
Forward and Backward Private Searchable Encryption from
Constrained Cryptographic Primitives

Raphaël Bost

Direction Générale de l’Armement

& Université de Rennes 1, France

raphael_bost@alumni.brown.edu

Brice Minaud

Royal Holloway, University of

London, UK

brice.minaud@gmail.com

Olga Ohrimenko

Microsoft Research, Cambridge, UK

oohrim@microsoft.com

ABSTRACT
Using dynamic Searchable Symmetric Encryption, a user with lim-

ited storage resources can securely outsource a database to an un-

trusted server, in such a way that the database can still be searched

and updated efficiently. For these schemes, it would be desirable

that updates do not reveal any information a priori about the modi-

fications they carry out, and that deleted results remain inaccessible

to the server a posteriori. If the first property, called forward privacy,
has been the main motivation of recent works, the second one,

backward privacy, has been overlooked.

In this paper, we study for the first time the notion of back-

ward privacy for searchable encryption. After giving formal defini-

tions for different flavors of backward privacy, we present several

schemes achieving both forward and backward privacy, with vari-

ous efficiency trade-offs.

Our constructions crucially rely on primitives such as constrained

pseudo-random functions and puncturable encryption schemes.

Using these advanced cryptographic primitives allows for a fine-

grained control of the power of the adversary, preventing her

from evaluating functions on selected inputs, or decrypting spe-

cific ciphertexts. In turn, this high degree of control allows our

SSE constructions to achieve the stronger forms of privacy out-

lined above. As an example, we present a framework to construct

forward-private schemes from range-constrained pseudo-random

functions.

Finally, we provide experimental results for implementations of

our schemes, and study their practical efficiency.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols; Secu-
rity protocols;Management and querying of encrypted data;

KEYWORDS
Searchable Encryption; Constrained PRF; Puncturable Encryption;

Forward Privacy; Backward Privacy

1 INTRODUCTION
Symmetric Searchable Encryption (SSE) enables a client to out-

source the storage of private data to an untrusted server, while

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133980

retaining the ability to issue search queries over the outsourced

data. Dynamic SSE schemes add the ability for the client to update

the outsourced database, inserting and possibility deleting entries

remotely. All the while, the design of the scheme should ensure

that the server is able to infer as little as possible about the content

of the database, or even the content of the queries it processes.

At the core of SSE schemes are trade-offs between efficiency,

such as storage requirements, bandwidth or latency, and the degree

to which the scheme protects the content of the client’s data against

a curious (or malicious) server. The latter is captured by the notion

of leakage functions that restrict the type of information leaked to

the server while processing search or update queries.

Since the inception of searchable encryption, tremendous progress

has been made toward efficient solutions yielding high throughput,

low latency, and more expressive queries [CJJ
+
13, CJJ

+
14, MM17].

Amid a growing awareness of privacy concerns however, a different

line of work has uncovered devastating and fairly generic attacks

against many SSE schemes [CGPR15, ZKP16]. Such leakage-abuse

attacks do not contradict the security claims of the targeted SSE

schemes, but show how seemingly benign leakage functions can

be exploited to reveal a considerable amount of information in

practice.

Forward privacy (also known as forward security) is an important

property of searchable encryption schemes that mitigates these

attacks by ensuring that newly updated entries cannot be related to

previous search results. Notably, forward-private schemes prevent

the most powerful versions of the recent injection attacks by Zhang

et al. [ZKP16]. Another natural notion of privacy is that of backward
privacy: search queries should not leak matching entries after they

have been deleted. However, besides being mentioned by Stefanov

et al. [SPS14], it is almost not discussed in the literature.

Our contribution. In this work, we realize single-keyword SSE

constructions from constrained and puncturable primitives. By

leveraging the fine-grained control afforded by this type of primi-

tives, we are able to build (1) a very efficient forward-secure scheme;

and (2) a scheme that achieves both forward privacy and a weak

form of backward privacy. For both schemes, we define and prove

a general framework to build forward-secure SSE from the abstract

SSE primitive; and then propose and study a concrete scheme by

instantiating the framework with a specific choice of the underlying

primitive. In the process, we also investigate the notion of backward

privacy, providing formal definitions and a generic construction.

Finally, we provide experimental results for implementations of our

schemes. In more detail, our contributions are as follows.

(1) We propose formal definitions for several forms of backward

privacy, which up to now had only been treated informally. We also

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1465

https://doi.org/10.1145/3133956.3133980

Table 1 – Comparison with prior work. N is the number of keyword/document pairs in the database, K the number of distinct
keywords, and D the number of documents. nw is the size of the search result set for keyword w , aw is the number of entries
matchingw inserted in total, while dw is the number of deleted entries matchingw (and nw = aw −dw). The RT column stands
for the number of roundtrips in the search protocol. FP (resp. BP) stands for forward (resp. backward) privacy. We denote
different levels of backward privacy with I, II, and III, where I is the strongest level (see Section 4.2 for details). The notation
Õ hides polylog factors.

Scheme

Computation Communication Client

FP BP

Search Update Search RT Update Storage

Πdyn
[CJJ

+
14] O(aw) O(1) O(nw) 1 O(1) O(1) ✗ -

SPS [SPS14] O
(
min{aw + logN ,nw log

3 N }
)

O(log2 N) O(nw + logN) 1 O(logN) O(N α) ✓ -

TWORAM [GMP16] Õ
(
nw logN + log3 N

)
Õ(log2 N) Õ(nw logN + log3 N) 2 Õ(log3 N) O(1) ✓ -

Σoϕoς [Bos16] O(aw) O(1) O(nw) 1 O(1) O(K logD) ✓ -

ARX [PBP16] O(aw) O(logaw) O(nw + logaw) 1 O(1) O(K logD) ✓ -

Moneta § 4.3 Õ
(
aw logN + log3 N

)
Õ(log2 N) Õ(aw logN + log3 N) 3 Õ(log3 N) O(1) ✓ I

Fides § 4.4 O(aw) O(1) O(aw) 2 O(1) O(K logD) ✓ II

Diana § 5.2 O(aw) O(logaw) O(nw + logaw) 1 O(1) O(K logD) ✓ -

Dianadel § 5.3 O(aw) O(logaw) O(nw + dw logaw) 2 O(1) O(K logD) ✓ III

Janus § 6 O(nw · dw) O(1) O(nw) 1 O(1) O(K logD) ✓ III

describe a simple and generic way to achieve backward privacy from

any forward private SSE scheme at the cost of an extra roundtrip

per search query, and two instantiations, Moneta and Fides.
(2) We define the FS-RCPRF framework, which builds a single-

keyword forward-private SSE scheme from any constrained pseudo-

random function (CPRF) compatible with range constraints. By

instantiating the CPRF with the classic construction by Goldre-

ich, Goldwasser and Micali [GGM84], we obtain Diana, a forward-
secure SSE scheme with very low computational and bandwidth

overhead—on some data sets, Diana performs up to 10 times faster

than recent schemes from the literature achieving the same leakage.

Note thatDiana is very similar to theARX-EQ construction [PBP16].

We also show how we can modify Diana into a two-roundtrips

backward-private scheme Dianadel.
(3) Finally, we describe Janus, a framework for constructing

a forward-secure SSE scheme that also achieves a weak form of

backward privacy; namely, search queries do not leak entries that

match the query after the entry has been deleted. The Janus frame-

work requires a puncturable encryption scheme with a particular

incremental update property, which can be instantiated by the

Green-Miers puncturable encryption scheme [GM15].

To the best of our knowledge, Fides, Dianadel and Janus are the
first schemes not based on oblivious RAM to achieve backward

(and forward) privacy. Moreover, Janus is the only existing single-

roundtrip forward and backward-private scheme.

A comparison of our schemes with prior work is provided in

Table 1. Beside the schemes themselves, we believe this work draws

a new connection between constrained primitives and searchable

encryption, which from the perspective of SSE schemes means new

construction techniques, and from the perspective of constrained

or puncturable primitives, new applications.

2 RELATEDWORK
Searchable Encryption. Song et al. [SWP00] first introduced SSE.

The modern security definitions were developed by Curtmola et

al. [CGKO06]. They introduced the idea of leakage, and designed

the first reversed-index-based SSE construction, achieving optimal

search complexity. Note that SSE is a particular case of structured

encryption, as defined by Chase and Kamara [CK10], focused on

multi-maps (a.k.a. T-Sets or reversed index).

Even though the dynamic setting had been studied earlier, Ka-

mara and Papamanthou [KP13] designed the first sublinear dynamic

scheme. Cash et al. [CJJ+14] constructed a dynamic scheme opti-

mized for large datasets.

Forward privacy was introduced by Stefanov et al. in [SPS14]. In

that paper, the authors present an ORAM-inspired forward-private

SSE construction. Their construction also deals with deletion in an

elegant way, as it allows the server to skip deleted entries. However,

this was only designed to improve the performance of the scheme,

rather than its security. In [Bos16], Bost formally defined forward

privacy and designed an insertion-only SSE scheme with optimal

search and update complexity, based on asymmetric cryptogra-

phy (trapdoor permutations). The motivation for studying forward

security came from file injection attacks on SSE [ZKP16].

In order to achieve the highest security guarantees, SSE can be

constructed using Oblivious RAM components [GO96, GMP16].

Unfortunately the overhead of ORAM is too high for a practical

SSE scheme [Nav15].

Several results propose SSE schemes with expressive search

queries: Cash et al. [CJJ+13] considered conjunctive queries; Ka-

mara and Moataz [KM17] built a scheme for disjunctive queries;

while graph encryption was studied by Chase and Kamara [CK10]

and Meng et al. [MKNK15].

Constrained cryptographic primitives. Constrained pseudoran-

dom functions were concurrently introduced in [BW13, KPTZ13,

BGI14], and applied to broadcast encryption, identity-based key-

exchange, or SNARGs. One application considered by Kiayias et
al. [KPTZ13] was actually searchable encryption, but only for per-

formance reasons: the constrained PRF is used to batch queries.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1466

Instead of transmitting to the server many pseudo-randomly gener-

ated trapdoors, the client would transmit a constrained key allowing

for the generation of the trapdoors by the server.

Since then, new constrained PRFs have been developed, with

the ability to support richer constraint spaces [HKW15, CC17].

Unfortunately, many of these new constructions rely on indistin-

guishability obfuscation or similar techniques, and hence are not

yet practical. In this work, we only require the existence of crypto-

graphic pairings for puncturable encryption, and pseudo-random

functions.

Building on non-monotonic attribute-based encryption [OSW07],

Green andMiers [GM15] proposed puncturable encryption as a way

to achieve forward secrecy for instant messaging. Their scheme

modifies the secret key every time a message is received, so that

from then on the modified key can no longer decrypt that message.

Thus, in the event of a key compromise, old messages remain safe.

Secure deletion. In this paper, we will use puncturable encryption
to securely delete entries in an encrypted database. Indeed, Green

and Miers [GM15] mention secure deletion as another application

of their work.

Boneh and Lipton [BL96] were the first to suggest using cryp-

tography to erase information. These cryptographic solutions were

implemented for filesystems on flash drives [RCB12]. Secure dele-

tion and history independence properties were also considered in

oblivious RAM literature [RAC16].

3 BACKGROUND
In the paper, λ is the security parameter and negl(λ) denotes a
negligible function in the security parameter.

Unless specified explicitly, the symmetric keys are strings of λ
bits, and the key generation algorithm uniformly samples a key in

{0, 1}λ . We only consider (probabilistic) algorithms and protocols

running in time polynomial in the security parameter λ. In particu-

lar, adversaries are probabilistic polynomial-time (PPT) algorithms.

For a finite set X , x
$

← X means that x is sampled uniformly

from X .

3.1 Constrained Pseudorandom Functions
The idea of constrained PRFs (CPRFs) has been introduced in con-

current work by Boneh and Waters, Boyle et al., and Kiayias et
al. [BW13, BGI14, KPTZ13]. A constrained PRF is associated with

a family of boolean circuits C. The holder of the master PRF key

is able to compute a constrained key KC corresponding to a circuit

C ∈ C; the constrained key KC allows evaluation of the PRF only

on inputs x for which C(x) = 1.

More formally, a constrained PRF F with respect to a circuit family

C is a mapping F : {0, 1}λ ×X → Y (the PRF proper), together with

a pair of algorithms (F .Constrain, F .Eval), defined as follows.

• F .Constrain(K ,C) is a PPT algorithm taking as input a key

K ∈ {0, 1}λ and a circuitC ∈ C. It outputs a constrained key
KC .
• F .Eval(KC ,x) is a deterministic polynomial-time algorithm

taking as input a constrained keyKC for circuitC , and x ∈ X .

It outputs y ∈ Y .

Wherever this does not result in ambiguity, we may leave out

Eval and write F .Eval(KC ,x) as F (KC ,x).

