
Certified Malware: Measuring Breaches of Trust in the Windows
Code-Signing PKI

Doowon Kim
University of Maryland

College Park, MD
doowon@cs.umd.edu

Bum Jun Kwon
University of Maryland

College Park, MD
bkwon@umd.edu

Tudor Dumitras,
University of Maryland

College Park, MD
tdumitra@umiacs.umd.edu

ABSTRACT
Digitally signedmalware can bypass system protectionmechanisms
that install or launch only programs with valid signatures. It can
also evade anti-virus programs, which often forego scanning signed
binaries. Known from advanced threats such as Stuxnet and Flame,
this type of abuse has not been measured systematically in the
broader malware landscape. In particular, the methods, effective-
ness window, and security implications of code-signing PKI abuse
are not well understood. We propose a threat model that highlights
three types of weaknesses in the code-signing PKI. We overcome
challenges specific to code-signing measurements by introducing
techniques for prioritizing the collection of code-signing certificates
that are likely abusive. We also introduce an algorithm for distin-
guishing among different types of threats. These techniques allow
us to study threats that breach the trust encoded in the Windows
code-signing PKI. The threats include stealing the private keys asso-
ciated with benign certificates and using them to signmalware or by
impersonating legitimate companies that do not develop software
and, hence, do not own code-signing certificates. Finally, we discuss
the actionable implications of our findings and propose concrete
steps for improving the security of the code-signing ecosystem.

CCS CONCEPTS
• Security and privacy → Systems security; Operating sys-
tems security;

KEYWORDS
Code signing;WindowsAuthenticode;Malware; PKI; Compromised
certificates

1 INTRODUCTION
Each time we use our computers, we trust the programs executed,
either deliberately or in the background, not to perform unwanted
or harmful actions. Software that appears to come from reputable
publishers, but that performs such actions, breaches this trust.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3133958

To establish trust in third-party software, we currently rely on
the code-signing Public Key Infrastructure (PKI). This infrastruc-
ture includes Certification Authorities (CAs) that issue certificates
to software publishers, vouching for their identity. Publishers use
these certificates to sign the software they release, and users rely
on these signatures to decide which software packages to trust
(rather than maintaining a list of trusted packages). If adversaries
can compromise code signing certificates, this has severe impli-
cations for end-host security. Signed malware can bypass system
protection mechanisms that install or launch only programs with
valid signatures, and it can evade anti-virus programs, which often
neglect to scan signed binaries. More generally, the recent advances
in trustworthy computing [30] rely on a functioning mechanism
for bootstrapping trust in third-party programs.

In the past, compromised code-signing certificates have been
associated with advanced threats, likely developed by nation-state
adversaries. For example, the Stuxnet worm included device drivers
that were digitally signed with keys stolen from two Taiwanese
semiconductor companies, located in close proximity [10]. The
Flame malware masqueraded as a file from Windows Update by
conducting a previously unknown chosen-prefix collision attack
against the MD5 cryptographic hash [33]. In both cases, the valid
digital signatures allowed the malware to evade detection and to
bypass anti-virus and Windows protections.

Anecdotal information suggests that a broader range of mali-
cious programs may carry valid digital signatures, resulting from
compromised certificates [10, 11, 33]. However, this threat has not
been measured systematically. In particular, the methods, effective-
ness window, and security implications of code-signing PKI abuse
are not well understood, owing to the difficulty of distinguishing
between malicious and potentially-unwanted behavior. The prior
research on abuse in the code-signing ecosystem [18, 19, 21, 34]
has focused on potentially unwanted programs (PUPs), such as
adware, which are typically signed with certificates legitimately
issued to the PUP publishers. While the signed PUPs substantiate
the utility of valid signatures for abusive programs, the prior re-
sults do not distinguish between certificates issued to publishers of
dubious software by following a legitimate process and abuse of
the code-signing PKI.

In this paper, we conduct a systematic study of threats that breach
the trust encoded in the Windows code-signing PKI. We focus on
signed malware, which is more likely than PUPs to rely on abusive
code signing certificates as malware creators typically try to hide
their identities. Unlike the prior studies on other certificate ecosys-
tems, such as measurements of the Web’s PKI [3, 7, 14, 15, 24, 40],
we cannot rely on a comprehensive corpus of code signing certifi-
cates. These certificates cannot be collected at scale by scanning

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1435

https://doi.org/10.1145/3133956.3133958

the Internet; there is no official list of code signing certificates, or
even of the organizations that can issue such certificates.

To overcome these challenges, we analyze a large data set of
anti-virus reports, corresponding to 1,053,114 malicious files that
carry digital signatures. This data set is made available by Symantec
on the WINE platform [4]. By querying the VirusTotal service [35],
this analysis allows us to prioritize the collection of code signing
certificates that are likely abusive. We also utilize global corporate
directories to identify publishers of benign software and we develop
novel heuristics for distinguishing among different types of abuse.

We find that digitally signed malware was prevalent in the wild
before Stuxnet; the earliest sample in our data set was signed in
2003. 88.8% of the malware families using abusive certificates rely
on a single certificate, which suggests that, in most cases, these
certificates are controlled by the malware authors rather than by
third-party “signing” services. We also estimate that 80% of the
abusive certificates remain a threat for over 5.6 years after they are
first used to sign malware.

To characterize the real-world breaches of trust in the code sign-
ing PKI, we propose a threat model with three classes of weaknesses
that an adversary can exploit: inadequate client-side protections,
publisher-side key mismanagement, and CA-side verification failures.
We infer the prevalence and evolution of each weakness, and we
analyze how long users are exposed to these threats. Then, we con-
servatively select a subset of abusive code signing certificates for
in-depth investigation. Below, we highlight some of our findings
from this analysis:

• Inadequate client-side protections. We find that simply copy-
ing an Authenticode signature from a legitimate file to a
known malware sample may cause anti-virus products to
stop detecting it—even though the signature is invalid, as it
does not match the file digest. 34 anti-virus products are af-
fected, and this type of abuse accounts for 31.1% of malware
signatures in the wild. We notified the anti-virus companies
of the issue. Two companies confirmed that their products
fail to check signature properly; one of them plans to fix the
issue.

• Publisher-side key mismanagement. We identify 72 certifi-
cates that were likely compromised, and we were able to
confirm this with eight publishers; five of them were not
previously aware of the abuse. We analyze a malware family
that infects developer machines and copies malicious code
into files compiled and signed on those machines. We find
that, starting from 180 developer machines, variants of this
malware can reach 93,016 machines—an amplification factor
of 517×.

• CA-side verification failures. We identify 27 certificates issued
to malicious actors impersonating legitimate companies.

We utilize our findings to draw lessons about the trust that we
can place in unknown software packages. We also discuss concrete
proposals for improving the code signing ecosystem. We make the
information of the abusive certificates publicly available at https:
//signedmalware.org. The information includes publisher names,
issuer names, serial numbers, hash values of malware signed with
the certificates, etc.

2 PROBLEM STATEMENT
Code signing is a mechanism for authenticating the software pub-
lisher that released a given executable program. The publisher gen-
erates a pair of cryptographic keys (the public key and the private
key) computes a cryptographic hash of the executable code and
signs the hash with the private key. To prove that it owns the sign-
ing key, the publisher requests from Certificate Authority (CA) a
digital certificate. The certificate includes the name of the publisher,
its public key, and a few other fields; and it is signed with the CA’s
key. A CA may itself have a certificate signed by another CA, re-
sulting in a trust chain that must end in a root certificate that the
end-user trusts. Like any authentication token, certificates must be
revoked when they are compromised. Additionally, before signing
any field of the binary may be forged, including the compilation
timestamp. To prove that the certificate was valid at the time of
signing, the publisher may obtain an additional signature from a
Time Stamping Authority (TSA). The code signature, the certificate
and the timestamp are distributed with the binary. The user who
installs the software and runs the installed executables can then
authenticate the publisher and verify that the binary has not been
tampered with after signing.

The code signing mechanism allows users to set policies on what
executables to trust; for example all executables from a set of trusted
publishers, all executables for which the publisher can be identified
(i.e. they are signed with a valid certificate), or all executables signed
with a certificate that was valid at the time of signing. Additionally,
software updates may be validated and applied automatically if
they are signed with the same certificate as the original program.

Code signing relies on a Public Key Infrastructure (PKI), com-
posed of certificate authorities that can vouch for the identity of
software publishers. Users place their trust in an ecosystem of soft-
ware publishers, root CAs and root TSAs—a large trusted computing
base (TCB) that provides many opportunities for miscreants to com-
promise security. Like in the TLS certificate ecosystem, every CA
can sign certificates for any publisher, and there is no official list of
code signing certificates or even of the organizations that can issue
such certificates. Unlike for TLS, code signing is employed by many
different platforms and operating systems, each with its own root
certificate store: Windows and macOS executables and drivers, Fire-
fox XPIs, Android/iOS apps, Java Jars, Visual Basic for Applications,
Adobe Air apps, etc. This further expands the TCB for an end user.
The TLS PKI has been the subject of several measurement studies
[3, 7, 14, 15, 24, 40], which have illuminated vulnerabilities of the
PKI and how it is abused in the wild. These findings have stimu-
lated research on fixing these problems and have prompted several
efforts for preventing abuse, such as certificate transparency [22],
key pinning [20] and DANE [13]. In contrast, little is known about
the various code signing ecosystems, including the opportunities
for breaching the trust in various actors from these ecosystems, the
prevalence of real-world abuse of the PKI and the extent to which
code signing prevents security threats.

