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ABSTRACT

Cybercrime markets support the development and difusion of new

attack technologies, vulnerability exploits, and malware. Whereas

the revenue streams of cyber attackers have been studied multi-

ple times in the literature, no quantitative account currently exists

on the economics of attack acquisition and deployment. Yet, this

understanding is critical to characterize the production of (traded)

exploits, the economy that drives it, and its efects on the overall

attack scenario. In this paper we provide an empirical investiga-

tion of the economics of vulnerability exploitation, and the efects

of market factors on likelihood of exploit. Our data is collected

irst-handedly from a prominent Russian cybercrime market where

the trading of the most active attack tools reported by the security

industry happens. Our indings reveal that exploits in the under-

ground are priced similarly or above vulnerabilities in legitimate

bug-hunting programs, and that the refresh cycle of exploits is

slower than currently often assumed. On the other hand, cyber-

criminals are becoming faster at introducing selected vulnerabili-

ties, and the market is in clear expansion both in terms of players,

traded exploits, and exploit pricing. We then evaluate the efects

of these market variables on likelihood of attack realization, and

ind strong evidence of the correlation between market activity

and exploit deployment. We discuss implications on vulnerability

metrics, economics, and exploit measurement.
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1 INTRODUCTION

The rapid expansion of the cyber-threat scenario reported in the

recent literature is fostered by the presence of an ‘underground’

economy that supports the development, deployment, and moneti-

zation of cyber-attacks [35, 36]. A few studies analyze the dynamics

of the underground and the markets that drive it [8, 36, 37], focus-

ing on either the economic mechanisms that enable the market

activity [8, 37], or the ‘after the fact’ analysis of its efects in the

real world [15, 36]. However, it remains impossible to fully char-

acterize the underground production of cyber-attacks without a

quantitative account of its economic aspects. For example, several
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allegations currently exist on the costs of an exploit in the under-

ground markets. Similarly, the ‘economy of malware’ is thought

to have signiicant repercussions on the realization of real-world

attacks, yet no scientiic account of this relation is currently present

in the literature. Likewise, legitimate vulnerability markets [63, 77]

have been designed to ‘compete’ with cybercrime markets, but the

two systems remain hardly comparable without a more precise

account of their economic aspects. In this paper we ill this gap

by focusing on the economic aspects of exploit acquisition and

deployment, hence providing an additional piece in the otherwise

incomplete cybercrime puzzle.

Part of the reason why such analyses are scarce in the litera-

ture is the diiculty of identifying and studying ‘good’ or ‘inlu-

ential’ underground markets. Criminal markets are known to be

fraught with economic problems that hinder fair trade, and conse-

quently market development [37, 69]. Moreover, markets trading

attack technologies tend to be strongly segregated [8, 68, 69, 75],

making their access and study more diicult to accomplish. For

example, common segregation mechanisms include the implemen-

tation of pull-in mechanisms, language barriers (especially Rus-

sian/Portugese/Chinese), and ingress monitoring [8]. On the other

hand, non-English speaking attackers reportedly generate a signii-

cant fraction of attacks [43, 78]; this may be partly due to the still

loose international regulation of the cyber-space [44], as well as

economic and social aspects on welfare and higher education in

developing countries [25, 49, 50]. For example, Russian cybercrimi-

nals are known to produce malware that does not attack ex-Soviet

nations (ex-CIS), in an attempt to not catch the attention of the local

authorities. On the other hand, a signiicant fraction of the malware

detected at scale, as well as attack vectors such as exploit kits and

booter services [35, 42, 48] are suspected to have been engineered

by Russian attackers [43, 48, 70].

In this paper we characterize the economic aspects of vulnera-

bility exploits as traded in a prominent Russian cybercrime market

(RuMarket1) for user infections at scale (as opposed to targeted

or 0-day attacks), and of their efect on risk of exploit in the wild.

Through market iniltration we collect information on trade of

vulnerability exploits spanning from 2010 to 2017, and correlate

this data with Symantec data on exploits detected at scale. Our

contribution can be summarized as follows:

(1) The time between vulnerability disclosure and appearance

of exploit in RuMarket is shortening, showing that attackers

are becoming more reactive in delivering selected exploits.

At the same time, number of actors and of traded exploits

is increasing; exploit prices are inlating, and exploit-as-a-

service models appear to allow for drastic cuts in exploitation

costs. This is particularly relevant for the development of

1We do not disclose the real name of the market to minimize threats to our anonymity.
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economic models of the underground, and impacts attacker

and risk modeling.

(2) We ind strong evidence of the relation between market ac-

tivity and likelihood of exploitation in the wild. We ind that

exploits that spawn higher levels of discussion in RuMarket

are associated with higher odds of exploitation in the wild,

and that high market prices hinder exploit deployment at

scale. This provides a quantitative link between attacker eco-

nomics and attack realization, and can directly contribute in

the development of (more) realistic attacker models.

(3) Exploit prices in the underground markets are aligned with

or above those of analogous ‘legitimate’ markets for vulner-

abilities and vary between 150 and 8000 USD, whereas the

arrival of new exploits is signiicantly slower than otherwise

often assumed. This provides insights on the incentives to

participate in the underground economy, and on the dynam-

ics of exploit introduction.

Scope of work. The goal of this paper is to provide insights on

exploit economics by analyzing one prominent Russian cybercrime

market; this work does not aim at providing a full enumeration

of all exploits traded in the underground: other cybercrime mar-

kets may feature diferent sets of exploits and/or foster diferent

cybercriminal activities, as well as enforcing diferent market reg-

ulation mechanisms. Similarly, RuMarket does not focus on 0day

exploits, whose employment for attacks at scale is reportedly very

limited [18], and are outside of the scope of this work.

This paper proceeds as follows. The following section discusses

related work. Methodology, data collection, and analysis proce-

dure are discussed in Section 3. Section 4 reports our analysis, and

Section 5 discusses our results.

2 RELATEDWORK

The economics and development of underground markets have

perhaps been irst tackled by Franklin et al. [33]. On the other hand,

Herley et al. [37] showed that cybercrime economics are distinc-

tively problematic in that the lack of efective rule enforcement

mechanisms may hinder fair trading, and as a consequence the

existence of the market itself. A few studies analyzed the evolution

of cybercrime markets [8, 23, 35, 53, 68, 75], and provided estimates

of malware development [22] and attack likelihood [11], but no

quantitative account of economic factors such as exploit pricing

and adoption are currently reported in the literature [22, 63]. In

this paper we provide the irst empirical quantiication of these

economic aspects by analyzing data collected irst-handedly from a

prominent cybercrime market.

Recent work studied the services and monetization schemes of

cyber criminals, e.g. to launder money through acquisition of expen-

sive goods [36], or renting infected systems [35, 42]. The provision

of the technological means by which these attacks are perpetrated

remain however relatively unexplored [63], with the exception of a

few technical insights from industrial reports [43, 70]. Similarly, a

few studies estimated the economic efects of cybercrime activities

on the real-world economy, for example by analyzing the mone-

tization of stolen credit cards and banking information [15], the

realization of proits from spam campaigns [45], the registration

of fake online accounts [71], and the provision of booter services

for distributed denial of service attacks [47]. However, a characteri-

zation of the costs of the technology (as opposed to the earnings

it generates), and the relation of trade factors on the realization of

an attack is still missing. This work provides a irst insight on the

value of vulnerability exploits in the underground markets, and the

efects of market factors on presence of attacks in the wild.

The presence of a cybcercrime economy that absorbs vulnera-

bilities and generates attacks motivated the security community

to study the devision of ‘legitimate’ vulnerability markets that at-

tract security researchers away from the illegal marketplaces [77].

Whereas several market mechanisms have been proposed [46, 57],

their efectiveness in deterring attacks is not clear [46, 52, 61]. The

so-called responsible vulnerability disclosure is incentivized by the

presence of multiple bug-hunting programs by several providers

such as Google, Facebook, and Microsoft, or ‘umbrella’ organiza-

tions that coordinate vulnerability reporting and disclosure [30,

63, 77]. It is however unclear how do these compare against the

cybercrime economy, as several key parameters such as exploit

pricing in the underground are currently unknown. Further, it re-

mains uncertain whether the adoption of vulnerability disclosure

mechanisms has a clear efect on risk of attack in the wild [61]. This

study ills this gap by providing an empirical analysis of exploit

pricing in the underground, and evaluating the efect of cybercrime

market factors on the actual realization of attacks in the wild.

3 METHODOLOGY

Sections 3.1 to 3.3 present our methodology and provide a detailed

description of our data. In Sec. 3.4 we outline the analysis procedure,

assumptions, and data handling. Sec. 3.5 discusses observational

biases of this study, and Sec. 3.6 addresses ethical aspects.

3.1 Market iniltration and evaluation

RuMarket is a forum-based market that can be reached from the

open Internet. Access to the market requires explicit admission

by the market administrators, who validate the access request by

performing background checks on the requester. The main criterion

for admission is the ability to demonstrate that the requester has

control over other identities in ailiated Russian hacking forums,

and that he/she has been active in the community.2 Gaining access

to RuMarket required approximately six months to build a cred-

ible proile, identify ailiated markets, and letting our alter-ego

gain reputation within the hacking community. These activities

required some level of proiciency in Russian. Section 3.6 provides

a discussion on ethical aspects. As members of the market, we have

access to all the (history of) product information, trades, and prices

available to active participants. This analysis spans seven years of

market activity (July 2010 - April 2017).

