCEnc(I,ε, ·)(T ,Y ). Finally, whenA outputs its guessed key,

adversaryA returns the same output. Hence gameGib-kr-ti
F,KDF

(A) co-
incides with game Gib-kr-ti

F,KDF
(A), and thus

Adv
ib-kr-ti
F,KDF (A) ≤ Adv

ib-kr-ti
F,KDF

(A) .

�

Next, we bound the ib-kr-ti security of F relative to Dbl[k,M],
but the adversary is forbidden from calling Dec. The analysis is
challenging, because there’s no post-whitening of the output of
P(J1, ·,+) in the encryption scheme of F, yet the adversary can still
query P(·, ·,−). The proof is in the full version [6]. We note that if q
is small, say q ≤ 2k/k3, then in Lemma 7.2 the blowup k/lg(k) can
be reduced to 3k

k−lg(q) . However, for the practical choice k = 128,
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the blowup k/lg(k) is smaller than 19 and the bound in Lemma 7.2
is already satisfactory.

Lemma 7.2. Let F be as described above and let KDF be the key-

derivation function Dbl[k,M]. Assume that k ≥ 16. Then for any

adversaryA that makes at most q ≤ 2k−2 queries to Enc, no query
to Dec, qe ≤ 2k−3 queries to Exp, and p queries to IP,

Adv
ib-kr-ti
F,KDF

(A) ≤ 2q(p + 1)
22k

+

4(p + 1)k
2k · lg(k)

+

q + qe + p + 5

2k
. �

Combining Lemma 7.1 and Lemma 7.2, we immediately obtain the
following result.

Theorem 7.3. Let F be a pre-masking FPE scheme of F.kl = 2k
and let KDF be the key-derivation function Dbl[k,M]. Assume that

k ≥ 16. Suppose that we are given an adversaryA whoseEnc/Dec

queries involve at mostq calls to Round. AssumeA makesqe queries

to Exp and p queries to IP. Then

Adv
ib-kr-ti
F,KDF (A) ≤

2q(p + 1)
22k

+

4(p + 1)k
2k · lg(k)

+

q + qe + p + 5

2k
. �

We note that the results of Lemma 7.2 and Theorem 7.3 hold
even for adaptive adversaries if the ideal cipher is programmable.
If the ideal cipher is non-programmable then these results only
work for non-adaptive adversaries.

A matching attack. In Lemma 7.2, at the �rst glance, the blowup
k/lg(k) looks like an artifact of the analysis. However, Proposi-
tion 7.4 shows that it’s inherent by demonstrating a matching key-
recovery attack. The proof, which is in the full version [6] is non-
trivial. In both Lemma 7.2 and Proposition 7.4, the term k/lg(k)
comes from some balls-into-bins phenomena.

Proposition 7.4. Let F be as described above. Let KDF be the

key-derivation function Dbl[k,M]. Assume that k ≥ 128. Let r =
⌊k/9 lg(k)⌋ and let q = r ⌊2k/9r2⌋ ≈ 2k lg(k)/k . Then we can con-

struct a non-adaptive adversaryA making at mostq+r queriesEnc

queries and q + r queries to IP, a single query to Ch, and no query

to Exp or Dec query, yet

Adv
ib-kr-ti
F,KDF

(A) ≥ (1 − 5 · 2
−k/9)qr

2k+1
≥ 1
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8 SECURITY ANALYSIS FOR DFF

Here we discuss how to cast DFF as an IB-FPE scheme obtained
via the Dbl transform and apply the results of Sections 6 and 7
to validate its security, as long as (1) the tweak (identity) space
is appropriately restricted and (2) the radix and input length are
�xed. Limitation (1) arises because, over the full tweak (identity)
space, theM1 embedding function is not injective: even for a �xed
radix and input length, two tweaksmay have derived keys with the
same second halves. This does not, as far as we know, give rise to a
damaging attack (we give below the best attack we could �nd) but
it can be viewed as a design weakness. We suggest modi�cations
to the embedding that restore injectivity and allow our results to
apply. Limitation (2) means that a (master) key is used for just one
choice of radix and tweak. To prove security for varying radix and

input lengths would require that we use the broader de�nition of
FPE from [10] in which the domain is a union of slices, in our case
a slice being associated to a choice of radix and tweak.