As a first step in this direction, our goal in this paper is to measure
breach-of-trust in the Windows code signing PKI. An adversary
can breach trust relationships explicitly, e.g. by stealing the private
keys associated with benign certificates and using them to sign
malware, or implicitly, e.g. by impersonating legitimate companies

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1436

https://signedmalware.org
https://signedmalware.org

that do not develop software and, hence, do not own code-signing
certificates. We aim to analyze the prevalence of this threat in the
real world and to illuminate the mechanisms for beaching the trust.
We also aim to understand the security implications of these types
of abuse and to examine the effectiveness of proposed PKI improve-
ments in defending against this threat. Our non-goals include fully
characterizing the code signing ecosystems, analyzing certificates
issued legitimately to real (but perhaps ill intentioned) publish-
ers, or developing new techniques for authenticating executable
programs.

2.1 Overview of code signing
On Windows, the prevalent code signing standard is Microsoft Au-
thenticode [26]. The standard is based on Public-Key Cryptography
Standard (PKCS) #7 [16] and is used to digitally sign Windows
portable executables (PE). These include installers (.msi), cabinet
(.cab) and catalog (.cat) files, Active X controls (.ctl, and .ocx), dy-
namically loaded libraries (.dll), and executables (.exe). PKCS #7-
formatted content is called signed data. A signed data blob includes
the signature, the hash value of a PE file, and the certificate chains.
The chains should end in a trusted root certificate, but the signed
data does not need to include the root certificate as long as the
root certificate is present in the users’ root stores. Authenticode
supports MD5, SHA-1, and SHA-256 hashes.

Protections that rely on code signing. On Windows, User Ac-
count Control (UAC) verifies the signature and includes the pub-
lisher’s name in the notification presented to the user when a pro-
gram requests elevated privileges. Microsoft SmartScreen checks ex-
ecutable files downloaded from theWeb and assesses the publisher’s
reputation. A publisher may also obtain an Extended Validation
(EV) certificate, which must undergo stricter vetting procedures
outlined in the Guidelines for Extended Validation produced by
the CA/Browser Forum.1 Because of the higher degree of trust in
these certificates, they receive instant reputation in SmartScreen,
while standard code signing certificates must build up their repu-
tation to bypass the SmartScreen Filter. Google Safe Browsing is
another protection system similar to the SmartScreen. The whitepa-
per mentions that "Chrome trusts potentially dangerous file types
that match URLs in the whitelist, and it also trusts files signed by a
trusted authority." 2 Starting with Vista, drivers should be signed by
a trusted Certificate Authority (CA) to be installed on a Windows
machine3. From Windows 10 (version 1607), a stricter requirement
is set: EV certificates are necessary for any new kernel mode drivers
4.

Antivirus engines also utilize code signing information. To re-
duce false positives, some AV engines use whitelisting based on
code signing certificates. For example, Symantec mention in their
whitelisting page: "To prevent false positive detections we strongly
recommend that you digitally sign your software with a class 3
digital certificate." 5

1https://cabforum.org
2https://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html
3https://www.digicert.com/code-signing/driver-signing-certificates.htm
4https://docs.microsoft.com/en-us/windows-hardware/drivers/install/
kernel-mode-code-signing-policy--windows-vista-and-later-
5https://submit.symantec.com/whitelist/

Revocation. Beside issuing new certificates, CAs must sometimes
revoke existing certificates, for a variety of reasons. One of the
most common cases is when a private key associated with the
certificate is compromised6. Certificates using weak cryptographic
keys [39] must be revoked as well. In rare cases, CAs must also
revoke erroneously issued certificates.7

CAs use two mechanisms for informing users of certificate revo-
cations: Certificate Revocation Lists (CRLs) and the Online Certifi-
cate Status Protocol (OCSP). A CRL includes multiple certificates
that have been revoked and is made available at a link specified in
the certificate. These lists are not comprehensive, and users must
periodically download multiple CRLs to receive all the information
about revoked certificates. With OCSP, users query a server main-
tained by the CA to receive the revocation status of a certificate on
demand. Both the CRLs and the OCSP responses are signed by the
CA to ensure their integrity.

2.2 Differences between code signing and TLS
Code signing and the TLS protocols used to secure HTTP communi-
cations utilize X.509 v3 certificates for authentication and integrity.
One type of certificate should not be used for another purpose (e.g.,
program code cannot be signed with a TLS certificate) because its
purpose is indicated in the “Key Usage" and “Extended Key Usage"
fields. The latter field must include “Code Signing” for code sign-
ing certificates and “Server Authentication” for TLS certificates.
However, because executable programs may be invoked on a ma-
chine that is not connected to the Internet, code signing certificates
may include trusted timestamps and have special requirements for
revocation.
Trusted timestamping. A trusted timestamp certifies the signing
time of the code and extends the trust in the program beyond the
validity period of the certificate. In TLS, when a certificate expires,
any service (e.g., web, email, etc.) associated with the certificate
becomes invalid. However, if program code is properly signed and
timestamped within its validity period, the code can remain valid af-
ter the certificate expires. To timestamp signed code, the hash value
of an original program code is sent to a Time-Stamping Authority
(TSA). The TSA appends the current timestamp to the received
hash value, calculates a new hash, and digitally signs it with its
private key. The TSA then returns the signature and the current
timestamp in plain text. The publisher appends the received signa-
ture, timestamp, and TSA certificate chains to the signed program
code.
Revocation. For TLS, CAs do not provide the revocation status
of expired certificates. In contrast, because of timestamping, code-
signing CAs must keep updating the certificate revocation infor-
mation even after the certificate expires.

As trusted timestamps cause an indefinite extension of the cer-
tificate validity, revocation mechanisms play a more important role
in the code signing ecosystem. Suppose a code signing certificate is
valid between ti (issue date) and te (expiration date). The certificate
is revoked at some point (no matter before or after the expiration
6https://www.globalsign.com/en/blog/casc-code-signing-certificate-requirements-
for-developers/
7For example, in 2001 VeriSign issued two code signing certificates with the common
name of “Microsoft Corporation" to an adversary who claimed to be a Microsoft
employee [25].

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1437

https://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html
https://www.digicert.com/code-signing/driver-signing-certificates.htm
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://submit.symantec.com/whitelist/

date) and its revocation date is set to tr . Any program that is signed
and timestamped between ti and tr is still valid even though the
certificate is revoked. This is based on the assumption that we know
when the certificate has been compromised, and all the code signed
and timestamped before tr is valid. However, the CA may not know
the exact date when the certificate was compromised. Consequently,
CAs may set the revocation date equal to the issue date. In this case,
all the (even benign) programs signed with that certificate become
invalid. The policy on setting revocation dates varies from one CA
to another.

2.3 Threat model
We consider an adversary with two goals: (1) to distribute and in-
stall malware on end-user machines; and (2) to conceal its identity.
In consequence, the adversary aims to sign malware samples in
order to evade AV detections and platform security policies such
as User Account Control and SmartScreen. At the same time, the
adversary does not want to obtain a legitimate code-signing certifi-
cate, which would reveal its identity. This second goal distinguishes
our adversary from the PUP publishers considered in the prior work
on code-signing abuse [18, 19, 21, 34]. To achieve these goals, the
adversary exploits weaknesses in the code-signing PKI to obtain
signed malware samples, which bypass various defenses. These
weaknesses fall into three categories: inadequate client-side protec-
tions, publisher-side key mismanagement, and CA-side verification
failures.
Inadequate client-side protections.While Windows operating
systems have the ability to verify code-signing signatures, they
often allow unsigned or improperly signed software to be installed
and executed. If a program requires elevated privileges, UAC notifies
the user and includes a message about the publisher’s identity (or
lack thereof, if the signature is invalid). However, if the user choses
to grant the privilege, Windows does not take further enforce-
ment actions. To fill this gap, anti-virus tools may block malicious
programs with invalid signatures. However, each tool includes an
independent implementation of the signature verification, which
may result in different interpretations of certificate validity.
Publisher-side key mismanagement. Publishers are expected
to restrict access to their code signing keys and to keep them secure.
If the adversary gains access to the development machines involved
in the signing process, it can steal the private key that corresponds
to the publisher’s certificate—thus compromising the certificate—or
it can use those machines to sign malware.

A certificate is compromised when the private key is no longer
in the sole possession of its owners. Signing keys may be stolen in
two ways:

• An adversary may breach the publisher’s network and gain
access to a machine storing the private key. The adversary
may then use the key for signing malware. This method was
likely employed for Stuxnet and Duqu 2.0 [10, 31], advanced
pieces of malware that carried valid signatures and certifi-
cates belonging to legitimate companies located in Taiwan.

• When a private key is compromised, the certificate associ-
ated with the key should be revoked and then re-issued with
a new key pair. However, developers may reuse the compro-
mised key in the new certificate. Key reuse was previously

documented in 14% of TLS certificates revoked following
Heartbleed [6].

