
Forward Secure Dynamic Searchable Symmetric Encryption
with E�icient Updates

Kee Sung Kim

National Security Research Institute

keesung2137@nsr.re.kr

Minkyu Kim

National Security Research Institute

mkkim@nsr.re.kr

Dongsoo Lee

National Security Research Institute

letrhee@nsr.re.kr

Je Hong Park

National Security Research Institute

jhpark@nsr.re.kr

Woo-Hwan Kim

National Security Research Institute

whkim5@nsr.re.kr

ABSTRACT
�e recently proposed �le-injection type a�acks are highlighting

the importance of forward security in dynamic searchable symmet-

ric encryption (DSSE). Forward security enables to thwart those

a�acks by hiding the information about the newly added �les match-

ing a previous search query. However, there are still only a few

DSSE schemes that provide forward security, and they have fac-

tors that hinder e�ciency. In particular, all of these schemes do

not support actual data deletion, which increments both storage

space and computational complexity. In this paper, we design and

implement a forward secure DSSE scheme with optimal search and

update complexity, for both computation and communication point

of view. As a starting point, we propose a new, simple, theoreti-

cal data structure, called dual dictionary that can take advantage

of both the inverted and the forward indexes at the same time.

�is data structure allows to delete data explicitly and in real time,

which greatly improves e�ciency compared to previous works. In

addition, our scheme provides forward security by encrypting the

newly inserted data with fresh keys not related with the previous

search tokens. We implemented our scheme for Enron email and

Wikipedia datasets and measured its performance. �e comparison

with Sophos shows that our scheme is very e�cient in practice, for

both searches and updates in dynamic environments.

CCS CONCEPTS
•Security and privacy → Management and querying of en-
crypted data;

KEYWORDS
Dynamic Searchable Symmetric Encryption, Forward Security

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4946-8/17/10. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3133956.3133970

1 INTRODUCTION
With the advent of cloud computing, a number of cloud service

providers have arisen to provide a digital storage on their own in-

frastructure. �e basic approach for protecting the con�dentiality

of data stored in the untrusted cloud storage is to encrypt data

using general symmetric encryption. While this approach provides

strong security protection, semantic security precludes any ability

to perform useful operations on encrypted data except decryption.

It thereby induces ine�ciency to provide functionality and is there-

fore inadequate for storage systems that handle large amounts of

data. As a partial but practical solution to this problem, the no-

tion of searchable symmetric encryption (SSE) which provides a

practical search function on encrypted data, was introduced [30].

SSE enables a client to perform e�cient keyword searches on

the encrypted documents while preserving the privacy of both the

database and the queries. A common tool to speed up the search

process is an index which is a pre-built data structure made from

documents, and there are two high-level approaches to designing

an index for reasonably e�cient and secure SSE schemes [3]. One

is the forward index, which makes keyword lists per document,

and it naturally requires search time proportional to the number

of documents. �e other is the inverted index, which maintains

lists of document identi�ers per keyword and so it achieves sub-

linear search time O(nw), where nw is the number of documents

containing the keyword w in the database. Because the e�ciency

of search query processing is generally the most important factor

in determining availability of SSE schemes, the inverted index has

been preferred.

Although sub-linear search time is one of main requirements

for practical SSE schemes, scalability guaranteeing e�cient update

(addition and deletion) of documents is also a required property of

SSE schemes. But the static SSE schemes [1, 8, 9, 11, 13], which only

consider a �xed number of document/keyword pairs, can provide

scalability by either re-indexing the entire documents or making

use of generic and relatively expensive techniques [13]. To remedy

this problem, dynamic variants of SSE (DSSE) schemes [7, 23, 24,

27, 28, 31, 32] have been proposed.

With tradeo�s between security and practicality, almost all of

the practical SSE schemes leak information about documents. Re-

cent research on the real-world impact of these leakage [6, 22, 33],

however, shows that even small leakage can be used to break the

privacy of search queries. In particular, the �le-injection a�acks

proposed by Zhang et al. [33] shows that it is possible to reveal

the contents of past search queries of DSSE schemes with a few

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1449

injection of documents. �is a�ack underlines the need for DSSE

schemes with forward security.

1.1 Previous Forward Secure DSSE Schemes
Forward security of DSSE schemes means that the adversary can-

not learn any information about added document containing the

keyword that was previously queried. It guarantees that a search

token for a keywordw cannot be used to retrieve documents added

a�er issuing the token.

�e object of �le-injection a�acks [33] is to learn a very high

fraction of information about keywords from search tokens issued
by the client. Once �les sophisticatedly composed of keywords

chosen from the keyword universe are injected to the encrypted

database (EDB), the keywords corresponding to any future search

tokens sent by the client could be revealed. However, forward

security makes it possible to prevent determining the keywords

issued before injecting malicious �les, and so to thwart this type of

a�ack.

Chang and Mitzenmacher [10] proposed the �rst forward secure

DSSE scheme, but there was no solution with sub-linear search time

before the work of Stefanov et al. [31]. �erea�er, a series of new

forward secure DSSE schemes [4, 32] have been proposed, achieving

be�er performance and/or security. While being asymptotically

be�er, those schemes also have several drawbacks.

In the scheme proposed by Stefanov et al. [31], during their in-
teractive update process, the client fetches a non-negligible amount

of data from the server and requires O(N α)0<α<1 working storage

to run the oblivious sort algorithm. Furthermore, deletion of data is

logically done in the form that it adds deletion information to the

EDB and re�ects them in the search process. �e explicit deletion

can be performed via entire EDB rebuilding. �e author of [31] sug-

gested such rebuilding when deletion information occupied about

half of the EDB.

�e scheme proposed by Yavuz and Guajardo [32] uses a sim-

ple matrix-based data structure of size O(m × n) where rows and

columns denote keywords and document identi�ers respectively. In

their scheme, two hash tables are stored at the client-side and one

of them has to be shared with the server in order to synchronize

some states in real time. �ese hash tables are intended to represent

an inverted index and a forward index respectively, and the matrix

structure linking these two hash tables is introduced to provide

search operations as the inverted index approach and update oper-

ations as the forward index approach. Note that, however, this data

structure is required to determine in advance the parameters m
and n representing respectively the maximum number of allowable

keywords and documents. �erefore, their scheme can be seen as

being closer to the static SSE.

Sophos [4] ensures forward security through the relationship

between the search tokens and the update tokens based on trap-

door permutations. �is relationship provides be�er theoretical

e�ciency in terms of computation and communication compared

to the previous schemes. However, the trapdoor permutations

based on public key operations such as RSA exponentiation de-

grade computational e�ciency. Moreover, since the search and

update operations involve iterative applications of the trapdoor

permutation, Sophos does not support parallel processing of these

operations. In addition, the data structure used in Sophos does not

support actual deletion because it is specialized only for the search

and add operations. �erefore, the dynamic nature of Sophos is

provided by running two instances, one for addition and the other

for deletion. During a search query processing for a keywordw , the

server computes and returns the di�erence between the document

identi�ers corresponding to w in both instances. �ese factors de-

grade availability in terms of server storage and computation for

the search operation.

Although there has been made a lot of progress in e�ciency of

ORAM techniques, the recent DSSE schemes based on ORAM such

as [19] still require large bandwidth and multiple rounds. Note

that the most a�ractive feature of the ORAM-based schemes is able

to hide the access pa�ern (i.e., the identi�ers of the documents

matching search and update queries). However, this can only be

satis�ed by the assumption that documents are also stored in ORAM,

and it results in more severe performance degradation [26].

1.2 Our Scheme
As mentioned above, most of the DSSE schemes use an inverted

index-based data structure to guarantee e�cient sub-linear search

time. However, due to the structural di�culties in updating doc-

uments, especially deletion, rather complex and unnatural ways

have been taken into account, resulting in overall degradation of

e�ciency. Some of the DSSE schemes [23, 28] adopted a forward

index-based tree data structure to circumvent updating problem of

the inverted index directly. But these schemes provide sub-linear

search time depending on the total number of documents, not the

number of documents matching the query.

In order to take all the advantages of both approaches, we pro-

pose a new data structure, called dual dictionary, consists of linked

dictionaries to represent both inverted and forward indexes. To see

how this works, let us consider a document containing keywords

w1, . . . ,wt . We �rst generate t labels as label(1)i = H (key(ind), i) for

i = 1, . . . , t , where key(ind) ∈ {0, 1}λ is a secret key correspond-

ing to the document identi�er ind. We then generate another t

labels as label(2)i = H (key(wi), cnt(wi) + 1) for i = 1, . . . , t , where

key(wi) ∈ {0, 1}λ is a secret key corresponding to the keyword

wi ∈ W, and cnt(wi)
denotes the number of documents contain-

ing wi in the EDB before adding the document. We then store

(label(1)i , label
(2)
i) in a dictionary Dic1 which re�ects a forward in-

dex, and store (label(2)i , (label
(1)
i , ind)) in another dictionary Dic2

which re�ects an inverted index. To retrieve documents containing

a keywordw , we compute label(2)j = H (key(w), j) for 1 ≤ j ≤ cnt(w)

and search Dic2. To delete a document with the identi�er ind, we

�rst compute label(1)i = H (key(ind), i) for i ≥ 1, and then �nd

(label(1)i , label
(2)) in Dic1 and (label(2), (label(1)i , ind)) in Dic2, and

delete them.

�ough the idea of simultaneous usage of both inverted and

forward indexes was proposed by Hahn and Kerschbaum [21], the

design of data structures for EDB management based on both in-

dexes is totally di�erent. Basically their scheme uses a forward

index for EDB management and creates an inverted index for a

keyword only a�er the keyword is searched. �is makes it possible

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1450

to respond e�ciently when the same keyword is searched again.