Correctness. A CPRF F is correct iff C(x) = 1 implies F (K ,x) =
F .Eval(KC ,x), where KC = F .Constrain(K ,C), for all K , x , and
C ∈ C.

Security. The security game describing the security of a CPRF

has three phases.

Setup Phase The challenger randomly picks a key K
$

← {0, 1}λ

and a bit b
$

← {0, 1}.

Query Phase The adversary can adaptively query the oracles:

Eval(x) The challenger returns F (K ,x);
Constrain(C) The challenger returns F .Constrain(K ,C);
Challenдe(x) If b = 0 the challenger outputs F (K ,x), other-
wise he returns a uniform element in Y .

Guess Phase The adversary outputs a guess b ′ of b.

Let E be the set of evaluation queries, Z the set of challenge queries,

L the set of constrained key queries. The adversary wins the game

if b = b ′ and E ∩ Z = ∅ and C(z) = 0 ∀C ∈ L and z ∈ Z .

3.2 Bilinear Maps
LetG andGT be two cyclic groups of prime orderp,д be a generator
of G and e : G × G→ GT be such that

• e is bilinear: for all x ,y ∈ G, a,b ∈ Zp , e(x
a ,yb) = e(x ,y)ab ;

• e is non-degenerate: e(д,д) , 1.

We consider G, GT and e such that the group operations in G
and GT , and the bilinear map e are all efficiently computable. The

scheme presented in this work using pairings needs the Decisional

Bilinear Diffie-Hellman (DBDH) and Decisional Bilinear Diffie-

Hellman Inversion (DBDHI) to hold (cf. [BB04]).

3.3 Symmetric Searchable Encryption
The database DB on which we wish to perform search queries is de-

fined as: DB = {(indi ,Wi) : 1 ≤ i ≤ D}, with indi ∈ {0, 1}ℓ ,Wi ⊆

{0, 1}∗, and where indi are distinct document indices, represented
by ℓ-bit strings, and Wi is a set of keywords matching document

indi , represented by binary strings of arbitrary length. Note that

we identify documents with their indices. In addition, let us define:

W = ∪Di=1Wi the set of keywords;

K = |W| the number of keywords;

D = |DB| the number of documents;

N =
∑D
i=1 |Wi | the number of document/keyword pairs.

Finally, let DB(w) denote the set of documents containing keyword

w , i.e. DB(w) = {indi |w ∈ Wi }.

A dynamic searchable encryption scheme Σ is a triple (Setup,
Search,Update) consisting of one algorithm and two protocols

between a client and a server:

• Setup(DB) is a probabilistic algorithm that takes as input the

initial database DB. It outputs a triple (EDB,KΣ,σ), where
KΣ is the master secret key, EDB is an encrypted database,

and σ is the client’s state.

• Search(KΣ,q,σ ; EDB) = (SearchC (KΣ,q,σ), SearchS (EDB))
is a protocol between the client whose input is the master se-

cret key KΣ, the client’s internal state σ , and a search query

q; and the server whose input is the encrypted database EDB.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1467

In this paper, we only consider search queries restricted to a

single keywordw .

• Update(KΣ,σ , op, in; EDB) = (UpdateC (KΣ,σ , op, in),
UpdateS (EDB)) is a protocol between the client whose input
is KΣ and σ as above, and an operation op with its input in,
where in is parsed as an index ind and a setW of keywords;

and the server with input EDB. The update operations are
taken from the set {add, del}, meaning, respectively, the

addition and the deletion of a document/keyword pair.

An SSE scheme is said to be correct if the search protocol returns

the correct result for every query, except with negligible probability.

We refer to [CJJ
+
14] for a formal definition of correctness.

Security. The security of an SSE scheme expresses the fact that

the server should learn as little as possible about the content of

the database and queries. More precisely, we do not want the ad-

versary to learn anything beyond some explicit leakage. This is

typically captured using a real-world versus ideal-world formal-

ization [CGKO06, KPR12, CJJ
+
14]. A leakage function is used to

express the information leaked to the adversary by each SSE opera-

tion. Formally, the model is parametrized by the (stateful) leakage

function L = (LStp,LSrch,LUpdt), whose components correspond

respectively to the Setup, Search, and Update operations. The secu-
rity model expresses the fact that whenever the client triggers one

of these operations, the adversary learns no more than the output

of the corresponding leakage function.

Formally, the adversary’s task is to distinguish between a real

word SSEReal and an ideal world SSEIdeal. The adversary fully

controls the client, in the sense that she can trigger Setup, then
Search andUpdate queries at will, with parameters of her choosing.

She then observes the execution of the scheme from the point

of view of the server. That is, the adversary is able to observe

the full transcript of each operation, i.e. the full content of the

communication between client and server. In principle, she is also

able to see the server’s memory; however since the server does not

see anything more of the client’s queries than the adversary, the

ability to see the server’s memory does not reveal any information

about the client’s queries beyond what can already be inferred from

the transcript alone.

• In the SSEReal world, the SSE scheme is executed honestly.

The adversary observes the real transcript of each operation,

and outputs a bit b.
• In the SSEIdeal world, the adversary sees a simulated tran-

script in place of the real transcript of the protocol. The

simulated transcript is generated by a PPT algorithm S ,
known as the simulator, that has access to the leakage func-

tions. For example, on Setup(DB), S returns a transcript from
S(LStp(DB)); and likewise for the Search and Update calls.
The adversary eventually outputs a bit b.

These games are formally described in Appendix D. The scheme Σ
is secure if the two worlds are indistinguishable.

Definition 3.1 (Adaptive security of SSE schemes). An SSE scheme

Σ is L-adaptively-secure, with respect to a leakage function L, if

for any polynomial-time adversary A issuing a polynomial number

of queries q(λ), there exists a PPT simulator S such that:���P [SSERealΣA(λ,q) = 1

]
− P

[
SSEIdealA,S,L(λ,q) = 1

] ��� =
negl(λ).

3.4 Leakage Functions
In this section we define a few simple leakage functions. We begin

with a common leakage function: the search pattern [CGKO06].

Most SSE schemes leak the fact that two search queries pertain

to the same keyword. Indeed, unless some form of data-oblivious

memory is used, when two searched keywords are equal, the search

token will typically prompt the server to access the same sections

of the encrypted database to retrieve the (same) document indices.

Formally, search pattern leakage is defined as follows. In its

internal state, the leakage function records the listQ of every search

query, in the form (u,w), whereu is the timestamp (an index starting
at 0 and increasingwith every query) andw is the searched keyword.

The search pattern is defined as a functionN→ P(N)with sp(w) =
{u : (u,w) ∈ Q}. Thus, sp leaks which search queries relate to the

same keyword.

We also define the history UpHist(w) of each keyword w , fol-

lowing Bost [Bos16]. The function UpHist(w) outputs the list of all
updates on keywordw : each element of the list is a tuple (u, op, ind)
where u is the timestamp of the update, op is the operation, and ind
is the updated index. For example, if there are two documents

Dind1 and Dind2 matching w , such that Dind1 was inserted at up-

date 3, Dind2 at update 7, and then Dind2 was deleted at update 42,

UpHist(w) will be [(4, add, ind1), (7, add, ind2), (42, del, ind2)].

4 FORWARD AND BACKWARD PRIVACY
Forward and backward privacy capture information leaked by a

dynamic SSE scheme. At a high level, forward privacy considers

privacy of the database and earlier search queries during updates,

while backward privacy captures privacy of the database and up-

dates to it during search queries. In this section, we formally define

these privacy properties and present a generic transformation that

meets these definitions, albeit at a cost. Our generic construction,

and its instantiations with TWORAM [GMP16] and Σoϕoς [Bos16],
can be seen as a baseline solution that transforms any forward-

private SSE scheme to provide backward privacy, at the cost of an

additional roundtrip. We improve on the baseline solution in the

following sections.

4.1 Forward Privacy
An SSE scheme is forward-private (or forward-secure) if Update
queries do not leak which keywords are involved in the keyword/

document pairs that are being updated. Forward privacy was infor-

mally defined in [SPS14]. Here we borrow the formal definition of

[Bos16].

Definition 4.1 (Forward Privacy). A L-adaptively-secure SSE

scheme is forward-private iff the update leakage function LUpdt

can be written as:

LUpdt(op, in) = L′(op, {(indi , µi)})

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1468

where the set {(indi , µi)} captures all updated documents as the

number of keywords µi modified in document indi ; and L′ is state-
less.

If update queries are restricted to adding or deleting a single

keyword/document pair, the scheme is forward-private iff we have

LUpdt(op,w, ind) = L′(op, ind). All forward-private schemes in

this paper satisfy LUpdt(op,w, ind) = op.

4.2 Backward Privacy
Backward privacy limits the information on the updates affecting

keywordw that the server can learn upon a search query onw . In-

formally, an SSE scheme is backward-private (or backward-secure)

if, whenever a keyword/document pair (w, ind) is added into the

database and then deleted, subsequent Search queries onw do not

reveal ind [SPS14]. Note that ind is revealed if a Search query is

issued after (w, ind) is added, and before it is deleted.

Hence, we could argue that backward-private schemes are those

whose search leakage is only a (stateless) function of DB(w), as this
would only reveal information about document currently in the

database (and not the deleted ones). However, this is not enough,

as, even though the search leakage is reduced to DB(w), the up-
date leakage could reveal the modified document/keyword pairs.

A scheme with such leakage would reveal the indices of deleted

documents, as the attacker could keep track of all the updated pairs,

which is exactly what we want to prevent. As a consequence, in

the security definitions, we must explicitly rule out such update

leakage.

Moreover, obtaining a scheme with leakage that depends only

on DB(w) would require hiding the pattern of updates as well as

their number. Although hiding the former could be achieved, for

example, using ORAM, this would result in expensive schemes.

As a consequence, we define three flavors of backward privacy of

decreasing strength, depending on how much metadata leaks about

the inserted and deleted entries:

I. Backward privacy with insertion pattern:
leaks the documents currently matchingw , when they were

inserted, and the total number of updates onw .

II. Backward privacy with update pattern:
leaks the documents currently matchingw , when they were

inserted, and when all the updates onw happened (but not

their content).

III. Weak backward privacy:
leaks the documents currently matchingw , when they were

inserted, when all the updates on w happened, and which

deletion update canceled which insertion update.

Let us demonstrate the differences between these notions with an

example. Consider the following sequence of updates, in the order

of arrival: (add, ind1, {w1,w2}), (add, ind2, {w1}), (del, ind1, {w1}),

(add, ind3, {w2}). Let us consider the leakage for each definition

after a search query onw1. The first notion reveals ind1 and that
this entry was added at time 1. It also reveals that there were a

total of 3 updates forw1. The second notion, additionally reveals

that updates onw1 happened at time 1, 2, and 3. Finally, the third

definition also reveals that the index that was added forw1 at time

1 was removed at time 3.

In order to capture these notions, we introduce new leakage

functions, starting with TimeDB. For a keywordw , TimeDB(w) is
the list of all documents matching w , excluding the deleted ones,

together with the timestamp of when they were inserted in the

database. Formally, TimeDB(w) can be constructed from the query

list Q as follows:

TimeDB(w) = {(u, ind) | (u, add, (w, ind)) ∈ Q and

∀u ′, (u ′, del, (w, ind)) < Q}.
In particular DB(w) = {ind|∃u s.t. (u, ind) ∈ TimeDB(w)}. Note
that TimeDB is completely oblivious to any document added to

DB(w) that was later removed, but retains all other information.

As such, TimeDB captures a strong notion of backward privacy

revealing only the time of the insertion of the documents currently

containing the search queryw .

Then, we define Updates(w) which is the list of timestamps of

updates onw . Formally,

Updates(w) = {u | (u, add, (w, ind)) or (u, del, (w, ind)) ∈ Q}.

Updates captures the leakage of the update pattern.
Finally, in order to capture the weakest notion of backward

privacy, we use DelHist. The deletion history DelHist(w) of w is

the list of timestamps for all deletion operations, together with the

timestamp of the inserted entry it removes. Formally, DelHist(w)
is constructed as:

DelHist(w) =
{
(uadd,udel) | ∃ind s.t. (udel, del, (w, ind)) ∈ Q

and (uadd, add, (w, ind)) ∈ Q
}
.

With these tools, we can formally define our three notions of

backward privacy.

Definition 4.2 (Backward Privacy). A L-adaptively-secure SSE
scheme is insertion pattern revealing backward-private iff the search

and update leakage functions LSrch
, LUpdt

can be written as:

LUpdt(op,w, ind) = L′(op)

LSrch(w) = L′′(TimeDB(w),aw),

where L′ and L′′ are stateless.