Infected developer machines may also be utilized to silently
sign malicious code with the publisher’s valid certificate. The
W32/Induc.A [27] malware was first found in 2009, and infected
Delphi files. When executed, the malware searched for files required
by the Delphi compilers, and injected malicious code into those files.
In consequence, additional malware could be signed with a valid
certificate, during the compilation process, and then distributed in
a legitimate software package.
CA-side verification failures. CAs are responsible for verifying
clients’ identity before issuing a code signing certificate. However,
this verification process may fail, resulting in certificates issued to
publishers who hide their real identities.

Identity theft occurs when the adversary successfully masquer-
ades as a reputable company and convinces a CA to issue a code-
signing certificate bearing that company’s name. For example, in
January 2001 Verisign mistakenly issued two code signing certifi-
cates to an adversary who claimed to be an employee of Microsoft,
owing to a human error in the verification process [25]. However,
identity theft does not necessarily need to target large software
corporations. Companies in other industries, which do not release
software and do not need code signing certificates, may be easier
targets as they do not expect to be affected by this form of identity
theft.

Shell companiesmay also help the adversary acquire code signing
certificates legally from a CA. Because the shell company appears
legitimate, CAs have no reasons to decline the application for the
certificate. A disadvantage for this form of abuse is that the valid,
but unfamiliar, publisher name has not accumulated reputation in
defenses like SmartScreen and may not be trusted by users. How-
ever, valid signatures may nevertheless prevent anti-virus scanning,
and users may feel encouraged to install the software if the Win-
dows dialog indicates that the publisher is verified.

2.4 Challenges for measuring code signing
The challenges in this study for measuring code signing are collect-
ing of binaries and distinguishing between the abuse cases. For TLS
it is possible to get a comprehensive list of certificates by scanning
the IP spaces. However, for code signing there exists no easy way to
collect all the certificates used in the field. Even for the certificates
we are able to collect, it is hard to capture all the binaries signed by
these certificates. A further challenge is to identify the abuse case,
e.g., compromised certificate, identity theft, shell company. While
some well-studied malware samples, such as Stuxnet and Duqu,
are known to use compromised certificates, in most cases it is hard
to find a ground truth about the type of abuse. The only precise
information available is whether a certificate is revoked, as CAs
distribute lists of revoked certificates. For most of the certificates
on these lists, the revocation reason is left unspecified [19].

3 MEASUREMENT METHODS
To characterize breaches of trust in the Windows code signing PKI,
we collect information on Authenticode certificates used to sign
malware samples in the wild. We then classify these cases according
to the threat model from Section 2.3 and we investigate the PKI

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1438

weaknesses that facilitated the abuse. To overcome the challenges
that have prevented this analysis until now, we propose methods
for prioritizing the collection of certificates that are likely to be
abusive and an algorithm for distinguishing among the three types
of threats we consider.

3.1 Data sources
We identify hashes of signed malware samples, and the correspond-
ing publishers and CAs, from Symantec’s WINE dataset, we collect
detailed certificate information from VirusTotal, and we assess the
publishers using OpenCorporates and HerdProtect.

Worldwide Intelligence Network Environment (WINE).
WINE [4] provides telemetry collected by Symantec’s products
on millions of end-hosts around the world (10.9 million). Users of
these products can opt-in to report telemetry about security events
(e.g., executable file downloads, virus detections) on their hosts.
These hosts are real computers in active use, rather than honeypots.
From the WINE data set, we query the (a) anti-virus (AV) telemetry
and (b) binary reputation.

The AV telemetry data contains information on the anti-virus
signatures triggered on user machines. From this data, we collect
the SHA256 hash of the binary that triggered the report and the
name of the AV detection signature assigned to the binary. We
extract about 70,293,533 unique hashes.

The binary reputation data reports download events on the user
machines. From this data, we extract the SHA256 hash of the bi-
nary, the server-side timestamp of the event, and the names of the
publisher and the CA from the code signing certificate. There are
587,992,001 unique binaries here. This data set does not provide
more detailed information about the certificate such as its serial
number. In consequence, WINE does not allow us to distinguish
between files signed with different certificates belonging to the
same publisher.

VirusTotal. To collect information about code signing certificates,
we query VirusTotal [35]. This service provides an API for scan-
ning files using up to 63 different anti-virus (AV) products, and
for querying the previous scanning reports. We query VirusTotal
using a private API, provided by VirusTotal, and retrieve the fol-
lowing information: the first-submission timestamp to VirusTotal,
the number of AV engines that detected the file as malicious, the
assigned detection name, and the file code signing information.

OpenCorporates. OpenCorporates8 maintains the largest open
database of businesses around the world, providing information
on over 100 million companies. We use this database to determine
whether publishers that own certificates used to sign malware
correspond to legitimate companies.

HerdProtect. We further investigate the reputation of the com-
pany, as software publisher, using HerdProtect9. For each publisher
in our dataset, we collect the following information: whether the
publisher is known to release PUPs, a summary of the company
(location, business type, etc.), and a sample of the certificates issued
to the publisher.

8https://opencorporates.com
9http://www.herdprotect.com/

3.2 System overview
Pipeline overview. As illustrated in Figure 1, our data collection
and analysis consists of four steps: seed collection, data filtration,
input data preparation and identifying potentially abusive certifi-
cates.

• Seed collection.We start by collecting a set of unique SHA256
file hashes from the AV telemetry data set in WINE. We
exclude the hashes detected by signatures that do not nec-
essarily indicate a malicious activity, such as hacktools (e.g.
password crackers, vulnerability scanners) or adware. To
this set, we add a list of hashes of known malicious binaries,
provided separately by Symantec. We then join this list of
hashes to the binary reputation schema, to determine which
files have a digital signature. This results in a tentative list
of binaries that are both digitally signed and malicious.

• Filtering data. The tentative list generated in the previous
step may contain PUPs and benign programs. We filter out
PUPs in three ways. First, we exclude the PUP publishers
identified in prior work [18, 19, 21, 34]. Second, we query
HerdProtect for all company names (the common names in
certificates). If they are labeled as PUP publishers, we remove
their hashes from the list. Third, we pick 10 samples for each
common name, and filter out them if at least one of them is
determined to be a PUP as discussed in Section 3.3. For the
files whose subject is specified as Microsoft or Anti-virus
companies, we sample the files using the Symantec ground
truth. In order words, we only take the ones that have bad
reputation in the Symantec ground truth for those files.

• Input data preparation.We use the filtered hashes to query
VirusTotal. The VirusTotal reports provide detailed informa-
tion on the code signing certificate and AV detection results
for each binary. We consider a binary to be signed malware if
1) it is properly signed, and 2) the detection names suggest it
is malware, as detailed in Section 3.3. Note that at this stage
we expect to see a number of malware samples with mal-
formed signatures. We analyze these samples in Section 4,
but we do not pass them further down the pipeline.
After we obtain the list of signed malware, we use the <pub-
lisher, CA> pairs from our list to query binary reputation
schema in WINE. The result of the query is a list of poten-
tially benign binaries that are signed with the same certifi-
cates used to signed the malware. We then query VirusTotal
again with this list, and we use the reports to identify benign
files, as described in Section 3.3.

• Identify potentially abusive certificates. For each code signing
certificate used to sign malware, we infer the type of abuse
using the algorithm described in Section 3.4.

3.3 Binary labeling
Malware.We distinguish malware from benign and potentially un-
wanted programs using the approach proposed in [21]. Specifically,
for each binary we define cmal as the number of anti-virus products
invoked by VirusTotal that flagged the binary as malicious. We set
cmal ≥ 20 as the threshold for suspicious binaries. We then inspect
the labels given by these AV products and compute rpup as the
fraction of labels indicative of PUPs (we utilize the same keywords

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1439

http://www.herdprotect.com/

Filtering

PUP…

Potentially
abusive

certificates

Detec%on	
Algorithm	

WINE Virus
Total WINE Virus

Total

Seed Collection Filtering Data Input Data Preparation Identify Potentially
Abusive Certificates

Uncertain
Certificate

Proper
Certificate

Figure 1: Data analysis pipeline.

Clustering
All samples

By cer4ficate

Stolen
Cer4ficate

Fraudulent or
Shell company

NO

YES

Signed
Malware

Properly
Signed

NO

YES

Malformed
Cer4ficate

Only
Malware

Figure 2: Flowchart of the abuse detection algorithm.

as in the prior work). We consider that a binary is malware if it has
cmal ≥ 20 and rpup ≤ 10%.

Benign programs. We also utilize the VirusTotal reports to de-
termine if a program is benign. If a file has cmal = 0 and a valid
signature, we treat it as benign.

3.4 Abuse detection algorithm
As explained in Section 3.2, in the third step of our pipeline we
identify binaries that carry malformed digital signatures. These sig-
natures do not match the hash of the binary and were likely copied
literally from other signed binaries. In this case, the adversary does
not control the code signing certificate, but nevertheless tries to
produce a binary that may appear to be signed.