Criteria for market evaluation. It is important to irst evaluate

whether the selected market is a credible candidate for analysis,

or is yet another example of many ‘scam-for-scammers’ under-

ground forums [33, 37]. Following indications in the literature on

the poor implementation of cybercrime markets [37, 75], in previ-

ous work [8] we performed an analysis of the markets’ economic

2Admission criteria were initially enforced upon the 2013 arrest, performed by the
Russian authorities, of a prominent market member. The enforcement of the admission
criteria, albeit still present at the time of writing, has now loosened up.
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Table 1: Exploit identiication and market activity

Vulns Replies Trade evidence

Type Ads Tot. Avg. Tot. Avg. Yes No %

CVE 9 30 3.3 518 57.5 5 4 55%

Knwn 4 4 1 55 13.8 2 2 50%

0day 1 1 1 44 44 0 1 0%

Und. 5 - - 65 13 1 4 25%

mechanisms (e.g. addressing information asymmetry [6], adverse

selection, and moral hazard [28, 37]), traded goods, and partici-

pation. We here provide a summary of the considered criteria. A

complete account of these aspects is given in [8].

Cr.1 Enforcement of market regulation mechanisms; market mech-

anisms enforcing market rules, such as punishment for rippers or

presence of trade guarantors or escrows are known to be central

to address foundational problems that cripple the economics of cy-

bercrime markets [6, 28, 32, 37, 75] and hinder product quality. We

found that in RuMarket, rippers are systematically punished, most

sellers use the market escrow services to guarantee transactions,

and that the high costs of market entry hinder unfair behavior.

Cr.2 Evidence of trade. We evaluated face evidence of actual trad-

ing activity in the market. Accounting for indications from eco-

nomic literature [62, 67], we investigate trade-related feedback from

market participants, discussions in the market threads, product evo-

lution, and type of market interactions; all evidence points toward

efective trade mechanisms that foster trading activity.

Cr.3 Presence of prominent attack tools reported by the industry.

The relevance of RuMarket in the threat scenario is supported by

the presence of traders for the most prominent attacks reported by

the industry. Among those, we ind several exploit kits [35] (e.g.

Blackhole, RIG, Eleonore [3, 70]) and malware that led numerous

infection campaigns (e.g. Zeus, Citadel [17, 19, 60]).

3.2 Sampling exploits in the underground

The unstructured nature of forum-based markets calls for a few

additional considerations on data sampling: whereas most (crimi-

nal) goods such as drugs, weapons, and illegal pornography can be

easily identiied and described or demoed by vendors (and there-

fore measured by investigators [69]), the disclosure of too much

information on an exploit would destroy its value [52], whereas

revealing too little eventually leads to market death (as buyers can-

not assess what they buy) [37]. In order to meaningfully sample

data points, it is therefore critical to identify the exploit reporting

criteria adopted by vendors.

To this aim, we randomly sample 50 posts from RuMarket gener-

ally referring to ҡэксплоитә (‘exploit’) and (slang) variants thereof,

and evaluate the type of reporting and received market response

(i.e. number of replies, and trade evidence [69]). In our sample we

ind 19 ads selling 35 exploits overall. Four reporting mechanisms

emerge: using the standard Common Vulnerabilities and Exposures

(CVE) identiier [2]; describing an exploit as afecting a disclosed

vulnerability (Knwn); describing it as a 0day; not describing it at all

(Und.). Table 1 summarizes the results. Overall, we ind nine adverts

reporting 30 CVEs, one reporting a single 0day, and four reporting

one Knwn vulnerability each. Five additional posts (Und.) advert an

undeined number of vulnerabilities without further details on af-

fected software or type of exploit. The irst observation is that posts

reporting CVEs trade on average signiicantly more vulnerabilities

than other posts (p = 0.03 for a Wilcoxon rank sum test), indicating

that this category likely represents the great majority of marketed

exploits. Adverts reporting CVEs also show greater market activ-

ity, measured in terms of received replies (p = 0.05), than other

posts. Similarly, poorly described vulnerabilities are unlikely to

show any evidence of trade, whereas CVE and Knwn vulnerabilities

display similar rates. Overall, we ind that vulnerabilities reported

by CVE represent the signiicant majority of traded vulnerabilities

(by almost an order of magnitude), and receive signiicantly more

attention from the RuMarket community than the aggregate.

Further supporting the relevance of CVE reporting, we ind that

market participants actively look for CVE information when not

immediately available; for example, an interested buyer of the KTR

package asks (translated from Russian): ҡWhich exploits are bundled

in the pack at the moment? If possible, specify the CVEә; the seller

complies. Numerous other examples go in this same direction. Crit-

ically, this mechanism allows buyers to perform a irst assessment

of the exploit, and to verify that the characteristics of the vulnera-

bility it exploits match the vendor’s claims (e.g. allow for remote

code execution or privilege escalation); this, alongside other market

mechanisms described in previous work [8], directly addresses the

problem of adverse selection, foundational to all markets of this

type, and irst underlined in [37]. Indeed, vulnerability identiica-

tion is part of the regulation of the market itself: for example, a

vendor was blocked by the forum administrators when trying to

sell (for 3000 USD) an identiiable Windows PoC (CVE-2012-0002);

the admin explains: ҡThis [exploit] is public (if not today, tomorrow).

The DOS proof-of-concept is already public. Such sales are prohibitedә.

For these reasons in this study we use CVE-IDs as a sampling

mechanism for traded exploits. This has also the advantage of al-

lowing us to precisely measure additional characteristics of the

vulnerability, including date of disclosure, technical severity, af-

fected software, and presence in the wild, all of which would be

impossible without a rigorous deinition of published exploits. Im-

portantly, this also rules out errors caused by double counting

vulnerabilities, while accounting for the vast majority of published

exploits (ref. Tab 1). The remaining bias is discussed in Sec. 3.5.

3.3 Data collection

In this analysis we employ three datasets. The collected data ields

are reported in Table 2; in the Appendix we report an extended

description of each ield.

(1) RuMarket. We query RuMarket and analyze results by read-

ing discussion topics and extrapolating relevant informa-

tion. Unfortunately the nature of the data limits the ap-

plicability of fully-automated data extraction procedures

(e.g. product updates and multiple products per advert, see

also [58]). We therefore employ semi-automated pattern

matching and manual analysis to extract the information.

We identify traded CVEs by querying RuMarket for matches

to the case-insensitive regular expression cve(-id)?(?i)

in the Virus, attacks, and malware commercial section of
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Table 2: Summary of collected variables used in the analysis

Description and summary statistics of the collected data ields. Unit indicates the type of data ield. Lvls indicates, for categorical variables, the number of factor levels.
Descriptive statistics are provided for cardinal/ordinal variables, and categorical variables with only two factors (encoded as 1: presence of condition; 0: absence of condition).
From the product descriptions naturally emerge the following package categorization (vulnerability descriptions from NVD [2]):
a) STANDALONE: packages traded as stand-alone exploits that are then personalized by the buyer. For example, CVE-2016-0189 ҡallow[s] remote attackers to execute arbitrary
code [..] via a crafted web siteә, and is traded in RuMarket as a STANDALONE exploit to which the customer can add his/her own ‘private’ (sic.) shellcode.
b) MALWARE: exploits embedded in malware packaging services. Exploits in these packages typically allow for privilege escalation. For example, CVE-2015-1701 ҡallows
local users to gain privileges via a crafted applicationә, and in RuMarket is bundled in a MALWARE dropper that, when executed on the target machine, escalates to higher
privileges and executes the custom code.
c) EKIT: exploit packages typically rented (as opposed to traded) as exploit kits, namely web servers that deliver exploits and custom payloads to victims that are redirected
to the kit [48]. The rental period in our sample goes from a week to a month. EKITs operation requires the execution of arbitrary code on the victim system to remotely
drop the malware. For example, CVE-2016-1019 ҡallows remote attackers to [..] execute arbitrary codeә, and in RuMarket it is embedded in the notorious exploit kit RIG.

Variable Dataset Unit Description Lvls Min Mean Max sd

CVE RuMarket,

NVD, SYM

Cat. The unique identiier of the vulnerability. 57

CVEPub NVD Date Date of vuln disclosure in NVD. 2006-04-11 2012-12-06 2016-11-10 970.84

ExplVen RuMarket Cat. The identiier of the product vendor. 23

ExplVenReg RuMarket Date Date of vendor registration in the market. 2008-05-25 2012-10-31 2016-03-27 873.05

Pack RuMarket Cat. Bundle of exploits traded in the market. 38

PubDate RuMarket Date Date of exploit introduction in a package. 2010-07-29 2014-06-25 2017-01-19 640.02

PackType RuMarket Cat. Pack classiication in one of the categories

STANDALONE; EKIT; MALWARE.

3

PackPrice RuMarket USD Acquisition cost of the package. 100 2417 8000 2408.28

PackActiv RuMarket Messages Number of responses to package advert. 0 43.85 300 69.29

PackDeath RuMarket Date Date of last reply for the package. 2010-12-24 2015-03-16 2017-03-27 642.63

ExplPrice RuMarket USD Price estimate of single exploit. 13.64 969.00 8000 1708.76

SwVen NVD Cat. Vendor of the vulnerable software. 3

Sw NVD Cat. Name of the afected software. 7

CVSS NVD Ord. Vulnerability severity measured by the Com-

mon Vulnerability Scoring System.

