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ABSTRACT
Private record linkage (PRL) is the problem of identifying pairs

of records that are similar as per an input matching rule from

databases held by two parties that do not trust one another. We

identify three key desiderata that a PRL solution must ensure: (1)

perfect precision and high recall of matching pairs, (2) a proof

of end-to-end privacy, and (3) communication and computational

costs that scale subquadratically in the number of input records.

We show that all of the existing solutions for PRL– including secure

2-party computation (S2PC), and their variants that use non-private

or differentially private (DP) blocking to ensure subquadratic cost

– violate at least one of the three desiderata. In particular, S2PC

techniques guarantee end-to-end privacy but have either low recall

or quadratic cost. In contrast, no end-to-end privacy guarantee has

been formalized for solutions that achieve subquadratic cost. This is

true even for solutions that compose DP and S2PC: DP does not per-

mit the release of any exact information about the databases, while

S2PC algorithms for PRL allow the release of matching records.

In light of this deficiency, we propose a novel privacy model,

called output constrained differential privacy, that shares the strong
privacy protection of DP, but allows for the truthful release of the

output of a certain function applied to the data. We apply this to

PRL, and show that protocols satisfying this privacy model permit

the disclosure of the true matching records, but their execution is

insensitive to the presence or absence of a single non-matching

record. We find that prior work that combine DP and S2PC tech-

niques even fail to satisfy this end-to-end privacy model. Hence,

we develop novel protocols that provably achieve this end-to-end

privacy guarantee, together with the other two desiderata of PRL.

Our empirical evaluation also shows that our protocols obtain high

recall, scale near linearly in the size of the input databases and

the output set of matching pairs, and have communication and

computational costs that are at least 2 orders of magnitude smaller

than S2PC baselines.
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1 INTRODUCTION
Organizations are increasingly collecting vast amounts of data

from individuals to advance science, public health, and resource

management and governance. In a number of scenarios, different

organizations would like to collaboratively analyze their data in

order to mine patterns that they cannot learn from their individual

datasets. For instance, hospitals or health workers in neighboring

cities might want to identify HIV positive patients who have sought

care in multiple cities to quantify the mobility patterns of patients,

and hence the spread of the virus. This requires finding patients who

occur in multiple databases even though the patient records might

not have the same primary key across databases. This problem is

called record linkage, and has been well studied for the last several

decades [6, 9, 13]. In a collaborative analysis across organizations,

privacy is always a concern. In particular, one of the collaborating

parties, say Hospital A, should not be able to tell whether or not a

record is in the database of the other party, say Hospital B, if that

record does not appear in the match output. Privacy constraints

arise due to concerns from individuals who provide their data, such

as hospital patients, or due to contractual or legal obligations that

organizations have to the individuals in their data. This has led to

a field of research called private record linkage (PRL).
Traditional PRL techniques aim to solve the linkage problemwith

a strong privacy goal – no information should be leaked beyond

(a) the sizes of the datasets, and (b) the set of matching records.

However, this strong privacy goal (which we call S2PC) [15] comes

with a high cost. Existing techniques that achieve this goal either

require cryptographically secure comparisons of all pairs of records

(and hence are inefficient), or are restricted to equi-joins (and thus

have very low recall). Hence, we formalize our problem as follows:

given private databases DA and DB held by two semi-honest parties,
and a matching rule m, design a protocol Π that outputs pairs of
matching records to both parties and satisfies three desiderata: (1)
correctness in terms of perfect precision and high recall of matches,
(2) provable end-to-end privacy guarantee, and (3) efficiency in terms
of sub-quadratic communication and computational cost in n, where
n = max( |DA |, |DB |). There are two sources of the cost incurred

by PRL: (1) the number of cryptographic operations, and (2) the

time taken for each cryptographic operation. Our protocols aim to

reduce the number of cryptographic operations (i.e., the number of

secure pairwise comparisons), the first source of cost, while using

existing techniques to securely compare pairs of records.

Techniques that securely compare all pairs of records (APC) have

a quadratic cost and hence fail to meet the efficiency requirement

Session F4:  Private Queries CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1389

https://doi.org/10.1145/3133956.3134030


of our problem. On the other hand, techniques for efficient pri-

vate set intersection (PSI) [12, 32] satisfy all three desiderata for

equality-like matching rules, but result in poor recall for general

fuzzy matching rules. When records in DA and DB come from the

same discrete domain, one could expand DA by adding all records

that could potentially match with a record in DB , and then find

matches by running PSI on the expandedDA andDB . However, this

technique can be very inefficient: the expanded databases could

be much larger than the input databases for complex matching

functions or when data are high dimensional. A long line of work

[5, 18, 19, 21, 24, 34] has considered scaling APC by using blocking,
which is a standard technique for scaling non-private record link-

age with a small loss in recall of matching pairs. However, blocking

can reveal sensitive properties of input records. We show that such

hybrid protocols do not ensure an end-to-end privacy guarantee

even in solutions where the blocking step satisfies a strong privacy

notion, called differential privacy (DP) [10]. This negative result is

in contrast to other success stories [2, 16, 26, 27, 30, 31, 39] on com-

posing DP and secure computation. These settings either consider

a client-server model where all data sits on the server or consider

aggregated functions across partitioned data where the privacy

goals of DP and secure computation do not conflict. In the case of

scaling PRL, neither blocking nor DP blocking naturally composes

with the strong privacy guarantee of S2PC. To our knowledge, this

work presents the first solution to the above open problem, and

makes the following contributions:

• We propose and formalize three desiderata for the PRL problem:

(1) correctness, or perfect precision and high recall of matches,

(2) provable end-to-end privacy, or insensitivity to the presence

or absence of an individual record that is not a matching record,

and (3) efficiency, or communication and computational costs

that scale subquadratically in the input size. We show that all

of the existing solutions for PRL violate at least one of these

three desiderata. (§ 2)

• This motivates us to develop a novel privacy definition, which

we call Output Constrained DP. Protocols satisfying this notion

are allowed to truthfully return the output of a specific function,

but must be insensitive to the presence or absence of individual

records that do not affect the function output. (§ 3.1)

• We adapt the notion of Output Constrained DP to the context

of PRL. Under this privacy notion, computationally bounded

adversaries cannot distinguish two different protocol executions

when a single non-matching record is replaced by another non-

matching record in one of the databases. This privacy notion,

named DPRL, allows protocols to truthfully release the set of

matching records. (§ 3.2)

• We show that prior attempts [5, 19, 24] to scale PRL using block-

ing do not satisfy our privacy definition DPRL (Theorem 4.7),

and hence fail to achieve stronger privacy guarantees including

differential privacy or S2PC. (§ 4)

• We develop novel protocols for private record linkage that lever-

age blocking strategies. Our protocols ensure end-to-end pri-

vacy (Theorems 4.5 and 4.10), provide at least as much recall as

the non-private blocking strategy (Theorems 4.4 and 4.11), and

achieve subquadratic scaling (Theorems 4.8 and 4.11).

• Using experiments on real and synthetic data, we investigate the

3-way trade-off between recall, privacy, and efficiency. Our key

findings are: our protocols (1) are at least 2 orders of magnitude

more efficient than S2PC baselines, (2) achieve a high recall and

end-to-end privacy, and (3) achieve near linear scaling in the

size of the input databases and the output set of matching pairs

on real and synthetic datasets. (§ 5)

2 PROBLEM SETTING & STATEMENT
In this section, we formulate our problem: finding pairs of records

that are similar as per an input matching rule while ensuring three

desiderata: correctness, privacy, and efficiency. We then discuss prior

attempts to solve this problem and how they do not satisfy one or

more of the three aforementioned desiderata, thus motivating the

need for a novel solution.

2.1 The Private Record Linkage Problem
Consider two parties Alice and Bob who have databasesDA andDB .

Let records in DA come from some domain ΣA and let the records

in DB come from domain ΣB . Let m : ΣA × ΣB → {0, 1} denote
a matching rule, and let DA 1m DB denote the set of matching

pairs {(a,b) |a ∈ DA,b ∈ Db ,m(a,b) = 1}. A matching rule can be

distance-metric based: two records match if their distance is less

than a threshold. For example, Euclidean distance is typically used

for numeric attributes, whereas for string attributes, the distance

metric is typically based on q-grams [7, 8, 35], phonetic encoding

[20], or edit distance over strings [3, 29, 33]. A matching rule can

also be conjunctions of predicates over different types of attributes.

For instance, two records match if their names differ by at most 2

characters and their phone numbers differ by at most 1 digit. Alice

and Bob would like to jointly compute DA 1m DB .
1

Our goal is to design a protocol Π that Alice and Bob can fol-

low to compute DA 1m DB , while satisfying the following three

desiderata – correctness, privacy and efficiency.

• Correctness: Let OΠ ⊆ DA × DB denote the set of pairs output

by the protocol Π as the set of matching pairs. The protocol

is correct if (a) the protocol returns to both Alice and Bob the

same output OΠ , and (b) OΠ = DA 1m DB , and incorrect

otherwise. Note that if Alice and Bob indeed receive the same

output, OΠ can only be incorrect in one way – some matching

pairs (a,b) ∈ DA 1m DB are not present in OΠ . This ensures

perfect precision – no false positives. Hence, we quantify the

correctness of a protocol Π using a measure called recall, which
is computed as:

rΠ (DA,DB ) =
|OΠ ∩ (DA 1m DB ) |

|DA 1m DB |
. (1)

We require Π to have a high recall (close to 1). This precludes

trivial protocols that output an empty set.

• Privacy: We assume that the data in DA and DB are sensitive.

As part of the protocol Π, Alice would like no one else (includ-

ing Bob) to learn whether a specific non-matching record a is

in or out of DA; and analogously for Bob. This precludes the

1
The standard record linkage problem involves learning amatching function in addition

to computing the matches. Although the problem considered in this paper and in the

private record linkage literature ignores this crucial aspect of record linkage, we have

chosen to also use this term for continuity with existing literature on the topic.
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Methods Correctness Privacy Efficiency
APC ✓ ✓ ✗

PSI ✗ ✓ ✓

PSI+X ✓ ✓ ✗

PRL+B ✓ ✗ ✓

PRL+BDP ✓ ✗ ✓

Table 1: Summary of Prior Work

trivial solution wherein Bob sends DB to DA in the clear so

that Alice can compute DA 1m DB using standard techniques

in the record linkage literature [6]. It also precludes the trivial

solution wherein Alice and Bob send their records to a trusted

third party in the clear who can then compute DA 1m DB .

Formally stating a privacy definition is challenging (as we will

see later in the paper) and is a key contribution of this paper.

We will assume throughout the paper that Alice and Bob are

semi-honest, i.e., they follow the protocol honestly, but are curi-

ous about each others’ databases. We also assume that Alice and

Bob are computationally bounded, i.e., they are probabilistic

polynomially bounded turing machines.

• Efficiency: Jointly computing matching records would involve

communication and computational cost. We assume that each

record in the database has O (1) length; i.e., it does not grow
with n = max( |DA |, |DB |). The communication and computa-

tional costs are bounded below by the output size, i.e. Ω(M ),
where M = |DA 1m DA |. If M is quadratic in n, then the

costs have to be quadratic in n to ensure high recall. Hence,

we consider problems with sub-quadratic output size, and we

say that the protocol is efficient if both the communication and

computational costs are sub-quadratic in n, i.e., o(n2).

We formalize our problem statement as follows.

Problem 1 (PRL). LetDA andDB be private databases held by two
semi-honest parties, and letm be a matching rule. Design a protocol
Π that outputs pairs of matching records to both parties such that (1)
Π ensures high recall close to 1, (2) Π provably guarantees privacy,
and (3) Π has sub-quadratic communication and computational cost.

2.2 Prior Work
Before describing our solution, we outline five approaches for the

PRL problem from prior work – APC, PSI, PSI+X, PRL+B and

PRL+BDP . Table 1 summarizes their (in)ability to satisfy our three

desiderata stated in Problem 1. Other related work on composing

S2PC and DP is discussed in § 6.

2.2.1 All-Pairwise Comparisons (APC). One approach to solve

the PRL problem, which we call APC, works as follows: (1) design

a secure 2-party algorithm that takes as input a record a ∈ DA
and a record b ∈ DB and outputs to both parties the pair (a,b) if
the value ofm(a,b) = 1 without leaking any additional informa-

tion, and (2) run the secure comparison algorithm for every pair

of records in DA × DB . The secure comparison primitive can be

implemented either using garbled circuits [40] or (partially) homo-

morphic encryption [28], depending on the matching rule. APC

achieves a recall of 1, but requires a quadratic communication and

computational cost for |DA | × |DB | secure pairwise comparisons.