The rest of binaries identified by our pipeline are properly signed
with certificates that may be valid, expired or revoked. The binaries
include malware and benign samples and exclude PUPs. We group
binaries according to their code signing certificates. A publisher’s
binaries may be split among multiple groups if we identify distinct
certificates owned by the publisher. Each group may include (i)
only benign samples; (ii) only malware or (iii) both malware and
benign binaries. As it is generally difficult to identify benign samples
signed with a specific certificate, we consult additional data sources
to increase our coverage. Specifically, we further query HerdProtect
to determine if more samples signed with the same certificate are
known to exist, and we manually investigate the publishers by
visiting their websites. For each certificate used to sign malware,

we then infer the corresponding type of abuse using the method
illustrated in Figure 2.

Compromised certificates.As described in Section 2.3, a compro-
mised certificate is initially issued to a legitimate publisher and is
used to sign benign programs. After the private key is compromised,
the certificate is shared between the legitimate owner and the mal-
ware authors. In consequence, we expect to see both benign and
malicious programs in a compromised certificate’s group. For each
group of binaries in this category, we further analyze the trusted
timestamps to reconstruct the timeline of the abuse.

Identity theft & shell companies. When the malware authors
are able to convince a CA to issue them a code signing certificate,
they have no motivation to use the certificate to sign benign code
as well. We therefore expect to see only malicious programs in
such a certificate’s group. We distinguish between cases of identity
theft and certificates belonging to shell companies by querying
OpenCorporates and HerdProtect. Specifically, if we find a publisher
in either of these directories, and the company address in the X.509
certificate matches the information in the directory, we suspect
that the company is a victim of identity theft.

Verification. The VirusTotal reports allow us the reliably identify
all the binaries with malformed digital signatures. Because this case
does not involve any failures on the part of the publisher or the
CA, we run experiments to determine if these signatures bypass
client-side protections. Among the other types of abuse, we have a
higher degree of confidence in our determination that a certificate is
compromised, as we can observe that it is likely utilized by multiple
actors. Some of the other certificates may also be compromised,
but we cannot determine this because we cannot collect all the
benign binaries in the wild. Similarly, we have a higher degree of
confidence in the identity fraud determination than in recognizing
shell companies, because some companies may be missing from the
directories we utilize. To verify our results, we manually analyze
their timelines, and we contact their owners and CAs to confirm
our findings.

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1440

Year

N
um

be
r o

f m
al

w
ar

e

0

50

100

150

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Figure 3: Number of properly signed malware per year
(cmal ≥ 5).

4 MEASUREMENT RESULTS
4.1 Summary of the input data
We start by summarizing the effect of each step from our data
analysis pipeline, described in Section 3.2. Among the 70,293,533
samples from the AV telemetry reports, 1,053,114 include the file
signer information in the binary reputation data set. This suggests
that 1 out of 67 samples detected by a leading anti-virus carries a
digital signature. We note that this is an approximation, as we do
not have visibility into all the malware present on end-hosts around
the world, and other AV products may handle digital signatures
differently. However, WINE provides a representative sample for
the data collected by Symantec [28], which is the largest security
vendor.

We filter out potentially unwanted programs using the method
from Section 3.3. This step returns 526,487 hashes. We further re-
duce the number of samples by removing 268,404 executables signed
with 2,648 PUP certificates. This yields 258,083 executables. We
query VirusTotal with these samples. Out of these, we could not
find VirusTotal reports for 88,154 . After further filtering out 104,230
samples without a full chain of certificates, we have 153,853 signed
samples in the seed set. To apply the abuse detection algorithm
from Section 3.4, we search for other potentially benign samples
signed with the certificates found in the seed set. We identify a total
of 415,377 such samples in VT.

We set a very conservative number cmal ≥ 20 for the malware
detection threshold to identify suspicious binaries. This conserva-
tive threshold number identifies only obvious malware, and enables
us to examine every single malware manually. (587 and 1136 mal-
ware samples are observed when we set the threshold as 10 and 5
respectively.) We present the number of properly signed malware
per year for cmal ≥ 5 in Figure 3.

We further examine the validity of the digital signatures from
these samples using the verified message in the VT reports. VT
checks Authenticode signatures using the sigcheck tool provided
by Microsoft.10 For example, the message “a certificate was explic-
itly revoked by its issuer" indicates that the affixed certificate is no
longer valid because it was revoked by its CA; this corresponds to
error code “0x800B010C" in Microsoft Authenticode. Table 1 shows
a breakdown of the validity status. The 325 samples are detected as
malware in a total of 153,853 signed samples. Of these 325 signed

10https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx

Cert. Desc. (Error code) Total Malware

Properly
Valid 130,053 109
Revoked (0x800b010c) 4,276 43
Expired (0x800b0101) 17,330 37
Total 151,659 189

Malformed Bad Digest (0x80096010) 1,880 101
Others 81 0
Parsing Error 233 35
Total 2,194 136

Total 153,853 325

Table 1: Property of the certificates. Others include unveri-
fied time stamping certificates or signature, distrusted root
authority, etc.

CA Count (%)

Symantec/Verisign 23,325,279 (60.47%)
Symantec/Thawte 7,054,263 (18.29%)
Comodo 2,059,601 (5.34%)
GlobalSign 708,618 (1.84%)
Go Daddy 704,036 (1.83%)
DigiCert 429,159 (1.11%)
Certum 48,677 (0.13%)
WoSign/StartCom 43,578 (0.11%)
WoSign 38,758 (0.10%)
Go Daddy/StarField 21,410 (0.06%)

Total 38,572,995 (100%)
Table 2: The number of executables signed with certificates
issued by each CA in WINE.

malware, 58.2% samples are properly signed while 41.8% are signed
with malformed certificates. Most (74.3%) improperly signed mal-
ware results from bad digests. We categorize any malware that has
parsing errors into “Parsing Error." Of a total of 189 properly signed
malware, 22.8% samples were signed with revoked certificates, and
19.6% samples have expired certificates and no valid timestamp.
More than a half of all properly signed samples (57.7%) are still
valid as of this writing.

4.2 The code signing ecosystem
In this section, we analyze the code signing ecosystem using the
binary reputation data set in WINE. This analysis encompasses
both benign and malicious files that carry digital signatures. The
numbers in WINE are likely biased because all the hosts run at
least one Symantec product. Consequently, we remove the binaries
where Symantec is in the subject field. We then extract the name
of the Certification Authority from 38.6 million executables, which
allows us to identify 210 unique CAs.
CAmarket share.We first estimate the market share of code sign-
ing certificates by investigating the file signer information from
the binary reputation data set. Table 2 shows the market share for
the top-10 most popular CAs and the number of unique binaries
signed with the certificates issued by those CAs. 4.1 million binaries
(10.7%) in our data set are either signed by minor CAs, not included

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1441

https://technet.microsoft.com/en-us/sysinternals/bb897441.aspx

in the table, or are self-signed. These numbers suggest that Syman-
tec (including the Versign and Thawte brands) dominates the code
signing ecosystem, with a combined market share above 78%. This
is not necessarily bad for security, as placing trust in a single CA
reduces the TCB for code signing. However, this raises the expecta-
tions for the leading CA to ensure the security of the ecosystem.
The latest version of Windows, Windows 10, by default contains
28 root certificates for code signing that belong to 14 CAs11. In top-
most popular CAs, WoSign, Certum, and Startcom root certificates
are not pre-installed in Windows. When executables signed with
the three certificate are installed, the root certificates are installed
without a prompt message for users.
Misuse of code signing certificates for TLS. Code signing and
TLS certificates cannot be used interchangeably. However, the two
types of certificates follow the same format and can be generated
with the same tools. We searched censys.io [5], a site that periodi-
cally scans the Internet and collects certificates from TLS sessions,
for the keywords 12 that explicitly indicate code signing usage. We
identified 122 code signing certificates used for TLS, including for
the website of “marketedge.com" in the Alexa Top 1 Million list. Two
different certificates are used for the domain; a code signing cer-
tificate is used for the domain without “www" while a proper TLS
certificate is used for the domain with “www". This is surprising
because these certificates are considered invalid by the browsers
initiating the TLS connections. It suggests that people tend not to
differentiate between code signing certificates and TLS certificates.
Signed installer or application. While UAC checks file signa-
tures when programs are installed, code signing best practices [23]
recommend signing the installed files as well. This protects the
installed files from tampering, for instance from file infectors that
copy malicious code into an otherwise benign executable. We in-
vestigated if this advice is well kept in practice. The binary rep-
utation data set allows us to determine when an executable file
is created on disk by another executable, typically a downloader
or installer. We identified 25,051,415 unique installation/download
events. Within those events, 2,946,950 events (11.8%) have both
the installer/downloader and the payload digitally signed. This rep-
resents an upper bound, as some of the digital signatures may no
longer be valid. Among the events where both are signed, about
666,350 events (2.66%) have installer/downloader and the payload
signed by the same publisher. Meanwhile, 19,752,592 unique un-
signed files were installed.