Here, a key value of the inverted index made from a keyword is

used as a search token and so newly added documents which con-

taining the corresponding keyword are appended with respect to

the search token. It means that their scheme cannot guarantee for-

ward security because which keywords have been queried before

is shared with the server when new document is added.

Although the dual dictionary requires about twice the amount

of storage and computation, it guarantees sub-linear search time

and explicit data deletion simultaneously. As shown in Table 1, our

DSSE scheme provides optimal complexity in every point of view.

Compared to Sophos, our scheme has optimal server storage com-

plexity because it no longer owns the deleted data a�er processing

the deletion query. �is is a property that is required in an environ-

ment where update operations are likely to occur. �e search time

is also relatively e�cient compared to the previous schemes since

there is no need to perform additional searches on the deleted data.

�is is a very meaningful result, considering that search time is one

of the most important measures of the practicality of SSE schemes.

It also maximizes e�ciency by handling most operations with hash

functions only, and is designed to ensure the same level of security

compared to previous schemes. Table 2 summarizes the number of

occurrences of major internal functions to process a single (ind,w)
in Sophos and our scheme.

Such real-time e�ciency can be veri�ed by comparing the imple-

mentation performance presented in Section 6 with Sophos which

has similar complexities at the point of computation and communi-

cation.

Finally, forward security is achieved by designing our scheme

to use a fresh key, a�er a search query is processed, to encrypt

identi�ers of newly added documents. �is makes old search tokens

unusable and so to mitigate the leakage from updates. Such key

usage in the search operation is shown in Figure 1.

previously

searched

(A)
key1

newly

added (B) key2

EDB

(A)

key3

(B)

EDB

Keyword w

Before Search After Search

key4

Figure 1: Key usage in the search operation

In the search process for a keyword w , our scheme encrypts identi-

�ers of all searched documents with key
1
. A�er that, identi�ers of

the documents containingw added to the EDB until the next search

query for w is issued are encrypted with key
2
. �e new search

token for w includes key
1

and key
2
, and is used for searching iden-

ti�ers of documents containing w in the EDB. As previous, our

scheme re-encrypts identi�ers of all searched documents with key
3
.

�erea�er, identi�ers of the documents added up to the next search

are encrypted with key
4
. Since all of such keys are independently

generated by the client, the search token containing key
1

and key
2

cannot be used to �nd the documents inserted a�er the search.

Our scheme is simple, easy to implement, non-interactive and

practical for dealing with a large number of document/keyword

pairs. To show such properties of our scheme, we implemented our

scheme and ran experiments with the Enron email and Wikipedia

datasets. Such experimental results show that our scheme works

very e�ciently in dynamic environments. We refer to Sections 6

and 7 for more information on experiments and performance.

2 PRELIMINARIES AND MODELS
2.1 Notations
Let λ ∈ N denote the security parameter and we will assume all

algorithms take λ implicitly as input. Operators ‖ and |x | denote

the concatenation and the bit length of variable x , respectively. For

a �nite set X , |X | denotes the cardinality of it. And x
$←− X means

that x is selected uniformly at random from the set X . �e output

x of an algorithm A is denoted by x ← A (or A → x). Let {0, 1}`
denote the set of all binary strings of length ` and {0, 1}∗ be the set

of all binary strings of �nite length.

A function ν : N → N is negligible in k if for every positive

polynomial p(·) and all su�ciently large k , ν (k) < 1/p(k). We write

f (k) = negl(k) to mean that there exists a negligible function ν (·)
such that f (k) ≤ ν (k) for all su�ciently large k . Unless speci�ed

explicitly, the symmetric keys are strings of λ bits, and the key

generation algorithm uniformly samples a key in {0, 1}λ . We only

consider (possibly probabilistic) algorithms and protocols running

in polynomial time in the security parameter λ. In particular, ad-

versaries are probabilistic polynomial-time algorithms.

2.2 Pseudo-Random Function
Our construction is based on a pseudo-random function (PRF) that

is a polynomial-time computable function and is indistinguishable

from a true random function by any probabilistic polynomial-time

adversary. We use the standard security de�nitions of prf-advantage
of an adversary A for a PRF F and denote it by Adv

prf
A,F (λ) [20].

We say that a PRF F is secure if Adv
prf
A,F (λ) is negligible for all

probabilistic polynomial-time algorithm A.

2.3 (Dynamic) Searchable Symmetric
Encryption

We follow the formalizations of Curtmola et al. [13] and Stepanov

et al. [31] with some modi�cations.

A document f = (ind,DB(ind)) consists of a document identi-

�er ind ∈ {0, 1}` and a contained keyword-set DB(ind) ⊆ {0, 1}∗.
�en, a database DB can be de�ned as (indi ,DB(indi))ni=1

. �e set

of all keywords of DB is W = ∪ni=1
DB(indi), and the set of docu-

ments containing a keyword w is DB(w) = {indi | w ∈ DB(indi)}.
Let n be the number of documents in DB, m = |W| be the total

number of keywords, nw = |DB(w)|, and N be the number of

document/keyword pairs (we identify documents with their iden-

ti�er). Note that N can be wri�en as N =
∑n
i=1
|DB(indi)| =∑

w ∈W |DB(w)|.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1451

Table 1: Comparison with DSSE schemes supporting forward security

Scheme

Data Communication Computation

Client Server Search Update Search Update

[31] O(N α)(0<α<1) O(N+) O(nw + logN+) O(logN+) O(min{aw + logN+,nw log
3 N+}) O(log

2 N+)
[32] O(m + n) O(m × n) O(nw) O(m) O(n) O(m)
[19] O(1) O(m + N) Õ(aw logN + log

3 N) Õ(k log
3 N) Õ(aw logN + log

3 N) Õ(k log
2 N)

[4] O(m) O(N+) O(nw) O(k) O(aw + dw) O(k)
Ours O(m) O(N) O(nw) O(k) O(aw) O(k)

�e complexities are based on retrieving documents containing a keyword w or updating documents containing k unique keywords. �e

following notations are used throughout the paper. N is the total number of document/keyword pairs in the database, whilem (resp. n) is the

number of keywords (resp. documents) in the database. nw is the size of search result set for keyword w , and aw (resp. dw) is the number of

times the queried keyword w was historically added to (resp. deleted from) the database. N+ is the total number of document/keyword pairs

historically stored in the database, i.e., N+ =
∑
w (aw + dw). �e notation Õ hides the log logN factors.

Table 2: Comparison of the number of major internal func-
tions in Sophos and our scheme for a single pair (ind,w)

Scheme C/S

Search Add

T H F T−1 H F

Sophos

Client - - 1 1 2 1

Server 1 2 - - - -

Ours

Client - - - - 3 1

Server - 4 - - - -

T : trapdoor permutation, T−1
: inverse of trapdoor permutation,

H : hash function, F : PRF

Let C and S denote a client and a server, respectively. Let P
denote a two-party protocol between C and S such as

P(inC ; inS) = (PC (inC), PS (inS))

meaning that PC (resp. PS) is executed by the client (resp. the

server) with input inC (resp. inS). We write

P(inC ; inS) → (outC ; outS)

to mean that outC and outS are the outputs of the protocol P ,

involving C on input inC and S on input inS .

A dynamic searchable symmetric encryption (DSSE) scheme is

a tuple of four polynomial-time protocols SE = (Setup, Search,

Addition, Deletion) between a client and a server such that:

SE.Setup(λ ; ⊥) → (σ ; EDB): It takes as input a security pa-

rameter λ and creates a state σ for the client. It also initial-

izes an encrypted database EDB for the server.

SE.Search((σ ,w) ; EDB) → ((σ ′,DB(w)) ; EDB′): �e client

takes as input the state σ and a keyword w , and the server

takes as input the encrypted database EDB. A�er execution

of protocol, the client outputs an updated state σ ′ and

the set DB(w) of document (identi�ers) containing the

keyword w . �e server outputs an updated encrypted

database EDB′.
SE.Addition((σ , f) ; EDB) → (σ ′ ; EDB′): �e client takes as

input the state σ and a document f , and the server takes as

input the encrypted database EDB. A�er running the pro-

tocol, the client outputs an updated state σ ′ and the server

outputs an updated encrypted database EDB′ including f .

SE.Deletion((σ , ind) ; EDB) → (∅ ; EDB′): �e client takes

as input the state σ and a document identi�er ind, and the

server takes as input the encrypted database EDB. As a

result, the server outputs an updated encrypted database

EDB′ excluding a document with identi�er ind.

We say an DSSE scheme is correct if, for every keyword w ,

SE.Search returns DB(w) except with negligible probability. We

also say a DSSE scheme is non-interactive if SE.Search is a two-

round protocol and both SE.Addition and SE.Deletion are single

round protocols.

2.4 Security Model
�e standard security de�nition of a DSSE scheme follows the ideal

or real simulation paradigm [7, 13, 24]. It is parameterized by a

collection of leakage functions

L = (LSetup,LSearch,LAddition,LDeletion)
describing what information the protocol leaks to the adversary,

and formalized as stateful algorithms. �e de�nition ensures that

the scheme does not reveal any information beyond what can be

inferred from the leakage functions.

More precisely, we de�ne two games GameR,A and GameS,A
as follows. In the real GameR,A the adversary A is given EDB
generated by Setup(λ;⊥) as in the real case. In the ideal GameS,A
the adversary A is given S(LSetup(λ;⊥)). �e adversary then

repeatedly performs search, addition, and deletion queries and re-

ceives the transcripts generated from Search(w), Addition(f), and

Deletion(ind) algorithms in the real game, or receives the tran-

scripts generated by the simulator S(LSearch(w)), S(LAddition(f)),
and S(LDeletion(ind)) in the ideal game. Eventually, A outputs a

bit 0 (GameR,A) or 1 (GameS,A).

