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ABSTRACT
We propose indexes of queries, a novel mechanism for supporting

efficient, expressive, and information-theoretically private single-

round queries over multi-server PIR databases. Our approach de-

couples the way that users construct their requests for data from

the physical layout of the remote data store, thereby enabling users

to fetch data using “contextual” queries that specify which data

they seek, as opposed to “positional” queries that specify where
those data happen to reside. For example, an open-access eprint

repository could employ indexes of queries to let researchers fetch

academic articles via PIR queries such as for “this year’s 5 most

cited papers about PIR” or “the 3most recently posted papers about

PIR”. Our basic approach is compatible with any PIR protocol in

the ubiquitous “vector-matrix” model for PIR, though the most

sophisticated and useful of our constructions rely on some nice

algebraic properties of Goldberg’s IT-PIR protocol (Oakland 2007).

We have implemented our techniques as an extension to Percy++,

an open-source implementation of Goldberg’s IT-PIR protocol. Our

experiments indicate that the new techniques can greatly improve

not only utility for private information retrievers but also efficiency

for private information retrievers and servers alike.
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• Security andprivacy→Privacy-preserving protocols;Data-
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KEYWORDS
Private information retrieval; expressive queries; batch codes; batch

queries; ramp schemes; efficiency

1 INTRODUCTION
Private information retrieval (PIR) is a cryptographic technique

that enables users to fetch records from untrusted and remote

database servers without revealing to those servers which particular

records are being fetched. This paper proposes a new technique

for conducting efficient, expressive, and information-theoretically
private PIR queries over structured or semi-structured (i.e., tagged)
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data. Conceptually, the new approach involves building a layer of

indirection (realized using a special kind of sparse “database” we

call an index of queries) atop existing PIR protocols.

With only a few exceptions, existing PIR constructions require

users to indicate which records they wish to fetch via the indices

of those records—that is, via the physical locations of those records
relative to others in the data store. Our indexes of queries decouple

the way that users construct their requests for data from the physi-

cal layout of the remote data store, thereby enabling users to fetch

data using “contextual” PIR queries that specify which data they

seek, as opposed to “positional” PIR queries that specify where in
the database those data happen to reside.

Database operators can construct many distinct indexes of que-

ries for a given data set, thus providing many distinct views through

which users can interact with the underlying data. Abstractly, each

index of queries facilitates requests for “the best k matches for z”,
where the precise meaning of ‘best’, an upper bound on the number

of matches to return k , and a domain of possible search criteria z are
all determined by the database operator and fixed for the particular

index of queries under consideration. Queries of the above form

arise naturally in a plethora of online and mobile applications. In

many such applications, the query term z reveals a great deal of

identifiable and potentially sensitive information about the habits,

interests, and affiliations of the querier [20]. The index-of-queries

approach we propose herein provides significant improvements to

both the efficiency and expressiveness of the most performant and

well studied PIR techniques in the literature, exposing intuitive APIs

through which applications can safely, easily, and efficiently inter-

act with the underlying PIR. We therefore believe (and certainly

hope) that indexes of queries will prove to be a useful building block

in the construction of efficient, privacy-preserving alternatives to

many widely deployed products and services.

Relationship with prior work. The research literature on PIR is

vast; for over two decades, the cryptography, privacy, and theory re-

search communities have studied PIR intensively and from a variety

of perspectives. However, this considerable attention notwithstand-

ing, apart from a few notable exceptions, existing work focuses

exclusively on an oversimplified model in which users request fixed-

length blocks—or even individual bits!—of data by specifying the

physical locations of those data within the database.

A small body of existing work constructs PIR queries whose

expressiveness extends beyond the ability to fetch records by index,

including techniques that enable keyword-based [3–5, 7] and sim-

ple SQL-based [21, 22, 27] PIR queries. Although our techniques

bare a superficial resemblance to these prior efforts, the precise

problem we solve and the technical machinery we use to solve it are

fundamentally new. Indeed, our approach offers several distinct ad-

vantages (and a few limitations) compared with existing techniques,
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and we therefore view indexes of queries as being complementary

to—as opposed to an alternative to—existing techniques for expres-

sive PIR. A later section compares and contrasts indexes of queries

with competing approaches.

Motivation. The primary objective of this paper is to introduce

and analyze indexes of queries as a new PIR technique in the cryp-

tographic engineers’ toolkit, rather than to explore the nuances

of any particular system that one might use indexes of queries

to build. Nevertheless, to both motivate and ground our proposal,

we briefly consider three natural use cases that showcase the im-

mediate applicability of indexes of queries to the construction of

privacy-respecting technologies. We reiterate that these use cases

are merely intended to illustrate a high-level idea; indeed, it is

beyond the scope of this paper to present the full architecture of—

let alone to treat all the minutiae of implementing full, workable

systems from—any of these motivating examples.

Use case 1: Maps and location-based recommendation systems. A
mapping service like Google Maps or a recommendation service

like Yelp could instantiate indexes of queries over a Points of
Interest (POI) database to satisfy PIR requests such as for “the 10

cafés nearest my current location” or “the 5 highest rated Italian

restaurants in Manhattan”.

Use case 2: Social networks and microblogging platforms. A Twitter-
like microblogging service could instantiate indexes of queries

over its database of tweets to satisfy PIR requests such as for

“the 10 most recent tweets by @realDonaldTrump” or “the 15 top
trending tweets for hashtag #ccs17”.

Use case 3: Streaming audio and video services. Streaming media ser-

vices like Youtube or Spotify could instantiate indexes of queries

over their respective media catalogs to satisfy PIR requests such

as for “the most recent episode of Last Week Tonight with John
Oliver” or “the 10 songs topping the latest Billboard Hot 100”.

Countless use cases beyond those just listed are possible; e.g.,

throughout our technical discussions we will use the running exam-

ple of privately fetching emails from a remote inbox. One could use

this idea to, say, hide users’ email access patterns from a web mail

service like Gmail or, more interestingly, to build a next-generation

Pynchon Gate [24] for pseudonymous mail retrieval.

Outline. The remainder of the paper is structured as follows.

Section 2 describes the abstract PIR framework in which all of

the indexes-of-queries constructions reside. Section 3 introduces

simple indexes of queries, the most basic (and least interesting) form

of our construction, while Section 4 describes a more sophisticated

construction for batch indexes of queries, which leverage ideas from

coding theory to reduce costs and improve privacy compared to

simple indexes of queries. Section 5 further extends this idea to con-

struct indexes of batch queries, which allow users to fetch a batch of

several related blocks using a single, fixed-length query. (The latter

‘indexes of batch queries’ are what is needed to realize the queries

arising in the above motivating examples.) Section 6 reviews prior

work on expressive PIR queries—SQL- and keyword-based PIR que-

ries and PIR from function secret sharing—and comments on the

synergistic relationship between our work and those techniques.

We present some findings from our proof-of-concept implementa-

tion in Section 7 before concluding in Section 8.

2 THE “VECTOR-MATRIX” PIR MODEL
Our constructions are in the ubiquitous vector-matrix model for
PIR. Vector-matrix PIR is a special case of linear PIR where the

database is represented as an r × s matrix D over a finite field F
in which each of the r rows is a fetchable unit of data (called a

block in typical PIR parlance). Users encode requests for blocks as

vectors from the so-called standard basis for Fr
: a user desiring

the i th block (i.e., the i th row of D) represents its request with the

length-r vector e⃗i having a 1 in its i th coordinate and 0s elsewhere.

The response to request e⃗i is defined as the vector-matrix product

e⃗i · D, which is easily seen to equal the desired i th row of D. We

refer to such vector-based requests as positional queries in order to

highlight the fact that they require queriers to know the physical

positions (i.e., the row numbers) within D of whatever blocks they

seek to fetch.

PIR protocols in the literature obtain privacy in the vector-matrix

model through a variety of different means. Of particular interest to

us is the information-theoretically private (IT-PIR) approach based

on linear secret sharing. Here, the user “shares” its query vector e⃗i
component-wise using a linear secret sharing scheme, and then it

sends each of the resulting vectors of shares to a different server

from a pool of (non-colluding, but otherwise untrusted) servers

who each hold a replica of D. Upon receiving a share vector from

the user, each server independently computes and returns to the

user the product with D of the share vector it just received. As an

immediate consequence of linearity, the servers’ responses are each

component-wise secret sharings of the vector-matrix product e⃗i ·D.
Thus, to recover its requested block, the user performs a component-

wise secret reconstruction over the responses it collects from the

various servers.