4.3 Malformed digital signatures
For 101 samples in our data set, the signature and the authentihash
do not match. In this case, the error message in VT reports is “the
digital signature of the object did not verify," which corresponds to
Authenticode error code “0x80096010". This error typically results
from copying a digital signature and a certificate from one file
to another. This does not correspond to a breach of trust in the
publisher or the CA, since an adversary does not need access to
a private code signing key to produce such malformed signatures.
However, these signatures account for 31.1% of the signed malware

11USERTrust, DigiCert, Verisign, Comodo, Entrust, GeoTrust, GlobalSign, Go Daddy,
Microsoft, Trustwave, Starfield, StarCom, Symantec, and Thawte
12 443.https.tls.certificate.parsed.extensions.extended_key_usage.code_signing:true

in our data set. We therefore conduct experiments to determine if
such signatures can help malware bypass client-side protections
provided by browsers, operating systems and anti-virus products.
Browser protections. Google Chrome and Microsoft IE9 include
components called Safe Browsing and SmartScreen, respectively,
which protect against malicious downloads from the Web. To test
these protections, we copied a legitimate certificate and signature
to a benign and simple calculator, which does not require elevated
privileges (i.e. Administrator mode in Windows). This resulted
in a sample with a malformed digital signature. We then tried to
download this sample from the Web to see how the browsers react.
Both Safe Browsing and SmartScreen blocked our sample. However,
we found that it is possible to bypass the protection by removing
the extension. If we remove the file extension (.exe), the browsers
do not block the download.
Operating system protections. InWindows 7, 8.1, and 10, the OS
alerts the user with a message saying the file is unsigned when a file
downloaded from the Web is executed. However, if the file does not
originate from the Web—e.g. it was copied from a USB drive—then
the execution does not trigger any warnings. We also tested the
behavior of executables that require elevated privileges by adding a
malformed signature to a Windows installer. This program triggers
UAC when it asks for Administrator rights, regardless of where
the file originated. UAC displays a message saying that the file is
from a unknown source. We note that these are the same warnings
displayed for unsigned binaries. While Windows appears to detect
malformed signatures, it does not block the executables that carry
such signatures. If the user chooses to ignore the warnings, no
further checks are performed. The OS protections exhibited the
same behavior in our experiments with improperly signed malware,
which are described next.

In summary, Windows provides minimal protections against
executables using forged signatures, while browser defenses apply
only to files downloaded from the Web and can be bypassed. The
last line of defense, therefore, is anti-virus products.
Anti-virus protections. We conducted an experiment to deter-
mine if malformed signatures can affect the AV detections. We first
downloaded five random unsigned ransomware samples recently
reported to VT. These binaries are known to be malicious—they are
detected by 56–58 AV products invoked by VirusTotal. We extracted
two expired certificates and the corresponding signatures. These
were issued to different publishers and had already been used in
malformed signatures in the wild. From each ransomware samples
we created two new samples, each including one certificate and its
signature, for a total of ten new samples.

Surprisingly, we found that this simple attack prevents many
anti-virus products from detecting the malware. Table 3 lists the 34
AVs that detect the unsigned ransomware but fail to detect the same
sample after we include the incorrect signatures.We did not observe
a significant difference between the impact of the two certificates.
However, the impact of this attack varies with the AV products.
The top three AVs affected are nProtect, Tencent, and Paloalto. They
detected unsigned ransomware samples as malware, but considered
eight of out our ten crafted samples as benign. Even well-known
AV engines, e.g. Kaspersky, Microsoft, Symantec, and Commodo,
allow some of these samples to bypass detection. On average, the

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1442

censys.io

nProtect 8 F-Prot 4 Symantec 2 Sophos 2
Tencent 8 CrowdStrike 4 TrendMicro-HouseCall 2 SentinelOne 2
Paloalto 8 ClamAV 4 Avira 2 VBA32 2
AegisLab 7 VIPRE 4 Microsoft 2 Zillya 1
TheHacker 6 AVware 4 Fortinet 2 Qihoo-360 1
CAT-QuickHeal 6 Ikarus 4 ViRobot 2 Kaspersky 1
Comodo 6 Bkav 3 K7GW 2 ZoneAlarm 1
Rising 5 TrendMicro 3 K7AntiVirus 2
Cyren 4 Malwarebytes 2 NANO-Antivirus 2

Table 3: Bogus Digest Detection (AV and the number of de-
tection fail).

malformed signatures reduced the VirusTotal detection rate rmal
by 20.7%. We believe that this is due to the fact that AVs take digital
signatures into account when filter and prioritize the list of files to
scan, in order to reduce the overhead imposed on the user’s host.
However, the incorrect implementation of Authenticode signature
checks in many AVs gives malware authors the opportunity to
evade detection with a simple and inexpensive method.

We have reported the issue to the antivirus companies. One of
them confirmed that their product fails to check the signatures
properly and plans to fix the issue. A second company gave us a
confirmation but did not provide details.

4.4 Properly signed malware
189 malware samples in our data set carry correct digital signatures,
generated using 111 unique certificates. To generate these signa-
tures, adversaries must have controlled the private keys of these
certificates. We will analyze the weaknesses in the code-signing PKI
that contributed to this abuse in Section 4.5. But first we investigate
how these certificates are used in the wild and for how long users
are exposed to these threats.

At the time of writing, 27 of these certificates had been revoked.
While all the abusive certificates in our data set had expired, ex-
ecutable files signed with one of the 84 certificates that were not
revoked may still be valid, as long as they carry a trusted times-
tamp obtained during the validity of the certificate. For example,
the digital signatures from 109 malware samples in our data set
remain valid. We notified the CAs of the compromised certificates
and asked them for revocation of the certificates except for two
CAs (GlobalSign and GoDadday) due to their abuse report system
errors.
Malware families.We determined the malware family from the
AV labels, using AVClass [32]. We identify a total of 116 unique
families in the 189 properly signed malware samples. The most
prevalent family is delf (7 samples), followed by fareit (4 samples).

Figure 4 illustrates the number of unique certificates used per
malware family. 103 families utilize a single certificate, and 13
use more than two certificates. Among the families with multiple
certificates we observe droppers (autoit, banload, agentb, dynamer,
delf), bots (Zeus), and fake AVs (smartfortress and onescan). Similar
types of malware appear again in the list of families with a single
certificate. However, here we also find malware used in targeted
attacks. For example, Krbanker was reported to be involved in
targeted attacks against customers of South Korean banks. Shylock
is also known as a banking trojan that targeted customers of UK
banks. The large faction (88.8%) of malware families relying on a

Families with one certificate

N
um

be
r o

f c
er

tifi
ca

te
s

Number of family

Stuxnet
Krbanker

Shylock

Delf

Onescan
Induc, Zbot,

Autoit, Agentb,
Banload, Dynamer,
Smartfortress

0

20

40

60

80

100

120

140

103 116

Figure 4: Number of unique certificates per family.

single certificate suggests that, in most cases, abusive certificates
are controlled by the malware authors rather than by third parties.
Certificates. On average, an abusive certificate signs samples from
1.5 malware families. Most certificates (79.3%) were issued to pub-
lishers in five countries (China, Korea, USA, Brazil, and UK). We
believe that this observation reflects the reputation of these publish-
ers, which makes them attractive targets for abuse. This is particu-
larly important for targeted attacks against users or organizations
located in one of these countries.

In a total of the 189 properly signed malware, most (111, 66.8%)
were signature-timestamped through TSA; Verisign was the pre-
ferred TSA for most samples (38, 34.2%). This suggests that malware
authors value the extended validity provided by trusted timestamps
and that they are not concerned about submitting hashes of their
malware samples to the timestamping authorities.
Certificate lifecycle. To determine how long users are exposed to
these threats, we examine the lifecycle of these abusive certificates.
For each certificate, we investigate the expiration date specified in
the certificate, the revocation date specified in the CRL (if available),
and the dates when benign and malicious binaries are signed with
these certificates. If a binary has a trusted timestamp, we use that
timestamp as the signing date. This corresponds to 66.8% of the
binaries in our data set. For the other samples, we inspect their first
appearance in WINE and the first submission to VT; we use the
earliest timestamp as the signing date.

Figure 5 illustrates the timelines reconstructed in this manner.
For example, the compromised certificate used by Stuxnet had
previously been utilized to sign several legitimate binaries. These
binaries have been signed both before and after the malware’s
signing date. After the abuse was discovered, the certificate was
revoked as of the date when the malware was signed, which also
invalidated all the benign binaries signed after that date. We note
that the revocation date indicates when the certificate should cease
to be valid and not when the certificate was added to a CRL. In
other words, revocation dates do not allow us to determine for how
long users were exposed to the abuse.

While the Stuxnet incident raised awareness about digitally
signed malware, we observe that this problem was prevalent in the
wild before Stuxnet. We found a certificate from Skyline Sotftware

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1443

C
er

tifi
ca

te

Date

Stuxnet

Stolen

Induc

Identitiy theft

Shell
Unknown

0

20

40

60

80

100

2004 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 5: Lifecycle of the abusive certificates. (The red-filled circle, empty circle, green bar, and orange diamond indicate
malware, benign sample, expiration date, and revocation date, respectively.)