APC provides a strong end-to-end privacy guarantee – it leaks

no information other than the sizes of the databases and the set of

matching records. This guarantee is formalized as follows.

Definition 2.1 (IND-S2PC [15]). A 2-party protocol Π that com-

putes function f satisfies IND-S2PC if for anyDA, and for every pair

of DB and D ′B where f (DA,DB ) = f (DA,D
′
B ), the view of Alice

during the execution of Π over (DA,DB ) is computationally indis-

tinguishable from the view over (DA,D
′
B ), i.e. for any probabilistic

polynomial adversary T ,

Pr [T (VIEWΠ
A (DA,DB )) = 1]

≤ Pr [T (VIEWΠ
A (DA,D

′
B )) = 1] + negl(κ); (2)

and the same holds for the view of Bob over (DA,DB ) and (D
′
A,DB )

for f (DA,DB ) = f (D ′A,DB ). negl(κ) refers to any function that is

o(κ−c ), for all constants c , and VIEWΠ
A (DA, ·) (VIEW

Π
B (·,DB ) resp.)

denotes the view of Alice (Bob resp.) during an execution of Π.

The IND-S2PC definition uses κ as a “security” parameter to

control various quantities. The size of the adversary is polynomial

in κ, and the output of the protocol is at most polynomial in κ. The
views of the protocol execution are also parameterized by κ.

In PRL, let f1m be the function that takes as inputs DA and

DB , and outputs a triple ( |DA |, |DB |,DA 1m DB ). The view of Al-

ice, VIEW
Π
A (DA, ·), includes (DA, r ,m1,...,mt ), where r represents

the outcome of Alice’s internal coin tosses, andmi represents the

i-th message it has received. The output received by Alice after

an execution of Π on (DA,DB ), denoted O
Π
A (DA,DB ) is implicit in

the party’s own view of the execution. The view of Bob can be

similarly defined. In addition, the output size of VIEW will be (at

most) polynomial inκ. Intuitively, IND-S2PC ensures that the adver-

sary Alice cannot distinguish any two databases DB and D ′B from

her view given the constraint f (DA,DB ) = f (DA,D
′
B ), and the

same applies to Bob. This IND-S2PC definition is a necessary con-

dition for the standard simulation-based definition (Theorem A.2

in Appendix A.1).

To summarize, APC guarantees end-to-end privacy and provides

a recall of 1, but violates the efficiency requirement.

2.2.2 Private Set Intersection (PSI). We call the next class of

approaches PSI, since they were originally designed for efficient

private set intersection. Like APC, PSI also ensures IND-S2PC and

the parties only learn the sizes of the databases and the set of

matching records. The algorithms are efficient, but only ensure

high recall for equality predicate like matching rules [12, 32].

The basic protocol works as follows: Alice defines a polynomial

p (x ) whose roots are her set of elements a ∈ DA. She sends the

homomorphic encryptions of the coefficients to Bob. For each ele-

ment b ∈ DB , Bob computes the encrypted values
˜b = r · p (b) + b,

where r is a random value, and sends them back to Alice. These

values are decrypted by Alice and then matched withDA. If b < DA,

then the decrypted value of
˜b will be a random value not matching

any records in DA; otherwise, it will find a match from DA. The

basic protocol described thus far required O ( |DA | + |DB |) commu-

nications and O ( |DA × DB |) operations on encrypted values. [12]

further optimizes the computational cost with Horner’s rule and
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cryptographic hashing to replace a single high-degree polynomial

with several low-degree polynomials. This reduces the computa-

tional cost to O ( |DB | · ln ln |DA |), and hence is sub-quadratic in n,
for n = max( |DA |, |DB |). State of the art PSI techniques [32] further
improve efficiency.

PSI techniques are limited to equality like matching functions,

and extensions [12, 41] allow for matching rules that require exact

match on at least t out of T features. However these techniques

achieve poor recall for general matching rules. For example, they

do not extend to matching rules that involve conjunctions and dis-

junctions of similarity functions evaluated on multiple attributes.

They also do not extend to complex distance metrics, such as Cosi-

neSimilarity(First Name) > 0.9 OR CosineSimilarity(Last Name)

> 0.9, which are typical in record linkage tasks [13].

2.2.3 PSI with Expansion (PSI+X). The PSI technique can be

used to achieve high recall for general matching rules by using the

idea of expansion. Suppose DA and DB have the same domains, i.e.,

ΣA = ΣB = Σ. For every record a ∈ DA, one could add all records

a′ ∈ Σ such thatm(a,a′) = 1 to get an expanded database Dx
A. An

equi-join between Dx
A and DB returns the required output DA 1m

DB , and satisfies IND-S2PC. However, the expanded dataset can be

many orders of magnitude larger than the original dataset making

this protocol, PSI+X, inefficient (in the size of the original datasets).

Moreover, enumerating all matches per record is hard for a complex

matching function. For instance, if the matching functionm can

encode Boolean 3-CNF formulas, then finding values for a such that

m(a,a′) = 1 could be an intractable problem. In such a case, any

efficient expansion algorithm may need to enumerate a superset of

matches, further increasing the computational cost. Lastly, even for

relatively simple matching functions, we empirically illustrate low

recall of PSI and inefficiency of PSI+X protocols respectively in § 5.

2.2.4 PRL with Blocking (PRL+B). Blocking is commonly used

to scale up non-private record linkage. Formally,

Definition 2.2 (Blocking (B)). Givenk bins
{
B0, ...,Bk−1

}
, records

in DA and DB are hashed by B to a subset of the k bins. The set

of records in DA (respectively DB ) falling into the ith bin are rep-

resented by Bi (DA ) (respectively Bi (DB )). A blocking strategy

BS ⊆ [0,k ) × [0,k ) specifies pairs of bins of DA and DB that are

compared, i.e. records in Bi (DA ) are compared with records in

Bj (DB ) if (i, j ) ∈ B
S
.

We sometimes use B to refer to the entire blocking algorithm as

well as the blocking functions used in the algorithm. We refer to

the set of pairs of records that are compared by a blocking strategy

as candidate matches. A blocking strategy BS is sub-quadratic if
the number of candidate matches

costBS (DA,DB ) =
∑

(i, j )∈BS
|Bi (DA ) | |Bj (DB ) |

is o(n2), for n = max( |DA |, |DB |). Blocking techniques are useful

as a pre-processing step [18, 21, 34] to achieve sub-quadratic effi-

ciency and high recall. We can use blocking as a pre-processing

step for APC – secure comparison is performed only for the candi-

date matches – resulting in an efficient protocol with high recall.

However, the blocking strategy itself can leak information about

the presence or absence of a record in the database. This was illus-

trated using an attack by Cao et al. [5]. This is because the number

of candidate matches can vary significantly even if DB and D ′B
differ in only one record. We formally prove this negative result

for a large class of blocking techniques which use locality sensitive

hashing (LSH). A majority of the hash functions used by blocking

algorithms like q-gram based hash signatures [1] or SparseMap

[34] are instances of LSH.

Definition 2.3 (Locality Sensitive Hashing (LSH)[14]). A family

of functions H is said to be (d1,d2,p1,p2)-sensitive, where d2 > d1

and p1 > p2, if for all h ∈ H , (1) if dist (a,b) ≤ d1, then Pr [h(a) =
h(b)] ≥ p1, and (2) if dist (a,b) > d2, then Pr [h(a) = h(b)] ≤ p2.

An LSH-based blocking considers a set of bins where each bin

consists of records with the same hash values for all h ∈ H . A

popular blocking strategy is to compare all the corresponding bins,

and results in a set of candidate matches {(a,b) |h(a) = h(b)∀h ∈
H ,a ∈ DA,b ∈ DB }. In general, we can show that any LSH based

blocking cannot satisfy IND-S2PC.

Theorem 2.4. An LSH based blockingwith a family of (d1,d2,p1,p2)-
sensitive hashing functions H cannot satisfy IND-S2PC.

The proof can be found in Appendix B.1.1.

2.2.5 PRL with DP Blocking (PRL+BDP ). Differential privacy
has arisen as a gold standard for privacy in situations where it is ok

to reveal statistical properties of datasets but not reveal properties of

individuals. An algorithm satisfies differential privacy if its output

does not significantly change when adding/removing or changing

a single record in its input. More formally,

Definition 2.5 ((ϵ,δ )-Differential Privacy[10]). A randomizedmech-

anismM : D → O satisfies (ϵ,δ )-differential privacy (DP) if

Pr [M (D) ∈ O] ≤ eϵPr [M (D ′) ∈ O] + δ (3)

for any setO ⊆ O and any pair of neighboring databasesD,D ′ ∈ D
such that D and D ′ differ by adding/removing a record.

A recent line of work has designed differentially private blocking

algorithms as a preprocessing step to APC. DP hides the presence

or absence of a single record, and hence the number of candidate

matches stays roughly the same onDB andD ′B that differ in a single

record. While this approach seems like it should satisfy all three of

our desiderata, we have found that none of the protocols presented

in prior work (on DP Blocking) [5, 19, 24] provide an end-to-end

privacy guarantee. In fact, each paper in this line of work finds

privacy breaches in the prior work. We also show in the proof of

Theorem 4.7 (Appendix B.1.2) that even the most recent of these

protocols in [5] does not satisfy an end-to-end privacy guarantee.

This is because of a fundamental disconnect between the privacy

guarantees in the two steps of these algorithms. DP does not allow

learning any fact about the input datasets with certainty, while

IND-S2PC (and PRL protocols that satisfy this definition) can reveal

the output of the function f truthfully. On the other hand, while

DP can reveal aggregate properties of the input datasets with low

error, protocols that satisfy IND-S2PC are not allowed to leak any

information beyond the output of f . Hence, DP and IND-S2PC do

not naturally compose.
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To summarize, none of the prior approaches that attempt to

solve Problem 1 satisfy all three of our desiderata. Approaches that

satisfy a strong privacy guarantee (IND-S2PC) are either inefficient

or have poor recall. Efficient PRL with blocking or DP blocking fail

to provide true end-to-end privacy guarantees. A correct conceptu-

alization of an end-to-end privacy guarantee is critical for achieving

correctness, privacy and efficiency. Hence, in the following sections,

we first define an end-to-end privacy guarantee for PRL to address

this challenge (§ 3), and then present algorithms in this privacy

framework to achieve sub-quadratic efficiency and high recall (§ 4).

3 OUTPUT CONSTRAINED DP
Designing efficient and correct algorithms for PRL is challenging

and non-trivial because there is no existing formal privacy frame-

work that enables the trade-off between correctness, privacy, and

efficiency. In this section, we propose a novel privacy model to

achieve this goal.

3.1 Output Constrained Differential Privacy
Both IND-S2PC (Def. 2.1) and DP (Def. 2.5) ensure the privacy goal

of not revealing information about individual records in the dataset.

However, there is a fundamental incompatibility between the two

definitions. IND-S2PC reveals the output of a function truthfully;

whereas, nothing truthful can be revealed under differential privacy.

On the other hand, DP reveals noisy yet accurate (to within an

approximation factor) aggregate statistics about all the records in

the dataset; but, nothing other than the output of a pre-specified

function can be revealed under IND-S2PC.

The difference between these privacy definitions can be illus-

trated by rephrasing the privacy notions in terms of a distance

metric imposed on the space of databases. Without loss of general-

ity, assume Alice is the adversary. Let G = (V ,E) denote a graph,
whereV is the set of all possible databases that Bob could have and

E is a set of edges that connect neighboring databases. The distance

between any pair of databases is the shortest path distance in G.

Intuitively, the adversary Alice’s ability to distinguish protocol exe-

cutions on a pair of databases DB and D ′B is larger if the shortest

path between the databases is larger.

DP can be represented by the set of edges that connect neighbor-

ing databases that differ in the presence or absence of one record,

|DB\D
′
B ∪ D ′B\DB | = 1. This means, any pair of databases DB and

D ′B are connected in this graph by a path of finite length that is

equal to the size of their symmetric difference. While an adversary

can distinguish protocol executions between some pair of “far away”

databases, the adversary can never tell with certainty whether the

input was a specific database. On the other hand, under IND-S2PC,

every pair of databases that result in the same output for f (DA, ·)
for a given DA are neighbors. However, there is neither an edge nor

a path between databases that result in different outputs. Thus the

output constraint divides the set of databases into disjoint complete

subgraphs (in fact equivalence classes).