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1452

De�nition 2.1. A DSSE scheme is L-adaptively-secure if for all

probabilistic polynomial-time algorithmA, there exists an e�cient

simulator S such that the following equation holds:��Pr[GameR,A (λ) = 1] − Pr[GameS,A (λ) = 1]
�� ≤ negl(λ).

Here, the leakage function collection L will keep the list Q of all

search queries issued so far as a state. Each entry of the query listQ
is of the form (i,w) where w is a queried keyword and the integer

i is a timestamp, initially set to 0 and incremented at each query.

For each keyword w , the search pa�ern sp(w) is de�ned as

sp(w) = {j | (j,w) ∈ Q} (only matches search queries).

We also use the notation HistDB(w) described in [4]. It is the list

of documents historically added to DB containing the keyword

w in the order of insertion. In particular, it includes document

identi�ers that have been added and deleted later. For example,

HistDB(w) = 〈ind1, ind2〉 means that ind1 and ind2 have been

added sequentially so far, but it does not tell that which documents

have been deleted.

Forward Security. As mentioned before, forward security means

that an addition query does not leak any keyword information of

the newly added documents. We will follow the de�nition of [4]

due to its clarity.

De�nition 2.2. A DSSE scheme is forward secure if there exists a

leakage function
¯L such that its LAddition can be wri�en as

LAddition(ind,W) = ¯L(ind, |W|).

�e de�nition means that the addition operation of any forward

secure DSSE scheme does not leak more than the identi�er and the

number of keywords of the newly added document.

Backward Security. �e authors of [31] have described backward

security that prevents search queries to be performed over deleted

data. If a document containingw have been deleted before a search

query forw is issued, the server should not be sure that if the deleted

document contains w from the subsequent search queries. To our

best knowledge, the only existing DSSE schemes providing both

forward and backward securities are based on ORAM techniques.

3 THE PROPOSED DSSE SCHEME
Most of the practical SSE schemes developed thus far con�gure

data using an inverted index for e�cient search and store it using a

single dictionary data structure. However, when the inverted index

is used, it is inevitably di�cult to update documents. �e problem

of document addition could be solved by the client retaining states

about the size of DB(w), but there is no known SSE schemes that

supports substantial document deletion. In order to overcome these

limitations and utilize structural advantages of both index struc-

tures, we propose a new data structure called dual dictionary that

combines the inverted index to guarantee optimal search time and

the forward index for e�cient update.

3.1 Building Blocks
We �rst recall the single dictionary data structure.

A dictionary Dict is a data structure that maintains a set of

(label, data) ∈ {0, 1}∗×{0, 1}∗ pairs where each possible label ap-

pears at most once in the set, and that is given the following opera-

tions to manage these pairs.

• Dict.Create({(labeli , datai) | 1 ≤ i ≤N }) → Dic
• Dict.Get(Dic, label) → data or ⊥
• Dict.Insert(Dic, (label, data)) → Dic′

• Dict.Remove(Dic, label) → Dic′ or ⊥
We now introduce the dual dictionary data structure which man-

ages a data set with two independent labels by linking two di�erent

dictionaries Dict1 and Dict2.

De�nition 3.1. �e dual dictionary DLDict is a data structure that

maintains a set {(label(1)i , label
(2)
i , datai) ∈ {0, 1}

∗×{0, 1}∗×{0, 1}∗ |
label(1)i , label(1)j ∧ label(2)i , label(2)j ⇔ i , j}, and that is given

the following operations to manage these tuples:

• DLDict.Create
(
{(label(1)i , label

(2)
i , datai) | 1 ≤ i ≤ N }

)
→ DLDic = (Dic1,Dic2) :

Dic1 ← Dict.Create
(
{(label(1)i , label

(2)
i) | 1 ≤ i ≤ N }

)
Dic2 ← Dict.Create

(
{(label(2)i , (label

(1)
i , datai)) | 1 ≤

i ≤ N }
)

return DLDic← (Dic1,Dic2)
• DLDict.Insert(DLDic, (label, data))
→ DLDic′ = (Dic′

1
,Dic′

2
) :

Dic′
1
← Dict.Insert(Dic1, (label(1), label(2)))

Dic′
2
← Dict.Insert(Dic2, (label(2), (label(1), data)))

return DLDic′ ← (Dic′
1
,Dic′

2
)

• DLDict.Get(Dic, label(1)) → (label(2), data) or ⊥ :

if Dict.Get(Dic1, label(1)) = ⊥ then
return ⊥

end if
label(2) ← Dict.Get(Dic1, label(1))
(label(1), data) ← Dict.Get(Dic2, label(2))
return (label(2), data)

• DLDict.Get(Dic, label(2)) → (label(1), data) or ⊥ :

if Dict.Get(Dic2, label(2)) = ⊥ then
return ⊥

end if
return (label(1), data) ← Dict.Get(Dic2, label(2))

• DLDict.Remove(Dic, label(1))
→ DLDic′ = (Dic′

1
,Dic′

2
) or ⊥ :

if Dict.Get(Dic1, label(1)) = ⊥ then
return ⊥

end if
label(2) ← Dict.Get(Dic1, label(1))
Dic′

1
← Dict.Remove(Dic1, label(1))

Dic′
2
← Dict.Remove(Dic2, label(2))

return DLDic′ ← (Dic′
1
,Dic′

2
)

• DLDict.Remove(Dic, label(2))
→ DLDic′ = (Dic′

1
,Dic′

2
) or ⊥ :

if Dict.Get(Dic2, label(2)) = ⊥ then
return ⊥

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1453

end if
(label(1), data) ← Dict.Get(Dic2, label(2))
Dic′

1
← Dict.Remove(Dic1, label(1))

Dic′
2
← Dict.Remove(Dic2, label(2))

return DLDic′ ← (Dic′
1
,Dic′

2
)

A dual dictionary expands a single dictionary in a double manner,

so it needs about twice the amount of storage and computation.

However, from an asymptotic point of view, it is possible to manage

data only by O(1) operation, like a single dictionary data structure.

In the proposed scheme, an EDB is con�gured by the dual dic-

tionary DLDict as follows
1
: for each (ind,w) where w ∈ DB(ind),

there are two tuples (label(1), label(2)) and (label(2), (label(1), ind))
in the dual dictionary so that one can restore (ind,w) using label(1)

derived from ind or using label(2) derived from w . When data is

stored in such a manner, substantial deletion of data becomes possi-

ble using label(1). In addition, label(2) enables e�cient data addition

and search. In our construction, we denote label(1) and label(2) by

label(ind) and label(w) respectively.

f3 f3

f3 f3

f3 f3

w3

w2

w1

f1 f1

f2 f5

f1 f1

f2 f5

f4

Search w3

Search w2

Search w1

Delete f1 Delete f3

Time

EDB

Figure 2: Basic idea

Figure 2 shows the basic idea of our scheme. We con�gure an

EDB in an inverted index structure to e�ciently perform the search

operation. In addition, a data-centric forward index is constructed

and combined into the dual dictionary data structure to enable the

actual deletion of data.

3.2 Construction
We now introduce our main scheme. In the following pseudo codes,

Hi : {0, 1}∗ × {0, 1}∗ → {0, 1}µ(=2λ) (i = 1, 2.3) are keyed hash

functions and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ is a PRF.

SE.Setup. �e client should maintain a (single) dictionaryDictkwd
to manage the secret key and counter information corresponding

to each keyword. Independently, the client should also maintain

a master secret key keyprf for the PRF F . �e client’s storage for

maintaining the state σ = (keyprf ,Dictkwd) is thusO(m). �e client

creates an EDB as a dual dictionary data structure and sends it

to the server. Algorithm 1 gives a formal description of SE.Setup
operation.

�e dictionary Dictkwd stores a tuple (key(w), cnt(w), ukey(w),
ucnt(w)) for each keywordw . �e tuple is initialized as (∅, 0, ukey(w),
0) where ukey(w)

$←− {0, 1}λ is generated by the client when the

1
It is not exactly the same as the propose scheme since we omit the role of counter for

convenience of explanation.

Algorithm 1 SE.Setup(λ ; ⊥) → (σ ; EDB)
Client(λ) → (σ , EDB)

1: Dictkwd ← Dict.Create(∅) ; keyprf
$←− {0, 1}λ

2: σ ← (keyprf ,Dictkwd)
3: EDB← DLDict.Create(∅)
4: Send EDB to Server

�rst time a document containing the keyword w is uploaded to

EDB (see lines 5 - 8 in Algorithm 2). �e binary strings key(w) and

ukey(w) are secret keys used to encrypt identi�ers of documents

containing w . More precisely, key(w) is the key used to encrypt

document identi�ers in the EDB and ukey(w) is the key prepared

to encrypt document identi�ers to be inserted. �e number cnt(w)

represents the number of documents in the EDB containing w and

ucnt(w) is used to count the number of added documents containing

w before querying w .

SE.Addition. To add a document f in the EDB, the client �rst

computes a secret key key(ind) = F (keyprf , ind) where ind denotes

the identi�er of f . For each keyword w ∈ DB(ind) in a random or-

der, the client generates two labels label(ind) = H1(key(ind), cnt(ind))
and label(w) = H2(ukey(w), ucnt(w)), where the counter cnt(ind) re-

�ects the order ofw in DB(ind), and ukey(w), ucnt(w) are keyword-

speci�c values obtained fromDictkwd. �e key/counter pair (ukey(w),
ucnt(w)) is also used to encrypt the document identi�er ind as

data = ind ⊕ H3(ukey(w), ucnt(w)). Finally, the client uploads

the set AddSet = {(label(ind), label(w), data) |w ∈ DB(ind)} to the

server.

Note that the dictionary Dictkwd keeps two key/counter pairs for

each keyword w ∈ W and only (ukey(w), ucnt(w)) pair is used for

encrypting the document identi�er in the SE.Addition operation.