Goldberg’s IT-PIR protocol. One natural and attractive choice

for the secret sharing scheme, the use of which for vector-matrix

IT-PIR was first advocated by Goldberg [13], is Shamir’s (t + 1, ℓ) -
threshold scheme [25]. To share a basis vector e⃗i with Shamir’s

(t +1, ℓ) -threshold scheme, the user selects pairwise distinct scalars

x
1
, . . . ,xℓ ∈ F \ {0} and a uniform random vector of polynomials

F⃗ ∈ (F[x])r , subject to the conditions that (i) each polynomial in F⃗
has degree at most t , and (ii) a component-wise evaluation of F⃗ at

x = 0 gives e⃗i . The j th server receives (xj , Q⃗j ), where Q⃗j = F⃗(xj ) is
a component-wise evaluation of F⃗ at xj = j . We refer to a sequence

(x
1
, Q⃗

1
), . . . , (xℓ , Q⃗ℓ) of ℓ > t such ordered pairs (computed from a

common F⃗ and pairwise distinct xi ) as a component-wise (t + 1, ℓ) -
threshold sharing of e⃗i .

Shamir’s threshold scheme provides the requisite linearity and

a useful Byzantine robustness property, owing to its relationship

with (indeed, equivalence to) Reed-Solomon codes [23] and related

multiple-polynomial error-correcting codes [8]. The protocol ob-

tained by using Shamir’s (t + 1, ℓ) -threshold scheme in the vector-

matrixmodel realizest -private (m, ℓ) -server IT-PIR for anym ≥ t+1:
the user retrieves its desired block provided m ≥ t + 1 out of ℓ

servers respond, yet no coalition of t or fewer malicious servers can

use the share vectors its members receive to learn any information

about which blocks the user has requested. (It is also v -Byzantine
robust for any v ≤ m−t −2: the user retrieves its desired block even
if up tom − t − 2 servers return incorrect responses [10].)
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subject sender date size body

D B




Re: ccs2017 submission Bob 2017-02-17 7.7KB 0x2ff1 e1a9. . .

definitely not a virus Dave 2017-02-1f1 13.0KB 0xb05f d7a1. . .

UK-LOTTO sweepstake! Alice 2017-02-04 336KB 0x0365 ce00. . .

Fwd: Re: Fwd: roflmao Carol 2017-01-07 2.5KB 0x7e7a 36b7. . .

cash4gold!!!1 Edward 2016-12-23 4.0KB 0xd96d faff. . .




Figure 1: Toy example of an email inbox database comprising five emails and associated metadata.

The above intuitive notion of t -privacy is formalized by requiring

statistical independence between the pair (I ,Q) of random variables

respectively describing (i) which particular block the querier is

requesting, and (ii) the joint view of any coalition of up to t servers

involved in the request. We refer the reader to Henry [16, end of §2]

for a detailed formal definition for t -private k-batch (m, ℓ) -server IT-
PIR in the vector-matrix model. Our discussion of the Shamir-based

PIR protocol up to this point corresponds to Henry’s definition

with a fixed batching parameter of k = 1; looking forward, the

construction we present in Section 5 returns several related blocks

for each query and, therefore, corresponds to Henry’s definition

for some k > 1.

In their most basic form, our indexes of queries are compatible

with any PIR protocol in the vector-matrix model, although our

exposition assumes—and ourmore sophisticated and useful indexes-

of-queries constructions rely on some nice algebraic properties

of—(a scheme [16] that builds upon a scheme [18] that builds upon)

Goldberg’s Shamir-based IT-PIR; thus, although we have attempted

to make our exposition of the new constructions as self-contained

as possible, readers unfamiliar with the various building blocks may

wish to peruse Goldberg’s paper [13]—and the follow up papers by

Henry [16] and by Henry, Huang, and Goldberg [18]—for an initial

‘lay of the land’.

3 QUERYING FOR QUERIES
At the heart of our approach is a simple observation regarding the

use of (0,1) -matrices as PIR databases. We begin with the most

simplistic possible version of our idea, restricting our attention to

r × r permutation matrices and building up to more general and

interesting cases as the paper progresses.

Recall that an r × r permutation matrix is just an r × r matrix

having exactly one 1 in each row and each column, and 0s elsewhere

(equivalently, it is a matrix obtained by permuting the rows of

an r × r identity matrix). Each such matrix represents a specific

permutation on r elements: given a length-r vector v⃗ and an r × r
permutation matrix Π, the vector-matrix product v⃗ · Π yields a

length-r vector with the same components as v⃗, but in a permuted

order.

For example, given v⃗ = ⟨a b c⟩ and a permutation matrix

Π =



1 0 0

0 0 1

0 1 0



,

it is easy to check that v⃗·Π = ⟨a c b⟩; i.e.,Πpermutes v⃗ by transposing
its second and third components.

The following observation is exceedingly obvious, and yet it

is sufficiently central to our approach as to nonetheless warrant

formal explication.

Observation 3.1. If e⃗ ∈ Fr
is a standard basis vector and Π ∈

Fr ×r
is a permutation matrix, then e⃗ · Π is a (possibly different)

standard basis vector.

For example, given the above-defined 3× 3 permutation matrix

Π and the standard basis

�
e⃗
1
, e⃗

2
, e⃗

3

	
for F3, we have that e⃗

1
· Π = e⃗

1
,

that e⃗
2
· Π = e⃗

3
, and that e⃗

3
· Π = e⃗

2
. In the context of IT-PIR,

we are actually interested in the following immediate corollary to

Observation 3.1.

Corollary 3.2. Let e⃗ ∈ Fr
be a standard basic vector and let

Π ∈ Fr ×r
be a permutation matrix. If (x

1
, Q⃗

1
), . . . , (xℓ, Q⃗ℓ) is a com-

ponent-wise (t + 1, ℓ)-threshold sharing of e⃗, then (x
1
, Q⃗

1
·Π), . . .,

(xℓ, Q⃗ℓ ·Π) is a component-wise (t + 1, ℓ)-threshold sharing of a

(possibly different) standard basis vector e⃗ ′ ∈ Fr
; namely, of e⃗ ′ =

e⃗ ·Π.

Colloquially, one can think of Corollary 3.2 as stating that a

t-private IT-PIR query issued against a permutation matrix yields

another t-private IT-PIR query (possibly for some other block) or,

put another way, that a permutation matrix is, in a sense, just a

“database of positional PIR queries”.

Despite the naïvety of our discussion up to this point, we are

already well positioned to demonstrate a novel application of per-

mutation matrices to PIR queries.

3.1 Example application: Private queries over a
remote email inbox

Consider the toy example of an email inbox depicted in Figure 1.

The inboxD in the figure contains five emails, which are physically

stored, naturally, in the same order that they were received.

Each row of D represents one email and is structured around a

schema that includes—in addition to the body of the email—fields

for metadata about the email including its subject, its sender, the
date it was received, and its size. Of course, the schema for a real

email inbox would include several additional fields.

Suppose we wish to set up a PIR protocol to facilitate retrieval

of emails from the inbox D. In a typical PIR setting, the user would

fetch an email fromD using a positional PIR query. Doing so would

require the user to know (or, at least, to learn) quite a lot about

the physical layout of D, as the row number of the desired email

corresponds to its chronological order among all of the other emails.

By contrast, a typical non-private email client would provide a
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convenient interface to help the user locate emails of interest, for

instance by imposing a user-selected logical order on the emails

and allowing the user to browse through them in this sorted order.

As a concrete example, the email client might present the user

with a view of the inbox in which emails are sorted numerically

by size, or lexicographically by subject or sender, among other

possibilities.

Observation 3.3. Each of the above-mentioned views of D (i.e.,

sorted by size, by subject, or by sender) corresponds to a partic-

ular 5× 5 permutation matrix.

For example, referring back to D, we observe that the permuta-

tion matrices

Πsender B




0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1




and Πsize B




0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0




respectively map a query encoding the i th standard basis vector of

F5 to a query for the i th email in a lexicographic ordering of the

inbox by sender or a numerical (decreasing) ordering of the inbox

by size. Thus, the user could request, say, the largest email inD by

sending a vector of shares of the basis vector e⃗
1
∈ F5, along with the

hint “size”, to each of the PIR servers hostingD. We emphasize that

the user can construct this query knowing only the total number of

rows in Πsize; in particular, the user need not know anything about

which emails occupy which rows of D.
Upon receiving the share vector Q⃗j and hint “size” from the

user, server j first permutes the components of Q⃗j via multiplication

with Πsize to get Q⃗
size
j B Q⃗j ·Πsize, after which it computes and returns

the response R⃗j B Q⃗size
j · D as usual. It is easy to verify—and the

reader should take a moment to do so, since going forward we will

repeatedly use this simple idea, but in increasingly sophisticated

ways—that, upon reconstructing the servers’ responses, the user

indeed learns the largest email in D, just as it sought to do. To

see why, simply note that e⃗
1
· Πsize = e⃗

3
, and that e⃗

3
· D yields

the 336KB email, which has the largest size among emails in the

inbox.