Example 3.1. Consider databases with domain {1, 2, 3, 4, 5, 6}.

Given DA = {1, 2}, the graph G for the database instances for

DB are shown in Figure 1. For the graph of differential privacy

in Figure 1(a), every pair of database instances that differ in one

record is connected by an edge and form a neighboring pair. For
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Figure 1: Neighboring databases for (a) DP, and (b) IND-S2PC
for Example 3.1.

instance, DB = {1} and D ′B = {1, 2} are neighbors under DP. Fig-
ure 1(b) considers an output which consists of the size of DB and

the intersection between DB and DA. Hence, all the instances in

GI ND−S2PC have the same datasize and have the same intersec-

tion with DA = {1, 2}. For example, the fully connected 6 database

instances all have 2 records, but have no intersection with DA. The

instance {1, 2} has no neighboring databases, as it is same as the

output, and hence none of the records in this database instance

requires privacy protection.

Comparing these two graphs, we can see that all instances in

GDP are connected, and hence an adversary can not distinguish

protocol executions on any pair of databases with certainty, but is

allowed to learn statistical properties (with some error). This is not

true under GI ND−S2PC , where some instances are disconnected.

For instance, an adversary can distinguish between protocol exe-

cutions on {1, 2} and {1, 5} since they give different outputs when

matched with DA.

From Example 3.1, it is clear that the privacy guarantees given by

DP and IND-S2PC are different. To ensure scalable record linkage

with formal privacy guarantees, we need the best of both worlds:

the ability to reveal records that appear in the match truthfully, the
ability to reveal statistics about non-matching records, and yet not
reveal the presence or absence of individual non-matching records in
the dataset. Hence, we propose a weaker, but end-to-end, privacy
definition for the two party setting.

Definition 3.2 (f -Neighbors). Given function f : DA × DB → O

and DA ∈ DA. For any pairs of datasets DB ,D
′
B , let △(DB ,D

′
B ) =

DB\D
′
B ∪ D ′B\DB . This is the symmetric difference between DB

and D ′B , and is the set of records that must be deleted and added to

DB to get D ′B . DB and D ′B are neighbors w.r.t to f (DA, ·), denoted
by N ( f (DA, ·)) if

(1) f (DA,DB ) = f (DA,D
′
B ),

(2) △(DB ,D
′
B ) , ∅, and

(3) there is no databaseD ′′B ∈ DB , where f (DA,DB ) = f (DA,D
′′
B ),

such that △(DB ,D
′′
B ) ⊂ △(DB ,D

′
B ).

N ( f (·,DB )) is similarly defined.

The third condition ensures that DB and D ′B are minimally dif-

ferent in terms of record changes.

Session F4:  Private Queries CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1393



Definition 3.3 (Output Constrained DP). A 2-party PRL protocol

Π for computing function f : DA × DB → O is (ϵA, ϵB ,δA,δB , f )-
constrained differential privacy (DP) if for any (DB ,D

′
B ) ∈ N ( f (DA, ·)),

the views of Alice during the execution of Π to any probabilistic

polynomial-time adversary T satisfies

Pr [T (VIEWΠ
A (DA,DB )) = 1]

≤ eϵBPr [T (VIEWΠ
A (DA,D

′
B )) = 1] + δB (4)

and the same holds for the views of Bob with ϵA and δA.

If ϵA = ϵB = ϵ,δa = δb = δ , we simply denote it as (ϵ,δ , f )-
constrained DP. Similar to DP, Output Constrained DP satisfies

composition properties that are useful for protocol design.

Theorem 3.4 (Seqential Composition). GivenΠ1 is (ϵ1,δ1, f )-
constrained DP, and Π2 is (ϵ2,δ2, f )-constrained DP, then applying
these two protocols sequentially, i.e. Π2 (DA,DB ,Π1 (DA,DB )) satis-
fies (ϵ1 + ϵ2,δ1 + δ2, f )-constrained DP.

Theorem 3.5 (Post-processing). GivenΠ is (ϵ,δ , f )-constrained
DP, and let OΠ (DA,DB ) be the output after the execution of Π, then
any probabilistic polynomial (in κ) function д(OΠ (DA,DB )) satisfies
(ϵ,δ , f )-constrained DP.

See Appendix B.2.1 and B.2.2 for the proofs of Theorem 3.4 and

Theorem 3.5 respectively. Output constrained DP inherits other

desirable properties from DP, for instance, its robustness to attacks

[17, 36]. We omit details due to space constraints.

3.2 Differential Privacy for Record Linkage
PRL can be a direct application of Output Constrained Differential

Privacy by considering f1m . We have the following theorem to

define the neighboring databases for PRL.

Theorem 3.6 (Neighbors for PRL). Given the function f1m

in PRL, if (DB ,D
′
B ) ∈ N ( f1m (DA, ·)) for a given DA ∈ D, then

|DB | = |D
′
B |,DB andD ′B must differ in only one pair of non-matching

records with respect to the givenDA, i.e.D ′B = DB −b+b
′ and b , b ′,

wherem(b,a) = 0 andm(b ′,a) = 0 for all a ∈ DA.

Proof. The output constraint f1m (DA,DB ) = f1m (DA,D
′
B )

implies that |DB | = |D
′
B | and DA 1m DB = DA 1m D ′B . If DB and

D ′B differ in a matching record, then their matching outputs with

a given DA are different. Hence DB and D ′B must differ in one or

more non-matching records. In addition, to ensure |DB | = |D
′
B |,

the number of non-matching records added to DB to get D ′B must

be the same as the number of non-matching records removed from

DB . If △(DB ,D
′
B ) contains more than one pair of record additions

and deletions, a subset of △(DB ,D
′
B ) can give a valid D ′′B such that

f1m (DA,DB ) = f1m (DA,D
′′
B ). Hence, a neighboring pair DB ,D

′
B

differ by exactly one pair of non-matching records. □

Next we define the privacy guarantee that allows us to design

efficient PRL protocols with provable privacy guarantees.

Definition 3.7 (DPRL). A 2-party PRL protocol Π for comput-

ing function f1m : DA × DB → O is (ϵA, ϵB ,δA,δB )-DPRL if Π
satisfies (ϵA, ϵB ,δA,δB , f1m )-constrained DP.

3.3 Related Privacy Definitions
In this section we discuss related privacy definitions and their

connections with DPRL. First, both DPRL and IND-S2PC assume a

computationally bounded model. We show that DPRL is a weaker

guarantee than IND-S2PC.

Theorem 3.8. All IND-S2PC protocols for record linkage satisfy
(0,negl(κ))-DPRL.

Proof. IND-S2PC for record linkage is equivalent to DPRL with

ϵ = 0 and δ = negl(κ). The δ in DPRL is always greater than

negl(κ) but smaller than o(1/n). □

Hence, APC, PSI, and PSI+X techniques that satisfy IND-S2PC,

guarantee (0,negl(κ))-DPRL as well.

Indistinguishable computationally differential privacy (IND-CDP-

2PC) [25] is another privacy notion under a computationally bounded

model, and is a direct extension of DP to the two party setting where

both parties are computationally bounded. DPRL is weaker than

IND-CDP-2PC. Formally

Theorem 3.9. If a protocol for record linkage satisfies ϵ/2-IND-
CDP-2PC, then it satisfies (ϵ,δ )-DPRL.

The factor 2 arises since neighboring databases protected by

DPRL have a symmetric difference of 2, while neighboring databases

under IND-CDP-2PC have a symmetric difference of 1. The detailed

proof can be found in Appendix A.2.

Blowfish Privacy [17] generalizes differential privacy to prob-

lems where constraints on the input database must hold (e.g., when

certain query answers have been released by the database exactly).

Output Constrained DP, including DPRL, is an extension of Blow-

fish in two ways: (1) from a computationally unbounded model

to a computationally bounded model; (2) from a single-party set-

ting to a two-party setting. Note that with the output constraint

f1m (DA,DB ) = f1m (DA,D
′
B ) for record linkage, the number of

different records between neighboring databasesDB andD ′B is only

two. This is not necessarily true for other applications of Output

Constrained DP, or Blowfish Privacy. This property is desirable for

DP based algorithms since larger distances between neighboring

databases typically require larger perturbation to hide the difference

between neighbors resulting in poorer utility.

Another instantiation of Blowfish privacy, called Protected DP

[22], aims to ensure the privacy of a protected subpopulation. In con-

trast, an unprotected “targeted” subpopulation receives no privacy

guarantees. In DPRL, one could think of the non-matching records

as the protected subpopulation, and the matching records as the

targeted subpopulation. However, unlike in Protected DP, in DPRL

the set of protected records are learned as an output of the DPRL

protocol, and hence are not available as an input to the protocol

like the targeted subpopulation in the Protected DP algorithms.

4 PROTOCOLS FOR DPRL
In this section, we introduce protocols that satisfy DPRL and permit

a 3-way trade-off between correctness, privacy and efficiency. We

first present a class of protocols that achieves (ϵ, negl(κ))-DPRL by

using a blocking strategy that satisfies local differential privacy (DP).
Though these protocols achieve high recall with a sufficiently small

privacy parameter, they only achieve a constant factor speedup in
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efficiency. Next, we present the Laplace Protocol (LP) that achieves

all three desiderata of high recall, privacy and subquadratic effi-

ciency. This protocol hides non-matching records by adding Laplace

noise to the blocking strategy. We also show that attempts from

prior work to use Laplace noise in blocking fail to satisfy DPRL

(Theorem 4.7). Moreover, we design a Sort & Prune (SP) heuristic

that is used in conjunction with LP (as well as the local DP based

protocols) and helps additionally tradeoff efficiency and recall. Fi-

nally, we present the Greedy Match & Clean heuristic optimization

(GMC), that can further improve efficiency. All the protocols pre-

sented in this section are proven to satisfy DPRL.

4.1 Local DP Protocol
Let B be a blocking that randomly hashes records into a pre-

specified set of k bins, such that for all i ∈ [1 . . .k],

Pr[B (b) = i] ≤ eϵ Pr[B (b ′) = i]. (5)

Such a blocking B satisfies ϵ-local DP (as defined in Appendix A.3),

since each record is perturbed locally independent of the other

records. We show that protocols that combine a local differentially

private blocking with IND-S2PC protocols for record linkage can

achieve (ϵ, negl(κ))-DPRL.

Theorem 4.1. All IND-S2PC protocols for record linkage with ϵ-
local differentially private blocking satisfies (ϵ, negl(κ))-DPRL.

The proof can be found in Appendix C.2. Such local differentially

private protocols can be constructed from well known local dif-

ferentially private algorithms based on randomized response (RR)

[11] or the Johnson-Lindenstrauss (JL) transformation [4], where

each record is hashed independent of others. We refer the reader

to Appendix C.2 for a concrete blocking algorithm based on RR.

We show that while this algorithm permits high recall and privacy,

it does not improve efficiency by more than a constant factor (a

function of ϵ) (Theorem C.1). Whether any local DP based blocking

algorithms can achieve subquadratic efficiency is an interesting

open question.

4.2 Laplace Protocol (LP)
4.2.1 Algorithm Description. In this protocol, Alice and Bob

agree on a blocking function B with k bins and strategy BS , which

we take as input to the protocol. The Laplace Protocol (LP, as shown

in Algorithm 1) works by inserting a carefully chosen number of

dummy records into each bin of the blocking strategy such that the

bin sizes are differentially private. While candidate matches may

contain dummy records, they do not contribute to the output set

of matches, because the dummy records do not match any record.

These candidate matches are then securely matched using an IND-

S2PC algorithm.