On the other hand, the key/counter pair (key(w), cnt(w)) is used

by the server to encrypt all document identi�ers stored just before

the most recently requested search query for the keyword w . By

separating encryption keys for previously searched data and newly

added data, the server cannot determine the association between

the data retrieved in the past and the newly added data, until it

must be revealed by the next search query. For more information,

see the description of the SE.Search operation below. Algorithm 2

gives a formal description of SE.Addition operation.

Both the computational and communication complexities of

SE.Addition operation are O(k) because labels are generated and

transmi�ed corresponding to the number of keywords included in

the document f .

SE.Deletion. �e delete operation for removing document iden-

ti�ers from the EDB is very simple and intuitive. For the identi-

�er ind of a document to be deleted, the key key(ind) is derived

from keyprf and transmi�ed to the server as a deletion token.

�e server calculates label(ind) = H1(keyprf , cnt(ind)) and deletes

the corresponding document identi�er from the EDB by calling

DLDict.Remove(EDB, label(ind)). �e server repeats this process

by incrementing the counter cnt(ind), starting with 1, until ⊥ is

returned by DLDict.Remove(EDB, label(ind)).

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1454

Algorithm 2 SE.Addition
(
(σ , f) ; EDB

)
→ (σ ′ ; EDB′)

Client(σ , f = (ind,DB(ind))) → (σ ′,AddSet)

1: key(ind) ← F (keyprf , ind) ; cnt(ind) ← 0 ; AddSet← ∅
2: RefSet← DB(ind)
3: while |RefSet| , 0 do
4: w

$←− RefSet ; RefSet← RefSet \ {w}
5: if Dictkwd.Get(w) = ⊥ then
6: key(w) ← ∅ ; cnt(w) ← 0 ;

7: ukey(w)
$←− {0, 1}λ ; ucnt(w) ← 0

8: Dictkwd
← Dictkwd.Insert(w, (key(w), cnt(w), ukey(w), ucnt(w)))

9: else
10: (key(w), cnt(w), ukey(w), ucnt(w)) ← Dictkwd.Get(w)
11: end if
12: cnt(ind) ← cnt(ind) + 1 ; label(ind) ← H1(key(ind), cnt(ind))
13: ucnt(w) ← ucnt(w) + 1 ; label(w) ← H2(ukey(w), ucnt(w))
14: data← ind ⊕ H3(ukey(w), ucnt(w))
15: AddSet← AddSet ∪ {(label(ind), label(w), data)}
16: Dictkwd

← Dictkwd.Insert(w, (key(w), cnt(w), ukey(w), ucnt(w)))
17: end while
18: σ ′ ← (keyprf ,Dictkwd)
19: send AddSet to Server

Server(EDB,AddSet) → EDB′

1: for each (label(ind), label(w), data) ∈ AddSet do
2: EDB← DLDict.Insert(EDB, (label(ind), label(w), data))
3: end for
4: EDB′ ← EDB

Algorithm 3 SE.Deletion((σ , ind) ; EDB) → (∅ ; EDB′)
Client(σ , ind) → dtoken

(ind)

1: key(ind) ← F (keyprf , ind)
2: dtoken

(ind) ← key(ind)

3: send dtoken
(ind) to Server

Server(dtoken
(ind), EDB) → EDB′

1: cnt(ind) ← 1

2: while (1) do
3: label(ind) ← H1(dtoken

(ind), cnt(ind))
4: if DLDict.Remove(EDB, label(ind)) = ⊥ then
5: break
6: else
7: EDB← DLDict.Remove(EDB, label(ind))
8: cnt(ind) ← cnt(ind) + 1

9: end if
10: end while
11: EDB′ ← EDB

Since the value of the corresponding location completely re-

moved from the EDB, it can support substantial document dele-

tion. �erefore the size of the EDB is optimal as O(N), which is

the size of data that should be maintained by the client’s current

request excluding the deleted data from the inserted data. �e

computational complexity is O(k) because the server must perform

DLDict.Remove as many times as the number of keywords the cor-

responding data contains, and the communication complexity is

O(1) because the deletion token is composed of only one key.

SE.Search. To �nd documents containing a keyword w , the

client �rst retrieves (key(w), cnt(w), ukey(w), ucnt(w)) fromDictkwd.

At the same time, the client creates a new secret key nkey(w). And

then sends them to the server as a search token token(w). At this

point, all the relevant document identi�ers stored on the EDB are

encrypted with (key(w), cnt(w)) or (ukey(w), ucnt(w)) pair. As de-

scribed in the SE.Addition operation, all document identi�ers stored

before the previous search query for the keyword w is encrypted

with (key(w), cnt(w)), and the newly added document identi�ers

therea�er are encrypted with (ukey(w), ucnt(w)).
Given a search token

token(w) = (key(w), cnt(w), ukey(w), ucnt(w), nkey(w)),

the server uses key(w) to search document identi�ers by increasing

a counter from 1 to cnt(w). In the same way, ukey(w) and ucnt(w)

are applied to further search another document identi�ers. If there

are deleted documents, it may happen that the extraction of asso-

ciated document identi�ers fails in this process (lines 3 - 5 in the

SUEdb function), but the retrieval proceeds up to cnt(w) + ucnt(w).
One of the most important features of our scheme is re-encrypting

and storing the search results. Whenever a document identi�er ind
is extracted, the server creates a label nlabel(w) and a data ndata
using the new key nkey(w) contained in the search token and a

new inner counter ncnt(w)(= j) (line 10 in the SUEdb function),

and replaces old data in the EDB to it. In this re-encryption process,

the counter ncnt(w)(= j) associated to the key nkey(w) is set by

re�ecting the current number of document identi�ers stored in the

EDB, and so an unnecessary process of searching for labels of the

deleted documents in the later search process can be omi�ed. �e

server shares this new key/counter pair (nkey(w), ncnt(w))with the

client by sending ncnt(w) with the search result, and then the client

update Dictkwd for the keywordw by pu�ing (nkey(w), ncnt(w)) at

the location of �rst key/counter pair in the associated data. Figure 3

shows the changes of Dictkwd and EDB before and a�er a search

operation.

As noted in [32], this approach provides privacy if the server

is compromised by an outsider a�er a search operation occurs

(the server deletes the search token from the memory a�er the

search processing is completed). And it keeps DLDict consistent

for consecutive search operations performed on the same keyword.

Algorithm 4 gives a formal description of SE.Search operation.

As an optimization technique of the search operation, it is possi-

ble to delay the rewriting process a�er the search result is returned.

�is can minimize the in�uence of the write process and can be

utilized especially when the size of an EDB is larger than that of

memory.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1455

previously

searched

(#1 ≤ cnt)
key newly

added

(#2 ≤ ucnt)

ukey

EDB

Dictkwd

(key, cnt), (ukey, ucnt)

nkey

(nkey, ncnt), (nukey, 0)

EDB

Dictkwd

Before Search After Search

ncnt = #1 + #2

nukey

Keyword w

Figure 3: Search & re-encryption in SE.Search

�e amount of data required in the search operation is O(nw)
because it is exactly the number of documents containing the key-

word w , and the computational complexity is O(aw) because the

search operation must be performed the number of times that the

documents containing w is added. However, since the deleted num-

ber of documents is re�ected to the counter in the search process,

the optimal search time O(nw) is satis�ed from the second search

operation unless additional deletion occurs.

3.3 Correctness
�e client has a dictionary Dictkwd for managing the keys used

to encrypt document identi�ers. �is dictionary Dictkwd is up-

dated by SE.Search and SE.Addition operations, and when there

is no information about the key corresponding to the keyword in

the search query, SE.Search stops itself. �us, it can be seen that

SE.Addition must be performed prior to SE.Search. �e dictionary

Dictkwd maps each keyword to two pairs of key and counter. �e

counter paired with each key indicates the number of times that

the corresponding key is used to encrypt document identi�ers.

�e data added byDLDict.Insert(EDB, (label(ind), label(w), data))
until just before the �rst SE.Search((σ ,w) ; EDB) runs have been

encrypted using the second key ukey managed by Dictkwd, and the

corresponding counter ucnt is incremented sequentially. A search

token consists of the randomly generated key nkey and the value

in Dictkwd corresponding to the keyword to be searched. Given

the search token, the server handles the search process using each

of the two key/counter pairs. If the keyword is searched for the

�rst time, the counter cnt of the �rst key pair is 0, so only the

second key pair is used for the search. While processing the search

query, the server performs re-encryption using the new key nkey
included in the search token and returns the corresponding counter

ncnt to the client along with the search result. �e client then

substitutes (nkey, ncnt) for (key, cnt) corresponding to the key-

word, generates a new key nukey, and replaces ukey with nukey
in Dictkwd. It can be seen that the data added a�er the execution of

SE.Search((σ ,w) ; EDB) are encrypted using a key that is indepen-

dent of the key used in the past. And the server always has data

encrypted with up to two keys (See Figure 3).