Before we move on, a few remarks about this simple example

are in order. First, we note that the example highlights a poten-

tial application of permutations in PIR, but it reveals no obvious

advantage to thinking about such permutations in terms of multi-

plication by a permutation matrix (as opposed to using some other

representation of a permutation). Nevertheless, in the sequel we

will see increasingly sophisticated variations of this idea which do
rely inherently on the idea of “permuting queries” by way of matrix

multiplications.
1

Second, we reiterate that the user in this example

does not require any specific knowledge about D or Πsize, beyond the

height and semantic meaning ofΠsize. In fact, even upon reconstruct-

ing the servers’ responses, the user still learns nothing about the

physical layout of D—not even the row number of the email it just

1

We point out, moreover, that even for this very simple example, representing the

requisite permutations as matrix multiplications is not unreasonable, as the special

structure of permutation matrices (specifically, their sparsity and the restriction of

their components to {0, 1}) allows the servers to store and compute with them very

efficiently, a fact that will later prove crucial.

fetched! Finally, although the permuted query vectors arising in

our example provide the exact same t-privacy guarantee as regular

queries in the underlying PIR protocol,
2

the additional hint “size”
does reveal some meta-information about which emails the user is

after. This meta-information can have implications for privacy; for

instance, in our email fetching example, the servers may infer that

a user requesting emails by size is interested in emails residing in

the tails of the size distribution (i.e., very small or large emails) as

opposed to those near the middle. Thus, in applications that wish

to leverage permutations in this way, special care must be taken

to identify and quantify if and how such leakage might betray the

users’ privacy. We emphasize that (i) such leakage is application-de-

pendent and cannot be meaningfully quantified outside the context

of a specific application, and (ii) in many (if not most) applications,

business logic already betrays similar meta-information.

3.2 From permutation matrices to “simple
indexes of queries”

One can think of the permutation matrices Πsender and Πsize from the

preceding subsection as being two “indexes” through which users

can fetch the blocks comprising D. Indeed, both indexes are them-

selves just special databases whose blocks are all (non-private) posi-

tional queries for blocks in D; in other words, Πsender and Πsize are two

very simple examples of what we call “indexes of queries”.

Note that such indexes of queries need not take the form of

permutation matrices—permutation matrices merely capture the

special case in which the index of queries presents a sorted view of

all blocks in D. Indeed, one could just as well consider an index of

queries Π that (i) is not square, (ii) has some columns containing

no 1s (meaning that certain blocks from D are not accessible via

Π), and/or (iii) has some columns containing multiple 1s (meaning

that certain blocks from D are accessible in multiple ways via Π).
One even consider indexes of aggregate queries, in which some

rows may contain several arbitrary non-zero entries. Such indexes

of queries would map standard basis vectors to requests for linear
combinations of blocks fromD and may be useful for solving simple

statistical queries. However, we leave the development of this idea

to future work and, for the time being, cast the following definition

for “simple indexes of queries”, which captures all but the last

possibility just mentioned.

Definition 3.4. A simple index of queries for a databaseD ∈ Fr ×s

is a (0,1)-matrix Π ∈ Fp×r
in which each row contains exactly one

1 entry.

An equivalent definition states that Π ∈ Fp×r
is a simple index of

queries for D ∈ Fr ×s
if it maps each standard basis vector from Fp

to a standard basis vector from Fr
.

3.3 Leakage: It’s not a bug, it’s a feature
In the epilogue to Section 3.1, we remarked that the mere act of

fetching blocks through a given index of queries can implicitly leak

meta-information about which blocks the user seeks. Furthermore,

2

Indeed, Shamir’s (t + 1, ℓ) -threshold scheme perfectly hides the secret from coalitions

of up to t shareholders; thus, no amount of post-processing—including, of course,

multiplication by a permutation matrix—will allow coalition members to extract any

information about the user’s query.
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Definition 3.4 explicitly permits indexes of queries through which

(owing to the presence of all-0 columns) it is impossible to access

certain blocks fromD, thus potentially making the information leak-

age explicit. In this subsection, we briefly revisit this information

leakage—seemingly a weakness of simple indexes of queries—and

spin it as a potentially useful feature.

In particular, in use cases where certain implicit leakage is tol-

erable (or even inevitable), it is possible to reduce the cost of PIR

queries by explicitly leaking the exact same information. Trading off

some (limited and controlled) information leakage in exchange for

more efficient and expressive PIR queries is not without precedence;

for example, both of Olumofin and Goldberg’s [21] and Wang, Yun,

Goldwasser, Vaikuntanathan, and Zaharia’s [27] SQL-based PIR

queries leak the “shape” of a query while hiding its sensitive con-

stants. Learning the shape of an SQL query may betray information

about the possible (and likely) constants in a way analogous to in-

dexes of queries; however, as is the case with our indexes of queries,

quantifying precisely how much information is leaked (and how

troubling this leakage is) remains highly application-dependent. To

make our explicit-leakage proposal more concrete, we return to the

earlier example of requesting emails by size and suppose that, due
to the context in which indexes of queries are being employed, the

servers can immediately deduce that any email requested by size
resides in the “large” tail of the size distribution (and yet, for the

sake of the example, that such leakage is deemed acceptable). In this

case, it is possible to support queries by sizemuch more efficiently

if we replace Πsize with a matrix through which only emails in the

“large” tail are actually accessible.

This involves deleting each row of Πsize that corresponds to an

email not in the “large” tail of the size distribution, resulting in a

rectangular pseudo-permutation matrix; that is, in a p×r matrix that

has at most one 1 in each row and each column and 0s elsewhere.

Thus, we end up with a short-and-fat (0,1)-matrix having full rank
(i.e., rank p). For instance, the three largest emails in D could be

accessed via

Πlargest B




0 0 1 0 0

0 1 0 0 0

1 0 0 0 0



.

The following analog of Corollary 3.2 applies.

Observation 3.5. Let e⃗ ∈ Fp
be a standard basic vector and

let Π ∈ Fp×r
be a pseudo-permutation matrix with rank p. If

(x
1
, Q⃗

1
), . . . , (xℓ, Q⃗ℓ) is a component-wise (t + 1, ℓ)-threshold sharing

of e⃗, then (x
1
, Q⃗

1
·Π), . . . , (xℓ, Q⃗ℓ ·Π) is a component-wise (t + 1, ℓ)-

and (1, ℓ)-threshold sharing of a standard basis vector e⃗ ′ ∈ Fr
;

namely, of e⃗ ′ = e⃗ ·Π.3

Intuitively, Observation 3.5 implies that a t -private IT-PIR

query through a short-and-fat pseudo-permutation matrix yields

a t -private IT-PIR query over a non-hidden subset of a larger data-
base. Specifically, such a matrix Π ∈ Fp×r

necessarily contains r −p
all-0 columns; consequently, every pseudo-permuted share vector

(xj, Q⃗j ·Π) has r − p corresponding 0 entries, which means queries

through Π cannot fetch blocks corresponding to the all-0 columns

in Π. Note that anyone can deduce the set of unfetchable blocks by

3

Specifically, the r − p entries corresponding to all-0 columns in Π are (1, ℓ)-threshold
shares of 0; the remaining p entries are each (t + 1, ℓ)-threshold shares of either 0 or 1.

inspecting Π (or a pseudo-permuted query vector Q⃗j ·Π), and it is in
this sense that Π explicitly leaks information: it explicitly leaks that

the request is for a block “indexed by some query” in Π.
The upshot of explicitly leaking this information is twofold. First,

the query vectors become shorter (their lengths correspond to the

number of queriesp inΠ, rather than to the number of blocks r inD);
thus, each request incurs strictly lower upstream communication

cost (p group elements) compared to a positional query over D (r
group elements). Second, because each pseudo-permuted query

vector Q⃗′j B Q⃗j ·Π has support of size p, the vector-matrix product

Q⃗′j ·D incurs strictly lower computation cost (≈ 2ps field operations)
compared to a positional query over D (≈ 2rs field operations). We

also stress that whatever information does leak is known a priori
to the user; i.e., although queries leak some information, they do

so transparently—there are no surprises.

3.4 Privacy in the face of implicit and explicit
information leakage

In the preceding subsection, we claimed that a t-private query

through a simple index of queries Π is, at least in some sense, still

t-private. Formally proving that this is indeed the case necessitates

a slight (though natural) modification to the standard definition oft-
privacy. In particular, a direct application of the standard definition

would require, for every coalition S ⊆ [1. .ℓ] of at most t servers

and for every record index i ∈ [1. .r], that
Pr

�
I = i

�
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )
�
= Pr

�
I = i

�
, (1)

where I andQS denote the random variables respectively describing

the block index the user requests and the joint distribution of share

vectors it sends to servers in S (including the “hint” that the query

should go through Π).
However, it is evident that Equation (1) need not hold, for ex-

ample, when the block in row i of D is not accessible through Π. It
would not suffice to merely restrict the quantifier so that I ranges
only over the subset of block indices which are accessible through

Π; indeed, there may be several distinct indexes of queries, each

inducing its own conditional distribution for I . In other words, a

correct definition must account for the fact that curious PIR servers

will inevitably—upon learning that a given request is through a

particular index of queries Π—leverage this information to update

their priors. The following modified t-privacy definition captures

this idea.