Systems compromised to sign a malware at the year 2003, which is
before Stuxnet appeared. Moreover, in Figure 3, we have 195 signed
malware which appeared before the year 2010, when Stuxnet was
discovered. Additionally, we observed two interesting behaviors. 5
certificates were used to sign malware that was not timestamped
and was seen in the wild after the certificate expired. Other than the
opportunity to evade some AV products as discussed in Section 4.3
(which does not require a certificate), there is no motivation for the
malware writers to release their code after the expiration date. We
therefore believe that these samples correspond to stealthy attacks
and were present in the wild for a long time but managed to evade
detection. We also find 7 certificates with ineffective revocations.
In these cases, the revocation dates were set after the timestamping
dates of the malware samples, which allowed the malware to remain
valid after revocation. This illustrates the challenge of estimating
when certificates are compromised: setting the revocation date
too early may invalidate many benign executables (as in Stuxnet’s
case), but setting it too late may prevent the invalidation of certain
malware samples in the wild.

To determine for how long the compromised certificates remain a
threat, we perform survival analysis [17]. This statistical technique
allows us to estimate the probability that an abused certificate will
“survive” (i.e. it will not be revoked) after a given number of days.
We consider the signing date (estimated as described above) of
the oldest malware sample signed with the same certificate as the
“birth” of the abuse. We estimate “death events”—the dates when
certificates are added to CRLs—as follows. For a revoked certificate,
we collect the scan date and the state of the certificate in VirusTotal
for all the binaries signed with the certificate. We sort the scan dates,
and take the very last date when state was “valid” right before the

Va
lid

 c
er

tifi
ca

te
s

(%
)

Number of days

80

85

90

95

0 1000 2000 3000

Figure 6: Estimation of the threat effectiveness.

first scan date where the state is "revoked". We then calculate the
time difference in days between birth and death events for the
abused certificate. This represents a conservative estimation of the
threat exposure, as the birth is an upper bound for the compromise
date and the death is a lower bound for the revocation date. We
also account for the fact that we cannot observe the death of some
of the abusive certificates—the ones that are not yet revoked. In
these cases, we do not know how big the revocation delay is, but
we know that the certificates were not yet revoked on May 18, 2017;
in survival analysis terminology, these data points are censored. We
compute the Kaplan-Meier estimator [17] of the survival function,
as it can account for censored data in the estimation.

We present the estimation in Figure 6. The probability that a
certificate is not yet revoked decreases to 96% after the first day,

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1444

Compromised Identify Theft Shell Company

Issuer Count Issuer Count Issuer Count
Thawte 27 Thawte 8 Wosign 2
VeriSign 24 Comodo 4 DigiCert 1
Comodo 8 VeriSign 4 USERTrust 1
USERTrust 2 eBiz Networks 3 GlobalSign 1
Certum 2 USERTrust 1
Others 9 Others 2

Total 72 (64.9%) Total 22 (19.8%) Total 5 (4.5%)

Table 4: Type of abuse and the top 5 frequent CAs.

owing to some certificates for which all the VT reports indicated a
“revoked” status. The probability continues to decrease slowly for
5.6 years, then it stops decreasing after reaching 80%. This suggests
that the threat of abused certificates is very resilient: only 20%
of the certificates used to sign malware are likely to be revoked
during our observation period, which spans 15 years. If the malware
samples signed with the remaining certificates also carry a trusted
timestamp, they remain valid today.

4.5 Measuring the abuse factors
To gain insight into the attackers’ methods, we utilize the algorithm
from Section 3.4 to identify the PKI weakness exploited in abusing
the 111 certificates.
Publisher-side key mismanagement. We considered a certifi-
cate as falling into this category if it was used for signing both
benign and malicious programs. Of the 111 clusters (i.e., certifi-
cates), at least 75 certificates were used for signing both.

We examined the validity of the samples in this case. Surpris-
ingly, as of this writing, most (50, 66.7%) are still valid while only
some certificates (10, 13.3%) were explicitly revoked. Although all
certificates were already expired, the executable files signed with
the certificates are still valid beyond the expiration date due to trust
time stamping. Therefore, users will be displayed a message saying
the publisher is verified and legitimate when they run the malware.

To categorize the certificates, we manually and deeply investi-
gated malware samples signed with each certificate.

• Compromised certificate. Out of 75 certificates, we believe
that most (72) were compromised and used for signing mal-
ware. Using this method, we found the Stuxnet malware,
which is known to have been signed with a compromised
certificate [10]. In our dataset, it was signed with the Realtek
Semiconductor Corp. certificate issued by Verisign. Our sys-
tems also detected that an Australian department’s private
key was also stolen and used to sign malware, labeled as
autoit.

• Infected developer machines.We also identified developer
machines that were infected and used to sign malicious code
with a legitimate certificate. This resulted in signedmalicious
code shipped with a legitimate package. We found three
certificates used to signW32/Induc.A that infects only Delphi
developer machines. We investigated the prevalence of Induc
in the wild using the WINE dataset. About 1,554 binaries
were detected as a variant of Induc and 93,016 machines were
infected. Among these machines, 180 were Delphi compiler

machines. This suggests that infecting developer machines
is an effective method for amplifying the impact of signed
malware and ultimately infecting 517× more machines.

As depicted in Table 4, 70% of them are issued by Symantec
group (Thawte and Verisign).
CA-side verification failure. This weakness is caused by CAs’
failure in verifying the publisher’s identity. CAs may issue certifi-
cates to an adversary who impersonates someone else or uses shell
company information.

We believe that 27 certificates were issued to malicious publish-
ers due to verification failures. To distinguish between identity theft
and shell companies, we also manually investigated each certificate
by searching for the publisher names in the Internet or in openCor-
porates to see if the publishers are legitimate. 22 certificates out of
27 certificates issued through identify theft and 5 certificates were
done through shell company information. For example, a certificate
issued to a delivery service company in Korea was used to sign
malware. Another certificate was issued to an Oregon resident. We
believe that the company is not related to software developments,
and has never released any software. Moreover, we doubt that for
a malware writer it is worth to reveal his/her identity. Therefore,
we consider that these are cases of identity theft.

We investigate the process for issuing code signing certificates
to understand the weakness that allowed these certificates to be
issued. The policy might have changed from that of the time when
these certificates were issued; however, we set an assumption that
the policy will not downgrade. Around the end of 2016, Certifi-
cate Authority Security Council (CASC) announced a minimum
requirements for code signing certificates.13 The new requirements
include:

• Stronger protection of private keys. Now the private keys
should only be stored on secure cryptographic hardware,
e.g., a USB token or Hardware security module (HSM).

• Careful identity verification. The new requirement asks CAs
to strictly verify the identity of the publisher, which includes
checking the legal identity of the publisher and the cross-
checking with the known bad publisher list.

• Better response to the abuse. The CAs now have to quickly
respond to the revocation request. They have to revoke the
certificate within two days, or notify the reporter that the
investigation has started.

• TSA is now a requirement. Now every code signing provider
must operate a RFC-3161 compliant TSA.

These guidelines suggest CASC is aware of the abuse happening
in the wild. Increased protection of the private keys would help
prevent certificates from being compromised; strict identification
check will make it hard to acquire a certificate by impersonating.
Moreover, Microsoft announced the CAs must follow these guide-
lines starting February 1, 2017.

We investigated the policies of the top ten code signing CAs listed
in Table 2. We found that only Certum follows the guidelines. The
result of the survey suggest that the code signing is still vulnerable
to the certification thefts and fraudulent applications.

13https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-
introduce-new-standards-to-protect-consumers-online/

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1445

https://casecurity.org/2016/12/08/leading-certificate-authorities-and-microsoft-

Revocation.We investigate the revocation practice in the field. By
category, 15.3%, 40.9%, and 80.0% of the certificates were revoked
for compromised, identity theft, and shell company, repectively.
Interestingly, the revocation rate was significantly less for the com-
promised certificates compared to the other abuse types.
Verification and further investigation. We decided to contact
the owners of the compromised certificates we found to inform
them that their certificates were used for signing malware, and
to better understand the code signing ecosystem. We manually
searched for their websites, and sent 23 publishers email to ask them
to check if the certificate was owned by them. We were unable to
send more publishers email due to unrecognizable publisher names,
closures, etc.

As of this writing, we received eight replies from those who we
emailed. All of them said that they issued and used the certificates
to sign their benign programs. Three of them were already aware
that their certificates were abused by adversaries and revoked by
their CAs because the CAs notified them that the certificates were
compromised. One publisher told us that their private key may have
been stolen because the machines storing the code-signing keys
were accessible to all developers. Most publishers asked us to send
the malware samples signed with their certificate for further inves-
tigation. Two publishers claimed that it was false positive results
of AVs. We also manually investigated to see if those files signed
with each certificates had false positives. Microsoft, IE, Chrome,
GMail, and Dropbox detected them as malware and did not allow
us to share or download them from the Internet. Moreover, one of
them was obviously labeled as trojan, called Vilsel. Therefore, we
believe that the signed samples that the two publishers claimed as
false positives are obvious malware.