Algorithm 4 SE.Search((σ ,w) ; EDB) → ((σ ′,DB(w)) ; EDB′)
Client(σ ,w) → token(w)

1: nkey(w)
$←− {0, 1}λ

2: if Dict.Get(Dictkwd,w) = ⊥ then
3: return ∅
4: end if
5: (key(w), cnt(w), ukey(w), ucnt(w)) ← Dict.Get(Dictkwd,w)
6: token(w) ← (key(w), cnt(w), ukey(w), ucnt(w), nkey(w))
7: send token(w) to Server

Server(EDB, token(w)) → (EDB′, ncnt(w),ResultSet)
1: parse token(w) as (key(w), cnt(w), ukey(w), ucnt(w), nkey(w))
2: ResultSet← ∅ ; j ← 0

3: SUEdb(EDB, key(w), cnt(w), nkey(w), j,ResultSet) →
(EDB, j,ResultSet)

4: SUEdb(EDB, ukey(w), ucnt(w), nkey(w), j,ResultSet) →
(EDB, j,ResultSet)

5: EDB′ ← EDB ; ncnt(w) ← j
6: send (ncnt(w), ResultSet) to Client

Client(nkey(w), ncnt(w)) → σ ′

1: nukey(w)
$←− {0, 1}λ

2: Dict′kwd
← Dict.Insert(Dictkwd, (w, (nkey(w), ncnt(w), nukey(w), 0)))

3: σ ′ ← (keyprf ,Dict′kwd)

Subroutine: SUEdb(EDB, key, cnt, nkey, j,ResultSet)
1: for i = 1 to cnt do
2: label(w) ← H2(key, i)
3: if DLDict.Get(EDB, label(w)) = ⊥ then
4: continue
5: end if
6: j ← j + 1

7: (label(ind), data) ← DLDict.Get(EDB, label(w))
8: ind← data ⊕ H3(key, i)
9: ResultSet← ResultSet ∪ {ind}

10: nlabel(w) ← H2(nkey, j) ; ndata← ind ⊕ H3(nkey, j)
11: EDB← DLDict.Remove(EDB, label(w))
12: EDB← DLDict.Insert(EDB, (label(ind), nlabel(w), ndata))
13: end for
14: return (EDB, j,ResultSet)

�e delete operation is set as a method of controlling the dual

dictionary EDB stored in the server by using a deletion token. �is

deletion token is the key corresponding to the document added

by SE.Addition, and it is generated once and is not a�ected by

other operations. �erefore, in SE.Deletion, the server sequentially

rebuilds the label while incrementing the counter, and removes

the value corresponding to the label directly from the EDB. �is

process directly controls EDB, and hence the data removed from

the EDB by SE.Deletion do not appear in subsequent searches.

�e only issue is collision among the labels generated from H1

and H2. We can reduce the correctness to the collision resistance

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1456

of H1 and H2. Similar to [4], we will set µ = 2λ (λ ≥ 2 logN)
in practice because we need to choose µ to guarantee collision

resistance where N hash values are revealed.

4 SECURITY PROOF
Theorem 4.1. Let F be a secure PRF.�en our scheme isL-adaptively-

secure in the (programmable) random oracle model, where the leakage
function collection L is de�ned as follows:

• LSetup(λ) = ∅,
• LSearch(w) = (sp(w),HistDB(w)),
• LAddition(ind,DB(ind)) = (ind, |DB(ind)|),
• LDeletion(ind) = ind.

Proof. Given the leakage function collection

L = (LSetup,LSearch,LAddition,LDeletion),

we can build a simulator S as follows:

Random Oracles H. �e hash functions Hi , 1 ≤ i ≤ 3 behave like

random oracles in the proof. For each 1 ≤ i ≤ 3, S maintains a

hash table Hi, table
consists of tuples (counter, ind, in, out) ∈ N ×

{0, 1}` × ({0, 1}λ × N) × {0, 1}µ as described in Algorithm 5.

Algorithm 5 Programming the Random Oracles(in)
1: if ∃ (hi,1,hi,2,hi,3,hi,4) ∈ Hi, table

such that hi,3 = in then
2: return hi,4
3: else
4: out

$←− {0, 1}µ
5: add (∅, ∅, in, out) to Hi, table

6: return out
7: end if

Setup. Simulation of Setup is identical to SE.Setup, the only

di�erence being that, it does not generate a keyprf .

Addition Token. We describe how the simulator S generates the

transcript AddSet when an addition query Addition(f) is issued.

All values key(ind), label(1), label(2),mask are selected uniformly

at random, and appended to the hash tables Hi, table
as described in

Algorithm 6. �e simulator S outputs AddSet = {(label(1), label(2),
mask⊕ ind)} as the transcript. Note that S chooses random strings

instead of calling F to generate label(1). If there exists an adver-

sary B who can distinguish between the real and simulated values

label(1), one can build a reduction that enables us to distinguish

between F and a random function. �erefore, the probability to dis-

tinguish label(1) from outputs of a PRF F is bounded by Adv
prf
F ,B(λ).

Deletion Token. During the simulation of the addition token, the

deletion token key(ind) corresponding to the document identi�er

ind has been generated. As described in Algorithm 7, the simulator

S just searches it in H
1, table

and sets it as the deletion token for the

document with identi�er ind.

Algorithm 6 Simulation of the Addition Token(ind, |DB(ind)|)

1: AddSet← ∅ ; key(ind)
$←− {0, 1}λ

2: for i = 1 to |DB(ind)| do
3: if (h1,1 = ∅,h1,2 = ∅, (key(ind), i), out) ∈ H1, table

then
4: h1,1 ← i ; h1,2 ← ind
5: else
6: label(1)

$←− {0, 1}µ
7: H

1, table
← H

1, table
∪ (i, ind, (key(ind), i), label(1))

8: end if
9: (label(2), mask) $←− {0, 1}µ × {0, 1}µ

10: H
2, table

← H
2, table

∪ (i, ind, ∅, label(2))
11: H

3, table
← H

3, table
∪ (i, ind, ∅,mask)

12: AddSet← AddSet ∪ {(label(1), label(2),mask ⊕ ind)}
13: end for
14: return AddSet

Algorithm 7 Simulation of the Deletion Token(ind)
1: �nd any tuple (hi,1,hi,2 = ind,hi,3,hi,4) ∈ H1, table

2: parse hi,3 as (key(ind), ∗)
3: return key(ind)

Search Token. We �rst describe how the simulator S generates

the transcript (key(w), cnt(w), ukey(w), ucnt(w), nkey(w)) when a

search query Search(w) is issued.

In order to simulate the search token corresponding to an un-

known keywordw , the simulator S �rst computesw = min(sp(w))
which is used to distinguish di�erent keywords, and then generates

random keys skey(w), nkey(w).
�e random oracles H2 and H3 are then programmed as follows.

Recall that, while simulating AddSet of (ind,DB(ind)), S does not

specify inputs (ukey(w), ucnt(w)) of the random oracle H2,H3 and

only stores tuples (i, ind, ∅, label(2)) in H
2, table

and (i, ind, ∅,mask)
inH

3, table
, because it does not know which keywords are inDB(ind).

To re�ect the fact that an unknown keyword w is in DB(ind),
S stores tuples (i, ind, (skey(w), scnt(w)), label(2)) in H

2, table
and

(i, ind, (skey(w), scnt(w)),mask) in H
3, table

, where scnt(w) denotes

the corresponding counter for each ind ∈ HistDB(w). On the other

hand, it is possible that the adversary A has already made random

oracles queries H2 or H3 with inputs (ukey(w), ucnt(w)) and got re-

sponses out2 = H2(ukey(w), ucnt(w)) or out3 = H3(ukey(w), ucnt(w)).
In this case, if out2 , label(2) or out3 , mask, the simulation fails.

Note that the probability that such event occurs is poly(λ)/2λ , since

the simulation is limited to polynomial time in λ.

�e simulator S also maintains a dictionary Dictkwd which

stores tuples (key(w), cnt(w), ukey(w), ucnt(w)) for w ∈ N as the

proposed algorithm. �e only di�erence is that the simulator S
updates Dictkwd only when simulating search queries, not addi-

tion queries. If Dict.Get(Dictkwd,w) = ⊥ and scnt(w) = 0 (or

equivalently |sp(w)| = 1), it means that the search query forw is is-

sued for the �rst time and so S outputs the transcript (∅, 0, skey(w),
scnt(w), nkey(w)). Otherwise, since the search query forw has been

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1457

issued before, S outputs the transcript (key(w), cnt(w), skey(w),
scnt(w), nkey(w)) for (key(w), cnt(w), ∗, ∗) ← Dict.Get(Dictkwd,w).

�e search result DB(w) can be constructed from HistDB(w) and

document identi�ers revealed during the deletion token simulation.

�e rest parts of the protocol, including the re-encryption of the

EDB and the updating Dictkwd can be simulated similarly because

all the necessary inputs are given toS, and thus we do not described

in detail here.

Algorithm 8 Simulation of the Search Token(sp(w),HistDB(w))
1: w ← min(sp(w))
2: nkey(w)

$←− {0, 1}λ ; skey(w)
$←− {0, 1}λ ; scnt(w) ← 0

3: for ind ∈ HistDB(w) (choose sequentially) do
4: scnt(w) ← scnt(w) + 1

5: if (∅, ∅, (nkey(w), scnt(w)), ∗) ∈ H2 or H3 then
6: abort
7: else
8: choose one element of the form

(h2,1, ind,h2,3 = ∅, ∗) randomly from H
2, table

9: choose one element of the form

(h3,1 = h2,1, ind,h3,3 = ∅, ∗) randomly from H
3, table

10: h2,3 ← (skey(w), scnt(w)) ; h3,3 ← (skey(w), scnt(w))
11: HistDB(w) ← HistDB(w) \ {ind}
12: end if
13: end for
14: if Dict.Get(Dictkwd,w) = ⊥ and scnt(w) = 0 then
15: return ∅
16: end if
17: if Dict.Get(Dictkwd,w) = ⊥ then
18: token(w) ← (∅, 0, skey(w), scnt(w), nkey(w))
19: else
20: (key(w), cnt(w), ∗, ∗) ← Dict.Get(Dictkwd,w)
21: token(w) ← (key(w), cnt(w), skey(w), scnt(w), nkey(w))
22: end if
23: return token(w) ← token(w)

Conclusion. By combining all simulation results, we can say that,

for any probabilistic polynomial-time adversary A, there exists a

prf-adversary B such that��Pr[GameR,A (λ) = 1] − Pr[GameS,A (λ) = 1]
��

≤ Adv
prf
F ,B(λ) + poly(λ)/2

λ .