Definition 3.6. LetD ∈ Fr ×s
and let eachΠ

1
, . . . ,Πn be an index

of queries
4

forD. Requests are t -private with respect toΠ
1
, . . . ,Πn if,

for every coalition S ⊆ [1. . ℓ] of at most t servers, for every record

index i ∈ [1. . r ], and for every index of queries Π ∈ {Π
1
, . . . ,Πn},

Pr

�
I = i

�
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )
�
= Pr

�
I = i

�
EΠ

�
,

where I andQS denote the random variables respectively describing

the block index the user requests and the joint distribution of query

vectors it sends to servers in S (including the “hint” that the query

should go through Π), and where EΠ is the event that the request

is through Π.

4

Our omission of the word “simple” here is intentional: each Πj can either be simple

indexes of queries or one of the more sophisticated types we introduce in the sequel. In

particular, by allowing some or all of the Πj to be different kinds of indexes of queries,

we can use Definition 3.6 to define privacy for all constructions in this paper.
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Observe that a t -private query through a simple index of queries

Π is functionally equivalent to—ergo, provides the exact same pri-

vacy guarantee as—a t -private positional query over the database

DΠ B Π · D. Consequently, Definition 3.6 reduces to the usual

t -privacy definition when Π ∈ Fr ×r
is the identity matrix.

The next theorem follows from the above observation and the

t-privacy of Goldberg’s IT-PIR [13, 16].

Theorem 3.7. Let D ∈ Fr ×s
and let each Π

1
, . . . ,Πn be a simple

index of queries for D. If Π ∈ {Π
1
, . . . ,Πn} with Π ∈ Fp×r

and if

(x
1
, Q⃗

1
), . . . , (xℓ, Q⃗ℓ) is a component-wise (t + 1, ℓ)-threshold sharing

of a standard basis vector e⃗ ∈ Fp
, then (Π,x

1
, Q⃗

1
), . . . , (Π,xℓ , Q⃗ℓ)

is t -private with respect to Π
1
, . . . ,Πn .

Proof. Consider a coalition S comprising t servers. Fix i ∈
[1. . r ] and Π ∈ {Π

1
, . . . ,Πn} with Π ∈ Fp×r

, and let I , J , and
QS respectively denote the random variables describing the index

(within D) of the block the user requests, the index of the standard

basis vector the user actually encodes in its query, and the joint

distribution of share vectors it sends to servers in S (including the

“hint” that the query should go through the index Π).

As per Definition 3.6, we need to show that Pr[I = i | QS =

(Π; Q⃗j
1

, . . . , Q⃗jt )] = Pr[I = i | EΠ], where EΠ denotes the event

that the user’s request is throughΠ. The key observation underlying
the proof is that Pr[I = i | EΠ] = Pr[⃗eJ · Π = e⃗i | EΠ] and Pr[I = i |
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )] = Pr[⃗eJ · Π = e⃗i | QS = (Π; Q⃗j
1

, . . . , Q⃗jt )].
Hence, we have

Pr

�
I = i

�
EΠ

�
= Pr

�
e⃗J · Π = e⃗i | EΠ

�

= Pr

�
e⃗J · Π = e⃗i

�
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )
�

= Pr

�
I = i

�
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )
�
,

as desired. Note that the second line of the above derivation follows

immediately from the t -privacy of (x
1
, Q⃗

1
), . . . , (xℓ , Q⃗ℓ). □

4 BATCH INDEXES OF QUERIES
In the preceding section, we discussed how requests through a

simple index of queries can leak meta-information about which

blocks the user seeks. We now turn our attention to our first non-

trivial indexes of queries, called batch indexes of queries, which
improve on simple indexes of queries by leveraging ideas from

coding theory to decrease this information leakage.

Suppose we wish to leverage simple indexes of queries for an

application in which the servers will hold multiple indexes of que-

ries intended to facilitate different kinds of requests, yet in which

all requests always will go through one of these indexes of queries.

In this case, knowing only that a given request passed through

some index of queries yields no information for an attacker: for

information about a request to leak, the attacker would have to

learn throughwhich index of queries that request passed. Thus, con-
cealing through which index of queries each request passes would

effectively eliminate this source of information leakage while main-

taining the utility that indexes of queries provide.

For example, suppose that a server believes a priori that a given
request will pass through the index Π

1
with probability p and that it

will pass through the indexΠ
2
with probability 1−p, so that

Pr

�
I = i

�
= Pr

�
I = i

�
EΠ

1

�
· p + Pr

�
I = i

�
EΠ

2

�
· (1 − p).

In this case, if the server receives the hint “1”, then it can immedi-

ately update its priors to conclude that Pr

�
I = i

�
= Pr

�
I = i

�
EΠ

1

�
;

thus, the hint “1” in this example is leaking information about which

block the client is fetching. On the other hand, if the client were

somehow able to route its request through Π
1
without revealing

through which of Π
1
or Π

2
its request is passing, then the server

would be unable to update its priors and the request would leak no

new information.

Even in cases where, say, some queries through an index and

others are positional, and hence bypass the indexes of queries al-

together, hiding through which index a given non-positional re-

quest passes would still serve to reduce the quantity of information

that leaks. Batch indexes of queries provide one such way to hide

through which out of several simple indexes of queries a given

request passes.

The batch-indexes-of-queries construction we present here is

specific to Goldberg’s IT-PIR, leveraging the so-called “u -ary family

of codes” [16, §3]. One could of course consider analogous instan-

tiations for other PIR protocols or based on other codes; however,

we leave exploration of this idea to future work. Before proceeding,

we briefly review u -ary codes and how they are used to construct

efficient IT-PIR protocols.

4.1 IT-PIR from u-ary codes
Recall that, in the vector-matrix model for PIR (as expounded in

Section 2), each server typically holds a complete, plaintext replica

of the database D. Several recent IT-PIR constructions [2, 6, 12, 16]

have instead considered a generalization of the vector-matrix model

wherein each server holds an encoded bucket that is merely de-

rived from—and typically much smaller than—the actual database

D. The benefits of this bucketized vector-matrix approach echo

the benefits of explicit leakage described in the previous section:

smaller buckets directly translate into lower upstream communi-

cation, lower per-server computation costs, and lower per-server

storage costs.

One recently proposed construction in the bucketized vector-

matrix model modifies Goldberg’s IT-PIR protocol to utilize what is

called the u -ary family of codes [16, §3 and §5]. In this scheme, each

bucket is a matrix of (0 -private) “shares” obtained using a “rampi-

fied” variant of Shamir’s (1, ℓ) -threshold scheme: given u ∈ N,
the u -ary code encodes D ∈ Fr ×s

by (i) partitioning the r blocks

comprising D into r /u many u -tuples,5 (ii) interpolating compo-

nent-wise through each u -tuple at some predefined x-coordinates
to obtain r /u many length-s vectors of degree-(u − 1) polynomials

from F[x], and then (iii) placing a single component-wise evalua-

tion of each vector of polynomials into each of the ℓ > u buckets.

Thus, the bucket held by each of the ℓ servers resides in F(r /u)×s

and, in particular, is a factor u smaller than D.
Despite no server actually holding D, users can still fetch blocks

of D using slightly modified t -private positional queries over the
buckets. Specifically, a user desiring the i th block from D sim-

ply needs to determine (i) which of the r /u bucket rows holds

evaluations of the polynomial vector passing through the desired

5

For ease of exposition, here and throughout we make the simplifying assumption that

u | r . Eliminating this assumption is trivial, but doing so would only serve to introduce

unnecessary clutter and exceptional cases to our notation and the descriptions of our

constructions.
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block, and (ii) at which x-coordinate that polynomial vector passes

through the desired block. It then constructs a length-(r /u ) vector
of (t + 1, ℓ) -threshold shares encoding a positional query for the

above bucket row at the above x-coordinate (in contrast to always

encoding the positional query at x = 0, as it would typically do

in Goldberg’s protocol). The rest of the protocol is exactly as in

the standard vector-matrix model, except that, in the secret recon-

struction step, the user interpolates the servers’ responses to the

same x-coordinate it used to encode its request. The result is a

t -private v -Byzantine-robust (m, ℓ) -server IT-PIR protocol for any

m ≥ t + u [16, Theorem 1] and v ≤ m − t − u − 1 [16, Theorem 2].

In particular, note that the number of servers, the privacy threshold,

and the downstream communication cost are each identical to in

Goldberg’s protocol, whereas the upstream communication cost,

the storage cost, and the server-side computation cost are all a fac-

tor u lower. (The tradeoff for the latter improvements is a reduction

by u in the protocol’s robustness to non-responding and Byzantine

servers.) For additional details and proofs, we refer the reader to

the original paper [16].