In the first step (Lines 1-4) of the protocol shown in Algorithm 1,

Alice and Bob take their inputs DA and DB , the agreed blocking

protocol B, and privacy parameters ϵA, ϵB , δA, and δB as input,

and compute noisy bins
˜B (DA ) and ˜B (DB ) respectively. The noisy

bins are constructed as follows (Algorithm 2). Records in D are

first hashed into bins according to the blocking protocol B, and

B (D) denotes the set of bins of records from D. Then the counts

of the bins are perturbed using noise drawn from a truncated and

discretized Laplace distribution, such that the noisy counts satisfy

Algorithm 1: Laplace Protocol (LP)
Input :DA ,DB , ϵA, ϵB , δA, δB , B(including BS )
Output :O

1 // Alice performs the following:

2 ˜B (DA ) ← LapNoise (DA, B, ϵA, δA ) ;
3 // Bob performs the following:

4 ˜B (DB ) ← LapNoise (DB, B, ϵB, δB ) ;
5 // Alice and Bob perform the following:

6 O = ∅ ;
7 // Sort & prune BS (§ 4.3)

8 for (i, j ) ∈ BS do
9 for a ∈ ˜Bi (DA ) and b ∈ ˜Bj (DB ) do

10 Add SMC (a, b ) to O ;

11 end
12 // Greedy match & clean (§ 4.4)

13 end
14 return O ;

Algorithm 2: Add Laplace Noise

1 function LapNoise (D,B, ϵ,δ );

2 for Bi ∈ B do
3 ηi ∼ Lap (ϵ,δ ,∆B) ;

4 ˜Bi (D) ← add η+i = max(ηi , 0) dummy records to Bi (D);

5 end
6 return B̃ (D);

(ϵ,δ )-DPRL. The Laplace noise depends on not only the privacy

parameters ϵ and δ , but also the sensitivity of the given blocking

protocol B.

Definition 4.2 (Sensitivity of B). The sensitivity of the blocking

strategy B for Bob, denoted by ∆BB is

max

DA ∈D
max

(DB,D′B )∈N (f1m (DA, ·))

k∑
i=0

| |Bi (DB ) | − |Bi (D
′
B ) | |,

the maximum bin count difference between DB and D ′B for any

(DB ,D
′
B ) ∈ N ( f1m (DA, ·)) for all DA ∈ D. ∆BA for Alice is

similarly defined.

If the hashing of B is the same for Alice and Bob, then ∆BA =
∆BB = ∆B. We assume this in our paper. If B hashes each record

to at most k ′ bins, then ∆B = 2k ′.

Definition 4.3 (Lap (ϵ,δ ,∆B)). A random variable follows the

Lap (ϵ,δ ,∆B) distribution if it has a probability density function

Pr[η = x] = p · e−(ϵ/∆B) |x−η
0 | , ∀x ∈ Z, (6)

where p = eϵ /∆B−1

eϵ /∆B+1

, and η0 = −
∆B ln((eϵ /∆B+1) (1−(1−δ )1/∆B ))

ϵ .

This distribution has a mean of η0 and takes both positive and

negative values. LP draws a noise value η from this distribution,

and truncates it to 0 if η is negative. Then, η dummy records are

added to the bin. These dummy records lie in an expanded domain,

such that they do not match with any records in the true domain.

After Alice and Bob perturb their binned records, they will initi-

ate securematching steps to compare candidatematches, i.e. records
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in
˜Bi (DA ) × ˜Bj (DB ) if (i, j ) ∈ B

S
. For each candidate match (a,b),

Alice and Bob participate in a two party secure matching proto-

col SMC (a,b) that outputs the pair (a,b) to both Alice and Bob if

m(a,b) = 1 (true matching pair) and null otherwise. Secure match-

ing can be implemented either using garbled circuits [40] or (par-

tially) homomorphic encryption [28], depending on the matching

rule (see Appendix C.1 for an example).

4.2.2 Correctness Analysis. Compared to the original non-private

blocking protocol B, no records are deleted, and dummy records

do not match any real record. Hence,

Theorem 4.4. Algorithm 1 gives the same recall as the non-private
blocking protocol B it takes as input.

4.2.3 Privacy Analysis. Next, we show that LP satisfies DPRL.

Theorem 4.5. Algorithm 1 satisfies (ϵA, ϵB ,δA,δB )-DPRL.

Proof. We prove privacy for Bob (the proof for Alice is analo-

gous). In this protocol, Alice with input data DA has a view con-

sisting of (1) the number of candidate matching pairs arising in

each (i, j ) ∈ BS , (2) the output for each candidate matching pair.

Algorithm 1 is the composition of two steps: (a) add dummy records

to bins, and (b) secure comparison of records within bins.

Consider a neighboring pair (DB ,D
′
B ) ∈ N ( f1m (DA, ·)) for a

given DA. By Theorem 3.6, DB and D ′B differ in only one non-

matching record with respect to DA, i.e. D
′
B = DB − b∗ + b

′
∗ and

b∗ , b ′∗, wherem(b∗,a) = 0 andm(b ′∗,a) = 0 for all a ∈ DA. DB
and D ′B can differ by at most ∆B in their bin counts. We show in

Lemma B.2 (Appendix) that Algorithm 2 adds a sufficient number of

dummy records to hide this difference: with probability 1 − δB , the
probabilities of generating the same noisy bin counts for Bob, and

hence the same number of candidate matching pairs consisting in

each (i, j ) ∈ BS fromDB andD ′B are bounded by eϵB . Thus, Step (a)
ensures (ϵB ,δB )-DPRL for Bob. Given a fixed view from Step (a)

which consists of the noisy bin counts and encrypted records from

˜B (DB ), Alice’s view regarding the output for each candidate match-

ing pair (a,b) is the same. The encrypted records for a given noisy

bin counts can only differ in b∗ and b
′
∗, but both of them lead to

the same output for each candidate matching, because they do

not match any records in DA. Each secure pairwise comparison

satisfies (0, negl(κ))-DPRL, and since there are at most n2
com-

parisons (recall κ > n = max( |DA |, |DB |)). Thus Step (b) satisfies

(0, negl(κ))-DPRL.
Therefore, using similar arguments for Alice and sequential com-

position, we get that Algorithm 1 satisfies DPRL. □

Theorem 4.6. If Algorithm 1 (LP) takes η0 = ln
2 n · ∆B/ϵ for

Eqn. (6), then LP satisfies (ϵA, ϵB ,o(1/nk ),o(1/nk ))-DPRL, for any
k > 0, where n = max( |DA |, |DB |).

Proof. (sketch) Taking η0 = ln
2 n ·∆B/ϵ , the failing probability

δ = 1− (1− 1

nlnn (eϵ /∆B+1)
)∆B ≤ c

nlnn for some constant c (in terms

of ϵ,∆B). Hence δ = o(1/nk ) for all k > 0. □

LP only adds non-negative noise to the bin counts. One could

instead add noise that could take positive and negative values, and

suppress records if the noise is negative. We call this protocol LP-

2. This is indeed the protocol proposed by prior work [5, 19, 24]

that combined APC with DP blocking. However, we show that this

minor change in LP results in the protocol violating DPRL (even

though the noise addition seems to satisfy DP)! Hence, LP-2 also

does not satisfy IND- CDP-2PC (by Theorem 3.9).

Theorem 4.7. For every non-negative ϵ,δ < p∆B

2eϵ , there exists a
pair of neighboring databases for which LP-2 does not ensure (ϵ,δ )-
DPRL, where p = eϵ /∆B−1

eϵ /∆B+1

.

Proof. (sketch) The output of the record suppression step is

dependent on the ratio between the matching and non-matching

records in the bin. This introduces a correlation between the match-

ing and non-matching records. Consider a neighboring pair DB
and D ′B that differ by a non-matching pair (b∗,b

′
∗) for a given DA.

If b∗ is in a bin full of non-matching records with DA, and b
′
∗ is in a

bin full of matching records with DA (except b ′∗). DB is more likely

to output all matching pairs than D ′B if some record is suppressed.

The detailed proof can be found in Appendix B.1.2. □

4.2.4 Efficiency Analysis. Last, we present our result on the ef-

ficiency of LP. Note that the communication and computational

costs for LP are the same as O (costBS ), where costBS is the num-

ber of candidate matches, if you consider the communication and

computational costs associated with a single secure comparison as

a constant. Hence, we analyze efficiency in terms of the number of

candidate pairs costBS in LP.

Theorem 4.8. Given a blocking protocol B with k bins and block-
ing strategy BS , such that the number of candidate matches for DA
and DB , costBS (DA,DB ), is sub-quadratic in n, i.e. o(n2), where
n = max( |DA |, |DB |). If (1) the number of bins k is o(nc ) for c < 2,
and (2) each bin of a party is compared withO (1) number of bins from
the opposite party, then the expected number of candidate matches in
Algorithm 1 is sub-quadratic in n.

Proof. Given ϵ and δ , the expected number of dummy records

added per bin E(η+) is a constant denoted by cη (Def. 4.3). Each

bin of a party is compared with at most cb bins from the opposite

party, where cb is a constant. The number of candidate matches in

LP is a random variable, denoted by COST , with expected value

E(COST ) =
∑

(i, j )∈BS
E( | ˜Bi (DA ) | | ˜Bj (DB ) |)

=
∑

(i, j )∈BS
|Bi (DA ) | |Bj (DB ) | +

∑
(i, j )∈BS

E(η+i )E(η
+
j )

+
∑

(i, j )∈BS
(E(η+i ) |Bj (DB ) | + E(η

+
j ) |Bi (DA ) |)

< costBS (DA,DB ) + c
2

ηcbk + 2cηcbn.

Since costBS (DA,DB ) and k are sub-quadratic in n, E(COST ) is
also sub-quadratic in n. When δ is a negligible term as defined in

Theorem 4.6, the noise per bin is O (ln2 n). As k is o(nc ) for c < 2,

the expected value of COST is still sub-quadratic in n. □

Conditions (1) and (2) in the above theorem are satisfied by, for

instance, sorted neighborhood, and distance based blocking [6] (we

use the latter in our experiments). While the asymptotic complexity

of LP is sub-quadratic, it performs at least a constant number of

secure comparisons for each pair (i, j ) ∈ BS even if there are no real
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records in Bi (DA ) and Bj (DB ). We can reduce this computational

overhead with a slight loss in recall (with no loss in privacy) using

a heuristic we describe in the next section.

4.3 Sort & Prune BS (SP)
Algorithm 1 draws noise from the same distribution for each bin,

and hence the expected number of dummy records is the same

for every bin. The bins with higher noisy counts will then have a

higher ratio of true to dummy records. This motivates us to match

candidate pairs in bins with high noisy counts first. Instead of

comparing bin pairs in BS in a random or index order, we would

like to sort them based on the noisy counts of
˜B (DA ) and ˜B (DB ).

Given a list of descending thresholds t̄ = [t1, t2, t3 . . .], the pairs
of bins from the matching strategy BS can be sorted into groups

denoted by BS,tl for l = 1, 2, . . ., where

BS,tl = {| ˜Bi (DA ) | > tl ∧ | ˜Bj (DB ) | > tl |(i, j ) ∈ B
S }.

Each group consists of bin pairs from BS with both noisy counts

greater than the threshold.

We let the thresholds t̄ be the deciles of the sorted noisy bin sizes

of
˜B (DA ) and ˜B (DB ). As the threshold decreases, the likelihood

of matching true records instead of dummy records drops for bins.

Alice and Bob can stop this matching process before reaching the

smallest threshold in t̄ . If the protocol stops at a larger threshold,
the recall is smaller. In the evaluation, if the protocol stops at 10%

percentile of the noisy bin counts, the recall can reach more than

0.95. This allows a trade-off between recall and efficiency for a

given privacy guarantee. We show that this step also ensures DPRL.

Corollary 4.9. Algorithm 1 with sort & prune step (SP) satisfies
(ϵA, ϵB ,δA,δB )-DPRL.

Proof. Similar to the proof in Theorem 4.5, Alice with input

dataDA has a view consisting of (1) the number of candidate match-

ing pairs arising in each (i, j ) ∈ BS , and (2) the output for each

candidate matching pair. As SP is a post-processing step based on

the noisy bin counts, which is part of Alice’s original view, the over-

all protocol still satisfies the same DPRL guarantee by Theorem 3.5

(post-processing). □

We next present an optimization that also uses a form of post-

processing to significantly reduce the number of secure pairwise

comparisons in practice, but whose privacy analysis is more in-

volved than that of SP.

4.4 Greedy Match & Clean (GMC)
LP executes a sequence of secure comparison protocols, one per

candidate pair. After every comparison (or a block of comparisons),

Alice and Bob learn a subset of the matchesO . Based on the current

output O , Alice and Bob can greedily search matching pairs in the

clear from their respective databases (Lines 5,10 in Algorithm 3),

and add the new matching pairs to the output set O until no new

matching pairs can be found. In addition, Alice and Bob can remove

records in the output from the bins
˜B (DA ) and ˜B (DB ) to further

reduce the number of secure pairwise comparisons (Lines 4,9). We

can see that this optimization step is not simply post-processing,

because it makes use of the true record in plain text for matching.