We thus conclude the resulting probability is negl(λ) by assuming

that the PRF F is secure. Note that our construction provides for-
ward security because LAddition leaks only (ind, |DB(ind)|), thus

¯L
can be de�ned as LAddition itself.

�

5 SOME CONSIDERATIONS
5.1 Leakage Comparison with Previous

Schemes
In this section, we analyze the leakage level of our scheme compared

to the previous forward secure DSSE schemes [4, 31]. �e leakage

functions of the scheme in [31] are de�ned as

LSPS = (LSPS
Addition,L

SPS
Deletion,L

SPS
Search),

where

• LSPS
Addition(ind,DB(ind)) = (ind, |DB(ind)|),

• LSPS
Deletion(ind,DB(ind)) = (ind, |DB(ind)|),

• LSPS
Search(w) = (sp(w),HistDB(w)).

�e addition and search leakage functions are exactly the same as

ours. Although there is a slight di�erence in the deletion leakage

due to the di�erence in the way the delete operations are performed,

it does not a�ect overall update leakage level.

�e leakage functions of Sophos are de�ned as

LB = (LB
Addition,L

B
Deletion,L

B
Search),

where

• LB
Addition(ind,w) = L

B
Deletion(ind,w) = ⊥,

• LB
Search(w) = (sp(w),Hist(w))

and Hist(w) lists all the modi�cations made to DB(w). For example,

(2,Deletion, ind) ∈ Hist(w) means the pair (ind,w) was deleted at

the second update. Note that Sophos is designed to handle a pair

(ind,w) of inputs. According to the security analysis in [4], LB
is

comparable with LSPS
if Sophos is limited to only support the up-

date of a whole document (ind,DB(ind)) not a single pair (ind,w)
where w ∈ DB(ind). More speci�cally, they showed that Hist(w)
can be constructed from HistDB(w) and the time information of

update queries. Now, the only possible di�erence compared to

our scheme is that the update function of Sophos reveals nothing

(even ind) when a single (ind,w) pair is updated while our scheme

leaks (ind, |DB(ind)|) when all (ind,w) pairs in the document are

updated. From this, one might think that our scheme reveals more

information than Sophos. However, revealing the document identi-

�er in the document-level update is inevitable except ORAM-based

schemes because the document also needs to be added or deleted

when the update operation is performed.

5.2 Security against Malicious Adversaries
�e security model (Section 2.4) considers only passive adversaries

who will not deviate from the de�ned protocol, but will a�empt to

learn all possible information from the protocol transcripts. �us

our scheme does not guarantee security against malicious adver-

saries that can return incorrect answers to the clients. To remedy

this problem, we can consider the generic solutions for constructing

veri�able DSSE scheme [5]. �e notion of veri�ability enables a

client to verify that the results by search queries are indeed correct.

In [5], the authors showed how to add “veri�ability” to the non-

veri�able scheme in [31] while keeping the performance. Basic idea

is to maintain the hash values of DB(w) for each keyword w , and

then to use these values to check the validity of search results. In

more detail, they applied the multiset hashing technique [12] to

avoid re-hash the full set of DB(w) every time updating for w is

performed. By applying their result, we can easily get the veri�able

version of our scheme without any loss in asymptotic performance.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1458

5.3 Easy Deletion
�e delete operation described in Algorithm 3 requires only an

identi�er of the document to be deleted as a client’s input and the

computation and communication costs for generating and send-

ing the deletion token are only O(1). However, since the previous

forward secure DSSE schemes perform the deletion in the same

way as the addition, at least O(|DB(ind)|) computation and com-

munication costs are required. It is also unrealistic for the client

to know all keywords contained in the document to be deleted in

advance. Furthermore, if the delete operation is repeated for the

same document, meaningless data are continually added to the EDB
unless DBMS prevents it. Note that our scheme does not su�er

from this problem.

6 EVALUATION ON A SMALL DATASET
�e evaluation of our scheme targets the performance of each op-

eration and changes in storage space. To evaluate our scheme, we

wrote a code with C++14 that works standalone on Windows and

POSIX. Because we are interested in measuring the latency to see

how fast the operations are performing, our code is designed to run

as a single program without RPC (Remote procedure call) or sepa-

rate DBMS. Both search and update operations are implemented

so that they can be parallelized using a thread pool. Although our

program does not have a network communication function, it is

designed to be con�gured as a server-client environment through

RPC.

We chose LSH [25] as the underlying hash function to instan-

tiate the PRF F as HMAC, and also used it to instantiate the hash

functions Hi (i = 1, 2, 3).
And we use RocksDB [17] as the data structure of our scheme.

RocksDB is optimized for random access devices such as SSD, and

thus is considered to be suitable as a client and server data struc-

tures. Since a dual dictionary has two keys, we implemented it

to input two objects in RocksDB. Note that one object has a form

of (document label, keyword label) pair, which serves as the

forward index, and the other object has a form of (keyword label,

(document label, encrypted value)) tuple that serves as the in-

verted index. �e label uses the upper 128 bits of the hash digest

(H1, H2), and the encrypted value is a 64-bit value of the result of

bitwise xor of the document ID and the hash digest (H3).

All our experiments were performed on a desktop computer

with a single Intel Core i7 4790 3.6 GHz CPU, 16 GB of DDR3 RAM,

and Samsung SSD 850 PRO 512 GB running Linux Mint 18 (64-

bit). For comparison, we used the open source code of Sophos in

GitLab and added a code that implements the search and update

that do not use the RPC. To minimize I/O access time all �les used

in our experiments are loaded into main memory before starting

measurements. �is is done by activating the memory-mapped �le

read (mmap read) function in RocksDB.

6.1 Dataset
We used the well-known Enron email dataset [15] to create an EDB.

�e Enron email dataset is a dataset that converts the contents of

the mail server to text and is provided as 517,491 plaintext �les of

1.32 GiB when decompressed. We used Python to write a code that

removes embedded a�achments from text �les in BASE64 encoding

and removes unnecessary special characters, HTML tags, and so

on. We used the PorterStemmer provided by the NLTK library [29]

to extract keywords from the original text. �e extracted keyword

count is 400,087, and the total number of document/keyword pairs

is 62,018,878.

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450 500

O
cc

u
rr

en
ce

 (
d

o
cu

m
en

t)

Number of keywords

Figure 4: Occurrence of documents by keyword count

Figure 4 depicts the frequency of documents according to the

number of keywords in the forward index view. Most documents

have fewer than 300 keywords and have a distribution similar to

the log-normal distribution.

1

10

100

1,000

10,000

100,000

1,000,000
O

cc
u

rr
en

ce
 (

k
ey

w
o

rd
)

Number of documents

Figure 5: Occurrence of keywords by document count

Figure 5 depicts the frequency of keywords according to the

number of documents in terms of inverted index. For example, the

number of keywords with only one search result is 143,992. In

addition, it can be inferred that a small number of documents are

returned as a result of the search operation for most keywords.

6.2 EDB Creation
�e initial EDB was created to store the encrypted contents of the

Enron email dataset. Our scheme uses document-level (forward)

input, and we measured the time of completion of EDB creation

by bulk-insertion three times to obtain the average. �e computa-

tional works and I/O latency required for the insertion process are

parallelized using the thread pool. For Sophos, it provides a docu-

ment/keyword pair input function to update an EDB, and provides

an example of keyword-level input for bulk-insertion. For consis-

tent experimentation, we added a code to allow document-level

insertion for EDB creation, and it is parallelized and optimized to

work in multi-threaded mode. We also tried to experiment keyword-

level bulk-insertion as used in Sophos code. Table 3 shows the time

taken to input all documents in the Enron email dataset and the

storage capacity just a�er EDB creation.

To understand the e�ect of the underlying hash function on

the speed of our scheme, we measured the operation speed from

two implementations, one using LSH and the other using SHA

of CRYPTO++ [14]. For reference, LSH-256 was 7.76 cycles/byte,

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1459

Table 3: Comparison with EDB creation using Enron email dataset

Implementation Time (ms) Pairs per sec.

Storage (KiB)

Client Server

Our scheme (with LSH-256) 451,824 137,263.4 86,093 5,243,625

Our scheme (with SHA-256) 469,039 132,225.3 86,089 5,245,237

Sophos (with RSA-2048, Document-level) 9,494,200 6,532.3 272,360 2,242,700

Sophos (with RSA-2048, Keyword-level) 9,628,816 6,441.0 272,364 2,241,436

Sophos (with RSA-512, Document-level) 1,085,146 57,152.6 46,453 2,242,712

and SHA-256 was 25.03 cycles/byte in the evaluation environment.

An interesting point is that the time di�erence between the LSH

based and the SHA based implementations is negligible. Given the

speed di�erence between the two hash functions as noted above,

the implementation appears to be heavily in�uenced by the I/O

bo�leneck.

In the case of the Sophos implementations, the insertion rate

due to RPC removal is faster than 4,300 pairs per second presented

in [4], but still more ine�cient than our scheme. We estimate that

the RSA decryption operation used in Sophos is a more delayed

factor in the EDB generation than I/O latency. As a basis for this

estimation, we implemented Sophos using 512-bit RSA instead of

2,048 bits, and the performance is dramatically improved as shown

in Table 3.

From Table 3, we can see that our scheme has less CPU load and

less client storage space. Considering that the addition operation

including EDB generation is performed at the client, even if the

performance of the client is not su�cient, the operation can be

su�ciently performed by using our scheme.

6.3 EDB Search
To compare the search speed just a�er EDB creation, we searched all

the keywords extracted from the Enron email dataset and measured

the time taken.