There are at least two ways to improve on our simple indexes

of queries using u -ary codes. The most obvious way is to encode

a simple index of queries into u -ary buckets, thereby reducing

the upstream communication, and possibly the computation cost,

associated with queries through that index. This slightly improves

efficiency (though, as we will see in Section 7, indexes of queries

are already plenty fast), but it does nothing to address information

leakage. The remainder of this section deals with a more interesting

approach that combines multiple disparate indexes of queries into a

single batch index, thereby reducing information leakage by letting

each user query D through the index of its choice without revealing
which particular index of queries it uses. The idea is to merge all

the indexes of queries into a single matrix of polynomials using

component-wise polynomial interpolation (á la the above u -ary
codes), so that each server holds only a single bucket obtained

via component-wise evaluation of the resulting polynomial matrix.

Users can then formulate requests through any of the constituent

indexes of queries using appropriately crafted queries over the

buckets, all the while concealing through which of the underlying

simple indexes of queries their requests pass. Before formalizing

this idea in Section 4.3, wewalk through the process of merging the

simple indexes of queries Πsender and Πsize from Section 3.1.

4.2 Batching two indexes of queries
Recall that Πsender and Πsize are the permutation matrices that respec-

tively map a request encoding the i th standard basis vector of F5 to
a positional query for the i th email in a lexicographic ordering of

the email inbox D depicted in Figure 1 by sender or a numerical

(decreasing) ordering of D by size. They are defined as

Πsender B




0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1




and Πsize B




0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0




.

The merging process is simple. We first fix some x-coordinates,
say x = 0 and x = 1, which serve as identifiers for Πsender and Πsize.

Then, for each entry in Πsender, we interpolate through that entry (at

x = 0) and the corresponding entry of Πsize (at x = 1) to obtain a

linear polynomial in F[x]. As both Πsender and Πsize are (0,1)-matrices,

only four polynomials can arise in this step (corresponding to the

pairs (0,0), (0,1), (1,0) and (1,1)); i.e., every interpolation yields one

of f
00
(x) = 0, f

01
(x) = x, f

10
(x) = 1−x, or f

11
(x) = 1.

Carrying out this process for Πsender and Πsize yields

Πsender,size(x) B



0 0 1 0 0

1−x x 0 0 0

x 0 0 1−x 0

0 1−x 0 0 x
0 0 0 x 1−x




∈
�
F[x]�5×5.

One can verify that evaluating Πsender,size(x) component-wise at

x = 0 and x = 1 recovers Πsender and Πsize, respectively; indeed, com-

puting the vector-matrix product ofΠsender,size(x)with e⃗i ∈ F5 and then
evaluating the result at x = 0 and x = 1 yields the i th rows fromΠsize

and Πsender, respectively. For example, e⃗
3
·Πsender,size(x) =



x 0 0 1−x 0

�
,

which evaluates to e⃗
3
∈ F5 and e⃗

1
∈ F5 at x = 0 and x = 1.

Let x
1
, . . . ,xℓ ∈ F \ {0,1} be arbitrary, pairwise distinct scalars.

The bucket held by each server j will be obtained via component-

wise evaluation of Πsender,size(x) at x = xj . Thus, to fetch the i th email

in a lexicographic ordering of D by sender, the user will “en-

code at x = 0” the standard basis vector e⃗i ∈ F
5

into ℓ vectors,

(x
1
, Q⃗(0)

1
), . . . , (xℓ , Q⃗(0)

ℓ
), of (t + 1, ℓ) -threshold shares; specifically,

it will select a length-5 vector of degree-t polynomials from F[x]
uniformly at random, subject only to the requirement that this vec-

tor passes component-wise through e⃗i at x = 0, and then it will send

to each server j the component-wise evaluation Q⃗(0)
j of this vector

at x = xj . Likewise, to fetch the i th email in a numerical (decreas-

ing) ordering ofD by size, the user will “encode at x = 1” the same

standard basis vector e⃗i ∈ F
5

into ℓ vectors (x
1
, Q⃗(1)

1
), . . . , (xℓ , Q⃗(1)

ℓ
)

of (t + 1, ℓ) -threshold shares.

Notice that the only difference between how the user constructs

the above two requests is the x-coordinate at which it encodes

the standard basis vector e⃗i ; thus, the x-coordinate here serves the
same purpose that the hint, “sender” or “size”, served back in

Section 3.1, allowing the user to specify through which of the

two indexes of queries its request is intended to pass. However, in

contrast to with the hints that the user explicitly revealed in Sec-

tion 3.1, from the perspective of any coalition of up to t servers,

requests encoded at x = 0 are perfectly indistinguishable from

those encoded at x = 1; that is, it is impossible for such a coalition

to infer (based on the shares its members receive) through which

of the two indexes of queries a given request passes [17].

Before we move on, a few brief remarks about this simple exam-

ple are in order. First, we note that the resulting buckets are still

quite sparse, having at most 2 non-zero entries in each row and

in each column. Second, we observe that the t -privacy of requests

through the buckets is still an immediate consequence of [16, Theo-

rem 1]; indeed, the buckets are nothing more than 2-ary buckets of

a database obtained by appropriately splicing together the indexes

of queries Πsender and Πsize. Finally, we point out that, owing to the

fact that each entry of Πsender,size is an (at-most-)linear polynomial,

reconstructing the servers’ responses now requires one additional

response. Hence, the protocol just described implements t-private
(m, ℓ)-server IT-PIR for anym > t + 1.
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4.3 Batching u indexes of queries
Definition 4.1 formalizes a generalization of the construction from

Section 4.2, which allows combining for arbitrarily many simple

indexes of queries.

Definition 4.1. Fix u > 1 and let x
1
, . . . ,xℓ ∈ F \ {0, . . . ,u −

1} be pairwise distinct scalars. A sequence Π
1
, . . . ,Πℓ ∈ F

p×r
of

matrices is a u -batch index of queries for Goldberg’s IT-PIR with

bucket coordinates x
1
, . . . ,xℓ if (i) Πi

1

, Πi
2

for some i
1
, i
2
∈ [1. . ℓ],

and (ii) for each j = 0, . . . ,u − 1,

πj B
ℓ∑
i=1

Πi ·
� j − x

1

xi − x1

�
· · ·

� j − xi−1
xi − xi−1

�� j − xi+1
xi − xi+1

�
· · ·

� j − xℓ
xi − xℓ

�

is a simple index of queries.

The first requirement of Definition 4.1, which insists that Πi
1

,

Πi
2

for some i
1
, i
2
∈ [1. . ℓ], is a non-triviality requirement included

merely to prevent simple indexes of queries from qualifying.
6

The

second requirement is what captures the key propertywe intuitively

desire from batch indexes of queries. The expression arising in

that second requirement is just the familiar Lagrange interpolation

formula. Intuitively, the definition says that the sequence of buckets

Π
1
, . . . ,Πℓ is au -batch index of queries if interpolating component-

wise through the Πi at each x = 0, . . . ,u − 1 yields a length-u
sequence of simple indexes of queries. The restriction thatx

1
, . . . ,xℓ

be elements of F \ {0, . . . ,u − 1} is necessary to guarantee that

users can actually request blocks through the constituent simple

indexes of queries without betraying the privacy of their requests

(see [16, proof of Theorem 1]).

The next theorem follows easily from [16, Theorems 1&2].

Theorem 4.2. Fix u > 1 and j ∈ [0 . .u − 1], and let Π =�
Π
1
, . . . ,Πℓ

�
∈

�
Fp×r �ℓ

be buckets of a u -batch index of que-

ries with bucket coordinates x
1
, . . . ,xℓ ∈ F \ {0, . . . ,u − 1}. If

(x
1
, Q⃗j

1

), . . . , (xℓ , Q⃗jℓ ) is a sequence of component-wise (t + 1, ℓ) -
threshold shares of a standard basis vector e⃗ ∈ Fp

encoded at x = j ,
then (Π,x

1
, Q⃗j

1

), . . . , (Π,xℓ , Q⃗jℓ ) is t -private with respect to Π.

Proof. The proof of this theorem is nearly identical to that

of Theorem 3.7. Consider a coalition S comprising t servers. Fix

i ∈ [1. . r ] and let I , J , K , and QS respectively denote the random

variables describing the index (within D) of the block the user

requests, the index of the standard basis vector the user actually

encodes in its query, the x-coordinate at which it encodes that

standard basis vector, and the joint distribution of share vectors it

sends to servers in S (including the “hint” that the query should go

through the u -batch index of queries Π).