5 DISCUSSION
Improvements for code signing PKI. The major difference be-
tween TLS and code signing certificates is that it is hard for the
owners of code signing certificates to know where and how they
are abused, while the owners of TLS certificates are readily aware
of the certificate abuse because the certificates are tightly bound
to a certain domain name. If the owners are informed and aware
of what program code are signed with their certificate, the owners
can easily see if their certificate is abused. To achieve this goal, we
suggest to make signing tools (e.g., signtool.exe in Windows) log
all history and inform the original owners of (1) what and when
program code is signed and (2) who tries to sign (e.g., IP address).
As long as the owners have all history of singing, they can readily
see if it is abused by periodically checking the log. This model is
effective for the compromised certificates, but may not work for
other cases like identify theft and shell company. In these cases, we
can introduce transparency in code signing. In this idea, the hash
value of program code and the certificates are logged when signed.
Other third parties can periodically audit the log and identify code
signing abuse.
Other threats. In addition to the three threats described in Sec-
tion 2.3, a Certificate Authority may be compromised or may act
maliciously. This is a severe threat, as it would allow the adver-
sary to issue fake code signing certificates for signing malware. For
example, they could issue certificates setting the publisher name

(common name) to a reputable software company like Microsoft,
Google, etc. In the past, hackers have compromised two CAs (Dig-
iNotar and Comodo) and have issued fake TLS certificates. However,
we do not observe this threat in our data set.

Recently, Google and CWI Amsterdam developed code that can
generate the two different files with the same SHA-1 hash value [12].
We have not observed any malware sample that exploits this SHA-1
collision attack. However, this represents an important threat, as
demonstrated in the past by the Flame malware, which conducted
an attack against MD5 shortly after it became practical to find MD5
collisions.

6 RELATEDWORK
We discuss related work in three key areas: measuring the ecosys-
tems of HTTPS and TLS certificates; measuring code signing abuse,
specifically Authenticode and Android; and attempts at the im-
provements for PKIs.
Measurements of the TLS certificate ecosystem. The TLS cer-
tificates and HTTPS ecosystems have been thoroughly studied due
to the introduction of many network scanners such as ZMap. ZMap
can scan the entire IPv4 address space less than one hour [8]; re-
searchers can readily obtain the large, but limited number of TLS
certificate datasets while code signing certificates in the wild are
hard to collect. Durumeric et al. have uncovered the bad practices in
the HTTPS ecosystem using the datasets that ZMap produced [7].
Two measurement studies with regard to the impacts of Heartbleed,
has been conducted [6, 40]. Heartbleed is a serious security bug in
the OpenSSL cryptography library.
Code signing abuse. For Authenticode code signing abuse, similar
to our work, the computer security company, Sophos examined the
signed Windows PE files collected by the company from 2008 to
2010 [37]. They observed that the number of signed malicious PEs
including trojan, adware, spyware, etc., increased over time in the
measurement period. Kotzias et al. and Alrawi et al. evaluated 356
thousands and three million Windows PE samples respectively
[2, 19]. In their findings, signed malware was not prevalent since
only a small number of signed malware were found, while most
signed samples were PUPs. Unlike the Authenticode code signing
that obtains a certificate from a CA, Android applications are signed
with self-signed certificates; thus, there is no effective revocation
system. Many Android developers use the same key for their many
applications, which can lead to unexpected security threats such as
signature-based permissions [9].
PKI Improvements. The efforts to prevent certificate abuse have
focused primarily on the Web PKI. The proposals can be classified
into three groups; client-based, CA-based, and domain-based. In
the client-based approaches, Perspective [36] and Convergence [1]
require clients to ask a third party (notary authority, independent
from CAs) to check if the certificate of a service (e.g., web service)
that they access is legitimate. Certificate Transparency (CT) [22]
is the representative proposals in the domain-based class. In CT,
all TLS certificates are logged in a signed chronologically ordered
Merkle Hash Tree when they are issued, and the logs are publicly
opened. That enables anyone (e.g., CAs, owners of certificates, etc.)
to monitor and audit the logs. For Android application, Fahl et al.
have proposed Application Transparency (AT) [9]. It is based on CT,

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1446

and aims to prevent the threat model of “targeted-and-stealthy."
However, the all proposed improvements cannot be applied to code
signing certificates because they were designed particularly for TLS
certificates or Android applications.

Comparatively, there have been fewer effort to improve the code-
signing PKI. Papp at al. have presented a repository system, called
ROSCOwhere software code are uploaded by publishers, and looked
up by end-users to check if the certificates are compromised [29].
However, the repository is maintained by a single group so that the
no one can audit the repository system. Moreover, publishers are
required to voluntarily upload their program code to the repository.
In other words, it is not able to cover all program code in the wild.
Another proposal was CT for Binary Codes [38]. This systems is
based on CT to support logging program code so that anyone can
audit the system. However, the proposal does not have an explicit
protocol for publishers how to log program code.

7 CONCLUSIONS
We introduce a threat model that highlights three types of weak-
nesses in the code signing PKI: inadequate client-side protections,
publisher-side key mismanagement, and CA-side verification fail-
ures. We propose an algorithm for analyzing the abuse recorded
in the code signing ecosystem and for identifying the weaknesses
exploited by the adversary. Using the algorithm, we conducted a
systematic measurement of the three weakness types.

We identify 325 signed malware samples in our data set. Of these,
189 (58.2%) samples are properly signed while 136 carry malformed
digital signatures, which do not match the binary’s digest. Such
malformed signatures are useful for an adversary: we find that
simply copying an Authenticode signature from a legitimate sample
to an unsigned malware sample may help the malware bypass AV
detection. The 189 samples signed correctly rely on 111 unique
certificates. We find that only 27 certificates were revoked; malware
signed with one of the remaining 84 certificates would still be
trusted today as long as is carries a trusted timestamp. A large
fraction (88.8%) of malware families rely on a single certificate,
which suggests that the abusive certificates are mostly controlled
by the malware authors rather than by third parties.

Of the 111 certificates used to sign malware, 75 were abused
due to publisher-side mismanagement (72 were compromised and
3 were used on infected developer machines). The compromised
certificates identified with our algorithm include the one used by
Stuxnet. Additionally, 27 certificateswere issued tomalware authors
due to the CAs’ verification failure (22 through identify theft and 5
using shell company information). For further investigation, we sent
the publishers of the certificates emails to inform them that their
certificates were abused. We received replies from eight publishers.
They confirmed that the certificates were issued to them and five
of them are unaware of the abuse.

ACKNOWLEDGMENTS
We thank Dave Levin, Michelle Mazurek, Dylan O’Reagan, and the
anonymous reviewers for their feedback. We also thank VirusTotal
for access to their service and Symantec for making data available
through the WINE platform. This research was partially supported

by the National Science Foundation (award CNS-1564143) and the
Department of Defense.

REFERENCES
[1] 2017. Convergence. https://github.com/moxie0/Convergence. (2017).
[2] Omar Alrawi and Aziz Mohaisen. 2016. Chains of Distrust: Towards Under-

standing Certificates Used for Signing Malicious Applications. In Proceedings
of the 25th International Conference Companion on World Wide Web (WWW ’16
Companion). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 451–456. https://doi.org/10.1145/
2872518.2888610

[3] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M. Maggs,
Alan Mislove, and Christo Wilson. 2016. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 628–640. https://doi.org/10.1145/2976749.2978301

[4] Tudor Dumitras, and Darren Shou. 2011. Toward a Standard Benchmark for
Computer Security Research: The Worldwide Intelligence Network Environment
(WINE). In EuroSys BADGERS Workshop. Salzburg, Austria.

[5] Zakir Durumeric, David Adrian, ArianaMirian, Michael Bailey, and J. Alex Halder-
man. 2015. A Search Engine Backed by Internet-Wide Scanning. In Proceedings of
the 22Nd ACM SIGSACConference on Computer and Communications Security (CCS
’15). ACM, New York, NY, USA, 542–553. https://doi.org/10.1145/2810103.2813703

[6] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and
Vern Paxson. 2014. TheMatter of Heartbleed. In Proceedings of the 2014 Conference
on Internet Measurement Conference (IMC ’14). ACM, New York, NY, USA, 475–488.
https://doi.org/10.1145/2663716.2663755

[7] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. 2013.
Analysis of the HTTPS Certificate Ecosystem. In Proceedings of the 2013 Confer-
ence on Internet Measurement Conference (IMC ’13). ACM, New York, NY, USA,
291–304. https://doi.org/10.1145/2504730.2504755

[8] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap: Fast
Internet-wide Scanning and Its Security Applications. In Proceedings of the 22Nd
USENIX Conference on Security (SEC’13). USENIX Association, Berkeley, CA, USA,
605–620. http://dl.acm.org/citation.cfm?id=2534766.2534818

[9] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek, and
Matthew Smith. 2014. Hey, NSA: Stay Away from My Market! Future Proofing
App Markets Against Powerful Attackers. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). ACM, New York,
NY, USA, 1143–1155. https://doi.org/10.1145/2660267.2660311

[10] Nicholas Falliere, Liam O’Murchu, and Eric Chien. 2011. W32.Stuxnet Dossier.
Symantec Whitepaper. (February 2011). http://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

[11] DAN GOODIN. 2015. Stuxnet spawn infected Kaspersky using stolen Fox-
conn digital certificates. (Jun 2015). https://arstechnica.com/security/2015/06/
stuxnet-spawn-infected-kaspersky-using-stolen-foxconn-digital-certificates/

[12] Google. 2017. Announcing the first SHA1 collision. (February 2017). https:
//security.googleblog.com/2017/02/announcing-first-sha1-collision.html

[13] P. Hoffman and J. Schlyter. 2012. The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. RFC Editor. http:
//www.rfc-editor.org/rfc/rfc6698.txt http://www.rfc-editor.org/rfc/rfc6698.txt.