A L-adaptively-secure SSE scheme is update pattern revealing
backward-private iff the search and update leakage functions LSrch

,

LUpdt
can be written as:

LUpdt(op,w, ind) = L′(op,w)

LSrch(w) = L′′(TimeDB(w),Updates(w)),

where L′ and L′′ are stateless.

A L-adaptively-secure SSE scheme is weakly backward-private
iff the search and update leakage functions LSrch

, LUpdt
can be

written as:

LUpdt(op,w, ind) = L′(op,w)

LSrch(w) = L′′(TimeDB(w),DelHist(w)),

where L′ and L′′ are stateless.

We can clearly see that backward privacy with insertion pattern

implies update pattern revealing backward privacy, which itself

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1469

Algorithm 1 Generic backward-private scheme B(Σ) where Σ is

an arbitrary SSE scheme and F is a PRF.

Setup(DB) :

1: Σ.Setup(DB), KΣ
$

← {0, 1}λ

Search(KΣ,w,σ ; EDB)

1: Client and Server run Σ.Search(w), the client gets the list of
results R.
Client:

2: Kw ← F (KΣ,w)
3: Decrypt R as (EKw (ind1, op1), . . . ,EKw (indn , opn))
4: Return

{
ind : ∃i, (indi , opi) = (ind, add)

∧∀j > i, (indj , opj) , (ind, del)
}

Update(KΣ, add,w, ind,σ ; EDB)

1: Client: Kw ← F (KΣ,w)
2: Client and Server run Σ.Update(add,w,EKw (ind, op))

implies weak backward privacy. Also observe that an insertion pat-

tern revealing backward-private scheme has to be forward-private,

and that if a scheme is both forward-private and weakly backward-

private, then the leakage of update queries cannot depend on either

the updated keyword (by definition of forward privacy) or the up-

dated document index (by definition of weak backward privacy),

so the leakage must be limited to the nature of the operation. This

will indeed be the case for all schemes considered in this article.

4.3 A Generic Two-Roundtrip
Backward-Private Scheme

In this section, we show how to build a simple backward-private

SSE scheme B(Σ) starting from an arbitrary SSE scheme Σ. We start

with a basic solution for clarity, then improve on it.

We alter Σ as follows. Instead of storing a document index ind,
the client uploads a ciphertext EKw (ind, op), where EKw is a secret-

key encryption scheme and op ∈ {add, del}. The key Kw is specific

to keywordw and is chosen by the client. The server sees only the

resulting ciphertexts as Kw ’s are never revealed to it. The scheme

Σ otherwise runs as normal. In particular, Search queries return

the set of matching encrypted document indices EKw (ind, op). The
client can then decrypt this set, remove deleted indices, and obtain

the final set of document indices matchingw .

A description of B(Σ) is provided in Algorithm 1. Letting I de-

note the set of document indices, we assume I× {add, del} embeds

into the plaintext space of EK , and we use the ciphertext space

of EK as the set of document indices for Σ. Note that Σ only needs

to support add queries. The scheme B(Σ) achieves update pattern
revealing backward privacy, as Σ can leak any information about

the modified keyword during updates, and some access pattern

information during search. However, if Σ does not reveal any in-

formation about the past updates (i.e., if Σ does not leak UpHist(w)
but only DB(w)), we can show that B(Σ) guarantees backward-
privacy with insertion pattern. Unfortunately, the only dynamic

schemes which do not reveal UpHist(w) are based on ORAM, such

as TWORAM [GMP16].

The B(Σ) scheme, as described so far, has two drawbacks. The

first drawback is that the server does not learn document indices in

Algorithm 2 Improved backward-private scheme B′(Σ).

Setup(DB) :

1: T[w] ← 0 for allw , KΣ
$

← {0, 1}λ

2: DB′ ← DB where keywordsw are replaced byw | |0
3: Σ.Setup(DB′)

Search(KΣ,w,σ ; EDB)

1: Client: Kw ← H (KΣ,w, T[w])
2: Client and Server run R ← Σ.Search(w | |T[w]) ▷ Server can
erase all retrieved elements from memory
Client:

3: Decrypt R as (EKw (ind1, op1), . . . ,EKw (indn , opn))
4: R′ ←

{
ind : ∃i, (indi , opi) = (ind, add)

∧∀j > i, (indj , opj) , (ind, del)
}

5: Send R′ to Server

6: T[w] ← T[w] + 1
7: for all ind ∈ R′ do ▷ In parallel
8: Run Update(KΣ, add,w, ind,σ ; EDB)
9: end for

Update(KΣ, add,w, ind,σ ; EDB)

1: Client: Kw ← H (KΣ,w, T[w])
2: Client and Server run Σ.Update(add,w | |T[w],EKw (ind, op))

the clear and, hence, cannot return the matching documents. This

is fine for a result-hiding scheme. However, a common use case

of SSE schemes is to return actual documents, which are stored

separately in an encrypted form. B(Σ) can support this case with

an additional roundtrip as follows. After the client computes the

result of a search query, she sends document indices in the clear

to the server. The server is then able to send the documents to the

client. Hence, B(Σ) is two-roundtrip protocol, assuming Σ requires

a single roundtrip for its queries.

The second drawback of B(Σ) is that deleted elements are never

deleted on the server side. Moreover, since deleted elements are

returned to the client on each search query, this also affects the

communication cost and the amount of work necessary on the

client side. We notice that this overhead can be avoided in the

common scenario outlined above where the client sends cleartext

document indices back to the server. In particular, it suffices for

the client to send, together with the list of cleartext indices, an

encryption of the same indices with a new key. Recall, that this list

contains only the relevant indices with deleted elements removed

by the client. Hence, the server can delete the old encrypted entries

in the database and insert the updated ones. Essentially we are

piggybacking a cleanup procedure on top of the Search protocol.

We denote a generic solution based on the above idea as B′(Σ)
and describe it in Algorithm 2. In B′(Σ), the client keeps track of

the number of times each keyword w has been queried in table

T. Each time a search query is issued, results are re-encrypted

using a fresh key derived from w and T[w]. Keywords w in Σ are

replaced by w | |T[w], where | | denotes concatenation. In line 7 of

the algorithm, re-encrypted indices are sent as Update queries

for the sake of having a generic solution. However, typical SSE

schemes would allow all updates to be performed at once in a single

roundtrip. We also expect that concrete choices of Σ may allow

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1470

further optimisations. For example, directly using a result-hiding

scheme for Σ would avoid having to encrypt the (ind, op) pairs
before inserting them in Σ.

The schemeB′(Σ) is intuitively backward-private since the server
learns document indices only after the client has removed deleted

indices. Moreover, since document indices are re-encrypted after

each search, it achieves the notion of update pattern revealing

backward privacy in the sense of Definition 4.2. We note that B′(Σ)
may achieve a stronger definition if one makes further assumptions

on how updates are carried out in Σ. In particular, we name the

B′(TWORAM) instantiation Moneta. Moneta achieves backward
privacy with insertion pattern, but at a very high computational

and communicational cost due to the use of TWORAM.

4.4 Fides: A Baseline Forward and Backward
Private SSE Scheme

In this section, we briefly describe Fides, the instantiation of B′

using Σoϕoς [Bos16] (recall that Σoϕoς is forward-private, but not
backward-private). Fides guarantees forward privacy and update

pattern revealing backward privacy. The former is due to the under-

lying SSE scheme, Σoϕoς , being forward-private, while the latter is

the result of the B′ construction. The formal statement on Fides’
security is given by Theorem 4.3.

Theorem 4.3. Define LFides as:

L
Updt
Fides(op,w, ind) = ⊥

LSrch
Fides(w) = (DB(w),Updates(w)).

Fides is LFides-adaptively-secure.

Let us analyze Fides’ performance. Recall that Σoϕoς is optimal

for search and updates in terms of computation and communication.

In contrast, Fides takes two rounds during search and has O(aw)
computation and communication complexity, where aw is the total

number of update entries matching w . The cost of O(aw) is the
worst case scenario since this cost can be amortized over all search

queries for w . Similar to Σoϕoς , the updates in Fides are optimal

(constant communication and computation).

Fides can be seen as a baseline for forward- and backward-private
designs: it is simple to build, offers moderate computation overhead,

and achieves a good level of security. In the next sections, we will

propose schemes that avoid inefficiencies such as the additional

roundtrip and the high communication overhead at the cost of

being only weakly backward-private.

5 Diana: FORWARD-SECURE SSE WITH VERY
LOW OVERHEAD

In this section, we describe a generic way to construct forward-

private searchable encryption from constrained PRFs on N with

respect to the range family of circuits C = {Cc |Cc (x) = 1 ⇔

0 ≤ x ≤ c}. We will see that Σoϕoς [Bos16] can be seen as an

instantiation of this scheme, and then provide a much more efficient

one based on the GGM PRF [GGM84], which we call Diana.

Algorithm 3 FS-RCPRF: Forward private SSE scheme from range-

constrained PRF F̃ . H1 and H2 are hash functions.

Setup()

1: KΣ
$

← {0, 1}λ ,W, EDB← empty map

2: return (EDB,KΣ,W)
Search(KΣ,w,σ ; EDB)

Client:
1: Kw | |K

′
w ← FKΣ (w), c ←W[w] ▷ c = nw − 1

2: if c = ⊥ then return ∅
3: ST ← F̃ .Constrain(Kw ,Cc) ▷ Cc is the circuit evaluating to 1
on {0, . . . , c}

4: Send (K ′w , ST , c) to the server.

Server:
5: for i = c to 0 do
6: Ti ← F̃ (ST , i)
7: UTi ← H1(K

′
w ,Ti)

8: e ← EDB[UTi]
9: ind← e ⊕ H2(K

′
w ,Ti)

10: Output each ind
11: end for
Update(KΣ, add,w, ind,σ ; EDB)

Client:
1: Kw | |K

′
w ← F (KΣ,w), c ←W[w]

2: if c = ⊥ then c ← −1
3: T c+1w ← F̃ (Kw , c + 1), W[w] ← c + 1
4: UTc+1 ← H1(K

′
w ,T

c+1
w), e ← ind ⊕ H2(K

′
w ,T

c+1
w)

5: Send (UTc+1, e) to the server.

Server:
6: EDB[UTc+1] ← e

5.1 FS-RCPRF: Forward-Secure SSE from
Range Constrained PRFs

Let F̃ : {0, 1}λ × {0, . . . ,nmax} → {0, 1}
λ
be a constrained PRF

with respect to the class of range circuits C defined above. Also,

let F be a 2λ-bit PRF. Algorithm 3 describes FS-RCPRF, a forward-

secure scheme based on the range-constrained PRF F̃ . The simple

idea behind FS-RCPRF is that update tokens for entries matching

keyword w are generated using F̃ in counter mode, where the

counter is incremented every time a new entry matching w is

inserted. Then, during search, the client gives to the server the

constrained key allowing only the evaluation of F̃ on {0, . . . ,nw }.
The resulting scheme can be seen as a generalization of the dynamic

scheme of Cash et al. [CJJ+14], where during the search the client

gives to the server the constrained key ofw instead of the master

key Kw .

The intuition for the security of FS-RCPRF is simple: as the ad-

versary only gets to see the CPRF keys during searches for ranges

corresponding to already inserted entries, she cannot predict the

evaluation of the PRF for inputs outside of these ranges, and in

particular for newly inserted entries. Hence updates leak no infor-

mation. Theorem 5.1 states the formal security of FS-RCPRF. Its

proof is deferred to Appendix A.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1471

Theorem 5.1 (Adaptive security of FS-RCPRF). Define LFS =
(LSrch

FS ,L
Updt
FS) as:

LSrch
FS (w) = (sp(w),UpHist(w))

L
Updt
FS (add,w, ind) = ⊥.

FS-RCPRF is LFS -adaptively-secure.

The adaptive security of FS-RCPRF is shown in the random oracle

model (ROM), but the ROM is not needed for non-adaptive security.

Reinterpreting Σoϕoς with constrained PRFs. The Σoϕoς construc-
tion is based on the iteration of a trapdoor permutation (TDP) π
to generate the update tokens in a way that prevents the server

from predicting them. Σoϕoς can be reinterpreted using our frame-

work by constructing a TDP-based range-constrained PRF F̃Σ (in

the following paragraph, we re-use the notation of [Bos16], which

overrules our own).

The master key F̃Σ is composed of an RSA key SK and an ele-

ment ST0 ∈ ZN where each can be pseudo-randomly generated

from a random λ-bit key. F̃ ((SK, ST0), c) = π−cSK(ST0) where π
−c

is the c-fold iteration of π−1. The constrain algorithm will then

be the following (we identify the circuit constraining to the range

{0, . . . ,n} with the integer n):

F̃ .Constrain((SK, ST0),n) = (PK,π−nSK (ST0),n) = (PK, STn ,n).