5 8.76 10 1.33

SYM SYM Cat. Presence of exploit at scale. 2 0 0.84 1 0.38

the forum. This procedure returned 194 discussion threads

and approximately 3000 posts to examine in April 2017. To

minimize the chances of reporting ‘fake’ exploit products,

we consider only vendors that have not been reported as

‘rippers’ or banned from the community. This leaves us with

a sample of 89 traded exploits over 57 unique vulnerabili-

ties embedded in 38 packages for STANDALONE, MALWARE and

ExploitKit products, and attacking Microsoft, Oracle,3

and Adobe software. This is quantitatively in line with pre-

vious studies on marketed exploits [3, 4, 9, 48].

(2) NVD. The National Vulnerability Database [2], is the NIST-

maintained vulnerability database reporting vulnerability

characteristics, afected software, and severity.

(3) SYM. Vulnerabilities for which Symantec’s threat explorer

and attack signature databases report an exploit in thewild [26].

Vulnerabilities outside of SYM may still be actively exploited,

but are unlikely to be exploited at scale [9, 26]. This allows

us to correlate technical and market characteristics of vul-

nerabilities to the actual (mass) realization of an observed

exploit in the wild.

We join the three datasets on the CVE-ID of the vulnerability.

3All vulnerabilities labeled as Oracle are relative to the Java platform. Some of those
were disclosed while Java was Sun’s.

3.4 Analysis procedure

3.4.1 Estimation of exploit prices. When a package contains

more than one exploit, the cost of a single exploit can only be

estimated. From the literature on exploit development and deploy-

ment [9, 24, 29, 30, 48, 76] two aspects of vulnerabilities emerge

as drivers of exploitation efort: 1) vulnerability type (e.g. mem-

ory corruption vs cross-site-scripting) [29, 48, 76]; 2) exploitation

complexity (e.g. to evade attack mitigation techniques) [20, 24, 29].

Vulnerability type.TheMITRE corporationmaintains a community-

developed standard (Common Weakness Enumeration, CWE in

short) for the enumeration of software weaknesses [2]. This has the

purpose of identifying the type of technical issue that generates the

vulnerability. Table 12 in the Appendix provides a detailed break-

down of vulnerability CWE types by exploit package in RuMarket.

We ind that packages typically embed vulnerabilities of the same

type (e.g. either remote code execution vulnerabilities or privilege

escalation vulnerabilities), which suggests that signiicantly skewed

distributions of exploitation eforts by vulnerability type within a

package are unlikely.

Exploit complexity. The Common Vulnerability Scoring System

(CVSS) [31] deines Access Complexity as a measure of whether

a reliable exploit can be ‘easily’ obtained or additional measures

or attacks are required to, for example, avoid attack mitigation

techniques (memory randomization, canaries, etc.), or address spe-

ciic software/system architectures [29, 31]. CVSSv2 assesses attack

complexity in three categories: High, Medium, Low [65]. AC:High

conditions have been shown to represent a threshold for exploit
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adoption [9], whereas Medium and Low vulnerabilities require

only limited exploitation eforts [65] and are commonly detected

in the wild [9, 20]. Acknowledging this, the newer version of CVSS

(v3) considers only High (existence of conditions outside of the

attacker’s control) or Low (absence of conditions) values [31]. Out

of 57 unique CVEs in our sample, we ind 2 vulnerabilities character-

ized by a High CVSS attack complexity, whereas the remaining 55

include only limited or no exploitation complexities for the attacker.

A further breakdown of attack complexity by package (Table 11

in the Appendix) shows that most packages prevalently include

vulnerabilities with the same AC assessment. This once again sug-

gests that exploit development eforts are not signiicantly skewed

among vulnerabilities bundled in a package.

In light of these considerations, in this study we estimate unitary

cost of exploit by assuming a uniform distribution of costs among

exploits in a package.4

3.4.2 Bootstrapped analysis of exploit prices. In an efort to pro-

vide a more precise estimate of exploit costs, we employ a block

bootstrap analysis (N = 10000) of exploit prices. The bootstrap pro-

cedure randomly re-samples (N times), with replacement, exploit

packages (i.e. our ‘blocks’, or sampling units) from RuMarket, and

approximates the true unknown distribution of the population of

traded exploits (of which we observe a sample) [27]. This allows us

to infer the parameters of the true distribution and to build robust

conidence intervals of price estimates.

3.4.3 Regression analysis. The nature of the sample requires

a few additional precautions to be taken for a formal analysis. In

particular, our exploit observations depend not only on the exploit,

but also on the speciic vendor who publishes the package where

the exploit is bundled in. For example, qualiied vendors may pub-

lish more reliable exploits that are more likely to generate attacks

in the wild. Hence, the measure of an exploit implicitly depends

on the vendor who publishes it (i.e. our data has an hierarchical

structure [5]).5 This ‘mixed efect’ should be captured to assure an

unbiased quantitative analysis. We denote µa as the (univariate)

random efect for the vendor a such that the expected value of the

observation for the ith measurement is E (Yai |µa ) = µai , i.e. the

expected value for the ith observation is conditional on µa . The

general regression form of our analysis is derived from [5] and is:

f (µai ) = zai µa + βxai (1)

where f is the link function, zai µa quantiies the random efect

at the intercept, and βxai is the vector of ixed efects and respective

coeicients. Standard model diagnostics are run for all regressions.

We report model Log-likelihoods for model comparison. The cal-

culation of p-values and model power are not straightforward for

mixed efects models. We report pseudo − R2 and p − values as

approximations provided by the R packages lmerTest and MuMIn,

alongside the standard deviation of coeicient estimation.

4Sec. 4.2 gives a detailed account of how this relates to diferent software packages.
5ExplVen and Package are both meaningful levels in the hierarchy of our sample.
As it is the vendor of the exploit that publishes the exploits, ixes exploit cost, and
determines exploit quality, we here consider the vendor as the main source of variance.

3.5 Limitations

The adopted CVE sampling mechanism may exclude some poten-

tially relevant vulnerability that we cannot measure precisely. Re-

sults in Tab 1 indicate that this sampling bias is likely minimal. It

is however worth noting that this is, unfortunately, an inherent

limitation of all studies on this type of markets: without engaging

in the trading activity, it is impossible to reliably measure what lies

behind a market post. For example the excellent work in [69] con-

servatively estimates market size by assuming that user feedback

relates to separate, single trade lots, as it is not possible to mea-

sure multiple trades in a single transaction. Similarly, as we cannot

measure unidentiied exploits, our analysis should be considered a

conservative estimate of traded exploits in RuMarket.

The data collection in SYM reports exploits deployed en-mass

against consumer (typically Windows) systems, and does not di-

rectly extend to targeted attacks and 0-day vulnerabilities.

3.6 Ethical aspects and data sharing

The market iniltration was performed while the author was as

the University of Trento, Italy. All data collection happened at the

Eindhoven University of Technology, the Netherlands. No activity

involved the deception of market participants other than for our

‘identity’. We only engaged in discussion on non-hacking topics

not to facilitate illegal activities. We use the anonymous network

TOR to conceal our identities. To preserve our anonymity in the

market we do not disclose the real name of the community. The

collected data is available for sharing.6

4 DATA ANALYSIS

This analysis is structured in three parts. In the irst (Sec. 4.1) we

describe the market by analyzing the activity of market participants

and the characteristics of the traded exploit packages. In the second

part (Sec. 4.2) we analyze market factors driving exploit prices, and

in the third (Sec. 4.3) the adoption of exploits in the wild.

4.1 Overview of RuMarket

4.1.1 Exploit vendors. It is irst important to provide an overview

of the exploit vendors that participate in RuMarket activities. Our

RuMarket sample contains 22 uniquely identiied vendors that trade

CVEs in MALWARE, STANDALONE, and EKIT packages. The market

mechanism generates strong disincentives for the creation of multi-

ple accounts [8]. Following the approach adopted for similar appli-

cations in related work [69], in the following we consider vendor

aliases as unique seller identiiers. Figure 1 shows the appearance

of vendors trading exploits in RuMarket. The solid line reports the

count of new vendors appearing in the market (i.e. vendors that did

not publish a CVE exploit in the preceding years in RuMarket un-

der the same alias); the dotted line reports the cumulative count of

vendors. The number of vendors increases at a steady linear rate of

approximately three new vendors per year during the observation

period. This suggests that exploit trading in RuMarket is growing.

Figure 2 ofers a breakdown of vendor activity by product type by

plotting the CDF of number of exploit packages introduced by each

vendor and the number of exploits they embed in their products.

6Access procedure available at http://security1.win.tue.nl.
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Figure 1: Count of vendors trading CVEs in RuMarket
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Figure 2: Distribution of packages and exploits by vendor

EKIT vendors typically publish only one product, whereas MALWARE

and particularly STANDALONE vendors appear to trade signiicantly

more packages. This is interesting to observe as EKIT products

(and to a lesser degree MALWARE products [60]) are traded under the

‘exploit-as-a-service’ model, whereby the seller maintains a service

for a period of time during which customers rent the kit to deliver

their own attacks. The maintenance operations include delivering

vulnerable traic to the customers, updating the exploit portfolio,

and packing existing exploits to minimize detection in the wild

(to generate the so-called FUD, ‘Fully UnDetectable’ exploits) [48].