As per Definition 3.6, we need to show that Pr[I = i | QS =

(Π; Q⃗j
1

, . . . , Q⃗jt )] = Pr[I = i | EΠ], where EΠ denotes the event

that the user’s request is through Π. The key observation is that

Pr[I = i | EΠ] =
∑u−1

k=0 Pr[⃗eJ · πk = e⃗i | K = k,EΠ] · Pr[K = k | EΠ]

6

Omitting the non-triviality requirement would mean that whenever Π ∈ Fp×r
is a

simple index of queries, the sequence of buckets Π, Π, . . . , Π ∈ Fp×r
is au-batch index

of queries for every u ≥ 1. Clearly, this fails to jibe with what we intuitively mean by

“u-batch” index of queries.

and Pr[I = i | QS = (Π; Q⃗j
1

, . . . , Q⃗jt )] =
∑u−1

k=0 Pr[⃗eJ · πk = e⃗i |
K = k,QS = (Π; Q⃗j

1

, . . . , Q⃗jt )] · Pr[K = k | EΠ]. Hence, we have

Pr

�
I = i

�
EΠ

�
=

u−1∑
k=0

Pr[⃗eJ · πk = e⃗i | K = k,EΠ] · Pr[K = k | EΠ]

=
u−1∑
k=0

Pr[⃗eJ · πk = e⃗i | K = k,QS = (Π; Q⃗j
1

, . . . , Q⃗jt )]
· Pr[K = k | EΠ]

= Pr
�
I = i

�
QS = (Π; Q⃗j

1

, . . . , Q⃗jt )
�
,

as desired. Note that the second line of the above derivation follows

immediately from the t -privacy of (x
1
, Q⃗

1
), . . . , (xℓ , Q⃗ℓ). □

Corollary 4.3. The construction just described implements t -
private v -Byzantine-robust (m, ℓ) -server IT-PIR for anym ≥ t + u .

In each of the following results, when we speak of a “u -batch”
index of queries, we are implicitly assuming that u is the largest

value for which Definition 4.1 is satisfied—i.e., that

πu B
ℓ∑
i=1

Πi ·
� u −x

1

xi −x1

�
· · ·

� u −xi−1
xi −xi−1

�� u −xi+1
xi −xi+1

�
· · ·

� u −xℓ
xi −xℓ

�

is not another simple index of queries—and that the buckets have

minimal degree in this regard. More precisely, we assume that

interpolating through the buckets (at the indeterminate x) yields
a matrix of polynomials each having degree at most u − 1. We

also point out that the results all hold for u = 1, provided we

treat “1-batch index of queries” as synonymous with “simple index

of queries”. The first observation regards the sparsity of u -batch
indexes of queries, while the second regards the possible values

that their non-zero entries can take on.

Observation 4.4. Fix u > 1. If Πi ∈ F
p×r

is a bucket of a u -
batch index of queries, then the rows and columns of Πi each

contain at most u non-zero entries; hence, the total number of

non-zero entries in Πi is at most min(p, r ) · u .
Observation 4.5. Fix u > 1. If Πi ∈ F

p×r
is a bucket of a u -

batch index of queries, then there exists a set S comprising at most

2
u
− 1 scalars from F such that every non-zero element in Πi is an

element of S .

Both observations are trivial to prove: it suffices to note that

all entries in a bucket are y-coordinates of points on polynomials

obtained via interpolating through the u values that reside in cor-

responding coordinates of the u constituent pseudo-permutation

matrices. When all u components are 0, interpolation yields the

zero polynomial (Observation 4.4); in all cases, every polynomial

corresponds to a particular non-zero u -bit binary string.

5 INDEXES OF BATCH QUERIES
In the previous section, we proposed batch indexes of queries as

a way to obtain all the benefits of simple indexes of queries but

with improved privacy guarantees. We now turn our attention to

a special kind of batch indexes of queries, called indexes of batch
queries, which improve on the earlier batch indexes of queries by

enabling users to fetch several related blocks (i.e., a batch of related

blocks) with a single request.

Suppose we wish to leverage indexes of queries for an applica-

tion in which typical requests seek the best k matches for some
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search term z. An obvious straw man construction would involve

creating, for each possible search term z, a simple index of que-

ries Πz ∈ F
k ×r

whose k rows are positional queries for the best k
matches for that z. Unfortunately, this trivial solution offers little

privacy: knowing which simple index of queries a user’s requests go

through immediately reveals precisely which blocks those requests

are for. In theory, merging all of the simple indexes of queries into

a batch index of queries would eliminate this leakage, but this ap-

proach does not scale; indeed, several of the motivating uses cases

from Section 1 require best k queries involving millions of possible
search terms, which would require millions of buckets held by mil-

lions of non-colluding servers! Indexes of batch queries provide an

alternative construction that facilitates such requests supporting

many—perhaps millions of—search terms much more efficiently

and without requiring a large number of servers.

5.1 IT-PIR with k-batch queries
Recall that in the vector-matrix model for PIR, a typical request

takes the form of a positional query represented by a standard basis

vector. In the case of Goldberg’s IT-PIR, the querier encodes this

vector component-wise into ℓ vectors of (t + 1, ℓ) -threshold shares,
and then it sends one such vector of shares to each of ℓ servers; thus,

a user seeking the blocks referenced by the k rows of one of the

simple indexes of queries Πz ∈ F
k ×r

from our straw man construc-

tion would need to make k separate requests, respectively encoding

the standard basis vectors e⃗
1
, . . . , e⃗k ∈ F

k
. Of course, as we already

noted, such a user should not expect any privacy.

Henry, Huang, and Goldberg [17] proposed k-batch queries as a
more efficient way to request k blocks at once. Their k-batch queries
are based on the same idea as u -ary codes: instead of encoding

each basis vector e⃗
1
, . . . , e⃗k in a separate request, a k-batch query

encodes them all in a single request using (t + 1, ℓ) -threshold ramp

shares, much like we saw in Section 4. Specifically, the user selects

a length-k vector of degree-(t + k − 1) polynomials uniformly at

random, subject to the requirement that, for each i = 1, . . . ,k , the
vector passes component-wise through e⃗i at x = i − 1. Nothing

changes from the perspective of the servers
7

and yet a little algebra

establishes that, if such a request passes through the simple index

of queries Πz ∈ F
k ×r

to a database D ∈ Fr ×s
, then the servers’

responses reconstruct to e⃗
1
· Πz · D at x = 0, to e⃗

2
· Πz · D at x = 1,

and so on up to e⃗k · Πz · D at x = k − 1. Of course, the user should
still not expect any privacy; we have only succeeded in making the

non-private solution more efficient.

Whereas k-batch queries commingle effortlessly with simple

indexes of queries, some technicalities interfere when one attempts

to naïvely perform k-batch queries through batch indexes of que-

ries (cf. [16, §5]), due to the way batch indexes of queries asso-

ciate their constituent simple indexes of queries with specific x-
coordinates.

5.2 k-batch queryable batch indexes of queries
Our indexes of batch queries are essentially just k-batch indexes of

queries that have been constructed so as to map specific k-batch
queries into other, meaningfulk-batch queries overD. Conceptually,
7

In fact, coalitions of up to t servers cannot distinguish k-batch from non-batch

queries [18].

we “transpose” the impractical straw man construction that began

this section in a way that makes the best k queries for each search

term z occupy a single row of a k-batch index of queries, at k
pairwise distinct x-coordinates. To see how this works, it is helpful

to think of the buckets comprising a k-batch index of queries as

2-dimensional projections of a particular 3-dimensional matrix; for

instance, if there are p possible search terms z, then the p-batch
index of queries arising from the straw man construction would be

projections of a matrix Π residing in Fk ×r ×p
, say




0 0 0 · · · 0 0

0 0 0 · · · 0 1

...
...
...
. . .

...
...

0 1 0 · · · 0 0




.... ...


0 0 0 · · · 0 0

0 0 0 · · · 0 0

...
...
...
. . .

...
...

0 0 1 · · · 0 0







0 0 1 · · · 0 1

0 0 0 · · · 0 0

...
...
...
. . .

...
...

0 0 1 · · · 0 0




Π =



0 1 0 · · · 0 0

0 0 0 · · · 0 0

...
...
...
. . .

...
...

0 0 1 · · · 0 1




p

k

r

Viewed in this way, it becomes apparent that we should transpose

Πwith respect to its height (k) and depth (p) axes. Doing so yields

a matrix Π′ ∈ Fp×r ×k
wherein, for each i = 1, . . . ,p and j = 1, . . . ,k,

the i th “plane” corresponds to a specific search term zi in which the

vector intersecting the “layer” at depth j holds a positional query
for the j th-best matching block for zi in D. Each server will then

hold one bucket from a “layer-wise” k-ary encoding of Π′. To fetch

the best k matches for search term zi , the user will simply encode k
copies of the standard basis vector e⃗i in a t -private k-batch query,

at x = 0, at x = 1, and so on up to x = k − 1. We emphasize that the

user here encodes the same basis vector at each of x = 0, . . . ,k − 1.
In a typical k-batch query, encoding multiple copies of the same

basis vector would provide no benefit to the user and would only

unnecessarily reduce the query’s Byzantine robustness. It is also

worth noting that the user can choose to encode justm < k copies

of e⃗i at x = 0, . . . ,m − 1 in order to fetch only the bestm matches

for search term zi .
The following definition formalizes the above construction, while

the theorem that proceeds it addresses the parameters of IT-PIR

protocol queries through such an index.