In traditional differential privacy, when the true data is used for

Algorithm 3: Greedy match and clean

Input :O ,
˜B (DA ), ˜B (DB )

1 repeat
2 // Alice performs the following:

3 OA ← πAO , OB ← πBO ;

4 ˜B (DA ) ← ˜B (DA ) −OA ;

5 O ′ ← PlainMatch (OB, ˜B (DA )) ;

6 Add O ′ to O and send O to Bob ;

7 // Bob performs the following:

8 OA ← πAO , OB ← πBO ;

9 ˜B (DB ) ← ˜B (DB ) −OB ;

10 O ′ ← PlainMatch (OA, ˜B (DB )) ;

11 Add O ′ to O and send O to Alice ;

12 until O received by Alice has no updates;

computation, the privacy guarantee decays. However, we show that

this is not true for the GMC step in the setting of DPRL.

Theorem 4.10. Algorithm 1 with the greedy match & clean step
(GMC) in Algorithm 3 satisfies (ϵA, ϵB ,δA,δB )-DPRL.

Proof. First consider the privacy for Bob. Alice with input data

DA, has a view consisting of (1) the number of candidate matching

pairs arising in each (i, j ) ∈ BS , (2) the output for each candi-

date matching pair, (3) the output from plaintext comparisons with

output records.

Consider a neighboring pair (DB ,D
′
B ) ∈ N ( f1m (DA, ·)) for a

given DA. By Theorem 3.6, DB and D ′B differ in only one non-

matching record with respect to DA, i.e. D
′
B = DB − b∗ + b

′
∗ and

b∗ , b ′∗, wherem(b∗,a) = 0 andm(b ′∗,a) = 0 for all a ∈ DA. DB
and D ′B can differ by at most ∆B in their bin counts. Similar to the

proof for Theorem 4.5, the first step of the protocol adds dummy

records to bins, and satisfies (ϵB ,δB )-DPRL.
In the second step, given a fixed view VIEW

∗
from the first

step which consists of the noisy bin counts and encrypted records

from
˜B (DB ), Alice’s view regarding the output for each candidate

matching pair (a,b) is the same regardless (a,b) are compared

securely or in plaintext. Alice’s view regarding the output from

plaintext comparisons with the records in the output set is also the

same for a fixed VIEW
∗
from the first step. The encrypted records

for a given noisy bin counts can only differ in b∗ and b
′
∗, and they

will never be pruned away. Both of them also lead to the same

output for secure pairwise comparisons or plaintext comparisons,

because they do not match any records inDA. Thus Step (b) satisfies

(0, negl(κ)-DPRL.
Therefore, using similar arguments for Alice and sequential com-

position, we get that Algorithm 1 satisfies DPRL. □

With the same privacy guarantee, LP with the GMC step can

even improve the efficiency of LP without sacrificing recall.

Theorem 4.11. LP with the greedy match & clean step (GMC)
performs no more secure pairwise comparisons than LP, and outputs
at least as many matching pairs as LP.

We refer the reader to Appendix B.3.2 for the proof. Both SP and

GMC are also applicable on the local DP based protocols for the
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similar reasoning. Hence, we will only show how each optimization

helps improve the efficiency of the basic LP in the evaluation.

5 EVALUATION
We empirically evaluate the correctness, privacy, and efficiency of

the protocols proposed in § 4. Our experiments demonstrate the

following results:

• The Laplace Protocol (LP, which includes all the optimizations)

proposed in § 4 is over 2 orders of magnitude more efficient

than the baseline approaches while still achieving a high recall

and end-to-end privacy. (§ 5.2.1)

• At any given level of privacy, LP incurs a computational cost

that is near linear in the input database size. (§ 5.2.1)

• Greedy match & clean and Sort & prune optimization help re-

duce communication and computation costs. The former results

in 50% lower cost than unoptimized LP in some cases. (§ 5.2.2)

• We explore the 3-way trade-offs between correctness, privacy,

and efficiency of LP. (§ 5.2.3)

5.1 Evaluation Setup
5.1.1 Datasets and Matching Rules. Taxi dataset (Taxi): To sim-

ulate linkage in the location domain, we extract location distribu-

tion information from the TLC Trip Record Data [37]. Each record

includes a pickup location in latitude-longitude coordinates (trun-

cated to 6 decimal places) and the date and hour of the pickup

time. Taking the original dataset as DA, we create DB by perturb-

ing the latitude-longitude coordinates of each record in DA with

random values uniformly drawn from [−θ ,+θ]
2
, where θ = 0.001.

Each day has approximately 300,000 pickups. The data size can be

scaled up by increasing the number of days,T . We experiment with

T = 1, 2, 4, 8, 16, with T = 1 being the default. Any pair of records

a,b ∈ Σ are called a match if they have the same day and hour, and

their Euclidean distance in location is no larger than θ . The location
domain is within the bounding box (40.711720N, 73.929670W) and

(40.786770N, 74.006600W). We project the locations into a uniform

grid of 16 × 16 cells with size 0.005 × 0.005. A blocking strategy

BS based on the pickup time and grid is applied to both datasets,

resulting in (16× 16× 24T ) bins. BS compares pairs of bins that are

associated with the same hour, and corresponding/neighboring grid

cells. Thus, each bin in B (DA ) is compared with 9 bins in B (DB ).
Abt and Buy product dataset (AB): These datasets are synthesized

from the online retailers Abt.com and Buy.com [23] who would

like to collaboratively study the common products they sell as a

function of time. Each record in either dataset consists of a product

name, brand and the day the product was sold. The product names

are tokenized into trigrams, and hashed into a bit vector with a

bloom filter having domain Σ = {0, 1}50
. We consider 16 brands, and

sample 5,000 records per day from the original datasets for Abt and

Buy each. The data size can be scaled up withT forT = 1, 2, 4, 8, 16,

with 1 being the default forT . Any pair of records a,b ∈ Σ are called

a match if (a) they are sold on the same day, (b) they are of the

same brand, and (c) the hamming distance between their vectorized

names is no more than θ = 5. A blocking strategy hashes records

having the same value for day and brand into the same bin, resulting

in 16T bins, and compares records falling in the corresponding bins.
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Figure 2: The average log (cost) of LP, APC, PSI+X and non-
private matching (np) for the Taxi and AB datasets vs
log (data size). LP give lower costs than the baselines PSI+X
and APC for all values of ϵ = 0.1, 0.4, 1.6 and δ = 10

−5, and
scales near linearly.

5.1.2 Protocols: We evaluate four DPRL protocols: (1) Laplace

protocol (LP), (2) all-pairwise comparisons (APC), (3) private set

intersection (PSI), and (4) PSI with expansion (PSI+X). The default

LP consists of the basic protocol described in Algorithm 1 along

with optimization steps (SP and GMC) in § 4.3 and 4.4.

5.1.3 Metrics: There are three dimensions in the trade-off space:

correctness, privacy and efficiency. The correctness of a protocol is

measured by the recall, which is the fraction of the matching pairs

output by the algorithm, as defined in Eqn. (1), with larger values

close to 1 being better. The privacy metric is specified in advance

for each algorithm using parameters ϵ,δ . For AP, PSI, and PSI+X,

ϵ = 0 and δ = negl(κ) by Theorem 3.8. We consider ϵA = ϵB = ϵ
and δA = δB for ϵ ∈ {0.1, 0.4, 1.6} and δ ∈ {10

−9, 10
−7, 10

−5} for LP.

The default value for ϵ and δ is 1.6 and 10
−5
, respectively. Finally,

we define efficiency of APC and LP protocols for a given dataset

as the number of secure pairwise comparisons, and denote this

by cost. The cost of PSI and PSI+X can be estimated as γn ln ln(n),
where γ is the expansion factor, or the ratio of sizes of the expanded

and true databases. This represents the number of operations on

encrypted values. For PSI, γ is 1. We use the number of secure com-

parison/operations on encrypted values rather than the wallclock

times as a measure of efficiency, since these operations dominate

the total time. We discuss wallclock times in more detail in § 5.2.4.

5.2 Results and Discussions
5.2.1 Efficiency and scalability. In this section, we empirically in-

vestigate how LP scales as the data size increases (T ∈ {1, 2, 4, 8, 16})

in comparison to baselines APC and PSI+X, when all the algorithms

achieve 100% recall. We do not include PSI as its recall is close to

10%. LP is evaluated at privacy parameter ϵ ∈ {1.6, 0.4, 0.1} and
fixed δ = 10

−5
. At each ϵ , we report the average number of candi-

date pairs for LP over 10 runs for each value of T . To achieve 100%

recall, PSI+X expands each record b in DB to every other record b ′

within a θ -ball around b. We add 2,369,936 records per record in

the AB dataset, and 1000
2π records per record in the Taxi dataset.

In Figure 2, we report the log(base 10) value of the average cost,

log(cost ), with respect to the log value of data size log(n) for PSI+X,
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Figure 3: The average cost with standard deviation of LP protocols with five settings: (1) ‘basic’ – the basic LP protocol in
Algorithm 1, (2) ‘basic+SP’ – the basic LP with sort & prune step in § 4.3, (3) ‘basic+GMC’ – the basic protocol with greedy
match & clean step in Algorithm 3, (4) ‘basic+GMC+S’ – the previous protocol with addition sorting step described in § 4.3, and
(5) ‘basic+GMC+SP’ – the protocol stops at recall less than full recall.

APC, and LP with varying ϵ and the non-private setting (np) when

they achieve a recall of 1.0. Results for Taxi are shown on the

left, and AB are shown on the right. For both datasets, the baseline

methods, PSI+X and APC, have data points and line segments above

LP for the plotted data size range. When the Taxi dataset has a

size of 10
5.5

, LP at ϵ = 0.1 costs an order of magnitude less than

APC, as shown by the leftmost brown point (APC) and blue point

(LP,eps=0.1) in Figure 2(left). As the data size increases, the gap

between APC and LP gets larger. When data size increases by 16

times (the right most points in the plots), LP at ϵ = 0.1 costs over 2

orders of magnitude less than APC. When ϵ increases, the cost of
LP shifts downward towards the non-private setting (np). When

ϵ = 1.6, LP has 3 orders of magnitude lower cost than APC for

the given range of data sizes. The line for np is the lower bound

for LP, where no dummy records are added to the bins. Similar

observations are found in Figure 2(right) for the AB dataset, where

LP improves APC by up to 2 orders for the plotted data size range.

PSI+X has a much larger cost than both APC and LP, mainly due

to the fact that the expansion factor is far larger than the data size.

We also observe that the lines that pass through the points of APC

for both Taxi and AB datasets have a slope of 2, which corresponds

to the quadratic communication and computational cost of APC. LP

and PSI+X have slopes of values slightly larger than 1, and thus are

linear time. Thus, for sufficiently large data sizes, PSI+X can beat

APC. However, we do not expect PSI+X to beat LP due to the large

expansion factor. Similar results are observed when the protocol

stops before achieving full recall (Figure 5 in Appendix D).

5.2.2 Optimization steps. We next study the effectiveness of the

optimization steps for LP.We study 5 protocols as shown below:

• ‘basic’: the basic LP Algorithm 1with no heuristic optimizations;

• ‘basic+SP’: the basic LP with the sort & prune step (SP). SP stops

the protocol when the threshold reaches the 10% percentile of

the noisy bin counts of
˜B (DA ) and ˜B (DB ). Together with the

sorting step, bins pairs with insufficient counts can be pruned

away, resulting in a recall slightly smaller than the highest

possible recall;

• ‘basic+GMC’: the greedy match & clean step (GMC) in Algo-

rithm 3 is applied to the basic LP;

• ‘basic+GMC+S’: in addition to the previous protocol, bins are

sorted in order of size. Pruning is omitted so that the highest

possible recall is achieved;

• ‘basic+GMC+SP’: the same protocol as ‘basic+GMC+S’, except

it prunes the bins with counts in the bottom 10% percentile.

Hence, the default LP can be also denoted by ‘basic+GMC+S’ if

recall is 1.0 and ‘basic+GMC+SP’ if recall is less than 1.0.