The implied prolonged contractual form explains the prevalence of

vendors with only one exploit package in their portfolio for EKIT

and MALWARE vendors. On the other hand, EKIT vendors are by far

the more ‘productive’ in terms of number of exploited vulnerabili-

ties, with 50% of EKIT vendors contributing more than 10 exploits.

STANDALONE vendors typically focus on a few exploits only, trading

on average below three exploits, and only a small fraction of ven-

dors trades overall more than 5 exploits. MALWARE vendors are the

least productive in terms of exploited CVEs: whereas historically In-

ternet worms and malware such as Slammer or Conicker exploited

software vulnerabilities to replicate, in recent years infections hap-

pen mostly through Malware Distribution Networks [34, 35, 59]

that implement the target exploitation by other means (e.g. exploit

kits or ‘malvertising’), and allow for the malware to be ‘dropped’

on the attacked system, with only a few exceptions.

Foundational studies in economics [67] as well as more recent

research on online marketplaces [21] put the emphasis on the re-

lation between (expectation of) product quality and placement of

the vendor in the market. Due to the unreliability of user feedback

on online forums, criminal online markets often employ as a proxy

for trustworthiness criteria such as time-on-market or number of
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Figure 3: Distribution of exploit vendor age
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Figure 4: Release of exploit packages by type per year

messages/specialty [8, 39]. These are costlier for malicious ven-

dors to replicate than simply posting positive feedback on their

own products. We use as a proxy measure of seller presence in

the market the number of days the vendor have been registered

on RuMarket at the time of package publication, and calculate it

as ExplVenAge = PubDate − ExplVenReg. Figure 3 reports this

distribution by package type. Exploit vendor age varies consider-

ably by type of package. STANDALONE vendors are those with the

highest average time on market at time of product publication. 50%

of STANDALONE vendors have been registered on the market for at

least six months, whereas only the top 30% of EKIT and MALWARE

vendors are above this threshold. Overall, we ind that only 18% of

vendors publish their irst package on the day of registration. 55%

of vendors have been registered for at least a month, and 32% for at

least a year. This indicates that RuMarket mechanisms encourage

prolonged market activity, which may determine higher levels of

trust among market participants [39].

4.1.2 Exploit packages. Our RuMarket sample reports data on

38 unique exploit packages; the breakdown is as follows: six EKIT,

six MALWARE, and twenty-six STANDALONE packages. We consider

the addition of new exploits in a pack as an update to an existing

package. Figure 4 reports the number of updates to the exploit

package portfolio by year in the market. In general, we can ob-

serve that the number of released products steadily increases every

year. This trend appears to be mainly driven by STANDALONE packs,

whereas EKIT and MALWARE packages are essentially stable in time,

with the latter being the lowest on average. This is in line with

the exploit authors’ activity described above, and suggests that

these packages may enjoy a longer activity in the market. To eval-

uate this, we consider the days and volume of active discussion

since publication in the market as a proxy measure of RuMarket’s

interest in the product. We compute days of active discussion as
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Figure 5: Market activity by exploit package

DaysActive=PackDeath-PubDate, and report PackActivity for

volume of active discussion. Figure 5 plots the two distributions.

The left plot reports longevity of RuMarket activity around an

exploit package. Inspection of the market message board reveals

that the length of activity around a package is not artiicially in-

lated by the package vendor by continuously adding comments to

the advert. As expected, we observe that longevity of discussion

around EKIT packages is signiicantly higher than for STANDALONE

and MALWARE packages (p = 0.015 and p < 0.01 respectively for a

Wilcoxon rank sum test). RuMarket discussion around EKIT pack-

ages remains active for more than 500 days (approximately a year

and a half) for 50% of packages, with the top 10% products remain-

ing active in the market board for more than 3 years. Diferently,

50% of STANDALONE and MALWARE packages remain active for up

to approximately 220 days, and only less than 25% remain active

for more than 500 days. Overall, we ind that the average pack-

age remains active for a year since time of publication. The right

plot in Figure 5 plots the distribution of replies by package type.

EKIT packages receive on average signiicantly more replies than

other pack types, which is in line with previous igures. Conversely,

RuMarket interest around STANDALONE and MALWARE packages is

signiicantly lower, with only a handful of packages receiving a

comparable volume of discussion as the average EKIT. The lower

interest of the RuMarket community may be driven by the higher

diiculty of use of STANDALONE and MALWARE products, that require

additional efort to deploy and deliver the attack compared to EKIT

products [35]. Further, diferent price-tags, investigated below, may

explain the overall market interest.

Exploit pack prices. Table 3 reports descriptive statistics of ex-

ploit pack prices and number of bundled exploits by package type.

STANDALONE packages are traded at a mean price around 3000 USD

up to 8000 USD, and bundle in between 1 and 4 exploits. The small

standard deviation indicates that most STANDALONE packages bun-

dle 1 exploit only. MALWARE packages are traded at a price range

between 400 USD and 4000 USD, with most package prices set at

around the 1000-2000 USD mark. Similarly to STANDALONE pack-

ages, MALWARE bundles typically include only one exploit, and up

to three exploits. Finally, the lower 50% of EKITs are priced (ac-

counting for an average rent of 2-3 weeks [41]) in the range 150-400

dollars, whereas the upper 50% are in the range 400-2000 USD. EKIT

packages embed signiicantly more exploits than other package

types. This is in line with previous indings in the literature [48]

and, following Grier et al. [35], this allows for a greater lexibility
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Figure 6: Log package price by year by product type

in terms of the range of selectable targets [10]. We give an account

of the speciic exploits in the next section.

Following [63], we further investigate possible outliers in our

data tomitigate pricing noise.We ind that the only four STANDALONE

packages that received no trade reply from the RuMarket commu-

nity were also traded at below average prices (in between 100/300

dollars each in year 2016). Similarly, we ind only one EKIT that,

despite embedding twelve exploits, is priced at 150 dollars, signii-

cantly below the EKIT mean of 560 USD. Figure 6 plots the results

in terms of trend in price per product type by year with these

outliers removed. MALWARE and STANDALONE packages show an in-

creasing trend whereas EKIT product prices are steadily decreasing.

Regression coeicients for the linear model displayed in Figure 6

are signiicant at the 5% level for MALWARE (β = 0.43, p = 0.05) and

EKIT (β = −0.28,p = 0.02) but not signiicant for STANDALONE pack-

ages (β = 0.23, p = 0.14). We ind that ‘consumer’ services such as

EKIT products are becoming more easily available to the users, a ig-

ure compatible with the increasing trend of ‘commodiied’ attacks

delivered in the wild [7, 35, 42, 56], whereas the remaining more

‘specialized’ sector of the market seems to be inlating. We do not

ind any signiicant association between number of exploits in the

package and package price. This lack of correlation may indicate

that the business model behind exploit trading, as well as other

contextual considerations on market status, presence of similar

exploit, and afected software should be considered in the analysis,

as previously suggested by several authors [10, 14, 16, 35, 63, 72].

We give an extended account of this in the next section.

4.2 Analysis of exploits

4.2.1 Exploit demographics. Embedded in the packages we ind

89 exploits targeting 57 unique CVEs in Microsoft, Adobe, and

Oracle products. Table 4 reports the counts of exploited software

for each product type. Microsoft vulnerabilities alone make up

for more than half the exploits traded as STANDALONE products

(56%); unsurprisingly, vulnerabilities in Oracle and Adobe prod-

ucts, as well as Internet Explorer vulnerabilities, are prevalent in

EKIT bundles, as these products are by design exposed to Internet

requests [35, 48]. Exploits bundled in MALWARE are for Windows and

Adobe Acrobat. A Fisher Exact test rejects the null hypothesis of

count uniformity (p = 0.0012), suggesting that exploited software

varies by package type.

Figure 7 plots the occurrences of exploit publications by year

and by software vendor. We observe that during the irst years of
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Table 3: Descriptive statistics of package prices and bundled exploits

Package price (USD) no. bundled exploits

Type n Min 0.025p Mean Median 0.975p Max sd Min 0.025p Mean Median 0.975p Max sd

EKIT 6 150 157.92 693.89 400 1875 2000 708.94 2 2.12 6.83 7 11 11 4.26

MALWARE 6 420 428.75 1735 1250 3875 4000 1456.38 1 1 1.5 1 2.88 3 0.84

STANDALONE 26 100 100 2972.69 3000 8000 8000 2629.39 1 1 1.5 1 4 4 0.86

All 38 100 100 2417.46 1500 8000 8000 2408.28 1 1 2.34 1 11 11 2.63

Table 4: Breakdown of traded vulnerabilities

SwVendor Software MALWARE STANDALONE EKIT Sum

Adobe 2 12 17 31

lash 0 8 10 18

acrobat 2 4 7 13

Microsoft 7 22 14 43

oice 0 11 2 13

int. expl. 0 4 7 11

windows 7 6 5 18

silverlight 0 1 0 1

Oracle 0 5 10 15

java 0 5 10 15

Sum 9 39 41 89
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Figure 7: Occurrences of exploit publication by year

RuMarket operation there is a spike in number of published ex-

ploits for all platforms. Oracle products result as the most afected

in that year, followed by Adobe and, closely, Microsoft products.