DFF as IB-FPE. We �rst brie�y explain how to view DFF [36] as
an IB-FPE scheme (F,KDFd�). (See the full version [6] for the com-
plete speci�cation.) The DFF speci�cation allows di�erent choices
of radix rdx and input lengthn, but herewe �x both, so that F.Dom =
Z
n
rdx

. F has 256-bit keys and tweak space the singleton set {ε}. The
algorithm itself is a 10-round Feistel network. The identity space
KDFd� .IS is the set of all I ∈ {0, 1}∗ such that |I | is at most 13 bytes.
The underlying blockcipher E : {0, 1}128 × {0, 1}128 → {0, 1}128
is AES. Let [x]b denote the representation of x as a b-byte string.
The embedding scheme M = (M0,M1) is speci�ed via M0(I ) =
[rdx]1 ‖ [|I |]1 ‖ [n]1 ‖ [I ]13 andM1(I ) = [0]3 ‖ [I ]13. Note thatM1 is
not injective: for example,M1(00) = M1(000).
Security over restricted identity spaces. If the radix and in-
put length are �xed, and one restricts the identities to a subset
S ⊂ KDFd� .IS such that no two strings in S correspond to the same
integer in binary, then the embedding functionsM0 andM1 above
are injective and have disjoint images. Under these restrictions, our
results in Sections 6 and 7 apply, and DFF has k-bit non-adaptive
ib-prp security, and k-bit adaptive ib-kr-ti security.

Security over the full identity space. The non-injectivity of
M1 allows an adversary to get the second half of the subkey of an
identity I without querying Exp(I ), by picking another identity
I ′ such that [I ′]13 = [I ]13, and calling Exp(I ′). Note that for any
I ′ ∈ KDFd� .IS, there are up to 104 other identities I ∈ KDFd� .IS

such that [I ′]13 = [I ]13. This leads to the following non-adaptive
ib-kr-ti attack KRp,d . The adversary KRp,d picks identities I0 =

ε, I1 = 0, I2 = 02, . . . , I104 = 0104. Note that [I0]13 = · · · = [I104]13.
It �rst queries J ← Exp(I0), and let R ← J [k + 1 : 2k]. Note that
for any i ≤ 104, R is also the right half of the subkey of iden-
tity Ii . The adversary now picks p candidates subkeys J1, . . . , Jp
such that Jj [k + 1 : 2k] = L. Now, for every i ∈ {1, . . . , 104} and
j ∈ {1, . . . ,p}, it aims to test whether Jj is the subkey of Ii by com-
paring Enc(Ii , ε, ·) and F.E(Jj , ε, ·) on d messages. The code of the
adversary is given in Fig. 13. Proposition 8.1 below shows that this

attack achieves ib-kr-ti advantage about 104p/2129−104p ·Advfp
F,d

,

where the false positive advantageAdv
fp

F,d
was de�ned in Section 3.

The proof of Proposition 8.1 is in the full version [6].

Proposition 8.1. Let (F,KDFd�) be as above. Then for anyp,d ∈
N such that p ≤ 2128/104 we have

Adv
ib-kr-ti
F,KDFd�

(KRp,d ) ≥
104p

2129
− 104p · Advfp

F,d
. �

Discussion.While the attack KRp,d above is impractical and does
not signi�cantly a�ect the 128-bit security claim of DFF, our re-
sults, at least, o�er no proof that a better attack is not possible.
Furthermore, that the right halves of the keys of two di�erent iden-
tities can coincide does not feel right. Accordingly, we recommend
�xing this. If rdx is �xed, this could be done by setting M1(I ) =
[0]1 ‖ [|I |]1 ‖ [n]1 ‖ [I ]13. Alternatively one could restrict the iden-
tities as mentioned above. If rdx cannot be viewed as �xed and we
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Adversary KREnc,Dec,Exp,Ch,P
p,d

For i ← 0 to 104 do Ii ← 0i

J ← Exp(I0); R ← J [k + 1 : : 2k ]; S ← ∅
For ℓ ← 1 to d do Xℓ ←$ F.Dom\S ; S ← S ∪ {Xℓ }
For i ← 1 to 104 do

For ℓ ← 1 to d do Vℓ ← Enc(Ii , ε, Xℓ )
Zi ← (V1, . . . , Vd )

For j ← 1 to p do

Lj ←$ {0, 1}128; Jj ← Lj ‖ R
For ℓ ← 1 do d do Uℓ ← F.EP (Jj , T , Xℓ )
Z ← (U1, . . . , Uℓ ) ; i ← Find(Z , Z1, . . . , Z104)
If i > 0 then (Ch(Ii ); Return (Ii , Jj ))

Figure 13: The attack KRp,d on the IB-FPE scheme (F,KDFd�).

want a more natural space of identities, we would suggest to let
identities be binary strings of at most 12 bytes, let M0(I ) = [0]1‖
[rdx]1‖[|I |]1‖[n]1‖[I ]12 and M1(I ) = [1]1‖[rdx]1‖[|I |]1‖[n]1‖[I ]12.
All these choices ensure the embedding functions satisfy our con-
ditions so that our results in Sections 6 and 7 apply.
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