Finally, the constrained evaluation function is

F̃ .Eval((PK, STn ,n), c) = πn−c
PK (STc).

We can easily reduce the constrained-PRF security of F̃ to the hard-

ness of the RSA assumption, and directly deduce the security of

Σoϕoς from Theorem 5.1.

5.2 Diana, a GGM instantiation of FS-RCPRF
In this section we present a range-constrained PRF and then use it

to instantiate FS-RCPRF.

We can easily construct a simple and efficient range-constrained

PRF from the tree-based GGM PRF [GGM84]. This instantiation

has been described by Kiayias et al. [KPTZ13] and is called best

range cover (BRC).

LetG : {0, 1}λ → {0, 1}2λ be a pseudo-random generator (PRG),

G0(k) andG1(k) be the first and second half ofG(k). The GGM PRF

on n-bit integers is defined as FK (x) = Gxn−1(. . . (Gx1 (Gx0 (K))))
where xn−1 . . . x0 is the binary representation of x . The leaves of the
tree are the output values of F , and they can be labeled according

to the corresponding input, and the partial evaluation of F (i.e. the
iterated evaluation of G, but only on the first ℓ < n bits) are the

inner nodes of the tree.

To constrain F to the input range [0, c−1], we generate the nodes
of the tree covering exactly the leaves with labels in [0, c − 1]. In
practice if the binary representation of c is cn−1 . . . c0, the punctured
key would be

{
G0(Gci−1 (. . . (Gc0 (K)))

}
for i such that ci = 1.

We use the above range CPRF to instantiate FS-RCPRF and call

this instantiation Diana. Note that, Diana is almost identical to

the ARX-EQ scheme [PBP16]. However ARX-EQ was not formally

proven, and FS-RCPRF provides a more general framework on how

to construct forward-private SSE schemes.

Let us analyze the efficiency of Diana. Updates needO(lognmax)

computation, where nmax is the maximum number of entries match-

ing a keyword: CPRF computes a tree’s leaf from its root. Similarly,

during search, the server has to compute all the leaves of the tree

within a given range. This can be done efficiently in O(nw) calls to
the PRG, where nw is the number of matches on search keywordw :

there are O(nw) tree nodes to compute in total and each node can

be generated using a single PRG call. In terms of communication

complexity, Diana is optimal for updates, and sends O(lognw) tree
nodes during a search query.

In theory, this is worse than Σoϕoς ’ optimal computational and

communication complexity, but, as we will see in Section 7.1,Diana
uses symmetric primitives that are much faster than Σoϕoς ’ RSA.
Also, since nodes in the tree will be 128-bit keys, we can set nmax to

2
32

and still have search tokens only twice as big as Σoϕoς ’ 2048-bit
tokens.

5.3 Dianadel: Backward-Secure SSE from
Range-Constrained and Puncturable PRFs

The FS-RCPRF construction, and its instantiation Diana, do not

support deletions. Schemes of this type can be extended to sup-

port deletions by letting the client and the server maintain two

instances of the construction, one for insertions and one for dele-

tions. Then, during a search query, the server can compute the

difference between the two result sets to compute the list of docu-

ments matching the query (i.e., without the deleted entries). This

solution, however, is not backward-private as the server trivially

learns the deleted entries. To this end, we propose FS-RCPRFdel,

which also uses two SE instances but exploits constrained PRFs to

guarantee weak backward privacy.

The key idea behind FS-RCPRFdel is to extend the set of con-

straints supported by the underlying constrained PRF used in Sec-

tion 5.1. In order to support backward privacy, we make use of

constrained PRF F̃ that is not only range-constrained (for forward

privacy) but is also punctured on the deleted entries (for backward

privacy). Hence, the constrained key of F̃ enforces the predicate

Cc,x1, ...,xn (x) = 1 iff x ∈ [0, c] and ∀i,x , xi . The values x1, . . . ,xn
correspond to deleted entries that the server should not learn. Unfor-

tunately, a naive implementation of F̃ requires the client to store all

deleted entries x1, . . . ,xn since the order of deletions and insertions

can be arbitrary. Our construction avoids this storage overhead on

the client’s side by letting the server store the deleted entries in an

encrypted form.

We now combine the above ideas and describe FS-RCPRFdel. The

client and the server maintain two forward-private SE instances:

one for insertions and one for deletions. Every time the client wants

to insert (w, ind)with the counter c , it proceeds as in FS-RCPRF and

inserts the pair in the first SE instance, as in Algorithm 3. In addition,

it also pushes the pair (F ′(Kw , (w, ind)),EncK ′(c)), where F ′ and
Enc are a PRF and a CPA encryption scheme, to the server who

stores these pairs in a map. In order to delete (w, ind), the client
inserts the entry (w, F ′(Kw , (w, ind))) in the second SE instance.

Then, during search query forw , the client proceeds as follows. It

requests a search forw on the second SE instance (i.e., the one that

stores deleted entries). As a result, the server gets the associated

tags F ′(Kw , (w, ind)) for the deleted entries, uses them to retrieve

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1472

encrypted xi ’s from the map, and sends them back to the client.

The client then constrains the PRF using xi ’s and uses it to run

a search on the first SE instance. Note that this solution assumes

that the same index ind is never reused: once the entry (w, ind) has
been deleted, it can no longer be re-added.

The above solution is not ideal as it requires an additional round-

trip with large communication from the server to the client. Also,

it can only guarantee weak backward privacy, as the server learns

when the deletions occurred.

Similar to FS-RCPRF, we instantiate FS-RCPRFdel with the GGM

PRF and call the resulting scheme Dianadel. The constrained key,

instead of consisting of the covering nodes of the full range as in

Section 5.2, will be constructed as the set of nodes covering the

ranges [0,x1 − 1], [x1 + 1,x2 − 1], . . . , [xn + 1, c] (assuming that

xi ’s are in increasing order). This approach will result in large keys

when the number of deletions is large: the number of tree nodes to

be sent will be in the order ofdw · log(nw /dw). (assuming uniformly

distributed deletions).

6 Janus: WEAK BACKWARD SECURITY FROM
PUNCTURABLE ENCRYPTION

The solutions presented in Section 5.3 suffer from high inefficiencies,

by requiring either client storage linear in the number of deletions,

or multiple roundtrips with high communication complexity. In

this section, we show how to achieve (weak) backward security in

a single roundtrip, using puncturable encryption with incremental

punctures.

6.1 Puncturable Encryption
A puncturable encryption (PE) scheme is a public-key encryption

scheme that allows to puncture the secret key to prevent the de-

cryption of some messages. More precisely, for such schemes, the

plaintexts are encrypted and attached to a tag, and the secret key is

punctured on a set of tags so that decryption of ciphertexts attached

to those tags is impossible. Puncturable encryption has been intro-

duced by Green and Miers as a way to achieve forward security

in an asynchronous setting [GM15]. We adopt the same formalism

and definitions, except we fix the number of tags per message to 1.

A puncturable encryption scheme PPKE with message space

M and tag space T is a triple of algorithms (KeyGen, Encrypt,
Puncture,Decrypt) with the following syntax:

• KeyGen(1λ) outputs a public key PK and an initial secret

key SK0.
• Encrypt(PK ,M, t) outputs the encryption CT of M ∈ M

attached to the tag t ∈ T .
• Puncture(SKi , t) outputs a new secret key SKi+1 able to de-

crypt any ciphertext SKi can decrypt, except for ciphertexts

encrypted with the tag t .
• Decrypt(SKi ,CT , t) outputs a plaintextM or⊥ if the decryp-

tion fails.

Correctness is achieved if a plaintext M encrypted with tag t
decrypts back to M when using the secret key punctured on any

set of tags that does not contain t .
The IND-PUN-ATK security games – with ATK ∈ {CPA,CCA}

– capture the security of puncturable encryption. We recall the

IND-PUN-CPA game (we will not use CCA security in this work)

in a simplified version.

Definition 6.1 (Security of puncturable encryption). Let PPKE be a

puncturable encryption scheme. The game IND-PUN-CPAPPKE,A
with adversary A is defined using three phases as follows:

Setup Phase The challenger initializes two empty sets P ,C,T , a

counter n to 0, and runs (PK, SK0) ← PPKE.KeyGen(1λ).

Finally, he randomly picks b
$

← {0, 1}.

Query Phase The adversary can adaptively issue the following

queries:

Puncture(t) The challenger increments n, computes SKn ←
PPKE.Puncture(SKn−1, t) and adds t to P .

Corrupt() The first time the adversary issues this query, if

T ⊆ P , the challenger returns the most recent secret key

SKn , and sets C ← P . All subsequent queries return ⊥.
Challenдe(M0,M1, t) If the adversary previously issued a

Corrupt query and t < C , the challenger rejects the chal-
lenge. Otherwise, the challenger returns

CT ← PPKE.Encrypt(PK,Mb , t) to the adversary and

adds t to T .
Guess Phase The adversary outputs a guess b ′ of b.

The game ensures that the adversary can get challenge ciphertexts

only for tags on which the secret key has been punctured.

We say that PPKE is IND-PUN-CPA secure if for all polynomial-

time adversaries A:

Advpun−cpaPPKE,A (λ) =|P[IND-PUN-CPAPPKE,A(λ) = 1]

− P[IND-PUN-CPAPPKE,A(λ) = 0]|

≤ negl(λ).

In the Janus construction, described in Section 6.3, we will en-

crypt the document indices using puncturable encryption, with tags

that are pseudo-randomly generated from the document-keyword

pairs. There will be a different key for each keyword, and when we

want to delete an entry for a specific keyword, we will puncture the

associated key on the tag derived from the document-keyword pair.

Upon a search query, the client will give to the server the associated

punctured secret key, with which he will only be able to decrypt

non-deleted entries.

In this paper, we will use the Green-Miers puncturable encryp-

tion scheme [GM15], described in Appendix C.

6.2 Incremental Puncture
The punctured keys will (often) grow with the number of punctures

(or be very large), and it will be impractical to store them on the

client side. To avoid this issue, we use an additional feature of the

Green-Miers scheme, which we call incremental puncture.

In our setting, we will see that it is very handy to be able to ex-

press the Puncture algorithm as a function of a constant-sized frac-

tion of the secret key. The secret key of the Green-Miers puncturable

encryption scheme is, after n punctures, SKn = (sk0, sk1, . . . , skn),
and the puncture algorithm is such that

Puncture(SKn , t) = (sk ′0, sk1, . . . , skn , skn+1)

where (sk ′
0
, skn+1) = IncPuncture(sk0, t).

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1473

By using this PE scheme, the client will only have to store the

sk0 part of the secret key, and outsource the rest to the server. The

client’s storage will stay linear in the number of keywords, and

most of the storage burden will still be born by the server.

6.3 The Janus Construction
Janus, similar to the constructions in Section 5.3, uses two forward-

secure searchable encryption instances: Σadd to store the newly

inserted indices encrypted with the puncturable encryption scheme

(the insertion instance), and Σdel to store the punctured key ele-

ments (the deletion instance). There is a different encryption key

for each keyword and the client stores the sk0 part of each key

locally. During the search for w , the client sends the associated

key part and runs the search protocol of the SE scheme for both

instances. As a result, the server obtains the encrypted indices from

the insertion instance and all the remaining key parts from the dele-

tion instance. She will then be able to decrypt all the non-deleted

(i.e. not punctured) indices.
Still, there is an important problem to tackle: once the secret

key forw has been revealed to the server, it can no longer be used

by the client to encrypt the index of the documents matching w
that will be inserted in the future. As a consequence, we need to

change the encryption key after every search. Yet, we do not need

to re-encrypt the already revealed indices (a.k.a. the result indices)
with the new key: the adversary already learned them, and, as the

Σadd and Σdel schemes used in practice will leak the search pattern,

she can keep track of the results over repeating search queries.

So, in the first version of our construction, the server will ex-

plicitly keep the results in a cache. This cache is also interesting

from a performance point of view: each matching index will be

decrypted at most once, and all the results from previous searches

on a given keyword can be stored close to each other, increasing

storage locality.

Description of Janus. Janus is described in Algorithm 4. It uses

two response-revealing (insertion-only) dynamic SSE schemes Σadd
and Σdel. Σadd and Σdel might be different for efficiency or security

purposes, but in the proof, we will assume that they are forward-

secure. Janus also uses a PRF F and an incremental puncturable

encryption scheme PPKE.
The client stores locally a table containing for each keywordw

the initial key share sk0[w] of a PE (WLOG we can assume that this

key share contains the public key). To insert a new entry (w, ind),
the client encrypts it with the PE scheme with the key sk0[w], us-
ing a pseudo-random value F (w, ind) as a tag. He then inserts this

ciphertext as a new entry matchingw in Σadd. To delete the entry

(w, ind), the client computes the tag t = F (w, ind) and (incremen-

tally) punctures sk0[w] on this tag. He then updates the initial key

share of w and pushes the new key element skt to the server by

inserting the entry (w, skt) in Σdel. Finally, to search, the client

runs a search on w for both Σadd and Σdel. The server now has

access to the ciphertexts encrypting the inserted indices and to the

key elements necessary to decrypt them. Note that she will only

be able to decrypt the ciphertexts for which the key has not been

punctured, i.e. the non deleted entries.