This observation matches the surge around 2010-2013 of ‘cyber-

crime as a service’, thoroughly reported in the scientiic literature

and industry in that time-frame [35, 48, 70]. Interestingly, Oracle

exploits seem to plunge after 2013; this coincides with the intro-

duction in major web browsers of plugin-blocking features,7 and

a Java update (released in January 2013) that increases the default

security settings of the plugin8 (e.g. triggering certiicate errors as

exploited by several exploit kits [48]). This also independently sup-

ports previous indings on exploitation of Java vulnerabilities [40].

Following 2013, Microsoft and Adobe exploits are publised at sim-

ilar, steady rates. Anecdotally, we observe that the shape of the

described curve resembles the Gartner Hype Cycle9 curve, whereby

after a irst spike at the beginning of a new product cycle (the

7https://www.theregister.co.uk/2013/12/10/irefox_26_blocks_java/, last visit Aug 2017.
8http://bit.ly/2r8MLz1, last visit Aug 2017.
9http://gtnr.it/1g1Nnw0, last visit Aug 2017.
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Figure 8: Number of repackaged exploits by year

‘Peak of Inlated Expectations’) the market experiences a relative

drop (‘Trough of Disillusionment’) followed by a ‘plateau’ where the

technology reaches maturity (‘Plateau of Productivity’) [8].

4.2.2 Exploit arrival. Figure 8 reports the number of newly re-

leased (yellow) and repackaged (black) exploits in each package

type by year. The introduction of new exploits in RuMarket is pri-

marily driven by STANDALONE and EKIT packages, with MALWARE

packages mainly re-introducing already published exploits. In par-

ticular, STANDALONE products seem to propose new exploits at a

yearly rate of approximately 80% for each package. EKIT products

introduced a signiicant number of exploits in 2011 (their ‘debut’

year on the markets [35, 70]), whereas newer exploit kits appear to

embed a lower number of exploits. This conirms previous igures

whereby exploit kits are specializing to use fewer, more reliable

exploits than at their original introduction [48]. Table 13 in the Ap-

pendix reports the evolution of repackaged exploits by PackType.

Most exploits irst appear in STANDALONE and EKIT packages and

re-appear in a pack of the same type, with a few exceptions. Among

these, STANDALONE exploits seem to reappear in both MALWARE and

EKIT packs, whereas EKIT exploits are prevalently re-packed in

other kits. STANDALONE exploits seem therefore to play a role in

the ‘innovation’ process in RuMarket; this may indicate the pres-

ence of an ‘exploit chain’ whereby the most reliable and efective

STANDALONE exploits are selected for future inclusion in EKIT prod-

ucts for deployment at scale.

It is interesting to evaluate the rate at which exploit introduction

happens. A few recent studies suggest that the rate of appearance

of new exploits may be much lower than previously thought [10,

18], but no account of exploit timing in the cybercrime markets

currently exists. Figure 9 shows a breakdown by software vendor of

the distribution of days between the introduction of new exploits

(left) and re-packed exploits (right). We exclude from the analysis

six EKIT vulnerabilities that have been added to the respective
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Figure 9: Distribution of days between exploit introduction

Table 5: Exploit age (days) at time of irst publication

Type Min 0.025p Mean Med. 0.975p Max sd n

EKIT 1 4 372.48 294 1659.8 1745 470.16 25

MAL 185 185 185 185 185 185 - 1

STDL 1 8 147.34 75 549.7 934 189.66 29

All 1 2.75 250.36 93 1368.85 1745 359.97 55

packages as updates, but whose date of addition is not reported

in the market. This leaves us with 83 exploits, of which n = 55

are introduced for the irst time in the market. New exploits are

introduced at similar rates for all software vendors, with 50% of

exploits being introduced at approximately six months intervals

(175 days). The ‘fastest’ 25% is introduced two months (62 days)

after the appearance of an exploit for the same software platform,

whereas the ‘slowest’ 25% appears after more than a year (401 days).

These igures are in sharp contrast with current assumptions made

in the literature, whereby essentially all ‘severe’ vulnerabilities

are potentially exploited at scale by attackers [54, 66] (and must

therefore be ixed immediately [73]). On the contrary, these indings

support recent evidence pointing in the opposite direction: most

vulnerabilities are not of ‘economic’ interest for an attacker, as

the addition of a new vulnerability may not lead to a signiicant

increase in targeted systems [12, 55]; this results in signiicantly

skewed distributions of risk per vulnerability (as empirically shown

in [7, 56], and analytically modeled in [12]). Exploit re-packaging

(right plot in Fig. 9) happens at signiicantly faster rates: 75% of

exploits are re-introduced within 184 days from irst publication,

indicating that their commercial interest is short-lived.

A diferent question is how ‘old’ are exploits when they irst ap-

pear on themarket.We compute exploit age as the diference in days

between exploit publication in the market and publication of the

corresponding CVE on the NVD, i.e. ExplAge = PubDate − CVEPub.

Table 5 reports the distribution of exploit age for newly introduced

exploits. The mean and median exploit age varies considerably

by product type. STANDALONE exploits are on average signiicantly

younger at time of publication than other exploits (p = 0.05 for a

Wilcox rank sum test). 50% of STANDALONE exploits are published in

the market within 2.5 months (75 days) from the public disclosure

date. The top 25% (not reported in Tab. 5) are published within 40

days, and the top 2.5% within approximately a week. The diference

in exploit age for the EKIT and MALWARE categories is not statisti-

cally signiicant. Whereas some exploits do appear quickly after
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Figure 10: Exploit age vs time of publication in RuMarket

disclosure in RuMarket, most exploits take around four months

from disclosure date to be published. This may indicate that other

factors such as efectiveness of older exploits [10], or delays in

user system updates [55, 64], may afect timing of appearance of a

marketed exploit. To evaluate the rate of change in time of arrival

of new exploits, Figure 10 reports the exploit age distribution by

year of publication. We observe that the mean exploit age decreases

steadily for more recent publication dates (β = −0.32, p = 0.001),

indicating that exploit vendors are becoming faster in releasing

exploits for newly disclosed vulnerabilities. The coeicient of the

linear regression indicates that exploits appear at an approximately

30% faster rate every year.

4.2.3 Estimate of exploit prices. Conceptually, the lower bound

cost of a pack can be summarized as follows:

PackPricep∈PT =

n∑

i=1

CExplpi +CDevp +CDeplp (2)

where CExplpi is the cost of the ith exploit in package p, and

CDevp and CDeplp are the development and deployment (includ-

ing maintenance) costs of the pack. For example, on top of the

sole exploits EKITs provide a web interface to control infections,

as well as additional deployment services such as remote servers

where the kit is hosted, or the redirection of vulnerable traic to

the kit [35, 48]. Similarly, MALWARE packages provide additional

malware functionalities on top of the sole exploit. Hence, we have

CDevp > 0, CDeplp > 0,∀p ∈ Pt , with t ∈ {EKIT, MALWARE}. Un-

fortunately, an estimation of these costs would require an analysis

of the source code of these packages [22], which is not publicly

available. On the other hand, STANDALONE exploits are provided

as-is, i.e. only the vulnerability exploit is traded, without further

embellishments or services. This setsCDevp ≈ CDeplp ≈ 0 for this

category. This leaves us with only the term
∑n
i=1CExplpi which,

assuming a uniform distribution of exploit costs per package, (see

discussion in Sec. 3.4), yieldsCExplp∈PSTDL,i = 1/n ·PackPricep . We

therefore only report STANDALONE exploit estimates.10

Table 6 reports price estimates for exploits against diferent

software. In parenthesis we report the bootstrapped estimation of

exploit prices. We report mean, median, standard deviation and 95%

conidence intervals. Price estimates in the boostrapped sample ap-

pear to diverge at the tails of the distribution w.r.t the observed sam-

ple, suggesting that outliers in the sample may bias sample statistics.

10The estimation for all packages is reported in the Appendix, Table 14.
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Table 6: (Bootstrapped) descriptive statistics of STANDALONE exploit price estimates in USD

STANDALONE exploit prices are estimated on a uniform distribution by package. To approximate the true (unknown) distribution of exploits,
we perform a bootstrap of our data (N = 10000), reported in parenthesis. The column n reports number of exploits for that software. The
bootstrapped data does not deviate substantially from our observations on the average. Fatter distribution tails indicate that RuMarket
outliers tend to bias sample statistics. Exploits are priced between 150 and 8000USD with signiicant diferences by software.