[14] Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The SSL
landscape: a thorough analysis of the x. 509 PKI using active and passive mea-
surements. In Proceedings of the 2011 ACM SIGCOMM conference on Internet mea-
surement conference. ACM, 427–444. http://dl.acm.org/citation.cfm?id=2068856

[15] Lin Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson. 2014. An-
alyzing forged SSL certificates in the wild. In Security and Privacy (SP), 2014
IEEE Symposium on. IEEE, 83–97. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=6956558

[16] Burt Kaliski. 1998. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315.
RFC Editor. http://www.rfc-editor.org/rfc/rfc2315.txt http://www.rfc-editor.org/
rfc/rfc2315.txt.

[17] David. G. Kleinbaum and Mitchell Klein. 2011. Survival Analysis: A Self-Learning
Text (3 ed.). Springer.

[18] Platon Kotzias, Leyla Bilge, and Juan Caballero. 2016. Measuring PUP prevalence
and PUP distribution through Pay-Per-Install services. In Proceedings of the
USENIX Security Symposium.

[19] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. 2015. Certified
PUP: Abuse in Authenticode Code Signing. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,
New York, NY, USA, 465–478. https://doi.org/10.1145/2810103.2813665

[20] Michael Kranch and Joseph Bonneau. 2015. Upgrading HTTPS in mid-air: An
Empirical Study of Strict Transport Security and Key Pinning. In Network and
Distributed System Security (NDSS) Symposium. Internet Society. https://doi.org/
10.14722/ndss.2015.23162

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1447

https://github.com/moxie0/Convergence
https://doi.org/10.1145/2872518.2888610
https://doi.org/10.1145/2872518.2888610
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1145/2810103.2813703
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2504730.2504755
http://dl.acm.org/citation.cfm?id=2534766.2534818
https://doi.org/10.1145/2660267.2660311
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://arstechnica.com/security/2015/06/stuxnet-spawn-infected-kaspersky-using-stolen-foxconn-digital-certificates/
https://arstechnica.com/security/2015/06/stuxnet-spawn-infected-kaspersky-using-stolen-foxconn-digital-certificates/
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
http://www.rfc-editor.org/rfc/rfc6698.txt
http://www.rfc-editor.org/rfc/rfc6698.txt
http://www.rfc-editor.org/rfc/rfc6698.txt
http://dl.acm.org/citation.cfm?id=2068856
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6956558
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6956558
http://www.rfc-editor.org/rfc/rfc2315.txt
http://www.rfc-editor.org/rfc/rfc2315.txt
http://www.rfc-editor.org/rfc/rfc2315.txt
https://doi.org/10.1145/2810103.2813665
https://doi.org/10.14722/ndss.2015.23162
https://doi.org/10.14722/ndss.2015.23162

[21] Bum Jun Kwon, Virinchi Srinivas, Amol Deshpande, and Tudor Dumitraş. 2017.
Catching Worms, Trojan Horses and PUPs: Unsupervised Detection of Silent
Delivery Campaigns. In Proc. NDSS.

[22] B. Laurie, A. Langley, and E. Kasper. 2013. Certificate Transparency. RFC 6962.
RFC Editor.

[23] Eric Lawrence. 2011. Everything you need to know about Authenticode Code
Signing. (Mar 2011). https://blogs.msdn.microsoft.com/ieinternals/2011/03/22/
everything-you-need-to-know-about-authenticode-code-signing/

[24] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-End
Measurement of Certificate Revocation in the Web’s PKI. ACM Press, 183–196.
https://doi.org/10.1145/2815675.2815685

[25] Microsoft. 2001. Erroneous VeriSign-Issued Digital Certificates Pose Spoofing
Hazard. (2001). https://technet.microsoft.com/en-us/library/security/ms01-017.
aspx

[26] Microsoft. 2008. Windows Authenticode Portable Executable Signature
Format. (Mar 2008). http://download.microsoft.com/download/9/c/5/
9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx

[27] Microsoft. 2011. Virus: Win32/Induc.A. (April 2011). https:
//www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=
Virus%3AWin32%2FInduc.A

[28] Evangelos E. Papalexakis, Tudor Dumitras, Duen Horng (Polo) Chau, B. Aditya
Prakash, and Christos Faloutsos. 2103. Spatio-temporal Mining of Software
Adoption & Penetration. In IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM). Niagara Falls, CA.

[29] Dorottya Papp, Balázs Kócsó, Tamás Holczer, Levente Buttyán, and Boldizsár
Bencsáth. 2015. ROSCO: Repository Of Signed Code. In Virus Bulletin Conference,
Prague, Czech Republic.

[30] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. 2010. Bootstrapping Trust
in Commodity Computers. In IEEE Symposium on Security and Privacy. 414–429.

[31] Kaspersky Lab’s Global Research and Analysis Team. 2015. The Duqu 2.0
persistence module. (Jun 2015). https://securelist.com/blog/research/70641/
the-duqu-2-0-persistence-module/

[32] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-
class: A tool for massivemalware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 230–253.

[33] Swiat. 2012. Flame malware collision attack explained. (Jun
2012). https://blogs.technet.microsoft.com/srd/2012/06/06/
flame-malware-collision-attack-explained/

[34] Kurt Thomas, Juan A. Elices Crespo, Ryan Rasti, Jean Michel Picod, Cait
Phillips, Marc-André Decoste, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine
Courteau, Lucas Ballard, Robert Shield, Nav Jagpal, Moheeb Abu Rajab, Panayiotis
Mavrommatis, Niels Provos, Elie Bursztein, and Damon McCoy. 2016. Investi-
gating Commercial Pay-Per-Install and the Distribution of Unwanted Software.
In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016. 721–739. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/thomas

[35] VirusTotal. 2017. www.virustotal.com. (2017).
[36] Dan Wendlandt, David G. Andersen, and Adrian Perrig. 2008. Perspectives:

Improving SSH-style Host Authentication with Multi-path Probing. In USENIX
2008 Annual Technical Conference (ATC’08). USENIX Association, Berkeley, CA,
USA, 321–334. http://dl.acm.org/citation.cfm?id=1404014.1404041

[37] Mike Wood. 2010. Want My Autograph? The Use and Abuse of Digital Signatures
by Malware. Virus Bulletin Conference September 2010 September (2010), 1–8.
http://www.sophos.com/medialibrary/PDFs/technicalpapers/digital

[38] Liang Xia, Dacheng Zhang, Daniel Gillmor, and Behcet Sarikaya. 2017. CT for
Binary Codes. Internet-Draft draft-zhang-trans-ct-binary-codes-04. IETF Secre-
tariat. http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.
txt http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.
txt.

[39] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage.
2009. When Private Keys Are Public: Results from the 2008 Debian OpenSSL
Vulnerability. In Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement (IMC ’09). ACM, New York, NY, USA, 15–27. https://doi.org/10.
1145/1644893.1644896

[40] Liang Zhang, David Choffnes, Dave Levin, Tudor Dumitras, Alan Mislove, Aaron
Schulman, and Christo Wilson. 2014. Analysis of SSL Certificate Reissues and
Revocations in the Wake of Heartbleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference (IMC ’14). ACM, New York, NY, USA, 489–502.
https://doi.org/10.1145/2663716.2663758

Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1448

https://blogs.msdn.microsoft.com/ieinternals/2011/03/22/everything-you-need-to-know-about-authenticode-code-signing/
https://blogs.msdn.microsoft.com/ieinternals/2011/03/22/everything-you-need-to-know-about-authenticode-code-signing/
https://doi.org/10.1145/2815675.2815685
https://technet.microsoft.com/en-us/library/security/ms01-017.aspx
https://technet.microsoft.com/en-us/library/security/ms01-017.aspx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=Virus%3AWin32%2FInduc.A
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=Virus%3AWin32%2FInduc.A
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?name=Virus%3AWin32%2FInduc.A
https://securelist.com/blog/research/70641/the-duqu-2-0-persistence-module/
https://securelist.com/blog/research/70641/the-duqu-2-0-persistence-module/
https://blogs.technet.microsoft.com/srd/2012/06/06/flame-malware-collision-attack-explained/
https://blogs.technet.microsoft.com/srd/2012/06/06/flame-malware-collision-attack-explained/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/thomas
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/thomas
www.virustotal.com
http://dl.acm.org/citation.cfm?id=1404014.1404041
http://www.sophos.com/medialibrary/PDFs/technicalpapers/digital
http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.txt
http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.txt
http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.txt
http://www.ietf.org/internet-drafts/draft-zhang-trans-ct-binary-codes-04.txt
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/2663716.2663758

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Overview of code signing
	2.2 Differences between code signing and TLS
	2.3 Threat model
	2.4 Challenges for measuring code signing

	3 Measurement methods
	3.1 Data sources
	3.2 System overview
	3.3 Binary labeling
	3.4 Abuse detection algorithm

	4 Measurement results
	4.1 Summary of the input data
	4.2 The code signing ecosystem
	4.3 Malformed digital signatures
	4.4 Properly signed malware
	4.5 Measuring the abuse factors

	5 Discussion
	6 Related work
	7 Conclusions
	Acknowledgments
	References