After a search query onw , the same encryption key cannot be

used to encrypt new entries matchingw : the server can reuse the

Algorithm 4 Janus: weakly backward-secure SSE.

Setup()

1: (EDBadd,Kadd,σadd) ← Σadd.Setup()
2: (EDBdel,Kdel,σdel) ← Σdel.Setup()
3: Ktaд ,KS ← {0, 1}

λ
, PSK, SC, EDBcache ← empty map

4: return ((EDBadd, EDBdel, EDBcache),
(Kadd,Kdel,Ktaд ,KS), (σadd,σdel,PSK, SC))

Search(KΣ,w,σ ; EDB)

Client:
1: i ← SC[w].
2: if i = ⊥ return ∅
3: Send sk0 = PSK[w] to the server.

4: PSK[w] ← PPKE.KeyGen(1λ), SC[w] ← i + 1.
5: Send tkn← F (KS ,w) to the server.

Client (C) & Server (S):
6: C and S run Σadd.Search(Kadd,w | |i,σadd; EDBadd). The server
gets a list ((ct1, t

add
1
), . . . , (ctn , t

add
n) of ciphertexts and tags.

7: C and S run Σdel.Search(Kdel,w | |i,σdel; EDBdel). The server
gets a list ((sk1, t

del
1
), . . . , (skm , t

del
m)) of key elements.

8: S decrypts the ciphertexts with SK = (sk0, sk1, . . . , skm), and
obtains the list NewInd = ((ind1, t1), . . . , (indℓ , tℓ)).
Server:

9: OldInd ← EDBcache [tkn]
10: Remove from OldInd the indices whose tags are in {tdelj }.

11: Res ← OldInd ∪ NewInd , EDBcache [tkn] ← Res
12: return Res

Update(KΣ, add,w, ind,σ ; EDB)

1: t ← FKtaд (w, ind)
2: sk0 ← PSK[w], i ← SC[w]
3: if sk0 = ⊥ then
4: sk0 ← PPKE.KeyGen(1λ), PSK[w] ← sk0
5: i ← 0, SC[w] ← i
6: end if
7: if op = add then
8: ct ← PPKE.Encrypt(sk0, ind, t)
9: Run Σadd.Update(Kadd, add,w | |i, (ct , t),σadd; EDBadd)
10: else ▷ op = del
11: (sk ′

0
, skt) ← PPKE.IncPuncture(sk0, t)

12: Run Σdel.Update(Kdel, add,w | |i, (skt , t),σdel; EDBdel)
13: PSK[w] ← sk ′

0

14: end if

old key to decrypt even the newly deleted entries since the key

would not have been punctured on the corresponding tags. Janus
avoids this by requiring the client to generate a new key forw after

a search and encrypt new entries ofw using this key. As discussed

earlier, the server can keep the results of previous search queries

and retrieve them the next timew is searched. This does not affect

the security of the scheme since the server has already learnt earlier

search results onw .

Security of Janus. Janus is a forward-private and weakly back-

ward-private SSE scheme. The former comes directly from the

forward security of Σadd and Σdel. Let us consider backward se-

curity. The server has access to the decryption key ofw’s entries

only during the search query forw . Moreover, this key allows her

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1474

to decrypt only the entries that have been added since the last

search for w and have not yet been deleted. Hence, the deleted

indices remain hidden. Note that weak backward security is the

strongest definition we can achieve with Janus as the server can
determine which of the inserted queries were later deleted as well

as the timestamps of these events. Also note that Janus does not
allow re-insertion of document/keyword pairs that were previously

deleted.

The formal security claim is given in Theorem 6.2, and its proof

is postponed to Appendix B.

Theorem 6.2 (Adaptive Security of Janus). If Σadd and Σdel
are twoLFS -adaptively-secure SSE schemes, PPKE is IND-PUN-CPA
secure, and F is a PRF, then Janus is LwBS -adaptively secure, with
LwBS = (L

Srch
wBS ,L

Updt
wBS) defined as

LSrch
wBS (w) = (sp(w), TimeDB(w),DelHist(w))

L
Updt
wBS (op,w, ind) = op.

Note that in this theorem, LFS specifically refers to the leakage

of a forward-secure scheme as defined in Theorem 5.1.

Efficiency. The computational and communication complexity of

Janus can easily be derived from Σadd and Σdel. In particular, it has

the same complexity for insertion (resp. deletion) updates as Σadd
(resp. Σdel). To analyze search queries, let Tadd(n) and Tdel(n) be
the computational complexities of the search protocols of Σadd and

Σdel, respectively, where n is the size of a result set. Then, Janus’
search complexity for a keywordw withaw insertions,dw deletions,

and nw = aw − dw non-deleted matching results, is Tadd(aw) +
Tdel(dw) + O(nw · dw). The last term comes from the fact that a

decryption of the PE scheme has complexity linear in the number

of punctures. When instantiated with Diana or Σoϕoς , Janus thus
has search complexity O(aw + dw + nw · dw) = O(nw · dw).

In terms of communication for search queries, Janus also inherits
from the complexity of Σadd, and Σdel. Let Cadd(n) and Cdel(n)
be the communication complexities of search protocols of Σadd
and Σdel, respectively, for a keyword that was inserted n times.

Then, the communication complexityCJanus(aw ,dw) for a keyword
that was inserted aw times and deleted dw times is Cadd(aw) +
Cdel(dw). Also, the number of roundtrips is the maximum number

of roundtrips between Σadd and Σdel. Hence, when instantiated

either with Σoϕoς or Diana, Janus has single-roundtrip search and

updates protocols. In the case of Σoϕoς , the search communication

complexity is optimal (constant), and for Diana, it is O(log(aw) +
log(dw)).

6.4 Reducing Storage Overhead
In practice, the storage overhead of Janus is quite high: the client

needs to store 3 group elements (at least 256 bits each) for every

keyword, while each ciphertext on the server side consists of the

masked index, two group elements and the tag, and 3 group ele-

ments and a tag for each key share. To reduce the overhead at the

client, we use a trick similar to the one used in Σoϕoς : we pseudo-

randomly generate the encryption scheme’s parameters and key

elements ski from a master key and the number of punctures done

on the secret key. The client does not need to store the public key

as he can directly encrypt the plaintext indices from the scheme’s

parameters (and this will actually be faster). As a result, the client

has to store only the number of deleted entries for eachw , which

he does already if Σdel is instantiated withDiana. This modification

is described in detail in Algorithm 11 (Appendix C).

A similar trick can be used to reduce the storage on the server

side. Indeed, one of the three group elements stored for each entry

is a random blinding element, which can be generated pseudo-

randomly using a PRF applied on the keyword/document pair

(w, ind) to be encrypted. As the blinding element is part of the

ciphertext, and as it is now a (deterministic) function of the pair

(w, ind), the tag is now redundant an can be omitted. This modifi-

cation is also described in Algorithm 11.

6.5 Security of Janus Against Weaker
Adversaries

We showed that Janus protects against persistent adversaries (e.g.,
a malicious server) and guarantees both forward and backward

privacy. In this section, we analyze its resistance against weaker

adversaries. First, we consider a snapshot adversary who is able

to see the encrypted database at one (or more) instant – e.g. in
case of a disk theft or subpoena. Then, we consider the security of

Janus against a late-persistent adversary that obtains control over

the server sometime after the client has outsourced his data and,

possibly executed some queries — e.g. in case of malware.

Janus, as is, does not protect against a snapshot adversary since

the cached results are kept in plaintext on the server side. Beside triv-

ially revealing the cached content, this can also lead to the recovery

of some of the queries. This, in turn, can be used for leakage-abuse

attacks in the manner of file injections attacks [ZKP16] adapted to

using a single (or multiple) snapshot of EDB (and in particular of

EDBcache).
To fix this problem, we propose to encrypt EDBcache using

a key that is not permanently stored at the server and maintain

EDBcache in a history-independent (HI) data structure as follows.
In particular, the content of EDBcache relevant tow is encrypted

using a keyword-specific symmetric keyKw . To this end, wemodify

line 5 of Algorithm 4 to tkn| |Kw ← F (KS ,w) where the client also
sends Kw to the server. Then the server uses Kw to decrypt and re-

encrypt EDBcache as needed, using an IND-CPA-secure secret-key

encryption scheme EKw . Once the Search query is processed, the

server discards Kw ; in particular it must not be stored in EDB.
Unfortunately, encryption alone is not sufficient as the imple-

mentation of EDBcache could leak additional information, such as

the time of insertion/modification of data, or the size of previous,

now discarded, values. To this end, we rely on history-independent
(HI) data structures [NT01] whose goal is to hide exactly this kind of
side-channel information. Note that if Σadd and Σdel are instantiated
with existing forward-secure schemes (SPS [SPS14], Σoϕoς [Bos16],
or Diana), history-independence is not an issue as the snapshot ad-

versary learns at most the update leakage, reduced to the list (opi)
with opi = add if the i-th update was an insertion, and opi = del
otherwise. Though HI data structures come with an additional

overhead, the state-of-the-art constructions are practical [BS13].

The security of the above approach relies on cooperation from

the server who is required to use encryption and HI structures

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1475

Table 2 – Size of the databases used in the evaluation, and
the amount of storage needed for W and EDB

K N W EDB
222 · 103 1.9 · 107 4.6 MB 615 MB

2.68 · 106 1.9 · 108 46 MB 6.3 GB

21.8 · 106 1.9 · 109 365 MB 47 GB

42.9 · 106 3.8 · 109 720 MB 95 GB

for EDBcache and erase Kw from memory once he finishes en/de-

crypting EDBcache . Note that snapshot attacks are essentially at-

tacks against the server, more so than against the client: we are

protecting from the attacker information learned by the server.

Despite the assumptions we have just outlined, it is clear that

storing the cache in encrypted form is a vast improvement over

storing this information in cleartext. It is also a cheap solution:

symmetric encryption is extremely fast on modern processors, es-

pecially in the presence of specialized instructions such as AES-NI.

Encrypting EDBcache would not significantly impact performance,

relative to the decryption of punctured encryption schemes, or

running the two SSE schemes Σadd and Σdel.
Let us now consider Janus against late-persistent adversaries.

In this case, we strive to obtain the following backward privacy:

even if a deleted entry matched a search query processed before the
corruption, it should be infeasible for the adversary to recover the

associated document index. Symmetrically encrypting EDBcache ,
as in the case of the snapshot adversary, is no longer sufficient as the

encryption key Kw will eventually be revealed. Instead, we require

that the server encrypt results with the PE scheme, using the public

key for the newly generated secret key (line 4 in Algorithm 4).

7 PERFORMANCE EVALUATION
We implemented and evaluated some of the schemes presented

in this paper. The PRF has been instantiated with HMAC, and we

chose Blake2b as the underlying hash function. For the GGM range-

constrained PRF F̃ , we used AES in counter mode for the pseudo-

random generator G. The keyed hash function H used in Diana is
the AES block cipher used in Matyas-Meyer-Oseas mode [PGV94].

The code was written in C/C++, with many of the symmetric

cryptography function implemented in assembly, in particular using

AES-NI for the AES-based primitives. The code is OpenSource and

freely accessible [Bos17].

We ran our experiments on a desktop computer with a single In-

tel Core i7 4790K 4.00GHz CPU (with 8 logical cores), 16GB of RAM,

and a 250 GB Samsung 850 EVO SSD dedicated to the experiment.

The key-value store is implemented with RocksDB [Fac].

7.1 Performance of Diana
Our evaluation of Diana uses 4 different, synthetically generated,

data sets, each of different size. A quick summary of the statistics

of the data sets, the size of the resulting encrypted databases, and

the size of the client stored tables W is given in Table 2.

The performance results of keyword searches are presented in

Figure 1, together with the ones of Σoϕoς (taken from [Bos16]). The

0.0001

0.001

0.01

0.1

10 100 1000 10000 100000 1 × 106

S
e
a
r
c
h
t
i
m
e
p
e
r
m
a
t
c
h
i
n
g
e
n
t
r
y
(
m
s
)

Number of matching documents

Diana – N = 1.9e7
Diana – N = 1.9e8
Diana – N = 1.9e9

Diana – N = 3.8e9
Σoϕoς – N = 1.4e7
Σoϕoς – N = 1.4e8

Figure 1 –Diana and Σoϕoς search performance. log-log scale.

timings include only the server’s work, and focus on the core perfor-

mance of the scheme, i.e. we do not time the deserialization of the

queries and serialization of the results, nor the RPC infrastructure.