SwVendor Software Min 0.025p Mean Median 0.975p Max sd n

Adobe 75 75 879.17 1250 1500 1500 693.54 12

(75) (100) (1000.06) (1040) (1500) (1500) (521.91)

lash 75 75 568.75 150 1500 1500 652.3 8

(75) (87.5) (562.05) (545.45) (1300) (1500) (316.52)

acrobat 1500 1500 1500 1500 1500 1500 0 4

(1500) (1500) (1500) (1500) (1500) (1500) (0)

Microsoft 150 150 2801.82 2250 8000 8000 2393.09 22

(150) (150) (2442.13) (2450) (5600) (8000) (1601.69)

oice 150 362.5 3195.45 4000 7250 8000 2504.04 11

(150) (1605.1) (3407.31) (3262.5) (5750) (8000) (1112.54)

int. expl. 440 459.5 3035 1850 7625 8000 3504.22 4

(440) (440) (3051.89) (3000) (8000) (8000) (1727.18)

windows 700 800 2366.67 2250 4687.5 5000 1458.31 6

(700) (1100) (2349.27) (2327.27) (3750) (5000) (658.77)

silverlight 150 150 150 150 150 150 1

(150) (150) (150) (150) (150) (150) (0)

Oracle 25 25 1020 25 4502.5 5000 2224.89 5

(25) (25) (1847.02) (1020) (5000) (5000) (1981.08)

java 25 25 1020 25 4502.5 5000 2224.89 5

(25) (25) (1847.02) (1020) (5000) (5000) (1981.08)

Looking at exploits by software, we ind that the most expensive

exploits in RuMarket are for Microsoft software, and are priced at

2500USD on the average. Among software from this vendor, Oice

and Windows exploits appear to be the most expensive with 50% of

exploits above 2000 USD, and the top 2.5% quoted at about 7000 and

5000 USD respectively. As vulnerability patching and mitigation

hinder the efectiveness of an exploit in the wild [55], we further

evaluate whether exploit age afects exploit price estimates. We

ind a negative correlation between ExplAge and ExplPrice (al-

beit not signiicant when looking only at the exploit), suggesting

that exploits lose value as they age (cor = −0.16, p = 0.3). We do

not ind evidence of dependence between exploit price and CVSS

vulnerability severity.

4.2.4 Regression analysis of exploit price estimates. To evaluate

the factors driving exploit price, we employ a set of mixed efect

linear regression models over the response variable log(ExplPrice ).

We report regression results for the following three nested models:

M1: log(ExplPricei ) = β0 + β1 log(ExplAдei ) + ϵi

M2: log(ExplPricei ) = · · · + β2SwVeni + ϵi

M3: log(ExplPricei ) = · · · + β3SwVeni × log(ExplAдei ) + ϵi

Table 7 reports the regression results. Coeicient estimates are con-

sistent among models. A Variance Inlation Factors (VIF) analysis

does not indicate any signiicant collinearity between the model

predictors. Log-log relationships can be interpreted as the elasticity

between dependent and independent variables. For example, in M3

the coeicient for log(ExplAдe ) (−1.357) indicates that for a 1%

increase in the variable ExplAдe we can expect an average 1.4%

decrease (1.01−1.357 = 0.986) in ExplPrice . A rough quantitative

Table 7: Regression on STANDALONE exploit pricing

Variables: ExplPr ice = price estimate of exploit; ExplAдe = age of exploit
when advertised; SwV en = software vendor. Exploit age is negatively corre-
lated with price. Depreciation rate depends on the software vendor.

log(ExplPr ice ) Model 1 Model 2 Model 3

c 8.080
∗∗∗

5.592
∗∗∗

10.943
∗∗∗

(0.746) (1.458) (1.735)

log(ExplAдe ) -0.330
∗

-0.268
∗

-1.357
∗∗∗

(0.129) (0.135) (0.234)

Adobe 1.993 -4.846
∗

(1.395) (2.068)

Microsoft 2.662† -3.483†

(1.375) (1.891)

log(ExplAдe )× AD 1.398
∗∗∗

(0.322)

log(ExplAдe )× MS 1.276
∗∗∗

(0.272)

Var (c |ExplV en) 2.209 1.520 1.598

Pseudo-R2 0.05 0.28 0.38

Log-likelihood -64.2 -60.6 -51.8

N 39 39 39

(†) p < 0.1; (∗) p < 0.05; (∗∗) p < 0.01; (∗ ∗ ∗) p < 0.001;

approximation of the efect can generally be obtained by simply

looking at the regression coeicients (e.g. β3 = −1.357 indicates

a decrease of approximately 1.4%). oeicients in M3 can only be

interpreted simultaneously with the coeicients of the interaction

efect log(ExplAдe ) × SwVen. We ind that baseline prices for ex-

ploits vary widely by software vendor, and are negatively correlated
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Figure 11: Vulnerabilities exploited in the wild versus (left)

package price; (right) replies received on the market.

with the age of exploit; Adobe and Microsoft exploits retain their

value signiicantly longer than Oracle exploits. This may indicate

a prolonged economic interest in the exploitation of Microsoft

and Adobe vulnerabilities, a inding consistent with related work

on the persistence of vulnerabilities on end-user systems [55].

Exploit vendors are a signiicant source of variance in price of ex-

ploit. Pseudo-R2 values indicate that the models’ power is adequate

in explaining the observed efect. In particular, Model 3 explains

approximately 40% of the variance in exploit price estimates. Im-

portantly, all variables of the model can be easily assessed with the

sole knowledge of the vulnerability at any point in time.

4.3 Exploitation in the wild

In this section we evaluate the efects of the identiied market vari-

ables on the exploitation in the wild of traded vulnerabilities. A

consideration irst: certain exploits may evade detection for some

time, for example by means of frequent exploit repacking. On the

other hand, it is unlikely for an exploit to remain completely under-

cover for a long time, while in the meanwhile delivering hundreds

of thousands or millions of attacks [7, 56]. To lower uncertainty

around exploit detection, we restrict our analysis to exploits pub-

lished in RuMarket at least a year ahead of the SYM data collection

(i.e. before the 1st of April 2016). This coincides with the median

lifetime of an exploit package in RuMarket (see Fig. 5), and allows

SYM a full calendar year to report an exploit at scale. We consider

efects before that time to be unlikely to be caused by type II errors

(i.e. no inclusion in SYM despite high attack volumes). This leaves

us with n = 78 exploits.

Package price and market activity vs exploitation. As we are con-

sidering the efect of the acquisition and deployment of an exploit

by the attacker, we consider cost of package (as opposed to cost of

exploit) because this relects the upfront price the attacker needs to

pay in order to deploy the attack. Figure 11 reports the distribution

of package prices (left) and replies on the market (right) against

exploitation in the wild. Overall, we ind that exploits in SYM are

traded at a lower upfront price than exploits not included in SYM.

Similar conclusions can be drawn for the efect of market interest

(as estimated by PackActivity) on exploitation: exploits to which

the RuMarket community dedicated greater attention have a higher

chance of exploitation in the wild than exploits around which de-

veloped less market activity. A break down by package types does

not reveal any signiicant interaction between the variables. These

Table 8: CVSS category vs SYM

CVSS Category

C NC Sum

Not exploited 4 8 12

Exploited 53 13 66

Sum 57 21 78

results also support recent indings underlying the importance

of the economics of the attack process in the analysis of cyber-

attack scenarios [14, 20, 56, 72], and in the development of sensible

cybercrime-based measures for risk of cyber-attack [13, 39].

Vulnerability severity. Previous studies revealed the lack of corre-

lation between technical vulnerability characteristics and exploita-

tion [20]. The consideration of additional factors, such as presence

of exploit in the black markets [9], is often advised by experts

and best practices to obtain more signiicant tests for actual ex-

ploitation [38]. Following [9], we categorize vulnerabilities in two

categories deined by the respective CVSS severity score: critical

(C) (CVSS ≥ 9) and non-critical (NC) vulnerabilities (CVSS < 9).

Table 8 reports the corresponding distributions against SYM. Sup-

porting previous research indings on Exploit Kits alone [9], we

ind that critical vulnerabilities traded in the cybercrime markets

have a higher chance of exploitation in the wild (93% in our sample)

than non-critical vulnerabilities (62%, p = 0.0021).

4.3.1 Regression analysis of exploitation in the wild. To more

rigorously evaluate the correlation between the identiied market

and vulnerability variables and exploitation in the wild, we select

three logit regression models of the following form over the binary

response variable SYM:

M1: SYMi = β0 + β1 log(PackActivityi ) + ϵi

M2: SYMi = · · · + β2 log(PackPricei ) + ϵi

M3: SYMi = · · · + β3 CVSS:NCi + ϵi

where SYM indicates presence or absence of exploit at scale; PackActivity

is the number of replies received by the product advert; PackPrice

is the upfront price to pay to obtain the exploit; and CVSS : NC is

the CVSS categorization of the vulnerability severity as non-critical.

Regression results are reported in Table 9.11 Coeicients should

be interpreted as the change in the odds ratio of exploit in the

wild. For example, Model 3 indicates that for every increase in one

unit of loд(PackActivity) there is a three-fold increase in odds of

exploitation in the wild (exp(1.101) = 3.01); the coeicient signif-

icance indicates that exploits bundled in packages around which

more market activity is developed are more likely to be detected in

the wild than exploits with less activity. Interestingly, we ind that

package prices also have a signiicant and negative impact on odds

of exploitation. This indicates that, everything else being equal,

exploits bundled in more expensive packages are less likely to be

detected in the wild than comparable exploits bundled in less ex-

pensive packages. These indings weigh favorably on the existence

of a relation between market activity and exploit deployment in the

11An OLS robustness check run on average values of regressors for each CVE (reported
in the Appendix) yields equivalent results.
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Table 9: Regression on odds of exploitation

Variables: PackActivity = replies received in the market; PackPr ice =
price of package;CV SSCat = CVSS category. Market, economic and vulner-
ability factors are correlated with odds of exploit at scale.