In Figure 3, we report the average cost with the standard de-

viation across 10 runs of the above mentioned protocols at ϵ =
0.1, 0.4, 1.6 and δ = 10

−5
for the Taxi and AB datasets when T = 1

and T = 16. Several interesting observations arise from this plot.

First, the most significant drop in cost is due to GMC. The pro-

tocols with the greedy step have smaller cost than other protocols

for all ϵ and datasets. For the Taxi datasets at T = 1 or T = 16,

‘basic+GMC’ saves the cost of ‘basic’ by over 50% when ϵ = 1.6.

As ϵ decreases, these relative savings reduce because more dummy

records are added and cannot be matched or removed by this greedy

step. For the AB datasets, ‘basic+GMC’ reduces the cost of ‘basic’

by up to 16% at ϵ = 1.6 and 11% at ϵ = 0.1.

Next, adding the sorting step to GMC (GMC +S) improves upon

GMC when the data sizes are large (T=16). For instance, when

ϵ = 0.1 andT = 16, ‘basic+GMC+S’ can further bring the cost down

by approximately 8.0× 10
6
candidate pairs for the AB datasets, and

by 2.0 × 10
9
for the Taxi datasets.

Third, the cost of ‘basic+GMC+SP’ is reported at a recall reach-

ing above 0.95. The reduction with respect to ‘basic+GMC+S’ is

relatively small, but the absolute reduction in cost is significant in

some setting. For instance, the number of candidate pairs is reduced

by 5.0 × 10
6
for the AB datasets when ϵ = 0.1 and T = 16.

Last, for the AB dataset at T = 16, ‘basic+SP’ has a smaller

variance in cost than ‘basic’ at ϵ = 0.1. Similarly, ‘basic+GMC+SP’

has a smaller variance in cost than ‘basic+GMC’. This implies the

sort & prune step can help prune away bins, and hence reduce the

variance introduced by dummy records.
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Figure 4: LP with varying privacy settings plotted over the default Taxi datasets and AB datasets. Each trade-off line between
recall and the efficiency (cost(LP)/cost(APC)) corresponds to the default LP at a privacy setting (ϵ,δ ). Figure 4(a) varies ϵ and
Figure 4(b) varies δ .

5.2.3 Three-way trade-offs. All the DPRL baseline methods in-

cluding APC, PSI and PSI+X, have a fixed and strong privacy guar-

antee where ϵ = 0 and δ = negl(κ). Hence, each baseline has a

single point in a plot between recall and efficiency for a given data

size, where APC and PSI+X have a point with full recall and high

cost, and PSI has a point with low recall and low cost. Here, we will

show that LP allows a trade-off between recall and efficiency for

a given privacy guarantee. The efficiency metric used here is the

ratio of the cost(LP) to the cost(APC).

Figure 4(a) illustrates the case when both Alice and Bob require

(ϵ,δ )-DPRL protection where ϵ = {0.1, 0.4, 1.6} and fixed δ = 10
−5
.

In Figure 4(b), we vary the values of δ for δ ∈ {10
−9, 10

−7, 10
−5}

with fixed ϵ = 1.6. Each data point in the plot corresponds to the

average cost(LP)/cost(APC) and average recall of the default LP

for a given (ϵ,δ ) and the default data size with T = 1. The default

LP allows the sort & prune step as described in § 4.3 with a list of

thresholds that are the 90%, 80%, ..., 0% percentiles of the sorted

bin sizes of
˜B (DA ) and ˜B (DB ). We report the average recall and

cost(LP)/cost(APC) for each percentile. This gives a trade-off line

for each ϵ and δ value.

We observe that all the trade-off lines obtain a high recall at

very small values of cost(LP)/cost(APC). Even at ϵ = 0.1, LP incurs

100 times smaller cost than APC. LP has a slightly larger cost for

AB dataset. In Figure 4(a), the trade-off lines between recall and

efficiency shift rightwards as the privacy parameter ϵ gets smaller.

In other words, the cost is higher for a stronger privacy guarantee

in order to output the same recall. Similar observations are found

in Figure 4(b). However, the trade-off lines are more sensitive to ϵ
than δ . The red lines in Figure 4(a) and the red lines in Figure 4(b)

correspond to the same privacy setting. As δ reduces by 10000 times

from 10
−5

to 10
−9
, the trade-off line of LP for the Taxi datasets shifts

the ratio of costs by at most 0.001 as shown in Figure 4(b) (left) while

the trade-off line increases the ratio of costs to 0.07 as ϵ reduces

from 1.6 to 0.1 (Figure 4(a)).

As the Taxi and AB dataset have different data distributions over

bins, the shapes of the trade-off lines are different. AB datasets are

more skewed and have some bins with large counts. These bins

also have many matching pairs, and hence we see a steep rise for

the first part of the trade-off lines for the AB datasets. When the

data size increases, if the distribution of matching pairs remains

similar, the trade-off lines between the efficiency and recall tends

to stay the same. These trade-off lines can be useful when choosing

the recall, privacy and efficiency for larger datasets.

5.2.4 Wall clock times. We implemented APC and LP in python,

and implemented operations on encrypted records using the Pail-

lier homomorphic cryptosystem using the python-paillier library

[38]. As all algorithms require a one-time encryption of records we

exclude this cost and only measure the cost of operations on the

encrypted records. On a 3.1 GHz Intel Core i7 machine with 16 GB

RAM, we found that computing the Hamming distance of two en-

crypted records with dimension d = 50 takes an average of ts = 77

ms. That is, for datasets of size n = 5000, APC would take over 22

days to complete! Additionally, for the same dataset with ϵ = 1.6,

LP would only take 80 hours to achieve a recall of 1. In comparison,

the wall clock time of LP ignoring the time spent in comparisons of

encrypted records was only 120 seconds. We believe that this order

of magnitude difference in time for secure operations and normal

operations is true independent of the library or protocol used for

secure comparisons. Thus, the computational cost of LP is domi-

nated by the cost of secure comparison. How to improve the unit

cost of each secure pairwise comparison is an important research

topic, and is orthogonal to our research. Hence, in this evaluation,

we focused only on the number of secure comparisons/operations

on encrypted values to measure efficiency.

6 RELATEDWORK
In addition to the prior work [5, 19, 24] that attempted to combine

DP and secure computation techniques in order to scale-up the PRL

problem, there are other efforts that take similar approaches, but

focus on solving different problems. Wagh et al. [39] formalized

the notion of differentially private oblivious RAM (DP ORAM) and
their corresponding protocols significantly improved the bandwidth

overheads with a relaxed privacy guarantee. This privacy notion

considers a client-server model where all data sit on a single server,
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while DPRL considers two party computation. Moreover, the proto-

cols for DP ORAM only consider the trade-off between privacy and

efficiency while DPRL considers an additional trade-off dimension:

correctness. Several efforts [2, 16, 26, 27, 30, 31] also integrated DP

with SMC in a distributed setting where data is vertically or hori-

zontally partitioned between parties. The difference is that these

papers focus on aggregate functions over the partitioned data, such

as join size, marginal counts and sum, while PRL requires matching

individual record pairs. This matching of individual record pairs

does not naturally compose with DP, and hence motivated DPRL, a

new privacy model for efficient PRL.

7 CONCLUSION
In this work, we propose a novel privacy model, called output con-
strained differential privacy, that shares the strong privacy protec-

tion of differential privacy, but allows for the truthful release of the

output of a certain function on the data. We showed that this new

privacy model can be applied to record linkage to define differential

privacy for record linkage (DPRL). Under this framework, we pro-

posed novel protocols for efficient PRL that satisfy three desiderata:

correctness, privacy and efficiency. This is an important advance,

since none of the prior techniques achieves all three desiderata.

Despite this advance, further investigation into the practicality of

DPRL protocols is a direction for future research. This includes

investigation into their wall clock times in a specific operational

environment and over datasets with more complex matching func-

tions. Additional directions for future research include identifying

DPRL protocols that further reduce the computational complex-

ity of record linkage, such as applying a data-dependent blocking

strategy, extending two-party DPRL to a multi-party setting, and

generalizing the notion of output constrained differential privacy

to other applications beyond private record linkage.
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A RELATED PRIVACY DEFINITIONS
A.1 Simulation-Based S2PC
The standard simulation-based definition for SMC is defined below.

Definition A.1 (SIM-S2PC). [15] For a functionality f , a 2-party
protocol Π which computes f provides simulation-based secure

2-party computation (SIM-S2PC) if for all data sets DA, DB of poly-

nomial sizes (in κ), there exist probabilistic polynomial-time algo-

rithms (simulators), denoted by SA and SB such that the distribution

of SA (resp., SB ) is computationally indistinguishable from VIEW
Π
A

(resp., VIEW
Π
B ), i.e. for any probabilistic polynomial-time (in κ)

adversary T ,

Pr [T (SA (DA, fA (DA,DB ), f (DA,DB ))) = 1] (7)

≤ Pr [T (VIEWΠ
A (DA,DB ),O

Π (DA,DB )) = 1] + negl(κ)

Pr [T (SB (DA, fB (DA,DB ), f (DA,DB ))) = 1] (8)

≤ Pr [T (VIEWΠ
B (DA,DB ),O

Π (DA,DB )) = 1] + negl(κ).

If f is deterministic, Alice gains no additional knowledge other

than its respective input (DA) and output (fA (DA,DB )); similarly

for Bob. When randomized functionalities are concerned, augment-

ing the view of the semi-honest party by the output of the other

party is essential. In this case, for any protocol Π that computes

the randomized functionality f , it does not necessarily hold that

O
Π (DA,DB ) = f (DA,DB ). Rather, these two random variables

must be identically distributed. In order to study the possibility of

composing DP and S2PC, we choose the indistinguishability-based

definition for PRL, which is implied from SIM-S2PC.

Theorem A.2. SIM-S2PC implies IND-S2PC.

Proof. Given the protocol Π, for all possible inputs (DA,DB ),
there exists a global simulator SA such that the distribution of SA
is computationally indistinguishable from the view of Alice. As

f (DA,DB ) = f (DA,D
′
B ), SA takes the same input and hence will

have the same distribution for DB and D ′B . Hence, the views over
(DA,DB ) or (DA,D

′
B ) are indistinguishable. □

Any algorithm that satisfies SIM-CDP also satisfies IND-CDP

[25], but it is unknown if the converse holds.

A.2 Computationally Differential Privacy
Mironov et al. [25] defines a privacy notion, known as indistinguish-

able computationally differential privacy (IND-CDP-2PC). This no-

tion is a direct extension of DP in two party setting where both

parties are computationally bounded. Formally, we have

Definition A.3 (IND-CDP-2PC). A 2-party protocol Π for com-

puting function f satisfies (ϵA (κ), ϵB (κ))-indistinguishable com-

putationally differential privacy (IND-CDP-2PC) if VIEW
Π
A (DA, ·)

satisfies ϵB (κ)-IND-CDP, i.e. for any probabilistic polynomial-time

(inκ) adversaryT , for any neighboring databases (DB ,D
′
B ) differing

in a single row,

Pr [T (VIEWΠ
A (DA,DB )) = 1]

≤ eϵBPr [T (VIEWΠ
A (DA,D

′
B )) = 1] + negl(κ). (9)

The same holds for Bob’s view for any neighbors (DA,D
′
A ) and ϵA.

A.3 Local Differential Privacy
The local model is usually considered in the model where individ-

uals do not trust the curator with their data. The local version of

differential privacy is defined as follows.

Definition A.4 (ϵ-Local Differential Privacy). [11] A randomized

mechanismM : Σ→ O satisfies ϵ-local differential privacy if

Pr[M (r ) = O] ≤ eϵ Pr[M (r ′) = O] (10)

for any set O ⊆ O, and any records r , r ′ ∈ Σ and ϵ > 0.

B THEOREMS & PROOFS
B.1 Privacy Leakage in Prior Work

B.1.1 Theorem 2.4 (Limitations of PRL with Blocking). Given
(d1,d2,p1,p2)-sensitiveH = {h0, ..,h |H |−1

}, we useH (·) for a record
to denote the list of hashing values [h0 (·), . . . ,h |H |−1

(·)]. An LSH-

based blocking considers a set of bins where records associated

with the same value for H (·) are hashed to the same bin. A popular

blocking strategy is to compare all the corresponding bins, and

results in a set of candidate matches {(a,b) |h(a) = h(b)∀h ∈ H ,a ∈
DA,b ∈ DB }, i.e. {(a,b) |H (a) = H (b),∀a ∈ DA,b ∈ DB }. We can

show that any LSH based blocking cannot satisfy IND-S2PC as

stated in Theorem 2.4. Here is the proof.