We observe an important performance discrepancy between the

two smallest and two largest databases: searching is up to 200 times

slower on the larger ones. This is explained by the time difference

when retrieving data from different hierarchies of memory. The SE

version of each of the two smaller datasets fits entirely in RAM and

the operating system is able to put a very large part of it in cache.

This makes the storage accesses very fast, even when SE was not

optimized for locality. However, in general secure SE schemes with

reasonable storage overhead have bad storage locality: the entries

to be accessed need to be randomly scattered in the encrypted

database (see [CT14] for a lower bound on locality). This issue can

be circumvented using specialized caching (cf. [MM17]), but this

breaks forward security strictly speaking – it is unclear what kind

of attacks could arise because of this – and it only reduces the

locality by a constant factor.

It is also interesting to notice that, for small databases (i.e., the
ones held in RAM),Diana is ten times faster than Σoϕoς on datasets

of similar size. This is clearly due to the use of RSA in Σoϕoς ,
while Diana uses (hardware accelerated) AES as its cryptographic
building block. On the other hand, for larger datasets, Σoϕoς would
encounter similar IO bottleneck, and would perform (almost) as

well as Diana on large inputs. Hence, for large datasets IO costs

outweigh the cost of cryptographic primitives, making the latter

“almost free”.

7.2 Performance of Janus
As Janus is a composition of any forward secure scheme and the

adaptedGreen-Miers puncturable encryption scheme, herewe focus

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1476

Table 3 – Performance of the puncturable encryption
scheme used in Janus. Means are taken over 400 iterations.

Encrypt IncPuncture SK0Gen Decrypt (d punctures)

1.699 ms 1.386 ms 1.396 ms (d + 1) × 2.345 ms

on the performance of this scheme once tweaked to reduce the

storage overhead.

For the bilinear maps, we used a Type-3 pairing (cf. [GPS06]) on
Barreto-Naehrig curves [BN06]. We modified Miers’ implementa-

tion of the Green-Miers PE scheme of libforwardsec [Mie], which

is itself based on the RELIC pairing library [AG], to fit our usage.

We end up having 74-byte ciphertexts (for 8-byte indices), and

200-byte key shares. The computational performance of the scheme

is given in Table 3. SK0Gen is the procedure used to generate the

first key share sk0 of the punctured secret key from the number

of punctures. Note that these are single-core timings. While en-

cryption, puncture and first key share generation are fast enough

to yield a reasonably practical scheme, decryption does not scale

well as the number of punctures grows. In particular, Janus would
not support more than a few hundreds deletions per keyword in

practice, for both computational and storage overhead reasons.

Designing puncturable encryption with smaller keys or better

computational efficiency is an open problem, and Janus would

immediately benefit from any improvement in this area.

ACKNOWLEDGMENTS
The authors thank Olivier Sanders for interesting discussions on

how to construct efficient multiple-puncturable PRFs from standard

assumptions, Britta Halle for updates on puncturable encryption,

Ian Miers for making his puncturable encryption code public, and

anonymous reviewers for helpful comments. The second author

was supported by EPSRC Grant EP/L018543/1.

REFERENCES
[AG] Aranha, D.F. and Gouvêa, C.P.L. RELIC is an Efficient LIbrary for Cryp-

tography. https://github.com/relic-toolkit/relic.

[BB04] Boneh, D. and Boyen, X. Efficient selective-ID secure identity based

encryption without random oracles. In: C. Cachin and J. Camenisch (eds.),

EUROCRYPT 2004, LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg
(May 2004).

[BGI14] Boyle, E., Goldwasser, S., and Ivan, I. Functional signatures and pseudo-

random functions. In: H. Krawczyk (ed.), PKC 2014, LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (Mar. 2014).

[BL96] Boneh, D. and Lipton, R.J. A revocable backup system. In: Proceedings of

the 6th USENIX Security Symposium, San Jose, CA, USA, July 22-25, 1996.

USENIX Association (1996). URL https://www.usenix.org/conference/

6th-usenix-security-symposium/revocable-backup-system.

[BN06] Barreto, P.S.L.M. and Naehrig, M. Pairing-friendly elliptic curves of prime

order. In: B. Preneel and S. Tavares (eds.), SAC 2005, LNCS, vol. 3897, pp.
319–331. Springer, Heidelberg (Aug. 2006).

[Bos16] Bost, R. Σoϕoς : Forward secure searchable encryption. In: E.R. Weippl,

S. Katzenbeisser, C. Kruegel, A.C. Myers, and S. Halevi (eds.), ACM CCS

16, pp. 1143–1154. ACM Press (Oct. 2016).

[Bos17] Bost, R. Implementation of Σoϕoς , Diana and Janus (2017). URL https:

//github.com/OpenSSE/opensse-schemes.

[BS13] Bajaj, S. and Sion, R. HIFS: history independence for file systems. In: A.R.

Sadeghi, V.D. Gligor, and M. Yung (eds.), ACM CCS 13, pp. 1285–1296.

ACM Press (Nov. 2013).

[BW13] Boneh, D. and Waters, B. Constrained pseudorandom functions and their

applications. In: K. Sako and P. Sarkar (eds.), ASIACRYPT 2013, Part II,

LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (Dec. 2013).
[CC17] Canetti, R. and Chen, Y. Constraint-hiding constrained prfs for nc1 from

lwe. In: EUROCRYPT 2017, LNCS. Springer, Heidelberg (2017).

[CGKO06] Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable sym-

metric encryption: improved definitions and efficient constructions. In:

A. Juels, R.N. Wright, and S. Vimercati (eds.), ACM CCS 06, pp. 79–88.

ACM Press (Oct. / Nov. 2006).

[CGPR15] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks

against searchable encryption. In: I. Ray, N. Li, and C. Kruegel: (eds.),

ACM CCS 15, pp. 668–679. ACM Press (Oct. 2015).

[CJJ
+
13] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner,

M. Highly-scalable searchable symmetric encryption with support for

Boolean queries. In: R. Canetti and J.A. Garay (eds.), CRYPTO 2013, Part I,

LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (Aug. 2013).
[CJJ

+
14] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and

Steiner, M. Dynamic searchable encryption in very-large databases: Data

structures and implementation. In: NDSS 2014. The Internet Society (Feb.

2014).

[CK10] Chase, M. and Kamara, S. Structured encryption and controlled disclosure.

In: M. Abe (ed.), ASIACRYPT 2010, LNCS, vol. 6477, pp. 577–594. Springer,
Heidelberg (Dec. 2010).

[CT14] Cash, D. and Tessaro, S. The locality of searchable symmetric encryption.

In: P.Q. Nguyen and E. Oswald (eds.), EUROCRYPT 2014, LNCS, vol. 8441,
pp. 351–368. Springer, Heidelberg (May 2014).

[Fac] Facebook, Inc. RocksDB: A Persistent Key-Value Store for Flash and RAM

Storage. http://rocksdb.org.

[GGM84] Goldreich, O., Goldwasser, S., and Micali, S. How to construct random

functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer

Society Press (Oct. 1984).

[GM15] Green, M.D. and Miers, I. Forward secure asynchronous messaging from

puncturable encryption. In: 2015 IEEE Symposium on Security and Privacy,

pp. 305–320. IEEE Computer Society Press (May 2015).

[GMP16] Garg, S., Mohassel, P., and Papamanthou, C. TWORAM: Efficient oblivi-

ous RAM in two rounds with applications to searchable encryption. In:

M. Robshaw and J. Katz (eds.), CRYPTO 2016, Part III, LNCS, vol. 9816, pp.
563–592. Springer, Heidelberg (Aug. 2016).

[GO96] Goldreich, O. and Ostrovsky, R. Software protection and simulation on

oblivious RAMs. Journal of the ACM (JACM), vol. 43(3):(1996), pp. 431–

473.

[GPS06] Galbraith, S., Paterson, K., and Smart, N. Pairings for cryptographers.

Cryptology ePrint Archive, Report 2006/165 (2006). http://eprint.iacr.org/

2006/165.

[HKW15] Hohenberger, S., Koppula, V., and Waters, B. Adaptively secure punc-

turable pseudorandom functions in the standard model. In: T. Iwata and

J.H. Cheon (eds.), ASIACRYPT 2015, Part I, LNCS, vol. 9452, pp. 79–102.
Springer, Heidelberg (Nov. / Dec. 2015).

[KM17] Kamara, S. and Moataz, T. Boolean searchable symmetric encryption with

worst-case sub-linear. In: EUROCRYPT 2017, LNCS. Springer, Heidelberg

(2017).

[KP13] Kamara, S. and Papamanthou, C. Parallel and dynamic searchable sym-

metric encryption. In: A.R. Sadeghi (ed.), FC 2013, LNCS, vol. 7859, pp.
258–274. Springer, Heidelberg (Apr. 2013).

[KPR12] Kamara, S., Papamanthou, C., and Roeder, T. Dynamic searchable sym-

metric encryption. In: T. Yu, G. Danezis, and V.D. Gligor (eds.), ACM CCS

12, pp. 965–976. ACM Press (Oct. 2012).

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., and Zacharias, T. Dele-

gatable pseudorandom functions and applications. In: A.R. Sadeghi, V.D.

Gligor, and M. Yung (eds.), ACM CCS 13, pp. 669–684. ACM Press (Nov.

2013).

[Mie] Miers, I. Libforwardsec. Forward secure encryption for asynchronous

messaging. https://github.com/imichaelmiers/libforwardsec.

[MKNK15] Meng, X., Kamara, S., Nissim, K., and Kollios, G. GRECS: Graph encryption

for approximate shortest distance queries. In: I. Ray, N. Li, and C. Kruegel:

(eds.), ACM CCS 15, pp. 504–517. ACM Press (Oct. 2015).

[MM17] Miers, I. andMohassel, P. IO-DSSE: Scaling dynamic searchable encryption

to millions of indexes by improving locality. In: NDSS 2017. The Internet

Society (2017).

[Nav15] Naveed, M. The fallacy of composition of oblivious RAM and searchable

encryption. Cryptology ePrint Archive, Report 2015/668 (2015). http:

//eprint.iacr.org/2015/668.

[NT01] Naor, M. and Teague, V. Anti-presistence: History independent data

structures. In: 33rd ACM STOC, pp. 492–501. ACM Press (Jul. 2001).

[OSW07] Ostrovsky, R., Sahai, A., and Waters, B. Attribute-based encryption with

non-monotonic access structures. In: P. Ning, S.D.C. di Vimercati, and P.F.

Syverson (eds.), ACM CCS 07, pp. 195–203. ACM Press (Oct. 2007).

[PBP16] Poddar, R., Boelter, T., and Popa, R.A. Arx: A strongly encrypted database

system. Cryptology ePrint Archive, Report 2016/591 (2016). http://eprint.

iacr.org/2016/591.

[PGV94] Preneel, B., Govaerts, R., and Vandewalle, J. Hash functions based on

block ciphers: A synthetic approach. In: D.R. Stinson (ed.), CRYPTO’93,

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1477

https://github.com/relic-toolkit/relic
https://www.usenix.org/conference/6th-usenix-security-symposium/revocable-backup-system
https://www.usenix.org/conference/6th-usenix-security-symposium/revocable-backup-system
https://github.com/OpenSSE/opensse-schemes
https://github.com/OpenSSE/opensse-schemes
http://rocksdb.org
http://eprint.iacr.org/2006/165
http://eprint.iacr.org/2006/165
https://github.com/imichaelmiers/libforwardsec
http://eprint.iacr.org/2015/668
http://eprint.iacr.org/2015/668
http://eprint.iacr.org/2016/591
http://eprint.iacr.org/2016/591

LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (Aug. 1994).
[RAC16] Roche, D.S., Aviv, A.J., and Choi, S.G. A practical oblivious map data

structure with secure deletion and history independence. In: 2016 IEEE

Symposium on Security and Privacy, pp. 178–197. IEEE Computer Society

Press (May 2016).

[RCB12] Reardon, J., Capkun, S., and Basin, D. Data node encrypted file system:

Efficient secure deletion for flash memory. In: Presented as part of the

21st USENIX Security Symposium (USENIX Security 12), pp. 333–348.

USENIX, Bellevue, WA (2012). URL https://www.usenix.org/conference/

usenixsecurity12/technical-sessions/presentation/reardon.

[SPS14] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable

encryption with small leakage. In: NDSS 2014. The Internet Society (Feb.

2014).

[SWP00] Song, D.X., Wagner, D., and Perrig, A. Practical techniques for searches

on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp.

44–55. IEEE Computer Society Press (May 2000).