0

10

20

30

40

50

60

70

80

90

100

S
ea

rc
h

 t
im

e
p

er
 m

at
ch

ed
 e

n
tr

y
 (
㎲

)

Number of matched documents

Our scheme (with LSH-256)

Our scheme (with SHA-256)

Sophos

Figure 6: Comparison with search time per matched docu-
ment

Figure 6 compares the average time taken to search based on

the number of documents returned in the search results. Here, by

average time we mean the time taken to search divided by the num-

ber of matched documents. Both implementations of our scheme

show that the I/O latency is the bo�leneck as the EDB creation.

When compared with Sophos, however, our scheme is superior in

speed for the case of a small number of matched documents, but

the e�ciency is relatively low on other cases. �is is because our

scheme deletes old labels and adds new labels in the dual dictionary

each time it is searched, thereby increasing the load of I/O.

6.4 EDB Update
To evaluate the e�ect of update operations to the EDB, we randomly

chose 200,000 documents from the Enron mail dataset to create an

EDB and used remained 300,000 documents for the update. We

measured the writing and deleting time by repeating the addition

and deletion operations, and measured the searching time in units

of 200,000 times. Note that Sophos does not provide an explicit

deletion operation, but instead recommends creating and maintain-

ing a separate EDB for deletion. For Sophos, we therefore created

two EDB instances for storing added document/keyword pairs and

deleted pairs respectively and implemented the procedure for a

search query by computing the di�erence between the matched

documents in both EDB instances.

Table 4: Comparison of operation performance during add-
delete-search iterations (unit: pairs per sec.)

Iteration

Our scheme Sophos

Add Delete Search Add Delete Search

Init. 132,870 - 91,265 6,898 - 98,315

200k 124,941 117,406 71,140 6,903 6,968 37,825

400k 127,804 118,227 72,910 6,903 6,915 22,461

600k 130,321 117,977 71,620 6,924 6,934 17,153

800k 127,631 118,150 72,683 6,953 6,960 13,479

6.4.1 Storage Capacity. Based on the EDB generated using the

Enron email dataset, we checked the change in capacity by repeat-

edly adding and deleting 10 randomly chosen documents from the

dataset. Figure 7 shows the results. Note that RocksDB maintains

a certain amount of space a�er deleting data for performance. Al-

though the data structure of our scheme keeps the amount of data

unchanged in this evaluation, the capacity can be increased par-

tially due to the empty space caused by the repeated addition and

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1460

deletion operations. Speci�cally, our scheme makes the capacity

of the EDB start from 2.0 GiB and increases to 2.5 GiB. In the case

of Sophos, it can be seen that the capacity increases linearly in the

evaluation process.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

- 80k 160k 240k 320k 400k 480k 560k 640k 720k 800k

S
er

v
er

 S
to

ra
g
e

(M
B

)

Insertion-Deletion Iteration

Our scheme

Sophos

Figure 7: Server storage usage by repeated addition-deletion
operations

6.4.2 Searching Time. Similar to the experiment for the search

e�ciency in Section 6.3, we searched all the keywords extracted

from the Enron email dataset and measured the average value for

three repeated iterations of the experiments. Each entry in the

“Search” column of Table 4 is the number of matched pairs in the

operation divided by the total time spent. And each entry in the

“Add” and “Delete” columns is the number of document/keyword

pairs processed per one second in the operation.

Our scheme requires only one iteration of the search operation

for the deleted document/keyword pair, and thus it can be seen

that the search speed is decreased in the subsequent search com-

pared to the search speed measured on the initial EDB. However,

since the index of the deleted document/keyword pair is strictly

removed by the additional one-time search procedure, it can be

con�rmed that the search speed is not in�uenced later. In the case

of Sophos, deletion performs the same operation as addition, and

thus shows poor performance as, noted in Section 6.3. Also, since

all the deleted data must be searched in the search query processing,

the search speed gradually decreases. �ese results show that our

scheme is feasible without degrading capacity and performance in

environments where updates are frequent.

7 EVALUATION ON A LARGE DATASET
In Section 6, we evaluate performance of our scheme on the En-

ron email dataset. To check performance in a more realistic situa-

tion, however, we further evaluate performance of our scheme on

Wikipedia. Due to time constraints, this evaluation is limited to the

EDB creation and searching on the initial EDB, and no performance

changes during the update are measured.

�e data structure and data con�guration based on RocksDB, cod-

ing tools and techniques, and the adopted cryptographic algorithms

are the same as those for the Enron email dataset experiments. Con-

sidering the size of Wikipedia, however, all our experiments were

performed on a desktop computer with a single Intel Core i7 6850K

3.6 GHz CPU, 128 GB of DDR4 RAM, and Samsung SSD 850 PRO

512 GB running Linux Mint 18 (64-bit).

7.1 Dataset and EDB Creation
We used the Wikipedia Extractor [2] to remove the wiki syntax

from entire Wikipedia articles
2

[18] and used NLTK to extract

keywords from the original texts. �e size of the uncompressed

xml �les is 52.4 GiB, and the size of the plaintexts with the wiki

syntax removed was 11.8 GiB. �e number of extracted keywords

was 4,225,457, the number of documents is 5,078,194, and the total

number of document/keyword pairs is 698,371,776, which is about

10 times of those of Enron email dataset.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

0 100 200 300 400 500 600 700 800 900 1,000

O
cc

u
rr

en
ce

(d
o

cu
m

en
t)

Number of Keywords

Figure 8: Occurrence of documents by keyword count

Figure 8 depicts the frequency of documents according to the

number of keywords in the forward index view.

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

O
cc

u
rr

en
ce

(k
ey

w
o

rd
)

Number of documents

Figure 9: Occurrence of keywords by document count

Figure 9 depicts the frequency of keywords according to the

number of documents in terms of inverted index.

To create an EDB based on the Wikipedia dataset, both our

scheme and Sophos use document-level input and we measured the

time of completion of EDB generation by bulk-insertion. Table 5

shows the time taken to input all documents in the Wikipedia

dataset and the storage capacity just a�er EDB creation.

Table 5: Comparison with EDB creation using Wikipedia
dataset

Scheme

Time Pairs Storage (KiB)

(ms) per sec. Client Server

Ours 5,268,861 132,547.0 738,524 65,950,212

Sophos 64,456,708 10,834.7 2,198,504 20,954,360

Especially, it is con�rmed that the speed of EDB generation of

Sophos increased about 50% compared to the case for Enron email

dataset (See Table 3). Considering the performance characteristic

2enwiki-20160204-pages-articles.xml.bz2

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1461

of the addition operation of Sophos which strongly depends on the

CPU performance, it is estimated to be in�uenced by the 6-core

CPU instead of the 4-core CPU used for the Enron email dataset

experiments.

Anyway, as observed in Section 6.2, we can see that our scheme

has still less CPU load and less client storage space. �is implies

that the addition operation can be su�ciently performed by using

our scheme even if the performance of the client is not su�cient

and the size of a dataset is big.

7.2 EDB Search
Note that the EDB based on the Wikipedia dataset has a very large

capacity compared to the Enron email dataset. In the case of such

large-scale data, it may not be possible to load and handle the entire

EDB in memory. �erefore, we measured the search performance

in two cases when using all 128 GB RAM that can hold the entire

EDB and when using only 16 GB RAM. To con�gure the 16 GB

RAM environment, we added MEM=16384M command to the GRUB

bootloader. �e result is depicted in Figure 10.

0

100

200

300

400

500

600

700

800

900

1,000

S
ea

rc
h

 t
im

e
p

er
 m

at
ch

ed
 e

n
tr

y
(µ

s)

Number of matched documents

Our scheme (16GB) Our scheme (128GB)

Sophos (16GB) Sophos (128GB)

Figure 10: Comparison with search time per matched docu-
ments on 128 GB and 16 GB RAM environments

When the entire EDB is loaded in the memory, as observed

in Section 6.3, our scheme is superior in speed for the case of a

small number of matched documents but the e�ciency is relatively

low on other cases. When only 16 GB RAM can be used, however,

thrasing occurs because the capacity of the EDB is much larger than

memory size. �is has caused serious performance degradation,

and the performance of Sophos with smaller EDB size has also been

signi�cantly reduced although relatively less.

It is known that random read/write speed of SSD can achieve

optimal performance when issuing more than 32 instructions in

parallel [16]. Since our scheme is designed to be optimized for par-

allel implementation, we evaluate the performance of our scheme

in the environment where mmap read function is disabled and the

SSD is used to read and write directly. Since our scheme has already

been optimized to be well operated at relatively slow storages, no

additional con�guration was required except for mmap read func-

tion disabling. In this case, our scheme shows a big performance

improvement compared to the result of 16 GB RAM environment

depicted in Figure 10. If the number of search results is less than

32, SSD seems not to be utilized e�ectively. For 32 or more search

results, the best performance is shown, which is similar to the case

of full memory load as shown in Figure 11.

0

20

40

60

80

100

120

140

160

180

200

S
ea

rc
h

 t
im

e
p

er
 m

at
ch

ed
 e

n
tr

y
(µ

s)

Number of matched documents

Our scheme (no mmap) Our scheme (128GB) Sophos (128GB)

Figure 11: Comparison with search time per matched docu-
ments on 128 GB and nommap environments

As stated above, due to the di�erence in size of the initial EDBs,

our scheme requires much more work in the search operation.

Nevertheless, for the cases of the entire EDB loaded in the memory,

our scheme does not show signi�cantly less performance compared

to Sophos. And our scheme shows similar performance when the

entire EDB is loaded in the memory or mmap read function is

disabled. Furthermore, it is expected that the change of the storage

capacity due to frequent update operations and the resulting change

in the search speed will be the same as the result in Section 6.4.

�ose imply that our scheme can be fully utilized in large datasets.

ACKNOWLEDGEMENT
We are grateful to anonymous reviewers of the CCS 2017 for very

detailed and thoughtful reviews. We would also like to thank our

shepherd Muhammad Naveed for his advice and help. �is work

was supported by Institute for Information & communications Tech-

nology Promotion (IITP) grant funded by the Korean government

(MSIT) (No.R0101-16-0301).