Proof. Take a pair of databases (DB ,D
′
B )where f1m (DA,DB ) =

f1m (DA,D
′
B ). Let the symmetric difference betweenDB andD ′B be

(b,b ′) and dist (b,b ′) > d2. Hence, with high probability 1 − p |H |
2

,

we have H (b) , H (b ′), and |BH (b ) (DB ) | − |BH (b ) (D
′
B ) | = 1 and

|BH (b′) (D
′
B ) | − |BH (b′) (DB ) | = 1 as the rest of records are the

same in DB and D ′B . Alice as a semi-honest adversary can set her

dataset such that |BH (b ) (DA ) | , |BH (b′) (DA ) |. Then, with high

probability, the following inequality holds

costBS (DA,DB ) − costBS (DA,D
′
B )

= ( |BH (b ) (DB ) | − |BH (b ) (D
′
B ) |) |BH (b ) (DA ) |

+( |BH (b′) (DB ) | − |BH (b′) (D
′
B ) |) |BH (b′) (DA ) |

= |BH (b ) (DA ) | − |BH (b′) (DA ) | , 0. (11)

Hence, Alice can distinguish DB and D ′B by costBS (DA,DB ) ,

costBS (DA,D
′
B ) with high probability 1 − p |H |

2
. Other blocking

strategies can be similarly shown. Therefore, this LSH-based PRL

does not satisfy IND-S2PC. □

B.1.2 Theorem 4.7 (Limitations of PRL with DP Blocking of Prior
Approaches/LP-2). Several prior works [5, 19, 24] combine PRL

techniques with differentially private blocking (PRL +BDP ). These

approaches can be summarized in three steps: (1) DP blocking,

(2) records addition and suppression, (3) secure pair-wise com-

parisons based on blocking strategy BS . In the first step, Alice

and Bob process their data independently. Each party generates

an ϵ-differentially private partition of the data, where each parti-

tion is associated with a noisy count õi = |Bi (DB ) | + ηi , where

Pr[ηi = x] = pe−ϵ/∆B· |x | , for x ∈ Z and p = eϵ /∆B−1

eϵ /∆B+1

is the normal-

ized factor
2
. ∆B is the sensitivity of the blocking strategy (Def 4.2).

2
We use discrete version of Laplace distribution to avoid rounding.
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Next, for each partition, if the noiseηi is positive, dummy records

are added; otherwise, records in that partition are suppressed ran-

domly to obtain the published count. This results in new bins,

denoted by { ˜Bi (DA )} and { ˜Bj (DB )}. In the last step, Alice and

Bob jointly compare record pairs (a,b), where a ∈ ˜Bi (DA ) and

b ∈ ˜Bj (DB ) for all (i, j ) ∈ B
S
as in APC. They only exchange the

true records (a,b) if they match. [5] considers a third party for

identifying candidate pairs for Alice and Bob, so that Alice and

Bob has no direct access to the noisy bins of the opposite party,

but has access to the number of secure comparisons. However, this

hybrid protocol above does not satisfy (ϵ,δ )-DPRL as stated in The-

orem 4.7. The failure to satisfy DPRL is mainly caused by the record

suppression step for the negative noise drawn from a zero-mean

Laplace distribution, as shown in the following proof.

Proof. Without loss of generality, we consider Alice as the ad-

versary. For any arbitrary ϵ and small δ <
p∆B

2eϵ , there exists a

counter example fails (ϵ,δ )-DPRL. For simplicity, we illustrate how

to construct counterexamples using a blocking strategy B with

sensitivity ∆B = 2, where Alice and Bob use the same hashing and

each record is hashed to at most 1 bin. For other blocking strategies,

counterexamples can be similarly constructed.

Fix a DA, consider DB such that B0 (DB ) = {b∗} and B1 (DB ) =

{b1, ..,bn1
}, where 1 ≤ n1 <

p2

eϵ δ−1
. (Note that

p2

eϵ δ > 2 because

δ <
p2

2eϵ .) In addition, all records inB1 (DB ) can find somematching

ones from DA, but b∗ does not match any record in DA. A neigh-

boring database D ′B can be constructed from DB by removing b∗
from B0, and adding another b ′∗ that can be hashed to B1. It is easy

to see that (DB ,D
′
B ) ∈ N ( f1m (DA, ·)).

Without a third party [19, 24], Alice and Bob has access to the

number of secure comparisons and the noisy bin counts (in addition

to the input data sizes and the matching output). Consider a set of

views of Alice VIEW
∗
with output that contains all matching pairs

from B1 (DA ) 1m B1 (DB ) and noisy counts for bin B0 and B1 for

Bob being 0 and n1 respectively. Let
˜B (DA ) be the noisy bins that

Alice uses for the final secure pairwise comparisons. The probabili-

ties to generate these views from DB and D ′B are respectively:

Pr[VIEW
∗ | ˜B (DA ),DB ] = Pr[η0 = 0] Pr[η1 = 0] = p2, (12)

Pr[VIEW
∗ | ˜B (DA ),D

′
B ] = Pr[η0 = 1] Pr[η1 = −1& suppress b ′∗]

= p2/(eϵ (n1 + 1)) > δ (13)

The inequality above is due to n1 <
p2

eϵ δ − 1. Hence, we have

Pr[VIEW
∗ | ˜B (DA ),DB ] = (eϵ + n1e

ϵ ) Pr[VIEW
∗ | ˜B (DA ),D

′
B ]

> eϵ Pr[VIEW
∗ | ˜B (DA ),D

′
B ] + δ . (14)

Hence, (ϵ,δ )-DPRL is violated.

With a third party[5], Alice and Bob has access to the final out-

put, and the total number of secure pairwise comparisons, but not

the noisy bin counts. We can construct examples where knowing

the number of secure comparisons leaks the noisy bin counts. After

which the previous arguments (for the case with no third party) can

show that this protocol does not ensure DPRL for all epsilon and

delta. For instance, consider Alice has only 1 record in
˜B0 (DA ), and

more than 1 records in other bins, if the output O = DA 1m DB ,

and the total number of secure pairwise comparisons is |O | + 1.

This secure pairwise matching that returns false can only hap-

pen between a record of Bob from
˜B0 (DB ) with the record from

˜B0 (DA ). Hence, Alice can infer the noisy counts of
˜B (DB ). Then

the argument for the case with no third party can be used. □

In addition, by Theorem 3.8 and Theorem 3.9, DPRL is weaker

than IND-S2PC and IND-CDP-2PC, we have the following result.

Corollary B.1. LP-2 satisfies neither IND-CDP-2PC nor IND-
S2PC.

B.2 Properties of Output Constrained DP
B.2.1 Theorem 3.4 (Sequential Composition).

Proof. Consider Alice as a probabilistic polynomial-time (in κ)
adversaryT , with input DA. (DB ,D

′
B ) are neighbors w.r.t. f (DA, ·).

We have the probabilities of distinguishing DB and D ′B bounded by

Pr[T (VIEWΠ2,Π1

A (DA,DB )) = 1]

≤

∫
x

Pr[T (VIEWΠ2

A (DA,DB ,x )) = 1] ·

Pr[x = VIEW
Π1

A (DA,DB )]dx

≤

∫
x
(eϵ2

Pr[T (VIEWΠ2

A (DA,D
′
B ,x )) = 1] + δ2) ·

Pr[x = VIEW
Π1

A (DA,DB )]dx

≤

∫
x
(eϵ2

Pr[T (VIEWΠ2

A (DA,D
′
B ,x )) = 1]) ·

(eϵ1Pr [x = VIEW
Π1

A (DA,D
′
B )] + δ1)dx + δ2

≤ eϵ1+ϵ2
Pr[T (VIEWΠ2,Π1

A (DA,D
′
B )) = 1] + δ1 + δ2

□

B.2.2 Theorem 3.5 (Post-processing).

Proof. Since д is efficient and in composition with T can be

used as adversary itself. If д(OΠ (DA,DB )) does not satisfy (ϵ,δ )-
IND-DPRL, then Π does not satisfy (ϵ,δ )-IND-DPRL. □

B.2.3 Theorem 3.9 (Relation with IND-CDP-2PC). We show that

DPRL is weaker than IND-CDP-2PC.

Proof. ϵ/2-IND-CDP-2PC is equivalent to ϵ-IND-DP-2PC,where
neighboring databases have a symmetric difference of 2. The set of

neighboring databases for DPRL is a subset of that for ϵ-IND-DP-
2PC, and hence (ϵ,δ )-DPRL is weaker than ϵ/2-IND-DP-2PC. □

B.3 Properties for DPRL Protocols
B.3.1 Theorem 4.5 (Privacy of Laplace Protocol).

Lemma B.2. With probability 1−δ , the probability for Alice having
the same view from neighboring databases (DB ,D

′
B ) ∈ N ( f1m (DA, ·))

is bounded by eϵ .

Proof. Given (DB ,D
′
B ) ∈ N ( f1m (DA, ·)) and B, the maximum

difference in the bin counts of DB and D ′B is ∆B. Let B∆ be the set

of bins thatDB andD ′B have different counts, and

∑
i ∈B∆

|Bi (DB )−
Bi (D

′
B ) | ≤ ∆B. If all the noise for these bins are non-negative, then
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the probability to output the same noisy counts (c0, . . . , ck−1
) from

DB and D ′B is bounded by

ln(
Pr[(c0, . . . , ck−1

|DB ]

Pr[(c0, . . . , ck−1
|D ′B ]

)

= ln(

∏k−1

i=0
Pr[ηi = ci − |Bi (DB ) |]∏k−1

i=0
Pr[ηi = ci − |Bi (D

′
B ) |]

)

=
∑
i ∈B∆

ln(Pr[ηi = ci − |Bi (DB ) |]) − ln(Pr[ηi = ci − |Bi (D
′
B ) |])

≤ ϵ/∆B · (
∑
i ∈B∆

|Bi (DB ) − Bi (D
′
B ) |) ≤ ϵ

The probability to draw a negative noise η from Lap (ϵ,δ ,∆B) is

Pr [η < 0] =

−∞∑
i=−1

p · e−(ϵ/∆B) (x−η
0 ) =

e−η0ϵ/∆B

eϵ/∆B + 1

(15)

Given η0 = −
∆B ln((eϵ /∆B+1) (1−(1−δ )1/∆B ))

ϵ , we have Pr [η < 0] =

1 − (1 − δ )1/∆B . For each neighboring pair, at most ∆B bins differ

and fail to have Pr [η ≥ 0]. Hence, the overall failing probability is

1− (1−Pr [η < 0])∆B = δ . With 1−δ , the probability of having the
same view from PRL neighboring databases is bounded by eϵ . □

B.3.2 Theorem 4.11 (Correctness & Efficiency of GMC).

Proof. First, we will show that the efficiency of LP with the

greedy match & clean step (GMC) is better than LP alone. The

first part of the protocol that adds dummy records is the same.

The second part of the protocol without GMC compares all the

candidate matches using the secure matching protocol SMC (a,b).
On the other hand, with GMC, if a record pair (a,b) is compared

securely, then (a,b) must be one of the candidate matches. Hence,

the number of the secure pairwise comparisons with GMC will be

no more than the protocol without GMC.

Next, wewill show the correctness of LPwithGMC. LetOLP ,OLP+GMC
be the final output of LP protocol without GMC and with GMC. We

would like to show that if (a,b) ∈ OLP , then (a,b) ∈ OLP,GMC . Sup-

pose this is not true, then there exists a matching pair (a,b) ∈ OLP ,

but (a,b) < OLP+GMC . If so, then one of the records in (a,b) must

be removed from the bins before its turn of secure pairwise compari-

son SMC (a,b). Without loss of generality, let’s say a is cleaned from
Alice’s bins before SMC (a,b). The condition to remove a is that a
has already been in the current output. Hence, Bob is able to com-

pare a with all his records in plain text and identify this matching

pair (a,b). This leads to a contradiction. Hence, OLP ⊆ OLP+GMC .

Moreover, if a matching pair (a,b) is not a candidate match based on

the blocking strategy BS , and if a has been already found matching

with another record of Bob, then GMC can add (a,b) intoOLP+GMC .