[ZKP16] Zhang, Y., Katz, J., and Papamanthou, C. All your queries are belong

to us: The power of file-injection attacks on searchable encryption. In:

25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,

August 10-12, 2016., pp. 707–720 (2016).

A PROOF OF THEOREM 5.1
Theorem 5.1 (Adaptive security of FS-RCPRF). Let F be a

pseudo-random function, F̃ a constrained pseudo-random function
with respect to the circuit family C = {Cc |Cc (x) = 1 ⇔ 0 ≤ x ≤
c}, and H1 and H2 two hash functions modeled as random oracles
outputting respectively µ and λ bits. We defineLFS = (LSrch

FS ,L
Updt
FS)

as:

LSrch
FS (w) = (sp(w),UpHist(w))

L
Updt
FS (add,w, ind) = ⊥.

FS-RCPRF is LFS -adaptively-secure.

Proof. The proof proceeds using a hybrid argument, by game

hopping, starting from the real-world game SSEReal
FS−RCPRF
A (λ).

GameG0. This game is exactly the real world SSE security game

SSEReal.

P[SSERealFS−RCPRFA (λ) = 1] = P[G0 = 1]

GameG1. In this game, we replace the calls to the PRF F by pick-

ing new random output every time a previously unseen keyword

is used. These strings are stored in a table to be reused every time

F is again queried onw . The adversarial distinguishing advantage

between G0 and G1 is exactly the distinguishing advantage for the

PRF F : we can build a reduction B1 making at mostW calls on F
such that

P[G0 = 1] − P[G1 = 1] ≤ AdvprfF ,B1

(λ).

GameG2. InG2, the update tokensUT are generated as random

strings, instead of usingH1. These strings will then be programmed

in the random oracle to ensure that H1(Kw ,Tc (w)) = UTc (w).
Algorithm 5 formally describes G2, together with the interme-

diate game G̃2, by including the additional boxed lines. The calls

to the random oracle H1 are explicited, and the game keeps track

of these using the table H1. It allows us to program the RO during

the Search algorithm (cf. line 6). Note that, for the table Key, if an
entry is accessed for the first time, a new random value is picked

and placed in the table.

Also G2 and G̃2 make some bookkeeping of the tokens Tc . This
bookkeeping allows to exactly program H1 when it is queried by

the adversary on a valid (K ′w ,T
c
w) couple, at line 5.

Hence, H1’s behavior in G̃2 and G1 are perfectly indistinguish-

able, and:

P[G̃2 = 1] = P[G1 = 1].

To find the distinguishing advantage between G̃2 andG2, we use

the identical-until-bad approach: G̃2 and G2 are identical until the

flag bad is set to true:

P[G̃2 = 1] − P[G2 = 1] ≤ P[bad is set to true in G̃2].

We are going to show that when the adversary is able to set bad
at true, she will break the CPRF security game, by constructing a

reduction B2 from a distinguisherA insertingN keyword/document

pairs in the database. B2 first guesses the pair (w
∗, c∗) for which bad

will be set to true for the first time, by querying H1 on (K
′
w∗ ,Tc∗)

(i.e. by pre-computing UT[w∗, c∗]), among the N possible pairs. For

all keyword w ∈W \ {w∗}, B2 behaves exactly as game G̃2. Note

that ifw∗ has been correctly guessed, then it means that B2 behaves
exactly as gameG2 for these keywords. Forw

∗
, B2 will call its CPRF

oracles to F̃ to generate the tokens as follows:

Ti (w
∗) ← Eval(Kw , i) for 0 ≤ i < c∗,

Ti (w
∗) ← Challenдe(Kw , i) for i ≥ c∗,

ST (w∗) ← Constrain(Cnw∗).

By closely looking at G2’s code, we see that bad is set to true only
if H1 is queried on (K ′w∗ ,Tc) for a value c that has never been

queried to Eval , and for which there is no Cc ′ with c ′ ≥ c on

which Constrain has been queried. It implies that all the queries

to Challenдe are valid, and that the value Tc∗ raising bad to true
is indistinguishable from random by definition of CPRF security.

Also, ifAmakes q queries to the random oracle (apart from the ones

already needed by the execution of the game), as Tc∗ is uniformly

random, the probabilityH1 was called on (K
′
w∗ ,Tc) is q ·2

−λ
. Hence,

P[bad is set to true in by querying (K ′w∗ ,Tc∗)] ≤

Advcprf
F̃ ,B2

(λ) +
q

2
λ
,

and, as guessing the pair (w∗, c∗) implies a N loss in the advantage

of the reduction from distinguishing G2 and G̃2 to the game of

setting bad to true,

P[G1 = 1] − P[G2 = 1] = P[G̃2 = 1] − P[G2 = 1]

≤ N · Advcprf
F̃ ,B2

(λ) +
Nq

2
λ
.

Game G3. In game G3, we do exactly as in G2, but for H2:

P[G2 = 1] − P[G3 = 1] ≤ N · Advcprf
F̃ ,B2

(λ) +
Nq

2
λ
.

GameG4. GameG4, (cf.Algorithm 6) keeps track of the randomly

generated stringUT and e in dedicated tables: each time an update

is performed, new randomness is appended to the tables and then

returned to the server. Then, in Search, the random oracles are

programmed as inG3, so to have consistent results. To do so,G4 uses

the information fromUpHist(w) to knowwhich update corresponds

to which keyword-document pair.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1478

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/reardon
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/reardon

Algorithm 5 Games G2 and G̃2 Boxed code is included in G̃2 only.

Setup()

1: bad← false
2: W, EDB← empty map

3: return (EDB,K ,W)
Search(w,σ ; EDB)

Client:
1: Kw | |K

′
w ← Key[w]

2: (T0, . . . ,Tc , c) ←W[w]
3: if (T0, . . . ,Tc , c) = ⊥ then return ∅
4: [(u0, ind0), . . . , (uc , indc)] ← UpHist(w)

▷ In the order of updates
5: for i = 0 to c do
6: H1(K

′
w ,Ti) ← UT[w, i]

7: end for
8: ST ← F̃ .Constrain(Kw ,Cc)
9: Send (K ′w , ST , c) to the server.

Server:
10: for i = c to 0 do
11: Ti ← F̃ (ST , i)
12: UTi ← H1(K

′
w ,Ti)

13: e ← EDB[UTi]
14: ind← e ⊕ H2(K

′
w , STi)

15: Output each ind
16: end for
Update(add,w, ind,σ ; EDB)

Client:
1: Kw | |K

′
w ← Key[w]

2: (T0, . . . ,Tc , c) ←W[w]
3: if c = ⊥ then c ← −1
4: T c+1w ← F̃ (Kw , c + 1)
5: W[w] ← (T0, . . . ,Tc ,Tc+1, c + 1)
6: UTc+1 ← {0, 1}

λ

7: if H1(K ′w ,Tc+1) , ⊥ then
8: bad← true,UTc+1 ← H1(K

′
w ,Tc+1)

9: end if
10: UT[w, c + 1] ← UTc+1
11: e ← ind ⊕ H2(K

′
w ,T

c
w)

12: Send (UTc+1, e) to the server.

Server:
13: EDB[UTc+1] ← e

H1(k, t)

1: v ← H1(k, t)
2: if v = ⊥ then
3: v

$

← {0, 1}λ

4: if ∃w, c s.t k = Key[w] and t = Tc ∈W[w] then
5: bad← true, v ← UT[w, c]

6: end if
7: H1(k, st) ← v
8: end if
9: return v

We got rid of the server’s part is the protocols as it is unchanged:

these are single roundtrip protocols and the removed lines do not

Algorithm 6 Game G4.

Setup()
1: u ← 0

2: W, EDB← empty map

3: return (EDB, ∅,W)
Search(w,σ ; EDB)

Client:
1: Kw | |K

′
w ← Key[w]

2: c ←W[w]
3: [(u0, ind0), . . . , (uc , indc)] ← UpHist(w)
4: if c = ⊥ then return ∅
5: for i = 0 to c do
6: Program H1 s.t. H1(Kw , F̃ (Kw , i)) ← UT[ui]

7: Program H2 s.t. H2(Kw , F̃ (Kw , i)) ← e[ui] ⊕ indi
8: end for
9: ST ← F̃ .Constrain(Kw ,Cc)
10: Send (K ′w , ST , c) to the server.

Update(add,w, ind,σ ; EDB)

Client:
1: UT[u]

$

← {0, 1}µ

2: e[u]
$

← {0, 1}λ

3: Send (UT[u], e[u]) to the server.

4: u ← u + 1

influence the client’s transcript. Finally, we have

P[G3 = 1] − P[G4 = 1] = 0.

The Simulator. The simulator can directly be derived from G4’s

code. We just have to replace direct uses of the searched keyword

w by min sp(w).G4 and SSEIdealS,LΣ
will then be identical games,

the only difference being that, instead of the keywordw , S uses the

counterw = min sp(w) uniquely mapped fromw using the leakage

function.

P[G4 = 1] − P[SSEIdealFS−RCPRFA,S,LFS
(λ) = 1] = 0.

Conclusion. By combining all the contributions from all the

games, there exists 2 adversaries B1 and B2 such that

P[SSERealFS−RCPRFA (λ) = 1] − P[SSEIdealFS−RCPRFA,S,LFS
(λ) = 1]

≤ AdvprfF ,B1

(λ) + 2N · Advcprf
F̃ ,B2

(λ) +
2Nq

2
λ
.

□

B PROOF OF Janus (THEOREM 6.2)
Theorem 6.2. If Σadd and Σdel are two LFS -adaptively-secure

SSE schemes, PPKE is IND-PUN-CPA secure, and F is a PRF, then
Janus is LwBS -adaptively secure, with LwBS = (L

Srch
wBS ,L

Updt
wBS)

defined as

LSrch
wBS (w) = (sp(w), TimeDB(w),DelHist(w))

L
Updt
wBS (op,w, ind) = op.

.

Proof. Again, we proceed by game hops.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1479

GameG0. This game is the real world SSE security game SSEReal.

P[SSEReal
Janus
A (λ) = 1] = P[G0 = 1]

Game G1. In this game, we replace the calls to the PRF F with

key KS (resp. Ktaд) by picking new random outputs every time a

previously unseen keyword (resp. document-keyword pair) is used.

These strings are stored in a table to be reused every time F is again

queried on w (resp. (w, ind)). Replacing F with key KS this way

induces a distinguishing advantage equal to the PRF distinguishing

advantage for an adversary makingW calls to F . Doing the same

for F with key Ktaд induces a distinguishing advantage equal to

the PRF distinguishing advantage for an adversary making N calls

to F . Hence, the adversarial distinguishing advantage between G0

andG1 is exactly twice the distinguishing advantage for the PRF F :
we can build a reduction B1 making at most N calls on F such that

P[G0 = 1] − P[G1 = 1] ≤ 2 · AdvprfF ,B1

(λ).

GameG2. This game replaces real calls to Σadd and Σdel by calls

to the simulators. Yet, to do so, the game needs to keep track of

all the updates as they come: it can no longer rely on the server

to store them. So G2 makes some bookkeeping during the updates,

and postpones all encryptions and key punctures to the subsequent

Search query. We are able to do this only because both Σadd and

Σdel are forward-secure: the updates leak no information on their

content.

G2 is precisely described in Algorithm 7. One very important

thing is the way the lists Ladd and Ldel are created and used. Ladd
contains the encryption of the result indices for the search query,

with their associated tag, and the insertion timestamp u. Similarly

Ldel is the list of key elements, associated tags and deletion time-

stamp. As such, Ladd (resp. Ldel) corresponds to the update history

on w for the scheme Σadd (resp. Σdel), and is used as such by the

simulator Sadd (resp. Sdel).
From this, we can easily bound the distinguishing advantage

between G1 and G2. There exist two polynomial type adversaries

Badd and Bdel against Σadd and Σdel respectively, making at most

N insertions, and two associated simulators Sadd and Sdel such that

P[G1 = 1] − P[G2 = 1] ≤ Advsse,LFSΣadd,Badd,Sadd
(λ)+Advsse,LFSΣdel,Bdel,Sdel

(λ).

GameG3. GameG3 replaces the indices of the deleted documents

by 0 when encrypting with the puncturable encryption scheme.

Because we do this only for ciphertexts with punctured tags, the

IND-PUN-CPA security of PPKE tells us thatG3 is indistinguishable

from G4. There exist a reduction B3 such that

P[G2 = 1] − P[G3 = 1] ≤ Advpun−cpaPPKE,B3

(λ).

GameG4. GameG4 (cf. Algorithm 9) explicitly uses the Updates
table to compute the leakage information TimeDB and DelHist.
Then, it uses this information to construct the lists Ladd and Ldel
that will be passed to the simulator. Also, note that the tags, pre-

vious generated and stored from the document-keyword pair, are

now generated on the fly, and not stored anymore. We can do that

because we supposed that every document index was added a most

once and deleted at most once. Tags cannot repeat and do not have

to be stored to ensure consistency.