Definition 5.1. Fix k > 1 and let x
1
, . . . ,xℓ ∈ F \ {0, . . . ,k −

1} be pairwise distinct scalars. A sequence Π
1
, . . . ,Πℓ ∈ F

p×r
of

matrices is an index of k-batch queries for Goldberg’s IT-PIR with

bucket coordinates x
1
, . . . ,xℓ if, for each i = 1, . . . , p, the matrix




πi0
...

πi(k−1)




is a pseudo-permutation matrix, where, for each j ∈ [0 . .k − 1],

πi j B e⃗i ·
ℓ∑

n=1
Πn ·

� j−x
1

xn −x1

�
· · ·

� j−xn−1
xn −xn−1

�� j−xn+1
xn −xn+1

�
· · ·

� j−xℓ
xn −xℓ

�
.

We emphasize that indexes of k-batch queries are a special case

of k-batch indexes of queries; hence, Theorem 4.2 implies that t -
private queries through an index of k-batch queries Π are t-private
with respect to Π. In light of this, Theorem 5.2 is just a restatement

of Corollary 4.3.

Theorem 5.2. The construction just described implements t-
privatev-Byzantine-robust (m, ℓ)-server IT-PIR for anym ≥ t+2k−1
and v ≤m −t − 2k + 1.

Session F4:  Private Queries CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1369



6 RELATEDWORK

This section discusses the small body of existing literature on ex-

pressive PIR queries, describing how our new techniques relate to

and differ from those prior works.

Keyword-based PIR queries. A technical report by Chor, Gilboa,

and Naor [7] proposed a mechanism through which users can fetch

blocks privately by specifying keywords of interest. Similar to our

indexes of queries, they accomplish this by augmenting the database

with an auxiliary data structure (a binary search tree, a trie, or a

minimal perfect hash function) intended to help users translate

keyword-based requests into positional PIR queries, which are

ultimately handled by the underlying PIR protocol. Specifically, the

user employs positional queries to obliviously traverse the auxiliary

data structure (which, for tree-based data structures, may require

many iterative queries) in order to learn the physical locationwithin

the database of some record of interest, which it eventually fetches

using a final positional PIR query over the actual data.

In contrast to keyword-based PIR, indexes of queries let users

fetch data in a single round of interaction and they do not reveal any

information about the structure and layout of the underlying data

set. Indeed, the communication and computation costs incurred

while fetching records via an index of queries are decoupled from

the number of blocks in the database and are, in fact, upper bounded
by the cost of a positional PIR query over the database (such as the

one occurring in the last step of Chor et al.’s scheme).

SQL-based PIR queries. Olumofin and Goldberg [21] extended

Chor et al.’s approach to a scheme enabling users to fetch blocks

privately using simple SQL queries filtered by WHERE or HAVING
clauses. Similar to indexes of batch queries, Olumofin and Goldberg

accomplish this by having the database operator prepare (perhaps

several) inverted indexes that map sensitive search criteria to the

physical locations of associated blocks in the database. Also similar

to our approach, their technique may leak some information about

which blocks a user seeks, as it hides the sensitive search terms

that appear in a query but not the overall “shape” of the query.

Of course, because Olumofin and Goldberg’s construction di-

rectly build on keyword-based PIR, the differences we highlighted

above also differentiate our approach from theirs. Moreover, al-

though a single SQL query in their model may return a batch con-

sisting of several records, this comes at a cost of requiring the user

to perform multiple positional queries against the underlying data-

base (indeed, the user must always perform a number of queries

corresponding to the maximum possible size of a response, so as to

avoid leaking information about the actual size of the response);

indexes of batch queries, by contrast, can return such batches in a

single response using only a single query (and without leaking the

size of the response).

PIR from function secret sharing. In terms of functionality, our

proposal is most directly comparable to the recent PIR protocols

based on Boyle, Gilboa, and Ishai’s function secret sharing (FSS) [3–

5]. FSS provides a way for clients to split certain functions f into

pairs of “function shares”, which are themselves functions that

can be evaluated at an input x to produce additive shares of f (x).
This enables the construction of expressive 2-server protocols with

which users can fetch records privately using any search criteria

expressible as a polynomial sized branching program. (FSS construc-

tions that split functions into ℓ-tuples for ℓ > 2 have also been

proposed, thus yielding analogous ℓ-server PIR protocols, but these

constructions are dramatically less efficient and require stronger

computational assumptions compared to the 2-party construction.)

In contrast to our index-of-queries approach, FSS permits key-

word searches without any need for the server to prepare auxiliary

data structures. However, this added flexibility comes at a cost

of stronger security assumptions and a (potentially) higher com-

putation cost. Specifically, unlike the information-theoretic PIR

underlying our approach, existing PIR protocols based on (2-party)

FSS schemes (i) require a comparatively stronger non-collusion

assumption (i.e., that there exists a pair of servers who may not

collude), (ii) provide only computational security even when this

maximally strong non-collusion assumption holds, and (iii) neces-

sarily incur computational cost comparable to the upper bound on

that of our index-of-queries approach.

SQL-based PIR queries from FSS. A recent paper of Wang, Yun,

Goldwasser, Vaikuntanathan, and Zaharia [27] proposed Splinter, a
system that employs function secret sharing to support a range of

queries comparable to those supported by Olumofin and Goldberg’s

SQL-based approach. Splinter provides both the best and worst of

both worlds: on one hand, Splinter supports a similar set of queries

as SQL-based PIR with improved performance (by replacing many

recursive PIR-by-keyword queries with single-round FSS queries);

on the other hand, it leaks the shape of queries (á la SQL-based

PIR) and requires both computational assumptions and rigid non-

collusion assumptions (á la FSS-based PIR).
8

Despite the above benefits of indexes of queries over existing

keyword-, and SQL-, and function secret sharing-based PIR ap-

proaches, there exist use cases in which the latter are more useful—

each approach facilitates fundamentally different classes of inter-

actions. Indeed, it is not obvious how to realize efficient keyword-

based queries using indexes of queries alone, as this would require

users to somehow learn which rows in the index correspond to

which keywords. For instance, returning to our running private-

inbox-queries example, we note that while many casual interactions

with an email client leverage only the views naturally support-

able with indexes of queries, users can and do frequently rely on

keyword-based searches to locate emails of interest. Thus, an ac-

tual private email client would benefit from simultaneous support

for both indexes of queries and keyword- or SQL-based queries.

Fortunately, because none of the three approaches require any mod-

ification to the underlying database, no technical challenges prevent

the servers from supporting all of them at the same time.

8

Wang et al. assert that Olumofin and Goldberg’s SQL-based PIR “requires all the

providers to be honest” [27, §8.2]; however, this claim is false. Indeed, Olumofin

and Goldberg provide the same degree of flexibility as our indexes of queries in

choosing security assumptions: the default instantiation is unconditionally private

provided at most t out of ℓ servers collude, for any choice of t ≤ ℓ including, e.g.,

ℓ = t − 1. (By contrast, existing FSS schemes, including those used by Splinter, only
support t = ℓ − 1 and, even then, only provide computational privacy against smaller

coalitions.) Moreover, one can employ either computational or hybrid PIR in Olumofin

and Golberg’s framework, thus providing computational privacy when all servers

collude and, indeed, even allowing the protocol to run with a single server. This can be

accomplished under a wide variety of computational assumptions, including Paillier’s

decisional composite residuosity assumption (DCRA) or standard lattice assumption.

Finally, setting t < ℓ − 1 allows the former scheme to provide some level of Byzantine-

robustness, which equates to better liveness and potential mitigation of active attacks

by small coalitions of servers.
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(a) 4-batch query throughput on an Nvidia Tesla K20 GPU Accelerator (massively parallel)
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(b) 4-batch query throughput on an Intel Core i5-2500 CPU @ 3.30GHz (single-threaded)

Figure 2: Number of 4-batch index of queries requests our implementation can process per second. Figure 2(a)
depicts the counts for a massively parallel implementation on an Nvidia Tesla K20 GPU Accelerator; Figure 2(b)
depicts the same counts for a single-threaded implementation on an Intel Core i5-2500 CPU. Each experiment
was repeated for 100 trials; we report here the mean number of requests per second. Error bars are omitted due
to their small size (all standard deviations were below 2% of the mean).

7 IMPLEMENTATION AND EVALUATION

All three variants of indexes of queries introduced in this paper

yield sparse matrices; thus, querying through an index of queries

is an instance of sparse matrix-vector (SpMV) multiplication, an

embarrassingly parallelizable workload that is particularly well

suited to implementation on a massively parallel compute platform,

such as a general-purpose GPU device.

In order to empirically gauge the practicality of our indexes-of-

queries approach, we implemented finite-field SpMV multiplication

and ran a series of experiments both on an Nvidia Tesla K20 GPU

Accelerator [9] and on an Intel Core i5-2500 CPU. Both implemen-

tations support SpMV multiplication in the binary fields GF(28)
and GF(216) and in Zq for arbitrary multi-precision prime moduli

q.9 We use lookup tables and exclusive-ORs for fast binary field

arithmetic; for prime-order field arithmetic, our GPU code uses a

hand-optimized PTX implementation of “schoolbook” multiplica-

tion/addition together with Barrett reduction [1], while our CPU

implementation outsources arithmetic to NTL [26] and GMP [11].