SYM Model 1 Model 2 Model 3

c 0.245 6.056† 6.754
∗

(1.526) (3.302) (3.086)

log(PackActivity ) 0.673† 0.938
∗

1.101
∗

(0.383) (0.400) (0.451)

log(PackPr ice ) -0.982
∗

-1.013
∗

(0.460) (0.444)

CVSS:NC -2.409
∗∗

(0.830)

Var (c |ExplV endor ) 3.071 0.617 0.000

Pseudo − R2 0.11 0.51 0.65

Log-likelihood -28.4 -25.3 -20.4

N 78 78 78

(†) p < 0.1; (∗) p < 0.05; (∗∗) p < 0.01; (∗ ∗ ∗) p < 0.001;

wild [9, 15, 56]. Vulnerability severity has also a negative impact on

likelihood of exploit, indicating that risk of exploitation for vulnera-

bilities in RuMarket increases for critical vulnerabilities. All models

show satisfactory Pseudo-R2 values, with Model 3 explaining most

of the variance.

5 DISCUSSION

Exploit measures. An important aspect of threat assessment is

the consideration of exploit metrics. Current approaches often im-

plement these by looking at the technical requirements of an at-

tack, including the evasion of attack mitigation measures [74] and

complexity of the attack [20]. While a technical assessment of the

‘operational’ requirements of an attack can shed light on the rela-

tive ordering of attack preferences, it is hard to quantify absolute

likelihoods. For example, a utility-maximizing attacker may decide

to not perform (or delay) an attack because they do not believe

that there is a positive payof, given cost of exploit acquisition. Our

analysis gives the irst pointers in this direction by quantifying the

relation between time, software, and exploit pricing. Importantly,

this estimate only requires readily available information on the

vulnerability, and the elastic relationship between age of exploit

and price of exploit can be used to evaluate relative changes in

exploit price as time passes. This directly afects current estimates

of attack cost used in risk assessment practices [20, 38, 74]. Simi-

larly, the update of attackers’ exploit portfolios is an important step

driving the variance in risk of attacks [10, 18]. We ind that new

exploits are introduced at rates in between two and six months, and

are approximately equal for all software. The process driving this

update remains however to uncover: follow up studies may look

at the factors driving appearance of exploit in the markets (e.g. by

considering pre-existent exploits or software updates [10, 55]).

The dynamics of the underground markets have often been

pointed at as an important block of overall risk of attacks, but

a clear link between the two is currently missing. Whereas the

problem of attack attribution remains open (i.e. we cannot establish

a causality link), this paper provides important indications on the

correlation between market operations and realization of attacks.

This weighs in favour of the importance of economic aspects of

vulnerability exploitation to well-informed security practices (e.g.

vulnerability assessment and prioritization [38, 73]). For example,

our analysis of market activity and odds of exploitation in the wild

reveals a signiicant and positive relationship between the two.

Similarly, exploits that are more expensive to acquire have lower

odds of exploitation than ‘cheaper’ exploits. This information is

often ignored in risk-assessment studies [38], and condensed met-

rics for vulnerability assessment are used instead [54, 73]. Whereas

existing vulnerability metrics are known to not correlate to attacks

in the wild [9, 20], we ind that they do once the efect of market

inclusion is considered as well. Importantly, this provides a useful

tool for a irst evaluation of risk of exploit without insights from

the cybercrime markets other than whether the vulnerability is

present [9]. A more precise estimation can then be obtained by

measuring market activity around the packages embedding the

exploit. These results can be factored in current best practices for

vulnerability risk management and exploit mitigation [31, 51, 74].

Vulnerability economics. Previous studies in the literature high-

lighted the operations of criminal markets for drugs, arms and

pornography [69], and for the monetization of stolen information

resulting from an attack [36]. However, little insight exists on the

markets that, as opposed to (re)selling the result of an attack, trade

the technology that enables the attack in the irst place. A few esti-

mates exist [1], but are mostly based on 0-day price allegations, vary

widely, and their relevance for the overall risk of attack remains un-

clear [18, 63]. The scientiic community long discussed on the idea

of building ‘legitimate vulnerability markets’ [14, 46, 57], and the re-

sult is the institution of a few legitimate exploit markets [63] and of

several ‘bug bounty’ initiatives that reward security researchers for

the disclosure of new vulnerabilities [30], and discourage the partic-

ipation in the underground economy. In this vein it is interesting to

observe that the prices of modern bug-bounty programs are in line

or below those we identify on RuMarket. For example, [30, Tab. 4

pp281] reports that the majority of vulnerability prizes awarded by

Google in their Chrome Vulnerability Reward Program (VRP) are

at or below 1000 USD, and that most external contributors to the

program (i.e. vulnerability researchers) earn between 500 and 1000

US dollars. The median price of an exploit in RuMarket, showed in

Table 6, is at approximately 2000 dollars, a higher but not distant ig-

ure from those indicated in [30]. It is however unclear whether the

resulting balance weighs in favour of the legitimate or underground

vulnerability markets: the dynamics balancing vulnerability inding

(a notoriously demanding process [52]) and exploitation trade have

not been fully investigated in the literature yet. For example, at

the above rates it does not seem unlikely that vendors who sell

their exploits multiple times to diferent buyers may still be better

of participating in the cybercrime economy than moving to the

‘legitimate’ vulnerability markets, as in the latter vulnerabilities can

realistically be traded only once (as the trade creates an association

between the ‘0-day’ vulnerability and identity of whom discovered

it). The results in this paper represent a irst building block in the

evaluation and enhancement of current legitimate vulnerability

markets, to foster the responsible disclosure of vulnerabilities and

attract skillful researchers away from criminal markets.
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Our exploit price estimates provide additional insights on the

efect of diferent criminal business models on exploit pricing and,

therefore, accessibility of attack. With reference to Tab. 14 in the

Appendix, and despite the upwards bias of the estimate (Eq. 2), EKIT

exploits are priced, per unit, signiicantly below exploits in other

package types. This efect is driven by the higher number of exploits

bundled in EKIT (ref. Table 3), and underlines how the diferent busi-

ness model employed by EKIT services may allow exploit vendors

to drastically reduce exploit development and deployment costs.

Lower prices may make these tools more accessible to ‘wanna-

be-criminals’, and therefore generate more attacks overall. This

suggests that the criminal business model may play a central role

in the difusion of cyber-attacks, and calls for additional studies

characterizing this efect. Further, we ind that the studied market

shows clear signs of expansion, with a growing number of vendors,

exploits, attack products, and generally inlating package prices.

This indicates that market activity is unlikely to stop in the near

future, and that attacker economics will likely play an increasingly

more relevant role in the cybersecurity scenario.

6 CONCLUSIONS

In this paper we presented the irst quantitative account of exploit

pricing and market efects on exploitation in the wild. Our indings

quantify a strong correlation between market activities and likeli-

hood of exploit. We ind that the analyzed market shows signs of

expansion, and that exploit-as-a-service models may allow for dras-

tic cuts in exploit development costs. Further, we ind that exploit

prices are aligned with or above those of ‘legitimate’ vulnerability

markets, supporting work on the identiication of incentives for

responsible vulnerability disclosure and attack economics.
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Table 11: CVSS Access Complexity by package

H L M Sum

ADB 0 1 1 2

ADB2 0 0 1 1

ADB3 0 1 1 2

BANN 0 1 1 2

BOT 0 1 0 1

DOC 0 0 1 1

DOCPPT 0 0 1 1

DROP 0 2 0 2

DROP2 0 2 1 3

ELEN 1 2 8 11

FFLA 0 0 2 2

FLASH 0 1 2 3

GLUE 0 0 1 1

GLUE2 0 0 1 1

IE11 0 0 1 1

IE311 0 0 1 1

IEG8 1 0 0 1

JAVA 0 3 1 4

JAVA2 0 1 0 1

KATR 1 5 5 11

LPE 0 1 0 1

MSW 0 0 1 1

MSW2 0 0 2 2

NEUT 0 2 0 2

OFF 0 0 1 1

PAC 0 0 1 1

PDF 0 1 1 2

PRIV 1 2 1 4

PRIV1 0 1 0 1

R0 0 2 0 2

RIG 0 5 5 10

SILV 0 0 1 1

VIS 0 1 0 1

WMI4 0 0 4 4

XP 0 0 1 1

ZOMB 0 0 3 3

Sum 4 35 50 89

APPENDIX

EXTENDED DESCRIPTION OF DATA FIELDS

In the following we report a detailed list of the collected data ields.

CVE. The Common Vulnerability and Exposures ID assigned by

the MITRE corporation to disclosed software vulnerabilities.

CVEPub. The date of vulnerability publication on NVD.

ExplVen. The anonymized market identiier of the user who

posts the advert on the market.

ExplVenReg. The date of vendor registration on the forum.

Pack. The exploit package advertised by the seller on the market.

Packages bundle one or more vulnerability exploits.

PubDate. The date of package publication in RuMarket.

PackType. The type of exploit package. The categorization emerges

from the ExplVen package description.

PackPrice. The upfront price that the customer has to pay to

acquire or rent the package. For rental packages we compute the

mean rental price for a rental period of 3weeks, in linewith previous

work on the duration of malware delivery campaigns and user

infections [41]. All prices in RuMarket are reported in USD.

PackActivity. The RuMarket activity around an exploit pack-

age expressed as the number of replies received by the product

advert on the market.

PackDeath. The date when RuMarket activity around the pack-

age stops.

ExplPrice. Estimation of cost of a single exploit. When only

one exploit is bundled in a package, this corresponds to the package

price, otherwise we provide an estimation. Further considerations

are given in Sec. 3.4.