REFERENCES
[1] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. 2016. Searchable sym-

metric encryption: Optimal locality in linear space via two-dimensional bal-

anced allocations. In Proceedings of the Forty-eighth Annual ACM Symposium
on �eory of Computing (STOC ’16). ACM, New York, NY, USA, 1101–1114.

h�ps://doi.org/10.1145/2897518.2897562

[2] Giuseppe A�ardi. 2016. Wikipedia Extractor. (2016). h�p://medialab.di.unipi.it/

wiki/Wikipedia Extractor

[3] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2014. A survey

of provably secure searchable encryption. ACM Comput. Surv. 47, 2, Article 18

(Aug. 2014), 51 pages. h�ps://doi.org/10.1145/2636328

[4] Raphael Bost. 2016. Σoϕoς - Forward secure searchable encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 1143–1154. h�ps://doi.org/10.

1145/2976749.2978303

[5] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. 2016. Veri�able

dynamic symmetric searchable encryption: Optimality and forward security.

Cryptology ePrint Archive, Report 2016/062. (2016). h�p://eprint.iacr.org/2016/

062

[6] David Cash, Paul Grubbs, Jason Perry, and �omas Ristenpart. 2015. Leakage-

abuse a�acks against searchable encryption. In Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,

New York, NY, USA, 668–679. h�ps://doi.org/10.1145/2810103.2813700

[7] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Cătălin Roşu, and Michael Steiner. 2014. Dynamic searchable encryption

in very-large databases: Data structures and implementation. In Proceedings of
the 2014 Network and Distributed System Security (NDSS) Symposium (NDSS’14).
Internet Society, Reston, VA, U.S.A, 23–26.

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1462

https://doi.org/10.1145/2897518.2897562
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
https://doi.org/10.1145/2636328
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
http://eprint.iacr.org/2016/062
http://eprint.iacr.org/2016/062
https://doi.org/10.1145/2810103.2813700

[8] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Advances in Cryptology – CRYPTO
2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I. Springer Berlin Heidelberg, Berlin, Heidelberg, 353–373.

h�ps://doi.org/10.1007/978-3-642-40041-4 20

[9] David Cash and Stefano Tessaro. 2014. �e locality of searchable symmetric

encryption. In Advances in Cryptology – EUROCRYPT 2014: 33rd Annual Inter-
national Conference on the �eory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, Phong Q. Nguyen and Elis-

abeth Oswald (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 351–368.

h�ps://doi.org/10.1007/978-3-642-55220-5 20

[10] Yan-Cheng Chang and Michael Mitzenmacher. 2005. Privacy preserving key-

word searches on remote encrypted data. In Applied Cryptography and Net-
work Security: �ird International Conference, ACNS 2005, New York, NY, USA,
June 7-10, 2005. Proceedings, John Ioannidis, Angelos Keromytis, and Moti

Yung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 442–455. h�ps:

//doi.org/10.1007/11496137 30

[11] Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled dis-

closure. In Advances in Cryptology - ASIACRYPT 2010: 16th International Confer-
ence on the �eory and Application of Cryptology and Information Security, Singa-
pore, December 5-9, 2010. Proceedings, Masayuki Abe (Ed.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 577–594. h�ps://doi.org/10.1007/978-3-642-17373-8 33

[12] Dwaine Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G.

Edward Suh. 2003. Incremental multiset hash functions and their application

to memory integrity checking. In Advances in Cryptology - ASIACRYPT 2003:
9th International Conference on the �eory and Application of Cryptology and
Information Security, Taipei, Taiwan, November 30 – December 4, 2003. Proceedings,
Chi-Sung Laih (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 188–207.

h�ps://doi.org/10.1007/978-3-540-40061-5 12

[13] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: Improved de�nitions and e�cient constructions.

In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS ’06). ACM, New York, NY, USA, 79–88. h�ps://doi.org/10.1145/

1180405.1180417

[14] Wei Dai. 2016. Crypto++ Library 5.6.5. (2016). h�ps://www.cryptopp.com

[15] Enron Email Dataset. 2015. (2015). h�ps://www.cs.cmu.edu/∼./enron

[16] Samsung Electronics. 2013. Samsung Solid State Drive White Pa-

per. (2013). h�p://www.samsung.com/semiconductor/minisite/ssd/product/

consumer/850pro.html

[17] Facebook. 2016. RocksDB: A persistent key-value store for fast storage environ-

ment. (2016). h�p://rocksdb.org

[18] Wikimedia Foundation. 2016. Wikimedia Downloads. (2016). Retrieved February

4, 2016 from h�ps://dumps.wikimedia.org

[19] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: E�cient oblivious RAM in two rounds with applications to searchable

encryption. In Advances in Cryptology – CRYPTO 2016: 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, Ma�hew Robshaw and Jonathan Katz (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 563–592. h�ps://doi.org/10.1007/978-3-662-53015-3 20

[20] Sha� Goldwasser and Mihir Bellare. 2008. Lecture Notes on Cryptography. h�ps:

//cseweb.ucsd.edu/∼mihir/papers/gb.html

[21] Florian Hahn and Florian Kerschbaum. 2014. Searchable encryption with secure

and e�cient updates. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,

310–320. h�ps://doi.org/10.1145/2660267.2660297

[22] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access pa�ern

disclosure on searchable encryption: Rami�cation, a�ack and mitigation. In Pro-
ceedings of the 2012 Network and Distributed System Security (NDSS) Symposium.

Internet Society, Reston, VA, U.S.A.

[23] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and dynamic search-

able symmetric encryption. In Financial Cryptography and Data Security: 17th
International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Se-
lected Papers, Ahmad-Reza Sadeghi (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 258–274. h�ps://doi.org/10.1007/978-3-642-39884-1 22

[24] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS ’12). ACM, New York, NY, USA,

965–976. h�ps://doi.org/10.1145/2382196.2382298

[25] Dong-Chan Kim, Deukjo Hong, Jung-Keun Lee, Woo-Hwan Kim, and Daesung

Kwon. 2015. LSH: A new fast secure hash function family. In Information Security
and Cryptology - ICISC 2014: 17th International Conference, Seoul, South Korea,
December 3-5, 2014, Revised Selected Papers, Jooyoung Lee and Jongsung Kim

(Eds.). Springer International Publishing, Cham, 286–313. h�ps://doi.org/10.

1007/978-3-319-15943-0 18

[26] Muhammad Naveed. 2015. �e fallacy of composition of oblivious RAM and

searchable encryption. Cryptology ePrint Archive, Report 2015/668. (2015).

h�p://eprint.iacr.org/2015/668

[27] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic

searchable encryption via blind storage. In Proceedings of the 2014 IEEE Sympo-
sium on Security and Privacy (SP ’14). 639–654. h�ps://doi.org/10.1109/SP.2014.47

[28] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.

Blind Seer: A scalable private DBMS. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (SP ’14). 359–374. h�ps://doi.org/10.1109/SP.2014.30

[29] NLTK Project. 2016. Natural Language Toolkit. (2016). h�p://www.nltk.org

[30] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium
on Security and Privacy (SP ’00). IEEE Computer Society, Washington, DC, USA,

44–55. h�p://dl.acm.org/citation.cfm?id=882494.884426

[31] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical

dynamic searchable encryption with small leakage. In Proceedings of the 2014
Network and Distributed System Security (NDSS) Symposium. Internet Society,

Reston, VA, U.S.A.

[32] A�ila A. Yavuz and Jorge Guajardo. 2016. Dynamic searchable symmetric en-

cryption with minimal leakage and e�cient updates on commodity hardware.

In Selected Areas in Cryptography – SAC 2015: 22nd International Conference,
Sackville, NB, Canada, August 12–14, 2015, Revised Selected Papers, Orr Dunkel-

man and Liam Keliher (Eds.). Springer International Publishing, Cham, 241–259.

h�ps://doi.org/10.1007/978-3-319-31301-6 15

[33] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your

queries are belong to us: �e power of �le-injection a�acks on searchable encryp-

tion. In 25th USENIX Security Symposium (USENIX Security 16). USENIX Associa-

tion, Austin, TX, 707–720. h�ps://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/zhang

Session G1: Searchable Encryption CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1463

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://www.cryptopp.com
https://www.cs.cmu.edu/~./enron
http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro.html
http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro.html
http://rocksdb.org
https://dumps.wikimedia.org
https://doi.org/10.1007/978-3-662-53015-3_20
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://cseweb.ucsd.edu/~mihir/papers/gb.html
https://doi.org/10.1145/2660267.2660297
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1007/978-3-319-15943-0_18
https://doi.org/10.1007/978-3-319-15943-0_18
http://eprint.iacr.org/2015/668
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1109/SP.2014.30
http://www.nltk.org
http://dl.acm.org/citation.cfm?id=882494.884426
https://doi.org/10.1007/978-3-319-31301-6_15
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	1.1 Previous Forward Secure DSSE Schemes
	1.2 Our Scheme

	2 Preliminaries and Models
	2.1 Notations
	2.2 Pseudo-Random Function
	2.3 (Dynamic) Searchable Symmetric Encryption
	2.4 Security Model

	3 The Proposed DSSE Scheme
	3.1 Building Blocks
	3.2 Construction
	3.3 Correctness

	4 Security Proof
	5 Some Considerations
	5.1 Leakage Comparison with Previous Schemes
	5.2 Security against Malicious Adversaries
	5.3 Easy Deletion

	6 Evaluation on a Small Dataset
	6.1 Dataset
	6.2 EDB Creation
	6.3 EDB Search
	6.4 EDB Update

	7 Evaluation on a Large Dataset
	7.1 Dataset and EDB Creation
	7.2 EDB Search

	References