Our implementations are licensed under version 2 of the GNU

9

Numerous efficient CUDA-based SpMV multiplication implementations already exist,

yet essentially all implementations we found assume that the entries are floating-point

numbers. Modifying any of these implementations to do integer arithmetic modulo

a 32-bit word-size prime would be relatively straightforward; however, in order to

obtain good PIR performance, we need support for SpMV multiplication over small

binary fields and/or over prime-order fields with multiple-precision prime moduli.

Indeed, benchmarks we ran on Percy++, an open-source implementation of Goldberg’s

PIR protocols, indicate that the PIR over small binary fields is fastest, followed by PIR

over prime order fields with moduli ≥ 128 bits long. For instance, we observe about a

3.5× speedup switching from a 32-bit modulus to a 1024-bit modulus.
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General Public License (GPLv2), and we are presently working to

integrate both versions into Percy++ [14], an open-source imple-

mentation of Goldberg’s IT-PIR protocol.

We conducted two sets of experiments. The first set of exper-

iments consists of microbenchmarks designed to measure the la-

tency imposed by routing PIR queries through an index of que-

ries prior to conducting a positional query against the actual data-

base. The second set of experiments evaluates the feasibility of

deploying our techniques over a real-world dataset; specifically, we

constructed several batch indexes of queries through which users

can fetch academic articles posted to the IACR Cryptology ePrint
archive [19].

7.1 SpMV microbenchmarks
For the first set of experiments, we generated a large number of

random u -batch indexes of queries for various choices of u , index
dimensions, and finite fields, and then we measured the number of

SpMV operations we could evaluate per second, either as a mas-

sively parallel computation on our Nvidia K20 GPU Accelerator or

as a single-threaded computation on our Intel Core i5-2500 CPU.

The results of this experiment are unsurprising—our SpMV multi-

plications consistently run extremely fast, even when the indexes

of queries have quite large dimensions.

In line with expectations, we observed that varying the height

of the index (p) and the batching parameter (u ) had very little im-

pact on throughput for our GPU implementation,
10

whereas the

throughput decreased linearly with pu for our CPU implementa-

tion.

Figure 2 plots the measurements we obtained from one arbitrary-

yet-representative set of parameters; specifically, it shows the re-

sults for a sequence of indexes of 4-batch queries having p = 2
14

rows and mapping to databases D having between r = 2
14

and

r = 2
20

blocks. In all cases, our GPU implementation was able to

process well over a thousand requests per second (indeed, we found

that memory bandwidth to and from the GPU was consistently the

bottleneck); our CPU implementation was able to process between

a few hundred (for r = 2
20

) and a few thousand (for r = 2
14

) re-

quests per second in the binary fields and on the order of a few

dozen requests per second (for all r ) in large prime-order fields. In

all cases, increasing r yielded a roughly linear decrease in through-

put, with a slope inversely proportional to the cost of a single field

operation.

For comparison, we found that it took just over 1.4 second per

GiB of database (using a single thread) to process a single positional

query using fast arithmetic in GF(28), with every other field we

measured taking notably longer. Thus, we conclude that, even in the

worst conceivable cases, indexes of queries introduce no significant

latency to PIR requests (and, when p ≪ r , they may significantly

speed up the subsequent PIR processing by producing positional

queries with small support).

10

We ran experiments for various choices of u ∈ [1. . 16] and power-of-two heights

and widths, with dimensions ranging from extremely short-and-fat to perfectly square

(but never tall-and-skinny); hence, our indexes were consistently extremely sparse (at

most about 0.1% of entries were nonzero), causing most GPU threads to sit idle most

of the time, regardless of how we set u and p.

7.2 IACR Cryptology ePrint Archive
For the second set of experiments, we created a dataset by scraping

the IACR Cryptology ePrint Archive [19], an open-access reposi-

tory that provides rapid access to recent research in cryptology. In

particular, we scraped metadata (paper id, paper title, author list,
submission date, keywords, and file size) for 10,181 papers (which
was the entire dataset as of midday on February 10, 2017, excluding

60 papers that our scraper skipped over because of inconsistently

formatted metadata). We also scraped citation counts for each paper

in the dataset from Google Scholar [15].
Using this data, we constructed a “synthetic ePrint” database, in

which the i th row holds a random bitstring whose length equals the

file size of the i th paper in the actual ePrint dataset (padded with 0s

to the length of the largest paper).
11

The largest paper in the dataset

was 19.3MiB, but only 56 out of the 10,181 papers exceeded 4.69MiB;

therefore, we pruned those 56 papers to obtain a dataset comprising

10,125 papers (the discarded manuscripts were predominantly older

PostScript files). This resulted in a 46.35GiB database (including

the 0-padding) of chronologically sorted “synthetic ePrint papers”

that user can fetch using IT-PIR queries.

We also constructed histograms to determine (i) the total number

of papers associated with each keyword, and (ii) the total number

of papers by each author. We identified 1,005 unique keywords that

were associated with five or more distinct papers each, and 1,750

unique authors that were each associated with four or more distinct

papers each, within the pruned dataset. From here, we constructed

four different indexes of 4-batch queries over GF(28); namely, we

created indexes of 4-batch queries supporting requests for the “4

most highly cited” and the “4 most recently posted” ePrint papers

for each keyword (associated with at least 5 papers) and for each

author (associated with at least 4 papers).

We performed two kinds of experiments for each of the four

indexes of queries. Table 1 summarizes the results of these experi-

ments, as well as some statistics about the time required to generate,

and the storage requirements for, each index of queries. First, we

measured the total number of requests through each of the four

indexes of queries that both our Nvidia Tesla K20 GPU Accelerator

and our Intel Core i5-2550 CPU could process per second; given

their small dimensions and the choice of working over GF(28), in
all cases we managed a whopping 49,000+ queries per second on

the GPU and over 20,000 queries per second on a single core of

the CPU. Second, we measured the total time required to retrieve

a random paper from the dataset using a positional query output

by each of the four indexes of queries. Because each of these in-

dexes of queries contains a relatively large number of all-0 columns,

the cost of the latter PIR step was substantially lower than that

of a standard positional query. In particular, queries by keyword

took around 19 seconds, on average, whereas queries by author

took around 33 seconds, on average; by contrast, positional PIR

queries over the entire database took nearly 70 seconds, on average.

These measurements suggest that indexes of queries can indeed be

a useful building block in the construction of practical PIR-based

systems for datasets on the order of tens of GiB.

11

We refrained from downloading all ePrint papers and instead opted for random

data purely to avoid unduly burdening ePrint with a high volume of unnecessary

downloads.
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Table 1: Experimental results obtained for the IACR Cryptology ePrint Archive [19] dataset. The dataset consists of 10,181
academic papers and associated metadata. All timing experiments were repeated for 100 trials to obtain a standard deviation
to one significant figure, and are reported to that precision (± the standard deviation).

Search
criteria

Sort
criteria

Simple
index

generation

Bucket
generation

(interp. + eval.)

Bucket
size

# of
nonempty
columns

GPU index
throughput

(queries/sec)

CPU index
throughput

(queries/sec)

PIR
throughput

(secs/query)

Keyword

(p = 1005)
Recency 1.5 ± 0.1 s 54 ± 9ms 71.76KiB 2692 49100 ± 100 32800 ± 400 19.1 ± 0.7 s

Citations 1.3 ± 0.1 s 52 ±10ms 70.17KiB 2645 49100 ± 100 30700 ± 600 18.8 ± 0.6 s

Author

(p = 1750)
Recency 3.1 ± 0.1 s 63 ± 6ms 92.38KiB 4548 49100 ± 100 22700 ± 400 32.6 ± 0.8 s

Citations 3.1 ± 0.2 s 63 ± 8ms 91.69KiB 4546 49000 ± 100 20100 ± 300 32.4 ± 0.9 s

8 CONCLUSION AND FUTUREWORK
We proposed indexes of queries, a novel mechanism for supporting

efficient and expressive, single-round queries over multi-server PIR

databases. Our approach decouples the way users construct their

queries from the physical layout of the database, thereby enabling

users to retrieve information using contextual queries that specify

which data they seek, as opposed to position-based queries that

specify where in the database those data happen to reside. We

demonstrated the feasibility of at least one promising applications

of our indexes-of-queries approach, and proposed several other

compelling possibilities, which we believe present several exciting

opportunities for future work.

Another potential avenue for future work is to explore the in-

dex of queries approach as it applies to other vector-matrix PIR

protocols, which may lead to additional useful instantiations (e.g.,

eliminating non-collusion assumptions and compressing queries

by settling for computational privacy). Likewise, it would be in-

teresting to explore how other families of batch codes might yield

alternative constructions for batch indexes of queries and indexes of

batch queries, which may offer different tradeoffs or compatability

with a wider range of PIR protocols.
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