SwVen. The vendor of the vulnerable software afected by the

published exploit.

Sw. The vulnerable software or platform.

CVSS. The severity of the exploited vulnerability as expressed by

the Common Vulnerability Scoring System, the standard framework

for evaluation of software vulnerability characteristics [31].

SYM. Presence or absence of an exploit in the wild at scale.

SYM REGRESSION

Table 10 below reports standard OLS coeicients using the average

value of the ixed efects for each CVE as regressors. Results are

equivalent to those shown by the mixed model in Table 9.

Table 10: OLS regression of exploitation in the wild

SYM Model 1 Model 2 Model 3

c -2.062 5.652 6.846†

(1.479) (3.580) (3.959)

log(PackActivity) 1.108
∗

1.436
∗∗

1.593
∗

(0.460) (0.549) (0.627)

log(PackPr ice ) -1.184
∗

-1.299
∗

(0.546) (0.589)

CVSS:NC -2.184†

(1.124)

McFadden R-sq. 0.2 0.4 0.5
Log-likelihood -17.7 -14.1 -11.9
N 51 51 51
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Table 12: CWE counts by package

CWEs are uniformly distributed among packages, i.e. each pack
contains vulnerabilities of the same or comparable type. This
indicates that within a single package, exploit development cost
are comparable and signiicantly skewed distributions of costs
are unlikely.
1. Buf. Err. (CWE-119)
2. Code Inj. (CWE-94)
3. Data Handl. (CWE-19)
4. Input Val. (CWE-20)
5. Ins. Inf, (NVD-CWE-noinfo)
6. Link Following (CWE-59)
7. NONE
8. Num. Err. (CWE-189)
9. OS Comm. Inj. (CWE-78)
10. (NVD-CWE-Other)
11. Path Trav. (CWE-22)
12. Perm., Priv., Acc. Cntrl (CWE-264)
13. Res. Mngmt Err (CWE-399)
14. Use Af. Free (CWE-416)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sum

ADB 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2
ADB2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
ADB3 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2
BANN 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2
BOT 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
DOC 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
DOCPPT 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
DROP 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2
DROP2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 3
ELEN 2 2 0 0 3 0 1 1 1 0 0 0 1 0 11
FFLA 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
FLASH 2 0 0 0 0 0 0 1 0 0 0 0 0 0 3
GLUE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
GLUE2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
IE11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
IE311 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
IEG8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
JAVA 0 0 0 0 3 0 0 0 1 0 0 0 0 0 4
JAVA2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
KATR 1 2 0 1 5 0 0 0 1 0 0 0 1 0 11
LPE 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
MSW 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
MSW2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2
NEUT 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
OFF 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
PAC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
PDF 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2
PRIV 0 1 0 0 3 0 0 0 0 0 0 0 0 0 4
PRIV1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
R0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2
RIG 2 1 0 0 4 0 0 1 0 1 0 0 0 1 10
SILV 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
VIS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
WMI4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4
XP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
ZOMB 0 1 0 0 0 0 0 1 1 0 0 0 0 0 3
Sum 14 13 1 7 26 0 1 9 4 3 0 7 3 1 89

Table 13: History of re-packaged vulnerabilities

CVE no. Sw SwVendor Type 1 Type 2 Type 3 Type 4

2015-8651 4 lash adobe STANDALONE STANDALONE STANDALONE EKIT

2010-0188 4 acrobat adobe EKIT EKIT MALWARE MALWARE

2012-1864 3 windows microsoft STANDALONE MALWARE MALWARE

2015-1701 3 windows microsoft STANDALONE MALWARE MALWARE

2010-4452 3 java oracle EKIT EKIT STANDALONE

2006-0003 3 int._expl. microsoft EKIT EKIT EKIT

2010-1885 3 windows microsoft EKIT EKIT EKIT

2016-1019 2 lash adobe STANDALONE EKIT

2013-2729 2 acrobat adobe STANDALONE STANDALONE

2013-0640 2 acrobat adobe STANDALONE STANDALONE

2015-2545 2 oice microsoft STANDALONE STANDALONE

2015-0057 2 windows microsoft STANDALONE MALWARE

2013-3660 2 windows microsoft STANDALONE MALWARE

2011-0611 2 acrobat adobe EKIT EKIT

2010-0886 2 java oracle EKIT STANDALONE

2008-2463 2 oice microsoft EKIT EKIT

2015-0336 2 lash adobe EKIT STANDALONE

2013-3918 2 int._expl. microsoft STANDALONE STANDALONE

2015-2419 2 int._expl. microsoft STANDALONE EKIT

2014-6332 2 windows microsoft EKIT STANDALONE

2010-0840 2 java oracle EKIT STANDALONE

2011-3544 2 java oracle STANDALONE EKIT

2012-0158 2 oice microsoft STANDALONE STANDALONE
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Table 14: (Bootstrapped) descriptive statistics of exploit price estimates in USD by software

We compute expected exploit prices by considering a uniform distribution of exploit costs by package. To approximate the true (unknown) distribution
of exploits per package and software, we perform a bootstrap of our data (N = 10000). Estimates for MALWARE and EKIT exploits are only indicative
as development costs of the package can not be accounted for. We report descriptive statistics of the original and of the bootstrapped sample means
in parenthesis. The column n reports number of exploits for that software in the respective package type. The bootstrapped data does not deviate
substantially from our observations on the average. Fatter distribution tails indicate that RuMarket outliers tend to bias sample statistics. Microsoft
exploits are on average the most valuable in the market irrespective of package. MS Windows and Oice exploits are consistently the most expensive.
Adobe and Oracle are closely second and third. EKIT prices by exploit are substantially lower than for STANDALONE and MALWARE exploits.

Pack Type SwVendor Software Min 0.025p Mean Median 0.975p Max sd n

EKIT

Adobe 13.64 13.64 98.24 31.67 333.33 333.33 111.28 17
(13.64) (13.64) (135.79) (106.86) (333.33) (333.33) (90.38)

lash 31.67 31.67 91.86 31.67 299.24 333.33 105.33 10
(31.67) (31.67) (132.99) (98.7) (333.33) (333.33) (89.9)

acrobat 13.64 13.64 107.36 13.64 310.61 333.33 127.34 7
(13.64) (13.64) (138.59) (114.55) (333.33) (333.33) (90.77)

Microsoft 13.64 13.64 115.71 120.83 284.09 333.33 96.76 14
(13.64) (13.64) (113.81) (111.44) (232.32) (333.33) (62.23)

oice 13.64 17.84 97.73 97.73 177.61 181.82 118.92 2
(13.64) (13.64) (98.44) (97.73) (181.82) (181.82) (63.88)

int. expl. 13.64 16.34 97.47 120.83 181.82 181.82 71.89 7
(13.64) (13.64) (94.92) (97.47) (181.82) (181.82) (38.63)

windows 13.64 15.44 148.45 181.82 318.18 333.33 130.6 5
(13.64) (13.64) (146.27) (148.45) (333.33) (333.33) (66.71)

Oracle 13.64 13.64 87.32 106.67 181.82 181.82 68.78 10
(13.64) (13.64) (94.75) (92.26) (181.82) (181.82) (39.1)

java 13.64 13.64 87.32 106.67 181.82 181.82 68.78 10
(13.64) (13.64) (94.75) (92.26) (181.82) (181.82) (39.1)

MALWARE

(420) (420) (455.35) (455) (490) (490) (26.71)
acrobat 420 421.75 455 455 488.25 490 49.5 2

(420) (420) (455.35) (455) (490) (490) (26.71)
Microsoft 333.33 333.33 1357.14 1500 3625 4000 1303.23 7

(333.33) (333.33) (1518.3) (1375) (4000) (4000) (745.71)
windows 333.33 333.33 1357.14 1500 3625 4000 1303.23 7

(333.33) (333.33) (1518.3) (1375) (4000) (4000) (745.71)
Adobe 420 421.75 455 455 488.25 490 49.5 2

STANDALONE

Adobe 75 75 879.17 1250 1500 1500 693.54 12
(75) (100) (1000.06) (1040) (1500) (1500) (521.91)

lash 75 75 568.75 150 1500 1500 652.3 8
(75) (87.5) (562.05) (545.45) (1300) (1500) (316.52)

acrobat 1500 1500 1500 1500 1500 1500 0 4
(1500) (1500) (1500) (1500) (1500) (1500) (0)

Microsoft 150 150 2801.82 2250 8000 8000 2393.09 22
(150) (150) (2442.13) (2450) (5600) (8000) (1601.69)

oice 150 362.5 3195.45 4000 7250 8000 2504.04 11
(150) (1605.1) (3407.31) (3262.5) (5750) (8000) (1112.54)

int. expl. 440 459.5 3035 1850 7625 8000 3504.22 4
(440) (440) (3051.89) (3000) (8000) (8000) (1727.18)

windows 700 800 2366.67 2250 4687.5 5000 1458.31 6
(700) (1100) (2349.27) (2327.27) (3750) (5000) (658.77)

silverlight 150 150 150 150 150 150 1
(150) (150) (150) (150) (150) (150) (0)

Oracle 25 25 1020 25 4502.5 5000 2224.89 5
(25) (25) (1847.02) (1020) (5000) (5000) (1981.08)

java 25 25 1020 25 4502.5 5000 2224.89 5
(25) (25) (1847.02) (1020) (5000) (5000) (1981.08)
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