Algorithm 7 Game G2.

Setup()

1: EDBadd ← Sadd.Setup(), EDBdel ← Sdel.Setup()
2: Tags, Tokens, Updates← empty map

3: u ← 0, s ← 0

4: SC, EDBcache ← empty map

5: return ((EDBadd, EDBdel, EDBcache),
(Tags, Tokens), (u, Updates, SC))

Search(K ,w,σ ; EDB)

Client:
1: i ← SC[w].
2: if i = ⊥
3: return ∅
4: sk0 ← PPKE.KeyGen(1λ)
5: Ladd, Ldel initialized to empty lists.

6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj]
8: if op = add then
9: ctj ← PPKE.Encrypt(sk0, indj , tj)
10: Append (uj , (ctj , tj)) to Ladd
11: else
12: (sk0, skj) ← PPKE.IncPuncture(sk0, tj)
13: Append (uj , (skj , tj)) to Ldel
14: end if
15: end for
16: Send sk0 to the server.

17: SC[w] ← i + 1.
18: Send tkn← Tokens[w] to the server.

Client & Server :
19: Run the simulator Sadd.Search(s, Ladd). The server gets a list
((ct1, t

add
1
), . . . , (ctn , t

add
n) of ciphertexts and tags.

20: Run the simulator Sdel.Search(s, Ldel). The server gets a list
((sk1, t

del
1
), . . . , (skm , t

del
m)) of key elements.

21: S decrypts the ciphertexts with SK = (sk0, sk1, . . . , skm), and
obtains the list NewInd = ((ind1, t1), . . . , (indℓ , tℓ)).
Server:

22: OldInd ← EDBcache [tkn]
23: Remove from OldInd the indices whose tags are in {tdelj }.

24: Res ← OldInd ∪ NewInd , EDBcache [tkn] ← Res
25: return Res

Update(K , op,w, ind,σ ; EDB)

1: Append (u, op, ind) to Updates[w]
2: Run Sop.Update(⊥)

G4 is pure rewriting of G3, and

P[G3 = 1] − P[G4 = 1] = 0.

Simulator. The last thing remaining to build a simulator for Janus
fromG4 is to replace the explicit use ofw to generate the token tkn.
This can trivially be done using the search pattern sp(w): we replace
w by min sp(w). Also, S directly uses the leakage TimeDB(w) and
DelHist(w) given as input of Search to generate Ladd and Ldel, and
thus no longer needs to keep track of the updates, as in G4 (the

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1480

Algorithm 8 Game G3. Only Search is modified from G2

Search(K ,w,σ ; EDB)

Proceed as in G2 until line 5

6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj]
8: if op = add then
9: if ∃u ′ s.t. (u ′, del, indj) ∈ Updates[w] then ▷ This
entry has been deleted.

10: ctj ← PPKE.Encrypt(sk0, 0, tj)
11: else
12: ctj ← PPKE.Encrypt(sk0, indj , tj)
13: end if
14: Append (uj , (ctj , tj)) to Ladd
15: else
16: (sk0, skj) ← PPKE.IncPuncture(sk0, tj)
17: Append (uj , (skj , tj)) to Ldel
18: end if
19: end for

Proceed as in G2 from line 16

Algorithm 9 Game G4. Only Search is modified from G3

Search(K ,w,σ ; EDB)

Proceed as in G3 until line 0

6: TimeDB, DelHist initialized to empty lists.

7: for all (uj , add, indj) ∈ Updates[w] do
8: if ∃u ′ s.t. (u ′, del, indj) ∈ Updates[w] then ▷ This entry
has been deleted.

9: Append (uj ,u
′) to DelHist

10: else
11: Append (uj , indj) to TimeDB
12: end if
13: end for
14: for all (uaddj ,u

del
j) ∈ DelHist sorted by increasing udelj do

15: tj ← {0, 1}
λ

16: ctj ← PPKE.Encrypt(sk0, 0, tj)
17: Append (uaddj , (ctj , tj)) to Ladd
18: (sk0, skj) ← PPKE.IncPuncture(sk0, tj)
19: Append (udelj , (skj , tj)) to Ldel
20: end for
21: for all (uj , indj) ∈ TimeDB do
22: tj ← {0, 1}

λ

23: ctj ← PPKE.Encrypt(sk0, indj , tj)
24: Append (uj , (ctj , tj)) to Ladd
25: end for

Proceed as in G3 from line 19

leakage function LwBS does that for him). Finally,

P[G4 = 1] − P[SSEIdeal
Janus
A,S,LwBS

(λ) = 1] = 0.

Conclusion. By combining all the contributions from all the

games, there exists 4 adversaries B1, Badd, Bdel, and B3 such that

P[SSEReal
Janus
A (λ) =1] − P[SSEIdealJanusA,S,LFS

(λ) = 1]

≤ AdvprfF ,B1

(λ) + Advsse,LFSΣadd,Badd,Sadd
(λ)

+ Advsse,LFSΣdel,Bdel,Sdel
(λ) + Advpun−cpaPPKE,B3

(λ).

□

C FULL DESCRIPTION OF THE
GREEN-MIERS ENCRYPTION SCHEME

Algorithm 10 gives the complete description of the Green-Miers

puncturable encryption scheme. We refer the reader to [GM15] for

a complete explanation and proof of security of the scheme.

Algorithm 10 The Green-Miers puncturable encryption scheme,

for message ofm bits

KeyGen(1λ)

1: Choose a group G of prime order p and generator д, and the

hash functions H : {0, 1}∗ → Zp , H
′
: GT → {0, 1}

m
.

2: α , β,γ , r
$

← Zp . д1 ← дα , д2 ← дβ .

3: Define q(x) = β + γ · x and V (x) = дq(x).
4: Let t0 be a distinguished tag, not to be used.

5: return PK = (д,д1,д2,дq(1)),
SK0 = [sk

(1)

0
= дα+r

2
, sk
(2)

0
= V (H (t0))

r , sk
(3)

0
= дr , t0].

Encrypt(PK ,M, t) (M ∈ {0, 1}m , t , t0)

1: s
$

← Zp
2: return
(ct (1) = M ⊕ H ′ (e(д1,д2)

s) , ct (2) = дs , ct (3) = V (H (t))s)

Puncture(SKi , t) (t , t0)

1: Parse SKi as [sk0, sk1, . . . , ski], and sk0 as
(sk
(1)

0
, sk
(2)

0
, sk
(3)

0
, t0)

2: λ, r0, r1
$

← Zp

3: Compute sk ′
0
← (sk

(1)

0
· дr0−λ

′

2
, sk
(2)

0
·V (H (t0))

r0 , sk
(3)

0
· дr0 , t0)

4: Compute ski+1 ← (·д
λ′+r1
2
,V (H (t))r1 ,дr1 , t)

5: return [sk ′
0
, sk1, . . . , ski , ski+1]

Decrypt(SKi ,CT , t)

1: Parse CT as (ct (1), ct (2), ct (3)), SKi as [sk0, sk1, . . . , ski].
2: For j = 0, . . . , i , parse skj as (sk

(1)

j , sk
(2)

j , sk
(3)

j , tj)

3: Compute ωj ,ω
′
j s.t. ω

′
j · q(H (tj)) + ωj · q(H (t)) = q(0) = β

4: Z j ←
e(sk (1)j ,ct (2))

e
(
sk (3)j ,(ct (3))ωj

)
·e
(
sk (2)j ,ct (2)

)ω′j
5: return ct (1) ⊕ H ′

(∏i
j=0 Z j

)
Also, Algorithm 11 presents the modifications we brought in or-

der to be able to pseudo-randomly generate all the parameters and

exponents used in the algorithms. The function ParamGen(KGM
w)

re-generates all the parameters of the scheme from themaster secret

key KGM
w . IncPuncture(KGM

w , i, t) generates the key share corre-

sponding to the i-th puncture, on tag t . Finally, SK0Gen(KGM
w , i)

computes the first key share sk0 after i punctures. Note thatDecrypt
remains unchanged.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1481

Algorithm 11 uses the PRF Fp : {0, 1}∗ → Zp with some prefix to

ensure domain separation. This prefix is prepended to the function’s

input.

Algorithm 11 Our adaptation of Green-Miers scheme for pseudo-

random generation of parameters and randomness from a master

secret key KGM
w . We suppose that the group G and the functions H

and H ′ are picked externally. Fp : {0, 1}∗ → Zp is a PRF.

ParamGen(KGM
w)

1: α ← Fp (K
GM
w , alpha), β ← Fp (K

GM
w , beta),γ ←

Fp (K
GM
w , gamma), r ← Fp (K

GM
w , r0| |0).

2: д1 ← дα , д2 ← дβ .
3: return (α , β,γ , r ,д1,д2).

Encrypt(KGM
w ,M, t) (M ∈ {0, 1}m , t , t0)

1: (α , β,γ , r ,д1,д2) ← ParamGen(KGM
w).

2: s
$

← F (KGM
w , s| |w | |ind)

3: f ← дs , h ← H (t)
4: return(

ct (1) = M ⊕ H ′
(
e(д1, f

β)
)
, ct (2) = f , ct (3) = f β+h ·γ

)
IncPuncture(KGM

w , i, t)

1: (α , β,γ , r ,д1,д2) ← ParamGen(KGM
w).

2: h ← H (t)
3: r1 ← Fp (K

GM
w , r1| |i)

4: ℓi ← Fp (K
GM
w , l| |i), ℓi−1 ← Fp (K

GM
w , l| |(i − 1))

5: f ← дr1

6: return
(
дβ ·(ℓi−ℓi−1+r1), f β+h ·γ , f , t

)
SK0Gen(KGM

w , i)

1: (α , β,γ , r ,д1,д2) ← ParamGen(KGM
w).

2: h0 ← H (t0)
3: if i = 0 then
4: f ← дr

5: return
(
дβ ·(r+α), f β+h0 ·γ , f

)
6: else
7: r0 ← Fp (K

GM
w , r0| |i)

8: ℓi ← Fp (K
GM
w , l| |i)

9: f ← дr0

10: return
(
дβ ·(r0−ℓi), f β+h0 ·γ , f

)
11: end if

D SSE SECURITY GAMES
In this appendix, we recall the security games SSEReal and SSEIdeal

used to define the security of SSE schemes. The games are formally

described in Algorithm 12

Algorithm 12 SSEReal and SSEIdeal security games. Boxes high-

light the differences in the games.

SSEreal
Σ
A(λ,q)

1: DB← A()

2: (EDB,σ) ← Setup(DB)
3: Transcript← (DB, EDB)
4: for k = 1 to q do
5: Qk = (typek , paramk) ← A(Transcript)
6: if typek = Update then
7: Rk ← Update(σ , paramk ; EDB)

8: else
9: Rk ← Search(σ , paramk ; EDB)

10: end if
11: Append (Qk ,Rk) to Transcript
12: end for
13: b ← A(Transcript)
14: return b

SSEidealA,S,L(λ,q)

1: DB← A()

2: EDB← S(LStp(DB))
3: Transcript← (DB, EDB)
4: for k = 1 to q do
5: Qk = (typek , paramk) ← A(Transcript)
6: if typek = Update then

7: Rk ← S(LUpdt(paramk))

8: else
9: Rk ← S(LSrch(paramk))

10: end if
11: Append (Qk ,Rk) to Transcript
12: end for
13: b ← A(Transcript)
14: return b

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1482

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Constrained Pseudorandom Functions
	3.2 Bilinear Maps
	3.3 Symmetric Searchable Encryption
	3.4 Leakage Functions

	4 Forward and Backward Privacy
	4.1 Forward Privacy
	4.2 Backward Privacy
	4.3 A Generic Two-Roundtrip Backward-Private Scheme
	4.4 Fides: A Baseline Forward and Backward Private SSE Scheme

	5 Diana: Forward-Secure SSE with Very Low Overhead
	5.1 FS-RCPRF: Forward-Secure SSE from Range Constrained PRFs
	5.2 Diana, a GGM instantiation of FS-RCPRF
	5.3 Dianadel: Backward-Secure SSE from Range-Constrained and Puncturable PRFs

	6 Janus: Weak Backward Security from Puncturable Encryption
	6.1 Puncturable Encryption
	6.2 Incremental Puncture
	6.3 The Janus Construction
	6.4 Reducing Storage Overhead
	6.5 Security of Janus Against Weaker Adversaries

	7 Performance Evaluation
	7.1 Performance of Diana
	7.2 Performance of Janus

	References
	A Proof of Theorem 5.1
	B Proof of Janus (Theorem 6.2)
	C Full Description of the Green-Miers Encryption Scheme
	D SSE Security Games