Hence, it is possible that LP with GMC gains even more matching

pairs than LP alone. □

C ADDITIONAL PROTOCOLS
C.1 Example for secure pairwise match
Here we give an example for the function SMC (a,b) that outputs
(a,b) if they match; null otherwise. The matching rule is that Eu-

clidean distance of a and b is less than θ . First, Party Alice creates a

homomorphic public/private key pair (pk,pr ), and sends the public

Algorithm 4: Secure Match a and b

1 function SecureMatch (a,b,θ )pk,pr ;

Input :a,b ∈ {0, 1}d , hamming distance threshold θ ,
public/private key pair (pk,pr )

Output : (a,b) or ∅
2 Alice: randomly generates an id aid and sends to Bob;

3 Bob: randomly generates an id bid and an integer r ;

4 Bob: initiates s with Epk (r );

5 for i ∈ [0, . . . ,d − 1] do
6 Alice: sends to Bob Epk (a[i]);

7 Bob: updates

s = s+h Epk (a[i])+h (Epk (a[i])×h (−2b[i]))+h Epk (b[i]);

8 end
9 Bob: sends (bid , s ) to Alice ;

10 Alice: decrypts s = Dpr (s ) ;

11 if s ≤ θ + r (secure integer comparison) then
12 return (a,b);

13 else
14 return ∅;

15 end

key pk to party Bob. Let Epk (·) denote the encryption function with

public key pk and Dpr (·) the decryption function with private key

pr . Paillier’s cryptosystem supports the following operations on

the encrypted plain textsm1 andm2 without the knowledge of the

private key:

• Addition: Epk (m1 +m2) = Epk (m1) +h Epk (m2);
• Multiplication with constant c: Epk (cm1) = c ×h Em1

These two operations allow secure computation of Euclidean dis-

tances, i.e. dist (a,b) =
∑
i (a[i] − b[i])2 =

∑
i (a[i])2 − 2a[i]b[i] +

(b[i])2, and also hamming distances for bit vectors, i.e. dist (a,b) =∑
i |a[i] − b[i]| =

∑
i a[i] + b[i] − 2a[i]b[i].

As summarized in Algorithm 4, given bit vectors a and b, Alice

will send to Bob the encrypted values (aid ,
{
Epk (a[i])

}
) where aid

is a randomly generated record identifier for record a. Next, party
Bob computes for each of its records bid the value Epk (a[i]) +h
Epk (a[i])×h (−2b[i])+hEpk (b[i])which is equal to Epk ( |a[i]−b[i]|)
for all i , and computes the encrypted Epk (

∑
i |a[i]−b[i]|). A random

number r is generated and added to the encrypted distance, such

that the true distance is hidden from Alice if (a,b) is not a matching

pair. Party Bob creates the message (bid ,Epk (
∑
i |a[i]−b[i]|+r ) for

each record pair comparison. Alice can then decrypt the message

with her private key and obtain the relative distance d =
∑
i |a[i] −

b[i]|+r . Since Bob knows θ +r , a secure comparison protocol, such

as Yao’s garbled circuit [40], can be used to evaluate if d ≤ θ + r . If
this algorithm outputs “True”, Alice and Bob will exchange their

true record values.

C.2 Local DP Protocol
C.2.1 Theorem 4.1. Let B be a blocking that randomly hashes

records into a pre-specified set of k bin, such that
Pr[B (b )=i]
Pr[B (b′)=i] ≤ eϵ .

Such a blocking B satisfies ϵ-local DP (Appendix A.3). Protocols
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that combine a local differentially private blocking with IND-S2PC

protocols for record linkage to achieve (ϵ, negl(κ))-DPRL.

Proof. (sketch) We prove privacy for Bob (the proof for Alice is

analogous). In this protocol, Alice with input Data DA has a view

consisting of (1) the number of candidate matching pairs arising

in each (i, j ) ∈ BS , (2) the output for each candidate matching

pair. Consider a neighboring pair (DB ,D
′
B ) ∈ N ( f1m (DA, ·)) for

a given DA. By Theorem 3.6, DB and D ′B differ in only one non-

matching record with respect to DA, i.e. D
′
B = DB − b∗ + b

′
∗ and

b∗ , b
′
∗, wherem(b∗,a) = 0 andm(b ′∗,a) = 0 for all a ∈ DA. Given

both b∗,b
′
∗ can be hashed into the same bin with probability ratio

bounded by eϵ , the probabilities of generating the same number

of candidate matching pairs from DB and D ′B are also bounded by

the same ratio. The encrypted records only differ in b∗ and b
′
∗, and

both of them lead to the same output for each candidate matching,

because they do not match any records in DA. □

In this work, we use randomized response (RR) [11] as an exam-

ple to achieve DPRL. Other local DP algorithms, such as Johnson-

Lindenstrauss (JL) transform [4] can be similarly applied.

C.2.2 RR based Blocking. Given a fixed hash function h : Σ→
[0,k − 1], records in DB are hashed into k bins, B0, ..,Bk−1

respec-

tively. Let us define a RR based on this fixed hashing function with

privacy budget ϵB for Bob. Each record b ∈ DB is randomly hashed

into Bh (b ) with probability pB =
eϵB

k−1+eϵB and the other (k − 1)

bins with probability qB =
1

k−1+eϵB . We denote the resulted bins

by
˜B (DB ), and the resulted bin for each record b ∈ DB by

˜B (b).
Similarly, using the same fixed hashing function and randomized

response, Alice’s records DA are randomly hashed into the k bins,

˜B (DA ) with corresponding pA,qA based on ϵA. This randomized

response with probabilities (pA,qA ) and (pB ,qB ) ensures ϵA-local
DP and ϵB -local DP respectively.

Consider a basic blocking strategy BS = {(i, i ) |i ∈ [0,k )}, all
corresponding bins are compared. If the hash function h is a LSH,

then matching records are likely fall into the same bin as Alice

and Bob use the same hash function. The probability that such

records (a,b) appear in the same bin after randomization Pr[
˜B (a) =

˜B (b) |h(a) = h(b)] is pApB + (k−1)qAqB . This probability increases
with the privacy budget ϵA, ϵB , and hence recall will improves.

A further trade-off between correctness, privacy and efficiency

is allowed by considering a general blocking strategy BS = {(i, (i +

j )%k ) |i ∈ [0,k ), j ∈ [0,k ′)}, each record in
˜Bi (DA ) is securely

compared with k ′ neighboring bins of Bob. The basic blocking

strategy corresponds to the case where k ′ = 1. As k ′ increases,
more candidate matching pairs are securely compared, resulting

potentially higher recall and more communication and computation

cost. When k ′ = k , the resulted protocol is equivalent to the all

pairwise comparisons baseline.

C.2.3 Optimal RR Probability. If the window size k ′ is given in

advance as a parameter for the efficiency, the expected recall of ran-

domized response can be further optimized. Let pBi be the probabil-

ity for a record b ∈ DB to be randomly hashed into B(h (b )+i )%k . To

ensure ϵB -DPRL, the probabilities to hash any pairs of bins should

be bounded by eϵB . The hashing probability for Alice records, pAi ,
is similarly defined and constrained. As each record of Alice’s can

fall into any bin, and each bin of Alice’s is compared with k ′ neigh-
boring bins of Bob’s, the probability that a matching pair (a,b) is
compared after randomization is

p(a,b ) =
k−1∑
i=0

k ′−1∑
j=0

pAi p
B
i+j%k . (16)

The expected recall can be improved bymaximizingp(a,b ) (Eqn. (16))
with the constraints on

(a) Ratio:

pBi
pBi′
≤ eϵB ,∀i , i ′;

pAi
pAi′
≤ eϵA ,∀i , i ′;

(b) Sum:

∑k−1

i=0
pAi = 1;

∑k−1

i=0
pBi = 1.

The solution in Section C.2.2 where we assign a high probability

to a single bin, and a low probability to the rest of the bins is a

valid solution to the maximization problem, but it is not always

the optimal solution. In general, this optimization can be solved by

existing tools for quadratic objectives with linear constraints, such

as quadratic programming.

Here, we present an explicit solution for the special case when

ϵB = ϵ ≥ 0 and ϵA → ∞. This case corresponds to the situation

where Alice’s data is public and only Bob’s data requires ϵ-DPRL
protection. Then the expected recall can be maximized by solving

the following linear optimization:

max

pB
0
, ...,pBk−1

k ′−1∑
i=0

pBi s.t.

k−1∑
i=0

pBi = 1, and

pBi

pBi′
≤ eϵ ∀i , i ′

The expected recall is maximized with value p(a,b ) =
k ′eϵ

k−k ′+k ′eϵ at

pBi =



eϵ
k−k ′+k ′eϵ , for i = 0, . . . ,k ′ − 1

1

k−k ′+k ′eϵ , for i = k ′, . . . ,k − 1

If Bob’s records are uniformly distributed over the bins, then the

compression ratio w.r.t all pairwise comparisons (APC) is ρ = k ′
k .

The maximized expected recall can be written as

p(a,b ) =
ρeϵ

1 − ρ + ρeϵ
. (17)

This equation explicitly form the relationship between correctness

(p(a,b ) ), privacy (ϵ) and efficiency (ρ) of this protocol.

Theorem C.1. The basic RR mechanism achieves a constant factor
speedup in efficiency given ϵB = ϵ ≥ 0, ϵA → ∞, δA = δB = negl(κ)
and recall r .

Proof. Given a recall r = p(a,b ) , we have ρ = 1 −
eϵ (1−r )

r+eϵ (1−r )
based on Eqn. (17). The improvement in efficiency ρ is a constant

factor in terms of r and ϵ , independent of n. □

Next, we compute the optimal amongst a restricted class of

strategies for the more general case where ϵA = ϵB = ϵ , though
the explicit form for this case is unknown yet. The strategies we

consider are those where Alice and Bob (a) use symmetric proba-

bilities to assign a bin to each record, and (b) they both assign a

high probability p⊤ to place a record from bin i to bins i through
(i + x − 1)%k (for some 1 ≤ x ≤ k ′), and a low probability p⊥ to

assign a record from bin i to the rest of the bins. Note that, when
only one of Alice or Bob is randomizing their records, x = k ′ results
in the RR probabilities that optimize the expected recall.
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In order to satisfy the constraints in the above maximization

problem, we need p⊤ =
eϵ

k−x+x ·eϵ and p⊥ =
1

k−x+x ·eϵ .

The expected recall can be derived as follows. Without loss of

generality consider a matching pair (a,b) that fall into bin 0. There

are 3 ways (a,b) are matched after randomization:

(i): Both Alice and Bob randomize their records to a ⊤ bin (i.e.,

some bin 0 ≤ j ≤ x − 1). Since x ≤ k ′, these records are definitely

compared. This occurs with probability
x (x+1)

2
p2

⊤

(ii): Only one of Alice and Bob randomize their records to a ⊤

bin (i.e., some bin 0 ≤ j ≤ x − 1). There 2k ′x − x (x + 1) ways in
which exactly one of a or b is randomized to a ⊤ bin, but still end

up getting compared by the algorithm. This occurs with probability

(2k ′x − x (x + 1))p⊤ · p⊥
(ii): Both Alice and Bob randomize their records to a ⊥ bin. This

occurs with probability (kk ′ − (2k ′x −
x (x+1)

2
))p2

⊥ In total, the

probability that (a,b) are compared is expressed in terms of x as

p(a,b ) (x ) =
x (x + 1)

2

p2

⊤ + (2k ′x − x (x + 1))p⊤ · p⊥

+(kk ′ − (2k ′x −
x (x + 1)

2

))p2

⊥

The derivative of p(a,b ) (x ) w.r.t x is

p′(a,b ) (x ) = C1 · [(e
ϵ − 1)C2x + k (2k

′ + eϵ − 1)],

whereC1 =
eϵ−1

2(k−x+xeϵ )3 andC2 = (eϵ −3+2k−4k ′). WhenC2 > 0,

the derivative is always positive, the expected recall is maximized

when x = k ′, as 0 < x ≤ k ′. We will leave the complete analysis to

the future work.

D ADDITIONAL PLOT
Figure 5 shows the log(base 10) value of the average cost with

respect to the log value of data size for PSI+X, APC, and LP with

ϵ ∈ {0.1, 0.4, 1.6} and δ = 10
−5

and the non-private setting (np)

when they achieve a recall > 0.95. Similar to Figure 2, LP gives

lower costs than the baselines, and scales near linearly.
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Figure 5: The average log(cost ) vs log(data size )
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